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Abstract

The characteristic (or frequency) equation of a flexible manipulator with a rigid tip mass is 

derived. The manipulator is modeled as an Euler-Bemoulli beam and it permits flexural 

(bending) detormation in two planes and torsional deformation. The position of the centroid 

of the tip mass may not necessarily be coincident with the elastic axis of the beam. This is 

represented by the use of offset coordinates. The natural frequencies of the manipulator are 

obtained by solving the characteristic equation. The results are compared to the results in the 

literature, where possible, and also to those obtained using a commercial finite element 

software ANSYS. The effects of the magnitude of the tip load, offset of the tip mass centre of 

gravity from its point of attachment, the length of the beam and slenderness ratio on the 

natural frequencies are examined.
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a^= â  = 0.0

Figure 5.9: Effect of varying the payload mass A7, and the offset about the z-axis a%, for 32
(z = 0.5, % = 8.7802 x 10"’,// = 1.1902319 x 10 " \ 7^ = 7,̂ . =7^ =0.20,
a^= ay = 0.0

IX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Nomenclature

I L = Length of the beam, m

' A = Cross-sectional area of the beam, m^

I  = Second moment of area about the bending axis, m'’

= Polar moment of inertia, m'* 

j J = Torsional constant, m'*

p = Density o f beam material, kg/m^

I  E -  Modulus of elasticity, N/m^

1 G = Shear modulus, N/m^

( mt = Mass of rigid tip load, kg

j I -  Inertia tensor, kg.m2

I = Inertial or Newtonian dextral frame with and âj unit vectors

I = The dextral beam body-fixed reference fiame with b,, and b-̂  unit vectors.

= The dextral body-fixed reference frame with c,, and unit vectors 

j^ = T h e  dextral payload body-fixed reference frame with J ,, and (?^unit vectors 

= The dextral payload body-fixed reference frame with g,,g; and unit vectors

V (x, t) = Bending deformation (transverse displacement) in XY-plane

w (x, t) = Bending deformation (transverse displacement) in XZ-plane

9  (x, t) = Torsional deformation

\\i = Angle of rotation due to bending, rad

a  = Angle of distortion due to shear, rad

k  = Shear factor

Ox, Oy, Oz = Offsets of the payload centre of mass 

= Slenderness ratio 

Mt = Non-dimensional payload mass
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Chapter 1

1.0 Introduction

Flexural-torsional coupled vibration of a rotating structure can occur in many engineering 

applications such as turbo machinery blades, slewing robot amis, aircraft propellers, 

helicopter rotor blades, spacecraft antennae, spinning spacecraft, gun barrels and subsystems 

o f more complex structures. To design these systems, the dynamic characteristic, especially 

near the resonant condition, needs to be well examined to ensure safe operation. Hence, the 

determination of the natural frequencies is of fundamental importance.

Flexural-torsional coupled vibration occurs when the centroidal and the shear center of the 

cross sections o f the beam are not coincident. This lack of coincidence is observed when the 

beam has fewer than two axes of symmetry or has anisotropy in the material. This makes the 

torsional axis different from the elastic axis and thus couples torsional vibration with flexural 

vibration. Flexural-torsional coupled vibration is also observed in a cantilevered beam with a 

tip mass when the centroid of the tip mass is not coincident with the elastic axis of the beam. 

This is the scenario of interest in this project.

Beams are often idealized as one-dimensional structural elements. In reality, however, all 

structures are three-dimensional bodies with every point in the structure, if  not restrained, 

capable of displacement along any three mutually perpendicular directions. Hence, the goal in 

beam models is the reduction of the various three-dimensional properties into one dimension. 

An exact formulation of the beam problem in terms of general elasticity equations is 

presented in Ref. [1]. However, it is generally difficult to solve the full problem and 

approximate solutions for transverse displacement are usually sufficient in most applications.

The natural frequencies of a manipulator are obtained by modeling the manipulator as a 

beam. The Euler-Bemoulli beam theory is assumed to be adequate to model the manipulator. 

The cantilevered beam is also assumed to experience small torsional deformation and planar 

elastic bending deformation in two directions (i.e., in XY and XZ planes, respectively) and 

warping effects are ignored. The centre of gravity of the rigid tip mass is not coincident with 

the point o f attachment and Hamilton’s principle is used to derive the system governing 

equations. A close-form expression of the characteristic (frequency) equation is derived and 

this is solved by using root finding techniques in MATLAB. The main advantage of a close-
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form solution is that it readily highlights the “interdependencies of design variables or 

parameters that otherwise may not be discernable from numerical analyses” [2]. The results 

are compared to those in the literature and to results obtained using the ANSYS finite element 

software. The results show that the system natural frequency is dependent on many 

parameters such as magnitude of tip mass load, offset of the tip mass centre o f gravity with 

point of attachment with beam, the length of the beam, the slenderness ratio and the bending 

stiffness and torsional rigidity of the beam. The results are tabulated in order to allow 

computational comparison and presented graphically to provide a snapshot o f the influence of 

the abovementioned factors.
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Chapter 2

