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The thesis extends a non probabilistic market model proposed by Britten-Jones and Neuberger by

incorporating transaction costs into their model. The original model is of rather general applicability as

it incorporates the discrete nature of the market by allowing only a finite number of transactions and

discrete jumps and requires few observable parameters to be deployed.

Our addition of transaction costs gives the model an even more realistic character and, in this way,

allows to use the model as an instrument to look for arbitrage opportunities in the market. The main

output of the resulting model is a pair of numbers acting as lower and upper bounds to prices of financial

instruments. The thesis does perform a limited search for arbitrage opportunities in market data and

finds several interesting phenomena. A detailed analysis of several analytical properties, optimization

and computational issues, along with a software implementation, are also fully developed in the thesis.

Keywords: Incomplete market, No-arbitrage bounds, Proportional transaction costs, Fixed transaction

costs.
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Chapter 1

Introduction

1.1 Background Material

A fundamental question in finance is to determine the value of a financial option today1 Black and

Scholes [Black and Scholes, 1973] studied this question in a path breaking paper which showed how one

can replicate the payoff of an option using a dynamic trading strategy. Based on this results they pro-

vided a unique value of the option. Their approach uses a no arbitrage condition and is based on the

assumption that the logarithm of the stock price follows a certain continuous time version of a random

walk. They also assume that the stock and the risk free bond can be traded continuously.

The Black-Scholes model provides the unique price of a contingent claim in an ideal, complete and un-

constrained market based on the fundamental principle of absence of arbitrage opportunities. In other

words, this price is the unique one for which there are no arbitrage opportunities by taking either a short

or long position in the claim and investing wisely in the market. The Black-Scholes model also provides

a single hedging portfolio which one can use to exactly duplicate the claim.

However, the assumptions of the model may not be closely met in practice. This could be because

markets are incomplete. Market incompleteness generally comes from two main resources [Hao, 2008]:

1. There are not enough assets in the market to span the uncertainty.

2. Trading strategies are limited or not ideal because of discrete trading, jumps or transaction costs,

short selling constraints, etc.

In incomplete markets, instead of a single arbitrage-free price there appears an arbitrage-free interval

[V , V ] which contains a spectrum of market prices. Here, V is the greatest price the buyer can afford to

pay without risk and V represents the least price the seller can accept without risk. This interval has

the following properties:

1For the reader’s convenience, Appendix A provides a brief introduction to the basic finance concepts which are used
in this thesis.
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1.1. BACKGROUND MATERIAL CHAPTER 1. INTRODUCTION

• Every price level outside the interval leads to an arbitrage opportunity.

• There are no arbitrage opportunities for price level in the interior of the interval.

There is no single widely accepted method to calculate bounds prices in an incomplete market. One

approach is to find a super-replicating strategy which is a portfolio whose payoffs are always at least as

big as the payoff of the option being hedged. The value of the option is then bounded by the value of

the super-replicating portfolio. The super-replication price is the minimal initial wealth needed to hedge

without risk the contingent claim. A second approach is the utility-based valuation; in this case the

investor of the contingent claim assumes unhedgable risk, which will affect the probability distribution

of his/her consumption and final wealth level, and his/her utility function.

Pricing bounds are useful in many situations in which a relative pricing approach is appropriate but

perfect replication is not possible. A few examples follow [Hao, 2008]:

1. A trader can use the bounds as buy and sell points in the search for good deals in asset markets.

2. A bank or other institution that markets or synthesizes non traded securities can use bounds as

bid and ask prices.

3. Bounds can be used as economic measure of the accuracy of an option pricing formula.

4. Option pricing formulas are often used in risk assessments to quantify the exposure of a position

to various risk factors. It is useful to assess such risks when perfect replication is impossible and

to quantify the importance of the market price of risk assumptions.

Obtaining bounds for option prices can be traced all the way back to Merton’s paper [Merton, 1973] on

option pricing in 1973. The reference addresses this question by asking what can be said about the value

of a call option without making any additional assumptions about the price path. The answer is that a

European call option on a risky asset with zero interest rate, the price V0 of this option must satisfy:

max [S −K, 0] ≤ V0 ≤ S, (1.1)

where S is the spot price of the underlying.

Figure 1.1 shows the boundary as the 45 degree line from the origin. Along this line, the call option is

worth the same as the stock. The lower bound is the value of the call option at expiration by using a

European call option.

Recall that the above bound is based on an arbitrage condition; if the price of the call option is outside

this range then one can construct an arbitrage strategy that is guaranteed to make money without risk.

2



CHAPTER 1. INTRODUCTION 1.1. BACKGROUND MATERIAL

Figure 1.1: The boundary region for a call option’s prices

On the mathematics and financial assumptions on the standard Merton bounds, there are two things

one can consider.

First, the Merton bounds (1.1) requires no knowledge of the underlying asset’s terminal price distribu-

tion or investor’s behavior that will produce increasingly tighter bounds on option prices if additional

assumptions are placed on investor preferences.

Second, a crucial simplification in Merton’s work is the absence of transaction costs. In such idealized

model the investor would optimally maintain a proportion of wealth in the stock by trading continu-

ously. Such continuous strategies are no longer admissible once the transaction costs are introduced.

The investor must then determine when the stock position is sufficiently out of line to make the trading

worthwhile.

The present thesis builds on the approach from [Britten and Neuberger, 1996] (and expanded in

[Rebonato, 2004]). An specific objective of the study is to add two types of transaction costs to the basic

model from [Britten and Neuberger, 1996].

The approach in [Britten and Neuberger, 1996] manages to obtain tighter bounds in an incomplete mar-

ket model by introducing realistic restrictions on the set of values taken by the underlying process. That

reference develop this approach in a non probabilistic setting. The most important constraint of this

model is that the (sampled) quadratic log variation of the prices of the underlying is known. They also

assume that trading will take place at a finite number of occasions but it is not necessary to occur in

equally spaced time intervals. An upper bound restriction on jumps size is also imposed.

As indicated, as a main goal of our thesis, we introduce transaction costs in the framework from

[Britten and Neuberger, 1996]. As a result, we propose an approach to the pricing and hedging of

contingent claims in the presence of transaction costs, under a general incomplete market in dis-

crete time with special reference to the models introduced in [Bensaid and Scheinkman, 1992] and

3



1.2. OVERVIEW OF THE THESIS CHAPTER 1. INTRODUCTION

[Avellaneda and Parás, 1995], based on the framework described in [Britten and Neuberger, 1996].

1.2 Overview of the thesis

This work is structured as follows. Chapter 2 introduces some of the notation to be used in the remaind-

ing of the thesis. We assume that there is a forward market in the asset S where the forward price for

delivery of stock at time tn will be denoted by Sn
2. No probability structure is imposed at the outset.

We also introduce the basic model from [Britten and Neuberger, 1996], the lower and upper bounds for

the derivative’s prices are also introduced. Section 2.3 uses the dynamic programming optimization

methodology to make the problem computationally tractable.

Chapter 3 formulates two models for transaction costs in the basic framework of [Britten and Neu-

berger, 1996]. The investor’s portfolio model in this chapter consists of one risky and one risk-free asset.

Whenever the investor re-balances his/her portfolio in favor for one or the other asset class, he/she

faces transaction costs. Transaction costs are either assumed to be of a fixed value or proportional to

the volume of the risky asset traded. Section 3.1 provides a review of the transaction costs models.

Fixed costs are described in Section 3.2, there it is shown how to compute the minimum upper bound.

The dynamic programming formulation of the problem is also introduced. Section 3.3 develops the

proportional transaction cost model, this means that transaction costs are proportional to the wealth

transferred. This extends the basic framework from [Britten and Neuberger, 1996]. We also encode the

optimization problem in terms of dynamic programming.

Chapter 4 describes the construction of the pricing algorithm, which is referred as the J-N algorithm

and presents the mathematical setup of this algorithm.

Chapter 5 discusses numerical tests of the methods which were introduced in Chapter 2 and Chapter 3.

We also study the approach in real market data, one interesting aspect of this investigation is to analyze

the effects of the transaction costs on removing any available arbitrage opportunities.

Appendix A presents a very short introduction to financial concepts , Appendices B and C contain an

introduction to the Binomial Model and the dynamic programming respectively. Appendix D contains

analytical derivations of the optimal hedging ratios for the different models, these are not needed in the

rest of the thesis. Finally all Matlab code is available in Appendix E.

2We will assume zero interest rates, this implies that we will end up dealing directly with the stock value Sn.

4



Chapter 2

Basic Model

A central question in finance consists in finding the price of an option given information on the underlying

asset. The approach which is taken here is not a traditional approach as it does not rely on a probability

model. We also allow for some market imperfections. More precisely, we are interested in determining

the price of an option using a non probabilistic approach with a no-arbitrage condition. Since our

model is incomplete because jumps are allowed, one cannot use an exact pricing rule. Independently of

this state of affairs, one can always search for a bounding principle for the price of an option. Britten-

Jones and Neuberger [Britten and Neuberger, 1996] (in some instances, during the following pages, these

reference/authors are abbreviated by J-N) introduced an interesting way of looking at option pricing

by assuming that the (sampled) log quadratic variation of price changes over the option’s life is known.

This chapter contains a review of this arbitrage-free approach to the pricing of derivatives.

2.1 Framework

The objective of this section is to model an incomplete financial market with a non probabilistic approach

in a market containing one risk-free (bank account) and a risky assets (stock). In order to simplify our

formulas and developments, we assume:

1. There are no taxes and transactions costs.

2. The riskless borrowing and lending rats are zero.

We discuss a more general framework in Chapter 3.

According to Merton’s bound,1 discussed in the previous chapter, the option is not more valuable than

the underlying asset. This is a very weak bound but it is tight in the case that no extra restrictions are

placed on the price path of the risky asset. In this work, we show through computer experimentation,

1Merton’s bound is based on an arbitrage condition; if the price of the call option is outside this range then one can
construct an arbitrage strategy that is guaranteed to make money without risk.

5



2.1. FRAMEWORK CHAPTER 2. BASIC MODEL

that practical bounds are obtained by assuming a known (log) quadratic variation and a bound on the

jump size as constraints on allowed paths for the risky asset.

2.1.1 Non-probabilistic Asset Price Models

Assume a finite discrete model such that trading will take place at a finite number of occasions which is

not fixed in number or necessarily equally spaced in time. There is a risky asset (e.g. stock) with S(0)

being today’s price, and its value at tn ≤ T is denoted by Sn. Moreover, at any trading position tn ≤ T ,

we have an amount of cash Bn in a bank account with zero interest rate.

Definition 1. Assume Si is the price of the underlying at trading position i, an asset price path π is

any finite sequence of positive numbers {Si}Ni=0, where N is not set a priori but may equal to any finite

positive integer and at maturity SN is equal to ST (ST ≡ S(T )).

In addition, we consider a European contingent claim, V , a security whose payoff at time T is only

dependent on ST . It means that the forward price path {Si}Ni=0 has a payoff at T which depends only

on ST , written as V (ST ). For example, a European call option payoff is given by:

V (ST ) = max(ST −K, 0),

where K is the strike price.

Now, we provide constraints on path’s prices {Si}Ni=0 which will allow us to calculate no arbitrage price

bounds which will be tighter that the Merton’s bounds in the case of an incomplete market. In order to

reach our goal, we make two assumptions regarding the price path. We assume that the (sampled log)

quadratic variation of the risky asset is constant (i.e. it does not depend on the specific path) and we

have a jump restriction between tradings.

Definition 2. For a given constant v > 0, d > 0, and S(0), a price sequence π = {S0, S1, ...SN}, where

S0 = S(0), belongs to the set of permissible price sequences P (S0, v, d) if and only if

1. S0 = S(0),

2. |lnSi+1 − lnSi| ≤ d, 0 ≤ i ≤ N − 1,

3.
N−1∑
i=0

(lnSi+1 − lnSi)
2 = v.

The first condition simply requires that, for a price sequence to be permissible, its first value should be

equal to the price of the underlying asset today. The second condition implies that the jump in the log

of the prices between any two steps should not be larger than the given value d.

As far as the last condition is concerned, it is easy to recognize that
N−1∑
i=0

(lnSi+1− lnSi)
2 is the sampled

(log) quadratic variation generated by the price sequence. This sampled quadratic variation should be

known and be exactly equal to v.

6
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Definition 3. For a given price sequence π ∈ P (S0, v, d) at step i, define:

1. v0 = v,

2. vi+1 = vi − (lnSi+1 − lnSi)
2, 0 ≤ i ≤ N − 1.

{vi}Ni=0 is called a sequence of remaining (sampled) quadratic variations.

The second condition shows that every price move uses up the fraction (lnSi+1 − lnSi)
2 of the total

quadratic variation, until finally at option expiry T , the given value v is all exactly depleted.

Note that by using items 1. and 2. from Definition 3, we have

vi = v0 −
i−1∑
k=0

(lnSk+1 − lnSk)2. (2.1)

Hence, the vi gives information about how much of the quadratic variation is available to consume in

each trading occasion i.

In Figures 2.1 and 2.2, one can see a time series path of prices for two different trading strategies. In both

cases, the trader will trade to re-balance her/his hedging portfolio; note that there is no presumption

that trading takes place at constant time intervals and the number of trades can be as small or large as

the trader requires.

Example A: In the case A, assume that maximum jump size is d, the quadratic variation is equal to v

and in addition assume the trader is very lazy to trade more often or he/she expects larger gains. As a

result he/she trades whenever:

|lnSi+1 − lnSi| = d, 0 ≤ i ≤ N − 1.

As displayed in Figure (2.1), the trader has traded N = 24 times and has used up all of the quadratic

variation v.

Example B: In this case, Figure 2.2, for the same fixed maximum jump size d, the quadratic variation

v, the trader re-balances his/her portfolio more often and at any time he/she wishes as far as the log

of price changes is less or equal max jump d. Therefore at expiration T , he ends up with a permissible

path {Si}45
i=0.

7
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Figure 2.1: Case A: A lazy permissible path for the given maximum jump size d and the quadratic
variation v.

Figure 2.2: Case B: A possible permissible path which trader can trade any time as far as log return is
less or equal maximum jump size d

8
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2.1.2 Trading Strategy

The most important tool that a trader uses to make money is undoubtedly her/his trading strategies. A

trading strategy, may mean different things to different people. At any given point in time, for any given

security, a trading strategy should first tell a trader whether to buy, sell or hold; it then should provide

the optimal trading size under the given market price. In finance, a trading strategy is a predefined set

of rules for making trading decisions.

An investment strategy on the stock is given by a function H(., .) that depends on the spot Si and the

remaining volatility vi and it represents the number of shares in the holding portfolio when S(ti) = Si

and the the remaining quadratic variation is equal to vi.

We will restrict the investment strategies H(., .) to belong to a given set H, whenever required this set

H will satisfy the following definition.

Definition 4. H is called an admissible class if it satisfies

inf
H∈H

{
sup

π∈P (S0,v0,d)

{
−
N−1∑
i=0

H(Si, vi)(Si+1 − Si)

}}
= 0. (2.2)

The holdings in the bank account will be denoted by BSi,vi , hence, a portfolio can be define as a vec-

tor valued function Γ(Si, vi) = (H(Si, vi), BSi,vi). Sometimes for simplicity we set hi ≡ H(Si, vi) and

Bi = BSi,vi .

2.1.3 Profits/Losses of Investor

We assume that, at time zero, the investor has V0 dollars and invests this money in a portfolio containing

H(S0, v0) shares and deposits B0 = V0 − H(S0, v0)S0 in a bank account with zero interest rate. The

initial value V0 of this portfolio is given by:

V0 = H(S0, v0)S0 + B0. (2.3)

In general, the value of the portfolio Vn at n-th trade, after adjustment, may be written as;

Vn = H(Sn, vn)Sn + Bn, (2.4)

where H(Sn, vn) is the number of shares of the underlying asset and Bn is the amount of cash in the

account. The investor holds this portfolio until n+ 1.

To proceed further, we need an equation governing the dynamics of the self-financing hedging portfolio.

At stage n+1 and before adjusting the portfolio under the self-financing constraint, the portfolio’s value

9



2.2. STRUCTURE OF AN OPTIMAL STRATEGY CHAPTER 2. BASIC MODEL

equals (recall that we assume interest rates r = 0):

Vn+1 = H(Sn, vn)Sn+1 + Bn.

Then, using the self-financing trading strategy condition, the portfolio becomes

H(Sn, vn)Sn+1 + Bn = H(Sn+1, vn+1)Sn+1 + Bn+1. (2.5)

So at (n+ 1)
th

trading position after re-balancing, the value of the investor’s portfolio is:

Vn+1 = H(Sn+1, vn+1)Sn+1 + Bn+1. (2.6)

By using (2.4) and (2.6) and then applying the self-financing equation (2.5) we can find the variation of

the portfolio at two successive moments of trading in the form;

Vn = Vn+1 −H(Sn, vn)(Sn+1 − Sn). (2.7)

By applying (2.7) recursively; at maturity T , we have

VN−1 = VN −H(SN−1, vN−1)(SN − SN−1).

Hence; by the self financing property of the constructed portfolio:

H(SN−1, vN−1)ST + BT ≡ VΓ(S0, v0) +

N−1∑
i=0

H(Si, vi)(Si+1 − Si),

where the initial value VΓ(S0, v0) = H(S0, v0)S0 + B0 will also be denoted V0. An important remark, to

be used below, is that once H(., .) is fixed, the self financing constraint on the portfolio Γ determines Bk
for k = 1, . . . , N − 1 and only, either V0 or B0, can be set arbitrarily.

Definition 5. Assume a derivative with payoff V (ST ), for a given hedging strategy H(., .) and price

path π ∈ P (S0, v0, d), we denote the total balance of hedging (profit or loss) as follows:

ΠH(π) = V0 − V (ST ) +

N−1∑
i=0

H(Si, vi)(Si+1 − Si). (2.8)

2.2 Structure of an Optimal Strategy

We show next how the above introduced framework can be used to provide the upper and the lower

bounds for the value of an option.

10
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2.2.1 Why Minimax Approach?

Mathematical finance theory is devoted to the modeling of stock prices and devising investment strate-

gies that maximize wealth gain, minimize risk while doing so, and so on. Typically, this is done by

estimating the parameters in a probabilistic model of stock prices returns. One of the most popular

probabilistic models is known as the Geometric Brownian Motion.

Even though, empirically the Geometric Brownian Motion [Osborne, 1959] has enjoyed great predictive

success and every year trillions of dollars are traded assuming this model 2; in reality, several decisions fall

into the non-probabilistic category. While there maybe insufficient quantitative information to establish

probabilistic criteria, the decision-maker can still apply qualitative judgment and experience to the

situation. It would be a very unusual problem indeed that would leave a decision-maker bereft of ideas!

