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Abstract
EMPIRICAL ANALYSIS FOR NON-STATIONARY SIGNAL DE-NOISING,

DE-TRENDING AND DISCRIMINATION APPLICATIONS

c© Muhammad Farhat Kaleem, 2014.

Doctor of Philosophy in the Program of Electrical and Computer Engineering,

Ryerson University.

This dissertation focuses on the study and development of methods for empirical analysis

of non-stationary signals in the context of de-noising, de-trending and discrimination applica-

tions. For this purpose, Empirical Mode Decomposition (EMD), which is a relatively new sig-

nal decomposition technique, is chosen as the starting point. EMD does not rely on any fixed

basis, but instead defines a signal adaptive decomposition methodology. The use of EMD for

signal de-noising and de-trending is demonstrated through formulation of a methodology for

mental task classification using EEG signals. Furthermore, a methodology for analysis and

classification of pathological speech signals is developed, whereby a high classification accu-

racy through use of meaningful instantaneous features is demonstrated. Following this, a

novel modification of EMD, named Empirical Mode Decomposition-Modified Peak Selection

(EMD-MPS), is proposed. EMD-MPS allows a time-scale based decomposition of signals,

which is not possible using the original EMD algorithm. The EMD-MPS algorithm is de-

fined, and its properties empirically established, thereby validating the expected behaviour

of EMD-MPS. Importantly, EMD-MPS is shown to provide new insight into the decompo-

sition behaviour of the original EMD algorithm. Also, a novel hierarchical decomposition

methodology, which uses the time-scale based decomposition of EMD-MPS to divide a signal

into selected frequency bands, is developed and illustrated using synthetic and real world

signals. EMD-MPS is also used for time-scale based de-noising and de-trending of signals,

first demonstrated using synthetic and real signals, and then validated by practical applica-

tions such as mental task classification and seizure detection. An empirical sparse dictionary

learning framework based on EMD with application to signal classification is then proposed

and developed in the dissertation. As part of this framework, a discriminative dictionary

learning algorithm is developed, and characteristics of the empirical dictionary established.

The utility of the proposed framework for signal classification is demonstrated using EEG

signals. The proposed framework is then applied for automated seizure detection using long-

term EEG recordings, and the results are used to discuss the potential and implications
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for patient-specific dictionaries, as well as the associated advantages of the framework when

using long-term data.
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Chapter 1

Introduction

1.1 Background

The field of signal processing is replete with different techniques for automated signal anal-

ysis. Automated signal analysis allows researchers better understanding of the underlying

mechanisms and processes of the systems from which signals have been generated. For ex-

ample, automated analysis of financial time-series using signal processing algorithms can be

used to predict price evolution and stock classification for designing diversified investment

portfolios [3]. Signal processing techniques also allow utilization of signals to ascertain the

state of the underlying system generating the signals. As an example in this regard, we may

refer to use of signal processing techniques for pathological speech classification [4], whereby

speech produced by damaged or malfunctioning human speech organs can be automatically

differentiated from healthy speech with high accuracy.

While the two examples in the previous paragraph were presented in the context of auto-

mated signal analysis using signal processing techniques, the same tasks are also performed

manually. For example, a financial analyst might visually examine graphs of the daily prices

of stocks of interest to predict future movement of a stock, or a medical practitioner might

infer the level of pathology present in a patient’s voice by listening to her speech. Yet an-

other example could be that of a medical expert examining hours long Electroencephalogram

(EEG) signals to identify the onset and duration of seizure activity. As may be ascertained
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from these few examples, there are a number of issues associated with manual methods of

signal analysis. These may be categorized as follows [5]:

• Subjective: Manual methods of signal analysis are subjective to the expertise of the

person performing the analysis, whereas automated methods have no such limitation.

• Error prone: There are more chances of error in manual signal analysis, especially if

a task is repetitive, or involves a large amount of data. On the other hand, automated

signal analysis does not have such constraints.

• Laborious: Automated methods take the labour out of signal analysis, while at the

same time minimizing the chances of error. A good example here is analysis of data

in the form of several hours of EEG signals, with just one or two epileptic seizures

of a few seconds. The brief duration of the portion of interest in the signal makes it

difficult to find manually, leading to delayed or erroneous diagnosis.

• Impractical: In many cases, the signal analysis task can only be performed using

automated means. For example, information about the frequency content of a human

speech signal can only be obtained using transformation of the signal into the frequency

domain, and not by visual analysis of a time representation of the signal.

In this context, the development of advanced signal processing techniques for automated sig-

nal analysis represents an important research task. As already mentioned, these techniques

provide objectivity, reliability, ease of use, and practicality in different signal analysis situa-

tions. Another important advantage of automated signal processing lies in the reusability of

the same techniques in different situations across domains. For example, automated signal

processing techniques developed for analyzing geophysical data may be carried over to the

domain of biomedical engineering. However, successful application of such techniques also

requires a clear understanding of the different types of signals which will be analyzed by the

techniques. This is important since the automated signal analysis method must adequately
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account for the peculiarities of the signal being analyzed. Therefore knowledge of the differ-

ent signal categories is important for successful application of an adequate automated signal

analysis technique.

1.2 Signal Categories

The signals encountered by a signal processing researcher range from simple, predictable

structures having well-defined mathematical properties, to complex variations of either time,

frequency or space which are not possible to confine within a mathematical formulation.

However, this wide variety of signals can be grouped into well-defined and meaningful cat-

egories. These categories, and the classification of signals within these categories, may be

listed as follows:

1.2.1 Deterministic and Non-Deterministic

1. Deterministic: Signals which are deterministic can generally be described by a math-

ematical formulation, and the signal structure is known at all times, including the past,

present and future. A basic example of a deterministic signal is a sinusoidal signal of

the form y(t) = sin(2πft), where y represents the value of the signal at time t, and f

represents the frequency of the signal, or the number of signal cycles in one second.

2. Non-deterministic: Signals whose time and frequency values cannot be predicted

can be categorized as non-deterministic signals. As an example of a non-deterministic

signal, we may be consider the value recorded after rolling a dice every second, with

this value representing the signal amplitude. In this case, the values of the signal

amplitude at different instants of time are unpredictable, and it is not possible to

formulate a mathematical expression for this type of signal.
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1.2.2 Stationary and Non-Stationary

1. Stationary: Signals may be classified as stationary if the signal statistics, such as

mean and variance, do not change with time. We may here mention the dice rolling

example presented in the previous subsection, where the probability of the signal hav-

ing an amplitude value between 1 and 6 at a particular time instant is known to be

1
6
. This type of signal can be considered a stationary signal. According to the tradi-

tional definition [6], a signal X(t) can be considered stationary in the wide-sense if the

following hold, for all values of time t:

E(| X(t)2 |) <∞,
E(X(t)) = m,

C(X(t1), X(t2)) = C(X(t1 + τ), X(t2 + τ)) = C(τ1 − τ2)
(1.1)

where E(·) represents the expected value, and C(·) is the covariance function.

2. Non-stationary: If signal statistics are time-variant, the signals can be classified as

non-stationary signals. An example here is a signal which represents the daily mean

temperature of a city, since the temperature value at a particular time instant cannot

be assigned a fixed probability value.

