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Abstract

This thesis explores features characterizing the temporal dynamics and the use of ensemble techniques to

improve the performances of environmental sound recognition (ESR) system. Firstly, for acoustic scene

classification (ASC), local binary pattern (LBP) technique is applied to extract the temporal evolution

of Mel-frequency cepstral coefficients (MFCC) features, and the D3C ensemble classifier is adopted to

optimize the system performance. The results show that the proposed method achieved a classification

improvement of 8% compared to the baseline system.

Secondly, a new approach for sound event detection (SED) using Nonnegative Matrix Factor 2-

D Deconvolution (NMF2D) and RUSBoost techniques is presented. The idea is to capture the two-

dimensional joint spectral and temporal information from the time-frequency representation (TFR) while

possibly separating the sound mixture into several sources. Besides, the RUSBoost ensemble technique

is utilized in the event detection process to alleviate class imbalance in the training data. This method

reduced the total error rate by 5% compared to the baseline method.
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Chapter 1

Introduction

1.1 Motivation

How to make machines have the abilities to make sense of the environment remains an important

research topic in several engineering and computer science disciplines. If machines are made to be aware

of their surroundings as human beings are, they would be able to produce an accurate response and

facilitate our lives. While our understanding of vision problems is well developed, the rest of the senses

have not been investigated as much as vision has. Actually, sound also carries useful information that

can be used in robot navigation, surveillance system and so on. Apart from that, it can serve as the

complement to modalities such as video. Although computers can sort of recognize speech, apparently

that is not all hearing is good for and we do more with our ears than just hear other people talk.

Therefore, for computers to sense their environment in a human-like way, recognizing general sounds in

daily environment is an important task. However, the technical challenges in this problem are plenty,

since the acoustic surroundings can be quite complex. In realistic environments, the acoustic signal

reaching our ears may be a complex mixture that consists of sound waves from multiple sources and in

reverberant conditions.

This challenging task is defined as machine hearing by Lyon [1]. An ideal machine-hearing system

would carry out analogous task to human auditory system, which means it will face a large variety of

hearable sounds, and should handle all of them successfully. Because of the diversity of sound sources

and application areas, typically the machine hearing task can be divided into some specific problems

1



1.2. OVERVIEW

based on the nature of the acoustic signal. In this way, the system becomes easier to be developed and

optimized. By focusing on speech signals that can be characterized by their spectral distribution and

unique phonetic structure, plenty of works in the literature deal with tasks such as speech recognition [2]

and speaker identification [3]. Besides speech, music is another type of structured acoustic signal that

has a set of distinctive traits. Systems designed for specific tasks such as music genre classification [4],

instrument recognition [5], and music annotation [6] have been developed by researchers.

As we can see, machine hearing research has primarily been focused on speech and music signals that

have some unique characteristics, and there are many theories about how these signals are processed in

unique ways by our brain [7]. In contrast, other kind of sounds, referred as environmental sounds (e.g.,

traffic noise, door knocks, crowds.), do not exhibit such uniqueness. General environmental sounds,

such as that of a thunder or a storm, have neither apparent sub-structures such as phonemes, nor

meaningful stationary patterns such as melody and rhythm. Nevertheless, environmental sounds indeed

contain many contextual cues that help us to identify important aspects of our surroundings, so these

natural and in-the-wild sounds should also be detected and recognized by the machine hearing systems.

Compared to other field such as image processing and speech processing, there is relatively little research

activity for the environmental sound analysis. This type of sound can be easily collected with many

devices such as mobile phone, and MP3 player without much impact to the individuals. Therefore it

may have many potential applications.

1.2 Overview

1.2.1 Sound Categories

A sound taxonomy that divides sounds into several categories is given in Figure 1.1. We can see from

this figure that hearable sounds are separated into five subsets, and examples describing each class are

also given. In this taxonomy, only the music and speech class are well structured, other categories such

as artificial and natural sounds have not been clearly defined.

2



1.2. OVERVIEW

Sound

Hearable Sound

Noise

Natural Sounds

Objects

Interactions

Artificial Sounds

Source

Intent

Speech

Language

Speaker

Emotion

Content

Music

Instrument

Type

Content

Non-hearable 
Sound

Figure 1.1: A taxonomy for sound, adapted from [8].
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Characteristics Speech Music Environmental 
sounds

Possible Sources Finite Finite Infinite

Basic Units Phonemes Notes Undefined

Stationarity Stationary Mostly stationary Stationary
Non-stationary 

Harmonic 
Structure

Clear Clear Unclear

Length of Analysis 
Window

Short Long Undefined

Length of Shift Short Long Undefined

Bandwidth Narrow Relatively narrow Broad

Figure 1.2: Characteristics of speech, music and environmental sounds, adapted from [9].

1.2.2 What are Environmental Sounds?

Speech, music and environmental sounds are not necessarily mutually exclusive, since those two can

occur in the environment. In this thesis, environmental sounds are used to describe naturally occurring

sounds that one encounters in daily life. Sound sources are considered to be the objects to generate the

sounds, and sound events refer to things or sources that may yield acoustic waveform. Therefore, events

may have closely associated sounds, and that’s why a listener can recognize an event or a source.

Compared to speech and music, the characteristics of environmental sounds are fairly varied and

hard to generalize. It results from the wide range of sources that environmental sounds may contain. An

example that compares the characteristics of speech, music and environmental sounds are listed in Figure

1.2 [9]. It can be seen that the characteristics of environmental sounds do not have clear definitions.

4
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Figure 1.3: Spectrograms of key drop
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Figure 1.4: Spectrograms of drawer
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However, for speech, at least we know that speech tend to have a narrow bandwidth because most of

the energy are contained in the lower frequency bands. For music, the energy may spread over a wider

frequency range, leading to a broad bandwidth. Since most of the basic information about environmental

sounds is unknown to us, it is more difficult to find features that characterize them well. That’s why

the ESR system may be task-specific, focusing on certain types of sounds.

In Figures 1.3 and 1.4, the spectrograms of the sound event key drop and drawer are shown respec-

tively. They were analyzed using short time Fourier transform (STFT) with different window length. As

we can see, for the key drop sound, the signal spectra has higher variation when using shorter windows.

While, the temporal variation in spectrograms of drawer sound remains almost unchanged when using

different window lengths. This may explain why classic features for speech and music analysis are not

always enough for analyzing environmental sounds [10].

Another factor that makes the ESR problem challenging is the sounds reaching our ears may be

a mixture of multiple overlapping sound events, which may produce features that are difficult to be

identified. Besides, the noise present in the environmental sounds can also affect the system performance,

as the definition of noise is relatively subjective. Even in the same acoustic scene, the noise may

change with the location, weather, object, etc. The collecting device can also influence the quality of

environmental sounds. Compared to speech which is recorded close to the microphone, environmental

sounds can be recorded either close or far from the microphone, which makes the quality of the audio

vary. Due to the application requirement, the recording of environmental sounds may be conducted on

a portable and embedded device, which makes it hard to control the quality of the audio.

1.2.3 Research Tasks

There are two independent but relatively general types of task that a machine hearing system would

carry out. One is the recognition of the general environment type, which is referred as ASC, and the

other is the detection and classification of events occurring within a scene, which is referred as SED.

Acoustic Scene Classification

ASC refers to the task of assigning a semantic label to an audio stream that identifies the environment

in which it has been produced [11]. An overview of the SED system is shown in Figure 1.5. An overview

of the SED system is shown in Figure 1.5. It can be seen that ASC system performs a multi-class

6
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classification task, in which a set of pre-defined classes are given and the system must select one as the

classifcation output. Similar to many classification problem, the performance of such a system would be

depended on the extracted features as well as the classification technique.

Feature Extraction

Classification

Drawer

Phone

...

...

Output

Figure 1.5: Overview of ASC system

Sound Event Detection

Different from ASC, SED refers to the task of labeling temporal regions of the active event within the

audio, by predicting the start and end point of each event. Obviously, this task is more complicated

than the classification one, since the detection task needs to discriminate the event categories of interest

from the rich background sounds. An overview of the SED system is shown in Figure 1.6.
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Feature Extraction

Event Detection

Key Drop

Phone

...

...
Output

Drawer

Start point End point

Figure 1.6: Overview of SED system

1.3 Applications

There are practical applications that specifically benefit from environmental sounds research. Examples

of possible future technologies that are related to ESR include smart devices that continuously sense

the environments, switching among different modes; assistive technologies such as hearing aids that

adjust their setting based on the sense of the surroundings; or sound archives that automatically assign

metadata to audio files. Moreover, classification of acoustic scene could be considered as a preprocessing

step to adapt algorithms developed for other applications.
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1.3.1 Context-aware Services

Comparing with traditional computers that only follow the users’ orders, we may prefer a more smart

system that can sense some context information to adapt its operation accordingly and automatically.

This may be referred as Context-aware services [12], which is a computing technology that incorporates

information about the current location of a user to provide a series related services to the user. Ap-

parently, context-awareness is quite crucial to the development of such systems. Context can refer to

real-world characteristics, which may include weather, time, location, recent event. If the devices are

able to identify the scene and update this information by analyzing the environmental sounds, it can

predict what the user may need and adjust its mode of operation for the user.

1.3.2 Intelligent Wearable Devices

Facilitated by the fact that many portable devices have built-in microphones, the device can make

recordings and analyze the environmental sounds, therefore make the device intelligent. Hearing aid

systems can also benefit from ESR [13]. A hearing aid is a device designed to improve hearing. As the

environment information can be used to tune the parameters and settings of the hearing aid devices,

the digital hearing aids can help the users hear clearly in almost any environment. The hearing aids can

adjust the volumes automatically after they learn the user’s preferences in different environments, and

switch programs for different situations based on the analysis of environmental sounds. Therefore, the

users can gain better listening experience.

1.3.3 Audio Archive Management

Archives of audio can also utilize the ESR technology [14]. The acoustic information obtained from

environmental sound analysis can provide great convenience for material searching in audio libraries,

especially for those big libraries where access is really time and labor consuming. Although the use

of keywords can help with retrieving, this method still is subjective to each individual. If the type of

acoustic scene of an audio can be recognized by the system, then it can be classified into the corresponding

archives. Further, the detected sound event types can be used as keywords and saved in the metadata

of the audio file. With the help of ESR, it is more efficient to browse an audio database.
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1.3.4 Robotics Navigation Systems

Robotics navigation system that works in the acoustic environment is designed for the situation where

the target is not inside the scope of the visual sensor [15]. In this case, only the auditory sensor can

be used to detect the target. For such a system, the input audio obtained from the auditory sensor is

firstly used to localize the target. When the target is detected, the decision making unit will utilize the

environment information to plan a safe path to the target.

1.4 Original Contribution

In this thesis, two novel ESR methods are proposed which are expanded upon on chapters three and four.

The inspiration for this comes from the idea that temporal characteristics of environmental sounds can

be used to identify different sound events. Besides, the application of ensemble classifier is to produce a

more robust model by combining the outputs of some base learners. With these two perspectives, the

following new methods are developed to address two general tasks of ESR:

The first contribution is that we develop a new method for ASC. This novel approach utilizes tem-

poral information of environmental sounds and the D3C ensemble classifier to improve the classification

performance. We apply an image processing technique called LBP to extract the temporal dynamics of

the signaland combine these features with the commonly used MFCC features. The experiments on the

Detection and Classification of Acoustic Scenes and Events (DCASE) database show that this technique

can outperform the baseline system.

The second contribution is that we present a new solution for SED, which captures the joint spectral

and temporal information of the signal and adopts the RUSBoost ensemble technique to reduce the

detection error. This work utilizes a matrix factorization method called non-negative matrix factor 2-D

deconvolution (NMF2D) to generate the time-frequency templates and their corresponding activation.

Three known TFR are compared and discussed to select a more effective representation. The experiments

on the DCASE database show that this technique can reduce the detection error and improve the F-score

when compared with the baseline system.
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1.5 Thesis Organization

The organization of the thesis is shown in Figure 1.7. The remainder of this thesis is organized as follows:

Chapter 1
Introduction

Chapter 2
Background

Chapter 3
Acoustic Scene 
Classification

Chapter 4
Sound Event Detection

Temporal Patterns

Feature Extraction

Ensemble Learning

Classification/Detection

Chapter 5
Conclusion

Figure 1.7: Organization of the thesis.

11



1.5. THESIS ORGANIZATION

Chapter 2, Background, is a literature review of techniques for ASC and SED. It summarizes the

commonly used acoustic features for describing environmental sounds, and the classifiers and detection

schemes for the classification/detection task.

Chapter 3, Acoustic Scene Classification, focuses on a novel approach based on LBP to capture

the temporal dynamics between MFCC features. Some complementary spectral features such as spec-

tral centroid (SC), spectral bandwidth (SBW) are utilized to further improve the ASC performance.

Chapter 3 also presents the use of ensemble learning technique called D3C[16] to effectively classify the

environmental sounds.