For cases where probabilities cannot be specified, the main decision criteria are maximin, maximax, and

minimax.

• The maximax rule, A risk-seeking decision-maker will choose the adventurous maximax decision

rule. He takes an optimistic view that everything will turn out right regardless of what decision

is taken. It looks only at the highest possible gain and ignores the opportunities that other

alternatives might present. In monetary terms, a maximax decision looks for the best of the best

by evaluating the largest possible profit that each alternative can produce and then choosing the

alternative with the highest profit. An organization that adopts a maximax approach perceives

a business opportunity and takes a gamble in trying to achieve its goal. It may become very

profitable or it may go broke.

• The maximin rule, A risk-averse decision-maker will use the conservative maximin criterion which

often leads to a decision to do nothing. An organization that adopts a maximin attitude is non-

competitive and will soon be overtaken by more innovative risk-taking competitors. The maximin

criterion essentially takes a pessimistic view and considers the results of taking the wrong alterna-

tive. It evaluates the worst outcome for each alternative and then chooses the alternative which

leads to the best of these worst outcomes. In monetary terms, a maximin decision looks for the

best of the worst by choosing the alternative that yields the maximum profit from all minimum

possible returns hence the name maximin.

• The minimax rule can be considered as another conservative or pessimistic decision rule. In this

case, a minimax decision looks for the minimum of the maximums by evaluating the largest possible

opportunity loss that each alternative would produce and then choosing the alternative with the

smallest loss. Thus, the minimax rule chooses the alternative with the smallest (or minimum)

maximum regret hence the name minimax.

2Black-Scholes used this same model in their work on pricing options on stocks.
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2.2.2 Optimal Strategy

Consider an investor who sold a derivative 3 with payoff V (ST ) and option’s price of V0, and also who

uses the trading strategy H(., .) to hedge the derivative.

Remark 1. Note that we use the amount V0 to set up the portfolio as an initial value in order to find

a suitable upper bound for this amount.

Let us to fix a hedging strategy H̃(., .) and according to (2.8), the investor’s profit which depends on

permissible path π is

ΠH̃(π) = V0 − V (ST ) +

N−1∑
i=0

H̃(Si, vi)(Si+1 − Si).

The second term (appearing with a minus sign) represents the payoff of the derivative at time of expiry

T and the last term represents the gains/losses from trading.

Definition 6. A strategy H(., .) is an arbitrage strategy if

• ∀π ∈ p(S0, v0, d), ΠH(π) ≥ 0 & V0 = H(S0, v0)S0 +B0 = 0,

• ∃π∗ ∈ p(S0, v0, d) such that ΠH(π∗) > 0.

Therefore a given trading strategy H̃(., .) is not an arbitrage if there exists π ∈ P (S0, v0, d)

ΠH̃(π) = V0 − V (ST ) +

N−1∑
i=0

H̃(Si, vi)(Si+1 − Si) < 0.

or

V0 < V (ST )−
N−1∑
i=0

H̃(Si, vi)(Si+1 − Si).

Therefore,

V0 < sup
π∈P (S0,v0,d)

{
V (ST )−

N−1∑
i=0

H̃(Si, vi)(Si+1 − Si)

}
.

The trading strategy H̃(., .) being arbitrary, we obtain:

V0 ≤ inf
H

{
sup

π∈P (S0,v0,d)

{
V (ST )−

N−1∑
i=0

H(Si, vi)(Si+1 − Si)

}}
. (2.9)

3The derivative here is an European path-independent derivative.
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Let us denote the minimum upper bound (2.9) as V (S0, v0)

V (S0, v0) ≡ inf
H

{
sup

π∈P (S0,v0,d)

{
V (ST )−

N−1∑
i=0

H(Si, vi)(Si+1 − Si)

}}
. (2.10)

In Proposition 3, we show that V (S0, v0) can be interpreted as the maximum price a trader can charge

by selling the derivative asset: nobody (who acknowledges only future paths with the quadratic variation

v and maximum jumps d) will buy the option for more than V (S0, v0).

According to Proposition 7, the maximum lower bound can be calculated as the negative value of the

minimum upper bound V (S0, v0) with the negative payoff (short position). So from a financial point of

view, in the short position, the upper bound on this position can be interpreted as the lower bound on

the long position.

V (S0, v0) = sup
H

{
inf

π∈P (S0,v0,d)

{
V (ST ) +

N−1∑
i=0

H(Si, vi)(Si+1 − Si)

}}
(2.11)

= −inf
H

{
sup

π∈P (S0,v0,d)

{
−V (ST )−

N−1∑
i=0

H(Si, vi)(Si+1 − Si)

}}

V (S0, v0) can be interpreted as the minimum price a trader will have to pay for the derivative. Nobody

will sell it for less than V (S0, v0).

Before proceeding any further, let us introduce some basic properties of the minimum upper bound

V (S0, v0).

Remark 2. For given a contingent claim with payoff V (ST ), the minimum upper bound

V (S0, v0) = inf
H

{
sup

π∈P (S0,v0,d)

{
V (ST )−

N−1∑
i=0

H(Si, vi)(Si+1 − Si)

}}

from a mathematical point of view, means that for all ε > 0, there exist a trading strategy Hε such that

0 ≤ V (ST )−
N−1∑
i=0

Hε(Si, vi) (Si+1 − Si)− V (S0, v0) ≤ ε. (2.12)

The following propositions show that by means of V (S0, v0) and V (S0, v0) one has an upper-hedging

and under-hedging portfolio for a derivative with payoff V (ST ).

Proposition 1. Fix a payoff V (ST ), then for all ε > 0 there exists a portfolio Γ(., .) = (H(., .), B.,.),

depending on ε, with VΓ(S0, v0) ≥ V (S0, v0) such that the following bound holds for all permissible paths

13



2.2. STRUCTURE OF AN OPTIMAL STRATEGY CHAPTER 2. BASIC MODEL

{S0, ..., SN}:

V (ST ) ≤ VΓ(S0, v0) +

N−1∑
i=0

H(Si, vi) (Si+1 − Si) + ε. (2.13)

Proof. For an arbitrary ε > 0 select Hε(., .) satisfying:

0 ≤ V (ST )−
N−1∑
i=0

Hε(Si, vi) (Si+1 − Si)− V (S0, v0) ≤ ε, (2.14)

for all permissible paths {S0, ..., SN}. Then, by defining B0 ≡ V (S0, v0) − Hε(S0, v0)S0, the portfolio

defined by Γ(., .) = (Hε(., ), B.,.) satisfies VΓ(S0, v0) = V (S0, v0). A re-writing of (2.14) gives then (2.13)

V (ST ) ≤ VΓ(S0, v0) +

N−1∑
i=0

H(Si, vi) (Si+1 − Si) + ε.

Proposition 2. Fix a payoff V (ST ), assume H is closed under multiplication by −1, then for all ε > 0,

there exists a portfolio Γ(., .) = (H(., .),B.,.), depending on ε, with VΓ(S0, v0) ≤ V (S0, v0) such that the

following bound holds for all permissible paths {S0, ..., SN}:

V (ST ) ≥ VΓ(S0, v0) +

N−1∑
i=0

H(Si, vi) (Si+1 − Si)− ε. (2.15)

Proof. For an arbitrary ε > 0 select H ′ε(., .) satisfying:

0 ≤ V (S0, v0)−

(
V (ST ) +

N−1∑
i=0

H ′ε(Si, vi) (Si+1 − Si)

)
≤ ε, (2.16)

for all permissible paths {S0, ..., SN}. Then, by defining B0 ≡ V (S0, v0) − H ′ε(S0, v0)S0, the portfolio

defined by Γ(., .) = (H ′ε(., .), B.,.) satisfies VΓ(S0, v0) = V (S0, v0). So by taking Hε(., .) ≡ −H ′ε(., .) we

obtain:

V (ST ) ≥ VΓ(S0, v0) +

N−1∑
i=0

Hε(Si, vi) (Si+1 − Si)− ε.

The following shows that superhedge for the minimum upper bound and underhedge for the maximum

lower bound are tight.

Proposition 3. Consider contingent claim with a payoff V (ST ) and an arbitrary H(., .) ∈ H.

• If V0 = H(S0, v0)S0 + B0 < V (S0, v0) then,

V0 +

N−1∑
i=0

H(Si, vi)(Ŝi+1 − Ŝi) < V (ŜT ) for some permissible price sequence {Ŝi}. (2.17)
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• If V0 = H(S0, v0)S0 + B0 > V (S0, v0) then,

V0 +

N−1∑
i=0

H(Si, vi)(Ŝi+1 − Ŝi) > V (ŜT ) for some permissible price sequence {Ŝi}. (2.18)

Proof. We prove only (2.17); assume there exists H(., .) ∈ H satisfying V0 = H(S0, v0)S0 + B0 <

V (S0, v0), also assume that (2.17) does not hold. Therefore,

V0 ≥ sup
π∈P (S0,v0,d)

[V (ST )−
N−1∑
i=0

H(Si, vi)(Si+1 − Si)].

This implies V0 ≥ V (S0, v0). For the lower bound, the process is the same just one can use inf rather

than sup.

Proposition 4. Consider a contingent claim with payoff V3(ST ) that is a convex combination of the

payoffs on two other claims, i.e. V3(ST ) = λV1(ST ) + (1− λ)V2(ST ), where 0 ≤ λ ≤ 1. Also assume H
is closed under convex combinations. Then the minimum upper bound V 3(S0, v0) satisfies

V 3(S0, v0) ≤ λV 1(S0, v0) + (1− λ)V 2(S0, v0)

.

Proof. For any λ ∈ (0, 1), the payoff V3(ST ) is defined by:

V3(ST ) = λV1(ST ) + (1− λ)V2(ST ). (2.19)

Assume V 1(S0, v0) be the minimum upper bound which has the payoff V1(ST ). Then for any arbitrary

ε > 0 and all π ∈ P (S0, v0, d), there is a H(., .) ∈ H such that

λV 1(S0, v0) ≥ sup
π

{
λV1(ST )− λ

N−1∑
i=0

H(Si, vi)(Si+1 − Si)

}
− ε

2
. (2.20)

Similarly there exist L(., .) ∈ H

(1− λ)V 2(S0, v0) ≥ sup
π

{
(1− λ)V2(ST )− (1− λ)

N−1∑
i=0

L(Si, vi)(Si+1 − Si)

}
− ε

2
. (2.21)

By adding (2.20) and (2.21), we obtain

λV 1(S0, v0) + (1− λ)V 2(S0, v0) ≥ sup
π

{
λV1(ST )− λ

N−1∑
i=0

H(Si, vi)(Si+1 − Si)

}
− ε

2

+ sup
π

{
(1− λ)V2(ST )− (1− λ)

N−1∑
i=0

L(Si, vi)(Si+1 − Si)

}
− ε

2
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So, by using (2.19)

λV 1(S0, v0) + (1− λ)V 2(S0, v0) ≥ sup
π

{
V3(ST )−

N−1∑
i=0

(λH(Si, vi)− (1− λ)L(Si, vi))(Si+1 − Si)

}
− ε,

Set Y (Si, vi) ≡ λH(Si, vi)− (1− λ)L(Si, vi)
4, so the trading strategy Y (., .) ∈ H. Hence;

λV 1(S0, v0) + (1− λ)V 2(S0, v0) ≥ sup
π∈P (S0,v0,d)

{
V3(ST )−

N−1∑
i=0

Y (Si, vi)(Si+1 − Si)

}
− ε

Since ε > 0 is arbitrary, we can choose it small enough such that

λV 1(S0, v0) + (1− λ)V 2(S0, v0) ≥ V 3(S0, v0).

Proposition 5. Given two contingent claims with payoff V1(ST ) and V2(ST ) such that

V2(ST ) = aV1(ST ) + b.

where a, b are arbitrary real numbers, and also assume H is close under multiplication, then

V 2(S0, v0) = |a|V 1(S0, v0) + b,

Proof. assume a > 0 (when a = 0 the result holds trivially) by definition:

V 2(S0, v0) = inf
H

{
sup

π∈P (S0,v0,d)

{
a V1(ST )−

N−1∑
i=0

H(Si, vi)(Si+1 − Si)

}}
+ b.

Now, it is enough to pull out a as common factor so,

V 2(S0, v0) = a inf
H

{
sup

π∈P (S0,v0,d)

{
V1(ST )−

N−1∑
i=0

1

a
H(Si, vi)(Si+1 − Si)

}}
+ b.

So let us call 1
aH(Si, vi) as a new strategy H ′(Si, vi). Hence

V 2(S0, v0) = a V 1(S0, v0) + b. (2.22)

When a < 0, then −a > 0. To use the same argument, equation (2.22) can be written as

V 2(S0, v0) = −a V 1(S0, v0) + b.

4Recall H(., .), L(., .) ∈ H, and H is assumed to be closed under convex combinations
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Therefore

V 2(S0, v0) = |a|V 1(S0, v0) + b.

Proposition 6. Assume a derivative with payoff V (ST ), and also H is an admissible class, then the

minimum upper bound

V (S0, v0) = inf
H

{
sup

π∈P (S0,v0,d)

{
V (ST )−

N−1∑
i=0

H(Si, vi)(Si+1 − Si)

}}
. (2.23)

satisfies the following properties:

1. If V (ST ) = 0 then V (S0, v0) = 0.

2. If V (ST ) = k then V (S0, v0) = k.

3. If V (ST ) = kST and H is closed under multiplication by (-1) and shifts by a constant k then

V (S0, v0) = kS(0).

Proof. 1. Suppose that V (ST ) = 0 because H is an admissible class, then according to equation (2.2),

V (S0, v0) = inf
H

 sup
π∈P (S0,v0,d)

V (ST )︸ ︷︷ ︸
0

−
N−1∑
i=0

H(Si, vi)(Si+1 − Si)


 = 0

Therefore, V (S0, v0) = 0.

2. Assume that V (ST ) = k, and let Ṽ (ST ) ≡ V (ST )−k = 0, so from Property 1 we obtain Ṽ (S0, v0) = 0,

on the other hand

Ṽ (S0, v0) = inf
H

{
sup

π∈P (S0,v0,d)

{
Ṽ (ST )−

N−1∑
i=0

H(Si, vi)(Si+1 − Si)

}}

= inf
H

{
sup

π∈P (S0,v0,d)

{
V (ST )−

N−1∑
i=0

H(Si, vi)(Si+1 − Si)

}}
− k

= V (S0, v0)− k = 0.

Hence, V (S0, v0) = k.

3. Consider the payoff V (ST ) = kST where k is a fixed real number, recall that ST = SN and π ∈
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P (S0, v0, d) then:

V (S0, v0) = inf
H

{
sup
π

{
kST −

N−1∑
i=0

H(Si, vi)(Si+1 − Si)

}}

= inf
H

{
sup
π

{
k SN −H(SN−1, vN−1)SN +H(SN−1, vN−1)SN−1 −

N−2∑
i=0

H(Si, vi)(Si+1 − Si)

}}

= inf
H

{
sup
π

{
(k −H(SN−1, vN−1)SN + (H(SN−1, vN−1) + k − k)SN−1 −

N−2∑
i=0

H(Si, vi)(Si+1 − Si)

}}

= inf
H

{
sup
π

{
−H(SN−1, vN−1)− k)(SN − SN−1) + kSN−1 −

N−2∑
i=0

H(Si, vi)(Si+1 − Si)

}}
= ...

= inf
H

{
sup
π

{
kS0 −

N−2∑
i=0

(k −H(SN−1, vN−1))(Si+1 − Si)

}}
,

since kS0 is constant and H is an admissible class, so by equation (2.2) we obtain:

V (S0, v0) = inf
H


0︷ ︸︸ ︷

sup
π

{
−
N−2∑
i=0

(k −H(Si, vi))(Si+1 − Si)

}+ kS0 = kS0.

The following proposition gives the relationship between the bound on the long position and the bound

on a short position on the same claim.

Proposition 7. Given two contingent claims with payoff V1(ST ) and V2(ST ) such that V2(ST ) =

−V1(ST ), assume H is closed under convex combination, then

1. V 1(S0, v0) + V 2(S0, v0) ≥ 2 V 3(0), where, allowing for some abuse of notation, V 3(0) denotes the

minimum upper bound for a continent claim with payoff V3(ST ) = 0.

2. If H is an admissible class, then V 1(S0, v0) + V 2(S0, v0) ≥ 0.

Proof. 1. By assumption, we have two contingent claims with payoff V1(ST ), and V2(ST ) such that

V1(ST ) + V2(ST ) = 0,

or equally
1

2
V1(ST ) +

1

2
V2(ST ) = V3(ST ) = 0.
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Then from Proposition 4

V 1(S0, v0) + V 2(S0, v0) ≥ 2 V 3(S0, v0) = 2 V 3(0).

2.If H is an admissible class, then by Proposition 6, since V 3(ST ) = 0 when V 3(S0, v0) = 0. Hence

V 1(S0, v0) + V 2(S0, v0) ≥ 0.

As a result of Proposition 7, since

V (ST ) + (−V (ST )) =
1

2
V (ST )− 1

2
V (ST ) = 0.

If H is an admissible class, it follows from Proposition 7, item 2, that:

V (S0, v0) ≥ V (S0, v0). (2.24)

These arbitrage bounds mean that investors would not pay more than V (S0, v0) and would not sell it

for less than V (S0, v0).

2.3 Dynamic Programming Formulation

The solution to the problem (2.10) is a strategy H(., .) such that minimizes total payout in the worst-case

scenario. Therefore, potentially, this is a hard problem because involves a search over all permissible

paths and over all hedging strategies. The beauty of dynamic programming (see Appendix C for more

details about dynamic programming) is to convert the sequential problem into a collection of two-period

problems which is easy to solve.

2.3.1 The General Problem

Let us clarify up the assumptions which are necessary to convert the sequential problem (2.10) into a

dynamic programming problem, first we need to detect state variables and control variables (Appendix

C).

Assume Si and vi, where 0 ≤ i ≤ N , be two of state variables of the system which summarize the past

information that is relevant for future optimization and ci is a control variables which can be chosen

in every period of trading by the decision-maker. We define ci as control variable which is equal the

continuously compounded growth (rate of return) between the adjusted prices:

ln
Si+1

Si
= ci.
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So

Si+1 = Sie
ci .

The other state variable is the volatility vi which evolves as;

vi+1 = vi − (lnSi+1 − lnSi)
2

= vi − ci2.

Now, we have following optimization problem:

V (S0, v0) = inf
{hi}N−1

i=0

{
sup

{Si}N−1
i=0

{
V (ST )−

N−1∑
i=0

hi(Si+1 − Si)

}}
, (2.25)

where hi = H(Si, vi).

Subject to

• Si+1 = Sie
ci & vi+1 = vi − ci2 ≥ 0.

• ci ∈ R & c2i ≤ d2 where i = 0, ..., N − 1.