Given the categorization presented, signals may then be classified into the following four

types, with an example signal from each type shown in Figure 1.1.

1. Deterministic and stationary: A sinusoidal signal of the type y(t) = sin(2πft)

belongs to this type, and an example is shown in Figure 1.1 (a).

2. Deterministic and non-stationary: An example is a linear chirp signal, which is

a sinusoidal signal whose instantaneous frequency varies linearly with time. Such an

example signal is shown in Figure 1.1 (b).

3. Non-deterministic and stationary: A signal formed by considering the number

obtained by rolling a dice at specific instants of time is an example, which is illustrated
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in Figure 1.1 (c).

4. Non-deterministic and non-stationary: A good example is the daily mean tem-

perature of a city, and such a signal is shown in Figure 1.1 (d).
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Figure 1.1: Illustration of different signal categories: (a) Deterministic: 5 cycles of sinusoidal
signal with frequency 5 Hz and an amplitude of 1. (b) Deterministic and non-stationary: a
chirp signal with an amplitude of 1 and frequency linearly increasing from 0 to 50 Hz. (c)
Non-deterministic and stationary: 3 signals representing 3 different trials of rolling a dice each
second, with the value observed taken as the signal amplitude. (d) Non-deterministic and
non-stationary: Mean temperature recorded in Toronto from January 1, 2008 till December
31, 2008, with the data obtained from the National Climate Data and Information Archive
provided by Environment Canada [1].
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1.2.3 Linear and Non-Linear Signals

In addition to the signal categories and the types of signals characterized according to the

categorization mentioned in the previous sections, another important aspect of signal char-

acterization relates to whether the signals have been generated from linear or non-linear

systems and processes. In general, the terms linear and non-linear signals are used exten-

sively in engineering literature, specially in context of signal analysis techniques that deal

with such signals [7]. In this regard, we may refer to a function f : R → R being linear

iff ∀x, y, n ∈ R, f(x + y) = f(x) + f(y), and f(nx) = nf(x). As pointed out in [7], any

signal which does not conform to this form might be thought of as a non-linear signal, for

which, however, there is no standard definition. Therefore it is prudent to consider linear

and non-linear signals as those which arise from linear and non-linear systems, respectively.

For example, non-linear signals may be considered as those generated from underlying dy-

namical systems which obey non-linear equations. As an example of a non-linear system,

we may consider the classic Duffing equation, which has been considered previously in the

context of signal processing methods for non-linear signals [8]. The Duffing equation can be

written as:
d2x

dt2
+ x(1− εx2) = b cos vt (1.2)

This equation can be seen as representing a non-linear spring having a variable spring con-

stant given by 1− εx2, where ε is a small parameter. When ε has a value equal to zero, the

equation represents a simple oscillator with a constant period. However, for the case when ε

is non-zero, the spring constant becomes a function of position, and the equation represents a

non-linear oscillator having variable frequency within one oscillation cycle, thereby represent-

ing the case of intra-wave frequency modulation. This then represents a typical non-linear

system exhibiting non-linear effects represented by harmonics and inter-modulations [8][9].

An example of a signal x(t) representing intra-wave frequency modulation is presented in

[10], and can be written as follows:

x(t) = cos(2πt) + 0.5 cos(2π0.7t) (1.3)
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The signal in Equation 1.3 can be considered as a single component arising through het-

erodyning of two closely spaced tones. As pointed out in [10], heterodyning is a routine

occurrence in non-linear and physiological systems (occurring, for example, at the contact

between the skin and metal electrodes).

It should also be pointed out that the term non-linear signal used in this dissertation has

been adopted mainly for the ease of use, and actually refers to a signal generated from an

underlying non-linear process or system.

1.2.4 Real-World Signals

Most of the signals acquired in the real world, whether through physical measurements,

or numerical modeling, represent data from non-stationary and non-linear processes. This

holds across diverse domains, e.g. geophysical data analysis [11], structural engineering [12],

machine health monitoring [13], biomedical engineering [9], financial data analysis [14], to

name just a few. Therefore, it is essential that automated signal analysis methods used for

real-world signals are suitable for analysis of non-stationary and non-linear signals.

1.3 Analysis of Non-Stationary Signals

In this Section, important requirements for automated signal analysis methods for non-

stationary and non-linear signals will be mentioned, followed by a brief review of some

representative signal analysis methods. However, before doing that, it is important to char-

acterize the different methods for signal representation, as signal analysis methods also utilize

these different forms of signal representation.

1.3.1 Signal Representation Tools

There are three main ways to represent a given signal, as described below:

1. Time: Signal representation in terms of its amplitude values at each instant of time is

the time domain representation of the signal. All the example signals shown in Figure
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1.1 are signal representations in the time domain.

2. Frequency: The time domain representation of the signals shows the variation of the

signal amplitude with time, and it also gives visual clues as to the rate of change of

the signal amplitude with time, which is an indication of the signal frequency. For

example, in case of the chirp signal shown in Figure 1.1 (b), it can be observed that

the signal amplitude varies slowly at the start of the signal, indicating a low frequency,

and then the rate of signal amplitude variation increases with time, representing an

increase in frequency. Most signals, however, will have not just one frequency compo-

nent, but many different frequency components, and it is not possible to ascertain the

frequency content of a signal just by visual inspection. Therefore the signal needs to

be represented in the frequency domain, which is the second way to represent a signal.

The frequency domain representation of a signal shows the relative energy of the fre-

quency components present in the signal, and is also commonly referred to as the

spectrum of the signal. The most common way of obtaining the signal spectrum is by

using the Fourier spectral analysis, whereby a signal is expanded into a family of an in-

finite number of sinusoidal functions, and the energy at a particular sinusoidal function

represents the signal energy at that particular frequency, resulting in a global energy-

frequency representation. The sinusoidal functions are not localized in time, and the

Fourier spectrum defines a signal’s spectral components along with their corresponding

time-invariant amplitudes and phases. In this regard, Figure 1.2 (a) shows the time

domain representation of a signal containing two sinusoids corrupted with zero-mean

random noise. The length of the signal is 1 second, and the sampling frequency is 1000

Hz. The two sinusoids occur at different temporal locations. The frequency domain

representation of this signal, obtained by taking the Fourier transform of the signal, is

shown in Figure 1.2 (b). The frequency domain representation clearly shows the pres-

ence of the two frequency components, at 50 Hz and 120 Hz. Also, the higher frequency

component has an amplitude of unity, whereas the lower frequency component has a

lower amplitude with a value of 0.7, which is also reflected in the energy-frequency
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distribution represented by the signal spectrum.