2.0 Literature Review

The large amount o f literature in the field of beam vibrations makes it almost impossible 

to list all. An attempt is, however, made here to mention the necessary and relevant articles 

and books in order to give an insight into the research done on the subject. In the early study 

of beams, bending was identified as the single most important factor in a transversely 

vibrating beam. This forms the basis of the Euler-Bemoulli beam theory [1]. It is the most 

commonly used theory because of its simplicity and its ability to provide reasonable 

engineering approximations to many problems. However, the theory does not provide good 

estimates of higher mode natural frequencies and of the natural frequencies of non-slender 

(i.e., thick and stout) beams, which are susceptible to shear. Other theories have been 

proposed to overcome these limitations. These include Rayleigh beam theory [3] and 

Timoshenko beam theory [4] and [5].

The Rayleigh Beam theory includes rotation effects, while the Timoshenko beam theory 

includes both the rotation and the shear effects. The latter gives better approximations for 

higher-mode responses and non-slender beams. The development and analysis of these beam 

theories are reviewed in the next section.

2.1 Basic Beam Theories

There are four basic beam theories: Euler-Bemoulli, Rayleigh, shear and Timoshenko 

beam theories. The common assumptions are

1. One dimension (the longitudinal direction) is considerably larger than the other two.

2. The material is linear elastic (Hookean).

3. The Poisson effect is neglected.
4. The cross-sectional area is symmetric so that the neutral and centroidal a^es coincide.

5. The angle of rotation is small so that the small angle assumption can be used.
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2.1.1 Euier-Bernoulli Beam Theory:

The simplest beam theory is the Euler-Bemoulli Beam theory which ignores both the 

rotary inertia and shear effects. A schematic of a cantilevered beam in transverse vibration 

(deflection, v(x, t ) , is in the y direction) is shown in Fig.2.1 [6 ],

v ( x j )
A

A(x)

dM(x,t)M{x,t) +
M{x,t)

i i .

v(x,t)

pAdx

x+dxX

Figure 2.1 : Simple beam in transverse vibration and a free-body diagram of a small element 
of the beam [6].
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The beam is o f rectangular cross section A(x) with width h y ,  thickness h z , and length L. The 

bending stiffiiess is represented hy El(x), where E is the Young’s modulus of elasticity and 

I(x) is the cross-sectional area moment of inertia about the z-axis.

The strain energy of a uniform beam due to bending is

The kinetic energy is

2 dx^
dx (2.1)

dx (2.2)
2 * '  ^ dt 

The virtual work by the transverse load is

= j/(x)<$yA: (2.3)

where p and A denote the density of the beam and cross- sectional area, respectively. The 

Lagrangian is given as

KE-PE

pA( dv{x,t)
dt

ËL
2

d'v{x,t ) dx (2.4)

Hamilton’s principle states that the path of admissible configurations that satisfies Newton’s 

law at each instant during the interval is the path that yields a stationary value of the time 

integral of the Lagrangian during the interval [7]. Therefore, extended Hamilton’s principle 

requires that

/ i f/I
A4 r  av(x,ol '  El  ̂d v \{x , îŸ

2
+ /(x)<ix

2 I  y 2 I  ax J dxdt -  0 (2.5)

The governing differential equation and boundary conditions are derived from the above 

equation by using integration by parts. The governing equation may be written as

(2 .6)
dt" dx

and the boundary conditions are deduced from

E , ? ^ S
dv

= 0, (2.7)
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= 0 (2 .8)

In regard to the physical meaning of the boundary conditions, v is the displacement, dv I dx is

the slope, EI^—̂  is the bending moment, E I^ -^  is the shear. The four possible combinations 
dx dx

of end boundary conditions are

free end
dx ck'

V = 0 clamped end

V = 0 hinged (simply supported) end

e - sliding end

(2.9)

2.1.2 Rayleigh Beam Model:
The Rayleigh beam theory adds rotary inertia effects to the Euler-Bemoulli beam. The 

Kinetic energy due to rotary inertia is

KE d \(x , t ) \2

rof 2 -b afôk
Therefore, the Lagrangian may be written as

, 2

dx

pA dv{x, t )
dt

4- pi
/

d v jx , t )
dtdx

- E l
V ax' y

The use of extended Hamilton’s principle yields the equation of motion as:

ar' Ac" ^ ôbc'ar'
The boundary conditions in this case are derived from

, a 'v  J d v ^El =  0

(2.10)

(2.11)

(2 .12)

(2.13)
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{El dv^ - p i d \
ôxdt^ lo = 0 (2.14)

dv
The physical meanings of the boundary conditions are that v is the displacement, —  is the

ox

slope, E l  ^  ^  - is the moment, E l — p i  — \  is the shear. The end conditions from the
dxdt

four combinations of boundary conditions are

d V
dx
d \

d V 
dx

= 0, V = 0

= 0, V = 0

= 0. £ / 0 - p / ^  = O

free end 

clamped end

hinged (simply supported) end 

sliding end

(2.15)

2.1.3 Shear Beam Model:
The shear beam model adds the effect of shear distortion to the Euler-Bemoulli model. 

It is safe to ignore the shear deformation as long as the width and thickness of the beam are 

small compared with the length of the beam. As the beam becomes shorter, the effects of 

shear deformation become evident. An element of such a beam is shown in Fig. 2.2 [6], which 

is a repeat of the element dx of Fig. 2.1 with shear deformation included.