• S0 = S(0) and v0 = v are given.

• SN = ST ≥ 0 and vN = 0.

V (ST ) is called a ”scrap” value function at the end of the program where no further decisions are made.
N−1∑
i=0

hi(Si+1−Si) is separable after the start trading and Si+1 = Sie
ci is separable by following structure:

S1 = S0e
c0 ,

S2 = S1e
c1 ,

...

SN = SN−1e
c
N−1.

These equations are called transition equations.

This problem can be solved by using the standard constrained optimization technique of Lagrange multi-

pliers. This is a perfectly good approach, but dynamic programming is an alternative that is sometimes

more convenient. As we consider in Appendix C, as more convenient method to use is Bellman’s Prin-

ciple of Optimality which guarantees that if we convert the original sequential problem into a collection

of small problems, the optimal choice in each of the two-period problem must be globally optimal to

justify the transformation.
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Bellman’s Method:

Consider the problem at time zero:

Problem I:

V (S0, v0) = inf
{hi}N−1

i=0

{
sup
{ci}N−1

i=0

{
V (ST )−

N−1∑
i=0

hi(Si+1 − Si)

}}
.

Subject to

• Si+1 = Sie
ci , & vi+1 = vi − ci2 ≥ 0.

• ci ∈ R & c2i ≤ d2 where i = 0, ..., N − 1.

• S0 = S(0) and v0 = v are given.

Now consider the same problem, starting at some n0 > 0:

Problem II

V (Sn0 , vn0) = inf
{hi}N−1

i=n0

 sup
{ci}N−1

i=n0

{
V (ST )−

N−1∑
i=0

hi(Si+1 − Si)

} .

Subject to

• Si+1 = Sie
ci .

• ci ∈ R & c2i ≤ d2 where i = n0, ..., N − 1.

• Sn0
is given.

According to Bellman’s Principle of Optimality asserts [Bellman, 1957], any solution to Problem I (i.e.

on the range i = 0, ..., T ) which yields to S0 = S(0) and an optimal strategy also must solve Problem II

(i.e.: on the range i = n0, ..., T ).

Remark 3. This result depends on additive time separability, since otherwise we could not ”break” the

solution at n0. Additive separability is sufficient for Bellman’s principle of optimality.

Bellman’s principle of optimality allows us to use the trick of solving large Problem I by solving the smaller

Problem II, sequentially. Also, since n0 is arbitrary, we can choose to solve the problem n0 = N − 1 first,

which is a simple 2-period problem, and then work backwards as follows.

Step 1:

Set n0 = N − 1, so that Problem II is simply:

V (SN−1, vN−1) = inf
{hN−1}

{
sup
{cN−1}

{−hN−1(SN − SN−1) + V (ST )}

}
.
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Subject to

• SN = SN−1e
cN−1 , vN = 0.

• SN−1 is given.

Step 2: Set n0 = N − 2, so that Problem II is:

V (SN−2, vN−2) = inf
{hi}N−1

i=N−2

 sup
{ci}N−1

i=N−2

{−hN−2(SN−1 − SN−2)− hN−1(SN − SN−1) + V (ST )}


(2.26)

Subject to

• SN = SN−1e
cN−1 , vN = vN−1 − c2N−1 ≥ 0

• SN−1 = SN−2e
cN−2 , vN−1 = vN−2 − c2N−2 ≥ 0

• SN−2 , SN−1 are given.

According to [Bertsekas, 1976], we can rewrite this as :

inf
{hN−2,hN−1}

{
sup
{cN−1}

− hN−2(SN−1 − SN−2) + sup
{cN−1}

{−hN−1(SN − SN−1) + V (ST )}

}
=

inf
{hN−2}

{
sup
{cN−2}

− hN−2(SN−1 − SN−2) + inf
{hN−1}

sup
{cN−1}

{−hN−1(SN − SN−1) + V (ST )}

}

(2.26) has already given us the solution to the inside maximization problem, so that we can re-write

Step 2 as:

inf
{hN−2}

{
sup
{cN−2}

{
−hN−2(SN−1 − SN−2) + V (SN−1, vN−1)

}}
Subject to

• SN−1 = SN−2e
cN−2 , vN−1 = vN−2 − c2N−2 ≥ 0

• SN−2 is given and c2N−2 ≤ d2.

Step 3:

Using an argument analogous Step 2, in general, the problem in period i can be written as:

V (Si, vi) = inf
{hi}

{
sup
{ci}

{
−hi(Si − Si+1) + V (Si+1, vi+1)

}}
.

Subject to:

• Si+1 = Sie
ci , vi+1 = vi − c2i ≥ 0.
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• Si is given.

Step 4:

After going through the successive rounds of single period optimization problems, eventually one reaches

the problem in time zero:

V0(S, v) = inf
{h0}

{
sup
{c0}

{
V (S1, v1)− h0(S0 − S1)

}}
.

• S1 = S0e
c0 and c20 ≤ d2.

• S0 = S, v0 = v is given.

2.3.2 Bellman Equation

Therefore, the Bellman Equation can be written as

V (Si, vi) = inf
hi

{
sup
ci

{
V (Si+1, vi+1)− hi(Si+1 − Si)

}}
(2.27)

Subject to the conditions

• (lnSi+1 − lnSi)
2 = c2i ≤ d2.

• vi+1 = vi − c2i ≥ 0.

The initial boundary conditions are given by the initial values of the state variables, S0, v0. Obviously,

at the boundary v = 0, we have V (ST , 0) = V (ST ). Note that the terminal price ST is free, as is the

number of price moves N .

In chapter 4 we will developed a numerical solution for above optimization based on the Britten-

Neuberger model.
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Chapter 3

Transaction Costs Models

In the analysis of the Britten and Neuberger’s model, described in the previous chapter, we have assumed

that trading, by buying and selling the underlying, is costless in the sense that we can buy or sell any

amount at the given market price without paying an intermediary or affecting the price.

In order to have a more realist model, we extend the previous setup to include models with transaction

costs. This will allow us to study how several of the model’s features are affected by the introduc-

tion of transaction costs. One way of introducing transaction costs in the basic model is to interpret

the sequence of prices in a permissible price path as bid or ask prices; this point of view is suggested

in [Britten and Neuberger, 1996] and [Rebonato, 2004]. In this work, we propose more direct ways to

approach the pricing and hedging of contingent claims under transaction costs with the same general

assumptions on price paths and the quadratic variation as in the previous chapter.

After a short review of how transaction costs appear in financial practice, we proceed to describe two

reasonable models of them which fit with our basic model. More precisely, we present an original

extension of the basic framework for pricing derivatives in [Britten and Neuberger, 1996] by introducung

two models of transaction costs and we show how we can find the option’s price bounds in these cases.

3.1 What are Transaction Costs?

Over the past decades, trading has increasingly been regarded as an area for cutting costs. Several

alternatives have evolved for placing orders, and models for transaction costs have become increasingly

important as a means for evaluating them. Also, the option pricing in the presence of transaction costs

has recently become a very popular subject for research; in particular, it represents one way of removing

arbitrages in real markets as well as in some models.

In financial economics, transaction costs are generally understood as all costs associated with trading
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and are categorized according to three groups [Harris, 2003]; explicit costs, implicit costs, and missed

trade opportunity costs.

• Explicit transaction costs : are costs that are observable and known upfront and directly related

to trading such as commissions paid to brokers, fees paid to exchanges, and other transaction based

taxes, and also, as in the case of larger trading organizations, the internal costs such as salaries of

traders, software, and accounting.

• Implicit transaction costs: are also referred to as unobservable transaction costs and include

such elements as price impact 1 and the bid/ask spread2.

• Missed trade opportunity costs: are costs that arise when a trader acts in a suboptimal

manner and as a consequence forgoes an opportunity to execute a trade, for example by waiting

for the market to move in a favorable direction before sending an order to the market, only to see

the market to move in the opposite direction.

3.1.1 More Realistic Investment Trading Model

To render our model more realistic let us assume that moving our wealth from one position to another

incurs into some cost. The problem can be formulated in terms of an agent that buys and sells options

on the stock of a company. At some point in time, he/she decides to hedge the book or options portfolio

against future price fluctuations. The agent would like to determine the least costly strategy taking into

account the projected transaction costs due to dynamic hedging. The initial cost of such strategy can

be interpreted as the minimal capital reserve needed to protect the portfolio against future market moves.

For the sake of simplicity, we will assume that the investor pays the same transaction costs either if

he/she buys or sells a given volume of the risky asset.

As we have assumed in the previous chapter, we consider a market in which there are two assets available

for investment: one risky asset S which pays no dividends and one risk-free asset (bank account) B with

zero interest rate. We consider hedging a simple portfolio composed of a path independent European

option with maturity T . In addition, we assume the same model as in Chapter 2 which, in particular,

allows for a finite, but arbitrarily large, number of trades to occur which are not necessarily equally

spaced in time. We then use a no-arbitrage argument to establish an upper and lower bound by means

of approximate dynamic hedging strategies in the presence of transaction costs.

Two types of transaction costs are considered:

• Fixed cost per-trading.

1Price impact is the effect the execution of a sizable order has on the market. While a trader may be able to transact a
small order without materially affecting the market price, the larger the order the greater the impact is on the market. This
effect is variable in terms of the liquidity conditions of the specific market and depends on factors such as the time-of-day.

2The bid/ask spread is the difference between the bid price, the price where market participants are willing to buy a
financial instrument, and the ask price, the price where market participants are willing to sell a financial instrument.
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• Proportional to the volume of the trading.

Both types of transactions costs are very common in markets and, hence, the results we report will be

directly applicable to common investors.

3.2 Fixed Transaction Costs

To motivate the subsequent definition of the cost of a strategy under transaction costs, it is helpful to

first explain how it is implemented in our model.

3.2.1 The Portfolio of the Hedger

In this section, we are going to find the optimal investment strategy when only fixed transaction costs

are present. The main method is similar as the one we introduced in Chapter 2.

Remark 4. The positive fixed transaction cost paid if trading has occurred in the risky security. We

assume that re-balancing of the bank account is costless (besides assuming r = 0). If agents do not trade,

then we assume that they do not incur in any transaction cost.

First, in order to construct the portfolio, assume that at time t = 0, the investor starts his business by

having H(S0, v0) units of stock and B0 in the bank account, so the value portfolio including the effect

of the transaction cost K can be written as

V0 = B0 +H(S0, v0)S0 +K, (3.1)

where K is the transaction cost and is a fixed positive number and V0 is a given constant, representing

the initial wealth.

At time n, the agent’s portfolio value is:

Vn = Bn−1 +H(Sn−1, vn−1)Sn, 0 < n ≤ N.

where Bn−1 is the dollar amounts in the bank account and H(Sn−1, vn−1) is the number of shares held

in the portfolio at time n before trading.

Then the investor needs to balance his portfolio by using a self-financing strategy, so

Bn−1 +H(Sn−1, vn−1)Sn = Bn +H(Sn, vn)Sn +K, 0 < n ≤ N. (3.2)
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By using (3.1) and applying (3.2), recursively, we obtain the total cost of a strategy.

V0 = B0 +H(S0, v0)S0 +K

= B1 +H(S1, v1)S1 −H(S0, v0)(S1 − S0) + 2K

= B2 +H(S2, v2)S2 −
2∑
i=0

H(Si, vi)(Si+1 − Si) +

1∑
i=0

K = ...

= BN−1 +H(SN−1, vN−1)SN−1 −
N−1∑
i=0

H(Si, vi)(Si+1 − Si) +

N−1∑
i=0

K,

For simplicity assume the investor’s payoff at T is V (ST ) = H(SN−1, vN−1)SN + BN . This assumes no

liquidation costs (see Section 3.2.2 for more dissuasion).

Then the investor’s profit/loss for a fixed trading strategy H(., .) becomes:

ΠH(π,K) = V0 − V (ST ) +

N−1∑
i=0

H(Si, vi)(Si+1 − Si)−
N−1∑
i=0

K

= V0 − V (ST ) +

N−1∑
i=0

H(Si, vi)(Si+1 − Si)−NK. (3.3)

Remark 5. For simplicity, in this thesis, we assume for all 0 < n ≤ N , H(Sn, vn) 6= H(Sn−1, vn−1). In

the general case, one should work with K 1H(Sn,vn)6=H(Sn−1,vn−1). This could substantially change later

optimization developments.

Equation (3.3 helps us to build an inequality which by solving it, one can obtain the optimal strategy.

In order to find the no arbitrage interval, we use Definition 6 and apply the same approach as in the

previous chapter.

Therefore, in the model with fixed trading costs if there is no arbitrage, we have;

V0 ≤ inf
H
{ sup
π∈P (S0,v0,d)

{V (ST )−
N−1∑
i=0

H(Si, vi)(Si+1 − Si) +NK}}.

Definition 7. For a given fixed transaction K, then

V (S0, v0,K) ≡ inf
H
{ sup
π∈P (S0,v0,d)

{V (ST )−
N−1∑
i=0

H(Si, vi)(Si+1 − Si) +NK}}. (3.4)

is called the minimum upper bound for the fixed transaction cost K.
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Similarly,

V (S0, v0,K) ≡ sup
H
{ inf
π∈P (S0,v0,d)

{V (ST ) +

N−1∑
i=0

H(Si, vi)(Si+1 − Si) +NK}}. (3.5)

is called the maximum lower bound for the fixed transaction cost.

Remark 6. The minimum upper bound has the following simple property, which is straightforward to

prove.

• It is clear that by increasing transaction cost, the upper bound V (S0, v0,K) is increasing i.e. if

K1 ≤ K2 then 3

V (S0, v0,K1) ≤ V (S0, v0,K2).

3.2.2 Bellman Equation and Optimal Hedging

Even though, the minimum upper bound V (S0, v0,K) could be found by a search over paths and strate-

gies, the formulation in equation (3.4) is impracticable. By means of similar arguments as in Chapter 2,

the portfolio optimization problem (3.4) can be solved by applying a dynamic programming technique.

Towards this end, we define the value function in a recursive way, i.e we can write the problem as the

following Bellman equation:

V (Si, vi,K) = inf
hi
{sup
ci

{V (Si+1, vi+1,K)− hi (Si+1 − Si) +K}}, (3.6)

where hi = H(Si, vi).

With two state variables

Si+1 = Sie
ci ,

vi+1 = vi − ci2,

where ci is the control variable, and we set V (SN , 0,K) = V (ST ).

How the computation of V (S0, v0,K) is accomplished in practice is shown in the next chapter.

3.3 Proportional Transaction Costs

In this section, we study optimal hedging strategies and bounds on option prices when there are propor-

tional transactions costs on the stock. Namely, if we want to invest 1 dollar, we will have to pay α × 1

dollars as transaction costs. That is, when at the end of the day we want to re-balance our portfolio,

3Note that everything changes when fixed transaction costs enter the scene. Paying the same fixed amount of money
for every transaction, the investor clearly goes to bankruptcy if he/she chooses a continuum of trades. Now he/she has to
trade at a carefully chosen discrete sequence of instances.
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the amount of money obtained from liquidating one position (in order to enter into a new position) from

the stock can not all be invested again but part of it has to be used to cover the transaction costs. We

look at the re-balancing process in detail in the following.

3.3.1 Hedging Strategies

In this section, we assume that the proportional transaction costs are incurred when shares of the risky

asset are traded and on the other hand, it is admitted that trading in the riskless asset is cost-free. Also

for simplicity assume that no transaction costs are incurred when a portfolio is established at time 0.

But the liquidation costs 4 are incurred when a portfolio is liquidated at the terminal date T .

Remark 7. A trading strategy is defined, as in the previous chapter, as a function H(., .) that determines

the number of shares that are held as a function of the price Si and the remaining volatility vi during

each position i = 0, ..., N − 1 and in addition to our portfolio, we have Bi = BSi,vi as a balance of a

money market in order to have a self-financing strategy.

First, assume V0 is a given constant, representing the initial value of the portfolio which is the investor’s

initial capital spent at time 0 to have H(S0, v0) units of stock and B0 in the bank account, so that the

amount of money spent for this portfolio including the effect of the transaction costs can be written as

V0 = B0 +H(S0, v0)S0 + α|H(S0, v0)|S0

= B0 +H(S0, v0)S0, (3.7)

where α|H(S0, v0)|S0 is the transaction cost is at time 0 which is zero by our first assumption, and

0 ≤ α < 1 is called a round-trip transaction.

At nth trading position, but before readjusting, the portfolio is composed of H(Sn−1, vn−1) shares and

Bn−1 in cash. We denote the value of the portfolio before revision at n by

V −n := Bn−1 +H(Sn−1, vn−1)Sn, 0 < n ≤ N. (3.8)

For re-balancing purposes, the investor requires H(Sn, vn) number of shares; therefore, a number of

H(Sn, vn) − H(Sn−1, vn−1) shares need to be traded. In the presence of the proportional transaction

costs, the net total dollars exchanged of this operation (the volume of transactions plus the cost of that

transaction) is:

C(H(Sn, vn)−H(Sn−1, vn−1)) Sn ≡ (H(Sn, vn)−H(Sn−1, vn−1))Sn + α |H(Sn, vn)−H(Sn−1, vn−1)|Sn.
(3.9)

An additional term α|H(Sn, vn)−H(Sn−1, vn−1)|Sn where 0 ≤ α < 1, on the right-hand side represents

4Liquidation is the process of taking a business’ real assets and turning them into cash.
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the cost incurred when H(Sn, vn)−H(Sn−1, vn−1) shares are transacted at n by the purchase (or sell)5

of the asset Sn. Clearly, it reduces the amount of money intended for the riskless position. The case

without transaction costs is recovered by letting α = 0.

Remark 8. For a given trading strategy H(., .), the total cost of the investor for one success trading at

stage n, using equation (3.9), is given by:

C(∆H(Sn, vn))Sn =

(1 + α)∆H(Sn, vn)Sn, if ∆H(Sn, vn) ≥ 0,

(1− α)∆H(Sn, vn)Sn, if ∆H(Sn, vn) < 0.

where ∆H(Sn, vn) is the number of shares bought/sold, with 0 ≤ α < 1. The above expression satisfies

the following properties:

• C(λ∆H(Sn, vn))Sn = λC(∆H(Sn, vn))Sn.

• C(∆H(Sn, vn) + ∆L(Sn, vn)Sn ≤ C(∆H(Sn, vn))Sn + C(∆L(Sn, vn))Sn, where ∆H(Sn, vn) and

∆L(Sn, vn) are the number of shares bought/sold.

• C(∆H(Sn, vn))Sn is non-decreasing as a function of ∆H(Sn, vn).

• C(∆H(Sn, vn))Sn ≥ ∆H(Sn, vn)Sn and C(0) = 0 6.