3. Time-Frequency: Although the signal spectrum obtained using the Fourier trans-

form helps find the frequency components in the signal, the temporal location of the

frequency components cannot be ascertained using the Fourier transform. The one

second long example signal shown in Figure 1.2 (a) has two sinusoids occurring at dif-

ferent temporal locations, the 50 Hz sinusoid between 0.2 and 0.4 seconds, and the 120

Hz sinusoid between 0.6 and 0.8 seconds, but the frequency domain representation of

this signal, shown in Figure 1.2 (b), does not have any information about the temporal

location of the sinusoids. In order to represent frequency components of signals in

terms of their temporal distribution in a signal, the third way of signal representation

is used, which is the time-frequency representation of a signal. A time-frequency rep-

resentation of a signal is a simultaneous representation of the signal’s instantaneous

energy distribution over time and frequency. This representation of the example signal

of Figure 1.2 (a) is shown in Figure 1.2 (c). In this figure, the x and y axes represent

the signal’s time and frequency values respectively, and the third dimension, which

is the intensity of the plot, represents the energy of the signal at each frequency and

time instant. A darker point on the graph represents a higher energy content at that

particular frequency and time instant. The time-frequency representation of Figure

1.2 (c) clearly shows the temporal location and frequency characteristics of the two

sinusoidal components in the signal. Additionally, the time-frequency plot in Figure

1.2 (d) shows the time and frequency characteristics of the chirp signal of Figure 1.1

(c), and the linear increase in signal frequency from a value of 0 Hz to 50 Hz is clearly

indicated.

As mentioned in this Section, meaningful analysis of signals requires signal representation

in both time and frequency domains. The frequency domain representation is obtained

using Fourier spectral analysis, which provides a global energy-frequency distribution, an

example of which was provided in Figure 1.2 (b). However, the Fourier method requires the

signals to be linear and stationary. This is because the Fourier spectrum represents uniform
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Figure 1.2: (a) Signal containing two sinusoids corrupted with zero-mean random noise. The
two sinusoids, having frequencies of 50 and 120 Hz, occur between 0.2 and 0.4 seconds, and
between 0.6 and 0.8 seconds, respectively; (b) Representation of the signal in the frequency
domain, using the Fourier Transform. The frequency domain representation indicates the
presence of the 50 and 120 Hz components; (c) Representation of the signal in the time-
frequency domain, using the Short-Time Fourier Transform (with Kaiser window having
length of 256 samples and overlap of 220 samples). The time-frequency representation not
only indicates the presence of the 50 and 120 Hz components, but also their temporal loca-
tions in the signal, between 0.2 and 0.4 seconds, and 0.6 and 0.8 seconds respectively; (d)
Representation of the linear chirp signal in Figure 1.1 in the time-frequency domain, showing
the linear increase in frequency with time.

harmonic components globally, so many additional harmonic components are needed for

signals which are globally time-varying, or non-stationary in nature, leading to energy being

spuriously spread over a wide frequency range. Also, since the Fourier transform is based

on a linear superposition of trigonometric functions, modeling non-linear effects in signals,
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such as deformed wave profiles, requires additional harmonic components. Thus the Fourier

spectrum of non-stationary and non-linear signals will have spurious harmonic components

that cause spreading of energy over the spectrum, resulting in a misleading, and physically

non-meaningful energy-frequency distribution. Therefore the used signal analysis methods

should be able to take the signal non-stationarity and non-linearity into account for accurate

and meaningful signal analysis.

1.3.2 Signal Analysis Methods

A number of methods have been devised for signal analysis, in both time and frequency

domains. Many of these methods have been designed to incorporate signal non-stationarity

aspects as well. Most of these methods are applicable to signals from linear systems only,

whereas only a few methods are suitable for analysis of signals from non-linear systems. At

the same time, it is important to realize that analysis of non-linear signals is more successful

when performed with methods suitable for non-linear signal analysis [15].

There are linear and non-linear signal processing techniques reported in literature which

extract parameters from signals being analyzed in order to characterize the signals. Some

examples of these techniques, as applied to Electromyogram (EMG) signals, which are gen-

erated by non-linear physiological processes, are provided in [16]. The linear techniques

mentioned in [16] include the root-mean square value of the signals, the peak and median

frequencies of the power spectrum of the signals obtained using the Fourier transform, and

the autocorrelation zero-crossings. The non-linear techniques discussed include estimates

of the signals’ maximal Lyapunov exponent, correlation dimension and the sample entropy.

Not surprisingly, it was reported in [16] that the non-linear techniques performed better than

the linear techniques in characterizing the non-linear signals.

Another type of signal analysis methods consists of parametric techniques which involve

fitting the signal under analysis to a particular model. These techniques are available in

the time domain, and the model, once found, can be mapped to the frequency domain.

Some linear methods for non-stationary signals include time-varying auto-regressive (AR),
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auto-regressive moving average (ARMA) and auto-regressive with exogenous input (ARX).

However, these methods cannot reproduce non-linear effect such as harmonics and inter-

modulations in the frequency domain [9]. For this purpose, the work in [9] models non-

stationary and non-linear dynamic systems using polynomial time-varying non-linear auto-

regressive with exogenous input (TV-NARX) models, and the identified models are then

transformed to the frequency domain using the concept of time-varying generalized frequency

response functions (TV-GFRFs). Although methods such as these provide good results, these

require fitting the signals being analyzed to a model, which may not be always possible, or

may require tuning the parameters of the parametric models or addition of parameters to

the models. Additionally, as mentioned in [9], obtaining the time-frequency representation

can require assuming the input signal as linear, so as to allow the use of linear parametric

approaches.

1.3.2.1 Signal decomposition methods

The approaches presented in the previous two paragraphs either extract parameters from

signals being analyzed, or require estimation, and possible adjustment, of models in order to

match the signals to the analysis methodology. However, real world non-stationary and non-

linear signals have important information hidden at intrinsic time and frequency scales, and

the signal analysis methods should provide a meaningful way of reproducing this information

in the time and frequency domains. For this purpose, methods which involve signal decom-

position are particularly relevant. A number of methods which allow analysis through signal

decomposition, in either the time or frequency domains, or the time-frequency domain, have

been proposed. Here we review some of the most widely used methods, and then mention

conditions which should be fulfilled by signal decomposition methods for non-stationary and

non-linear analysis.

Short-Time Fourier Transform: A very basic, but widely used method, based on the

Fourier transform, is called the Short-Time Fourier Transform (STFT). The STFT basically

introduces time dependency in the Fourier transform, by means of calculating the Fourier
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transform of short-time windows over the signal, and obtaining a time-dependent spectrum,

or time-frequency distribution, by sliding the window along the time axis. However, the

STFT assumes signal stationarity over the window length, which is often difficult to justify in

real signals, as alignment of window length with stationary time-scales cannot be guaranteed.

Also, for proper localization of an event in time, a narrow window is needed, whereas proper

frequency resolution requires a longer length window, leading to conflicting requirements

which are not easy to resolve.

Wavelet Transform: A more flexible technique is available in the form of the Wavelet

transform, which can also be seen as Fourier spectral analysis but with an adjustable window.

Due to its precise mathematical formulation, the wavelet technique, defined in continuous

and discrete representations, is widely used for signal analysis in a broad range of domains.

For wavelets, the basis functions are called mother wavelets, which can be stretched and

compressed (dilated and scaled), and the dilated and scaled versions are slided in time

across the signals to be analyzed. This has the effect of correlating the signal under analysis

with the dilated and scaled versions of the mother wavelet, and results in the amplitude

spectrum of the signal in time and frequency domains, representing the energy of the signal

at a particular frequency and time instant. A drawback of the wavelet analysis relates to the

same uncertainty in simultaneous time and frequency resolution as the Fourier analysis. For

example, the effect of an event local in time will be reflected in the high frequency range.