Chapter 4, Sound Event Detection in Real Life Audio, introduces the use of joint spectral and

temporal features that are derived from NMF2D. An ensemble approach named RUSBoost[17] is utilized

in the event detection process to alleviate class imbalance between the background and each event.

Finally, Chapter 5, Conclusion and Future Work, presents the concluding remarks about the merits

and limitations of the proposed methods and directions for future improvements.

.
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Chapter 2

Background

This Chapter is divided into three sections. The first section investigates acoustic descriptors that are

commonly used for characterizing the environmental sounds. The second section summarizes classifica-

tion techniques for ASC. Finally, the third section introduces the most common detection schemes for

SED.

2.1 Acoustic Features

Acoustic features can describe the characteristics and properties of sound from various aspects. Good

features should be discriminating among different classes and robust to noise. This section introduces

several categories of audio features that have been employed in analyzing the characteristics of environ-

mental sounds.

2.1.1 Time Domain Features

The following paragraphs describe the temporal features that have been used in ESR.

zero-crossing rate (ZCR)

The short time ZCR is defined as the number of times the waveform of a audio signal from positive to

negative or back during a time interval. It measure of the average rate of sign changes, thus can estimate
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the dominant frequency of the signal. It was used in an audio-based surveillance systems proposed in

[18]. The short time ZCR can be expressed as

Zn =
1

2N

N−1∑
m=0

|sgn{x[m]} − sgn{x[m− 1]}|w[n−m], (2.1)

where

sgn{x} =

 1 x ≥ 0

−1 x < 0,
(2.2)

w[n] represents the windowing function of length N and n is the shift in number of samples at which we

are interested in knowing the short time energy.

MPEG-7 audio waveform (AW)

This type of feature describes the audio waveform, representing the downsampled waveform envelope.

It is defined as the maximum and minimum samples of a function within non-overlapping frames. The

work in [19] used AW as a feature in environmental sound recognition.

Power based features

Temporal acoustic features based on signal power have also been employed in ESR. These features

include short-time energy (STE), which is defined as the average energy of each signal frame, and is

useful for detecting the transition between unvoiced and voice speech. The STE is given by

En =

N−1∑
m=0

(s[m].w[n−m])2, (2.3)

where w[n] is the windowing function of finite duration N , and n is the the shift in the number of samples

at which we would like to compute the STE. MPEG-7 temporal centroid has also been used [20]. It

represents the time point in a signal where most energy is located on an average, and is defined as the
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time average over the signal envelope using:

TC =
Nhop
Fs

∑L−1
l=0 (lEnv(l))∑L−1
l=0 Env(l)

, (2.4)

where Env(l) is the signal envelope given by

Env(l) =

√√√√ 1

Nw

Nw−1∑
n=0

s2(lNhop + n) (0 ≤ l ≤ L− 1), (2.5)

L is the total number of frames, Nw is the frame size, Nhop represents the hop size, and Fs is the

sampling rate. The factor
Nhop

Fs
represents the frame sampling rate.

2.1.2 Frequency Domain Features

Spectral features are another set of acoustic features reported in the literature of ESR [21] [19]. These

frequency-domain descriptors can be obtained by converting the signal into frequency-domain using

Fourier Transform. We summarize some of the spectral features based on the work in [22] [23]. Let us

define si[n] as the ith frame of an audio signal and Si[f ] as the spectrum of this frame. Then, we divide

the spectrum Si[f ] into M subbands that are non-overlapping. The frequency range of each subband is

from lb to ub.

Spectral centroid (SC)

SC is defined as the weighted average frequency for a given subband, which is a good measure of the

center of gravity in each subband. It is given by:

SCi,b =

∑ub

f=lb
f |Si[f ]|2∑ub

f=lb
|Si[f ]|2

. (2.6)

spectral bandwidth (SBW)

SBW is defined as the weighted average distance from frequency to spectral centroid (SC) for a subband.

This feature represents the relative spread of each subband. It can be computed by:

SBWi,b =

∑ub

f=lb
(f − SCi,b)2 |Si[f ]|2∑ub

f=lb
|Si[f ]|2

. (2.7)
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spectral band energy (SBE)

SBE represents the normalized energy of each subband. The SBE shows the energy distribution for a

environmental sound, and therefore it tells us what the dominant frequency range is. It is given by:

SBEi,b =

∑ub

f=lb
|Si[f ]|2∑

f |Si[f ]|2
. (2.8)

spectral flatness (SF)

This feature describes uniformity in the frequency distribution in the spectrum. Therefore, noise-like

sounds tend to have high value of SF. We can compute it using:

SFi,b =
[
∏ub

f=lb
|Si[f ]|2 ]1/(ub−lb+1)

1/(ub − lb + 1)
∑ub

f=lb
|Si[f ]|2

. (2.9)

spectral crest factor (SCF)

Contrary to SF measure, SCF provides a measure for identifying the peak of power spectrum in each

subband. Different from spectral flatness, noise-like sounds would have lower SCF. It is given by:

SCFi,b =
max|Si[f ]|2

1/(ub − lb + 1)
∑ub

f=lb
|Si[f ]|2

. (2.10)

Shannon entropy (SE)

SE is a measure that detects the randomness of each subband. We can calculate it by:

SEi,b = −
ub∑
f=lb

∣∣∣∣∣ Si[f ]∑ub

f=lb
Si[f ]

∣∣∣∣∣ · log2

∣∣∣∣∣ Si[f ]∑ub

f=lb
Si[f ]

∣∣∣∣∣ . (2.11)

Renyi entropy (RE)

RE is another measure that describes randomness of each subband. It is defined by:

REi,b =
1

1− α
log2

 ub∑
f=lb

∣∣∣∣∣ Si[f ]∑ub

f=lb
Si[f ]

∣∣∣∣∣
α
 . (2.12)
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2.1.3 Cepstral Domain Features

Cepstral domain features provide a compact representations of the signal spectrum by approximating

its logarithmic magnitude.

Perceptual filter bank based features

Frequency domain features can be further analyzed using filter banks that mimic the characteristics

of the human auditory system. Clarkson et al. [24] used Mel-scaled filter-bank coefficients (MFCs)

to distinguish speech and non-speech environmental sound. By computing the discrete DCT of the

logarithm of MFCs, MFCC that capture the spectral envelope of a sound are obtained. Although

MFCC are primarily designed for speech processing, they still have been a popular feature of choice in

the field of acoustic scene analysis (ASA). Aucouturier et al. [25] analyzed the bag-of-frames (BOF)

approach to audio pattern recognition, and concluded that the MFCC+GMM approach is sufficient for

recognizing urban soundscapes but not for polyphonic music.

Sawhney and Maes [26] used Gammatone filters to approximate the filtering done by the human

cochlea. Gammatone filters were originally designed to mimic the human auditory spectral response,

base on the ability to approximate the impulse response, magnitude response and filter bandwidth [27].

linear prediction cepstrum coefficients (LPCC)

This feature provide a robust and compact representation of the audio signal, and is developed for

automatic speech recognition. It can be derived from computing the inverse Fourier transform of the

logarithmic magnitude of the linear prediction spectral complex envelope [28]. It has also been found to

be useful for ESR [29].

2.1.4 Spatial Features

This class of features are extracted from the different channels of the audio signal to identify the over-

lapping sound events. Nogueira et al. [30] utilized the interaural time difference (ITD), which measures

the relative delay occurring between the left and right channels, and provides a cue to the direction

the sound source; the interaural level difference (ILD), which the difference in loudness and frequency

distribution between the two channels, in their proposed system. Adavanne et al. [31] employed time
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difference of arrival (TDOA) features to help identify the overlapping sound events.

2.1.5 Time-frequency Features

Environmental sounds are non-stationary audio signals that have time varying characteristics. Time-

frequency features can effectively represent these characteristics, and therefore are employed in a large

amount of feature extraction methods for ESA. In the following paragraphs, we will discuss features

derived from commonly used time-frequency analysis methods.

Spectrogram based methods

There has also been some prior work on extracting various image processing features from the spectro-

gram of an audio clip. Kobayashi and Ye [32] treated the spectrogram of an audio clip as an image

and proposed some effective and robust LBP-based features by incorporating the local statistics in the

spectrogram and using L2-Hellinger normalization technique. Similarly, the work in [33] also used the

LBP descriptors to capture the distribution of audio structure from the spectrogram.

By describing the spectrogram of an environmental sound as a linear combination of the basic func-

tions, matrix factorization can be used to obtain a class of unsupervised learning features. The basic

functions are considered to represent the signature of sound events, whilst the corresponding activation

functions encode the contribution of the basic functions in time. Thus, global and local features can

be obtained jointly. Hennequin et al. [34] and Ghoraani et al. [35] used non-negative matrix factoriza-

tion (NMF), and Benetos et al. [36] employed probabilistic latent component analysis (PLCA) in their

proposed algorithms .

Wavelet based features

The wavelet transform is similar to the Fourier transform (FT) except that the base function used.

FT decomposes the signal into sines and cosine, while wavelet transform (WT) uses wavelets of dif-

ferent scales and positions. Compared to STFT, WT is more effective in representing non-periodic

non-stationary signals that have discontinuities and sharp peaks [37]. Cowling and Sitte[38] applied fast

wavelet transform (FWT) and continuous wavelet transform (CWT) to produce a TFR of environmental

sounds. They concluded CWT is more suitable for recognition task, while FWT can effectively encode

and decode signals.
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Matching pursuit (MP) based methods

MP is another type of signal decomposition methods that represents signals using a finite dictionary

of [39]. This algorithm sparsely decomposes a signal by selecting the optimal subset of atoms from a

given dictionary. The basis functions constituting the dictionary can include wavelet functions, Gabor

functions. At each step, the selection of optimal atoms is determined by maximizing the energy removed

from the residual signal. This allows obtaining a reasonable approximation of the signal with a few basis

functions, which provides an interpretation of the signal structure.

Umapathy et al. [40] used signal decomposition parameter based on octave to generate a set of

features over several subbands within the auditory range. Chu et al. [29] utilized MP to select a

small set of time-frequency features which were adopted to supply MFCC features, demonstrating that

these joint features coupled with MFCC improved the performance of environmental sound recognition.

The performance of their system was comparable to humans. The approach proposed by Ghoraani

et al. [35] also demonstrated the effectiveness of MP algorithm. Their framework constructed time-

frequency matrix (TFM) of an audio clip by using matching pursuit time-frequency distribution (MP-

TFD) technique. Then the TFM were described as a linear combination of elementary functions by

applying NMF technique. Besides, Schroeder et al. [41] investigated the use of Gabor filter-bank

features that capture spectral, temporal and joint spectro-temporal modulation patterns of the sound.

Constant Q transform based methods

Rakotomamonjy and Gasso [42] investigated the use of histogram of gradients (HOG) for ASC. Their

method comprises the following steps [11]. First, the audio signals in the dataset are processed using

a constant-Q transform, which returns frequency representations with logarithmically spaced frequency

bands. Next, they resized all constant-Q representations to a 512*512-pixel gray-scale image by using

a bicubic interpolation and applied mean filtering on it. Finally, the features are extracted from the

images by computing the matrix of local histograms of gradients. This is obtained by split images into

non-overlapping cells, defining a set of spatial orientation directions, counting the occurrence of gradient

orientations, and normalizing each cell histogram. Further these HOG features are locally pooled to gain

more invariance and robustness.

19



2.2. CLASSIFICATION METHODS

2.2 Classification Methods

Once the features are extracted from the audio signal, the next stage of an ASC system generally

comprises using a machine leaning algorithm to categorize the features vectors. In general, there are two

types of models, namely generative models and discriminative models.

2.2.1 Generative Methods

These models are referred as generative models because of their capability of statistically generating a

feature sequence. By assuming that feature vectors can be generated from one of a set of underlying

distributions, generative models are used to learn the distribution of the extracted features. In the

training phase, the parameters of the distributions are estimated using the statistics of the training

data. In the test stage, a decision criterion is used to determine the most likely model that generated

the test data.

By computing the basic statistical properties of the distribution of feature vectors, we can get one

class centroid for each category. The same statistic can be computed for each unlabeled sample that we

assume that it is generated according to the distribution with the closest centroid and assign this sample

to the corresponding category.

Gaussian mixture models

Gaussian mixture models (GMMs) are always the model of choice for acoustic and speech modeling,

as they are quite flexible and computationally efficient to train. By increasing the number of mixture

components of the model, GMMs can also approximate complex density. Suppose N (x, µk) refers to a

normal distribution with mean µ and covariance matrix µk, then feature vector x extracted from the

training data is assumed to be generated by the following distribution:

x ∼
K∏
k=1

wkN (µk,Σk) (2.13)

where K is the number of Gaussian mixtures, and wi represents the probability that this observation

is generated from the ith component. In this case, the only parameter need to be set is the number of

Gaussian mixtures K, which affects the model accuracy and overfitting. On the one hand, the model
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need sufficient number of components because each acoustic scene contains events with various spectral

properties. On the other hand, as the number of components becomes too large, the model tends to lose

the generalization capabilities. Thus, when confronted with an unlabeled sound, it may fail to recognize

it.

