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Abstract

Star trackers are perhaps the most accurate means of measuring a space-
craft’s orientation in space and are becoming a popular sensing instrument
for attitude determination systems amongst conventional larger satellites as
well as micro satellites. In order to produce and maintain high fidelity mea-
surements, the systematic effects of lens distortion and possible sensor al-
terations due to environmental changes and instrument aging must all be
accounted for through calibration, both on the ground and on orbit. In this
study, a calibration method is presented to account for errors in star camera
parameters, namely the focal length, bore sight offset, higher order radial dis-
tortion terms and the tip and tilt of the detector array in relation to the lens
arrangement. This method does not depend on a costly high-precision lab
setup; instead it simply employs the star camera images and a star catalogue
to calibrate the instrument given reasonable initial estimates. This allows
for a reduction in pre-mission calibration requirements and is feasible for an
online implementation, allowing the star tracker to calibrate itself through
out its life-cycle.
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1 | Introduction

S
pacecraft have matured a great deal since their inception in the
mid twentieth century. The spacecraft of today are moving towards

increasing autonomy, and working towards the capability of autonomously
transporting payloads, acquiring mission data and even navigating them-
selves, with the attempt to eliminate any human interaction or ground
support. Among the many problems encountered in space, the issue of
spacecraft navigation and attitude determination is especially interesting
and has been a constantly expanding field of study. Attitude control systems
are an integral part of any spacecraft and have encouraged the development
of a wide spectrum of orientation sensing devices that operate based on
a host of different observations or physical phenomena. Common attitude
sensing instruments include sun sensors, star sensors, horizon sensors,
magnetometers, gyroscopes, or even Global Positioning System receivers for
near earth space missions.

Although star sensors are rather costly in comparison to their counterparts,
they certainly stand out in terms of their performance. The fact that a sin-
gle instrument can provide three-axis attitude information at modestly high
output frequency and an accuracy of a few arc-seconds is valuable. However,
with high precision attitude sensors comes the added drawback of high pre-
cision calibration, which can be a costly and time consuming. In this study, a
method of star camera calibration is presented, which employs the use of only
images taken from the star camera, and an on-board star catalogue. This cal-
ibration comprises the determination of the intrinsic star tracker parameters
that define star vectors from imaged co-ordinates. These parameters include
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Chapter 1. Introduction 2

the camera focal length, decentering distortions, radial distortions and de-
tector pose with respect to the lens arrangement. Without any dependence
on lab equipment, this method is suitable not only for a ground based im-
plementation, but may also be implemented to autonomously calibrate star
cameras while in orbit.

1.1 Problem Statement

Many factors may influence the quality of attitude readings produced by
a star tracker not only during testing but also through its mission phase.
With much effort going into developing and calibrating such a high precision
device, it would certainly be problematic if a star tracker behaves differently
in its working environment than it does in a pre-mission calibration environ-
ment. In addition, regardless of how well-designed and well-equipped high
precision lab setups may be, they may never truly replicate the working
conditions of a star tracker.

Driving factors affecting star tracker performance such as temperature or
launch vibration are beyond control and the effects that they can have
on parameters are unpredictable. An effective way to account for decline
in star tracker performance, is through continuous re-calibration of the
instrument. Having a star tracker continually re-calibrate itself in its working
environment, and throughout its working life-time may significantly improve
its measurement quality by accounting for dimensional changes caused by
thermal expansion or structural warping or from any other source.

To account for dimensional changes, it is required to have a calibration
method that is independent of a comfortable lab setup and one which can be
implemented on-board the star tracker itself. This study presents a possible
solution to this requirement, by attempting to determine the star camera’s
focal length, decentering distortions, detector tip, tilt and higher order
radial distortions. The method uses only images acquired from the camera
itself and the on-board star catalogue to revise parameters given reasonable
initial estimates. This will allow for an accurate definition of star vectors
from imaged co-ordinates, which in turn will increase the quality of attitude
data and improve star matching.

SAIL Ryerson University Brendon Vaz



Chapter 1. Introduction 3

To reiterate, the objectives of this thesis are to:

• Present a lab-independent calibration method for a star tracker

• Track alterations in star tracker parameters throughout its lifetime

• Maintain the measurement quality of a star tracker

1.2 Prior Work

The study of online calibration for attitude determination systems has
been the focus of many research projects in the aerospace field. The
increasing precision of mission instruments has stressed the demand for
accurate attitude determination during spacecraft operation stages. Attitude
determination systems must therefore be able to provide and maintain
high accuracy attitude measurements at a high data rate. To ensure this,
online calibration techniques have been applied to a range of mission and
navigation sensors on-board spacecraft in recent years in order to maintain
the functional quality of measurements made throughout the working life
of spacecrafts. Given the increase in sensor precision, and the availability of
efficient computing means, these methods are becoming the norm for space
missions. [Pittelkau 2007]

Misaligned or uncalibrated attitude sensors and gyros may cause large
measurement residuals in an on-board attitude determination system.
[Pittelkau 2007]. Therefore, attitude sensor calibration is one of the most
critical mission support steps, and may be needed while satellites are
deployed in orbit as instruments drift with age [Sedlak et al. 2003]. Ground-
based calibration for attitude sensors, including star trackers has been well
documented, [Sun et al. 2013], however ground calibrations cannot ade-
quately simulate working conditions of on-board instruments. In addition,
it requires the transmission of a large amount of data between satellites
and ground stations. Therefore, the technical benefits of on-orbit calibration
include more precise calibration, ability to track parameter variations due
to thermal variations, less recorder and telemetry data, minimal interrup-
tion of science observations, greater autonomy, and less ground testing
[Pittelkau 2007]. Reliable and efficient real-time software is required for au-
tonomous on-board calibration. A properly designed calibration routine can

SAIL Ryerson University Brendon Vaz



Chapter 1. Introduction 4

reliably estimate attitude and calibration parameters and run in real-time
on present-day space qualified computers [Sedlak & Hashmall 2004].

Online calibration methods have been applied in the past to a wide range
of sensors. Typically, ground based methods utilize large amounts of data
to minimize the residual in a least squares sense between sensor output
and a known truth attained from lab equipment. Although this is an
effective method on the ground, the dependence of this method on a
lab setup and storage and processing of large volumes of data render it
unfeasible for an online setting. To combat this, a recursive based esti-
mation method is usually adopted to optimize sensor performance. There
are several excellent sources on the subject [Crassidis & Junkins 2011]
outlining reliable algorithms that may be adopted to solve the sensor
optimization problem. In the past, researchers have used these recursive
methods for sensor alignment [Kok-Lam Lai 2003], magnetometer calibra-
tion [Kim et al. 2004], thruster calibration [Wiktor 1996], gyro calibration
[OShaughnessy & Pittelkau 2007], control systems [Chen et al. 2006] and a
wide variety of different sensing elements.

The availability of powerful space qualified microcomputers and imaging
technology has allowed for autonomous star trackers to be used in conjunc-
tion with traditional orientation sensors for attitude determination in order
to meet these stringent mission requirements [Liebe 1995]. Although star
trackers are slowly becoming the preferred attitude sensing device on most
spacecraft, there is still much room for improvement, especially to keep up
with increasing demands. High precision star trackers are subject to errors
just as any other sensor. This error may be caused by not having an ideal
sensor model, or an expired calibration of the camera and optics. Errors in
the model include inaccurate focal length estimate, inaccurate intersection
and angle of boresight with the focal plane and radial distortion corrections
[Liebe 2002]. High accuracy star trackers will need to be re-calibrated while
in-orbit, using matched star patterns to model their own optics in order
to maintain high fidelity attitude information. Continual self calibration
will help to correct for dimensional changes over time be they caused by
thermal expansion or structural warping. [Enright 2012]. Given that a large
amount of information regarding intrinsic camera parameters and distortion
coefficients can be extracted from star tracker images and the known
locations of matched stars, recursive estimation methods can be effectively

SAIL Ryerson University Brendon Vaz



Chapter 1. Introduction 5

applied to star tracker calibration without the necessity of lab equipment to
track post calibration parameter changes.

Perhaps the most influential and possibly the foremost research projects on
online star tracker calibration were conducted by Junkins and his research
team. In his first paper [Samaan et al. 2001] on the subject, Samaan
proposed using the discrepancy between imaged star vectors attained
from the star camera, and the matched star vectors from an on-board
catalogue to determine the changes in internal camera parameters. This
gave rise to the two basic types of calibration the attitude dependent and
attitude independent methods. The former utilizes the errors in imaged and
catalogued vectors themselves, and the latter using the discrepancy in angles
between pairs of vectors from the camera and catalogue. Following up on this
research, the team conducted simulations, as well as ground tests to evaluate
the performance of each method. Since the attitude dependent method relies
on potentially poor attitude information, it is no surprise that the attitude
independent method was determined to be superior [Griffith et al. 2002].
Singla’s evaluation of each methods performance was based on the estimates
of the variance that can be encountered in the residuals between star tracker
and catalogued data and the attitude estimates attained from the star
tracker [Singla et al. 2002]. It is a well-known fact that recursive estimators
can behave smugly after large volumes of data have been analyzed. To
combat this, Griffith proposed using a modified recursive least squares
algorithm, with additive process noise, and a forget factor in order to
prevent co-variance wind-up, and to give preference to the most recent
available data. This is especially useful when the parameters are expected
to slowly drift over time [Griffith & Junkins 2009].

The notable contributions by Junkins sparked several extensions to the
concept of online star tracker calibration. Firstly, Junkins separates his
estimation in three steps; focal length and principal point estimation using
a linearized pinhole camera model, filtering out noise using a Kalman filter,
and lastly estimation of higher order focal plane distortions using a localized
least squares approach. Although this method may be quite effective, the
multiple loops in the algorithm may render it impractical for sensors with a
smaller power and computational budget. Some researchers have proposed
solving the focal length and principal point using a closed form solution,
prior to determining distortion parameters [Pal & Bhat 2009] as opposed

SAIL Ryerson University Brendon Vaz
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Junkins least squares approach. Liu suggested determining the principal
point offset and focal length through a least squares approach and then
using the estimates as the measurement inputs for a recursive Kalman filter
to eliminate the noise was unnecessary and instead can be done in a single
step [Liu et al. 2011]. Furthermore, the work done by Shen demonstrates
that the estimation of the focal length and higher order radial distortions
can be done together as opposed to the method proposed by Junkins
[Shen et al. 2010]. For a micro or nano-satellite star tracker such as the one
used in this project, (See Fig. 1.1 below) these eliminations of multiple steps
in the estimation process is key to feasibility.

Figure 1.1 ST-16 star tracker (used in this project) [Enright, 2010].

1.3 Contributions

In this project, the Junkins idea of attitude independent calibration is utilized
in conjunction with a detailed camera model instead of the basic pinhole
model to estimate focal length, principal point, detector pose and higher
order distortions in one single step. The camera model chosen is an inverse
formulation of the model proposed by Wang [Wang et al. 2008] required to
estimate star vectors from illuminated pixels on the camera detector. Wangs
model expresses lens distortion as radial distortion plus a transform from
ideal image plane to real sensor array plane which effectively captures the net
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effect of decentering and tangential distortions. The transform is determined
by two angular parameters describing the pose of the real sensor array plane
with respect to the ideal image plane and two linear parameters locating
the real sensor array with respect to the optical axis. Radial distortions are
also considered. The fewer parameters to be calibrated, and more explicit
physical meaning, simplify the calibrating process and reduce the possibility
of attaining local minima. The project outlines results based on synthetic
data as well as images captured from the star tracker itself. The telemetry
attained from the star tracker was captured both on the ground, and from
an in-service star tracker in orbit. Batch and recursive estimation schemes
are presented and tested.