However, this will lead to issues if the local effect occurs in the low frequency range. Another

important drawback of the wavelet approach is its non-adaptive nature. This is because the

mother wavelet, once chosen, is used for all subsequent analysis, and therefore the choice of

the mother wavelet has significant effect on the overall signal analysis. The fixed nature of

the mother wavelet may not be able to track the time-varying nature of the signal at every

instant of time, or the intra-wave frequency modulations occurring intermittently. Since the

wavelet analysis is a linear technique, the results of the analysis for non-linear signals might

not be always meaningful.
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Principal Component Analysis: Another useful signal decomposition technique is Prin-

cipal Component Analysis (PCA), also known as Karhunen-Loeve Transform or Empirical

Orthogonal Expansion Function. In PCA, no assumptions about the shape of the basis

function are made, nor is the expansion basis fixed, but is instead derived from the signal

under analysis. Therefore PCA is adaptive, as it depends on the data to derive its modes, or

decomposed components. However, the decomposition of the signal into modes, or principal

components, is based on statistical properties of the signal, as the method extracts the modes

that account for most of the variance in the signal being analyzed, and there is no suggestion

of the frequency content of the signal in the modes. Further, as pointed out in [6], the PCA

decomposition is not unique, and a single component from a non-unique decomposition, even

for an orthogonal basis, is not physically meaningful.

Empirical Mode Decomposition: A relatively recent technique for signal analysis through

decomposition of the signal is called Empirical Mode Decomposition (EMD) [6]. The EMD

technique has gained much popularity, and has been widely used for signal analysis in a broad

range of domains, such as biological and medical sciences, engineering, geology, astronomy,

finance, as well in the visual arts (e.g. [17][18][19][20][21] [22][23][24][25] [26][4][27]). EMD is

a fully data adaptive decomposition technique, and is therefore suitable for non-stationary

and non-linear signal analysis. EMD considers a signal at the level of the most local os-

cillation, that between two consecutive extrema, and defines an algorithm to adaptively

extract the different oscillatory modes present in the signal. The algorithm defines steps

for successively separating the signal variations from the signal mean, though the mean is

considered as an instantaneous mean, and not as a global mean. The extracted modes are

called Intrinsic Mode Functions (IMFs), and satisfy certain properties. Since the extraction

of the modes is determined by the signal characteristics, the decomposed modes are also

generally meaningful. In this regard, decomposition of EEG signals into IMFs representing

the alpha rhythm (8-13 Hz) and eye movement artifacts (≤ 2 Hz) was demonstrated in [10]

as an example of the physical meaningfulness of the decomposed modes. Importantly, EMD
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requires no assumptions and requirements (e.g. harmonics) on the nature of oscillations as

well. Decomposition of a signal using EMD can be seen as in Equation 1.4, where a signal

x(t) is decomposed into k IMFs ck(t), and a residue rK(t), which is a monotonic function

from which no further modes can be extracted.

x(t) =
∑
k

ck(t) + rK(t) (1.4)

Once a signal has been decomposed using EMD into IMFs, Hilbert transform can be applied

to the IMFs to obtain the instantaneous amplitude (energy) and frequency values, which

allow the construction of an energy-time-frequency distribution. This energy-time-frequency

distribution is now generally termed as the Hilbert-Huang spectrum [10]. Given the adaptive

nature of the decomposition, and the ability to obtain instantaneous energy and frequency

values, this time-frequency representation preserves the time localities of events. Also, since

EMD decomposes a signal into components which are in the time domain and have the

same length as the original signal, the varying frequency in time is preserved [28], thereby

allowing capture of non-linear effects in signals. In certain cases, the non-stationarity and

non-linearity might require processing the signals in the time domain [21], thereby making

EMD a natural choice for a signal analysis method. On the other hand, the EMD technique

is defined by an algorithm, and does not have a precise mathematical formulation, although

its characteristics have been extensively studied and validated through numerical means.

Even though the technique is empirical, the knowledge of its properties and its extensive

use in a wide range of domains underscores the propriety of using empirical approaches for

signal analysis.

Here it is also pertinent to consider the conditions a basis must fulfil to represent non-

stationary and non-linear signals, as defined in [6]. These may be identified as:

1. Completeness: This condition relates to the precision of the decomposition, as to

whether the original signal can be reconstructed back from the decomposed compo-

nents.
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2. Orthogonality: This condition is relevant with respect to the positivity of energy,

and to avoid energy leakage. However, the orthogonality condition for non-linear sig-

nals generally holds only locally. Depending on the non-linear time and frequency

variations, it may be that neighboring components have same spectral structures at

different temporal locations, but no components will have the same spectral structures

at the same temporal instant.

3. Locality: The locality requirement is important for non-stationary signals, as for such

signals there is no fixed time scale, and the events of interest have to be identified at

the temporal locations of their occurrence.

4. Adaptivity: The adaptivity condition is relevant for both non-stationary and non-

linear signals, and especially non-linear signals, given that adapting to the local vari-

ations of the signals being analyzed is important for a meaningful decomposition, and

also for a spectral representation that is reflective of the signals’ oscillatory structures.

A fixed basis cannot be expected to fit all temporal and spectral variations in non-

stationary and non-linear signals.

From the methods discussed here, the Wavelet and EMD methods are good candidates for

fulfilling these conditions. In fact, there are many similarities between the wavelet and EMD

techniques as well [29][30]. For example, the EMD and wavelet (Discrete Wavelet Transform

(DWT)) decompositions may be seen as follows:

x(t) =
∑
k

ck(t) + rK(t) (EMD)

x(t) =
∑
k

dk(t) + aK(t) (DWT)
(1.5)

where dk(t) and aK(t) are the details and approximation components obtained after wavelet

decomposition of signal x(t). As pointed out in [30], both EMD and wavelets lead to de-

composition into components which may be seen as a fluctuation and a trend. The major

difference is that the scales are pre-determined for DWT and adaptive or data-driven for
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EMD. Thus the main compromise involved when using wavelets is due to the lack of adap-

tivity, resulting from the fixed and a priori nature of the mother wavelet. In addition, as

explained in [10], integral transforms (e.g. Fourier, wavelet) involve a trade-off between

temporal and spectral resolution due to the uncertainty principle, and the resolution of the

Fourier and wavelet methods also depends on the data length. EMD, on the other hand, is

not compromised by these issues [10].

1.3.3 Feature Analysis

An important part of automated signal analysis is feature extraction and classification. The

process of feature extraction refers to obtaining representative parameters from signals being

analyzed using a signal analysis method. The number of features is generally much less

than the dimensions of the signal being analyzed, and the dimension reduction results in

a significant reduction in the computational requirements of the signal analysis task. If

the features extracted from a signal are meaningful and representative of the signal, they

can be used to effectively describe a signal, but with much reduced dimensions. This is

also relevant in terms of characterizing a signal in terms of its membership of a particular

class, which can then be used for automatic classification of signals, which is an important

aspect of automated decision making algorithms which depend on accurate and effective

signal analysis. It is therefore possible to identify the following properties for the extracted

features:

• Representative and Meaningful: The extracted features should be representative

of the signals from which these have been extracted. This also allows the features

to reflect the common characteristics existing in signals belonging to the same class.