Once the parameters of each GMMs have been inferred from the training data, features can be

extracted from an unlabeled sound. These feature vectors would be normalized using the same mean

and standard deviation values as the training data, and a decision criterion is employed to determine

which model is statistically most likely to generate the observed features, hence classifying the sound.

When using GMMs, the ordering of the sequence of features do not affect the parameters of the model,

thus, the classification results.

Hidden Markov models

The hidden Markov models (HMMs) have also been used in several ASC systems. Extending the

modeling ability of GMMs, this approach account for the temporal evolution of events within complex

acoustic scene. This method specifically works for the scenes where event would occur sequentially. For

instance, for an acoustic scene recorded in the subway station, we would hear an alert sound before the

door closing sound, followed by the sound of train moving. This method firstly uses GMMs to model

the extracted feature vectors, then temporal information of the event occurring order would be encoded

as the transition probability.

The system being modeled with HMM is assumed to be a Markov process with a set of hidden states,

where for each state the output probability distribution is modelled using a GMM, and the transitions

between different states are determined by the corresponding probabilities in the transition matrix.

Given a sequence of feature vectors, our goal is to calculate the most likely states that could generate

these observations . Let us define yt as the observation at a given time instance, K is the the number of

hidden states qt ∈ {1...,K}. In the training stage, we need to estimate a set of parameters θ, including

the initial state π(i) = P (q1 = i), the transition matrix, A(i, j) = P (qt = j|qt−1 = i), as well as the

observation probability distribution P (yt|qt). These can be obtained using Baum-Welch algorithm [43]

to maximise the likelihood of the training data, Y :

θk+1 = arg max
θ

P (Y |θk) (2.14)
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In the test stage, we need to find the most likely state sequences that would have generated the

observed sequences, which is called Viterbi decoding. The most probable state sequence qbest is then

defined as:

qbest =arg max
q

P (Y, q|θ)

=arg max
q

P (Y |q, θ)P (q|θ)
(2.15)

I-vector

The ASC system proposed by Elizalde et al. [44] is based on the computation of the I-vector. I-vector

is originally developed for speech processing to address the problem of speaker verification, and it is

based on modeling a sequence of features using GMMs. In the context of ASC, the I-vector is considered

as a function of the parameters of the GMMs learned from the MFCC features. It leads to another

representation summarizing the properties of a soundscape.

2.2.2 Discriminative Methods

When using a discriminative classifier, we do not consider the features as being generated by a underlying

distribution. Instead, they are assumed to occupy a class-specific region in the feature space. Given a

training set, an discriminative algorithm tries to find a decision boundary that separates the different

classes. Then, to classify a new sample, it checks on which side of the decision boundary it falls, and

makes its prediction accordingly. Discriminative and generative models can be combined together. For

instance, the parameters of the generative models learned from training data can be used as features and

then employ a discriminative classifier to learn separating boundaries. In other words, discriminative

classifiers can be used to determine classification criteria from either the original feature vectors or the

parameters of their statistical models.

Support vector machine

For ASC, one of the most popularly used discriminative classifiers is the support vector machine (SVM).

According to a maximum-margin criterion, an SVM determines a set of hyperplanes that can optimally

separate features from different classes in the training data. While a SVM can only discriminate between
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two classes, multiple SVMs can be combined to determine a decision criterion that works for multi-class

problem. There are two combination schemes. In the one-versus-all approach, a SVM is trained for

each class to discriminate between data belonging to this class and data from the remaining classes.

However, in the one-versus-one approach, for every possible combinations between two classes, a SVM is

trained. In both cases, the decision criterion determines the class of an unlabeled sample by comparing

the distance between the data and the different separating hyperplanes learned by the SVMs.

2.2.3 Ensemble Learning Techniques

In the context of supervised classification, ensemble techniques can be applied to increase the classifi-

cation accuracy by running multiple instances of a classifier with different parameters in parallel. The

components of a classification algorithm can themselves be thought of as parameters subject to optimiza-

tion. Thus, a further class of meta-algorithms deals with selecting from or combining multiple classifiers

to improve the classification accuracy. The results from each classifier are finally combined into a global

decision.

Majority vote and boosting

In this combining method, an unlabeled instance is classified to the class that obtains the highest number

of votes. This method is the most basic ensemble method. Other more complicated methods include

boosting techniques [45]. By learning several base learning from the different weighted examples, this

method allows the weak learner to focus on correctly classifying the most highly weighted examples

while strongly avoiding over-fitting. During testing stage, each of the base learner get a weighted vote

proportional to their accuracy on the training data.

Bagging

This method creates ensembles by repeatedly randomly resampling the training data. The resulting

bootstrap samples are then used to fit the models, and then the result is obtained from combining all of

the resulting models using simple majority vote. This algorithm is designed to improve the stability and

accuracy of machine learning algorithms, while avoid overfitting. Li et al. [46] employed a treebagger

classifier to form a collection of decision trees. Different from the generative and discriminative models,

a decision tree is a set of rules learned from analyzing features extracted from training signals. These
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rules then lead to a classification output. In the method proposed in [46], the resulting weak learners are

then combined to determine a category for each frame and, during the test phase, an overall category is

assigned to each acoustic scene based on a majority vote.

2.2.4 Deep learning algorithms

Various deep learning algorithms have also been adopted for improving the performance of ASC sytem

[47] due to their effectiveness in the recognition problem. The work in [48] applied several kinds of

models including the deep neural networks (DNN), recurrent neural networks (RNN) and recurrent deep

neural networks (RDNN). They found deep learning models outperformed the traditional models such

as GMMs and SVM. In order to utilize the temporal information of the signal, Bae et al. [49] used

convolutional neural networks (CNN) to learn the spectro-temporal locality from the spectrogram.

2.3 Detection Schemes

For SED, the detection module is concerned with finding the start and end points of each sound event,

and segmenting it from the continuous audio stream. In general, approaches use one of two methods to

deal with the detection problems: detection-and-classification, or detection-by-classification, where the

latter combines detection and classification into a single pattern recognition problem.

2.3.1 Non-negative Matrix Factorization

NMF is one of the most popular techniques for detecting polyphonic sound events. It can be used in

different stages of the SED system. For SED completely based on NMF, the activation function obtained

from the test data served as the event predictor. In the training stage, the dictionary matrix W can

be obtained from the training samples. In the testing stage, the activation matrix H of the test data

can be derived by the learned dictionary matrix W . Then, the activation matrix of the test data can be

further processed to produce the detected event. The work in [50] applied this method to overcome the

need to assign separated components to sound event classes.
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2.3.2 Detection and Classification

The detection task can be accomplished by two separate classifiers: one binary classifier for identifying

whether events occur and the other for labeling the detected events. Furthermore, a median filter can be

applied on the label sequences to ensure the minimum event gap is met[51]. Finally, an event hypothesis

is excluded if its length is less than the minimum length required.

2.3.3 Statistical Method

This method is the same as the one used in ASC where GMMs are used to model the states of frame-wise

features, and then HMMs can learn the distributions of the feature sequences given the state sequences.

In the training stage, a binary classifier is set up for each event class. The class model is trained using

the audio segments annotated as belonging to the modeled event class, and a negative model is trained

using the rest of the audio. In the testing step, The decision is based on likelihood ratio between the

positive and negative models for each individual class, with a sliding window of one second.

2.3.4 Regression Method

In this method [52], a binary segment wise classifier is used for event and background classification.

Subsequently, the event segments are classified by a multi-class event classifier. Then, a regression

forest is trained for each event category to estimate the event onset and offset. In addition, the event

estimation is weighted by the classification probabilities obtained from the previous multi-class event

classifier. Finally, detection thresholds are eventually applied to the estimated onset and offset to

determine event start and end points.

2.4 Limitations

The previous section introduced current approaches for ESR in the literature. We find that features

such as MFCCs or mel energies are widely used. While these features may provide a reasonably good

representations, these traditional features do not capture the temporal information sufficiently. Since

acoustic scenes can be characterized by certain sound events, and sound events may exhibit unique

temporal patterns, for ASC, we need to represent the temporal dynamics of a signal in a global context.
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However, for SED, features with local temporal information are needed to detect sound events. In

addition, the overlapping sound events make it harder for the system to detect individual events from

the mixture. In the classification phase, the best performance is always achieved by the late fusion of

several models [53][54]. The performance of this fusion method mainly depends on the artificially selected

models, and there is no specific criterion that can be followed when choosing from a range of classifiers.

For the detection problem, the state-of-the-art methods are based on the deep learning models with

the multi-label classification ability. Traditional classifiers such as SVM often fail to solve this problem

due to the class imbalance between classes. Limitations of current methods can be summarized as:

insufficient features describing the temporal information of the signal and insufficient use the ensemble

learning techniques. These motivate the research in this thesis to find an alternative approach to address

the problems faced in SER.

2.4.1 Temporal Information Extraction

While classic features such as MFCCs are commonly used for ESR, the existing temporal feature inte-

gration methods, such as taking simple statistics (i.e., mean and variance) of the feature vectors over

time, does not fully capture the temporal evolution characteristics of the sound. Although modeling the

temporal dynamics of the frame-based features can be conducted in HMMs [55], temporal distribution

of environmental sounds over various time periods make it hard for HMM to be optimized. Therefore,

finding other ways to capture the temporal information may be useful for improving the performance of

ESR .

2.4.2 Ensemble of Models

As mentioned in the previous section, ensemble learning technique has been employed in ESR. However,

ensemble methods found in the literature are only some simple and basic ones. For example, majority

vote is commonly used to combine the output of several classifiers. In this case, the base classifiers are

often picked up by experience, and we can only test the results by using different combinations. It is

hard to tell whether the best combination has been found, thus we may not get the optimal results.

Ensemble learning is a machine learning technique that select a collection of hypotheses and combine

their predictions. When combing multiple independent and diverse decisions each of which is at least
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more accurate than random guessing, random errors cancel each other out, correct decisions are reinforced

[56]. For ASC, ensemble techniques can be utilized to generate a set of base classifiers and combine them

in order to produce higher classification accuracy. Ensemble-based methods that address problem of class

imbalance include bagging, boosting, and hybrid-based approaches [57]. Sound event datasets that often

suffer from the imbalanced class distribution, therefore these techniques can be used to improve the

detection performance.

2.5 Summary

This chapter has given the current state-of-the-art of ESR. This was provided by first giving a review

of the traditional approaches for feature extraction, with the acoustic features grouped into five groups.

Then, a range of classification methods for ASC was reviewed, with the techniques grouped into three

categories. Next, current detection schemes to SED were given. Finally, the limitations of current

approaches were discussed. Together, this chapter motivates the work in this thesis to find novel ways of

capturing the sound information. The next chapter introduces the proposed approach, where the idea

is to extract features characterizing the temporal information and utilize ensemble learning method.
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Chapter 3

Acoustic Scene Classification

In the previous Chapter, a review of current techniques for environmental sound recognition and their

limitations were given. Although many of these methods are based on a frame-based frequency analysis

of the audio signal, it is important to analyze the temporal structure of the data as representing their

frequency characteristics alone is not enough for classification. In this chapter, the idea of capturing the

temporal dynamics of MFCC using image processing technique is introduced. This is referred to here

as spectrogram image processing, where features are extracted from the two-dimensional spectrogram

image to jointly characterise the time-frequency sound information. This Chapter is organized as follows.

Section 3.1 provides motivation behind the idea of extracting the temporal evolution by LBP. Based

on this, a new approach for combining the temporal features is then proposed in Section 3.2 for ASC.

Experiments are then conducted, and the results and discussion are given in Section 3.3 to evaluate the

performance of the proposed method.

3.1 Motivation

In the analysis of audio signals, much emphasis has been placed on the spectral information and the

temporal properties of the signal usually have not been considered. In this case, it is assumed that the

features in different frames are independent of each other. As acoustic signals may consist of various

sound sources, their frequency characteristics alone are not distinctive enough to be used for classification,

and the information on the temporal evolution of these features are also useful [58]. A basic approach
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is to use the delta and delta-delta coefficients to capture the temporal transitions of the frame-based

spectral features [59]. Besides, some other features are designed to characterize the evolution of these

features over time.

As demonstrated in Figure 3.1, the temporal information can be extracted across a range of different

time and frequency scales, including capturing the joint spectral and temporal information in the feature

sequences. The approach in [60] focused on extracting the temporal patterns from the frame-based

features as in Figure 3.1a, where features are extracted over an one-second temporal window from each

frequency subband. The temporal patterns of spectral energy were found to be able to classify phonemes

with a reasonable accuracy.

Another type of approach for capturing the temporal dynamics in the signal (see Figure 3.1b) is to

use temporal feature integration, which refers to the process of combining a sequence of feature vectors

into a single segment-level feature vector while capturing the relevant temporal information in the time

series of these features [61]. There are two differing integration processes: early and late integration [58].