In the figure below, the line OA is a line through the center of the element dx and 

normal to the face at the right side. The line OB, on the other hand, is the line through the 

tangent to the centerline of the beam. While the line OC is the centerline of the undeformed 

beam. The shear angle represents the effect of shear deformation. The total rotation of the 

cross section is the sum of the rotation due to the bending moment, y , and the angle of 

distortion due to shear, a , and it is appro; mated by the first derivative of deflection.

i//(x,t) + a{x,t) = dv{x,t)
dx

(2.16)
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M  + ÔMf(x)dx

V + dVM

▼

a(x,t)

B

(J

Figure 2.2: Effect of shear deformation on an element of bending beam [6]. 

Therefore, the strain energy resulting in bending becomes:

P ^b e n d m g  ~  ^
V ÔX

and the strain energy resulting from shear becomes:

PE shear kGA dvjx,t)
dx

dx

The Lagrangian of the shear beam model is

p i  ÊfkfiY _ Ei[
V dx

dx
y dt J y dx 

Equations of motion are obtained by Hamilton’s principle and are written as:

d^v(x,t)pA-
dt-

■kGA''d'v d i j / ix iŸ  
dx^ dx

El  + kGA[ — ~i//(x, /)! = 0
ck" Lac 'j

(2.17)

(2.18)

(2.19)

(2.20)
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The boundary conditions are obtained from:

b M s ^ \ 1 = o, (2.21)

kGA dv
dx

-If/ a , 1^=0 (2 .22)

dif/ .
The physical meanings are that v is the displacement and \j/ is the rotation angle, is the

bending moment, and kGA(dvI dx -y /)  is the shear. The end conditions from the four possible 

combinations of boundary conditions

dif/
dx

( dv0, kGA\ - — If/
\dx

=  0

^  = 0, V = 0

dy/
dx

= 0, V = 0

y/ =0, kGA
dv
—  — u/ =  0

free end 

clamped end

hinged (simply supported) end 

sliding end

(2.23)

2.1.4 Timoshenko Beam Model
The Timoshenko beam model includes both shear deformation and rotatory inertia. 

The strain energy may be written as:

1 ^
PE = - \ El ^dy/{x,t)'] 2 / 

+ kGAI  8): J V
dvjx,t) 

dx
-y/{x,t) dx

The kinetic energy includes rotatory inertia and bending motion.

KE dv{x,t)
dt

+ pi
^dy/(x,t) '̂  ̂

dt
<Lx

From Eq. (2.3), the virtual work by the distributed load f(x) is' 

Sw= ^f{x)Svdx 

The Lagrangian for the Timoshenko beam becomes:

A4
dv{x,t)

dt
pi ^ dy/{x,t)'̂  ̂

dt

(2.24)

(2.25)

- E l dy/jx,t)
dx

^ (x , t) 
dx

-y/(x ,t) dfr (2.26)
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The equations o f motions obtained using the extended Hamilton’s principles are:

d^v(x,t) d^v(x,t) di//{x,t)pA    kGA
dP-  ̂ dx^ dx

/ w
(2.27)

dt dx dx
=  0

The boundary conditions are deduced from:

(2.28)

Note that these equations are the same as those for the shear beam model, i.e., Eq. (2.23).

The results for beam vibrations with classical boundary conditions and no attachments 

are presented in many standard textbooks on vibration such as Ref. [6]. The effect o f end 

mass or tip load on the natural frequencies of beams has been investigated by numerous 

researchers. Goel [8] models tip load as a point mass and the beam by Euler-Bemoulli beam 

theory. Laura et al. [9] use the same approach and determined natural frequencies and modal 

shapes of a cantilevered beam which carries a finite mass at its free end.

Bruch and Mitchell [10] examine the effects of rotary inertia and shear deformation of 

a flexible robot arm that is modeled as a cantilever Timoshenko beam. The tip load is 

modeled as a rigid mass with moment of inertia about the axis of bending of the beam. They 

observe that the “frequencies decrease with increasing mass ratio (tip mass/beam mass) for a 

fixed ratio, cr (radius of gyration of the tip mass/beam length). The same is true for a fixed 

mass ratio and increasing c .”  White and Heppler [11] generalize the study by presenting a 

generalized frequency equation for the Timoshenko beam. They present ar: exact closed form 

expression of the frequency equation, mode shapes and the orthogonality condition for a free- 

free beam with payloads at the free ends, but ignore torsional deformation and the offset of 

centre of gravity of payload.