Also, the features should be meaningful, as opposed to abstract, which allows a physical

meaning to be assigned to the features based on the signal characteristics. For example,

in case of biomedical signals, meaningful features are relevant for understanding the

behaviour of the underlying physiological processes that generate the signals.
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• Discriminative: In addition to being representative of the peculiar patterns occurring

in individual signals, features should also be able to characterize signal properties

common to a class of signals.

• Localized: The locality of features refers to their ability to model representative

and discriminatory patterns in signals in both time and frequency domains, and is

particularly relevant for non-stationary and non-linear signals. Indeed, extraction of

such features also requires a signal analysis technique which is local and adaptive, as

previously mentioned.

Also connected to feature analysis is the process of classification, which refers to a scheme

that assigns signals to different classes. Classification schemes have two stages, the training

stage and the testing stage. In the training stage, a set of training signals with labeled class

information (in case of supervised learning) are used to train the classification algorithm. In

the testing stage, the trained classification algorithm is then used to classify any new signal

with unknown class information (a test signal) as belonging to a particular class of signals.

It is also important to realize that the quality of the extracted features will have a significant

effect on classification accuracy, just as the choice of a proper signal processing technique

will positively influence the extracted features according to the desirable properties presented

previously. Also important in this respect is the fact that if a signal processing technique

allows the extraction of features that are representative, meaningful, discriminative and

localized, the classification of signals may be possible in the feature space, without having to

use a classification scheme. This scenario would thus represent a highly desirable outcome

of signal analysis and the consequent feature extraction.

1.4 Contributions

In the previous Sections it has been shown that the analysis of non-stationary and non-linear

signals requires signal processing techniques which can deal with signal non-stationarity and

non-linearity. From among the presented techniques, Empirical Mode Decomposition (EMD)
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stands out due to the locality and adaptivity of the decomposition. At the same time, EMD

is defined by an algorithm, not by a mathematical formulation, though its decomposition

properties are well-understood through numerical, but empirical methods. Also, while the

EMD technique decomposes signals according to the local time scales at each step of the

algorithm, the decomposition itself cannot be controlled, which is to say that it is not possible

to selectively decompose certain time scales. Addressing this drawback can lead to a time-

scale based decomposition which retains all the advantages of EMD, but adds much more

flexibility to the decomposition process.

The goal of this dissertation is to develop techniques and methodologies aimed at empiri-

cal analysis for non-stationary signal de-noising, de-trending and discrimination applications

using biomedical signals such as pathological speech and EEG signals as real world examples.

1. A novel modification of the EMD algorithm was proposed, which is named Empirical

Mode Decomposition-Modified Peak Selection (EMD-MPS). Through this modifica-

tion, a time-scale based decomposition is possible. The properties of EMD-MPS were

also established empirically, thereby validating the expected behaviour of the decompo-

sition method. Importantly, it was shown how decomposition behaviour of EMD could

be formulated in terms of EMD-MPS, thereby providing novel insight into EMD.

2. Using EMD-MPS, a novel hierarchical decomposition methodology was proposed, and

illustrated with synthetic and real world signals. The hierarchical decomposition uses

the time-scale based decomposition of EMD-MPS, and can decompose a signal into

specified frequency bands.

3. De-noising and de-trending of signals is an important signal processing task. EMD-

MPS was used for a novel time-scale based de-noising and de-trending of signals,

demonstrated using synthetic and real world biomedical signals, and also for practi-

cal applications such as mental task classification using Electroencephalogram (EEG)

signals and seizure detection and epilepsy diagnosis.

4. A novel empirical sparse dictionary learning framework was proposed. As part of the
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framework, a discriminative dictionary learning algorithm was developed, and char-

acteristics of the empirical dictionary established. The use of the empirical sparse

dictionary learning framework for signal classification was demonstrated using EEG

signals. Furthermore, the framework was applied for automated seizure detection us-

ing long-term EEG recordings, and the implications of this application for creating

patient-specific dictionaries were described.

5. EMD was used for analysis and classification of pathological speech signals, and mean-

ingful instantaneous features in the time and frequency domains were extracted from a

large subset of intrinsic mode functions obtained after decomposition of the speech sig-

nals. The use of true instantaneous features obtained from the intrinsic mode functions

distinguishes this work from previous similar studies.

1.5 Structure of Dissertation

This dissertation is organized in six chapters. The overall structure of the dissertation, and

the flow between the chapters, is shown diagrammatically in Figure 1.3. The brief description

of each Chapter is as follows:

Chapter 2: Signal analysis using Empirical Mode Decomposition (EMD). Chap-

ter 2 describes the EMD method, as well as its important properties. De-noising and de-

trending in the context of EMD is also discussed in this Chapter. The use of EMD for signal

and feature analysis is described in terms of real world examples using pathological speech

classification and mental task classification using EEG signals.

Chapter 3: Empirical Mode Decomposition-Modified Peak Selection (EMD-

MPS). In Chapter 3, the novel modification of the EMD algorithm, named EMD-MPS, is

described, along with discussion of the method’s decomposition properties. Also included in

this Chapter is the description of a hierarchical decomposition method based on EMD-MPS.
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Figure 1.3: Block diagram of the dissertation. The connections between the Chapters are
shown in solid lines. The main practical contributions of each Chapter are shown with
dashed lines.

Chapter 4: De-noising and de-trending using EMD-MPS. The focus of Chapter 4

is de-noising and de-trending using the novel time-scale based decomposition using EMD-

MPS, which is demonstrated using synthetic and real world signals. In addition, the Chapter

includes discussion of the practical application of time-scale based de-trending in terms of

feature extraction for mental task classification and seizure detection and diagnosis.

Chapter 5: Empirical sparse dictionary learning. Chapter 5 presents the novel em-

pirical sparse dictionary learning framework, which is based on signal decomposition using

EMD. The discriminative dictionary learning algorithm developed as part of the framework
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is described, and the properties of the learned sparse dictionary are discussed in the Chapter

as well. The use of the framework for signal classification is described, and the Chapter

also includes a complete section on using the framework for automatic seizure detection

with long-term EEG records, and how the application of the framework may evolve towards

patient-specific dictionaries.

Chapter 6: Conclusions and future work. The dissertation is concluded in Chapter

6, which also includes a discussion of the directions for further research resulting from this

dissertation.
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Chapter 2

Empirical Mode Decomposition: An

Empirical Approach for Signal

Analysis

2.1 Introduction

Most signals encountered in real life are non-stationary and non-linear in nature, and the

analysis of such signals requires signal processing techniques that can take the signal non-

stationarity and non-linearity into account. Depending on the type of signals being analyzed,

it is important to use appropriate tools for analysis. Indeed, it has been shown in [15]

that for linear data, linear signal processing techniques outperform methods meant for non-

linear signal analysis. Therefore appropriate choice of the signal processing technique has

important implications for the robustness of the signal analysis methodology. A number

of widely-used signal processing techniques were discussed in Chapter 1, and the efficacy

of the Empirical Mode Decomposition (EMD) technique for analysis of non-stationary and

non-linear signals was pointed out. Empirical approaches, however, lack the mathematical

formulation which exists in signal analysis methods having a pre-defined basis. In general,

data analysis techniques have a mathematical formulation for the pre-defined basis, as well

as for the associated properties of convergence, completeness, uniqueness and orthogonality
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[31]. On the other hand, a fixed basis might fit the data at one temporal location, but not at

another in a non-stationary signal. Similar problems will result in a signal with non-linear

waveform characteristics, where using a fixed signal basis can lead to spurious harmonics.