Then, right after the nth trading occasion, the investor balances the portfolio by using a self-financing

strategy, and the balance of the operation including transaction costs is added to the money-market

account and according to the preceding notation for total cost (3.9). The bank account investment at

stage n can be written as

Bn = Bn−1 − Cn(H(Sn, vn)−H(Sn−1, vn−1)) Sn, 0 < n ≤ N.

or

Bn−1 +H(Sn−1, vn−1)Sn = Bn +H(Sn, vn)Sn + α|H(Sn, vn)−H(Sn−1, vn−1)|Sn, 0 < n ≤ N.
(3.10)

By using (3.8) and (3.10), we have

V −n = Bn−1 +H(Sn−1, vn−1)Sn

= Bn +H(Sn, vn)Sn + α|H(Sn, vn)−H(Sn−1, vn−1)|Sn
= V +

n + α|H(Sn, vn)−H(Sn−1, vn−1)|Sn.

5H(Sn, vn) − H(Sn−1, vn−1) is the number of shares bought when H(Sn, vn) − H(Sn−1, vn−1) > 0 or sold when
H(Sn, vn)−H(Sn−1, vn−1) < 0.

60 ≤ C(0) = C(∆H(Sn, vn)−∆H(Sn, vn))Sn ≤ C(∆H(Sn, vn))Sn − C(∆H(Sn, vn))Sn = 0 so C(0) = 0.
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Note that, V +
n is the value of the portfolio after rebalancing. Clearly if H(Sn, vn) = H(Sn−1, vn−1),

then V +
n = V −n .

By applying (3.10) recursively, we obtain the total cost of a strategy.

V0 = B0 +H(S0, v0)S0

= B1 +H(S1, v1)S1 −H(S0, v0)(S1 − S0) + α|H(S1, v1)−H(S0, v0)|S1

= B2 +H(S2, v2)S2 −
1∑
i=0

H(Si, vi)(Si+1 − Si) +

1∑
i=0

α|H(Si, vi)−H(Si+1, vi+1)|Si+1 = ...

= BN−1 +H(SN−1, vN−1)SN−1 −
N−2∑
i=0

H(Si, vi)(Si+1 − Si) +

N−2∑
i=0

α|H(Si, vi)−H(Si+1, vi+1)|Si+1.

Now assume a European path independent option with cash settlement (liquidation), so the writer who

delivers the payoff with liquidation receives V (ST ) including liquidation costs in cash at maturity T = N

BN−1 +H(SN−1, vN−1)SN = VN + α|H(SN−1, vN−1)|SN . (3.11)

So

V0 = BN−1 +H(SN−1, vN−1)SN−1 −
N−2∑
i=0

H(Si, vi)(Si+1 − Si) +

N−2∑
i=0

α|H(Si, vi)−H(Si+1, vi+1)|Si+1

= VN −H(SN−1, vN−1)SN +H(SN−1, vN−1)SN−1 + α|H(SN−1, vN−1)|SN

−
N−2∑
i=0

H(Si, vi)(Si+1 − Si) +

N−2∑
i=0

α|H(Si, vi)−H(Si+1, vi+1)|Si+1

= V (ST )−
N−1∑
i=0

H(Si, vi)(Si+1 − Si) +

N−1∑
i=0

α|H(Si, vi)−H(Si+1, vi+1)|Si+1.

Note that at maturity V −N = V +
N = V (ST ) and H(SN , vN ) = 0.

Definition 8. For a given trading strategy H(., .), the profit/loss of trading in the presence of the

proportional transaction costs is

ΠH(π, α) = V0 − V (ST ) +

N−1∑
i=0

H(Si, vi)(Si+1 − Si)− α
N−1∑
i=0

|H(Si+1, vi+1)−H(Si, vi)|Si+1. (3.12)

3.3.2 No Arbitrage Condition

In this section, again we consider an investor who uses a trading strategy H(., .) to hedge the derivative.

Assume that some strategy H(., .) has been fixed, according to (3.12), the investor’s profit/loss which
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depends on permissible path π is

ΠH(π, α) = V0 − V (ST ) +

N−1∑
i=0

H(Si, vi)(Si+1 − Si)−
N−1∑
i=0

α|H(Si+1, vi+1)−H(Si, vi)|Si+1,

where V0 is the price received for issuing the contingent claim (a positive number) and V (ST ) is the

payout of the derivative which appears with a minus sign as the above expression reflects the balances

of the seller of the option. The third term is the hedging profit/loss and it could be negative or positive

and the last term is the cost of transactions.

As we defined (Definition 6), if there is an arbitrage then

ΠH(π, α) = V0 − V (ST ) +

N−1∑
i=0

H(Si, vi)(Si+1 − Si)−
N−1∑
i=0

α|H(Si+1, vi+1)−H(Si, vi)|Si+1 ≥ 0.

(3.13)

where the inequality is strict for at least one permissible path.

Remark 9. If the condition in equation (3.13) is satisfied, the seller of the option would certainly receive

at least as much, and sometimes more than what he has to pay at the end, V (ST )+
N−1∑
i=0

α|H(Si+1, vi+1)−

H(Si, vi)|.

Now we set up the arbitrage bound by assuming a fixed trading strategy, say H∗(., .). This trading will

be a deterministic function of all the possible values of the remaining volatility and stock price.

Since we do not want to allow arbitrage strategies, it follows that the price that we obtain today,

V0, cannot be larger than the maximum cost incurred in paying the final payoff of the claim, and

accumulating the hedging profits/losses for the chosen strategy over all the permissible paths, π:

V0 < sup
π∈P (S0,v0,d)

{V (ST )−
N−1∑
i=0

H∗(Si, vi)(Si+1 − Si) +

N−1∑
i=0

α|H∗(Si+1, vi+1)−H∗(Si, vi)|Si+1}.

(3.14)

For the next step, we want equation (3.14) to hold for all trading strategies. Therefore, the price we

receive from the sale of the option today must be no greater than even the lowest possible value of the

quantity over all the possible trading strategies:

V0 ≤ inf
H
{ sup
π∈P (S0,v0,d)

{V (ST )−
N−1∑
i=0

H(Si, vi)(Si+1 − Si) +

N−1∑
i=0

α|H(Si+1, vi+1)−H(Si, vi)|Si+1}},

where the right hand side of the equation is the minimum upper bound for the option price V0 and we
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denote it as V (S0, v0, α).

V (S0, v0, α) ≡ inf
H
{ sup
π∈P (S0,v0,d)

{V (ST )−
N−1∑
i=0

H(Si, vi)(Si+1−Si)+
N−1∑
i=0

α|H(Si+1, vi+1)−H(Si, vi)|Si+1}}.

(3.15)

3.3.3 Dynamic Programming and Bellman Equation

The minimum upper bound in Equation (3.15) could in principle be found by a search over paths and

strategies. While conceptually correct, this approach is computationally expensive and impracticable,

because it requires a search over all possible paths and hedging strategies. In order to make the problem

more tractable, as we mentioned in Chapter 2, we can apply dynamic programming. Note that, since

the current price of the asset, S(0), and the quadratic variation v0, determine both the permissible price

sequences, P (S0, v0, d), and the trading strategies, H(., .), the function V (S0, v0, α) defined in (3.15)

provides the minimum upper bound as a function S0 and v0. More precisely, V (S0, v0, α) is a function

with domain given by all the possible values of S(0) and v0. By following the same processes as in the

previous chapter, we can transform equation (3.15) into:

V (Si, vi, α) = inf
hi
{sup
ci

{V (Si+1, vi+1, α)− hi(Si+1 − Si) + α|hi+1 − hi|Si+1}}, (3.16)

where hi+1 = H(Si+1, vi+1) is known, and V (SN , 0, α) = V (ST ).

Remark 10. To move from Equation (3.15) to the Bellman Equation (3.16) several small but important

changes have taken place.

a) The sup is no longer taken over paths, it is over at the next step, i.e. Si+1 and vi+1 .

b) For a given (Si, vi) we have a finite number of possible terminal destinations (Si+1, vi+1) to keep

track of, instead of a multitude of connecting paths.

c) The sum over time-steps of the transaction costs terms and the cost of the hedging have disappeared,

since we are now dealing with a single time-step.

d) The term V (Si+1, vi+1, α) no longer indicates the terminal pay-out, but simply the value of the

minimum upper bound itself at the next time-step.

Let us now implicitly define a variable ci by the relationship:

Si+1 = Sie
ci ,

vi+1 = vi − c2i .

34



CHAPTER 3. TRANSACTION COSTS MODELS 3.3. PROPORTIONAL TRANSACTION COSTS

Therefore Equation (3.16) can be rewritten as

V (Si, vi, α) = inf
hi
{sup
ci

{V (Sie
ci , vi − c2i , α)− hiSi(eci − 1) + α|hi+1 − hi|Sieci}}

Subject to the conditions:

c2i ≤ vi, c2i ≤ d2.

The initial boundary condition are given by the initial values of the state variable, S0 and v0. The

terminal boundary condition is V (Si, 0, α) = V (ST ) without including the liquidations costs. Note

that the terminal price ST is free, as is the number of price moves N . The above implementation can

be developed as a numerical approach for valuing European options, in the following chapter we will

describe an interesting algorithm for this purpose introduced by Britten-Neuberger.
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Chapter 4

Numerical Implementation

In Chapter 2, we described how the price of the option can be found by solving recursively the following

dynamic optimization problem:

V (Si, vi) = inf
hi
{sup
ci

{V (Sie
ci , vi − c2i )− hiSi(eci − 1)}}.

As we mentioned, even though we cannot solve for V (Si, vi) analytically, we can compute this quantity

numerically.

In this chapter, we describe a numerical implementation to evaluate the bounds described in previous

chapters. The numerical approach is based on the method described in [Britten and Neuberger, 1996].

We investigate the upper bound and the lower bound by using a kind of multinomial tree that allows

us to introduce the necessary constraints of the price path. We also briefly describe the optimization

methods that we use in this thesis.

4.1 Jones-Neuberger Algorithm

We will refer to the numerical algorithm to compute the minimum upper bound V (S0, v0)1, which is

proposed by Britten-Jones and Neuberger, as the J-N Algorithm (Jones-Neuberger Algorithm). In the

present chapter, we provide implementation details as well as a conceptual analysis of the computations

being performed.

The J-N algorithm that computes V (S0, v0) in both instances, with and without transaction costs, makes

use of the Bellman’s equation. Let us first consider the problem in the case of no transaction costs. In

the general case, namely the case with transaction costs, the algorithm remains the same with only small

1In the case of V (S0, v0), the algorithm remains the same, we can evaluate the maximum lower bound by using
V (Z) = −V (−Z) where Z is the given payoff.
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changes in the optimization constraint.

To see how we can implement the bound V (Si, vi), we need to recall Bellman’s equation,

V (Si, vi) = min
hi
{max

ci
{V (Sie

ci , vi − c2i )− hiSi(eci − 1)}}.

We use backward induction as one method of solving the above dynamic optimization (Appendix D). If

we are working from i = T to today’s i = 0, V (Si, vi) is the new value of the option that we have to

determine. V (Sie
ci , vi − c2i ) are option’s values that have been already calculated, note that we use the

fact that V (ST ) at T is known2. Since at each stage, we are holding a position hi; therefore, the change

in the value of the portfolio,

V (Sie
ci , vj − c2i )− hiSi(eci − 1), (4.1)

is a linear combination of the stock price Si and V (Sie
ci , vj − c2i ). So it seems that we have a piecewise

linear optimization where decision variable is hi.

What we do not know is the value of hi in (4.1), i.e. the amount of stock to be held at i. But we do

know that V (Si, vi) must be an upper bound. So, an optimization possibility is to find the slope of the

line which is hi, such that V (Si, vi) attains a maximum.

Before providing the method of optimization, we have to construct the discretization of the permissible

path {Si}Ni=0 and the remaining quadratic variation {vi}Ni=0. In sections (4.1.1)-(4.1.4), we provide the

necessary details to build the multinomial tree which is going to be used for our optimization problem.

4.1.1 The Mesh of the J-N Algorithm

As a first introduction to the methodology, we will build a tree which is slightly different than the

traditional binomial tree. Recall that in the traditional binomial tree (Appendix B), one normally

builds the tree by specifying a time-step, ∆t, and volatility σ for a given S0. There are two possibilities

for the next stock price,

Sup = S0 expσ
√

∆t,

and

Sdown = S0 exp− σ
√

∆t.

According to the J-N algorithm, the remaining quadratic variation vj , where j is a positive integer, is

mapped onto the x-axis. This should be contrasted with the usual approach where the time variable is

the one mapped onto the x-axis. Then, we set up the grid similarly to the traditional binomial in the

following way.

2The set up is quite similar to the usual Block-Scholes framework where the initial and boundary conditions allow to
solve the second order partial differential equation, the J-N numerical method is very similar to a binomial tree.
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We consider a grid of points of the form (i, j), j represents the label of the remaining volatility vj and

is non-negative and i is the label of the price path Si and can be positive or negative. If we use N steps

in the tree, the domain of j is [0, N ] while the domain of i is [−N,N ]. In figure (4.1), a 11-step tree is

displayed.

Figure 4.1: The sample grid with N = 11 steps in the tree construction, in this case for any pair (i, j),
i ∈ [−11, 11] and j ∈ [0, 11]. Starting from (0, 0) and end up to (i, 11) where i = −11, ..., 11.

The following shows a Matlab function to create the grid 3.

The Matlab Code to Create the Grid

function [i] = matrixI(N)

i = (2*N+1)ones(N+1,N+1);

i(:,1) = (-N:2:N)’;

for c = 2:N+1

a = 1;

I(c) = (N-(c-1));

for e = -I(c):2:I(c)

i(a,c)= e;

a = a+1;

end

end

3In this thesis, we make use of Matlab for the computer implementation.
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4.1.2 J-N Discretization for a Special Case

After building the grid, we construct the basic building block for our tree. Assume we are working in

the (i− 1)
th

step where the price stock is denoted by Si−1; what are the possible successors of Si?

In Chapter 2, we introduced the control variable ci such that

Si = Si−1 exp (ci−1).

To discretize {Si}Ni=0, we assume all control variables {ci}N−1
i=0 are equal to some arbitrary step size δ.

The discrete grid of stock values is given by:

Si = S0 exp (iδ), (4.2)

where i can be positive or negative.

In order to define the discrete set of values for the variables vj , we use the definition of the remaining

quadratic variation (Definition 3). First, we set vN2
= 0 and use backward induction, the discretization

for the quadratic variation is given by

vj = (N2 − j)δ2 & v0 = N2 δ
2, (4.3)

where j ≥ 0 and at maturity T , j = N2.

4.1.3 J-N Discretization for the General Case

In a binomial tree, starting from any point (i, j), the next point reached must be (i + 1, j − 1) or

(i − 1, j − 1). The value of the claim at (i, j) is then computed from the value at (., j − 1). In the J-N

tree, the same procedure applies but with one difference that is related to the following question: how

far the investor can wait until the next trading?

To answer this question, recall that from Chapter 2, the investor can trade whenever the following

condition is satisfied;

|lnSi+1 − lnSi| ≤ d.

If the trader is in the lattice point (i, j), i′ is the next point for the price path π such that

|lnSi′ − lnSi| =
∣∣∣lnS0e

(i′δ) − lnS0e
iδ
∣∣∣

= |(i′ − i)δ| ≤ d.

It then follows that −d ≤ nδ ≤ d where i′ − i = n and n = ±1, ..,±dδ . Therefore we have the first
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constraint given by;

n2 ≤ d2

δ2
. (4.4)

In addition to the condition (4.4), by making use of Si′ = Si e
n δ and vj = (N − j)δ2 we have

vj′ = vj − (lnSi′ − lnSi)
2

vj′ = vj − (nδ)
2

(N2 − j′)δ2 = (N2 − j − n2)δ2

≥ 0.

So, we arrive at a second constraint, which is imposed to maintain the non-negative character of the

remaining quadratic variation,

n2 ≤ N2 − j. (4.5)

The above results (4.5) and (4.4) correspond to

n2 ≤ min(N2 − j,
d2

δ2
), (4.6)

where n is a non-zero integer.

The length N of the discretized trajectories satisfies N1 ≤ N ≤ N2, where N1 is the largest integer such

that N1d
2 ≤ v0.

Therefore, in order to account for the possibility of jumps d, from a given parent node (i, j), we modify

the possible children nodes as (i+ n, j + n2), with n a positive or negative (but not zero) integer which

satisfies (4.6).

Figure 4.2 illustrates all possible children nodes for parent node (Si, vj) when n = 3.

Figure 4.2: This figure displays a very simple example for all destination points form node (i, j) when
n = 3.
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4.1.4 Option Price at Each Stage in J-N Algorithm

In this section, we explain how one can obtain the option price at each stage j.

Option Price At Maturity j = N2:

According to Definition 3, at expiration, there is no quadratic variation left. Therefore, because of the

construction of the price path, we will not be able to move up any more. So, we must simply have the

terminal payoff condition and it is not dependent on which node we might have arrived from;

V (ST , 0) = V (ST ) = max (ST −K, 0). (4.7)

Option Price At j = N2 − 1:

In the second to last step which is labeled by j = N2 − 1 in the grid, everything must also look exactly

the same as in the simple binomial tree; because on any node (., N2 − 1), we only have one unit of

quadratic variation δ2 left to play before consuming the total quadratic variation v (Figure 4.3). This

allows us to only move either to node (i+1, N2) or (i−1, N2). In this stage, the option price of the node

(., N2 − 1) can be found as a linear combination of its value (the same as in the usual binomial tree) at

nodes V (Si+1) and V (Si−1).

Figure 4.3: In stage 1, we can find the value of payoff V (ST , 0) simply as max(ST −K, 0), then, in stage
2, we can find the value by using the information from stage 1.
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Remark 11. Note that, we might have arrived at a node (i,N2 − 1) directly either from the root (i −
n, (N2 − 1)− n2), if such big jumps had been allowed by the d constraint, or from third stage to the last

(i− 1, N2 − 2).

Option Price At j > N2 − 3:

In the last three steps, the possible values of the option are acting exactly the same as in the simple

binomial case because the unit of quadratic variation that is left does not allow jumps. According to

(4.5), we need at least n2 = 4 to have a big jump (i+ 4, 0) (Figure 4.3).

The procedure of the optimization truly becomes different when we move to the fourth to last step and

beyond until we reach the root. Because for any given node (i, j), there are a multiplicity of possible

arrival points (i+ n, j + n2) (Figure 4.4).

Figure 4.4: This figure shows, when j ≥ (N2 − 4), there are multiple destination points.