Early integration operates at the feature level, and aims at combining all the feature vectors extracted

over short-time windows into a single vector. Late temporal integration, on the other hand, works at

the decision level and does not capture information about the temporal dynamics [58] [62].

Often, simple statistics such as the mean/variance are used for integrating temporal features. How-

ever, these simple statistics do not consider the temporal dynamics among successive feature sequences.

Meng et al. [61] proposed a multivariate autoregressive feature model to capture the temporal dynam-

ics for music genre classification. Joder et al. [58] introduced a number of early and late temporal

integration methods, and discussed their impact on the performances of musical instrument recognition

systems. They found that the combination of early and late integration brought improvements of the

recognition rate. An example of the late temporal integration is the use of HMMs to model the temporal

dynamics. We have discussed two temporal paradigms in audio signal processing, and the joint spectro-

temporal features will be discussed in the next chapter. Although many of the existing works in the

context of ASC are based on MFCC and their derivatives, only a limited number of them focus on the

integration of these temporal features. Often, simple statistics such as the mean and variance are used

for integrating temporal features. In the recent work [63], features in the field of chaos theory are intro-

duced to describe the temporal evolution of MFCCs. Recurrence Quantification Analysis (RQA) is used

to capture the auto-correlation through the similarity matrix of frame sequences. Nevertheless, RQA
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Figure 3.1: Temporal paradigms for characterizing the time-frequency representations
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operates on the similarity matrix of MFCCs, instead of catching the temporal evolution directly from

MFCCs. The work in [64] reports a hybrid GMM-HMM system that combines both mean modulation

statistics tracked obtained from the GMM model with the temporal trajectories tracked by the HMM

model. It shows that temporal dynamics of modulation features do provide complimentary information

in addition to their mean statistics.

In this chapter, we concentrate on capturing temporal dynamics using texture features from image

processing techniques. We apply local binary pattern (LBP) [65] to MFCCs that are extracted over

frames, in an attempt to capture some additional information carried by temporal evolution of these

characteristics.

3.2 Combining Temporal Features for Acoustic Scene Classifi-

cation

Inspired by the idea of capturing the temporal dynamics from the signal for ASC, a novel feature

extraction method is now presented. The motivation stems from the fact that LBP can be used to

encode the pixel changes across different ranges, the overall LBP features of the image can then be

summarized using the histogram. Thus LBP is utilized to capture the missing information about the

temporal dynamics caused by the integration process.

The use of LBP features in ASC has already been proposed in other works [32] [33]. By applying LBP

analysis to spectrograms, the work in [33] aims to capture the distribution of audio structure, whilst the

work in [32] intents to extract the geometrical characteristics on the spectrogram. On the one hand, the

successful applications of LBP to spectrogram demonstrate its effectiveness to characterize TFR. On the

other hand, the LBP, which is obtained by the comparison of outer values to the center value, seems to

fit our goal of characterizing the evolution of MFCCs over time. Different than the two previous LBP

works for ASC, we apply LBP to frame level MFCCs in order to extract features complementary to

MFCCs, rather than extracting features from the audio.
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Figure 3.2: Using LBP descriptor for extracting the temporal evolution of frame-level MFCC features,
presented in [66] ©2017 IEEE

3.2.1 Overview

In this section, we will introduce the features and classifier used in the proposed system. As shown in

Figure 3.2, the LBP features can be extracted using the following steps. At first, MFCC features are

extracted from frames of audio signals. Before these features are integrated into a single vector, LBP is

utilized to capture the temporal dynamics among the MFCC sequences. The combinations of LBP based

features and MFCC are then fed to the classifier. In the classification phase, we adopted an ensemble

classifier called D3C [16], which is a combination of the ensemble pruning based on k-means clustering

and dynamic selection and circulating combination.

As shown in Figure3.3, the MFCC of audio segments from different acoustic scene tend to have

diverse temporal transition characteristics. Then, LBP is applied to the MFCC sequences to extract the

temporal patterns. The squared error is visualized in Figure 3.4 the to compare the difference between

the same scene (Office versus Office) and distinction between different scene (Office versus Home). It

can be seen that the squared error is smaller when audio segments are from the same scene.
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(b) MFCC of an audio segment from the scene office

Figure 3.3: MFCC of different acoustic scenes
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Figure 3.4: Differences between LBP Histograms obtained from MFCC of different acoustic scenes.

3.2.2 Feature Extraction

MFCC

MFCC features are one of the the most commonly used features in many audio signal processing tasks

such as speaker recognition and music genre classification. MFCC are based on human hearing percep-

tions and the known variation of the human ears critical bandwidth with frequency. The perception

of these frequencies by human brain is modeled though the use of the Mel lter bank. It has two types

of filter which are spaced linearly at low frequency below 1000 Hz and logarithmically spaced above

1000Hz.

As shown in Figure3.5, MFCC are derived using the following steps [67]:
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1. Segment the signal into short frames.

2. Take the Fourier transform of each frame.

3. Apply the Mel lter bank and sum the energy in each lter.

4. Take the logarithm of the energies.

5. Take the Discrete Cosine Transform (DCT) of the Mel log energies.

6. Keep the first n amplitudes of the resulting spectrum.

Sub-band MFCC [68] are a little different from the standard MFCC. They are computed using

frequency banks that are only distributed between the specified lower and upper frequency bounds of

each band.

The delta and delta-delta coefficients are also calculated to determine the rate of change and how fast

these changes occur. These features are the most simple and direct trajectories of the MFCC coefficients

over time. They are essentially the rst and second derivatives of the MFCCs and can be thought of as

speed and acceleration of the changes. The delta coecients are calculated using the MFCCs and the

following formula:

dt =

∑N
n=1 n(ct+n − ct−n)

2
∑N
n=1 n

2
(3.1)

where dt refers to the delta coefficient of frame t. It is computed in terms of the static coefficients ct−N

to ct+N . Delta-delta (Acceleration) coefficients are calculated using the same method, but they are

calculated from the deltas,rather than the static coefficients.

LBP Features

The LBP features can be computed through the following steps. Firstly, we extract Mel Frequency

Cepstral Coefficients (MFCCs) from an environmental sound with time window of the length 40 ms

(with 50% hop size). Then, the frame-level MFCC representations are viewed as a 2-D image on which

we extract the LBP features as described in the following paragraphs, resulting a normalized histogram

vector that contains supplemental information on the temporal dynamics. A novel feature vector is

produced by concatenating LBP features to the averaging MFCCs.

The LBP algorithm was originally described by Ojala et al. [69] for texture analysis. Due to its

invariance to monotonic gray-scale changes and low computational cost, LBP is widely used in image

recognition and can successfully characterize the local patterns with robustness to fluctuations in pixels.
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Figure 3.5: Block diagram of computing MFCC

The following description of the LBP operator is based on work in [70].

As shown in Figure 3.6, texture at gc is modeled using a local neighborhood of radius R, which is

sampled at P (8 in the example) points.

Let us define texture T in a local circular neighborhood denoted by (P,R) of a gray scale image as

the joint distribution of the gray levels of P (P > 1)sampling points, given by

T = t(gc, g0, . . . , gp−1), (3.2)

where gc corresponds to the gray value of the center pixel (x, y) of the local patch and gp(p =

0, . . . , P − 1) refer to the gray values of P equally spaced pixels (xp, yp) = (x + Rcos(2πp/P ), y −

Rsin(2πp/P ))) on a circle of radius R(R > 0) that form a circularly symmetric neighbor set. Figure 3.7

illustrates LBP operators with multiscale neighborhoods.
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Figure 3.6: Summarizing the local structure in an image by LBP.
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Figure 3.7: Multi-scale LBP.
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LBP with gray-scale invariance

Firstly, we subtract the gray value of the center pixel gc from the gray values of the circularly symmetric

neighborhood gp(p = 0, . . . , P − 1). This gives:

T = t(gc, g0 − gc, g1 − gc, . . . , gP−1 − gc). (3.3)

Then, we assume that differences gp − gc are independent of gc, allowing us to factorize (3.3):

T ≈ t(gc)t(g0 − gc, g1 − gc, . . . , gP−1 − gc). (3.4)

Since the distribution t(gc) in (3.4) describes the overall luminance of the image, which is unrelated to

local image texture and not able to provide useful information. We can simplify (3.4), giving:

T ≈ t(g0 − gc, g1 − gc, . . . , gP−1 − gc). (3.5)

By far, we get a highly discriminative texture operator that records the occurrences of various patterns

in the neighborhood of each pixel in a histogram. Further, invariance with respect to the scaling of the

gray scale can be achieved by considering just the signs of the differences instead of their exact values:

T ≈ t(s(g0 − gc), s(g1 − gc), . . . , s(gP−1 − gc)), (3.6)

where s(x) is the thresholding function given by:

s(x) =

 1, x ≥ 0

0, x < 0
(3.7)

In this way, the texture information of the center pixel (x, y) can be represented by a unique LBP

number:

LBPP,R(x, y) =

P−1∑
p=0

s(gp − gc)2p. (3.8)

An example of applying LBP operator on a 3 x 3 neighborhood is given in Figure 3.8.
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Figure 3.8: An example of applying LBP operator on a 3 x 3 neighborhood.

The uniform LBP (LBPu2)

A LBP descriptor is referred as a uniform pattern when the number of bitwise 0/1 changes is less or

equal to 2. For example, patterns 11111111 (0 transition), 11100011 (2 transitions) are uniform, while

patterns like 01000100 (4 transitions), 10010101 (6 transitions) are non-uniform ones. In practice, the

occurrences of each uniform LBP are recorded in a unique histogram bin, while all non-uniform LBP are

classified into one category and are cast into the same bin in the histogram. Although the number of

output values produced by the uniform LBP is reduced from 2P to P ∗ (P −1)+2, we will not lose much

important information. It was concluded by Ojala et al. [70] that vast majority of all local patterns can

be categorized to be uniform.
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Figure 3.9: Examples of uniform and non-uniform LBP.

The uniform LBP with rotation invariance (LBPriu2)

Further, the rotation invariant uniform LBP is introduced to avoid changes of the value of LBP descriptor

when the image is rotated. Those LBP features that can be characterized by the same value after a

rotation operation would be cast into the same bin in the histogram, giving:

LBP riu2P,R =


∑P−1
p=0 s(gp − gc) if U(LBPP,R) ≤ 2

P + 1 otherwise,
(3.9)
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where U(LBPP,R) corresponds to the number of bitwise transitions.

Computational complexity of LBP features

For each input audio sound, we compute the LBP features with a P -point neighborhood on N-dimensional

MFCC features of all k frames. The cost of computing all LBP descriptors would be O(kPN). Therefore,

the computational complexity is a linear function of the total length of the sound with constant MFCC

dimensions and sampling points, and these features can be computed in real time.

Complementary Spectral Features

As we have introduced in Chapter2, there have also been a variety of spectral features to characterize

the information embedded in the spectrum. Apart from the MFCC and LBP based features, spectral

features including spectral centroid, spectral bandwidth, spectral band energy, spectral flatness, spectral

crest factor, Shannon entropy,and Renyi entropy are added to represent the spectral characteristics.

3.2.3 Classification using D3C Ensemble Classifier

In the classification phase, we choose a ensemble classifier called D3C [16], which is a combination of

the ensemble pruning based on k-means clustering and dynamic selection and circulating combination,

since it optimizes the classification results by combining the outputs of a set of base classifiers.

For classification tasks, a typical ensemble method generally includes the following steps:

1. Ensemble generation - A number of base classifiers are generated according to a chosen learning

procedure.

2. Ensemble pruning - A number of base classifiers are filtered out based on various mathematical

procedures to improve the diversity of the classifiers as well as the overall ensemble accuracy.

3. Ensemble Combination - The outputs of the filtered classifier are

Based on the ”overproduce and choose” strategy introduced by [71], D3C is a hybrid model that

employs two types of selective ensemble techniques: ensemble pruning based on k-means clustering, and

dynamic selection by circulating combination. It has been proved to exhibit competitive performance

against other methods [16]. This hybrid model can be built through the following steps. At first, a
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number of candidate classifiers selected from the base classifiers are trained. Then, some redundant

classifiers are eliminated using ensemble pruning based on k-means clustering and the framework of

dynamic selection and circulating combination is applied to choose the classifiers that have a high degree

of diversity. Finally, the output results of classifiers are combined according to the combination rule to

predict the label of an audio clip. The combination rules includes majority voting, average probability,

maximum probability and so on.

In the following experiments, SVM is also used in order to be compared with the D3C classifier.

3.3 Experiments

In this section, experiments are carried out to find the parameters that give the best result, and compare

the performance of the proposed method with the baseline method for ASC. In addition, several methods

that are also inspired from capturing temporal dynamics of features are implemented, to provide a

comparison between other methods more similar to the LBP.