Low [12] uses Euler-Bemoulli beam theory to model a rotating beam and examines 

the effect of hub inertia and mass load on its vibration. The natural frequencies are observed 

to decrease with increasing hub inertia. Oguamanam et al. [13] consider the case of a two link 

flexible Euler-Bemoulli beam system with one end clamped and a point mass at the free end.

10
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Hamilton’s principle is used to derive equations of motion. The frequency equation, mode 

shapes and the orthogonality condition are also presented along with numerical examples.

Bhat and Wagner [14] determined the natural frequencies of a uniform cantilever 

beam with a tip mass whose centre of gravity is not coincident with the point of attachment to 

the beam. This work is further extended by To [15] to include base excitation effects on 

natural frequencies and mode shapes. The case of a non-uniform cross-sectional beam is 

examined by Laura and Gutierrez [16]. Storch and Gates [17] examine transverse vibration 

and buckling of a cantilevered beam subjected to constant longitudinal acceleration with rigid 

tip mass. Two possible locations of the tip mass mass center are investigated: when the mass 

center is located along the beam tip tangent line, and when mass center is arbitrarily offset 

with respect to the beam attachment point (but not l>4ng along the beam tip tangent line). In 

the former case, critical buckling loads and shapes as well as natural frequencies and mode 

shapes are determined analytically. Steady state solutions are shown to exist in the latter case 

except for certain critical values of acceleration. The free vibration problem for this latter case 

of tip loads is addressed in the paper.

Dokumaci [18] presents an exact determination of coupled bending and torsional 

vibration characteristics of uniform beams having single cross-sectional symmetry. The 

simplest continuous mathematical model for the analysis of coupled bending and torsion 

vibrations is obtained by combining the Euler-Bemoulli theory for bending and St-Venant 

theory for torsion. Further, it is shown that the roots of the characteristic equation of the 

governing differential equations of motions can be separated to obtain real exact solutions. 

This study is extended to include warping by Bishop et al. [19]. The inclusion of the warping 

effect is observed to make an appreciable difference in the results of a thin-walled beam of 

open section. Kirk and Wiedemann [20] use Euler-Bemoulli beam theory to determine 

analytical solution for the natural frequencies, mode shapes and the orthogonality condition of 

a free-free beam with large offset masses connected to the beam. Results are presented for 

different magnitudes of masses with various fixed orientations while ignoring torsional 

effects.

Oguamanam [2] uses Euler-Bemoulli beam theory for the determination of the natural 

frequencies, modal shapes and the orthogonality condition of a cantilever beam with a finite 

mass rigid load whose centre of gravity is not coincident with its point of attachment to the

11
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beam. This work is extended in this project to include out-of-plane flexural deformation. The 

natural frequencies are calculated for a manipulator with rigid tip mass and experiencing 

flexural-flexural-torsional coupling. It is observed that the natural frequency is dependent on 

many parameters such as the magnitude of the tip mass, the offset o f the tip mass centre o f 

gravity from the point of attachment, the moments of inertia of the tip mass about the centre 

of gravity, the length of the beam, the slenderness ratio, and the bending stiffness and 

torsional rigidity of the beam.

12
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CHAPTER 3

3.0 System Description
The flexible manipulator, modeled as a cantilever beam with a rigid tip load, is shown 

in Fig. 3.1. The length of the beam is denoted by L, the cross-sectional area is denoted by A, 

the second moment of area about the bending axis is represented by /, and the polar

O '

Fig.3.1 Schematic of flexible manipulator [21].

moment of inertia is denoted by J. The density. Young’s modulus, and shear modulus of the 

beam material are respectively denoted by p, E, and G. The mass of the rigid tip load is

denoted by M, and its inertia tensor about the centre of gravity is represented by I.

The deformation of the system from its original arrangement is described by the use of 

five orthogonal dextral references frames which are denoted by j?/, jâ, y , / and The

reference frame is an inertial or a Newtonian frame with its origin fixed to the clamped

end O of the flexible beam. It is represented by X -, Y -, and Z-coordinate axes with the 

corresponding unit vectors d,, and , respectively. The X-axis coincides with the

longitudinal/elastic axis of the beam before deformation.