EMPIRICAL METHODS

EMPIRICAL ANALYSIS FOR NON-STATIONARY SIGNAL DE-NOISING, DE-TRENDING AND DISCRIMINATION APPLICATIONS

DE-NOISING, DE-TRENDING, DISCRIMINATION

CHAPTER 2
EMPIRICAL MODE DECOMPOSITION 

(EMD)

CHAPTER 3
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MODIFIED PEAK SELECTION (EMD-MPS)
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Figure 2.1: Chapter 2 contains details about the Empirical Mode Decomposition (EMD)
method, as well as practical applications based on de-noising/de-trending and feature anal-
ysis using EMD.

In contrast, the EMD technique uses an adaptive basis which is derived from the data,

thereby allowing a robust analysis of non-stationary and non-linear signals. However, there is

no analytic definition of the adaptive basis and the associated properties. At the same time,

it is important to keep in view the fact that the characteristics and properties of EMD are

well-understood through empirical and numerical means. The shortcomings of the algorithm,

and their causes, are also known, thereby allowing researchers to make an informed decision
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about application of EMD to a particular signal processing scenario. Furthermore, there

have been a number of attempts to formalize the EMD algorithm (e.g. [32][33], along with

many others), but in general these require certain constraints to be met, or parameters to

be set, which again would depend on the signals to be analyzed, and thus still require an

empirical formulation for an optimal decomposition. None of these analytical formulations

of EMD have found much acceptance, and the original EMD algorithm is still widely used

in a broad range of applications.

As was previously mentioned in Chapter 1, EMD is particularly suited for the analysis of

non-stationary and non-linear signals due to the data-adaptive nature of the method. This

dissertation takes the view that the benefits of using an empirical method which uses an

adaptive basis derived from the data and hence can fit the non-stationary and non-linear

manifestations that may occur in the signals, while also providing a high time and frequency

resolution as well as means for de-noising and de-trending, which are important signal pro-

cessing operations, far outweigh any implications of a lack of mathematical formulation of

the method. Also, since the properties of EMD are well-understood, as are the issues arising

under certain conditions, it is possible to confidently apply the method for robust analysis

of non-stationary and non-linear signals.

In this Chapter, the EMD technique will first be described, followed by a discussion of

some important aspects of EMD. Discussion of de-noising and de-trending in the context

of EMD will form an important part of this Chapter, which includes an experiment de-

scribing a framework for mental task classification based on the de-noising and de-trending

capabilities of EMD. This will be followed by discussion of feature analysis in the context

of EMD, which also includes an experiment for classification of pathological speech signals

using novel temporal and spectral features obtained using an EMD-based methodology. The

robustness of the EMD-based methodology is then further demonstrated by classification

of telephone-quality pathological speech signals with much higher accuracy than previous

results mentioned in literature.
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2.2 Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) considers signals at the level of their local oscil-

lations, and hence allows signals to be seen as faster oscillations superimposed on slower

oscillations; the EMD algorithm allows iterative separation of the faster oscillations, and

the algorithm terminates when no more oscillations remain to be separated. Looking at a

signal at the local level means that we may consider a signal x(t) between two local extrema,

for example two minima at times t− and t+, as discussed in [34]. Within this interval, we

can define a high frequency part d(t) which represents the oscillation terminating at the two

minima and passing through the maxima that necessarily exist between them [34]. Similarly,

we can also identify a corresponding low frequency part m(t), such that the signal at the

local level may be defined as:

x(t) = d(t) +m(t) for t− ≤ t ≤ t+ (2.1)

The EMD algorithm defines the steps to separate d(t), and then iterate on the the residual

m(t). This may be explained step-wise as follows [34]. Consider the original signal x(t) as:

x(t) = d1(t) +m1(t) (2.2)

After extraction of d1(t), the first residual is decomposed as:

m1(t) = d2(t) +m2(t) (2.3)

and the complete steps of the algorithm can be written as:

x(t) = d1(t) +m1(t)

= d1(t) + d2(t) +m2(t)

...

=
K∑
k=1

dk(t) +mK(t)

(2.4)
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where mK(t) represents the final residue containing no oscillations. It can be seen from

Equation 2.4 that the algorithm decomposes the signal x(t) into K oscillatory modes and a

residue. The number K is not known a priori, but is determined by the algorithm [7], and

depends on the characteristics of the signal.

It is also important to point out that the high and low frequency qualification given to

the oscillations applies at a local level only, hence is different from pre-determined sub-band

filtering. In fact, the selection of the oscillatory modes corresponds to an automatic and

adaptive time-variant filtering [6][34]. The extracted oscillatory modes are called intrinsic

mode functions, which satisfy two simple conditions described in the next Section.

2.3 Empirical Mode Decomposition Algorithm

As described in the previous Section, EMD is an adaptive technique that allows decomposi-

tion of signals into intrinsic mode functions. An intrinsic mode function (IMF) satisfies the

following two conditions [6]:

1. The number of maxima, which are strictly positive, and the number of minima, which

are strictly negative, for each IMF, are either equal, or differ at most by one.

2. The mean value of the envelope, as defined by the maxima and the minima, for each

IMF, is zero, or very close to zero.

In practice, the second condition above is usually considered in an approximate sense, such

that the mean value of the envelope ||(EU + EL)/2|| < ε, where ε > 0, and || · || denotes

some norm, such as the absolute maximum || · ||∞ or the mean square value || · ||2 [7]. Also,

as pointed out in [35], the first condition is redundant unless the function is discontinuous,

and if a function satisfies the second condition, it also satisfies the first, since there must be

a zero between a peak and a valley, given that the envelopes are symmetric.

The technique for decomposition of the signals into IMFs is known as sifting, a brief

description of which follows. It needs to be mentioned here that in the subsequent sections,
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the notation used conforms to discrete-time signal processing. Furthermore, although most

of the time the notation used for EMD is for the continuous-time domain, there is precedent

of using discrete-time notation in the context of EMD [36], which we have adopted for the

subsequent sections in this Chapter, and also for the EMD algorithm shown in Algorithm 1.

1. For a given discrete time signal x[n], all the local minima and maxima of x[n] are

identified.

2. The upper envelope EU is calculated by using a cubic spline to connect all the local

maxima. Similarly, the lower envelope EL is calculated from the local minima. The

upper and lower envelopes should cover all the data in x[n] between them.

3. The mean Emean = (EU + EL)/2 of the upper and lower envelopes is calculated, and

x[n] is updated to c
′
[n] by subtracting the mean from it x[n]← x[n]− Emean.

4. The previous three steps are executed till c
′
[n] is reduced to an IMF c1[n], which

conforms to the properties of IMFs described previously. The first IMF contains the

highest oscillation frequencies found in the original signal x[n].

5. The first IMF c1[n] is subtracted from x[n] to get the residue r1[n].

6. The residue r1[n] is now taken as the starting point instead of x[n], and the previously

mentioned steps are repeated to find all the IMFs ci[n] so that the final residue rK

either becomes a constant, a monotonic function, or a function with a single maximum

and minimum from which no further IMF can be extracted.