3.3.1 Dataset

In order to evaluate the proposed method, we use the TUT Acoustic scenes 2016 development dataset

[72], which are provided with the ASC task of DCASE 2016 challenge. This database consists of 1170

audio clips of 30-s duration each with a sampling rate of 44.1 kHz and a resolution of 24 bits/sample. All

the recordings are available in WAV format and they are belonging to 15 different environment types. For

all acoustic scenes, the recordings were captured each in a different location: different streets, different

parks, different homes. For each recording location, 3-5 minute long audio recording was captured. The

original recordings were then split into 30-second segments, and 78 segments were included in each scene.

As shown in Figure 3.10 the fifteen acoustic scenes included were: Bus, Cafe / Restaurant, Car, City

center, Forest path, Grocery store, Home, Lakeside beach, Library, Metro station, Office, Residential

area, Train, Tram, and Urban park.
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Figure 3.10: The organization of all audio signals in the TUT Acoustic scenes 2016 dataset.
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3.3.2 Experimental setup

Cross-validation setup

The dataset was further partitioned into four folds of training and testing sets to be used for cross-

validation. This process is illustrated in Figure 3.11. The partitioning of the data was done based

on the location of the original recordings. All segments obtained from the same original recording

were included into a single subset. This is a very important detail that is sometimes neglected, and

failing to consider it results in overestimating the system performance, as the classification systems

are capable of learning the locations related acoustic conditions instead of the intended general audio

scene properties. This phenomenon is similar to the album effect encountered in music information

retrievawhere accuracy improves when systems are trained and evaluated using music from the same

ablum. Thus this performance characteristic is usually accounted for when setting up experiments [73].

LBP Evaluation Methods

Since LBP features are determined by a set of parameters, we conduct the following experiments to

investigate some factors in generating LBP features:

1. Uniform vs. Rotation invariant uniform LBP

2. Neighborhood size (P, R)

3. Normalization method

Complementary Spectral Features

Apart from the MFCC and LBP based features, we combine some spectral features including spectral

centroid, spectral bandwidth, spectral band energy, spectral flatness, spectral crest factor, Shannon

entropy,and Renyi entropy with the MFCC and LBP features to see whether they can improve the

classification result.

Baseline Methods

The baseline system [74] provided with the dataset uses 60-dimensional MFCC features and Gaussian

mixture models (GMMs). The MFCC features consist of 20-dimensional MFCCs, delta coefficients and

acceleration coefficients. A GMM with 32 components was used to examine the spectral change over
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Figure 3.11: The organization of all audio signals in the TUT Acoustic scenes 2016 dataset.

time and trained for each class using the expectation maximization (EM) algorithm. In the testing

phase, maximum likelihood decision was used to determine which class each sound belongs to. An

overall classification accuracy of 72.5% was reported based on 4-fold cross validations. However, this

model tend to perform on the extremes, as it performed well for office while producing extremely poor

results for classes such as park and train.

In addition to the baseline MFCC+GMM method provided with the dataset, the RQA [63] method

that is also inspired from temporal dynamics is also implemented to provide a more complete comparison

with LBP based features.
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3.3.3 Results and Discussion

The performance of the system is evaluated using classification accuracy: the number of correctly clas-

sified segments among the total number of segments. Each segment is considered an independent test

sample.

Uniform vs. Rotation invariant uniform LBP

By applying LBP to capture the temporal evolution of MFCC, we actually encode the changes of each

dimension of MFCC between frames. Since the frame sequence characterizing the same scene can appear

in different order, rotation invariant LBP seems to be suitable for our task.

We first investigated the effect of two different kinds of LBP descriptors as described in Section 3.2.2

using the default neighborhood size (8, 1) and L2 normalization. We adopted the SVM classifier. The

performance results are shown in Table 3.1. We can see that LBPriu2 descriptor outperforms uniform

LBP operators. This makes sense, as the observations of the features in frames can appear at different

positions in the sequence. If we only use uniform LBP operator, we will get different LBP values for the

same change pattern. Instead, LBP with rotation invariance can tackle this problem.

Table 3.1: Overall classification results using LBPu2 and LBPriu2 descriptors, presented in [66] ©2017
IEEE.

Features Acc. (%)

MFCC & LBPu2 72.5

MFCC & LBPriu2 75.8

Neighborhood size (P, R)

As the size of the local patch will influence the information we get on temporal dynamics, we need

to choose the neighborhood size (P,R) of the LBPriu2 descriptor that can encode the most useful

local statistics for classification. We adopted the default L2 normalization and the SVM classifier. We

examined the results by varying the number of sampling points P and neighborhood radiusR. The results

are given in Table 3.2. With a neighborhood size of (2,1), the LBP encodes change patterns between

adjacent frames. When we increase the neighborhood size, the LBP operates on several previous and
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subsequent frames. We notice that the highest classification accuracy was found when the neighborhood

radius R is 3 and the number of sampling points is 16. This reveals that the temporal information

obtained from the three previous and subsequent frames is more useful for classifying scenes.

Table 3.2: Overall classification results using different neighborhood size (P, R), presented in [66] ©2017
IEEE.

P R Accuracy (%)

2 1 73.8

4 1 71.8

8 2 72.9

16 3 79.1

Normalization Method

The normalization method is another factor affecting the LBP features as it determines how we interpret

the occurrences of different LBP patterns. To find the suitable normalization method, we examined its

impact by using three types of normalization methods on the LBPriu2 histogram: L1, L2 and L2-

Hellinger normalization. The neighborhood size was set to (16, 3) and the SVM classifier was used. The

L2-Hellinger [32] normalized feature vectors can be obtained using

x̂ =

√
x

||x||1
(3.10)

The performance comparison is shown in Table 3.3. The commonly used L2 normalization outperforms

both L1 and L2-Hellinger, achieving a recognition rate of 79.1%.

Complementary spectral features

We evaluated the performance of all the spectral features mentioned in Section 3.2.2 in charactering the

spectral change over time. For each frame, we divided spectrum into three subbands, and the feature

vector extracted was a concatenation of the MFCC statistics, 18-dimensional LBPriu2 descriptors and

the averaged 3-dimensional spectral features. Table 3.4 shows the classification accuracy of the system
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Table 3.3: Overall classification results using L1, L2, and L2-Hellinger normalization, presented in [66]
©2017 IEEE.

Normalization method Accuracy (%)

L1 77.8

L2-Hellinger 77.4

L2 79.1

when using spectral features supplying with the MFCCs and LBPriu2 features. The results reveal that

most of the complementary features is not useful for improving the overall system performance. This

may result from the relative low dimension of the complementary spectral features compared to that

of MFCCs and LBPriu2. Among all these spectral features, SCF features can slightly improve the

recognition accuracy, achieving a classification accuracy of 80.3%.

Table 3.4: Overall classification results when adding complementary spectral features to MFCC & LBP
features, presented in [66] ©2017 IEEE.

Features Accuracy (%)

MFCC & LBPriu2 & SCF 80.3

MFCC & LBPriu2 & SBW 79.1

MFCC & LBPriu2 & SF 78.7

MFCC & LBPriu2 & SBE 78.5

MFCC & LBPriu2 & SC 78.4

MFCC & LBPriu2 & SE 78.7

MFCC & LBPriu2 & RE 79.3

Comparison to baseline features using SVM and D3C

Finally, we compared the overall classification accuracy of our proposed method to that of the baseline,

MFCC & RQA and MFCC & LBP in Table 3.5. The classification results using SVM and D3C are

shown respectively in Fig. 3.12. The RQA features were computed using the parameters in [63]. It can
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Figure 3.12: Classification accuracy using MFCC, MFCC & RQA and MFCC & LBPriu2 as features,
SVM and D3C as classifiers, presented in [66] ©2017 IEEE.

Table 3.5: Overall classification results using MFCC, MFCC & RQA, MFCC & LBPriu2 and MFCC &
LBPriu2 & SCF as features, presented in [66] ©2017 IEEE.

Features/methods Accuracy (%)

baseline system (MFCC + GMM) 72.5

MFCC & RQA 76.7

MFCC & LBPriu2 80.1

MFCC & LBPriu2 & SCF 80.3

be observed that the performance of ASC were improved when the temporal properties of the sound

were taken into account. Our proposed features worked better than the RQA features in capturing the

temporal information. In addition, the use of the ensemble classifier D3C increased the classification

accuracy obtained from the SVM. The addition of spectral crest factor features further improved the

ASC performance.

When we investigate the per-class accuracy by taking a look at Table 3.6, it can be observed that

adding temporal features increases the recognition rate for most classes. Although the baseline system

achieves better results for some classes such as Office and Metro station, the context-wise performance

of our proposed system is more balanced. The most difficult scene for our system to recognize is the

park, which corresponds with the baseline system.
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Table 3.6: The class-wise accuracy, presented in [66] ©2017 IEEE.

Scene Accuracy(%)

Baseline Our method (%)

Beach 69.3 71.8

Bus 79.6 84.6

Cafe/restaurant 83.2 71.8

Car 87.2 88.5

City center 85.5 91.0

Forest path 81.0 97.4

Grocery store 65.0 79.5

Home 82.1 79.5

Library 50.4 87.2

Metro station 94.7 93.6

Office 98.6 93.6

Park 13.9 44.9

Residential area 77.7 66.7

Train 33.6 65.4

Tram 85.4 88.5

Total 72.5 80.3
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3.4 Summary

In this Chapter, we proposed some novel features to characterize the information on temporal dynamics

for ASC. This proposed method utilizes LBP descriptor to capture the temporal evolution of frame-

level MFCC features. LBP features can encode this important information and can be beneficial when

combining with MFCC features to improve the overall classification performance. Further, some comple-

mentary spectral features were added to the MFCC and LBP features to provide information on spectral

change. In addition, we adopted the D3C classifier, which is a hybrid model that combines ensemble

pruning based on k-means clustering and dynamic selection and circulating combination. The exper-

imental results show the advantages of our proposed system. However, the proposed method is total

based on the frame-based MFCC features, which did not take full advantage of the joint time-frequency

characteristics. In the next chapter, this aspect is further analyzed, and a new feature extraction method

is proposed for the task of SED.
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Chapter 4

Sound Event Detection

In this Chapter, we focus on another challenging task of recognizing overlapping sound events simultane-

ously from a single channel audio signal. In addition to the problem of recognizing the general acoustic

type that has been studied in the previous chapter, this problem often occurs in the multi-source envi-

ronments similar to our daily life. Sound events occurring in our daily environments are rarely heard

in isolation. Therefore, detecting overlapping sound events from a single continuous audio signal is

quite challenging. This study introduced a new approach for SED in real-life audio using Nonnegative

Matrix Factor 2-D Deconvolution (NMF2D) and RUSBoost techniques. The idea is to capture the

two-dimensional joint spectral and temporal information from the time-frequency representation (TFR)

while possibly separating the sound mixture into several sources. In addition, the RUSBoost technique

is utilized to address the class imbalance problem of the training data.

This chapter is organized as follows. Section 4.1 provides the motivation for using NMF2D to solve

the problem of SED. Section 4.2 then introduces the proposed SED system based on NMF2D features

and RUSBoost ensemble techinique. Finally, experiments are conducted in Section 4.3 to evaluate the

performance of the proposed system using the TUT Sound events 2016 and TUT Sound events 2017

dataset [72].
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4.1 Motivation

As we mentioned in the previous chapter, temporal information can be captured across a range of differ-

ent time and frequency scales, including joint spectro-temporal features that capture both spectral and

temporal evolution. In the ASC domain, speech signals were found to exhibit unique time-frequency en-

velope patterns, and localized spectro-temporal features were demonstrated to improve the performance

of ASR system [75]. There are many approaches to achieving spectro-temporal feature extraction found

in the literature. An example is the use of two dimensional time-frequency filtering transformation to

design a set of robust filters [76]. The authors in [77] applied both linear and nonlinear feature trans-

formations to the logarithmic Mel-spectrum representation of speech. Transformations were based on

linear discriminant analysis (LDA), independent component analysis (ICA), principal component analy-

sis (PCA) and multilayer perceptron network based Nonlinear Discriminant Analysis (NLDA). Building

upon the approach in [60], where temporal patterns were extracted from rather long (1s) and narrow

(one critical band) patches, the work in [78] extended the frequency context to several critical bands

and achieved higher recognition performance. In [79], a system is proposed that used two-dimensional

sine-modulated Gabor filter functions to model a range of spectro-temporal patterns.

The rest of this section provides the motivation for using matrix decomposition methods to decompose

the spectrogram as a set of spectro-temporal basis for sound event classication. First, problem description

and an overview of the idea are given. Then, the review of previous works for SED is given. At last, the

advantages and disadvantages of the most common spectrogram representations are discussed.

4.1.1 Problem Description

The problem we addressed in this Chapter is SED in real life audio. Another problem related to this

is SED in synthetic audio. Although these two problems share some similarities, the datasets used to

train the model are of much difference. While source-independent sound examples for each event class

are provided for the task of SED in synthetic audio, the model used for SED in real life audio can only

utilize relatively long audio files with overlapping sound events and less accurate event labels.