13
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The payload is attached to the tip of the beam at point O. The dextral beam body-fixed 

reference frame with unit vectors 6 , ,4  and4  is attached to the point O in such a manner

that each unit vector è,. is parallel to the corresponding â,. before deformation. The dextral 

body-fixed reference frame with unit vectors c,, and Cj is affixed to point O of the 

payload with each unit vector c, parallel to the corresponding 6,. The dextral payload body- 

fixed reference frame with unit vectors , d.̂  and is attached at the point of attachment 

of the payload. The fifth dextral payload body-fixed reference frame having unit vectors

êpêj and g] is attached to the centre of gravity of the payload and all its unit vectors are 

always parallel to the corresponding unit vectors of reference frame

The position vector from the point of attachment of the payload O to the centre of 

gravity of the payload G is denoted by Tq and it has the Cartesian components Ox, Oy, and o%. A 

differential beam element located at position (x,y) from the clamped end O of the beam is 

assumed to experience both torsional deformation (p (x, t) and bending deformations v(x, t) 

and w(x, t) in the XY plane and the XZ plane, respectively.

14
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3.1 The System Governing Equations:

The governing equations and boundary conditions of the system are derived in [21], and these 

are presented below:

Equations o f motion:
+ = 0 (3.1)

pAw + w"' = 0 (3.2)

pK^(p-GJ(p" = 0 (3.3)

and boundary conditions

v(0,O = v'(0,O = 0 (3.4)

m,v{LA) + m,o^v{L,t) + m,o^ç{L,t) -  EI^^v"(L,t) = 0 (3.5)

m^o^v{L,t) + {In + + +m,o^o^)^(L,r) +

(/^  + = 0 (3 6)

w(0, t) — w'(0, t) = Q (3 •7)

m,-i\iL,t) + m,o^w (Lyt) -  m,OyÇ{L,t)-E I^w ”{L,t) = m,g (3-8)

m,o^üiL,t) + iIyy +m,{o; +o:))w'iL,t) + ( I ^ -m,o^Oy)ç(L,t) +

(/^ + = (3.9)

(g(0,f) = 0 (3.10)

m,o.v{L,t)-m,Oy\iiL,t) +{I^ + m,(ol +o:)ç(L,t) +

(/^. + m,o^o.)v'(L,t) + (/ .̂ -  m,o^Oy)w\L,t) +

GJ<p'{L,t) = -m,go .̂ (3.11)

Where ( ) = —  and ( ' ) -
'  8% dt
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The above governing equations Eqs. are uncoupled, but the system dynamics are

coupled via the boundary conditions. The method of separation of variables can not be used to 

solve these equations because o f the presence o f non-homogeneous boundary conditions. 

Homogeneity can be ensured by introducing new variables y and w ,, which are defined as

y{x,t) = t p - ^ o ^ x  (3.12)

w.(x,t) = M i x , t ) - ^ ^ x \ o , + L ) + - ^ x ^  (3.13)

For ease o f analysis and presentation, the following non-dimensional parameters are 

introduced.

4 ...:pAL w 
E li (3.14)

“ ‘ = 1

The separable solutions are assumed in the forms:

v(%,t) = W.(%,() = and = FĈ )e'"' (3.15)

Equation (3.15), in conjunction with Eqs. (3.12)-(3.14), is substituted into Eqs. (3.1)-(3.11) to 

obtain the following non-dimensional system governing equations

K '"-/lV  = 0 (3.16)

PFr-A-'aV. =0 (3.17)

r - A W r  = 0 (3.18)

which are subjected to the following boundary conditions:

F(0) = r(0) = 0 (3.19)

A%(F(1) + a,V'(\) + a,r(D) + F"(l) = 0 (3.20)

16
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X\M,a^{VC  ^  yM ,{al +a^))F '(l) + (I^  +M ,a^û,).r{l) +

0 ^ + M ,a ^ o J f ; : '( l ) } - r ( l )  = 0 (3 .21)

^(0) = K(0) = 0 (3.22)

2VM,(PF.(l) + aX (l)-ûy r(l)) + ̂ "= 0  (3.23)

X^a‘"{M,aJV.{\) + {ly  ̂+ M ,(a ; +a;))fT.'(l) + (I^  -M ,a ^ a ,) r ( l)  +

(I^  + M,a^a^)V\\)} -  W.\\) = 0 (3.24)

r (0 )  = 0 (3 .25)

A"%={M,aT(l)-M,a^FP:(l) + 0»  +M,(a; +a^))r(l) +

( L  + j r ' ( l )  -  (I^  -M,a,a^)PP:'(l)} - r ' ( l )  = 0 (3 .26)

17
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Chapter 4

4.0 Characteristic Equation

Taking into consideration the boundary conditions, Eqs.(3.19) and (3.25), the general solution 

to the governing equations (i.e., Eqs. (3.16)- (3.18)) can be written as

V (^) = Â  (sin(2,^) -  sinh(A^)) + (cos(A^) -  cosh(A^)) (4.1)

W. (f) = 5, (sin(A^) -  sinh(A^)) + 5, (cos(A^) -  cosh(;i^)) (4.2)

r(f )  = Csm(A'%,uf) (4.3)

The above equations are substituted into the remaining boundary conditions Eqs. 