In general, one can use the following Matlab code in order to find all destination nodes from a certain

node (i, j).
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The Matlab Function to Find all Destination Nodes

function [Value1, Stock1] = destpoint(n1,time,h,Stock0,Value,delta,i)

for n=-n1:n1

if n∼=0
if time-1>=n̂ 2

[tf, index] = ismember(i(h,time)+n,i(:,time-n∧ 2));

Value1(p) = Value(index,time-n∧ 2);

Stock1(p) = Stock0*exp((i(h,time)+n)delta);

p = p+1;

end

end

end

4.1.5 Optimal Hedging and Convex Hull

With a multiplicity of possible destination nodes, we can not value V (Si, vj , .) as a linear combination

of its values at the destination nodes. We need to find a hedge ratio which minimizes the maximum

possible loss. At this point we need to perform a minimax optimization.

V (Si, vi) = min
h
{max

n
{V (Sie

nδ, vi − (nδ)2)− hSi(enδ − 1)}}, n = ±1, ..,±d
δ
,

where h = hi.

V (Sie
nδ, vi − (nδ)2) are known option values (that have already been calculated), so the optimization

is a linear optimization. We use two methods of optimization in this thesis, Convex Hull and Piecewise

linear optimization.

Convex Hull

In order to solve the above optimization numerically, Britten-Neuberger used a method which they called

Convex Hull :

If h̃ is the optimal hedge, then

V k(Si, vi) = V (Sie
kδ, vi − (kδ)2)− h̃Si(ekδ − 1), k = ±1,±2, ...± n. (4.8)

We do know V (Si, vi) must be the upper bound, so there is a k′ such that

V k′(Si, vi) ≥ V k(Si, vi), k = ±1,±2, ...± n.
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This implies that

h̃ ≤ V (Sie
k′δ, vi − (kδ)2)− V (Sie

kδ, vi − (kδ)2)

Siek
′δ − Siek′δ

=
V (Si+k′ , vi−k′2)− V (Si+k, vi−k2)

Si+k′ − Si+k
.

If we draw all the destination asset prices Si+k with respect to their values V (Si+k, .) and find a line

which passes through two distinct (destination) points such that all (destination) points lie at this line

or below of this line (this line is called the Hull line in [Britten and Neuberger, 1996]), then the slope ∆

of the Hull line is the desired optimal hedge (see the dash line in Figure 4.5). Assume that this line is

the line that passes through the points (V m, Sm) and (V m′ , Sm′), (Figure 4.5). So,

∆ =
V (Sm)− V (Sm′)

Sm − Sm′
≤
V (Si+k′ , vi−k′2)− V (Si+k, vi−k2)

Si+k′ − Si+k
. (4.9)

Figure 4.5: The slope of the dashed line is the optimal hedge hi and V ∗(Si) is the optimal value of the
option at Si at node (i,.).

The following lemma guarantees that the optimal value of the function V (i, j) is the value of V ∗ (Figure

4.5), where the Hull line crosses the vertical line through the current price Si. Then as indicated above,

the hedging ration ∆, which is the value of the slope of the hull line at that point, is the optimal hedging

strategy according to (4.9). So in order to find the optimal hedging, it is enough to find the hull line,

the slope of the line at that point (Si, V (Si, vi)) is the hedging hi. This method is called convex hull

optimization 4.

4The computer code is provided in an Appendix.
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Lemma 1. Let g(.) be a convex function then

g(x) = min
h ∈R
{max

y
{g(y)− h (y − x)}}, (4.10)

where y ∈ [xe−d, xed].

Proof. We obviously have

min
h ∈R

max
xe−d≤y≤xed

{g(y)− h (y − x)} ≤ g(x). (4.11)

for all h, since the value at the right hand side is achieved at the left hand side for y = x. So to complete

the proof it suffices to show that there exists h such that

g(y)− h(y − x) ≥ g(x), (4.12)

for all y. Clearly, any sub gradient g(y)−g(x)
y−x of g at x can serve as such.

Piecewise Linear

Although the convex hull method is a very fast and efficient way to solve the previous optimization we

have not used it for the case when we include transaction costs. The reason for this is mainly due that

some of the numerical results were not quite as good as we expected; moreover, we were not able to

extend the technique to the case of transaction costs in a nice and convenient way. All in all, we ended

up using the piecewise linear optimization method.

In general we have the following problem to be optimized [Tsitsiklis, 1997]:

V (Si, vi) = min
h
{max

k
{V (Sie

kδ, vi − (kδ)2)− hSi(ekδ − 1)}}, k = ±1,±2, ...± n (4.13)

Note that max
k
{V (Sie

kδ, vi − (kδ)2)− h̃Si(ekδ − 1)} is equal to the smallest number z that satisfies:

z ≥ V (Sie
kδ, vi − (kδ)2)− hSi(ekδ − 1), for all k = ±1,±2, ...± n.

For this reason, the optimization problem is equivalent to the linear programming problem

minimize z

Subject to

z ≥ V (Sie
kδ, vi − (kδ)2)− hSi(ekδ − 1), for all k = ±1,±2, ...± n, (4.14)

where the decision variables are z and h.

The following Matlab function shows the code of above constraint.
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The Matlab function for optimization Equation 4.13

function [V,Vh] = opthedge(Value1,Stock1,Stockhtime)

f1 = [1; 0]; %f1 is z

b=cat(2,-Value1); % response for Ax<b as the constraint

col1 =cat(2,-ones(1,l(Value1)));

col2 = cat(2,-(Stock1-Stockhtime));

A=cat(2,col1’,col2’); % response for Ax<b as the constraint

lb = [-10∧4;-10∧4]; % lb and ub are upper and lower for outputs

ub =[10∧4;10∧4];

[x,fval] = linprog(f1,A,b,[],[],lb,ub); % optimization

Vh = x(2); % optimal hedging

V = x(1); % optimal value

In the presence of transaction costs the approach is the same as above (4.13)

V (Si, vi, α) = min
h
{max

k
{V (Sie

kδ, vi − (kδ)2)− hSi(ekδ − 1) + α|h− gk|Si+1}}. (4.15)

gk is known (it is calculated in the previous stage, i−1). Let |h− gk| = yk, our first reformulation yields

V (Si, vj , α) = min
h
{max

k
{V (Sie

kδ, vj − (kδ)2)− hSi(ekδ − 1) + α .yk.Si+1}}.

Subject to

h− gk ≤ yk,

−h+ gk ≤ yk.

And, by the same process we applied in (4.13),

minimum z

Subject to

V (Sie
kδ, vj − (kδ)2)− hSi(ekδ − 1) + αykSi+1 ≤ z,

h− gk ≤ yk,

−h+ gk ≤ yk.
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The Matlab Codes to Create Necessary Condition for Optimization

function[V,Vh] = opthedgetrans(Value1,Stock1,xi1,alpha,Stockhtime)

K1 = length(Value1);

f1 = cat(2,1 ,0,zeros(1,K1)); %f1 is z

b = cat(2,-Value1,xi1,-xi1); % b for Ax<b, included the absolute condition

A1 = cat(2,-ones(K1,1),(-(Stock1-Stockhtime))’,alpha.*diag(Stock1));

A2 = cat(2,zeros(K1,1),ones(K1,1),-eye(K1));

A3 = cat(2,zeros(K1,1),-ones(K1,1),-eye(K1));

A = cat(1,A1,A2,A3); % A for Ax<b, included the absolute condition

lb = cat(2,-10∧4,-10∧4,zeros(1,K1));

ub = cat(2,10∧4,10∧4,10∧4ones(1,K1));

[x,fval] = linprog(f1,A,b,[],[],lb,ub); % optimization

Vh = x(2); % optimal hedging

V = fval; % optimal value

We used a Matlab optimization from the optimization toolbox by the name of linprog. There are three

types of algorithms that are being implemented in the linprog.m; a simplex algorithm, an active-set

algorithm, a primal-dual interior point method [Geletu, 2007].

We make use of linprog along the destination points V (i+ n, j + n2), we can then move backwards the

same procedure all the way to the root. In the next chapter, we present some numerical results obtained

by using the algorithms described in the present chapter.
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Chapter 5

Numerical Analysis

In this chapter, we implement two numerical tests of the J-N algorithm to show some practical aspects of

it. First, we compute the arbitrage bounds of the option price on the stock in some artificial permissible

paths with the J-N algorithm and then we study the effects of transaction costs in both cases with fixed

and proportional transaction costs. In the second part, by means of the J-N algorithm, we find the

option’s price for a real data set by somehow forecasting the quadratic variation from historical data

and then comparing the results with actual market prices.

5.1 Artificial Paths and General Results

As a first step, we compute numerical arbitrage bounds for a two-month European call option with strike

of $1 on a stock that pays no dividends, with current price $1 and the volatility of the stock is taken to

be equal to σ = 20% per year, so the quadratic variation is

v0 = σ2T = 0.04 ∗ 2/12.

We apply the numerical algorithm described in the previous chapter to our base case model when no

transaction costs exist. Recall that for a given N2 which is the maximum number of steps taken in the

J-N tree, the minimum return δ = min
0≤i≤N

| ln(Si+1)− ln(Si)| can be obtained by 1

δ =

√
v0

N2
=

√
0.0067

N2
.

Remark 12. The values, which are taken in this section, such as the current price and the strike price,

are for illustrative purposes only and they do not reflect actual values in the real markets.

Remark 13. Option value in figures means the minimum upper bound price V or the maximum lower

bound price V of an option.

1According to Section 4.1.2 Chapter 4, v0 = N2δ2 where δ is the minimum step size that one can take.
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5.1.1 Comparison to Black-Scholes

If no jumps are allowed, i.e. d
δ = 1 (we call this ratio: the jump units) then the Black-Scholes price

2 is $0.033 when S0 = K = 1 with σ = 0.2. Figure 5.1 displays the minimum upper bound price of

the option as a function of N2. As we see, the option price converges to the Black-Scholes price as N2

increases. According to equation (4.3), by increasing N2, we are reducing δ. So as a clear result, when

δ decreases, the value of the option increases and tends to the Black-Scholes price.

Figure 5.1: The figure shows the model’s price, when the jump unit (dδ ) = 1, approaches to the Black-
Scholes price as the number of steps N2 increases.

One may wonder what happens if d
δ > 1. Figure 5.2 shows the convergence behavior of the option price

when d
δ = 3, 5 with N2 ranging from 10 to 200. When the jump units is greater than one, it seems that

we have convergence if N2 increases but the value of the option does not converge to Black-Scholes price

due to jumps. Also, for a given v0 and a fixed number of steps N2 in the J-N tree, by increasing d
δ , due

to the fact that δ is fixed, we are increasing the maximum jump size d, and we can see that the value of

the option increases (Figure 5.2).

As we can see, when N2 = 10, in the case of the jump units are 3 and 5, the minimum upper bounds are

equal, because according to equation (4.5), the maximum jump that the algorithm can take is
√
N2 ≈ 3.

Therefore, although we can run the program for the jump unit 5, this jump does not really take into

2Formally the Black-Scholes model is not nested in our model. This is due to the fact that Black and Scholes is a
continuous time model while we consider a discrete time model. Nevertheless one can overcome this technical difference
using the fact the Black-Scholes model is a limit of discrete time models.
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account and thus does not affect the price of the option in the J-N algorithm.

Figure 5.2: Convergence of V as a function N2 for different values of d
δ .

5.1.2 Arbitrage Bounds: Basic Model

In our empirical work, we shall use the J-N algorithm to find numerically the arbitrage bounds of the

option price. First, we derive arbitrage bounds in the basic model (Chapter 2) for different jump units

with the same set up as above i.e. K = 1, σ = 20% per year. We calculate the option values for different

starting levels of the stock price S0, with N2 = 100 steps in the tree (trading around twice a day).

Figure 5.3 displays the arbitrage bounds for different jump units 3 d
δ = 3, 7 and apparently as the

maximum jump is decreasing, we can see that the upper and lower bounds are shrinking to the case

without jumps. Also we notice that the arbitrage bounds are very narrow for the higher starting level

S0. Therefore it seems that the jumps have less of an effect on the bound of the option’s prices for the

higher stock values. Again, for a fixed S0, V (S0, v0) increases as d
δ increases (Figure 5.3).

Table 5.1 illustrates no arbitrage interval with different jump units as the level of starting S0 changes.

3Recall that ( d
δ

) is representing the jump units.
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Figure 5.3: The upper and lower bounds for the basic model: the plot shows that by reducing the jump
units, for example, from 7 to 1, the option price bounds are shrinking to the Black-Schoes price.

Although, most of the analysis in this thesis was done for a European payoff max(ST −K, 0), the general

approach clearly applies to derivatives with different payoffs, Figure 5.5 shows the results for some known

combinations of calls and puts.

First, we use a call Butterfly payoff [Hull, 1997], which is a combination of long call with strike K1 =

0.958 and one long put with K2 = 1.066. Its payoff is:

Vb =

max(ST −K1, 0), if ST ≤ K2+K1

2 ,

max(K2 − ST , 0), if ST >
K2+K1

2 .
(5.1)

Also we consider a Long Strangle [Hull, 1997], which is long one put option with a lower strike K1 = 0.958

price and long one call option at a higher strike price K2 = 1.066 to calculate the minimum upper bound.

Vl =

max(K1 − ST , 0), if ST ≤ K2+K1

2 ,

max(ST −K2, 0), if ST >
K2+K1

2 .
(5.2)

As it can be observed in Figure 5.5, the shape of bounds are very similar to their payoff at maturity T

(Figure 5.4) in both cases. The area between two strikes K1 = 0.958 and K2 = 1.066 becomes bigger

for an option with payoff Vl and Vb. And again by increasing the jump units, the arbitrage bounds of
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d
δ 1 3 5 7 9

S0 [V , V ] [V , V ] [V , V ] [V , V ] [V , V ]
0.879 0.0019 [0.0008,0.0032] [0.0002,0.0044] [0,0.0055] [0,0.0067]
0.958 0.0151 [0.0129,0.0178] [0.0110,0.0199] [0.0100,0.0215] [0.0082,0.0232]

1 0.0327 [0.0305,0.0354] [0.0272,0.0376] [0.0277,0.0392] [0.0268,0.0407]
1.044 0.0598 [0.0574,0.0683] [0.0554,0.0647] [0.0544,0.0664] [0.0525,0.0681]
1.066 0.0764 [0.0492,0.0790] [0.0723,0.0811] [0.0713,0.0827] [0.0690,0.0844]
1.162 0.1631 [0.1623,0.1642] [0.1620,0.1654] [0.1619,0.1666] [0.1618,0.1677]

Table 5.1: This table shows no arbitrage intervals for different jump units when the staring level S0

increases.

the option price become wider (Figure 5.5)).

Figure 5.4: Left-hand side figure shows the payoff for a call butterfly and right-hand side figure shows
the payoff for a long strangle with a lower strike K1 = 0.958 and a higher strike price K2 = 1.066.

Table 5.2 and 5.3 show no arbitrage intervals (upper and lower bounds) with jump units 1,3,5 and 7

for a derivative with payoff 5.1 and 5.2 respectively.
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Figure 5.5: Left-hand side graph shows the arbitrage bounds for the basic model with a call butterfly
payoff (equation (5.1)) with a lower strike K1 = 0.958 and higher strike K2 = 1.066. Right-hand side plot
shows the arbitrage bounds for a long strangle (equation (5.2)) with a long position in strike K1 = 0.958
and one long put at strike K2 = 1.066.

d
δ 1 3 5 7 9

S0 [V , V ] [V , V ] [V , V ] [V , V ] [V , V ]
0.879 0.0848 [0.0829,0.0870] [0.0815,0.0889] [0.0805,0.0961] [0.0462,0.0998]
0.958 0.0348 [0.0320,0.0378] [0.0295,0.0400] [0.0273,0.0416] [0.0264,0.0424]

1 0.0257 [0.0233,0.1677] [0.0209,0.0307] [0.0196,0.0314] [0.0192,0.0315]
1.044 0.0306 [0.0278,0.0336] [0.0254,0.0365] [0.0157,0.0370] [0.0227,0.0373]
1.066 0.0383 [0.0354,0.0414] [0.0327,0.0441] [0.0304,0.0452] [0.0293,0.0459]
1.162 0.1030 [0.1007,0.1056] [0.0991,0.1285] [0.0978,0.1092] [0.0969,0.1114]

Table 5.2: This table shows no arbitrage interval for different jump units when the staring level S0

increases in the case of a butterfly payoff (5.1)

d
δ 1 3 5 7 9

S0 [V , V ] [V , V ] [V , V ] [V , V ] [V , V ]
0.879 0.0032 [0.0015,0.0054] [0,0.0076] [0,0.0098] [0,00.0115]
0.958 0.0107 [0.0059,0.0296] [0.0024,0.0203] [0,0.0235] [0,0.0271]

1 0.0134 [0.0079,0.0189] [0.0033,0.0235] [0,0.0267] [0,0.0280]
1.044 0.0128 [0.0072,0.0185] [0.0030,0.0233] [0,0.0262] [0,0.0288]
1.066 0.0115 [0.0062,0.0173] [0.0026,0.0221] [0,0.0258] [0,0.0297]
1.162 0.0038 [0.0017,0.0065] [0.0006,0.0149] [0,0.0119] [0,0.0139]

Table 5.3: This table shows no arbitrage interval for different jump units when the staring level S0

increases in the case of of a strangle payoff (5.2).
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5.1.3 Arbitrage Bounds: Transaction Costs Model

In the transaction costs framework, we study the effect of a fixed transaction cost rate and a proportional

transaction costs on the arbitrage bounds and compare the results with the ones without transaction

costs.

Part I: Fixed Transaction Costs

In the simple case, fixed transaction costs, we test the effect of this transaction cost in the arbitrage

bounds of the option price. As we expected (see equation (3.4) compared with (2.27)), the minimum

upper bound in the case of fixed transaction costs is much higher than the minimum upper bound in

the J-N framework without transaction costs.

In Figure 5.6, we implement the bounds for a fixed unit d
δ = 3 and with fixed transaction costs K =

0.0001, 0.001 (as we mentioned in Remark 12, we are just working with some artificial paths, so the fixed

transaction costs K are not realist values) with different starting level S0 and N2 = 70. So we allow to

have a maximum of 70 hedging times, as a result one could pay a maximum N2 ∗ K = 0.07 more in the

case of K = 0.001.

Figure 5.6: Upper and lower bounds for the fixed transaction costs K: the minimum upper bound for the
option value is increasing for a fixed S0 and fixed unit-jump=3 when K takes the values 0 and 0.0001.

With respect to the arbitrage bounds in the basic model, the lower bound decreases while the upper

bounds increases due to the effect of the fix transaction costs. Also, as we increase the rate K, the region

between the lower and upper curves becomes large (Figure 5.7).
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Figure 5.7: Upper and lower bounds become wider by increasing the rate K with the fixed jump units
d
δ = 3.