In addition, test data for SED in synthetic audio consist of synthetic mixtures of sound examples at

various SNR level, event density conditions and polyphony. Contrary to this, for SED in real life audio,

similar type of overlapping sound events data is used.
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4.1.2 Overview

In addition to the ”bag-of-frames” strategy mentioned in the previous chapter, the other strategy focuses

on using a set of high level features to represent the scene. These features are usually captured by a

dictionary of ”acoustic atoms” learned from the data.

An example showing spectrograms of different sound events is given in Figure 4.1. It can be easily

observed in Figure 4.1 that the spectrograms of different sound events are distinctive, thus these TFR

contain information that can be utilized to detect sound events. With more careful analysis, it can be

found that sound event is characterized by some repetitive time-frequency patches in the spetrograms,

thus it is possible to recognize sound events using this information.

Image processing techniques are often used to derive information contained in the spectrogram.

Depending on the scope of the extracted features, they can be divided in to frame-based, global and

local features. Global features are derived from the whole spectrogram, thus it is difficult to combine

them with the bag of frames approach. Instead, frame-based features represent characteristics of each

spectrogram frame while incorporating temporal information in the feature vectors. Local features are

extracted from the local time-frequency regions in the spectrogram. An example is the use of HOG

to extract features about the shapes and evolution of the time-frequency structures. With temporal

information being considered, the approach in [80] utilized ordered spectro-temporal patch features

obtained from the Mel-spectra, and a local pooling operation across time and frequency was introduced

to find the best match to the patches. Although image processing techniques are commonly used in

ASC and provide state-of-the-art results, they are not suitable for SED task. As temporal positions of

the local time-frequency regions are cannot be derived by image processing methods, the start and end

time of each detected sound event could not be provided.

An alternative strategy related to the extraction of spectro-temporal features is to use matrix decom-

position methods such as PCA, ICA and NMF. The basic idea is that the original data can be projected

onto a subspace using a set of basis. The original data can then be reconstructed by a linear combination

of these basis.
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Figure 4.1: Example spectrograms of different sound events
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4.1.3 Limitations of the current techniques

Although the topic of SED in real life audio is important and interesting, there are only a small number of

previous works focusing on this problem. The approaches for SED can be divided into three categories:

direct classication, matrix decomposition and computational auditory scene analysis (CASA). These

approaches are introduced and discussed in next paragraphs.

Direct Classification

This method is similar to the ”bag-of-frame” approach for ASC, where the popular MFCC features are

used, but classification models has been modified to be suitable for the presence of overlapping sound

events. An example is the use of Factorial HMMs [55]. The work in [81] utilized the conventional GMM-

HMM model with a modified Viterbi decoding process. The disadvantage of this method is that the

computational cost is relatively high. Another strategy is therefore to add a category containing various

combinations of overlapping sound events, then perform the common classification [82]. However, this

approach requires sufficient amount of the overlapped sounds in the training phase. Besides, we cannot

always cover all possible combinations of overlapping sound events, thus this method is not practical

enough.

Matrix Decomposition

This type of methods is inspired from blind source separation that uses factorization to decompose

the input signal into its component parts. The most common approach is NMF. Without any prior

information about the sound sources, the NMF separates a signal into sources in an unsupervised manner.

An early example of applying NMF approach for SED was introduced in [83]. The authors employed

NMF in the preprocessing step to separate the input signal into four individual tracks. MFCC features

were then extracted from each of these separated signals and HMM was used to detect the sound events.

The approach in [84] applied NMF to the spectrogram to decompose it into a set of templates, such that

the activation of these templates during testing can be used as a indication of the present overlapping

sound event classes. Additional constraints, such as sparsity, can be added to the NMF to improve the

decomposition accuracy.
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Computational Auditory Scene Analysis

CASA refers to the study of ASA using computational means. The concept of ASA was firstly proposed

by Bregman [85] to describe the process by which the human auditory system organizes sound into

perceptually meaningful elements. It is related to the cocktail party problem, where a human listener

is easily able to follow a conversation with a friend in a room with many competing conversations and

acoustic distractions. Different from the problem of blind signal separation, CASA is mainly based on

mechanisms of the human auditory system.

The main idea of CASA is to generate a set of masks that can segment the spectrogram into regions

corresponding to the different overlapping sound events. The segmentation is usually achieved by group-

ing the spectrogram elements based on their observed properties and cues. The main difficulty of such

systems is that it is the generation of a reliable mask, since problem of mask estimation becomes more

complicated for overlapping sound event sources.

4.1.4 Common Time-frequency Representations

Since our motivation is to extract distinct patterns from the time-frequency representations of the audio

signal, the first step is to select a good representation. A wide range of TFR are found in the literature,

and each of them may have its own advantages depending on the application. Therefore, some of these

are introduced in this section.

Spectrogram

Audio signals are time-varying signals. If we take the spectrum over the whole signal, then we get

the average spectrum, but will not be able to see the individual changes in fundamental frequencies.

Therefore, in real-time applications we need to divide the signal into segments such that we do not have

to wait for the whole audio signal to be finished before we can start processing. If we take the spectrum

from small segments close to each other, we can then observe the spectral evolution of the signal. Such

a representation is known as the spectrogram of a signal. When the spectrogram is calculated using

windowing and the discrete Fourier transform it is called the STFT. The calculation of a spectrogram

includes the following steps:

1. Apply windowing at position k to obtain segment of the signal of length N .
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2. Apply the fast Fourier transform to obtain the spectrum Xk(ω) using:

Xk(ω) =

N−1∑
n=0

xk[n]e−i2π
ω
ωs
n, (4.1)

where f = kωs/N is the frequency bin for k = 1, ..., N/2 + 1.

3. Compress the dynamic range of the linear power spectrogram using the log function to give the

conventional log power spectrogram. This is calculated as follows:

Xlog(ω) = 20 log10 |Xk(ω)|. (4.2)

4. Advance position by K, that is, k = k +K and return to the first step.

It is simple and fast to compute. However, the overall shape of the logarithmic power spectra is

often a smooth shape. This means that components of the log-power-spectrum are correlated. It is

not a very efficient representation of the sound. In addition, it is based on the assumption that the

signal is stationary within each window, which may not be true for many sound events that have sharp

discontinuities. Besides, there is a trade-off between frequency and time resolution, as choosing a longer

window gives better frequency resolution at the cost of reducing the temporal resolution.

Gammatone spectrogram

This type of TFR is calculated using the cochlear filtering in the inner ear. The Gammatone filter is

physiologically designed to mimic the structure of peripheral auditory processing stage, and is widely

used in computational auditory models. The Gammatone impulse response describing the filter is the

product of a gamma distribution function and a sinusoidal tone, and is given by

g(t) = atn−1e−2πbt cos(2πft+ φ), (4.3)

where t is the time, n represents the order of the filter, φ is the phase of the carrier, f is the center

frequency and b is the bandwidth of the Gammatone lter.

Patterson et al. [86] found that the impulse response of the Gammatone function of order 4 is

quite suitable to the human auditory filter shapes. Glasberg and Moore [87] concluded the equivalent
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rectangular bandwidth (ERB) from human data with the function:

ERB = 24.7(4.37 · 10−3f + 1). (4.4)

When the order of the filter is 4, the value of b can be calculated using:

b = 1.019ERB. (4.5)

As illustrated in Figure 4.2, a bank of Gammatone filters is commonly used to simulate the motion

of the basilar membrane within the cochlea as a function of time, in which the output of each filter

models the frequency response of the basilar membrane at a single place. The filterbank is normally

defined in such a way that the filter centre frequencies are distributed across frequency in proportion to

their bandwidth, known as the ERB scale (Glasberg and Moore, 1990). The ERB scale is approximately

logarithmic, on which the filter centre frequencies are equally spaced.

Figure 4.2: Frequency responses of a Gammatone filterbank with ten filters whose centre frequencies are
equally spaced between 50 Hz and 4 kHz on the ERB-rate scale, presented in [88].

The Gammatone spectrogram has the advantage over the STFT that there is no trade-off between
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time and frequency resolution. In addition, it has been shown that Gammatone filters are highly cor-

related with natural sound signals, which should produce a sparse, high resolution spectrogram of the

sound event. The disadvantage is the relatively high computational cost, and that the common ERB

scale has less resolution at higher frequencies, where a wider frequency response is used to match that

found in the basilar membrane.

Mel Spectrogram

The Mel spectrogram is calculated using the Mel frequency scaling. Similar to the Gammatone lterbank,

the Mel filterbank provides an approximation to the basic auditory principles of the human auditory

system. It uses different resolution across frequencies and logarithmic perception of intensity. The

MFCC features utilized in the previous section are calculated based on the Mel spectrogram.

Different than the Gammatone spectrogram, Mel spectrogram puts more emphasis on the efficient

computation while less on biological plausibility. There, it utilizes a set of triangular-shaped filters to

filter the signal in the spectral domain. As shown in Fig. 3.3, the width of each filter extends to the

center frequency of the neighboring filters, hence the filters become wider at higher frequencies. Log is

also commonly taken to give an equivalent spectrogram representation, Smel(f,t), where f represents the

center frequencies of the Mel filters and t is the time frame of the STFT.

Figure 4.3: Frequency responses of a Mel filterbank with twelve filters whose centre frequencies are
equally spaced between 0 Hz and 8 kHz on the Mel scale.
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Constant-Q Transform

The constant-Q transform (CQT) was introduced by Brown in 1991 [89] and was used for musical rep-

resentations. Similar to the FT, the CQT transforms a data series to the frequency domain. Different

than the DFT that has constant difference between frequency components, CQT uses a series of log-

arithmically spaced filters, where the spectral width of the k-th filter is some multiple of the previous

filter’s width:

fk =21/n · f0

=(21/n)k · f0,
(4.6)

where fk is the bandwidth of the k-th filter, f0 represents the central frequency of the lowest filter, and

n dictates the number of filters per octave.

Therefore, the frequency difference between the (k + 1)-th and k-th filter is:

δfk =fk+1 − fk

=(21/n − 1) · fk.
(4.7)

The ratio of center frequency to resolution remains a constant Q:

Q =
fk
δfk

=(21/n − 1)−1.

(4.8)

These characteristics make the CQT useful for note identification as the center frequencies fk(k =

0, ...) can directly correspond to musical notes by using appropriate f0 and n. In addition, CQT has

increasing time resolution towards higher frequencies, which resembles the human auditory system.

A comparison of the spectrogram, Gammatone spectrogram, Mel spectrogram and CQT representa-

tions is shown in Figure 4.4. It can be seen that each representation shows the signature of the door

knocking sound while having varying characteristics. Although the spectrogram in Figure 4.4a provides

the highest frequency resolution, most of the distinct information is contained in the lower frequency.

However, frequency axes in the Gammatone spectrogram, Mel spectrogram and CQT representations

emphasize on the lower frequencies and compress the information contained in higher frequency. How-
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ever, the representation of the bells harmonic is quite different in each of the representations. In terms

of harmonic structure, CQT produces different results compared to other representations.
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Figure 4.4: Example showing door knocking sound with different TFR
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4.2 Joint spectro-temporal features for Sound Event detection

Inspired by previous works on extraction of spectro-temporal features, a novel feature extraction method

for SED is now proposed. The motivation behind this idea is that TFR contains joint time-frequency

patterns that characterize sound events. The proposed approach is based on the NMF2D technique that

decomposes the sounds TFR into parts that contain time and frequency evolution signature. The rest of

this section gives an overview of the approach, then describing the details of the joint spectro-temporal

feature extraction and the classification approach.

4.2.1 Overview

Typical methods for overlapping sound event detection (SED) do not fully consider the joint spectral and

temporal transition characteristics of the audio signal. They are generally based on training models using

either separate data from each event class or mixed signals containing simultaneous sound events. In this

study, a new approach for SED based on Nonnegative Matrix Factor 2-D Deconvolution (NMF2D) of the

time-frequency representation (TFR) and RUSBoosting is proposed. The proposed approach is inspired

by convolutive NMF method that has been successfully used for extracting spectro-temporal features for

SED [90]. A natural extension to spectro-temporal feature extraction is to consider features that jointly

model the spectral and temporal information. In NMF2D, the time-frequency (TF) signature of each

sound source is modeled by the two-dimensional convolution of the spectral basis and the temporal code.

This method was originally proposed for blind separation of instruments in polyphonic music [91]. A

major advantage of the proposed approach is that it learns the TF characteristics of each sound source,

so there is no need of estimating the number of templates required to decompose the signal. Another

advantage of this method is the possibility of separating the mixture of sound events into several sources.

In addition, it is also important to localize the sound event information in time regions, thus the start

and end point of each sound event can be detected. Therefore, the NMF2D approach could be applied

to the TFR to characterize the distribution of joint spectro-temporal patterns in the time region.