(3.20),(3.21),(3.23),(3.24) and (3.26)) to yield a set of equations that is expressed by using 

compact matrix notation as

A,.,X;.,=0 (4.4)

Where X=[C A; A% B| is column vector of the coefficients of the general solutions, Eqs. 

(4.1).(4.3). The frequency (or characteristic) equation is obtained by equating the determinant 

of matrix A in Eq. (4.4) to zero; it may be written as

-  A-xSuO-^^yy, ~  +

A/,[A(/ic„F„„ +2A//a,c„5,5/i„ -  A" %1 -  Â /A + 2 Â %J,(G J  -

a,l^,)s,sK + A'z^,(L,I::, -  IL)F;o.) + + 2Àa^,c„s^.sh, -

(a,I^, + a,L, )sjh^. +

A-(2I„I,y, -  lyrdo,,)) + ~ l̂y,)Ksv ~

+ 2A^A.A))F;n.. + A"«(%^,J».jA,.(2a,(L,L, - l D  +

18
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/^ul=/(^«w +2Aœz^5„ /̂!„))F,„ +^a'^XSu<^^^yy^=:,-lyy '̂ t̂ - i y = ,  +

Ijçy,I = Iy= Wcc.Fcr..+aFcn.Fcc^y\- 

M;[A^(%aXfL + -2a^a,I^, +a;L.,)F,„)F,^, +

Â a(;irfl;5„F„„, + Xa^fia]c^F,^ -  À̂ a ẑ̂ u (^^L, + 2a,a^I^, + a;Iyy,)F̂ )̂F̂ ji. + 

X*as^sKs^shSX-Zs,(4a/a ,I^  + a^I^, -  ) -  a^a=I^ ) -  4//a% ) -

+2;W Xfy^\fL + 2AaX^,fA,F^.+

os„,5/i„F„„))I ,̂ + ̂ a\^ac^{F^,,+lÀa,s,sh;)F^^-X{X^]c^F^^^ + xa]s,F^JF^r.)l^^, + 

?^a{fjc  ̂(F„„ + 2Àaa,s„shJF^„ -  À{Za /̂ja;c^F^^„ + +

2A^a;i:s„(«a^5„5;i,.F„„I ,̂ - 2 ? . ((z^Lv^L, -^A^x^'cc-^cn, " 

2as,sh^F^^)){l^,lyy, -  l]y,)-À’axs,XF,„F^^-aÀa^{Àa^a^F^^F^^, -  

2s„sh^.F,J)(l^,l^. -  II-, ) -  À̂ a  ̂xaMo^.sKKn., -  2iï,F,„F,„)(I^,I^, -  21^1^, ) + 

Z^cc-xayS,{s,.sh„F^„- Àa-a^F^„F^^)(l^,l^, -2l^.,J^,}- Z^a\apc^F^^.F,^ -  

ÀxsSaa;F^^.F^^. + a:F^„F^^.))\^,l^, -lLl„-, -

1̂ ,1-.., + L ,I_ I ,,,)]-

zl'‘aM/[-A/ia;c„(F„„ + 2Àaa^s,.shJF^^^.-xa;s,(F„„ + 22aJF„„, -  

^cAjjalc^ (F„„ + 2Àn^s,sh,)F^„ -  xazs, (F„„. + 22cm, )F„„ + 

+ «̂ „̂v-/̂ cH) + 22cm (̂5„s/i„F,,„. + ff-5,5/î,F,„.))I,,, + 

2^ü:-(2/m;c, +2'^„(a; +a;)F„, + 22;?ra^a;5„5,5/!,)F„,,I,j, + 

2̂  (a; +a; )F„„. + 22cc%a,.a;j, ,̂,.rA„.)f; ,̂I ,̂ +

22 â^a^a^5„((ût-F„.. + 22a ŝ„5/î,,)F„„ +2a,.5„5/)„F,̂ ,̂.)!.,,, -

2^^Z^x^z^uii^csw +‘̂^<^x^wSK)fccw + ~

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



^^axa^a^a.s^is^sh^F^ +a-s,sh^F,^')l^_, + 

A®or̂ ;!fs„(â (Î , +I« -Ixr;I>y,)-«xa.(I^,I^, “ 21^,1») +

-  2Ix.,I=, ))f%vfL.] +

Xaa;M^[X/ja'alc^F^^,F^^+alxs,F^„F^,^+a^Za:s,F^,,F^^ -

A^aV.C^xIxx, + a ;y , + 0 %  +2a^a^I^, -2a_,a,I,,, -a^al^,)F^„F^^]^Q
(4.5)

where

FtfP̂ '^^Cpchp, F„p=spchp+Cpshp, F^p=Spchp-Cpshp, F^^p=\-Cpchp

s„ = sin(l^%//), =sin(Aa), ĉ  =cos{X), sĥ  =sinh{X),cK =cosh(/l)

c„ = zos{ ^ x f \  = sin(A(%) ,c^ = cos{Za),sh„ = sinh(Aa), =  cosh(Ao;)

=  / «  +  M , (o ' +  ), = / ^  + M, ), / ^  = / .  + M, (a^ + )

/„ ,  = - M , a ^ a ^  , I ^ ,  = M , a ^ a ^ , I ^ ,  = M , a ^ a ^  and f i  e {v,zzr}

If the bending rigidity in the y-axis is very large compared with that in the z-axis. 