Note that in our implementation, we use a single call option to find the arbitrage interval, therefore; the

bounds that obtained are very small. Then, we could not set more realistic fixed transaction costs for

the model. Just assume that fixed transaction costs K = $10 per transaction, so at the end of the day,

the investor may have to pay a maximum of $700 for the option that has the payoff max(ST − 1, 0). In

order to have a realistic framework, assume one can buy a package of 1000 call options, then the bounds

for the fixed transaction K = $10 can be obtained as in Figure 5.8.

Remark 14. If one buys a contract (package) which includes c of call options so the payoff of this

contract at maturity T will be c V (ST ), so the minimum upper bound is

V (S0, v0,KR) = inf
Hc

{
sup

π∈P (S0,v0,d)

{
c V (ST )−

N−1∑
i=0

Hc(Si, vi)(Si+1 − Si) +NKR

}}

= c inf
Hc

{
sup

π∈P (S0,v0,d)

{
V (ST )−

N−1∑
i=0

1

c
Hc(Si, vi)(Si+1 − Si) +N

KR
c

}}

= c inf
H
{ sup
π∈P (S0,v0,d)

{V (ST )−
N−1∑
i=0

H(Si, vi)(Si+1 − Si) +N
KR
c
}}

= c V (S0, v0,
1

c
KR) = cV (S0, v0,K)
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Figure 5.8: This plot shows the option bounds when the fixed transaction cost is $10 by assuming 1000
call options.

where KR is the value of a realistic fixed transaction cost (per stock transaction) and K ≡ KRc represents

the fixed cost per stock transaction used in the thesis. This computation justifies our use of small values

of K when performing numerical experiments corresponding to bounds for a single call option. As a

example let assume that KR = 10$ per transaction for a package with c = 100, this can be transfered to

K = 0.1$ in the case of one call option.

Part II: Proportional Transaction Costs

Let us start the analysis of this part with a question. What if we had followed the basic framework with

the same assumptions, but paid the proportional transaction costs? Of course, one would expect the

higher minimum upper bound as a results of the transaction costs according to equation (3.16).

A. Convegence of the Model:

First of all, we verify numerically our results by examining the behavior of the minimum upper bound

as a function of the quadratic variation in the basic model and then with the proportional transaction

costs. The results indicate that the minimum upper bound for the option price increases as the quadratic

varication growths in both cases, with and without transaction (Figure 5.9).

Then, we test the convergence of the proportional transaction cost model as the number of trades in-

creases. Table 5.4 illustrates the relation between the maximum number of steps N2 and the minimum

upper bound V (S0, v0, α) (see equation (3.16)), where α is the round-trip and 0 ≤ α < 1 , for different
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Figure 5.9: In this figure, we plot V as a function of the quadratic variation in both cases, without
transaction costs and with proportional transaction costs with α = 0.01 with N2 = 70.

values α = 0, 2%, 3%, 4% with S0 = 1 and v0 = 0.0067.

As it can be observed from Table 5.4, the values of the minimum upper bound V (1, 0.0067, α) where

α = 3%, 4% are increasing very fast at some value of N2. For example, when the round trip α = 0.04

(see the third column in the table), after N2 = 4 (compare it with the case of no transaction costs

V (1, 0.0067), which is located in the last column of the table), the option values are extremely larger.

These points become less surprising when our result is compared against the analysis of Leland 4.

From Table 5.4 and Figure 5.9, we notice that the steps N2, consequently the quadratic variation has a big

impact on the minimum upper bound prices for a European option and specially when the proportional

transaction costs exist in the J-N algorithm. We strongly believe that there should be a relationship

between the quadratic variation more precisely δ =
√

v0

N2
(see the second column) and the round-trip α.

Although we can not prove this claim theoretically, our numerical result shows apparently α
δ should be

less than 15 in the J-N algorithm when the proportional transaction costs exit.

B. Arbitrage Bounds:

Additionally, we also implement arbitrage bounds for the proportional transactions cost. Recall that we

4Under the proportional transaction costs with hedging portfolios rebalanced only at discrete time instances, with a

fixed finite time interval h between them. Leland type approaches are limited by the condition
√

2
π

α

σ
√
h
< 1 the expression

on the left known as the Leland number, where α is the round-trip transaction cost rate (expressed as a percentage of the
stock price) and σ is the volatility of the underlying asset

5See the second column of Table 5.4 and compare the dramatic value V (1, 0.0067, α) where α = 4%, 3%, 2%, 0.
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N2 δ =
√

v0

N2
V (1, 0.0067, 0.04) V (1, 0.0067, 0.03) V (1, 0.0067, 0.02) V (1, 0.0067)

1 0.0816 0.0625 0.0569 0.0514 0.0408
2 0.0577 0.0709 0.0601 0.0495 0.0289
3 0.0471 0.0774 0.0666 0.0560 0.0353
4 0.0408 0.0793 0.0681 0.0569 0.0408
5 0.0365 0.2003 0.0738 0.0616 0.0365
6 0.0333 0.2214 0.0749 0.0618 0.0389
7 0.0309 0.2411 0.0763 0.0634 0.0360
8 0.0289 0.2598 0.2598 0.0637 0.0377
9 0.0272 0.2776 0.2776 0.0649 0.0408
10 0.0258 0.2946 0.2946 0.0653 0.0387
11 0.0246 0.3110 0.3110 0.0666 0.0400
12 0.0236 0.3269 0.3269 0.0675 0.0383
13 0.0226 0.3423 0.3423 0.0682 0.0393
14 0.0218 0.3573 0.3573 0.0687 0.0382
15 0.0211 0.3719 0.3719 0.0693 0.0389

Table 5.4: Relation between δ and round-trip α: This table shows for fixed quadratic variation v0 =
0.0067, how δ and V (S0, v0, α) (see equation (3.16)) can change. Also this table shows that ifN2 increases,
as a result δ decreases, and we have to reduce round-trip α in order to be satisfied in inequality α < δ.

are not able to check the bounds for any round-trip α as we wish. We set our program for N2 = 70,

S0 = 1 and K = 1 and the annual volatility is σ = 0.2, so

δ =

√
v0

N2
' 0.009.

it means, we have to run the program for α < 0.009 6.

Figure 5.10 displays the minimum upper and the maximum lower pricing bounds for an option in

the proportional transaction costs model for the fix jump size d
δ = 3, with different round trips α =

0, 0.001, 0.004. Clearly by increasing the level of α, the minimum upper bound price increases and the

shape has less curvature by changing of the amount of round-trip α = 0, 0.1%, 0.4%, (Figure 5.10). Note

that for the round-trip, for example 0.1%, the upper bound is very close to the case of no transaction

costs (α = 0) while the lower bound is not as tight.

5.2 Market Data and No-Arbitrage Bounds

From the point of view of the J-N algorithm, it is clear that a key issue is to forecast the future quadratic

variation v0 over the life of the option. To reach this goal, we attempt to calculate the historical quadratic

variation from the market data. To this end, we use daily closing prices of Yahoo! Inc.7 for the period

May 2009 - May 2011(closing prices are shown in Figure 5.11).

6Admittedly this α is too small for practical matters but as we mention in Remark 12, we use this number for the
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Figure 5.10: Upper and lower bounds for the proportional transaction costs: the plot shows that by
reducing α, the bounds become smaller when the jump units is fixed.

Figure 5.11: Time Series: The sequence of closing price between May 2009-May 2011 for the chosen
stock is shown in this figure
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5.2.1 Forecasting the Quadratic Variation

We set the initial stock price on April 14, 2011. At that moment, Yahoo! Inc. closing price was at $16.69.

In order to find the (sampled) quadratic variations from historical data, we followed the following process.

Let [T0, T1] be closing daily business days where T0 = May 6, 2009 and T1 = May 6, 2011. We consider

∆t = 43 which are (almost) two-months of business days. Then we look for ts ∈ [T0, T1 − ∆t] such

that S(ts) = S(0) = 16.69 (See Figure 5.11). For any ts, the quadratic variation Qvs can be found by

applying

Qvs =

42∑
i=0

(ln (Si+1)− ln (Si))
2, (5.3)

where Si ∈ [S(ts), S(ts + ∆t)].

By applying (5.3) for all ts ∈ [T0, T1 −∆t], we found Qv = {Qv1, ..., Qv16} (Figure 5.12).

Figure 5.12: This figure shows the quadratic variation for different windows 1, .., 16 which start at times
ts such that S0 = S(ts) ≈ 16.69 and all window’s sizes are N2 = 43

Let us assume that the future quadratic variation is neither higher than the maximum value of the set

of the quadratic variation Qvs nor less that the minimum of the set Qvs. So we find the minimum and

the maximum of the set Qv

Qvmax = max
s
Qvs = 0.0326 Qvmin = min

s
Qvs = 0.0073 (5.4)

illustration propose only.
7This Data can be obtained from http : //ca.finance.yahoo.com/q?s = Y HOO&ql = 0
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where s = 1, ...16.

A. Bounds with No Jumps vs. Option Price of the Market:

We are interested in finding a no arbitrage interval which denoted now as [V (Qvmin), V (Qvmax)]. Let

assume the future quadratic variation Qvf ∈ [0.0073, 0.0326], then we consider call options that expire

within two months with strike prices ranging from $13 − $28. Table illustrates 5.5 the ask price of the

option with different strike prices.

Strike price 13 14 15 16 17 18 19 20 21 22
Option price (Ask price) 5.7 4.75 3.75 2.81 1.97 1.28 0.77 0.45 0.26 0.15

Table 5.5: This table shows the option price with different strike prices.

First of all, we find the minimum upper bound 8 of the option values with no jumps and then we compare

the results with the actual option prices (ask price is used for the minimum upper bound and bid price

is used for the maximum lower bound) for each available strike price.

Note that for each strike price, the initial value is S(0) = 16.69 and N2 = 43; therefore,

δ =

√
0.0326

43
' 0.027.

We notice that δempirical = min
0≤i≤43

| ln(Si+1)− ln(Si)| = 0, which can be an issue when one wants to use

this model in practice.

By an inspection of the minimum upper bound in Figure 5.13, it seems that there is an arbitrage op-

portunity if the future quadratic varication be at most 0.0326 because V (Qvmax) < Vask .

Remark 15. Recall that our model is an incomplete model, so if the option value V0 ∈ [V , V ], then

there is no arbitrage. But in this example Vask, which is the option price, is out of the interval, so we

have an arbitrage opportunity.

B. Bounds with Jumps vs. Market’s Option Prices:

Will the above arbitrage disappear by including jumps? We test the algorithm with max jump-unit

6 (
√
N2 ' 6). Figure 5.14 illustrates the effect of jumps to remove the arbitrage. It seems that by

increasing the jump size, the arbitrage for the strike price $20-$22 can be made to disappear. But still

there is an arbitrage opportunity when the strike price is less than $20.

8In this thesis, we consider to find the minimum upper bound. For the maximum lower bound, the analysis is done
similarly by using minimum quadratic variation 0.0073 and comparing the result with the bid price.
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Figure 5.13: This figure shows the ask option price and the minimum upper bound with the maximum
quadratic variation 0.0326, in the case of no jump occurs

Figure 5.14: The minimum upper bound with no jumps and maximum jump units equal to 6 compared
with the real option value show in this figure.
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C. Bounds with Fixed Transaction Costs vs. Market’s Option Prices:

For the next step, we wish to consider whether transaction costs can reduce/remove the chance of having

an arbitrage opportunity.

To reach this goal, first we add fixed transaction costs, without jumps, to our model in order to make it

more realistic. We expected that any arbitrage profits should disappear. In the case of fixed transaction

costs, we found out by adding at least K = 0.045 as a cost of trading 9(according to Remark 14, if we

buy have a contract with c = 222, we will have KR = 10$ which is more realistic) to the previous set

up, i.e S0 = $16.69 and N2 = 43 with v0 = 0.0326, the arbitrage is vanished for all strike price.

Note that the minimum upper bound of the option becomes very expensive by enlarging of the strike

price form $13− $22 (Figure 5.15).

Figure 5.15: This plot shows the upper bound with the minimum fixed transaction K = 0.045 which can
remove the arbitrage in this market for all strike price.

D. Bounds with Proportional Transaction costs vs. Market’s Option Prices:

Finally, we check if we can remove the arbitrage by adding the proportional transaction costs. Recall

that, δ = 0.027; Therefore, the maximum value of the round-trip α that we can run our program with

α = 0.026 < δ.

9As we mention before, in this thesis, we work with a single option. To have more realistic fixed transaction costs, we
need to consider trading a large number of options (as is the case in actual markets)
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We plot the minimum upper bound with S0 = $16.69 for a maximum round-trip α = 0.026, first with

no jumps and then for a maximum jump units 6. So, as it can be observed in Figure 5.16, in the case

of proportional transaction costs, we are not able to remove the profit for K = $13 − $17, because of

restriction that we have on the round-trip (but it is already realistically high).

Figure 5.16: In the case of proportional transaction costs, we are not able to remove the gap, because
of limitation on α < 0.027.

5.2.2 Investment Strategy

In the previous section, we found an example that the call is overpriced, so there is an arbitrage oppor-

tunely in this case. In this section, we implement the actual hedging by using the J-N algorithm to see

whether we are really superhedging according to proposition 1 or not.

As we know a most important parameter needs as input in the J-N algorithm is v0. To reconstruct the

hedging approximation, first we use v0 = Qvmax and then the actual quadratic variation of a window

Qvw, this will allow us to see what is the effect of using a larger quadratic variation which is Qvmax

than the actual realized quadratic variation Qvw.

To reach this goal, we run the J-N algorithm when Qvmax = 0.0326 and use the results such as price

and hedging amounts at each node to actually hedge and then we replace Qvmax by Qvw to compare

the results.
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Let us use S(tk) to denote the market data (daily closing prices for Yahoo! Inc.) in one of the win-

dows where k = 0, 1, 2, ..., R (R = 43 is length of data window) clearly | lnS(tk) − lnS(tk−1)| will take

a variety of values which are not necessary equal δ, where δ is the minimum log return from the algorithm.

In order to implement the hedging investment, let Sik ≈ S(tk) where Sik denotes the stock discretization

value on the grid of the J-N algorithm closer to S(tk), therefore;

Sik = S0e
ikδ ≈ S(tk). (5.5)

On the other side, vjk = (N2 − jk)δ2 ≈ v(tk) where

v(tk) ≡ [QVmax −
k∑
p=0

(lnS(tp)− lnS(tp−1))2]. (5.6)

So now we have a sequence (Sik , vjk) in the grid. By knowing Sik = S0e
ikδ and vjk = (N2 − jk)δ2, we

will need to decide how much to invest in the stock. Thus we modify the J-N program and create a

matrix H[i, j] such that H[i, j] = hi,j and choose the necessary number of shares by using indexes ik

and jk as follows:

ik =
1

δ
ln[S(tk)/S0], (5.7)

And

jk = N2 −
v(tk)

δ2
. (5.8)

Now, a problem is that the node (ik, jk) may not have been visited by the J-N algorithm i.e. there is

no hk value available at this node. Then one needs to look for the closest node that actually has hk

available. A problem we have found dealing with the current data is that the J-N grid does not capture

well the small changes, we solved this problem by using the following process:

• It seems the problem should disappear if N2 is large enough.

• The problem can be fixed if we can stay in node (Si, vj), namely doing nothing.

The hedging difference should then be:

−V (StR) + V (QVmax, d) +

N∑
i=0

hi(S(ti+1)− S(ti))

The final balance (which will be an actual profit if the above hedging difference is nonnegative and there

is an arbitrage, i.e. [Price of option− V (QVmax, d)] > 0) will actually be:

Price of option− V (QVmax, d)− V (StR) + V (QVmax, d) +

N∑
i=0

hi(S(ti+1)− S(ti))

where N is the number trading and hk is the amount of shares that the J-N algorithm gives at node
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(Sik , vjk) and note that SkN ≈ StR .

In following we implement the hedging strategy with the different approaches.

I Investment Strategy with Qvmax when N2 = 43.

First of all, we find the closest path, to the actual empirical path, among all passible paths that the J-N

algorithm creates when N2 = 43 with v0 = Qvmax in the case that no transaction costs occur. We do

this by staying in some nodes whenever the movement of stock price is very small, namely the log return

is not greater than δ which is δ = min
0≤i≤N

| ln(Si+1)− ln(Si)|.

Figure 5.17 displays the price path of Yahoo! Inc. for one of the windows and the simulated price path

from the J-N algorithm, as it can be seen, because some of the movements of the market prices are small,

we have to stay in a node and wait for another day in several instances. As a result, the chosen price

path from the J-N algorithm is not very close to the market movements.

Figure 5.17: The figure shows the Yahoo! Inc. price path and the closest J-N price path for one of the
windows but using the future quadratic variation QVmax when N2 = 43.

II Investment Strategy with Qvw when N2 = 43.

As a second step, we implemented the hedging strategy and obtained the closer price path from the J-N

algorithm by using the same number N2 but now we took v0 = Qvw. Figure 5.18 shows the Yahoo! Inc.

price path and the J-N price path closer to the data for the same window but using the exact quadratic
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variation, namely Qvw. Apparently, the artificial price path form the J-N algorithm is now much closer

to the actual price path for this window, this can be explained given that v0 = Qvw < QVmax implies

that we decrease δ so we will have a better approximation to Sk.

Figure 5.18: The figure shows the Yahoo! Inc. price path and the closest J-N price path for one of the
windows with the actual quadratic variation of the window QVw when N2 = 43.

The next solution to the problem that we have tried increases the value of N2 in the J-N algorithm, this

provides a better approximation by decreasing δ, we run the program when N2 = 80 and followed the

same process as before.

III Investment Strategy with Qvmax when N2 = 80.

In this case, we use Qvmax with larger N2 = 80, clearly we decrease δ, so we have a better approximation

of Stk and there is no need to stay in the same node many times. Figure 5.19 shows the result in this case.

IV Investment Strategy with Qvw when N2 = 80.

Finally, if the exact quadratic variation of the window is used for the implementation, the result is very

close to the actual path for this window( Figure 5.20). So it seems that if we want to have a very good

approximation of a given price path we need to have δ as close as possible as to the minimum return of

the window price path.

Now we would like to investigate the profits/losses described above. In particular we are interested in
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Figure 5.19: The figure shows the Yahoo! Inc. price path and the closest J-N price path for one of the
windows with the future quadratic variation QVmax when N2 = 80.

Figure 5.20: The figure shows the Yahoo! Inc. price path and the closest J-N price path for one of the
windows with the actual quadratic variation of the window QVw when N2 = 80.
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observing if whether we have superhedged or not, especially in the case when we use v0 = QVmax as the

superhedge is only guaranteed theoretically for the case v0 = QVw. Moreover, we are interested in seeing

the effect of transaction costs in the profit/loss as well. Table 5.6 illustrates the profits/losses for all cases.