Therefore, at the end of the decomposition, we can represent x[n] as the sum of K IMFs

and a residue rK :

x[n] =
K∑
i=1

ci[n] + rK [n] (2.5)

The EMD algorithm, as explained in this Section, is also shown in Algorithm 1. Also, a

demonstration of EMD to decompose a signal consisting of two quadratic chirps in shown in

Figure 2.2.
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Algorithm 1 Empirical Mode Decomposition Algorithm

1: Find the location of all extrema (minima and maxima) of x[n]
2: Interpolate between all the maxima to obtain the upper signal envelope EU , and the

minima to obtain the lower signal envelope EL
3: Compute the local mean m[n] = (EU + EL)/2
4: Obtain the oscillatory mode c

′
[n] by subtracting the local mean from the signal, c

′
[n] =

x[n]−m[n]
5: If c

′
[n] fulfils the conditions of an intrinsic mode function (IMF), designate it as an IMF

c[n]; otherwise let x[n] = c
′
[n] and iterate the algorithm from Step 1.

An interpretation of the sifting process as an amplitude modulation/frequency modula-

tion (AM/FM) decomposition is given in [35]. Seen this way, the sifting process is a means of

removing the non-symmetry between the upper and lower envelopes, such that the original

signal is transformed into an AM signal. This results in considering the obtained IMF as an

AM signal. Further, since the instantaneous frequency of the IMF may change from instant

to instant, the IMF is an AM/FM signal, with application of EMD to a signal resulting in

a set of AM/FM signals. Still keeping in view the interpretation of EMD as an AM/FM

decomposition, the envelope can be seen as slowly varying as compared to the signal x[n].

This means that the bandwidth of the envelope is a fraction of the central frequency of x[n].

Therefore the sifting process can be seen as the removal of the lower frequency components,

while leaving the higher frequency components for the next iterations of the algorithm ul-

timately resulting in an IMF. This can also explain the appearance of IMFs in a higher to

lower frequency order. In the same context, EMD may also be seen as a time-frequency

decomposition.

Further discussion of some important EMD algorithm implementation issues and char-

acteristics of EMD are provided in Appendix A.

2.3.1 Instantaneous Measurements

The IMFs obtained through decomposition of a signal using EMD lend themselves well to

calculation of the instantaneous amplitude and instantaneous frequency through application

of the Hilbert transform on each IMF [6]. First, the analytic signal zi corresponding to each
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Figure 2.2: Demonstration of EMD: (a) Signal containing two quadratic chirps. This signal
is decomposed using EMD. (b) The first IMF, containing the chirp with the higher instan-
taneous frequencies. (c) The second IMF, containing the chirp with the lower instantaneous
frequencies. (d) The time-frequency plot represented by the Hilbert spectrum, H[ω, n], ob-
tained using the steps defined in Section 2.3.1.

IMF is obtained, as shown below:

zi[n] = ci[n] + jH(ci[n]), (2.6)

where H(ci[n]) is the Hilbert transform of an IMF ci[n]. Writing Equation 2.6 in the polar

form we have:

zi[n] = ai[n]ejθi[n], (2.7)
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where ai represents the instantaneous amplitude, and θi the instantaneous phase, corre-

sponding to IMF ci. The instantaneous amplitude and instantaneous phase are given by:

ai[n] =
√
c2i [n] +H2(ci[n]) (2.8)

θi[n] = tan−1
H(ci[n])

ci[n]
(2.9)

The instantaneous frequency, ωi, can then be obtained as :

ωi[n] =
dθi[n]

dn
(2.10)

It is important to realize here that these instantaneous values represent the amplitude and

frequency varying trigonometric function, as given in Equation 2.7, that best fits the original

signal at the local level, with each IMF representing the signal at the local level corresponding

to a particular time-scale. The instantaneous frequency represents the time-varying value

of a frequency component occurring at a time instant corresponding to a local time-scale

extracted in an IMF, whereas the instantaneous amplitude represents the energy value of the

frequency component at that time instant. In this way, the instantaneous amplitude acts as

a weighting coefficient for the instantaneous frequency values.

Once the Hilbert transform has been applied to all IMFs, and the instantaneous amplitude

and frequency values calculated, the original signal x[n] can be expressed as follows:

x[n] = Re

K∑
i=1

ai[n] exp(j
∑

ωi[n]dn) (2.11)

Equation 2.11 is a representation of the instantaneous amplitude (hence instantaneous en-

ergy) and frequency contribution by the locally occurring frequency components in each

IMF. The values of the amplitude ai[n] and frequency ωi[n] plotted against time result in

a time-frequency representation H[ω, n] of the signal x[n], which is now called the Hilbert-

Huang spectrum [10]. The use of these steps to obtain a time-frequency representation of a
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signal after decomposition using EMD is demonstrated in Figure 2.2.

2.3.2 Marginal Spectrum

From the Hilbert-Huang spectrum H[ω, n], it is also possible to calculate the marginal spec-

trum, h(ω), which measures the total amplitude (and hence energy) contribution from each

frequency value over the whole signal length. The marginal spectrum is defined as:

h(ω) =
N∑
n=1

H[ω, n] (2.12)

2.4 De-noising and De-trending based on Empirical

Mode Decomposition

Real world time-series data is often non-stationary and noisy, and effective extraction of

the desired information requires pre-processing of data to reduce noise. De-noising refers to

removing the noise from the signal of interest, and effective de-noising requires noise removal

without affecting the desired signal. Therefore development of effective methods of signal

de-noising form an important aspect of signal processing research. Since signals of interest

may have a broad-band spectrum that overlaps with the spectrum of noise, linear filtering

methods are not considered effective for non-stationary and non-linear time-series, as filtering

methods only work for the cases where noise has time or frequency scales different from those

of the signal of interest [37]. Application of linear filtering methods to non-stationary and

non-linear processes will effectively distort the signal of interest [38]. Therefore, for real-

world signals, data-adaptive de-noising methods have proven more suitable. From such de-

noising methods, wavelet-based de-noising schemes, also termed wavelet shrinkage or wavelet

thresholding [39], are more popular.

Wavelet shrinkage de-noising methods work on the following principle : first, the wavelet

transform of the data is taken; second, thresholding of wavelet coefficients is performed;

third, inverse wavelet transform is taken to obtain an estimate of the signal of interest.
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Wavelet shrinkage de-noising methods do not make any assumptions about the nature of the

signals, and permit discontinuities and spatial variation as well [38]. However, these methods

require a choice of the wavelet and an appropriate number of resolution levels, as well as

choice of an appropriate thresholding algorithm. Adaptive filtering methods such as the

one proposed in [38] have shown to perform better at de-noising non-linear time-series than

wavelet shrinkage de-noising. However, the adaptive method in [38] requires a time-scale

that is n + 1 sample points, as it uses time-series segmentation, and there are also two free

parameters in the method, which have to be determined. Therefore the de-noising does not

work at the very local time-scale, that of two consecutive extrema, and requirement for the

selection of free parameters compromises full adaptivity to the time-series being de-noised.