1.3.1 Scope of Project

This project aims to present a lab-independent calibration method for a
star tracker to track changes in camera model parameters to maintain
measurement quality throughout the life of the star tracker. To achieve this,
both a batch and recursive algorithm are developed that may be used to
calibrate parameters online, and track the changes in these parameters while
the star tracker is in orbit.

Several Tests are performed to evaluate the effectiveness of the calibration
routines. The tests employ both synthetic data, as well as images attained
from the star tracker during ground tests and data obtained from a star
tracker in service. By analyzing the results from these tests, factors that
influence the effectiveness of the calibrated parameter estimates are explored.

These factors include the number of images required per batch to com-
pute a accurate parameter estimate, as well as the required diversity
of scenes necessary to ensure the observability of all parameters. The
independence of parameters is also explored. The results from the tests
are presented and analyzed, and some notes on implementation are discussed.

1.3.2 Outline

The remainder of Chapter 1 presents a basic summary of star tracking, in-
cluding the working principle, sources of error and typical calibration ap-
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proaches. In addition, an overview on online calibration procedures and func-
tion optimization are presented. Chapter 2 outlines the mathematical frame-
work that define the online star tracker calibration routines. This includes a
discussion of the star tracker model parameters, the formulation of the cost
function and the derivation of the Jacobian matrix. In addition, the batch
and recursive function optimization algorithms that are utilized in the cali-
bration procedure are also discussed. Chapter 3 presents and discusses results
attained from a number of tests performed to evaluate the effectiveness of the
calibration procedure. The final chapter provides some concluding remarks,
notes on implementation, and suggested directions of future research.

1.4 Background

1.4.1 Principles of Star Tracking

Stellar navigation is one of the oldest methods used for navigation and head-
ing determination since stars provide a reliable and independent source of
information about the observer’s pointing direction. Although stellar navi-
gation has been replaced by modern infrastructure like Global Positioning
Systems here on earth, the fact that stars can provide valuable and accurate
information for navigation regardless of the observer’s position has remained
unchanged. This fact has been especially exploited in the aerospace indus-
try for navigating spacecrafts that operate beyond the comforts of earth.
With the advent of modern computing technology, the manual star naviga-
tion methods of old have been completely replaced with fully autonomous
star trackers that do not require external computing means for image pro-
cessing and attitude determination. Star trackers are capable of imaging the
night sky, identifying matching stars in an on-board catalog and determining
the orientation of the observer with respect to an inertial frame. In essence,
they are fully autonomous devices providing three axis attitude information
for spacecraft navigation. Star trackers are capable of operating with prior
attitude information available (tracking mode) and when no prior attitude
information is available (Lost-in-Space mode). Modern star trackers are the
only available stand alone devices that provide high resolution attitude mea-
surements in all three axes. It is no surprise that autonomous star trackers
are rapidly becoming the preferred attitude determination instruments on
board most spacecraft. [Liebe 1995]
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Figure 1.2 star tracker Schematic [Liebe, 1995].

1.4.2 Basic Components

A typical star tracking assembly consists of two basic components in addition
to other supporting electronics that facilitate input voltage control, on-board
memory, and external communications. A schematic illustrating these com-
ponents is depicted in Fig. 1.2. All of these components are encompassed in
a mechanical housing [Liebe 2002]. The two main components include:

• Lens Array and Image Detector Plane

• On-board Processing Unit

The lens array is designed based on the availability of stars being captured
in the field of view, and the sensitivity of the detector to image poorly lit
stars. At least three stars must be captured in the field of view in order to
identify the stars with a high degree of probability and to produce a high
fidelity attitude solution. Star sensors typically employ a range of detectors
such as CMOS or CCD arrays.

The on-board processor facilitates the readout of images from the image de-
tector, contains enough memory to store the sensor firmware and the star
catalogue, and is used to process the images and perform the necessary cal-
culations required in order to produce an attitude solution from the acquired
data.
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1.4.3 Principle of Operation

The firmware uploaded onto the star tracker plays an important role in the
functioning of the sensor and is key to appropriately transforming the mea-
surements acquired from the camera into the attitude information that is
desired. The basic routines carried out by the star tracker include centroid
determination, geometry calculations, star matching and attitude determi-
nation. [Enright John 2010]

• Centroid Determination

When an image is captured by the detector, the firmware on the star
tracker discounts any lit pixels that are most likely not caused due to
the presence of a star in the field of view and performs a correction
to minimize the response from unlit pixels. Based on the focusing of
the camera, a single star usually illuminates an array of pixels. The
centroid detection routine refines the array of lit pixels to produce a
star centroid location to an accuracy better than a single pixel. In most
cases, an additional compensation for the motion of the star camera is
also taken into account.

• Geometry Calculations

Once the centroid locations of each star are determined on the detector
plane, it is necessary to compute a three dimensional unit-vector cor-
responding to the location of each star in relation to the star sensor.
This process of determining the three-dimensional vectors from illumi-
nated centroids requires an inverse model of the star sensor and is a
function of the internal camera geometry. Essentially, this calculation
employs the focal length and array dimensions to relate detector ar-
ray co-ordinates to directional vectors. However, due to imperfections,
other distortion corrections are also taken into account. Determining
these parameters is key to calibrating the camera since the accuracy
of the resulting attitude is closely related to the accuracy in relating
a star image on the focal plane to a star vector in space. The inverse
model will be re-visited in greater detail in the Chapter 2.

• Star Matching

Star matching is perhaps the most critical step in the attitude acqui-
sition procedure. Imaging a variety of stars cannot produce an atti-
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tude solution without the ability to determine which stars are cap-
tured in the image, and where each of these stars lie in an inertial
frame. The star matching routine takes the observed star vectors and
identifies the corresponding stars from an on-board catalogue based on
the spherical triangles formed by triplets of stars detected in the field
of view. Several robust algorithms have been developed for this process
[Samaan et al. 2003].

• Attitude Determination

The final step conducted by the star tracker firmware is the attitude de-
termination. Using the centroids captured by the star camera, their cor-
responding vectors mapped through the inverse model, and the match-
ing vectors acquired from the star catalogue, an attitude solution can
be determined. This is achieved by employing several robust algorithms
that determine the appropriate rotation matrix from two sets of vectors
in two frames. Some algorithms that achieve this include the Q-method,
FOAM or ESOQ [Crassidis & Junkins 2011].

1.4.4 Sources of Error

Changes in environmental conditions may significantly alter the camera’s
internal geometry. This includes changes in the focal length, the intersection
of the boresight axis with the detector plane, radial distortions and the tip
and tilt of the detector plane with respect to the lens array. These changes
are likely to occur and their magnitude cannot be predicted. In order to
carry out the calibration process it is important to analyze the possible
driving factors influencing the behavior of the star camera, how these factors
affect the parameters defining the geometry of the camera, and how changes
in the parameters may affect the sensed measurement.

All spacecraft equipment is subject to a hostile launch and a harsh space
environment that may include vibration, drastic temperature variations
as well as solar radiation. Like all spacecraft equipment, star trackers are
designed to function with all these adverse effects. However, these factors
may pose danger to the functioning of the instrument, and will have a
significant impact on its performance affecting the accuracy of attitude
measurements. The driving factors affecting camera parameters can either
be single-event or ongoing. Examples of single event shifts include launch
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vibration and vacuum operation, while thermal deformation, and instrument
aging can continually affect parameters throughout the star-trackers working
period.

Temperature changes that occur in a space environment may alter the
optical parameters of the star tracker. Changes in the temperature of an
optical system can cause thermal expansion in the glass lens elements or
in the metal structure that holds them in place. The index of refraction
of the glass itself may also change. Temperature gradients may also cause
bending of lens and fastening components in the star tracker. This can cause
a significant shift in camera parameters and affect the accuracy of vectors
mapped by the star tracker.

High intensity vibrations during launch can disrupt the alignment delicate
components. Star trackers in particular can be greatly affected by these
large vibrations since they rely on a set of precisely aligned optics. Like
vibration, impulsive loading during satellite separation or maneuvers also
has the potential to disturb instrument focus and camera geometry.

Other factors that may influence the accuracy and performance of star track-
ers include radiation, instrument aging, refraction in the lens, and star mo-
tion. Although the errors caused from radiation and aging are considerable in
high precision star trackers, it is highly unlikely that these sources can cause
any dimensional alterations within the camera itself; instead these errors are
likely to influence the noise patterns seen in the star camera. Refraction and
star motion can both be modeled, however, an online calibration procedure
may not be the best approach here.

1.4.5 Typical Calibration Approaches

Star trackers undergo rigorous calibration procedures during their develop-
ment and testing. Ground-based calibration procedures are either used as
an initial starting point for future autonomous calibrations or in most cases,
the first and final step in calibration. The typical calibration method for any
camera is to acquire images of some object with a well known geometry and
structure. This can either be a physical object of in the case of star trackers,
the location of a point light source or the geometry of a known star constel-
lation. The ground-based testing of star trackers involves a lab calibration
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procedure and night sky tests.

• Lab Calibration:

In the lab calibration the use of a single star light simulator and a
high precision motion platform is employed. Moving the star sensor
through several known orientations will illuminate different pixels on
the detector. Scenes of actual star constellations may be simulated.
Using the spatial knowledge of the light source and the corresponding
lit pixels, a set of best fit camera parameters values can be determined
based on a large set of data.

• Night Sky Test:

In night sky tests, the stars imaged by the star sensor must either
be manually identified, or identified by some highly robust star ID
algorithm that is tolerant of calibration errors. Using a large number of
acquired images, and the corresponding inertial star vectors from the
catalogue matched to the data, a set of best fit parameter values can be
determined to verify the results attained through the lab calibration.
Ideally, the lab calibration is sufficient to produce matches and night
sky-tests serve only as a validations step.

1.5 Online Calibration Overview

An important problem in spacecraft sensor calibration is the frequently
occurring situation in which a previously calibrated instrument behaves
differently in its working environment as it did during ground calibration
either because it encounters unpredictable magnitudes of changes in its
geometry, or due to the inability of the testing environment to efficiently
replicate its working conditions [Shen et al. 2010]. In addition, a lab calibra-
tion procedure makes the assumption that calibration parameters remain
constant or remain within allowed tolerances throughout the working life
of the instrument; this may not necessarily be the case. All these factors
contribute to the necessity of an online calibration.

Online calibration can easily be carried out if accurate locations or angles
between imaged points are known. This is exactly the case with star trackers,
since the on-board star catalogue contains inertially referenced star-vectors
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that are known to a high degree of accuracy. Of course it is necessary to
assume that the initial estimate of the camera model is sufficient to accurately
map the star centroids into star vectors, and identify the matching stars on
board the catalogue. By comparing the star vectors from the image and
catalogue, two pieces of information are directly available:

• The star vectors themselves are obviously identical if expressed in the
same frame

• The angles between two catalogued star vectors expressed in an inertial
frame, should be identical to the angle between star vectors determined
by the camera

The discrepancy in these values attained from each source is either a product
of measurement noise or the inadequate knowledge of the current state of
the calibration parameters.