Models N2 N Qv delta profits/losses

Model with no Transactio Costs 43 29 0.0163 0.0195 2.2666
Model with no Transactio Costs 43 21 0.0326 0.0202 1.9229

Fixed Transaction cost K = 0.045 43 21 0.0326 0.0202 1.0230
Fixed Transaction cost K = 0.097 43 21 0.0326 0.0202 -0.018

Proportional Transaction Costs with α = 0.02 43 21 0.0326 0.0202 1.0271

Model with no Transactio Costs 80 34 0.0163 0.0143 2.7220
Model with no Transactio Costs 80 28 0.0326 0.0202 1.8888

Fixed Transaction cost K = 0.045 80 28 0.0326 0.0202 0.6839
Fixed Transaction cost K = 0.071 80 28 0.0326 0.0202 -0.0181

Proportional Transaction Costs with α = 0.02 80 28 0.0326 0.0202 -0.0692

Table 5.6: This table shows the profits/losses of Yahoo! inc. price path and also required number of
trading when v0 = Qvmax and v0 = Qvw. Note that N is the actual number of tradings, N2 is the
number that we run the J-N algorithm with and Qv is the quadratic variation that could be the future
quadratic variation or the actual quadratic variation.

As it can be seen in Table 5.6, we have profits almost in all cases except in the case of a large fixed

transaction cost. Also when we hedge along the path with its actual quadratic variation, the profit

seems that is higher than when we use the Qvmax because we use the smaller δ so we trade more. As

we mentioned in figure 5.20, the J-N price path is very close to the actual price path and this result can

be see in Table 5.6 as well, we trade around 34 times and we have higher profits there.

5.2.3 Smile Quadratic Variation

For our last empirical work, it is interesting to see that the minimum upper bound on the option value

that we derived has a smile feature in the quadratic variation.

We have seen that for the future quadratic variation of Qvmax = 0.0326, the option price that we can

obtain from the J-N algorithm is lower than the actual market price if no transaction costs are used in

the J-N algorithm. So, one can ask, what is the real sampled quadratic variation to be used as input to

the J-N algorithm in order to have the actual market’s price?

To test the results, we set up the program with S0 = 16.69 and N2 = 43. Then for each K = 13, 14, ..., 22,

we change the quadratic variation until we find the (implied) quadratic variation that gives us the option

market’s value 10.

10We use the fact that the minimum upper bound as a function of the quadratic variation is a monotonic function.
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After this, we attempt to find the implied quadratic variation’s market in the presence of fixed and

proportional transaction costs to see how transaction costs can affect the implied quadratic variation.

Figure 5.21: This figure displays the behavior of the quadratic variation as the strike price increases
with fixed transaction costs. We assume the option price is the option market and we find the quadratic
variation such that gives us the option price market.

Figures 5.21 and 5.22 display the behavior of the implied quadratic variation as a function of the strike

price. The smile (i.e. non flat) feature of the graphs displayed does not disappear with the inclusion of

fixed or proportional transaction costs.

So, as a result of the above findings, it seems that the basic model (Chapter 2) should be extended to

consider the case of v0 to be path dependent, i.e. the quadratic variation should not be constant across

the modeling paths. This extension is known to capture the smile phenomena in probabilistic models.
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Figure 5.22: In this figure, we show if the proportional transaction costs exist, the actual quadratic
variation should be less than in the case of no transaction costs.
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Conclusions

The Black-Scholes assumptions on the stock price process is an important limitation of the Black-Scholes

model, because in practice trading is discrete and the price paths are discontinuous and include price

jumps and portfolio re-arrangements are subject to transaction costs.

Britten-Jones and Neuberger [Britten and Neuberger, 1996] show how one can relax the assumptions of

continuity and infinite trading possibilities by adding some restrictions to the possible price paths in

order to have a more realist framework. The most important assumption in their approach is that the

model requires a known (sampled log) quadratic variation of price changes over a finite time interval and

also they assume price jumps not to be greater that some specified jump size. By making use of those

assumptions, they provide an interesting financial description of no arbitrage bounds of an option price

by using a non probabilistic approach.

This thesis develops further the Britten-Jones and Neuberger framework, by introducing two kinds of

transactions costs, fixed and proportional transaction costs, and analyzing the impact that adding these

transaction costs have on the pricing interval (no arbitrage bounds).

The extension has some important practical implications; in particular, allowed us to conduct a prelim-

inary analysis in order to assess the empirical relevance of the extended framework in real market data.

The preliminary conclusions drawn from our studies are that the realistic features of the framework,

in the sense that it requires few assumptions and observable inputs, make it a useful instrument that

can be used to look for miss-pricing opportunities in option’s prices. In particular, we provide some

preliminary evidence that arbitrage opportunities, once present, may remain after transactions costs are

taken into account.
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Appendix A

Some Basic Concepts in Finance

In this appendix, we briefly introduce some fundamental concepts in finance.

A derivative (also referred to as contingent claims) is a general term for any financial contract whose

value depends on underlying asset. An option is a derivative security that gives the right to buy or sell

the underlying asset. Options can be European style, which can only be exercised at the expiry date,

or American style, where exercise is at the discretion of the holder, at any time before or at the expire

date.

The underlying variable can be a traded asset, such as a stock; an index portfolio; a futures price; a

currency; or some measurable state variable, such as the temperature at some location or the volatility

of an index. The payoff can involve various patterns of cash flows. Payments can be spread evenly

through time, occur at specific dates, or a combination of the two. Our work on derivative pricing will

focus on two specific types of contracts, a forward contract and call option.

Definition 9. A call option is a contract that gives the holder the right, but not the obligation, to

purchase the underlying for a pre-specified price K, called the strike price at the expiry date T with the

exercise payoff max(S −K, 0) where S denotes the price of the underlying asset.

Definition 10. A forward contract is an agreement between two parties to exchange an amount of the

underlying commodity, currency or financial asset for cash at some specific date (the expiry date) in

the future. The amount of cash to be paid (called the forward price) at expiry is determined when the

contract is formed and is set so that there is no cost to either party to enter into the agreement.

The Forward Price can be determined by the following formula:

F0 = S0e
rT

where r is interest rate.
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In general, forward price is Ft,T = Ste
r(T−t) for 0 ≤ t ≤ T . Because in this thesis, we assume that the

interest rate is zero i.e Ft,T = St, therefore instead of forward price, we work with the stock price.
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Binomial Tree Model

Binomial models were first suggested by [Cox and Rubinstein, 1979], CRR, and then became widely

used because of its intuition and easy implementation. Binomial trees are constructed on a discrete-time

lattice. With the time between two trading events shrinking to zero, the evolution of the price converges

weakly to a lognormal diffusion. Within this mode the European options value converges to the value

given by the Black-Scholes formula.

STEP 1: Create the binomial price tree

Suppose that we have an underlying instrument (a stock price) at time t = 0 with initial value S0. At

any node on time layer ti, the asset price S, can branch up to the value Sup = S.u at time ti+1, or down

to the value Sdown = S.d, where, by definition, u ≥ 1 and 0 < d ≤ 1 are called up and down factor re-

spectively. The probability of an “up move” is p and that of a “down move” is 1-p. Over one time period,

∆t, the up and down factors are calculated using the underlying volatility, σ and the time duration of a

step, ∆t, measured in years. From the condition that the variance of the log of the price is σ2∆t, we have:

u = eσ
√

∆t, d = e−σ
√

∆t =
1

u
.

The CRR method ensures that the tree is recombinant, i.e. if the underlying asset moves up and then

down (u,d), the price will be the same as if it had moved down and then up (d,u) here the two paths

merge or recombine. This property reduces the number of tree nodes, and thus accelerates the compu-

tation of the option price. This property also allows that the value of the underlying asset at each node

can be calculated directly via formula, and does not require that the tree be built first.

STEP 2: Computed the asset prices at all the nodes

The asset price tree is built by setting the value of the asset on the (i + 1)th layer (that is at time ti,

since we start at t0 = 0):

S(j, i) = Sij j = 0, . . . , N,
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where j corresponds to the (j + 1)th node up the layer (i.e. j increases upwards) and,

Sji ≡ u
jdi−jS0.

STEP 3: Find Option value at each final node (Terminal)

At each final node of the tree i.e. at expiration of the option T, the option value is simply its intrinsic,

or exercise, value.

• A call option: max (ST −K, 0),

• A put option: max (K − ST , 0),

where K is the Strike price and ST is the price of the underlying asset.

STEP 4: Find the option value at earlier nodes

Once the above step is complete, the option value is then found for each node, starting at matutity time,

and working back to the first node of the tree where the calculated result is the value of the option.

The binomial value is found at each node, using the risk neutrality assumption, is:

Vt−∆t,i = e−r∆t(pVt,i+1 + (1− p)Vt,i−1) (B.1)

Where Vt,i is the option’s value for tth node at time t and r is the risk free rate corresponding to the life

of the option with probability p is:

p =
er∆t − d
u− d

.

Implementing the Tree:

We start with computing the current price V0 of a European call; following algorithm gives the procedure

for given values of the asset price S, the strike K, the volatility σ, the riskfree rate r and time to maturity

T .

Algorithem European Call Option:

1. Input Strik K , S0, r, σ, T and Time Steps M .

2. Compute ∆t = T
M where n is steps on tree .

3. Compute ud = 1 where u = σ
√

∆t .

4. Compute p = er∆t−d
u−d .

5. Evaluate Si − j.

6. Calculate Price for Calls at T.
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7. Binomial Value = [ p× Option up + (1− p)× Option down] exp(−r ×∆t),

The above is the original Cox, Ross, Rubinstein (CRR) method; there are other techniques for generating

the lattice, such as ”the equal probabilities” tree. The Trinomial tree is a similar model, allowing for an

up, down or stable path. The CRR method ensures that the tree is recombinant, i.e. if the underlying

asset moves up and then down (u,d), the price will be the same as if it had moved down and then up

(d,u) here the two paths merge or recombine. This property reduces the number of tree nodes, and

thus accelerates the computation of the option price. This property also allows that the value of the

underlying asset at each node can be calculated directly via formula, and does not require that the tree

be built first.
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Appendix C

Dynamic Programming

C.1 What Is Dynamic Programming?

The optimization of problems over time arises in many settings, from the control of heating systems to

managing entire economies and finances. In between are examples including landing aircraft, managing

blood inventories, selling assets, investing money in portfolios, or just playing a game of tic-tac-toe or

backgammon. These problems involve making decisions, then observing information, after which we

make more decisions, and then more information, and so on.

Dynamic programming is an optimization procedure that is particularly applicable to problems requiring

a sequence of interrelated decisions. Each decision transforms the current situation into a new situa-

tion. A sequence of decisions, which in turn yields a sequence of situations. The value of a sequence

of decisions is generally equal to the sum of the values of the individual decisions and situations in the

sequence. The main concept of dynamic programmingis that choosing the best state in each step leads

to the optimum final state.

The field of Dynamic programming is young, the original developments of the material are still accessible

and relevant. Richard Bellman first introduced the title of dynamic programming to the study of these

methods in his 1957 monograph [Bellman, 1957].

C.2 Analytical Concepts in DP

In this section, we briefly present the fundamental concept of Dynamic Programming [Bertsekas, 1976],

[King, 2002]. For our approach, we fucus on a finite horizon discrete time dynamic programming model.
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Suppose we wish to optimize a separable cost function of the form

V =

N−1∑
i=0

Ui(si, ci) + VT (sT ). (C.1)

Note that the initial and terminal condition on the function are necessarily.

Even though we can use the Lagrange multiplier method for solving simple dynamic optimization prob-

lems, we are simply looking for a more tractable, and more powerful way. All dynamic programs can be

written in terms of a recursion that relates the value of being in a particular state at one point in time

to the value of the states that we are carried into at the next point in time is known as Bellmans equa-

tion, or the Hamilton-Jacobi equation, or increasingly, the Hamilton-Jacobi-Bellman equation (usually,

in continuous-time optimization problems. Some textbooks refer to them as the functional equation of

dynamic programming. We use the term Bellman Equation in our work, which is so widely used in the

dynamic programming community.

C.2.1 Utility or payoff Function

To understand the Bellman equation, several concepts must be understood and it will be useful to

review the elements of a dynamic program. First, any optimization problem has some objective such

as minimizing travel time, minimizing cost, maximizing profits, maximizing utility, et cetera. The

mathematical function that describes this objective is called the objective function. It means the agent

has a utility or payoff (Cost) function U(s1, c1, ..., sT , cT ) that depends on the realized states and decisions

from period t = 0 to the horizon T1. U has the form

U(s1, c1, ..., sT , cT ) =

T1∑
i=0

Ui(si, ci). (C.2)

where Ui(si, ci) is the agent’s period i utility (payoff) function.

C.2.2 Control and State Variable

There are two key variables in any dynamic programming problem: a state variable st, and a decision

variable ct (the decision is often called a control variable in the engineering literature). These variables

can be vectors in Rn, but in some cases they might be infinite dimensional objects.

Definition 11. The state variable: this captures all the information of the current situation which

is needed to make a correct decision, as well as the information that we need to describe how the system

evolves over time.

For example, to decide how much to consume and spend at each point in time, people would need to

know (among other things) their initial wealth. Therefore, wealth would be one of their state variables,

but there would probably be others.
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Definition 12. The decision (control) variable: Decisions represent how we control the process and

chosen at any given point in time.

For example, given their current wealth, people might decide how much to consume now. Choosing the

control variables now may be equivalent to choosing the next state; more generally, the next state is

affected by other factors in addition to the current control. Therfore, in the simplest case, today’s wealth

(the state) and consumption (the control) might exactly determine tomorrow’s wealth (the new state),

though typically other factors will affect tomorrow’s wealth too.

C.2.3 Policy

The dynamic programming approach describes the optimal plan by finding a rule that tells what the

controls should be, given any possible value of the state. For example, if consumption (c) depends only

on wealth (W ), we would seek a rule c(W ) that gives consumption as a function of wealth. Such a rule,

determining the controls as a function of the states, is called apolicy function

Definition 13. Assume that the state si is the state variables at the end of time interval i (an element

of a space Φi), the control variable ci is the control variables applied during time interval i (is an element

of the a space Rm). A policy function or control law is a sequence of N functions (µ0, ..., µN−1):

µi : Φi → Rm, (C.3)

where µi maps states si into control ci = µi(si)

C.2.4 Basic Model

A dynamic optimization problem (pay off function) in discrete time is given by the form

opt

N−1∑
i=0

Ui(si, ci) + VN (sN ). (C.4)

subject to:

si+1 = Gi(si, ci) (C.5)

with the initial condition s0 given and the terminal value is given.

Gi is a function that describes the system and in particular the mechanism by which the state is updated.

And express the evolution of the system of the state under the influence of the control variable.

We now formulate a general problem of decision over a finite number of stage. This basic problem is

very general. We start by considering problems that have the following representation:
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Consider a discrete-time dynamic system modeled by the state equation

si+1 = Gi(si, ci) i = 0, 1, ..., N − 1, (C.6)

where the state si is the state variables at the end of time interval, the control variable ci ∈ Rm is the

vector of the control variables applied during time interval i.

The initial state s0 is given; the final state sT may be constrained or not. No uncertainty is considered

here: given the current value of the state variable si, after selecting the control variable ci we know ex-

actly what the future state will be, according to the time-varying dynamics described by the Gi functions.

Given an initial state s0 and a fixed admissible policy function µ = (µ0, ..., µN−1), we start with obser-

vations which are already exist and dynamic system C.6 becomes

si+1 = Gi(si, µi(si)), i = 0, ..., N − 1 (C.7)

Thus, for given function Ui, i = 0, ..., N − 1,

Vµ(s0) =

N−1∑
i=0

Ui(si, µi(si)) + VN (sN ) (C.8)

Optimal policy µ∗ is one that optimize the function C.8,

Vµ∗(s0) = optµ∈Rm
N−1∑
i=0

Ui(si, µ(si)) + VN (sN ) (C.9)
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where R is the set of all admissible policies.

The Principle of Optimality

Richard Bellman showed that a dynamic optimization problem in discrete time can be stated in a

recursive, step-by-step form by writing down the relationship between the value function in one period

and the value function in the next period. The relationship between these two value functions is called

the Bellman equation. In general there are following method to solve this equation:
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1. The method of undetermined coefficients, also known as ’guess and verify’, can be used to solve

some infinite-horizon.

2. The Bellman equation can be solved by backwards induction.

3. By calculating the first-order conditions associated with the Bellman equation 1.

We use the second method, which is backward induction, to solve the Bellman equation.

The key idea underlying why backward induction produces an optimal decision rule is called The Principle

of Optimality. Roughly, the principle of optimality states the following:

Claim 1. Let µ∗ = {µ∗0, ..., µ∗N−1} be an optimal policy for basic problem and assume that using µ∗,

a given state si occurs at time i. Consider the subproblem whereby we are at si at time i and wish to

minimize the cost-to-go from time i to time N Then the truncated policy {µ∗i , ..., µ∗N−1} is optimal for

this subproblem.

Proof: [Bertsekas, 1976]

So an optimal policy has the property that whatever the initial state and initial decision are, the re-

maining decisions must constitute an optimal policy with regard to the state resulting from the first

decision.

1It is possible to obtain a system of difference equations or differential equations called the ’Euler equations’. Standard
techniques for the solution of difference or differential equations can then be used to calculate the dynamics of the state
variables and the control variables of the optimization problem.
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The Optimal Hedging

D.1 Basic Model

As we mention in Chapter 2, the Bellman Equation can be written as

V i(Si, vi) = inf
{hi}

{
sup
{ci}

{
V (Si+1, vi+1)− hi(Si+1 − Si)

}}
. (D.1)

Subject to the conditions

• (lnSi+1 − lnSi)
2 = c2i ≤ d2.

• vi+1 = vi − c2i ≥ 0.

Note that, the Bellman equation (3.6) is a non standard dynamic programming problem due to being

a minimax optimization problem. However, the optimal hedging strategy can be easily found and with

this out of the way the problem becomes a standard dynamic programming problem. The infimum over

the trading strategies that makes the problem non-standard dynamic programming.

We are going to use some really neat tricks. Suppose that we have found optimal hedging, h̃, for the

problem (2.27), therefore we have

V (Si, vi) = sup
{ci}
{V (Sie

ci , vi − c2i )− h̃Si(eci − 1)}.

Since we have defined V (Si, vi) as an upper bound, one can rest assured that

V (Si, vi) ≥ V (Sie
ci , vi − c2i )− h̃Si(eci − 1).
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The amount by which the upper bound V (Si, vi) is greater than the right-hand-side is a function, F , of

the permissible value for ci. We can therefore write as

F (ci) ≡ V (Si, vi)− V (Sie
ci , vi − c2i ) + h̃Si(e

ci − 1) ≥ 0. (D.2)

Obviously from the equation (D.2), F (ci) ≥ 0 and by substitution ci = 0 in definition of function F , we

have F (0) = 0.