As shown is Figure 4.5, the feature extraction process consists of the following steps:

1. Obtain the TFR of the input audio signal.

2. Time-frequency templates are learned from the TFR using the NMF2D technique.
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Time-frequency 
representation

NMF 2-Dimensional 
Deconvolution

NMF2D-based features 

Input audio signals

Figure 4.5: Block diagram of the proposed feature extraction

3. The activation of these templates in the time region are used as features.

Although the NMF2D technique captures a set of time-frequency templates, we still need find a

reasonable way that represents the continuous activation patterns of these templates as discrete event-

like features. Therefore, a sliding window of 200 ms with step size of 100 ms is used to summarize

the activation patterns of time-frequency patterns by taking the log of the maximum of each activation

dimension. Also, the MFCC features within the sliding window are averaged to to be combined with

the NMF-based features.

For recognition, a binary classifier based on RUSBoot ensemble method is trained for detecting each

sound event class using the extracted features. In the test phase, all of these binary classifiers are used

simultaneously to detect their corresponding sound events, and events that are too short will be removed

to produce a more accurate result.
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4.2.2 Feature Extraction

Standard NMF

The standard NMF generally refers to the technique to find a low-rank approximation of a given non-

negative matrix V. Assume that V ∈ RB×N+ is the matrix with size B ×N , the NMF problem aims to

find two non-negative matrix whose product approximates the non-negative matrix V. Let matrix V be

the product of the matrices W ∈ RB×K+ and H ∈ RK×N+ :

V ≈ WH, (4.9)

where the columns of W are basis vectors and the columns of H are the corresponding weights or

activations. The success of the reconstruction can be measured using a variety of cost functions. Lee

and Seung [92] studied two divergence functions for NMF: the squared error and Kullback-Leibler (KL)

divergence. Each of them leads to a different NMF algorithm. By minimizing the cost function using

gradient descent and choosing an appropriate step size, W and H can be estimated using iterative

update rules. For the squared error version of NMF, W and H can be updated using:

W←W • VHT

WHHT
, (4.10)

H← H • WTV

WTWH
. (4.11)

For the KL divergence version of NMF, W and H can be updated using:

W←W •
V

WHHT

1 ·H
, (4.12)

H← H •
WT V

WH

W · 1
, (4.13)

where A •B and A
B denotes element-wise multiplication and division respectively.
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NMF Deconvolution

The standard NMF described above are utilized for many audio tasks. However, this method cannot

model the relative positions of each spectrum thus losing the temporal information. As an extension

to the standard NMF, convolutive NMF was introduced by [93] to model the temporal structure of the

components.

In the standard NMF the model V ≈ WH is used. In convolutive NMF the model is extended to:

V ≈
T−1∑
t=0

Wt

→t
H . (4.14)

The
i→
(·) operator shifts the columns of its argument by i spots to the right. For example:

A =


3 4 5

0 1 2

9 8 7

 (4.15)

→1

A =


0 3 4

0 0 1

0 9 8

 (4.16)

→2

A =


0 0 3

0 0 0

0 0 9

 (4.17)

NMF 2-D Deconvolution

The NMF deconvolution model can further be extended to a 2-dimensional convolution of Wt which

depends on time, t, and Hf which depends on frequency, f . The NMF2D model can be described as:

V ≈ Λ =

T−1∑
t=0

F−1∑
f=0

↓f
Wt

→t
Hf . (4.18)
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The
i↓
(·) operator moves the rows of its argument by i spots down. For example:

A =


3 4 5

6 1 2

9 8 7

 (4.19)

↓1
A =


0 0 0

3 4 5

6 1 2

 (4.20)

It can be noted that the NMFD model introduced can be considered as a special case of the NMF2D

model where F = 0.

For the least squared error NMF2D, the cost function is given by

CLS =
1

2
||V −Λ||2F . (4.21)

W and H can be updated using:

Wt ←Wt •
∑
f

↑f
V
→t
Hf

T

∑
f

↑f
Λ
→t
Hf

T
, (4.22)

Hf ← Hf •
∑
t

↓f
Wt

T←t
V∑

f

↓f
Wt

T←t
Λ

. (4.23)

For the NMF2D by KL Divergence, the cost function is given by

CLS =
∑
i,j

Vi,j log
Vi,j

Λi,j
−Vi,j + Λi,j. (4.24)

W and H can be updated using:

Wt ←Wt •
∑
f

↑f
(V

Λ )
→t
Hf

T

∑
f 1 ·

→t
Hf

T
, (4.25)
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Hf ← Hf •
∑
t

↓f
Wt

T ←t
(V

Λ )∑
f

↓f
Wt

T

· 1
. (4.26)

An example showing the CQT of three isolated sound events and their mixture is given in Figure

4.6. NMF2D algorithm is then applied on the CQT of their mixture to find the time-frequency signature

characterizing each sound events. For the NMF2D we used three, since we seek to separate three sound

sources. We chose to use 5 convolutive components in time and 20 convolutive components in frequency.

The NMF2D representation of three overlapping sound events is given in Figure 4.7 (Audio files avail-

able at https://drive.google.com/file/d/0B5tB5LTOhACqQ3JCZWZaSU00dHM/view?usp=sharing). It

can be noted that three templates characterizing the time-frequency signature of each sound event are

successfully learned from the CQT, which means overlapping sound can be separated into three com-

ponents. On the other hand, spectral change information of these templates is also included in the

activation patterns. It can be seen that the activation matrix of each template is to some extend similar

to the CQT of a isolated sound, therefore these activation patterns should be useful to identify the

corresponding sound events.

4.2.3 Detection with RUSBoost Ensemble technique

A major problem of the detection-by-classification scheme for SED is the class imbalance among different

sound events, since the available instances for each event vary. For the methods where a binary classifier

is used to identify each sound event, the background class usually have much more examples than the

event class. Therefore, the conventional classifiers cannot produce satisfying results. Techniques to

alleviate the problem of imbalanced training data are introduced in this section.

Data Sampling

Data sampling is a basic technique to adjust the class distribution in the training data. It can be divided

into two categories: oversampling and undersampling. While oversampling is to add more examples to

the minority class, undersampling instead aims at removing some examples from the majority class.

Random sampling is one of the simplest methods for resampling a dataset. It can be used for both

oversampling and undersampling by randomly duplicating or removing examples until a desired class
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(a) Isolated coughing sound (b) Isolated knocking sound

(c) Isolated keyboard sound (d) Mixture of coughing, knocking and keyboard sounds

Figure 4.6: CQT of isolated sounds and their mixture
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Figure 4.7: Factorization of the mixture of sound events using NMF2D. The three time-frequency plots
on the left are Wt that represents time-frequency signature for each factor. The two time-frequency
change plots on the top are Hf for each factor showing how these joint spectro-temporal features are
placed in time and frequency.
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ratio is achieved. Although undersampling reduces the training complexity, some information in the

training data will be lost. On the other hand, oversampling keeps all the information with increased

training time, but it can lead to overfitting.

Boosting

Boosting is another type of technique that can be used to improve classification accuracy of skewed data.

Different from the data sampling techniques that are designed to address the imbalanced data in the

training set, boosting aims at constructing a strong classifier as linear combination of weak classifiers.

An example is the AdaBoost [94] classifier, which adjusts sample weights optimally by focusing on

data points that have been misclassified by the previous weak classifier. It then combines these weak

classifiers into a unified prediction by using an optimally weight majority vote of their outputs. During

each iteration, those misclassified observations have their weights increased. This process continues to

add weak learner until a predefined threshold is reached. Given an imbalanced dataset, samples in the

minority class are most likely to be classified incorrectly and they will receive more weights in subsequent

iterations. Therefore, it might improve the classification accuracy of minority class.

RUSBoost Ensemble technique

RUSBoost [17] is a hybrid algorithm that combines random undersampling and boosting techniques.

In this method, boosting is performed by resampling other than reweighting to adapt algorithms that

cannot incorporate example weights in their training processes. In each iteration, the majority class is

undersampled to train a new model, and finally to improve the classification performance of the minority

class. Combining RUS with the boosting process can decreases time needed to train a model, thus it is

beneficial for learning from skewed dataset.

4.3 Experiments

In this section, different experiments are conducted to compare the performance of the proposed method.

The RUSBoost ensemble classifier with decision trees are used for detection/classification.
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4.3.1 Dataset

The dataset used for the evaluation is the TUT Sound events 2016 development set [72] and TUT Sound

events 2017 development set [72]. TUT Sound events 2016 is a subset of TUT Acoustic scenes 2016

dataset used in the previous section. This dataset consists of audio recording from two acoustic scene:

home and residential area. Each recording was captured in a different location: different streets and

different homes. For each recording location, a 3-5 minute long audio recording was captured. There

are 12 recordings contained in home sound events data, and 10 recordings contained in residential area

sound events data. For each acoustic scene, the selected sound events is shown in Figure 4.8.

The TUT Sound Events 2017 dataset consists of recordings of street acoustic scenes with various

levels of traffic and other activity. The scene was selected as representing an environment of interest

for detection of sound events related to human activities and hazard situations. Each recording was

captured in a different location. For each recording location, a 3-5 minute long audio recording was

captured. There are 24 recordings contained in data.The selected sound events is shown in Figure 4.9.

In home scenes, the selected events are mostly abstract object impact sounds such as dishes, cutlery,

and so on. While the selected sound event classes in residential area scenes are mostly related to

individual physical sound sources such as bird singing, children shouting, wind blowing.

4.3.2 Evaluation metrics

There are generally two types of metrics: segment-based and event-based metrics. Segment-based eval-

uation is done in a fixed time block, using segments of one second length to compare the ground truth

and the system output. However, event-based evaluation is done in each event. An event in the system

output is considered correctly detected if its temporal position is of certain degree of overlapping with

the temporal position of an event with the same label in the ground truth. A tolerance is allowed for

the onset and offset. The exact description of these metrics presented in [95]. The metrics used in this

study are introduced in the next paragraphs.

For segment based evaluation, the following measures are counted in each segment k:

� true positives TP : events indicated as active by both the ground truth and system output.

� false positives FP : events indicated as active by the system output but inactive by the ground

truth.
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Home

(object) Rustling 60

(object) Snapping 57

Cupboard 40

Cutlery 76

Dishes 151

Drawer 51

Glass jingling 36

Object impact 250

People walking 54

Washing dishes 84

Water tap running 47

Residential 
area

(object) Banging 23

Bird singing 271

Car passing by 108

Children shouting 31

People speaking 52

People walking 44

Wind blowing 30

Acoustic Scene Sound Event Instances

Figure 4.8: TUT SOUND EVENTS 2016 dataset
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Street

Brakes squeaking 59

Car 304

Children 58

Large vehicle 61

People speaking 117

People walking 130

Acoustic 
Scene

Sound Event Instances

Figure 4.9: TUT SOUND EVENTS 2017 dataset

� false negatives FN : events indicated as inactive by the system output but active by the ground

truth.

� substitutions S: system output indicating as active a wrong label events; one substitution is

equivalent to one false positives and one false negative, meaning the system did not detect the

correct event but detected something.

� insertions I: false positives after subtracting the substitutions.

� deletions D: false negatives after subtracting the substitutions.

� reference events N : number of events in the ground truth.

Error Rate

In the DCASE challenge, segment based error rate is used for the evaluation of sound event detection.

This metric focuses on evaluating the events detected in non-overlapping segments, and is mainly used

for applications that require fairly coarse time resolution, where more importance is placed into detecting

the right events within the segment than finding their temporal position. Error rate is calculated over

74



4.3. EXPERIMENTS

all test data based on the total number of insertions, deletions and substitutions using:

ER =

∑
S(k) +

∑
D(k) +

∑
I(k)∑

N(k)
, (4.27)

where S is the number of substitutions representing system output indicating as active a wrong label

events, D is the number of deletions, i.e false positives after subtracting the substitutions, I is the

number of deletions, i.e false positives after subtracting the substitutions, and N is the total number of

events in each segment k.

F-score

Accuracy in each segment is given by the F-score, based on precision and recall, which are calculated in

each segment. Precision is defined as the number of correctly detected sound events divided by the total

number of events detected. Recall is calculated using the number of correctly detected sound events

divided by the total number of events in the ground truth. F-score is calculated over all test data based

using:

F =
2P ·R
P +R

(4.28)

where

P =

∑
TP (k)∑

TP (k) +
∑
FP (k)

, R =

∑
TP (k)∑

TP (k) +
∑
FN(k)

, (4.29)

The advantage of using F-score to evaluate SED performance is that it is widely known and easy to

understand. However, the magnitude of F-score is mainly determined by the number of true positives

such that majority classes might dominate minority classes in instance-based method [96].