Multiple star vectors or vector pairs from either a single or multiple im-
ages can be utilized to generate an over-determined system of equations that
can be solved using well established non-linear numerical methods in or-
der to provide revised estimates of calibration parameters. This method of
calibration has significant potential for tuning star cameras on-board space-
crafts if its original set of calibration parameters has drifted beyond tolerance
due to hardware re-configurations experienced during launch and to com-
pensate for deformations caused due to thermal cycles or material fatigue.
Such online star tracker calibration methods have recently become the focal
point of many research projects, most notably the work done by Junkins
[Samaan et al. 2001] and his research team.

1.5.1 Attitude Dependent vs Attitude Independent
Calibration

The method in which catalogued and imaged vectors are related to each
other is an important question to answer. As mentioned above, the sets of
star vectors determined from the catalog or from the star sensor should be
identical if they are represented in the same frame. Additionally, the angles
between a pair of corresponding vectors remain constant regardless of the
frame of reference. Either of these two pieces of information can be utilized
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to formulate a calibration algorithm. This gives rise to two distinct methods
of online calibration, the attitude dependent (ADC) and independent (AIC)
approach [Samaan et al. 2001].

• Attitude Dependent Calibration

In the attitude dependent approach, the inertial vectors from the cat-
alog can be rotated to the star sensor frame using the current estimate
of the attitude matrix. It has been established that if the measure-
ments are ideal, these two sets of vectors should be identical, and any
discrepancy in the vectors can be linked to inadequate knowledge of
the camera parameters. The advantage of this approach is the smaller
amount of computation required in the estimation process. Each vector
determined from the camera counts as one data-point, whereas if pairs
of vectors are used, each set of m vectors mapped by the camera cor-
respond to p combinations of pairs, where p is the binomial co-efficient
of m, and 2. Therefore, the attitude dependent approach provides the
same information about camera parameters, with a smaller number of
equations to solve. The obvious disadvantage in this approach is that
the current attitude estimate itself will be erroneous with a poor esti-
mate of camera parameters. Although this method is computationally
efficient compared to attitude independent method, the coupled na-
ture of the parameter estimate with the attitude solution renders this
method inferior.

• Attitude Independent Calibration

Inter-star angles remain invariant to an orthogonal transformation be-
tween two frames. This fact is exploited in the attitude independent
approach. In this method, the attitude estimate is not needed to esti-
mate camera parameters. This is a major advantage over the attitude
dependent approach. Regardless of its relatively lower computational
efficiency, the attitude independent approach can provide more reliable
and accurate estimates of camera parameters when compared to the
attitude dependent method [Griffith et al. 2002].

1.5.2 Unconstrained Nonlinear Optimization

The basic premise of the unconstrained optimization problem is to minimize
a real-valued function of one or more real variables. Several engineering
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problems can be posed as optimization problems, possibly in the presence
of constraints on the decision variables. In fact, an amazing variety of
problems including solving systems of nonlinear equations or parameter
estimation can be posed as optimization problems. Having appropriately
posed an engineering problem mathematically as an optimization problem
one can go about attaining the solution to the problem using one of many
well established algorithms. With the rapid increase of micro-computers
embedded in devices, a rapid growth in embedded optimization has occurred,
whereby devices or instruments can optimize themselves all without any
human intervention.[Boyd & Vandenberghe 2004]

Measurements are seldom perfect, since there will always be some inherent
noise and bias associated with the measurement. This imperfection in
measurements becomes increasingly important in high precision sensors and
applications. In the interest of attaining high fidelity measurements, the
measurement error must be minimized through calibration. The optimization
problem here is to find the appropriate sensor model parameter values that
minimize the error between the measured value and what is known to be
true. In the case of the star tracker, the goal is to estimate the optimal
values of the parameters defining the camera’s internal geometry such that
the difference in the angles between vectors imaged by the star tracker and
those defined in the star catalog is minimized. This can be achieved using
the concept of least squares for parameter identification.

A least-squares problem is an optimization problem with no constraints, that
attempts to minimize the square of the error between a large number of mea-
surements and true values. Several well-established algorithms such as the
Gauss-Newton and Levenberg Marquardt method may be used to solve the
least squares problem [Crassidis & Junkins 2011]. Least squares can either
be used to solve a set of linear equations, or even more importantly, be used
iteratively to locally solve a set of nonlinear equations with such high reli-
ability that they may be implemented for embedded optimization routines
[Boyd & Vandenberghe 2004]. Thus, it is appropriate to apply this method
for an online calibration for a star tracker.
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1.5.3 Batch Estimation & Recursive Estimation

The method of least squares optimal estimation has proved to be an ex-
tremely powerful technique and has historically been used extensively for
sensor parameter identification algorithms. There are many excellent sources
on the subject which provide algorithms to solve the least squares problem.
These solutions are either batch estimation algorithms or recursive estima-
tion algorithms.

• Batch Estimation

The batch method is employed when a large number of datasets have
been accumulated over time. On the one hand, batch methods are easy
to understand and implement, and lay the foundation for recursive al-
gorithms. Although the batch least squares methods work remarkably
well, the drawback is the need for a large memory capacity to store
acquired data and the large amount computation required to attain a
solution from large datasets. This is unfeasible for an online implemen-
tation.

• Recursive Estimation

The recursive least squares algorithm is just as capable of estimating
calibration parameters as the batch method. This approach has the
advantage that a large amount of data need not be stored and that it is
computationally feasible even for real time applications. The calibration
parameters are updated with each dataset, and the degree to which
these parameters are known, their covariance, is stored. At each update,
the dataset is discarded. The well-known drawback to the recursive
method is that once a large number of updates have been performed,
the covariance may become small enough to cause smugness in the
estimator leading to a divergence in the parameter estimates from their
optimal values [Griffith & Junkins 2009].
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2 | Mathematical Framework

This chapter presents the mathematical foundations required to obtain esti-
mates for focal length, principal point offset and distortion parameters for a
star camera. The estimation algorithm is based on an inverse formulation of
the camera model presented by Wang [Wang et al. 2008]. The chapter first
outlines the basic sensor geometry, presents the mathematical formulation of
the inverse sensor model and illustrates the effects that changes in camera
parameters will have on measurements. Next, the optimization problem is
formulated, the objective function is defined. Using this objective, and the
analytically derived partial derivatives of the seven camera optimization pa-
rameters with respect to the star tracker inverse model, the parameters can
be estimated efficiently using a non linear least squares batch or recursive
estimator.

2.1 Basic Sensor Geometry

This section presents the basic geometry that allows for a definition of star
vectors from imaged centroids. The frames of reference in which measure-
ments are made, and in which the sensor truth are defined. In addition, the
errors in centroid locations caused by an inadequate knowledge of camera
parameters as observed in measurements are presented.

2.1.1 Frames of Reference

There are two important frames to consider in the calibration of this instru-
ment: the frame in which measurements are made, and the frame in which
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the true values of the measurements are known. The internal geometry of the
star tracker and its measurements are defined in the star tracker (D) frame,
while the cataloged inertial vectors that describe star locations in space are
expressed in the Earth Centered Inertial (I) frame. Additionally the attitude
of the star sensor is determined by finding the best fit rotation from the star
tracker frame (D) to the inertial frame (I). Fig. 2.1 illustrates the two frames
of reference.

Figure 2.1 Inertial and star tracker Frame.

• star tracker Frame (’D’) The star tracker frame is defined by the de-

tector array; its x and y axes correspond to the x and y axes of the
detector, while the z axis is the normal to the detector plane coming
out the lens of the camera. The tip and tilt of the detector with the
lens array are also defined in this frame.

• Inertial Frame (’I’) The x-axis of the inertial frame is defined by the

vernal equinox, and the z-axis is defined by the north rotational pole
of the earth. The y-axis chosen to maintain the right hand rule.
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2.1.2 Star Camera Inverse Model

To calculate the star vector, given the chief ray intersection point, an
appropriate star tracker inverse model was adopted [Wang et al. 2008]. The
equations below are an inverse formulation of the model provided by Wang.
The inputs to this model comprise of the co-ordinates of each intersection
point of the chief ray of each star with the detector array, mc and nc attained
from the image analysis performed by the star tracker firmware. The output
is a vector expressed in the detector frame describing the spatial location of
each star captured by the image with respect to the star camera (See Fig.
2.2 below).

Figure 2.2 Star Camera Model.

Given the centroid location on the detector array, mc and nc, the uncorrected
physical distances between the centroid and the optical axis, u and v, can be
determined in terms of the x and y axes of the detector frame.

u = δx (mc −mo) (2.1)

v = gy δy (nc − no) (2.2)

The variables δx and δy represent the pixel dimensions. To account for the
discrepancy in pixel dimensions in each axis, a scale factor gy is applied.
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Next, the tip, tilt and radial distortion corrections a1, a2 & b1, b2 are
considered. Note that the terms a1 and a2 are terms representing not simply
the physical tip and tilt of the detector plane with the lens system, but
also other highly coupled distortions such as tangential and small prism
distortion.

Let, U , V be the corrected distances from the boresight axis to the illumi-
nated centroid. They are defined by the expressions:

U =
u f

a1 v + a2 u+ f
(2.3)

V =
v f

a1 v + a2 u+ f
(2.4)

To apply the radial correction, the radial distance from the boresight axis to
the illuminated pixel ρ, must be defined:

ρ =
√
U2 + V 2 (2.5)

The radial correction can be modeled in terms of ρ using the basis polynomial
below.

B = 1 + b1 ρ
4 + b2 ρ

2 (2.6)

Once the correction terms have been applied, the vector r defining the lo-
cation of the star in the sensor frame can be attained using the following
expression.

r =

BUBV
f

 (2.7)

The unit vector describing the star location s is therefore given by

s =
r

||r||
(2.8)
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Calibrating the star camera is simply a matter of finding the optimal val-
ues for the focal length, principal point and distortion parameters as imple-
mented in the inverse model. This camera calibration model of lens distortion
expresses the lens distortion as radial distortion plus a transformation from
the ideal image plane to the real sensor array plane, and the small number
of parameters can simplify the calibration process and reduce the possibility
of the optimization algorithm being hindered by local minima.

2.1.3 Systematic Errors

The effects that the changes in some of the important parameters defining
the internal camera geometry have on the image captured by the camera are
illustrated below.

• Focal Length f

Focal Length Errors distort the scale of the image. Pixels illuminated
by the same source of light will be pushed radially inward or outward.
See Fig. 2.3

Figure 2.3 Radial Errors.

• Principal Point mo, no
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The Principle Point is the intersection of the boresight of the camera
with the detector array. Errors in the knowledge of this point translate
sensed pixels along the appropriate axis. See Fig. 2.4 and 2.5

Figure 2.4 Translation Errors.

• Radial Distortion b1, b2

Radial Distortions appear much like focal length errors but are higher-
order aberrations and a function of the distance from the principle
point. See Fig. 2.3

• Detector Tip, Tilt Angle a1, a2

Detector tip and tilt angles appear similar to the translation errors
caused by the principle point, however they are caused by a rotation
of the detector plane instead of a translation with respect to the lens
array. See Fig. 2.4, 2.5

It is important to mention that the illustrations above depict how a ray of
light will illuminate different pixels on the detector array based on the camera
geometry, i.e. forward model, simply because this is easier to visualize. In the
calibration process, an inverse model is used, whereby the illuminated pixels
on the detector govern where the ray of light originated from, based on the
estimates of the camera’s internal geometry and distortion parameters.
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Figure 2.5 Translation Errors.