Remark 16. If the function F is equal to zero at the origin, and greater or equal to zero for positive or

negative values of c, as long as arbitrarily small in magnitude, then the derivative of F with respect to

ci in the neighborhood of ci = 0 must be equal to 0.

Above grantee that
dF

dc
|c=0= F ′(0) = 0.

Now by applying the derivative in (D.2),

∂F

∂ci
= 0− ∂V

∂(Sieci)
.
∂(Sie

ci)

∂ci
+

∂V

∂(vi − c2i )
∂(vi − c2i )

∂ci
+ h̃Sie

ci

= − ∂V

∂Sieci
Sie

ci + 2ci
∂V

∂(v − c2i )
+ h̃Sie

ci .

Evaluating this quantity at ci = 0, and equating it to zero, gives

∂F

∂ci
|ci=0= − ∂V

∂Si
Si + h̃Si = 0. (D.3)

Therefore follows that the optimal hedge ratio is given by

∂V

∂Si
= h̃, ci ≤ min(ci, d

2). (D.4)

Equation (D.4) determines the optimal strategy. Note that, if all the Black-Scholes conditions are met,

the usual expression for the Black delta holding of shares is recovered. The optimal strategy, however,

holds also in all the more general cases where the J-N method is applicable.

As a last step we can substitute the optimal strategy we have just determined in the expression for the

minimum upper bound. When we do so we obtain:

Vi(Si, vi) = inf
{hi}

{
sup
{ci}

{
V (Si+1, vi+1)− ∂V

∂Si
(Si+1 − Si)

}}
. (D.5)

Subject to the inequality constraint:

ci ≤ min(vi, d
2).

88



APPENDIX D. THE OPTIMAL HEDGING D.2. PROPORTIONAL TRANSACTION COSTS

and the terminal condition

V (Si, 0) = V (Si).

D.2 Proportional Transaction Costs

Let us assume that the optimal hedge, h̃, has somehow been found, so

V (Si, vi, α) = sup
{ci}
{V (Sie

ci , vi − c2i , α)− h̃Si(eci − 1) + α|h̃− g|Sieci}. (D.6)

where g = H(Si+1, vi+1) and is known.

Therefore we can define the difference between the left-hand side and the right-hand side as a function

Fα(ci) = V (Si, vi, α)− V (Sie
ci , vi − c2i , α) + h̃Si(e

ci − 1)− α|h̃− g|Sieci ≥ 0. (D.7)

By using induction, we can show Fα(0) = 0.

Assume i = N − 1, so

Fα(cN−1) = V (SN−1, vN−1, α)− V (SN ) + h̃SN−1(ecN−1 − 1)− α|h̃|SN−1e
cN−1 . (D.8)

According to our set up

BN−1 +H(SN−1, vN−1)SN = VN + α|H(SN−1, vN−1)|SN .

where BN−1 +H(SN−1, vN−1)SN = V (SN−1, vN−1, α), So

V (SN−1, vN−1, α) = V (SN ) + α|h̃|SN−1e
cN−1

So Fα(cN−1) = 0 when cN−1 = 0.

When i = n

Fα(cn) = V (Sn, vn, α)− V (Sn+1, vn+1, α) + h̃Sn(ecn − 1)− α|h̃− g|Snecn . (D.9)

where

V (Sn, vn, α) = V (Sn+1, vn+1, α) + α|H(Sn, vn)−H(Sn+1, vn+1)|Sn+1.

By doing the same process we can show Fα(0) = 0, hence according to remark 16, F ′α(0) = 0. Therefore
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follows that the optimal hedge ratio is given by

∂Fα
∂ci

= − ∂Vα
∂Sieci

Sie
ci + 2ci

∂Vα
∂(v − c2i )

+ h̃Sie
ci − α|h̃− g|Sieci .

Evaluating this quantity at ci = 0, and equating it to zero, gives

∂Fα
∂ci
|ci=0= −∂Vα

∂Si
Si + h̃Si − α|h̃− g|Si = 0. (D.10)

Finally h̃ the optimal hedge ratio is given by

∂V α
∂Si

= h̃− α|h̃− g|, where ci ≤ min(ci, d
2). (D.11)

Hence, we look for the optimal trading strategies such that

∂V α
∂Si

=

(1− α)h̃+ αg, if h̃ ≥ g,

(1 + α)h̃− αg, if h̃ < g.

Therefore

• If h̃ ≥ g, then h̃ = 1
1−α (∂V α∂Si

− αg).

• If h̃ < g, then h̃ = 1
1+α (∂V α∂Si

+ αg).
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MATLAB Code

Optimization without Transaction costs

%By t h i s program , we f i n d the minimum upper bound without t r a n s a c t i o n co s t .

%We s e t the program f o r S 0=1 and K=1, annual v o l a t i l i t y =0.2 f o r 2−month

%obse rvat i on

%%% Inputs

N=100; %number o f s e tp s in the t r e e

volannual = 0 . 2 ; %annual v o l a t i l i t y

T = 2/12 ; %(number o f month)/12

remainvol = T∗( vo lannual ˆ 2 ) ; %remainding v o l a t i l i t y v 0

d e l t a = s q r t ( remainvol /N) ; %N∗\ d e l t a = v 0

dde l ta = 3 %d/ d e l t a

S t r i k e = 1 ; % S t r i k e Pr i ce

i = matr ixI (N) ; % i s a func t i on

C = length ( i ( : , 1 ) ) ; % length o f i in maturity

Value = (−100)∗ ones (N+1,N+1);

Stock = (−100)∗ ones (N+1,N+1);

hs ta r = ze ro s (N,N) ; %matrix o f number o f sha re s

%%% Payof f at T

time = 1 ;

Stock0 = 1 ;

Stock ( : , time ) = Stock0∗exp ( i ( : , time )∗ d e l t a ) ;

f o r A = 1 :C
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Value (A, time ) = max( Stock (A, time)−Str ike , 0 ) ;

end

f o r time = 2 :N+1

Stock ( 1 :C−(time−1) , time ) = Stock0∗exp ( i ( 1 :C−(time−1) , time )∗ d e l t a ) ;

n1 = f i x ( s q r t ( min ( ( dde l ta )ˆ2 , time −1) ) ) ; %cond int ion n<=min ( ddelta ,N−j )

f o r h=1:C−(time−1)

[ Value1 , Stock1 ] = des tpo in t ( n1 , time , h , Stock0 , Value , de l ta , i ) ; %func t i on

%%% opt imiza t i on %%%

[V,Vh] = opthedge ( Value1 , Stock1 , Stock (h , time ) ) ; %func t i on

hs tar (h , time ) = Vh; %optimal hedge

Value (h , time ) = V; %optimal va lue

c l e a r Value1 Stock1

end

end

Vl0 = Value (1 , time ) ; %the minimum upper bound

func t i on [ i ] = matr ixI (N)

%To make matrix i which c r e a t e the g ide f o r index i , where N i s s t ep s in

%the t r e e

i = (2∗N+1)∗ones (N+1,N+1);

i ( : , 1 ) = (−N: 2 :N) ’ ;

f o r c = 2 :N+1

a = 1 ;

I ( c ) = (N−(c−1)) ;

f o r e = −I ( c ) : 2 : I ( c )

i ( a , c)= e ;

a = a+1;

end

end

func t i on [ Value1 , Stock1 ] = des tpo in t ( n1 , time , h , Stock0 , Value , de l ta , i )

% With t h i s funct ion , we f i n d the a l l d e s t i n a t i o n po in t s from a c e r t a i n

% node . Reca l l that ( i , j ) goes to ( i+n , j+nˆ2) where n<= min( j , dˆ2/ d e l t a ˆ 2 ) .

p = 1 ;

f o r n=−n1 : n1

i f n˜=0

i f time−1>=nˆ2
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[ t f , index ] = ismember ( i (h , time)+n , i ( : , time−n ˆ 2 ) ) ;

Value1 (p) = Value ( index , time−n ˆ 2 ) ;

Stock1 (p) = Stock0∗exp ( ( i (h , time)+n)∗ d e l t a ) ;

p = p+1;

end

end

end

Value1 ;

Stock1 ;

func t i on [V,Vh] = opthedge ( Value1 , Stock1 , Stockhtime )

%With t h i s funct ion , we can f i n d the optimal va lue (V∗) and the optimal

%hedge (h ∗ ) .

f 1 = [ 1 ; 0 ] ;

b=cat (2 ,−Value1 ) ;

c o l 1 =cat (2 ,− ones (1 , l ength ( Value1 ) ) ) ;

c o l 2 = cat (2 ,−( Stock1−Stockhtime ) ) ;

A=cat (2 , co l1 ’ , co l2 ’ ) ;

lb = [−10ˆ4;−10ˆ4] ;

ub =[10ˆ4 ; 10ˆ4 ] ;

[ x , f v a l ] = l i n p r o g ( f1 ,A, b , [ ] , [ ] , lb , ub )

Vh = x ( 2 ) ;

V = x ( 1 ) ;

Optimization without Transaction costs

%In t h i s code , we f i n d the minimum upper bound with p r o p o r t i o n a l

%t r a n s a c t i o n co s t .

%We s e t the program f o r S 0=1 and K=1 annual v o l a t i l i t y =0.2 f o r 2−month

%obse rvat i on and alpha =0.001.

%%%% Inputs

N=100; %number o f s e tp s in the t r e e

volannual = 0 . 2 ; %annual v o l a t i l i t y

T = 2/12 ; %(number o f month)/12

remainvol = T∗( vo lannual ˆ 2 ) ; %remainding v o l a t i l i t y v 0

d e l t a = s q r t ( remainvol /N) ; %N∗\ d e l t a = v 0

dde l ta = 3 %d/ d e l t a

S t r i k e = 1 ; % S t r i k e Pr i ce
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i = matr ixI (N) ; % i s a func t i on

C = length ( i ( : , 1 ) ) ; % length o f i in maturity

Value = (−100)∗ ones (N+1,N+1);

Stock = (−100)∗ ones (N+1,N+1);

hs ta r = ze ro s (N,N) ; %matrix o f number o f sha re s

x i = ze ro s (N+1,N+1);

alpha =0.001 %t r a n s a c t i o n co s t ra t e

%%%% Payof f at T

time = 1 ;

Stock0 = 1 ;

Stock ( : , time ) = Stock0∗exp ( i ( : , time )∗ d e l t a ) ;

f o r A = 1 :C

Value (A, time ) = max( Stock (A, time)−Str ike , 0 ) ;

end

%%%%Dest inat i on nodes

f o r time = 2 :N+1

Stock ( 1 :C−(time−1) , time ) = Stock0∗exp ( i ( 1 :C−(time−1) , time )∗ d e l t a ) ;

n1 =f i x ( s q r t ( min ( ( dde l ta )ˆ2 , time −1) ) ) ; %cond int ion n<=min( ddelta ,N−j )

f o r h=1:C−(time−1)

[ Value1 , Stock1 , x i1 ]= d e s t p o i n t t r a n s ( n1 , time , h , Stock0 , Value , xi , de l ta , i ) ;

%%%%%%Find optimal va lue and share

[V,Vh] = opthedgetrans ( Value1 , Stock1 , xi1 , alpha , Stock (h , time ) ) ; %func t i on

hs tar (h , time−1)=Vh; %optimal hedge

Value (h , time)=V; %optimal va lue

c l e a r Value1 Stock1 x i1 V Vh

x i (h , time ) = hstar (h , time −1); % make i t as a number o f share s f o r fu tu r e

end

end

Vl0 = Value (1 , time ) ; %the minimum upper bound

func t i on [ Value1 , Stock1 , x i1 ]= d e s t p o i n t t r a n s ( n1 , time , h , Stock0 , Value , xi , de l ta , i )

%From given node ( i , j ) , the c h i l d r e n nodes are ( i+n , j+n ˆ2) , a l s o in t h i s case we need

%numbers o f sha re s f o r the c h i l d r e n nodes as we l l .

p = 1 ;

f o r n=−n1 : n1

i f n˜=0

i f time−1>=nˆ2
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[ t f , index ] = ismember ( i (h , time)+n , i ( : , time−n ˆ 2 ) ) ;

Value1 (p) = Value ( index , time−n ˆ 2 ) ; %j+nˆ2

Stock1 (p) = Stock0∗exp ( ( i (h , time)+n)∗ d e l t a ) ; %i+n

xi1 (p) = x i ( index , time−n ˆ 2 ) ; %number o f share s at ( i+n , j+nˆ2)

p = p+1;

end

end

end

func t i on [ V, Vh] = opthedgetrans ( Value1 , Stock1 , xi1 , alpha , Stockhtime )

%This func t i on f i n d the optimal va lue with t r a n s a c t i o n co s t

K1 = length ( Value1 ) ;

f 1 = cat (2 ,1 ,0 , z e r o s (1 ,K1 ) ) ;

b=cat (2 ,−Value1 , xi1 ,− x i1 ) ;

%make A and b ,

A1 = cat (2 ,− ones (K1,1) , ( − ( Stock1−Stockhtime ) ) ’ , alpha .∗ diag ( Stock1 ) ) ;

A2 = cat (2 , z e r o s (K1, 1 ) , ones (K1,1) ,− eye (K1 ) ) ;

A3 = cat (2 , z e r o s (K1,1) ,− ones (K1,1) ,− eye (K1 ) ) ;

A = cat (1 ,A1 , A2 , A3 ) ;

%upper and lower bounded

lb = cat (2 ,−10ˆ4 ,−10ˆ4 , z e r o s (1 ,K1 ) ) ;

ub = cat (2 ,10ˆ4 ,10ˆ4 ,10ˆ4∗ ones (1 ,K1 ) ) ;

[ x , f v a l ] = l i n p r o g ( f1 ,A, b , [ ] , [ ] , lb , ub ) ;

Vh = x ( 2 ) ; %optimal hed ig ing

V = f v a l ; %optimal va lue

Convex Hull Optimization-Without Transaction Costs

%This code r e p r e s e n t the same opt imiza t i on but with Convex Hul l method

%%%%% Inputs

N=100; %number o f s e tp s in the t r e e

volannual = 0 . 2 ; %annual v o l a t i l i t y

T = 2/12 ; %(number o f month)/12

remainvol = T∗( vo lannual ˆ 2 ) ; %remainding v o l a t i l i t y v 0

d e l t a = s q r t ( remainvol /N) ; %N∗\ d e l t a = v 0

dde l ta = 3 %d/ d e l t a

S t r i k e = 1 ; % S t r i k e Pr i ce

i = matr ixI (N) ; % i s a func t i on

C = length ( i ( : , 1 ) ) ; % length o f i in maturity
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Value = (−100)∗ ones (N+1,N+1);

Stock = (−100)∗ ones (N+1,N+1);

hs ta r = ze ro s (N,N) ; %matrix o f number o f sha re s

time = 1 ; Stock0 = 1 ;

Stock ( : , time ) = Stock0∗exp ( i ( : , time )∗ d e l t a ) ;

%%%% Payof f at T

f o r A = 1 :C

Value (A, time ) = max( Stock (A, time)−Str ike , 0 ) ;

end

f o r time = 2 :N+1

Stock ( 1 :C−(time−1) , time ) = Stock0∗exp ( i ( 1 :C−(time−1) , time )∗ d e l t a ) ;

n1 = f i x ( s q r t ( min ( ( dde l ta )ˆ2 , time −1) ) ) ; %cond int ion n<=min( ddelta ,N−j )

f o r h=1:C−(time−1)

[ Value1 , Stock1 ] = des tpo in t ( n1 , time , h , Stock0 , Value , de l ta , i ) ; %func t i on

%Convex Hul l Method

i f f i n d ( Value1)˜=0

%I f a l l po in t s are in the same l i n e

X =[ Stock1 ( : ) Value1 ( : ) ] ;

dt = DelaunayTri (X) ;

scopedWarnOff = warning ( ’ o f f ’ , ’MATLAB: TriRep : EmptyTri2DWarnId ’ ) ;

restoreWarnOff = onCleanup (@( ) warning ( scopedWarnOff ) ) ;

t r i = dt . Tr iangu la t i on ;

i f isempty ( t r i )

maxx1 = Stock1 ( 1 ) ; maxx2 = Stock1 ( 2 ) ;

maxy1 = Value1 ( 1 ) ; maxy2 = Value1 ( 2 ) ;

e l s e

%otherwise , f i n d the h u l l l i n e

k = convhul l ( Stock1 , Value1 ) ;

maxa = f i n d ( k==max( k ) ) ; mina = f i n d ( k==min ( k ) ) ;

k ( 1 : maxa−1) = [ ] ;

l o c a l x = Stock1 ( k ( : ) ) ; l o c a l y = Value1 ( k ( : ) ) ;

v = [ l o c a l y (1)− l o c a l y ( l ength ( k ) ) ; −( l o c a l x (1)− l o c a l x ( l ength ( k ) ) ) ] ;

r = [ l o c a l x ( l ength ( k))− l o c a l x ; l o c a l y ( l ength ( k))− l o c a l y ] ;

d = [ ] ;

f o r i i =1: l ength ( k )

d( i i ) = abs ( dot (v , r ( : , i i ) ) ) / norm( v ) ;

end
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dsor t = s o r t (d , ’ descend ’ ) ;

i f isempty ( f i n d (d ) )

maxy2 = l o c a l y ( 1 ) ; maxy1 = l o c a l y ( l ength ( k ) ) ;

maxx2 = l o c a l x ( 1 ) ; maxx1 = l o c a l x ( l ength ( k ) ) ;

e l s e

[ s1 , index1 ] = ismember ( dsor t ( 1 ) , d ) ;

maxx2 = l o c a l x ( index1 ) ;

maxy2 = l o c a l y ( index1 ) ;

i f l ength ( f i n d ( dsor t ))==1

i f Stock (h , time)<=maxx2

maxx1 = l o c a l x ( l ength ( k ) ) ;

maxy1 = l o c a l y ( l ength ( k ) ) ;

e l s e

maxx1 = l o c a l x ( l ength ( 1 ) ) ;

maxy1 = l o c a l y ( l ength ( 1 ) ) ;

end

e l s e

[ s2 , index2 ] = ismember ( dsor t ( 2 ) , d ) ;

maxx1 = l o c a l x ( index2 ) ;

maxy1 = l o c a l y ( index2 ) ;

end

end

end

%V∗ and h∗
hstar (h , time ) = (maxy1−maxy2 )/( maxx1−maxx2 ) ; % f i n d h s t a r

Value (h , time ) = hstar (h , time )∗ ( Stock (h , time)−maxx1)+maxy1 ;

e l s e

Value (h , time ) = 0 ;

end

c l e a r Value1 Stock1

end

end

Vl0=Value (1 , time ) ; %the minimum upper bound
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