( i.e .,a -> 0 ) which implies that -> 2 and andF„„_,o, the frequency

equation Eq.(4.5) reduces to:

K , F ,

+ 2X'/Ja,ç,,s,sh,-À’zI„ ^„ F , ~ - a J ^ X s h ^  -
+ ̂ V , - / ’» K ] - F l , - V ’x‘‘‘ s„ F^+X‘^mlc,,F„-X‘x!,.  ̂(a,V„- 
2 o A / „ + a ; / „ )  K  1=0

This equation is the same as Eq. (25) of Ref. [2]. Similarly, the frequency equation of a

uniform cantilever beam with a tip mass that is slender in the longitudinal direction that is

derived by Bhat and Wagner [12] can be replicated by assuming only bending stiffness with 

negligible torsional deformation (i.e., j  -> 0), with the following conditions: ay = a% = 0 and

IXX, =^xx, =0-

20
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The characteristic (frequency) equation, Eq. (4,5), reduces to
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Chapter 5

5.0 Numerical Simulation and Discussion
The Characteristic (frequency) equation of a cantilever beam with rigid tip mass 

experiencing flexural-flexural-torsional coupling is solved for a beam with the following 

material properties and geometric parameters: Young’s modulus E= 210 GPa., Poisson’s 

ratio V = 0.3, Density p = 7000 kgm'^, Cross-sectional area A= 100 mm'^. Length L=5 m 

and Torsional constant J  = 7.0865x10''° m**. The torsional constant is computed from the 

formula [22]

 g—  tauh
7T h j j

(5.1)

The results are compared with the results obtained from commercial finite element software 

ANSYS. The AN SYS results are based on 500 “BEAM4” elements. The results are tabulated 

in Table 1. It is observed that the ANSYS results are in excellent agreement (up to the fourth 

decimal place).
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Parameters Analysis
Method

Non-dimensional natural frequency X

X\ • X2 X3 14 15

Mt =0 ANSYS 1.8751 3.7502 4.6941 7.8548 9.3882

Ixx = Iyy= Izz = 0 Present 1.8751 3.7502 4.6941 7.8548 9.3882

Mt =0.5 ANSYS 1.4200 2.8400 4.1112 7.1904 8.2223

Ixx = Iyy=Izz =0 Present 1.4200 2.8399 4.1111 7.1903 8.2223

Mt =0.5,/xx= 0.2 ANSYS 1.4200 1.5958 2.8400 4.1112 7.1904

Iyy= Izz =0 Present 1.4200 1.5958 2.8400 4.1111 7.1903

Mt =0.5, Iyy= 0.2 ANSYS 1.4200 2.4975 4.1112 4.5663 7.1904

Ixx = Izz = 0 Present 1.4200 2.4974 4.1111 4.5662 7.1903

Mt =0.5, L: = 0.2 ANSYS 1.2487 2.2831 2.8400 5.0360 8.0591

Ixx — lyy ~0 Present 1.2487 2.2831 2.8400 5.0360 8.0590

Mt =0.5, Ixx = 0.2 ANSYS 1.2487 1.5958 2.2831 2.4975 34.5663

Ixx ~ Izz =0.2 Present 1.2487 1.5958 2.2831 2.4974 4.5662

Table 5.1: Validation of the analysis for â  = ay= a%= 0.0, a  =0.5, |_i =1.1902319x10'^ and 
X =0.8780
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5.1 Effect of varying the offset on the natural frequency
The effect of varying the offsets is examined using the following parameters: a  = 0.5, 

Mt= 0.5 and 7^ = 7^ = 7^ = 0.2 . When any two offsets are varying, the non-varying offset is

set to zero. The results for varying ay and â  (with â  = 0) are depicted in Fig. 5.1. It is 

observed that the natural frequency decreases with increasing ay (a% ) values for given values

of 32 (ay).

The results obtained for varying az and a%, on the one hand, and â  and ay, on the other 

hand, are respectively illustrated in Figs. 5.2 and 5.3.The natural frequency in both scenarios 

decreases with increasing a% or ay for a given value of a%. The offset along the longitudinal 

axis of the beam a% has no significant effect on the natural frequency for a given value of a% or

ay.