2.2 Problem Formulation

This section outlines the mathematical framework that defines the sensor
calibration procedure as an optimization problem. The optimization param-
eters are defined, in addition to a formulation of the cost function that must
be minimized and the analytical derivation of the Jacobian matrix. Some
gradient based algorithms used to minimize the objective function are also
discussed.

2.2.1 Optimization Parameters

The main parameters that affect the accuracy of the star tracker model
are the focal length and the principle point offset. In addition to changes
in these parameters, the changes caused by any variation in the distortion
parameters in the model may also have a significant effect for high accuracy
applications. Since the pixel dimensions are unlikely to change, and will not
have significant effect on the imaged vectors, they are ignored in the online
calibration procedure. For this procedure, the seven parameters were chosen
to optimize are outlined in Table: 2.1.
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Table 2.1 OPTIMIZATION PARAMETERS

Description Symbol

Focal Length f
Principal axis x-offset mo

Principal axis y-offset no
Radial correction b1
Radial correction b2
Tip correction a1
Tilt correction a2

x = [f mo no b1 b2 a1 a2] (2.9)

The optimization routine seeks to select appropriate values of these opti-
mization parameters that will minimize the error between the measurements
attained from the camera and the known truth from the catalog in a least
squares sense.

2.2.2 Cost Function

In order to formulate a non linear least squares estimator, the first require-
ment is to mathematically define the error function that must be minimized.
For this estimator the error was defined as the difference in the cosines of
the angles between two star vectors computed from the image, and the
cosines of the angles between the corresponding star vectors attained from
the Yale Bright Star catalogue. The cosines of the angle were chosen instead
of the physical angle for simplicity.

Given two star unit vectors si and sj, the cosine of the angle between them
can be determined using the inner product of the two vectors.

cos θij = si
T sj (2.10)

Suppose the initial parameter estimates are sufficient to identify the stars
captured in the image, and each observed star vector determined through the
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inverse model from image co-ordinates, can be matched to a corresponding
true star vector from the catalog. The error between the angle in a pair of
vectors in the image, and the corresponding angle between the same pair of
vectors as identified in the catalog can be expressed as

ψij = (cos θij)img − (cos θij)cat (2.11)

If n stars are captured in one image, the number of pairs that can be formed
between the set of imaged stars is given by p, where

p =

(
n

2

)
=

n!

2!(n− 2)!
(2.12)

Appending all of the errors in cosine angles between each of the p pairs of
star vectors, provides the [p×1] error vector e. The cost function J is simply
the one half the square of the vector.

e =


ψij1
ψij2

:
ψijp

 (2.13)

J =
1

2
eT e (2.14)

The next step required to minimize the scalar function J , by appropriately
selecting values for the optimization parameters given by x, is to determine
the Jacobian matrix of e with respect to x.

2.2.3 Forming the Jacobian

The Jacobian matrix H is defined as the change in the error with respect to
the parameters.

H =
∂e

∂x
=


∂ψij

∂x 1
∂ψij

∂x 2

:
∂ψij

∂x p

 (2.15)
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Expanding one row of the Jacobian gives:

∂ψij

∂x
=

[
∂si
∂x

T

sj +
∂sj
∂x

T

si

]T
img

−
[
∂si
∂x

T

sj +
∂sj
∂x

T

si

]T
cat

(2.16)

The subscripts ′img′ and ′cat′ denote vectors measured by the camera, and
acquired from the catalog respectively. Since the angles between the catalogue
vectors, are clearly independent of the optimization parameters x, all partial
derivatives are 0. Eliminating the 0 terms, gives

∂ψij

∂x
=

[
∂si
∂x

T

sj +
∂sj
∂x

T

si

]T
img

(2.17)

The expression above describes one row of the [p ×m] Jacobian matrix H.
Appending the rows formed by each pair of star vectors, as done with the
error vector, provides the Jacobian for all measurements.

The first step required to form the Jacobian matrix is to determine the partial
derivatives of each unit vector with respect to the optimization parameters:

∂s

∂x
=

[
∂s

∂f

∂s

∂mo

∂s

∂no

∂s

∂b1

∂s

∂b2

∂s

∂a1

∂s

∂a2

]
(2.18)

In general, if s =
r(x)
‖r(x)‖ , then the partial derivative of the unit vector ∂s

∂x can

be expressed in terms of ∂r
∂x as.

∂s

∂x
=

∂

∂x

(
r√
rT r

)
(2.19)

It can be shown that this reduces to:

∂s

∂x
=

(
1

||r||

)
∂r

∂x
− r

||r3||

(
rT

∂r

∂x

)
(2.20)
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Hence the next step is to determine ∂r
∂x . The partial derivatives are de-

rived analytically since a finite difference approach is both inaccurate and
computationally unfeasible. The required partials are:

∂r

∂x
=

[
∂r

∂f

∂r

∂mo

∂r

∂no

∂r

∂b1

∂r

∂b2

∂r

∂a1

∂r

∂a2

]
(2.21)

Finding these from the inverse model are fairly straight forward. The partial
derivatives of a star vector with respect to each optimization parameter are
derived analytically below.

Focal Length f

∂U

∂f
=

u (a1 v + a2 u)

(a1 v + a2 u+ f)2
(2.22)

∂V

∂f
=

v (a1 v + a2 u)

(a1 v + a2 u+ f)2
(2.23)

∂ρ

∂f
=

U ∂U
∂f

+ V ∂V
∂f

ρ
(2.24)

∂B

∂f
= 4 b1 ρ

3 ∂ρ

∂f
+ 2 b2 ρ

∂ρ

∂f
(2.25)

∂r

∂f
=


∂B
∂f

U + ∂U
∂f
B

∂B
∂f

V + ∂V
∂f

B

1

 (2.26)

Principal Point mo

∂u

∂mo

= −δx (2.27)

∂U

∂mo

=
f ∂u

∂mo
(a1 v + f)

(a1 v + a2 u+ f)2
(2.28)
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∂V

∂mo

=
−a2 ∂u

∂mo
v f

(a1 v + a2 u+ f)2
(2.29)

∂ρ

∂mo

=
U ∂U

∂mo
+ V ∂V

∂mo

ρ
(2.30)

∂B

∂mo

= 4 b1 ρ
3 ∂ρ

∂mo

+ 2 b2 ρ
∂ρ

∂mo

(2.31)

∂r

∂mo

=


∂B
∂mo

U + ∂U
∂mo

B

∂B
∂mo

V + ∂V
∂mo

B

0

 (2.32)

Principal Point no

∂v

∂no
= −gy δx (2.33)

∂U

∂no
=

−a1 ∂v
∂no

u f

(a1 v + a2 u+ f)2
(2.34)

∂V

∂no
=

f ∂v
∂no

(a2 u+ f)

(a1 v + a2 u+ f)2
(2.35)

∂ρ

∂no
=

U ∂U
∂no

+ V ∂V
∂no

ρ
(2.36)

∂B

∂no
= 4 b1 ρ

3 ∂ρ

∂no
+ 2 b2 ρ

∂ρ

∂no
(2.37)

∂r

∂no
=


∂B
∂no

U + ∂U
∂no

B

∂B
∂no

V + ∂V
∂no

B

0

 (2.38)

Radial Correction b1

∂B

∂b1
= ρ4 (2.39)
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∂r

∂b1
=


∂B
∂b1

U

∂B
∂b1

V

0

 (2.40)

Radial Correction b2

∂B

∂b2
= ρ2 (2.41)

∂r

∂b2
=


∂B
∂b2

U

∂B
∂b2

V

0

 (2.42)

Distortion Correction a1

∂U

∂a1
=

−v u f
(a1 v + a2 u+ f)2

(2.43)

∂U

∂a1
=

−v v f
(a1 v + a2 u+ f)2

(2.44)

∂ρ

∂a1
=

U ∂U
∂a1

+ V ∂V
∂a1

ρ
(2.45)

∂B

∂a1
= 4 b1 ρ

3 ∂ρ

∂a1
+ 2 b2 ρ

∂ρ

∂a1
(2.46)

∂r

∂a1
=


∂B
∂a1

U + ∂U
∂a1

B

∂B
∂a1

V + ∂V
∂a1

B

0

 (2.47)

Distortion Correction a2

∂U

∂a2
=

−u u f
(a1 v + a2 u+ f)2

(2.48)

∂U

∂a2
=

−u v f
(a1 v + a2 u+ f)2

(2.49)
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∂ρ

∂a2
=

U ∂U
∂a2

+ V ∂V
∂a2

ρ
(2.50)

∂B

∂a2
= 4 b1 ρ

3 ∂ρ

∂a2
+ 2 b2 ρ

∂ρ

∂a2
(2.51)

∂r

∂a2
=


∂B
∂a2

U + ∂U
∂a2

B

∂B
∂a2

V + ∂V
∂a2

B

0

 (2.52)

2.3 Unconstrained Optimization

Given a smooth function J(x) ∈ R with parameters x ∈ Rm, the general un-
constrained optimization problem has the simple mathematical formulation

minimize
x∈Rm

: J(x) : Rm → R (2.53)

If x∗ is a local minimizer of J , then

∇J(x∗) = 0 (2.54)

In general, using the information expressed in Eq. (2.54), gradient based
algorithms for unconstrained nonlinear optimization generate a sequence of
iterates xk where,

xk+1 = xk + δx (2.55)

with, J(xk+1) < J(xk) (2.56)

2.3.1 Gradient Descent Method:

The first derivative of a function provides information regarding the local
rate of increase. If a minimization of the function is required, then a natural
choice for an update to a current estimate of the function variables is simply
the negative of the gradient. This is known as the gradient descent method.
[Boyd & Vandenberghe 2004]
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For a Gradient Descent solver, the update equation is simply

δx = −α∇J = HTe (2.57)

where α is an appropriate step-length, e is the error vector and H is the
Jacobian Matrix.

Naturally the stopping criterion for this method is when the norm of the
gradient is sufficiently close to 0. Although this method is easy to implement
and contains a minimal number of computations, it is not suitable and may
not optimize quickly with ill-conditioned problems.

2.3.2 Gauss Newton Method:

The gradient of the function f can be approximated using a Taylor expansion
about the current value of x.

∇J(x + δx) ≈ ∇J(x) +∇2J(x)δx = 0 (2.58)

Solving for δx in (2.58) above yields the Newton Method equation:

δx = −
(
∇2f(x)

)−1∇f(x) (2.59)

Since analytically deriving the second order term, the Hessian matrix, is
tedious, and attaining it numerically is inefficient, several approximations
may be made to deal with this matter.

Given Measurement Model:

ỹ = h(x) + v (2.60)

and least squares cost function,

J =
1

2
eT e =

1

2
(ỹ − h(x))T (ỹ − h(x)) (2.61)
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the gradient of J , is clearly

∇J =
1

2

(
∂e

∂x

T

e +
∂e

∂x
e

)
=
∂e

∂x

T

e = −HTe (2.62)

In the Gauss Newton (GN) Method [Crassidis & Junkins 2011], the Hessian
of the function J is approximated as

∇2f(x) = HTH (2.63)

Thus, for a Gauss Newton solver, Eq. 2.59 becomes:

δx = (HTH)−1 HTe (2.64)

2.3.3 Levenberg Marquardt Method:

The Levenberg Marquardt (LM) method is an extension of Gauss-Newton,
which combines the ability of gradient methods to converge from a bad
initial guess of function parameters with the ability of Gauss-Newton to
close in on the converged parameters rapidly and accurately leading to a
robust algorithm [Crassidis & Junkins 2011].