4.3.3 Experimental Setup

Cross validation setup

Both of the TUT Sound events 2016 and TUT Sound events 2017 set are partitioned into four folds,

such that each recording is used exactly once as test data. The only constraint imposed in this stage

was that the test set cannot contain classes unavailable in training set.
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NMF2D Evaluation Methods

Since the NMF2D algorithm can be applied to different TFR, and the number of convolutive components

in time and frequency will affect the structure of the learned templates, the following experiments are

conducted to investigate these factors in generating the NMF2D-based features:

1. Gammatone spectrogram vs. Mel spectrogram vs. CQT

2. The number of temporal convolutive components

3. The number of spectral convolutive components

Baseline Method

The baseline system for TUT Sound Events 2016 dataset is based on MFCC+GMM approach. The

acoustic features include MFCC static coefficients, delta coefficients and delta-delta coefficients. For

each event class, a binary classifier is set up. The class model is trained using the audio segments

annotated as belonging to the modeled event class, and a negative model is trained using the rest of

the audio. The decision is based on likelihood ratio between the positive and negative models for each

individual class, with a sliding window of one second.

The baseline system for TUT Sound Events 2017 is based on a multilayer perceptron architecture

with log mel-band energies as features. Mel-band energies are further processed using a 5-frame context,

resulting in a feature vector length of 120. Using these features, a neural network containing two dense

layers of 50 hidden units per layer and 20% dropout is trained for 200 epochs for each class. Detection

decision is based on the network output layer containing sigmoid units that can be active at the same

time. A detailed description is available in the baseline system documentation.

4.3.4 Results and Discussion

The results obtained from the experiments on the proposed SED system are now presented and compared

with the baseline methods. First, some key factors that contribute to the success of the NMF2D-based

method are explored: the type of TFR and the number of convolutive components in time and frequency.

Then, the performance of the best performing NMF2D-based method is compared to results achieved

by the baseline method.
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Table 4.1: Detection results of the proposed method, exploring the different TFR that contribute to give
the best performance. The computational costs of these TFRs are also listed. Except for the number
of frequency bins b, the value of other factors is fixed in this evaluation. T and F represents the the
number of convolutive components in time and frequency respectively, K is the number of templates and
N is the number of frames.

TFR type
Computational cost Result

O(K(bT+FN)) ER F-score

Gammatone spectrogram b = 64 0.91 41.7%

Mel spectrogram b = 40 0.86 35.7%

CQT b = 545 0.85 35.3%

Gammatone Spectrogram vs. Mel Spectrogram vs. CQT

The results obtained from Gammatone spectrogram, Mel spectrogram and CQT are used to analyze

the effect of the TFR. For NMF2D, the number of convolutive components in time and frequency are

both set to 5, and the number of factors is set according to the number of sound events contained in

each acoustic scene. In this case, the computational cost of NMF2D is almost linear to the number of

frequency bins. It can be seen in Table 4.1 that the CQT outperforms the other two representations

in both metrics. This indicates that NMF2D is more useful to decompose representation for which

frequency shift make sense. On the other hand, Mel spectrogram also produced competitive results with

a reduced computational cost. Therefore, we choose to use the Mel spectrogram as the TFR of the audio

signal.

The number of spectral and temporal convolutive components

An comparison to examine is how the effect of the number of convolutive components. Table 4.2 shows

that the NMF2D performs well when 5 spectral and temporal components are used. This can be

explained by the way in which the local time-frequency pattern shows in the spectrogram, commonly

with a time region of about 100ms (5 frames) and a frequency shift of several bins.
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Table 4.2: Detection results of the proposed method, exploring the number of convolutive components
in time and frequency that contribute to give the best performance. TUT 2016 Sound events dataset
contains 12 recordings for home sound events, and 10 recordings for residential area sound events. Each
recording is 3-5 minute long.

# of temporal

convolutive components

# of spectral

convolutive components

Result

ER F-score

5 5 0.86 37.5%

5 10 0.91 41.0%

10 5 0.88 40.6%

10 10 0.94 22.8%

Comparison to Baseline Method

The performance of the proposed approach is first compared to the baseline method provided with the

TUT Sound events 2016 dataset. From the results in Table 4.3, it can be seen the proposed method

outperforms the baseline MFCC+GMM method, with reduced error rate and higher F-score. Results

obtained from the TUT Sound events 2017 dataset also show that the proposed approach can reduce

the error rate by 3% while increasing the F-score by 8.1%.

Table 4.3: Detection results comparing with the baseline method using TUT Sound events 2016 dataset,
which contains 12 recordings for home sound events, and 10 recordings for residential area sound events.
Each recording is 3-5 minute long.

Method
Average Home Residential Area

ER F-score ER F-Score ER F-score

Baseline 0.91 23.7% 0.96 15.9% 0.86 31.5%

Proposed approach 0.86 37.5% 1.06 21% 0.67 54.0%
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4.4 Summary

This chapter introduced the idea of using NMF2D and RUSBoost techniques for SED in real life audio.

The idea is to capture the two-dimensional spectro-temporal information in the TFR while separating

the sound source into several components. Existing methods for extracting joint spectro-temporal infor-

mation were first reviewed. Motivated by these approaches, the NMF2D method was then proposed for

overlapping sound, which decompose the TFR of the signal into time-frequency templates to produce a

set of features containing the spectral and temporal evolution information. Finally, RUSBoost ensemble

technique was adopted in the detection phase to overcome the class imbalance in the training data. The

results demonstrated that the proposed system comprising Mel spectrogram, NMF2D and RUSBoost

approaches performed better than the baseline methods in different acoustic scenes.
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Chapter 5

Conclusions and Future work

This thesis addressed the problem of ESR, which generally includes two task: classification of acoustic

scenes and detection of sound events. This is a challenging task as the environmental sounds often

contains components from unknown sources, and the noise level varies in different recordings. Based

on the two main categories of features for ESR, this thesis has developed novel approaches to capture

the temporal information from the signal. The motivation behind these approaches is that temporal

information can be extracted over across a range of different time and frequency scales. To give a

conclusion of this study, Section 5.1 summarizes the contributions of this thesis. Then, discussions are

given in Section 5.2 regarding some of the future directions that can be explored, and the challenges

that are faced.

5.1 Contributions

The approaches proposed this thesis focused on capturing temporal dynamics from different time and

frequency extent. By taking this two-dimensional approach, the extracted features naturally capture

both spectral and temporal information together. This is different from conventional frame-based audio

features, which typically extract a feature that represents only the spectral information contained within

each short-time frame. By combining image processing-inspired feature extraction from the spectrogram,

with techniques for noise robust recognition, the resulting methods can significantly improve upon the

state-of-the-art methods across a range of challenging experimental conditions. This idea of using spec-
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trogram image processing has formed This idea of using spectrogram image processing has formed the

basis for the contributions presented in this thesis, which are summarised below.

5.1.1 Combining Temporal Features by Local Binary Pattern

For ASC, the goal is to recognize the general acoustic scene indicating the location of the recording using

some global features extracted from the whole audio signal. Therefore, the idea of the proposed approach

is to extract the temporal signature from the frame-based MFCC, with the work published in IEEE/ACM

Transactions on Audio, Speech and Language Processing [?]. The method first extracts the sub-band

MFCC features. Then, these frame-level features are viewed an image, and LBP is then extracted from

it to characterize the pixel changes in the image. This can capture the temporal evolution information

contained in the sound signal, hence can improve the performance of the frame-based features found

in conventional audio processing systems. In the classification, D3C ensemble classifier is adopted to

combine the outputs of several base classifiers.

Experiments were first carried out to compare the different aspects that contributed the best perfor-

mance of LBP using 15 audio scene classes from the TUT Acoustic Scene 2016 dataset. These included

varying the type of LBP and neighborhood range used, and performing different normalization methods

for LBP. The results demonstrated that the LBPriu2 descriptor outperforms uniform LBP operators.

Additionally, it was found that the highest classification accuracy was achieved when the neighborhood

radius R is 3 and the number of sampling points is 16. This reveals that the temporal information

obtained from the three previous and subsequent frames is more useful for classifying scenes. And com-

monly used L2 normalization method is selected as it outperforms both L1 and L2-Hellinger. Then,

some spectral features are added to supply with the MFCCs and LBPriu2 features in attempt to further

improving the performance. The results reveal that most of the complementary features is not useful for

improving the overall system performance. Among all these spectral features, SCF features can slightly

improve the recognition accuracy, achieving a classification accuracy of 80.3%. Also, experiments are

conducted to compare the proposed system with the baseline method as well as some different tech-

niques addressed the temporal dynamics. The results showed that the proposed method achieved an 8%

improvement of as compared with the baseline.
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5.1.2 Extracting Joint Spectro-temporal Features by NMF 2-D Deconvolu-

tion

For SER, the goal is to detect the presence of individual sound events from a relatively long audio signal.

Therefore, the idea of the proposed approach is to extract the joint spectro-temporal signature from

the TFR. First, the TFR of the signal is obtained from short-time spectral analysis. NMF2D is then

applied on the TFR to learn the time-frequency templates. The activation of these templates in the

time region can be used as features. With the combination of spectro-temporal information contained

in the templates and the indication of the frequency change in the activation patterns, the joint spectro-

temporal characteristics can be captured while separating the overlapping signal into several components.

On the other hand, RUSBoost technique is utilized to address the class imbalance problem.

Experiments were first carried out to compare the different aspects that contributed the best perfor-

mance of NMF2D using TUT Sound Event 2016 dataset. These included varying the type of TFR, and

the number of spectral and temporal convolutive components. The results demonstrated that the CQT

outperforms the other selected TFRs. However, we chose the Mel spectrogram instead as it would lead

to a relatively low computational cost, and also provided a good result. Additionally, it was found that

NMF2D performs well when 5 spectral and temporal components are used. This may result from the

way in which the local time-frequency pattern shows in the spectrogram, commonly with a time region

of about 100ms (5 frames) and a frequency shift of several bins. Also, experiments are conducted to

compare the proposed system with the baseline method using the TUT Sound Event 2016 and TUT

Sound Event 2017 dataset. The results showed that the proposed method outperformed the baseline

methods. For the TUT Sound Event 2016 dataset, the proposed method reduced the total error rate

by 5% whilst increasing the F1 score by 13.8%. For the TUT Sound Event 2017 dataset, the proposed

method reduced the total error rate by 3% whilst increasing the F1 score by 8.1%. While the proposed

method can improve the baseline performance, the result is still not satisfying.

5.2 Future work

The goal of this thesis is to develop novel features for ESR and improve its performance. This has

resulted in the development of two techniques that address the extraction of temporal information

and the employment of ensemble learning techniques. Although experimental results show that the
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performance of the proposed methods can exceed the baseline methods, it still need to be improved

in order to compete with top ranked methods that are based on deep learning. For ASC, we only

utilized the frame-based features, so features from time-frequency aspects can still be explored. Image

processing techniques can be applied on the TFR to extract some global features of the whole signal.

For the classification approach, the ensemble of deep learning models might produce better classification

result.

For SED, local features from the field of image processing may be effective for the recognition of in-

dividual sound event. In the proposed method, NMF2D is performed to decompose the signal. However,

the optimal solution is, in most cases, non-unique and the problem is ill-posed. Additional constraints

(e.g., sparsity, smoothness, spatial information.) can be imposed to improve the performance. In ad-

dition, a verification process can be further added to verify the detected sound events, thus reduce the

number of insertions. Other possible improvements of the current method for SED include: estimating

the noise distribution in the TFR, learning the time-frequency templates using supervised method and

trying different base classifiers to be combined using the RUSBoosting technique. We believe these will

enable this promising method to be applied in applications with a larger range of sound classes and

real-world conditions.
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List of Acronyms

ASA Acoustic Scene Analysis.

ASC Acoustic Scene Classification.

AW MPEG-7 Audio Waveform.

CASA Computational Auditory Scene Analysis.

CNN Convolutional Neural Networks.

CQT Constant-Q Transform.

DCASE Detection and Classification of Acoustic Scenes and Events.

DNN Deep Neural Networks.

ESR Environmental Sound Recognition.

FT Fourier Transform.

GMMs Gaussian Mixture Models.

HMMs Hidden Markov Models.

HOG Histogram of Gradients.

ICA Independent Component Analysis.

ILD Interaural Level Difference.

ITD Interaural Time Difference.

LBP Local Binary Pattern.

LPCC Linear Prediction Cepstrum Coefficients.

MFCC Mel-frequency Cepstral Coefficients.
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MFCs Mel-scaled Filter-bank Coefficients.

MP Matching Pursuit.

MP-TFD Matching Pursuit Time-frequency Distribution.

NMF Non-negative Matrix Factorization.

NMF2D Non-negative Matrix Factor 2-D Deconvolution.

PLCA Probabilistic Latent Component Analysis.

RDNN Recurrent Deep Neural Networks.

RE Renyi Entropy.

RNN Recurrent Neural Networks.

SBE Spectral Band Energy.

SBW Spectral Bandwidth.

SC Spectral Centroid.

SCF Spectral Crest Factor.

SE Shannon Entropy.

SED Sound Event Detection.

SF Spectral Flatness.

STE Short-time Energy.

STFT Short Time Fourier Transform.

SVM Support Vector Machine.

TDOA Time Difference of Arrival.

TFM Time-frequency Matrix.
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TFR Time-frequency Representation.

WT Wavelet Transform.

ZCR Zero-crossing Rate.
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