1.248

1.245

0.08
0.080.06

0.060.04
0.04

0.02 0.02
0 0

■y

0.10

Fig. 5.1 : Effect of varying the offset along the y-and z-axes for a  = 0.5, Mt= 0.5, a% =0.0.
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Fig. 5.2: Effect of varying the offset along the x-and z-axes for a  = 0.5, Mt = 0.5, ay -0.0.
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1.25

O.OS II 10

o(w

It o«y ox

Fig.5.3; Effect of varying the offset along the x-and y-axes for a  = 0.5, Mt= 0.5, a% =0.0.

5.2 Effect of varying the moment of inertia on the natural 
frequency

The effect of varying the moment of inertia about the center of gravity is examined 

using the following parameters: a  = 0.5,% = 8.7802 x 10“',y/ = 1.1902319 x 10“̂ , ax =0.0,

Uy =a, = 0.05 and M, = 0.5. With fixed at 0.20, the results for varying and 7̂ , are 

illustrated in Fig. 5.4. The natural frequency decreases with increasing values of I^  for given 

values of 7 ^ . The variations in 7 do not, for the range of values examined, have any 

significant effect on the natural frequency for given values o f7,^.

The effect of varying 7^ and 7^ for 7̂ , =0.20 (see Fig. 5.5) shows that the natural 

frequency decreases with increasing values of7,̂  for a given value of7^. For a fixed 7^, 

especially for higher values, the natural frequency is invariant for a range of7^. For small
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fixed values, however, there is a range of over which the natural frequency is invariant, 

before decreasing with increasing/^.

The effect of varying /^and/_^ for /̂  ̂= 0.20 is illustrated in Fig. 5.6. It is observed 

that for any given value o f /^ , there is a range of /^  over which the natural frequency is 

invariant. Outside this range, the natural frequency decreases with increasing/^. The effect of 

varying / ,̂, for given /^  is negligible.

i.j >

&
i
1

'S1
I

0  4
0 2 U.Z

( I
lyy Izz

I (•

Fig. 5.4: Effect of varying the moments of inertia, lyyOnd 1^ of the tip mass about its centre 

of gravity fo ra  = 0.5,% = 8.7802x10"',// = !.! 902319xlO "\ /^, = 0.20, a , = 0.0,
Oy=a^= 0.05
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0.2

(I 0Ixx Izz

Fig. 5.5: Effect of varying the moments of inertia, I ^ a n d  1^ of the tip mass about its centre

of gravity fo ra  = 0.5, z  = 8-7802 x lO ~ \^  = 1 .19023I9xI()-\/ -  0.20, = 0.0,-3

Oy = = 0.05
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1.4
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1.0

0.8

0.»0.6

06
0.4

0 2
0.2

Ixx lyy

10

Fig. 5.6: Effect of varying the moments of inertia, I ^ a n d  of the tip mass about its centre 

o f gravity fo ra  = 0.5,% = 8.7802 x 10"’, =  1.1902319 x 10"^,/,. = 0.20, = 0.0,
Oy - a ^ =  0.05

5.3 Effect of payload mass on the natural frequency

The effect of varying the payload mass on the natural frequency is examined using the

following parameters: a  -  0.5,% = 8.7802x10"', ju = 1.1902319x10"^, -  lŷ . =

= 0.20. The non varying offsets are set equal to zero. Fig. 5.7-5.9 respectively illustrate the 

effects o f varying the payload mass M, with u,, a ̂  or a .̂ In all scenarios, the natural frequency 

is observed to decrease with increasing payload m assM ,, thus reflecting the increased system 

inertia. However, variations in or a, do not result in any significant change in the 

natural frequency. This could be because the extra inertia components are negligible.
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1.30

J.23

1.20
0,5

0  4

0.3

0.00

0.04
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Mt ax

Fig. 5.7: Effect of varying the payload mass M, and the offset about the x-axis a%, for
a  = 0.5, % = 8.7802 x IO"',// = 1.1902319 x 10"^ 7^ = / ^  = /_  = 0.20
a^ = = 0.0
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1.30
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Fig. 5.8; Effect o f varying the payload mass Mt and the offset about the y-axis ay, for
o: = 0.5,;^ = 8.7802xl0-',// = l . l 902319x I Q - \ = 0.20, = o. = 0.0
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Chapter 6

6.0 Conclusion

The goal of this project is to calculate natural frequency of a manipulator which is 

modeled as a cantilever Euler-Bemoulli beam. The manipulator experiences torsional and 

bending deformation in XY and XZ planes. The analysis is restricted to small deformations, 

and Hamilton’s principle is used to obtain the system governing equations. A closed form 

expression of the characteristic equation is derived, and this is solved by a root finding 

technique using a MATLAB computer program.

The effect of varying different parameters on the frequency equation of the system is 

observed. The accuracy of the frequency equation is supported by the results that are obtained 

from finite element software ANSYS. The ANSYS results are based on finite element 

analysis using 500 “BEAM4” elements and are in excellent agreement (up to the fourth 

decimal) with the present work. The possible extension to the project includes the use of other 

beam models and the inclusion of warping.
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