The LM update equation is expressed as:

δx = (HT H + λ I)−1 HTe (2.65)

The choice of parameter λ is heuristic, however, it is clear that a large λ will
produce an update similar to gradient method, whereas a small λ produces
an update similar to Gauss-Newton. Typically, problems start with a large
value of λ and the value is reduced as the solution converges.

In some cases, the identity matrix is replaced with a scaling matrix that can
adjust the scale of each parameter according to its curvature. The resulting
update equation is:

δx = (HT H + λ diag(HTH))−1 HTe (2.66)
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2.3.4 BFGS Method:

Since the computation of the inverse is expensive, several algorithms have
been proposed to estimate the inverse of the Hessian matrix required by
the newton method. The most prominent method is the Broyden-Fletcher-
Goldfarb-Shanno Method. This method employs the use of a inverse Hessian
update formula at every iteration that eliminates the computation of an
inverse. The update may also converge to a better approximation of the
Hessian of a function than the Gauss-Newton Method. [Kelley 1999]

Let the gradient method step be defined as:

sk = −α ∇Jk (2.67)

Where, α is an appropriate scalar step size.

Let the change in gradient of J after update iteration be defined as

yk = ∇Jk+1 −∇Jk (2.68)

Then, the inverse Hessian update B−1 at step k is given by:

B−1k+1 = B−1k +
(sTk yk + yTkB

−1
k yk) (sTk sk)

(sTk yk)
2

− (B−1k yks
T
k + sky

T
kB
−1)
k

(sTk yk)
(2.69)

The initial Hessian estimate can be set as the identity matrix to force an
initial gradient descent step, or may be appropriately set to force an initial
Gauss-Newton Step.

Either of these methods can be used to minimize f efficiently. However, this
particular problem deals with parameters that have grossly different mag-
nitudes and sensitivities to the cost. A gradient method may be unfeasible
here. In addition, the dependence of the BFGS on a an appropriate step size
estimation routine such as a backtracking or quadratic line search increases
the amount of computation required for this method to be implemented.
Therefore the Gauss-Newton algorithm is the most simplest, effective and
most appropriate choice.
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2.3.5 Recursive Least Squares:

As discussed in Chapter 1, the Recursive Least Squares (RLS) method can
be used to update parameters in real time as new data becomes available
in a computationally efficient manner [Stengel 1986]. The RLS method is
expressed in the equations below.

Given two observations:

ỹ1 = h(x1) + v1 (2.70)

ỹ2 = h(x2) + v2 (2.71)

The new state of x2 and its covariance, P2, can be calculated based on
some prior knowledge of the state, x1 and a prior covariance, P1 using three
equations:

x̂k = x̂k−1 + Kk(e) (2.72)

Kk = Pk−1H
T
k (HkPk−1H

T
k + Rk)

−1 (2.73)

Pk = (Pk−1 + HT
kR
−1
k Hk)

−1 (2.74)

The subscript ′k′ denotes the current step, and Kk is the gain matrix. The
matrix R and P are the estimated measurement covariance, and state co-
variance respectively.

R = E
{
eTe
}

= E
{

(ỹ − h(x))T (ỹ − h(x))
}

(2.75)

P = E
{

(x∗ − x̂)T (x∗ − x̂)
}

(2.76)

where, E{V } denotes the Expected Value of V .

Since this is a non-linear implementation, the updates x̂k may be iterated
until they have converged, or updated once per dataset. An additional
advantage of the RLS algorithm apart from its efficiency, is that even
a single datapoint, can be used to update the parameters based on the
information that it provides. This is useful in a random setting where the
number of pairs of stars captured in a star sensor image is unknown.
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Covariance Estimation

The initial co-variance of the parameters Po is typically assumed to be
an identity matrix multiplied by a large number. In the case of this
problem, the different parameters are several orders of magnitude apart and
have different co-variances. A reasonable and conservative initialization of
parameter co-variance can be a diagonal matrix of the current estimate of
the parameters themselves. The measurement co-variance can be estimated
differently. Based on prior knowledge of the star tracker used in this work,
the typical standard deviation in the centroid positions σc experienced in
the detector due to noise is about 0.2 pixels. Based on camera geometry,
this variance must be translated to a variance in vector angles, and then
the difference in the cosines between two vectors that are mapped using the
noisy centroids attained from an image. See figure below.

Figure 2.6 Co-variance Propagation Through Camera Geometry.

Based on the camera geometry, the angular variance in each a vector can be
determined using a small angle approximation:

σ2
θ =

2 γ

f
σ2
c (2.77)

where, σ2
c is the estimated centroid variance
σ2
θ is the angular variance in each a vector
f is the nominal focal length
γ is the nominal pixel dimension
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Next, based the estimated angular variance, the variance in the measurement
residual can be determined. Consider the following:

For a perfect measurement

ŷ = ŝi
T ŝj = cos(θ̂ij) (2.78)

However, a perturbation can be expected in vectors si and sj,

s̃i = si + δsi (2.79)

s̃j = sj + δsj (2.80)

Therefore, the corrupt measurement can be expressed as

ỹ = cos(θ̃ij) (2.81)

y + δy = cos(θij + δθij) (2.82)

= cos(θij) cos(δθij)− sin(θij) sin(δθij) (2.83)

= cos(θij)− sin(θij) δθij (2.84)

The error caused by noisy vectors can therefore be expressed as

δy = −sin(θij) δθij (2.85)

The measurement variance can be expressed as

σ2
m = var(δy) = E

{
δy2
}
− E {δy}2 (2.86)

(2.87)

Given that the noise is 0 mean,

σ2
mij

= var(δy) = E
{
δy2
}

(2.88)

= sin2(θij)E
{
δθ2ij
}

(2.89)

= sin2(θij) σ
2
θ (2.90)

= (1− (sTi sj)
2) σ2

θij
(2.91)
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Ignoring the effects of centroid coupling between two pairs for simplicity, the
co-variance matrix R, can be estimated as:

R = Diag(σ2
mij

) (2.92)

where, Diag is a diagonal matrix in the span of the error vector, and subscripts
ij denote angle measurements between imaged vectors i and j respectively.
In the case of a batch estimation, where the co-variance update equation (Eq.
2.74) is not used, the measurement co-variance matrix P can be estimated
using the matrix R and the Jacobian H

P = (HT R H)−1 (2.93)

A test was conducted to verify the formulation of the measurement covari-
ance and its dependence on the spacing between centroids. A synthetic image
with two closely spaced centroids was generated. The vectors attained from
these centroids were taken as the true vectors. Next white noise with a stan-
dard deviation of 0.2 pixels was introduced to the centroids, and vectors
attained from the noisy centroids served as noisy measurements. Next, the
centroids were shifted further apart from each other until the centroids were
at opposite ends of the detector. The discrepancy between cosines of the pair
of true vectors and simulated measurements was calculated multiple times
per centroid location. The variance in the error vector is illustrated in Fig.
2.7 below.

Figure 2.7 Measurement Variance vs Centroid Spacing.
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3 | Testing and Results

Chapter 3 outlines the tests performed to evaluate the effectiveness of the
calibration procedure. The first test is simply a simulation and utilizes syn-
thetic data to test the working of the calibration routine in ideal conditions
and whether this procedure would perform well with noisy measurements.
The next group of tests utilize images attained from the star tracker during
ground tests and data obtained from a star tracker in service. The results
from these tests are analyzed to explore factors that influence the effec-
tiveness of procedure and the accuracy of the calibrated parameter estimates.

3.1 Simulated Data

To test the implementation of the mathematical model and to verify the
concept of sensor calibration using least squares optimization, a simulation
was performed using synthetic data. For the synthetic data an artificial grid
of 8 stars was compiled (See. Fig. 3.1).

Figure 3.1 Synthetic Data.
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Figure 3.2 Simulation Code Block Diagram.
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Next, a ”true” sensor model was generated to simulate true star vectors,
and a perturbed sensor model was generated in the same fashion to simulate
measurements made by an uncalibrated star tracker. The aim of this experi-
ment was to verify whether the estimation routine was able to use the initial
guesses of the parameters from the perturbed model and generate updates
to the parameters which converge to the true model under ideal conditions.
The Gauss Newton Algorithm was implemented for the simulation. A code
schematic is illustrated in the flow diagram above (See Fig. 3.2). The results
from the simulation are outlined in Figures 3.3 through 3.10 below.

Figure 3.3 Simulation Result - focal length.

Figure 3.4 Simulation Result - Princ. Pt. mo.

Figure 3.5 Simulation Result - Princ. Pt. no.
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Simulation Results continued.

Figure 3.6 Simulation Result - Radial Distortion b1.

Figure 3.7 Simulation Result - Radial Distortion b2.

Figure 3.8 Simulation Result - Tilt Correction a1.

From the results above, it is evident that the calibration routine was able to
estimate the true sensor parameters using the simulated star measurements
and the known true star vectors with a relatively small numerical error. In

SAIL Ryerson University Brendon Vaz



Chapter 3. Testing and Results 43

Figure 3.9 Simulation Result - Tip Correction a2.

Figure 3.10 Simulation Result - Residual.

Table 3.1 SIMULATION RESULTS

Description Symbol Estimate Initial Numerical Error

Focal Length [m] f 0.0161296 0.016 4.3× 10−14

Detector x-offset [pix] mo 939.455 972 9.2× 10−13

Detector y-offset [pix] no 1261.578 1296 8.2× 10−14

Radial correction b1 −2.126× 107 -1e8 2× 10−10

Radial correction b2 -996.872 -500 2× 10−11

Tip correction a1 0.007765 0.00 3.5× 10−11

Tilt correction a2 -0.01793 0.00 1.9× 10−12

each of the above plots it can be seen that the parameters converged to their
true values within a few iterations. With reasonable results attained from the
noise free simulation, an angular white noise with a conservative standard
deviation of 1×10−6 was introduced to the simulated measurements to check
estimator performance in the presence of noisy star vector measurements.
The simulation test was carried out for 1000 runs to check whether the
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true parameters can be recovered, and the variance that can be expected
in these estimates. The spread in the parameter estimates from these noisy
measurements attained from 25000 test runs are illustrated in the plots
below and summarized in Table 3.2.

Table 3.2 NOISE SIMULATION RESULTS

Description Symbol Mean Std. Dev Mean Error

Focal Length [m] f 0.0161299 5.1775e−6 2.56× 10−7

Detector x-offset [pix] mo 939.504 13.091 [pix] 0.04927
Detector y-offset [pix] no 1261.308 13.228 [pix] 0.2702
Radial correction b1 −2.28× 107 5.741e7 1.548× 106

Radial correction b2 -988.827 277.39 8.04536
Tip correction a1 0.00769 0.00314 7.5226× 10−5

Tilt correction a2 -0.0179 0.00293 6.6553× 10−6

Figure 3.11 Spread in Parameter a2. Figure 3.12 Spread in Parameter a2.

The results in Table 3.2 indicate that the parameters can be effectively recov-
ered from noisy measurements. In each case, the cost function was minimized
to approximately 10−10 (See Fig. 3.18. The focal length and principal point
offsets were estimated with a low variance while the distortion terms were
estimated to a considerably higher variance. This can be expected since dis-
tortion parameters have considerably lower sensitivities to the cost function.
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Figure 3.13 Spread in Parameter b1. Figure 3.14 Spread in Parameter b2.

Figure 3.15 Spread in Parameter mo. Figure 3.16 Spread in Parameter no.

Figure 3.17 Spread in Parameter f. Figure 3.18 Residual approx. 10−10.
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Nonetheless, the results attained with a low mean error from the noisy sim-
ulated data suggest that the approach is feasible for testing using actual
hardware. Similar tests were then conducted using images downloaded from
an ST16 star tracker and corresponding matched star vectors from the Yale
Bright Star Catalog. Both batch and recursive estimation techniques were
tested using ground and orbit data.

3.2 Ground Test Data

The ground test data for the following set of test procedures was captured
from an ST-16 star over the traverse of a rover test. The test, conducted
on earth, consisted of a rover traversing over an uneven terrain. The star
tracker implemented on the rover gathered star images and conducted a
star matching process throughout the traverse of the rover. The images and
matching information from this test were used to calibrate the star tracker’s
internal parameters. This test can be used to indicate whether the calibration
procedure is effective in determining revised parameter estimates from initial
lab calibration estimates that minimize the error between true vectors in
the on-board star catalogue and measurements made using the star tracker
hardware.

3.2.1 Data Analysis

Before optimizing the star tracker parameters it is important to analyze the
available data. The larger the dataset the more observable each parameter
is, and the less susceptible each estimate is to the effects of noise. The
dataset utilized in this project consisted of 20,000 images captured by the
ST16 star tracker at a variety of different orientations over the traverse of
the rover. It is important to note that since these images were taken on
earth it is susceptible to a higher noise level than in space due to refraction
from the atmosphere and due to stray light.

The number of stars matched in these images are illustrated in Fig. 3.19
below. At least three stars are required to identify a match, although a four
star match significantly reduces the probability of a false matching and large
datasets reduce the effects of measurement noise. It can be seen that there
are a significant number of useful images that may be utilized for calibration.
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Figure 3.19 Number of matched stars in Dataset.

In addition to the length of the data set, the variety of scenes captured in
the star images may also affect the quality of parameter estimates. It is
important to verify that images with a wide variety of centroid positions,
possibly covering the entire frame of the detector are available. Images
capturing significantly different star patterns are likely to increase the
capability to observe each parameter.

When performing a batch optimization, a appropriate choice for a dataset is
to use all the available data. Using all images in a dataset will ensure that
significantly different scenes are available, and ensure the observability of all
parameters, in addition to minimizing the influence of measurement noise
on the estimates. However for an online implementation, larger datasets
equates to lower computational efficiency. For an online implementation,
saving large batches of centroids and matched vectors on-board is unfeasible
and hence batches must be strategically selected.

Large batches of data will reduce the effects of noise, and large variety of
scenes in captured images will increase the observability (See Fig. 3.20 and
3.21. Therefore, a good balance between batch size and batch diversity must
be selected such that parameters may be determined with as high a fidelity
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as possible without involving the entire batch in the calibration procedure.
The appropriate selection of images is discussed further in the section 3.4.

Figure 3.20 Consecutive Images. Figure 3.21 Different Scenes.

It is also important to ensure that the measurements are not noisy enough to
cause objective function to be noisy as well (See Example in Fig. 3.22). This
will significantly reduce the ability of the optimization methods outlined in
Chap. 2

Figure 3.22 Example of a Noisy Cost Function.

To ensure that the objective function has been adequately formulated and
the gradient methods outlined in Chapter 2 may optimize the function
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effectively, the cost is can be plotted in the space of each parameter. In
addition, the analytically derived gradients can then be compared to a finite
difference calculation to ensure its accuracy. This process was done for each
parameter using several images for verification. As an example, figure 3.23
and 3.24 below illustrates the objective in the space of the focal length,
and the analytically and numerically calculated gradient. This serves as an
important debugging step.

Figure 3.23 Cost J(f). Figure 3.24 Gradient H(f).

A similar check was performed for each parameter, and expected results
were attained.

3.2.2 Algorithm Selection

In this section, the four candidates for function optimization are explored.
These include the Gradient descent method (GD), the Gauss-Newton
method (GN), the Levenberg-Marquardt method (LM), and the Broyden-
Fletcher-Goldfarb-Shanno method (BFGS). The tests conducted in this
section aim to verify whether the function is effectively minimized by each
algorithm, and which algorithm works best.

To demonstrate the proper working of the estimator and to verify its im-
plementation, an optimization routine was conducted using two parameters
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for visualization - mo, no. Both have similar magnitudes and sensitivities
to the cost function and hence prove to be the best choice to check if
the estimator indeed optimizes the objective. A cost map was generated
for a small batch of images, and the estimator path was superimposed
on the cost map to verify if the estimator efficiently obtains the mini-
mum value of the objective function. The four different algorithms were
evaluated for this purpose. This is illustrated in Fig. 3.25 through 3.28 below.

Figure 3.25 GD Algorithm. Figure 3.26 GN Algorithm.

Figure 3.27 LM Algorithm. Figure 3.28 BFGS Algorithm.

The gradient method is clearly inferior to the remaining three Quasi-Newton
methods. Although it requires the least amount of computation, it is not well
suited for ill-conditioned problems as in this case. Distortion parameters have
a significantly lower effect on the cost when compared to the focal length and
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principal point. In addition, the parameters themselves are orders of magni-
tude apart. The Levenberg Marquardt and BFGS methods are both on par
if not better than Gauss-Newton. However, the GN algorithm is sufficient
to optimize the objective, and both LM and QN require a slightly increased
amount of computation without providing any significant benefit. The LM
algorithm is more robust if parameters are poorly known, but provides no
advantage if parameters are fairly close to their optimum values as in this
case. The BFGS algorithm offers some computational advantages by elimi-
nating the inverse calculation and converging in fewer iterations but relies on
a line-search algorithm. Thus the GN algorithm is the method of choice for
this problem. This choice is consistent with other research projects focusing
on autonomous star-tracker calibration [Samaan et al. 2001].

3.3 Batch Results

Once the mathematical model was tested and provided favorable results, a
batch estimator was implemented with the selected algorithm to optimize
all the parameters. Fig. 3.29 below illustrates a code flow diagram of the
optimization routine. Initial values of the parameters attained from a lab
calibration procedure were passed to the estimator with the aim of attaining
an updated set of parameters that minimize the residual between the
cosine angles between imaged and catalogued vectors. The centroiding and
matching phases of the firmware were pre-processed by the star tracker.
Two tests were performed:

1. Estimate Parameters using the entire batch

2. Estimate Parameters using a single image at a time

The first test provides a set of parameters that best match all the data. The
disadvantage of using the entire batch, is that an optimization using such a
large number measurements would never be feasible online. Using single im-
ages have the advantage of computational efficiency, however a single image
cannot guarantee the adequate observability of all parameters and is highly
susceptible to measurement noise. The result is that the estimates themselves
will be highly influenced by noise and will not represent the true state of
camera co-efficients. Figures 3.30 through 3.37 illustrate the entire batch
solution, where as Figures 3.38 through 3.45 illustrate solutions using each
image at a time. Images providing rank deficient measurements were ignored.
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Figure 3.29 Code Block Diagram for Batch Estimation.
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Figure 3.30 Focal Length f Estimate Using Entire Batch.

Figure 3.31 Principal Point mo Estimate Using Entire Batch.

Figure 3.32 Principal Point no Estimate Using Entire Batch.

Figure 3.33 Radial Distortion b1 Estimate Using Entire Batch.
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Figure 3.34 Radial Distortion b2 Estimate Using Entire Batch.

Figure 3.35 Detector Tilt a1 Estimate Using Entire Batch.

Figure 3.36 Detector Tip a2 Estimate Using Entire Batch.

Figure 3.37 Residual Using Entire Batch.
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Figure 3.38 Focal Length Estimate f Using Each Image.

Figure 3.39 Principal Point mo Using Each Image.

Figure 3.40 Principal Point no Using Each Image.

Figure 3.41 Radial Distortion b1 Using Each Image.
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In both cases, the residual between true and measured star vectors was
reduced by over an order of magnitude. In addition, since the mean value
of the single image estimates was very much the same as the batch value,
and slightly different from the lab calibration estimates. This suggests
that the parameters underwent a slight shift from their lab calibration
values, either due to shifted components or due to drawbacks of using lab
equipment as opposed to actual star images. In addition, the single-image
estimates overlap the estimates attained using the entire batch, with no
visible motion in single image tests. This suggests that the parameters did
not shift during the period of the test. This is expected since parameters
are unlikely to change on earth without any drastic temperature variations.
The significantly higher variance in the single image results are hence less
likely due to be physical changes in the parameters, and can be attributed
either to a significant magnitude of noise in the measurements, or the lack
of observability of the parameters given a single image. The approximated
variance in the focal length estimate acquired using the entire batch of data
is 6 × 10−10, whereas the variance in focal length estimates attained using
single images is 6 × 10−7. Using the more feasible single image approach
provides estimates with an unacceptable variance, and including the entire
batch in the computation to achieve a low variance result is unfeasible
online. Hence, a batch selection strategy is required to make appropriate
choices of images to include in a smaller, more feasible subset of the entire
batch, that will allow for estimates with an acceptable variance without
being computationally intensive.

Figure 3.42 Radial Distortion b2 Using Each Image.
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Figure 3.43 Detector Tilt a1 Using Each Image.

Figure 3.44 Detector Tip a2 Using Each Image.

Figure 3.45 Residual Using Each Image.
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3.4 Batch Selection

Single image solution solutions are highly varied and present challenges
for parameter observability and solutions from large batches are computa-
tionally unfeasible; therefore an appropriate batch selection criteria must
be developed. Selecting an appropriate batch involves determining the best
possible combination of batch size and scene diversity that will allow the
estimator to efficiently optimize the camera parameters while minimizing
the need for computational power. An appropriate metric that can allow
for the evaluation of estimate quality can be attained by analyzing the
covariance matrix. In essence it is required to select an optimum subset of
images from the entire batch while achieving almost as low a variance in
estimates and covariance between parameters as though if the entire batch
was used in the optimization routine.

The batch of images must be selected to improve:

• Estimate Variance due to noise:

Given that the ground test data was acquired on earth, the parameters
are not expected to change or if so with a small magnitude and with
a small rate of change. A large variance in a set of estimates provide
evidence that the estimate from a given subset of data is largely driven
by measurement noise and not and actual physical change.

• Observability: Ability to resolve each parameter.

Parameters with high variance are likely un-observable given the cur-
rent set of data. The trace of the covariance matrix or the ’Cramer-Rao
Lower-Bound’ serves as an approximate minimum achievable variance
in each parameter estimate.

• Separability: Ability to find a unique minimum between highly coupled
parameters.

Parameters like mo and a2 are highly coupled and have very similar
effects on the cost function. Selecting a large enough batch size is key
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to resolving these two parameters. The off-diagonal values in the co-
variance matrix provide insight into the separability of parameters.
Parameters that are highly coupled, such as mo and a2 will have higher
off-diagonal values than those that are loosely coupled.

The first test conducted to determine an appropriate batch involved finding
focal length variance using data with an increasing number of images. For
this test, 50 images of the same scene was used (See. Fig. 3.46).

Figure 3.46 Consecutive Images of Same Scene

The aim of this test was to determine a batch size at which adding more im-
ages to reduce the effect of measurement noise does not provide a substantial
drop in estimate variance. Although only focal length was considered since
similar trends are expected in all parameters. For consistency, images with
same number of matched stars (10 star match) were used in these tests.
Estimates are less likely to be driven by measurement noise as the number
of images included in batches increase. The result is plotted in Fig. 3.47.
The results indicate that a significant drop in variance is not achieved after
a set of 25 images is utilized.

Apart from being influenced by measurement noise, sensor parameters are
likely to be unobservable in a single scene. Lack of observability increases the
variance in parameters. To ensure that these parameters are observable in
batches of 25 images, the spacing between images included in the batch was
gradually increased and the variance in poorly observable parameters was
approximated. The lower the approximated variance in each estimate, the
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Figure 3.47 Focal Length Variance Vs. Num. Images.

greater the observability of the parameter in question. To demonstrate, the
variance in no and b1 are approximated and plotted as a function of image
spacing in the figures below. The parameters no and b1 are moderately and
poorly observable. The size of the batch was kept constant at 25 images as
suggested from the test outlined above. The variance is expected to reduce
as scenes with different star patterns are encountered.

Figure 3.48 Std. Dev. n0 Vs. Image Spacing.

The final test conducted involved determining the off-diagonal elements of
the covariance matrix, corresponding to mo and a2. The effects of mo and
a2 on the cost are very similar posing challenges for separability of the two
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Figure 3.49 Std. Dev. b2 Vs. Image Spacing.

parameters. To evaluate the separability of these parameters a similar test
was conducted to determine the covariance between mo and a2 as a function
of batch size and diversity. The results are plotted below.

Figure 3.50 Std. Dev. b2 Vs. Image Spacing.

By analyzing the plotted results from the tests above, an acceptable subset
of the batch was chosen. This batch must contain atleast 25 images to
eliminate the effects of measurement noise. A greater separation between
images increases observability and separability of parameters. Using an
optimal subset of images from the entire batch allows for the estimation of
camera parameters with almost as high a fidelity as with the entire batch
by ensuring observability and separability of parameters, and determining
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estimates that are less influenced by measurement noise. The added benefit
is a lower computational expense. The table below lists the focal length
estimate variance attained using using a single image, an optimal set of
images and all images. From table 3.3 it can be seen that although the
variance in the focal length estimate using all images isn’t quite reached, a
significant drop in variance is achieved using a diverse subset of images and
a batch size of one fifth of the total data.

Table 3.3 ESTIMATED VARIANCE FROM SUBSETS OF DATA

Description Variance

Single Image 6.1328× 10−7

All Images 5.9980× 10−10

Optimal Set 4.9710× 10−9

Although a post processing method as implemented here is effective, the
ultimate goal would be to determine a batch selection method that can be
implemented online. This would require a means to determine the estimate
variance before any computationally intensive calculations are performed.
One parameter affecting the estimate quality that may be explored include
the variance of the centroids in each image to attain an understanding of the
diversity of scenes in the image. In addition, the measurement covariance
matrix R may also be a good source of information regarding the accuracy
that may be expected in parameter estimate.

An issue that requires further investigation with regards to parameter
separability is the effects that mo and a2 have on the cost function (See
Fig. 3.51) below. The figure illustrates that a unique minimum does not
exist in the space of these two parameters. This can be expected since both
parameters have a similar translation effect on the centroids imaged by
the star camera. Fixing this issue may be carried out by minimizing the
cost in focal length and principal point initially, and then finding best fit
distortion coefficients that further minimize the residual between imaged
and catalogued vectors. In addition, a different formulation of the cost
function, or a different camera model can be explored with independent
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parameters reducing the possibility of attaining local minima.

Figure 3.51 Cost function in the space of mo and a2.

3.5 Recursive Estimation

Perhaps the most feasible means calibrate parameters online is to adopt
a recursive algorithm. Recursive estimation allows for the update of the
parameter estimate and co-variance in a feasible manner by processing a
large batch of data one image at a time, as images become available. Even
though a single image is used for each update sequence, the co-variance
matrix and prior estimate preserve the information provide by the previous
images. Hence each update provides the average value for all data up to
and including the current image. Figure 3.52 through 3.59 illustrate the
recursively estimated camera parameters. For problems involving constant
parameters such as a ground calibration, batch and recursive estimates are
expected to be the same.

The recursive least squares method is a feasible approach for online pa-
rameter estimation, but must be implemented with caution. In the case of
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Figure 3.52 Focal Length f Using Recursive Estimation.

Figure 3.53 Principal Point mo Using Recursive Estimation.

Figure 3.54 Principal Point no Using Recursive Estimation.

the ground test, where parameters don’t change, the batch and recursive
methods provide very similar revised estimates (See Table 3.4). The recursive
estimate has the added benefit that only a single image may be used in one
update as opposed to involving all images as done with the batch solver.
However, in an orbital setting, recursive least squares estimation methods
are very likely to encounter a ”co-variance windup” after several updates
whereby the estimator becomes too confident in its own estimates causing
updates to be ignored and the estimator to behave smugly leading estimates
to diverge from their true state.
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Table 3.4 BATCH VS RECURSIVE RESULTS

Description Symbol Batch Recursive

Focal Length f 0.0160816 0.0160796
Principal axis x-offset mo 1041.231 1036.655
Principal axis y-offset no 1271.173 1293.674
Radial correction b1 −5.629× 106 −2.802× 106

Radial correction b2 -1368.422 1403.531
Tip correction a1 0.00268 0.000910
Tilt correction a2 0.0184 0.0175

Figure 3.55 Radial Distortion b1 Using Recursive Estimation.

Figure 3.56 Radial Distortion b2 Using Recursive Estimation.

Although all parameters approached the batch estimate and smugness may
not necessarily be evident in a ground based calibration since parameters are
likely to remain constant, it may certainly pose an issue for online calibration
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Figure 3.57 Detector Tip a1 Using Recursive Estimation.

Figure 3.58 Detector Tilt a2 Using Recursive Estimation.

Figure 3.59 Residual Using Recursive Estimation.

in space where the environment is constantly changing, and the parameters
are possibly prone to drift. This can be avoided by introducing artificial
process noise into the system or by using a sliding window approach where
estimator gain is strategically altered to ignore previous estimates and give
preference to the most recent measurement. A direction of further study may
include developing a simple Extended Kalman filter driven by process noise
as opposed to the recursive least squares approach implemented in this thesis.
This will allow for the estimation of not only constant parameters, but also
to track parameters as they slowly drift in time.
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3.6 On - Orbit Data

With both batch and recursive estimators performing effectively using
ground calibration data, further testing was performed using on-orbit
telemetry from two in-service star trackers on-board an imaging satellite.
The star trackers on-board the satellite were subject to post launch changes
in their camera parameters reducing the number of expected star matches
and the frequency of attitude estimates. A calibration procedure was
required to re-calibrate the camera and determine the parameter values
that would minimize the residual between imaged star vectors and vectors
in the on-board star catalogue. The minimized residual would allow for an
increase in the rate of star matching, reducing dropouts in attitude readings,
and provide more frequent and more accurate attitude data. The figure
below depicts the on-orbit data that was captured by the two in-service star
trackers Sensor A and Sensor B.

Figure 3.60 Data - Sensor A. Figure 3.61 Data - Sensor B.

The images captured by the star trackers contain divserse scenes of star pat-
terns. Since the dataset attained from the satellite was fairly small, (approxi-
mately 150 images), and the processing was done offline, the entire batch was
included in the calibration and the new parameters that best fit the entire
dataset was attained using a batch calibration procedure. The results from
the re-calibration are illustrated in figures 3.62 through 3.75 and summarized
in Table 3.5 and 3.6 below.
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Figure 3.62 Focal Lengh(f)
Sensor A.

Figure 3.63 Focal Lengh(f)
Sensor B.

Figure 3.64 Principal Point(mo)
Sensor A.

Figure 3.65 Principal Point(mo)
Sensor B.
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Figure 3.66 Principal Point(no)
Sensor A.

Figure 3.67 Principal Point(no)
Sensor B.

Figure 3.68 Radial Correction(b1)
Sensor A.

Figure 3.69 Radial Correction(b1)
Sensor B.
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Figure 3.70 Radial Correction(b2)
Sensor A.

Figure 3.71 Radial Correction(b2)
Sensor B.

Figure 3.72 Detector Tip Angle (a1)
Sensor A.

Figure 3.73 Detector Tip Angle (a1)
Sensor B.
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Figure 3.74 Detector Tilt Angle (a2)
Sensor A.

Figure 3.75 Detector Tilt Angle (a2)
Sensor B.

Figure 3.76 Cost Function Norm(J)
Sensor A.

Figure 3.77 Cost Function Norm(J)
Sensor B.
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Table 3.5 SENSOR A CALIBRATION RESULTS

Description Symbol Before After

Focal Length f 0.016097 0.016049
Principal axis x-offset mo 894.441 1048.298
Principal axis y-offset no 1210.795 1127.392
Radial correction b1 -1.224 ×107 1.016 ×108

Radial correction b2 -827.404 -2168.390
Tip correction a1 -0.0169 -0.0561
Tilt correction a2 -0.00680 0.0436

Table 3.6 SENSOR B CALIBRATION RESULTS

Description Symbol Before After

Focal Length f 0.016113 0.016025
Principal axis x-offset mo 1040.559 1001.009
Principal axis y-offset no 1316.122 1221.169
Radial correction b1 -1.06 ×107 2.31 ×108

Radial correction b2 -941.924 -2.728
Tip correction a1 0.0421 0.0158
Tilt correction a2 -0.00644 -0.0192

From the result plots, it is evident that the star tracker parameters had
undergone a significant change post launch. The calibration procedure was
able to determine the magnitude of this change. The revised parameters
reduced the residual between imaged and catalogued star vectors in both
star trackers by almost an order of magnitude (See Fig. 3.77). The reduction
in the residual will allow the star trackers to match an increased number of
stars reducing drop outs in attitude data. In addition, a reduction in the
residual between imaged and catalogued vectors suggests an increase in the
accuracy of attitude readings.

To evaluate the quality of estimates, the matching and attitude data
from the telemetry was re-processed before and after calibration with the
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expectation of seeing a greater number of matched stars after calibration.
The improvements are illustrated in figures 3.78 and 3.79 below. This plot
illustrates the four elements of the best fit quaternion solution determined
by the star tracker describing space craft orientation. Upon examining the
attitude data it is clear that the on-orbit calibration procedure performed
the necessary task.

The significant gaps in the ’Before Calibration’ plots indicate that are several
instances of invalid attitude readings that result from a false star match.
False star matches occur when a large residual exists between imaged, and
catalogued star vectors. The revised parameters attained from the batch
calibration procedure were used to re-determine the imaged star vectors
and the matching process was performed again. This test serves as a ver-
ification as to whether the updated parameters increased matching efficiency.

In the ’After Calibration’ plot, a significantly lower number of gaps can
be observed in the plots. This indicates that a fewer number of false
matches was encountered allowing for a higher frequency of valid attitude
measurements. The batch method used here worked well to provide revised
parameter estimates and allowing the star tracker to effectively match a
significantly higher number of stars.

In addition to the batch calibration, the sensor parameters were re-calibrated
using a recursive estimator. The results for Sensor B are shown in figures
3.80 through 3.86 below.

The results from the recursive estimation routine were very similar to the
batch estimates in the case of f , no and a1. Parameters b1 and b2 are poorly
observable, and hence require several more images to be estimated with a
low variance. Nonetheless, both b1 and b2 can be seen approaching batch
estimates. Parameters mo and a2 are prone to have local minima, and hence
were poorly resolved. Recursive estimates should ideally approach batch
values as all images are processed. The discrepancy in the values can be
attributed to an insufficient number of iterations at each update in the
recursive formulation, or an insufficient drop in the covariance matrix with
each update. It may also suggest that the parameters may not be constant
and subject to change.
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Figure 3.80 f - Recursive Estimation.

Figure 3.81 mo - Recursive Estimation.

Figure 3.82 no - Recursive Estimation.

The results from the on-orbit data tests indicate that online calibration may
be used to continually re-calibrate parameters online should they drift beyond
tolerance. However, some further study is required. The batch method used
here may be an unfeasible means to update camera parameters online if
parameters undergo further changes and the recursive method is effective
only in cases with constant parameters. A simple Extended Kalman Filter
driven by process noise must be implemented on the star tracker to not only
adapt to post launch changes in parameters, but track the motion of the
parameters through out the orbital period.
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Figure 3.83 b1 - Recursive Estimation.

Figure 3.84 b2 - Recursive Estimation.

Figure 3.85 a1 - Recursive Estimation.

Figure 3.86 a2 - Recursive Estimation.
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4 | Conclusion

Star trackers have become the most accurate and most popular instruments
for measuring spacecraft attitude. A single device providing three axis atti-
tude information is invaluable. However star-trackers rely on a set of precisely
aligned optics that are likely to drift over the course of the star-trackers mis-
sion life. Without adequate knowledge of camera parameters, imaged star-
vectors will be inaccurately defined, reducing the star cameras ability to
accurately identify stars in its field of view. This causes an increase in the
number of false matches and therefore reduction in the quality of attitude in-
formation. To combat this issue, a method of online calibration was presented
in this project. The method outlines a routine that utilizes images captured
by the star tracker and the on-board star catalogue to determine the con-
stantly drifting star tracker parameters. The approach aims to minimize the
residual between the angular distance between pairs of imaged and cataloged
stars. This method was tested using simulated data, ground test data gath-
ered over the traverse of a rover as well as on-orbit telemetry gathered from
an in-service star tracker.

4.1 Summary

The results outlined in this thesis demonstrate that an online calibration
procedure has the potential to minimize the residuals in star tracker mea-
surements allowing for a greater matching efficiency and a a higher rate and
accuracy of attitude data. The project outlined two different approaches for
online calibration calibration: a batch algorithm using a Gauss Newton solver
and and a sequential algorithm utilizing a recursive least squares solver. Both
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algorithms were tested using ground data gathered from a star tracker imple-
mented on a rover. In addition, further testing was done using orbital data
gathered from an in-service star tracker.

4.1.1 Simulated Data

The simulated test outlined at the onset of chapter 3 demonstrated that
the calibration method may be used to calculate revised parameters from
a reasonable initial guess under ideal conditions. Next, a similar test us-
ing synthetic noisy measurements was performed to evaluate whether the
calibration method may perform in a more realistic situation. The noise test
provided parameter estimates with a low mean error, however, the radial dis-
tortion parameters estimates were highly varied. This is expected since the
cost function is relatively insensitive to changes radial distortion parameters.
Nonetheless, the results from the calibration procedure provided reasonable
evidence that the procedure would effectively determine parameters from
data gathered using actual star tracker hardware.

4.1.2 Ground Data Tests

In the ground test, star data was gathered over the traverse of a rover. Both
Batch and Recursive methods were used to calibrate the star tracker. Al-
though the measurements are noisy, both batch and recursive methods pro-
duced camera parameter estimates that are in accordance with each other
and reduced the residual in measurements by an over order of magnitude.

Batch Algorithm Tests

Four different minimization routines were tested - gradient descent, Gauss-
Newton, Levenberg Marquardt and the Broyden-Fletcher-Goldfarb-Shanno
methods. Of the four methods, the gradient method was clearly the least
efficient method. From the three remaining, the Gauss-Newton method
proved to be the simplest and hence most promising since all three behave
in relatively the same fashion. The LM algorithm is usually more robust
compared to GN, especially in cases with a bad initial estimate. However,
in this case, since the nominal paramter values or those provided by lab
calibration are fairly close to the optimal value, the LM algorithm provided
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no significant benefit. The BFGS method has a slight computational ad-
vantage by converging in fewer iterations and the elimination of the inverse
hessian calculation, but relied on a line-search algorithm to determine an
appropriate step size. Thus the GN method was the chosen method, due to
its simplicity, and is sufficient to perform the necessary minimization.

Two different tests were performed with the batch calibration procedure.
In the first test, all available images were utilized in the calibration. In the
second test, each image was used individually to attain revised parameter
estimates. In both cases, the residual was significantly minimized and revised
estimates were attained. The Batch calibration works best in cases where a
large amount of data is available. This is certainly a preferred calibration
method for ground tests especially since the parameters are unlikely to
change, and the large sets of data may be processed offline. Unexpectedly,
using this method with a single image provides little information about
parameter motion, instead the estimates attained are highly influenced by
noise and hence have an unacceptable variance. To combat this issue, two
different directions were taken. The first, was to develop a batch selection
strategy that allows for the calculation of revised parameter estimates using
a well selected feasible set of data that minimizes the effect of noise and
ensures paramter observability. The second was to implement a recursive
algorithm.

Batch Selection Tests

The batch selection strategy was developed based on some key factors that af-
fect parameter estimates. These factors include the dependence on estimates
to noise, parameter observability and separability. All parameters are sub-
ject to the influence of measurement noise. Adding more images to a batch of
data will cause parameters to be driven less by noise, and hence provide the
true state of the parameters. In addition, parameters that have low observ-
ability, such as radial and tangential distortions require a variety of scenes
to be estimated with an acceptable variance. In addition, parameters that
are strongly coupled such as tangential distortions a1 and a2 and principal
point offsets no and mo are likely to have a very high covariance reducing
the ability to acquire good estimates. To avoid these issues, the estimation
routine was performed using batches with varying lengths, and separation.
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The results confirm that longer sets will allow for a reduction in the influence
of noise, whereas a higher separation between images guarantee a variety of
a diversity scenes in the dataset increasing both observability and separa-
bility. The tests conducted in this thesis suggest that beyond 25 images the
effects of noise is minimal. In addition, having atleast two different scenes
will ensure observability of parameters but the higher the number of scenes
the better the observability.

Recursive Algorithm Tests

The Recursive Calibration converged to the same estimate as the batch cali-
bration in the ground test with the added advantage of utilizing single images
as they would become available. This is clearly the best method to implement
on-line on the star tracker due to its computational feasibility. However the
recursive least squares is efficient in estimating constant vectors given a set
of data. In a mission setting in orbit, the parameters may undergo changes
due to vibration from launch, and continue to drift slowly due to temperature
gradients experienced throughout its orbital period. In this case the recursive
methods must be implemented with caution to prevent estimator smugness.
Junkins, [Griffith & Junkins 2009], proposed that introducing artificial pro-
cess noise into the estimator can efficiently prevent the co-variance windup
problem, and using a forget factor will give preference to the most recent
measurements allowing for a more accurate tracking of changes in parame-
ters. This is an area that requires further investigation in order to test the
recursive method with on-orbit data, and be fully implemented on the star
tracker.

4.1.3 Orbital Data Tests

An on-orbit test was performed to verify if the method works as efficiently
in flight, as it does on the ground. The data utilized in this experiment was
gathered from two in service star trackers on-board an imaging satellite.
(Sensor - A and Sensor B). Significant discrepancies in the camera param-
eters can be expected in flight when compared to the ground test due to
vibration and temperature changes in the environment. Using the data from
these in-service star trackers, a calibration was performed to provide revised
parameter estimates. Next, the matching process was conducted to evaluate
the new parameters. The re-calibration significantly reduced the number of
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false matches that were experienced in flight allowing for an increased rate of
attitude data provided by the star tracker. In addition, the residual between
imaged vectors and catalogued vectors reduced by approximately an order of
magnitude in both cases directly increasing attitude accuracy.

4.2 Future Work

Some areas of future study include:

• Better Measurement Co-variance Estimation:

The co-variance approximation outlined in this thesis is a crude es-
timate. The coupling between centroid locations and the resulting arc
lengths between star vectors was ignored. The diagonal covariance used
here allows for analytic results, however a co-variance matrix taking
into account the coupling between pairs of vectors is more analogous
to real life and can more adequately depict model measurement noise.
This will provide better performance numerically.

• Better Batch Selection Strategy:

The batch selection strategy outlined in this project is efficient but only
in retrospect. It provides information about the data by analyzing the
expected variance in the parameters once they have been estimated.
Ideally, batches should be selected by observing the data itself, before
any computationally intensive calculations are conducted. This process
may involve evaluating the quality of the data by examining the mea-
surement co-variance, or the variance in the centroids per image or over
the course of all images in the batch to understand the diversity of star
vectors the scene. Determining the quality of the data before estimat-
ing the parameters can significantly increase the performance of the
estimator.

• Introduce artificial process noise to Recursive Estimator

Batch methods are too noisy and computationally inefficient to be im-
plemented online, while recursive estimators tend to act smugly after a
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significant number of updates and give preference to the current esti-
mate while ignoring new data. In order to take properly track parameter
changes an appropriate process noise must be determined to tune the
estimator allowing for the filtering of noise while giving preference to
the incoming data.

• Design a parameter Health Monitoring Strategy

Since the star tracker has some limitations in its power and processing
budget, it is in-efficient to have an estimator running at all times. Ide-
ally an estimation routine should only be invoked if there is significant
reason to believe that the parameters have shifted beyond an effective
region. Perhaps an efficient means to achieve this is to monitor the
mean measurement residual over the course of the star tracker’s life.
If the residual is unexpectedly high, it is evident that a calibration
procedure is required.

• Implement and Test Algorithm On-line

Of course the final step is to implement the algorithms on the star
tracker itself. Currently all processing was done offline. An online ap-
proach would eliminate the need for ground support and add to the
autonomy of the star tracker.

4.3 Concluding Remarks

In conclusion, the results outlined in this thesis suggest ground calibration
may be sub-optimal post-launch and that an online calibration procedure
may be used to to maintain the performance of a star tracker. Although an
initial lab calibration and night sky testing is key to attaining initial catalog
matches from imaged star data, they may not be sufficient, either due to
the inability of the lab testing environment to efficiently simulate its working
conditions or due to atmospheric effects and noise caused from stray light
during night sky tests. Parameters may also change due to other factors in-
cluding hostile launch vibrations and operation in the vacuum of space, and
may continue drift over time due to aging and temperature variations. An
online calibration is can allow the star tracker to accurately image star vec-
tors with the attempt to maintain the accuracy of the instrument throughout
its mission life. The procedure outlined in this project was subject to several
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tests using ground data, and its performance was evaluated using on-orbit
telemetry. The calibration procedure considerably increased star matching
efficiency and minimized measurement residual as demonstrated in results.
The minimized residual increases the accuracy of the attitude data gathered
from the star tracker, where as the increased matching efficiency will signifi-
cantly reduce the number of false matches, thereby decreasing the frequency
of drop outs in attitude data. The technical benefit of on-orbit calibration
includes a more precise calibration, ability to track parameter changes, less
telemetry data, minimal interruption of science observations, greater auton-
omy, and less ground testing and support.
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