In the same context, de-trending refers to extracting the trend of a time-series, where

trend may be seen as a function with monotone variations [40][41]. Trend extraction is also

an important aspect of signal processing, and has applications in diverse domains, such as

finance [42] and climate data studies [40], among others. Trend itself can have important

meaning, e.g. in finance and climate data studies, but it might also be required to remove the

trend in order for meaningful analysis of the de-trended data, for example in case of spectral

analysis, where the results of the analysis might become skewed by non-zero mean and effect

of other trend terms if the data being analyzed is not de-trended [40]. Simple methods of

trend extraction, e.g. de-trending data by subtraction of linear fits to the data, are only

suitable for linear and stationary data. Trend extraction methods based on moving averages

require a pre-determined time-scale for the averaging operation, making them unsuitable for

non-stationary data. More involved trend extraction methods, such as regression analysis or

Fourier-based filtering are often based on stationarity and linearity assumptions [40].

Similarly, for non-linear regression analysis, it is not always possible to justify application

of non-linear regression formula globally to a non-stationary time-series. Also, trend esti-

mation via regression works if a model can be applied to the data under analysis, whereas

a model might not be available for real-world data, or might not be appropriate for such

data. For non-stationary and non-linear time-series, the trend should be seen as intrinsic
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to the data, and not an external imposition on the data which can be removed by the pre-

viously mentioned mechanisms. Extraction of an intrinsic trend, which itself is adaptive

to the data, will require a data adaptive method for trend extraction. Also, unlike noise,

which represents the unwanted part of the data, trend is composed of useful information

that conveys a meaning. In a time-series, however, meaning is imparted to the data by its

time-scale. For non-stationary and non-linear signals, the time-scale of importance is the

most local time-scale. Therefore any method of trend extraction should be able to consider

data at its local time-scales. Another importance of associating a time-scale with the trend

relates to giving a meaning to the trend in terms of the associated time-scale, for example a

six-monthly trend, or an yearly trend in terms of financial or climate data. This requires the

trend extraction method to be able to extract the trend adaptively at different time-scales.

De-noising and de-trending can also be seen as closely related together. Trend, as defined

in the last paragraph, represents the slower oscillations in data, therefore de-trending can

be seen as extraction of the slower oscillations in the data, whereas de-noising can be seen

as removal of the faster oscillations. Another way of looking at this is using an example as

presented in [43], whereby a white noise process superimposed on an oscillatory component

with frequency f0 is considered. Depending on the observation scale T , an oscillatory com-

ponent can be seen as an oscillation if T >> 1
f0

, or as a trend if T << 1
f0

. This is especially

relevant for decomposition-based approaches, such as EMD, which decompose a signal into

faster and slower oscillatory components.

As was previously described in Section 2.1, EMD considers signals at the levels of their

local oscillations, and decomposes signals into IMFs by iteratively extracting the faster os-

cillations from the local lower frequency trend. Given the iterative signal decomposition,

the lower index IMFs contain the faster oscillatory components, whereas the higher index

IMFs contain the slower oscillatory components. Also, a perfect reconstruction of the de-

composed signal x(t) is possible, as shown in Equation 2.4, by adding the detail components

dk(t), k = 1, ..., K and the residue mK(t) [34]. This property of perfect reconstruction also

allows partial construction of the signal, whereby IMFs of different, but adjacent, indices may

34



be combined. This can be relevant, for example, in the case where the higher index IMFs

representing slower oscillations are combined to extract the trend, or the lower index IMFs

representing faster oscillations are combined to remove noise [34]. The idea of partial recon-

struction is the fundamental concept behind de-noising and de-trending approaches based

on EMD, and many variations of this idea have been proposed. Some of these approaches

are discussed next.

The approaches for de-noising and de-trending based on partial reconstruction of IMFs

can be categorized based on classification of IMFs as consisting of noise or trend. This

classification is done as follows:

1. Signal-specific methods

2. Statistical approaches

3. Energy and Energy-Ratio approaches

Signal-specific methods: An example of a problem-specific method for de-noising is

described in [21], where a method for removing wow noise from ground penetrating radar

data is described. Wow noise is an electromagnetic interference which is non-linear in nature,

hence EMD is a good method for removal of this type of noise. The study in [21] finds that

the wow noise is decomposed into the last two IMFs, and a method based on amplitude

modulation of these IMFs is described, whereby the time-varying components in these IMFs

are scaled to near zero amplitude. The reconstructed signal is then not degraded. The study

in [21] also compares the EMD-based method with a method based on residual median filter,

and concludes that the EMD method outperforms the method based on the median filter,

which is also not data adaptive as it requires setting the size of the window for the median

operation. A method for speech signal enhancement is described in [44], where speech signals

are first decomposed into IMFs and each IMF is then compared against a filtered reference

noise. Signals are reconstructed based on this comparison, with the reconstructed signal

containing reduced noise. Another method for musical noise removal from speech is presented
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in [45], which considers most of the musical noise as being contained in the first IMF, allowing

signal de-noising after partial reconstruction. While partial signal reconstruction in general

is done based on analysis of IMFs, the study in [46] determines the instantaneous frequency

of IMFs, and then removes IMFs with unwanted frequencies before signal reconstruction.

The utility of this method is demonstrated in case of ocular artifacts removal from EEG

signals.

Statistical approaches: A method for assigning statistical significance to IMFs from

noisy data with respect to the information content contained in the IMFs is described in

[37]. The study in [37] concludes that IMFs are normally distributed, and the product of

energy density of IMFs and their corresponding averaged period is a constant, with the

energy density function being chi-squared distributed. Based on this statistical analysis, a

method for assigning statistical significance to IMFs with respect to their information content

is described. Once the IMFs containing the meaningful and desired part of the signal are

identified by this method, partial reconstruction can be performed to de-noise the data or

extract the trend. A similar method based on IMF statistics is described in [34], which

also allows identification of IMFs as being composed of noise or the desired signal. In the

study presented in [47], statistical characteristics of zero-crossing intervals and zero-crossing

amplitudes of IMFs are studied, which allow inference of statistical significance of IMFs, so

as to ascertain which IMFs contain the signal and which the noise, so as to de-noise the signal

using partial reconstruction. A de-noising scheme for speech signal noise reduction, which

is similar to wavelet shrinkage de-noising, is presented in [48]. In this approach, IMFs are

thresholded using a shrinkage function, and the signal is then reconstructed. The method is

compared against different wavelet-shrinkage based methods, and found to perform better.

A method for de-noising and characterization of heart sounds in presented in [49], whereby

noise is assumed to be concentrated in the first IMF, and the Euclidean distance of the other

IMFs with the first IMF is used as a distance metric to select IMFs containing the relevant

signal, and to exclude IMFs containing noise.
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Energy and energy-ratio approaches: The energy approach for partial signal recon-

struction was initially proposed in [34], and the main idea of the approach is as follows. The

IMFs are considered zero-mean by definition (Section 2.3), and the empirical mean of the

partial reconstruction, ŷD(t), is calculated, where ŷD(t) is given by the following equation

for IMFs dk(t):

ŷD(t) =
D∑
k=1

dk(t) (2.13)

The IMF index D at which the mean of ŷD(t) departs significantly from zero is used to

identify the IMFs which contain the trend. Partial reconstruction of IMFs with indices D

and above leads to extraction of the trend of the signal. This approach is further refined using

fractional Gaussian noise analysis in [43], and is supplemented by another trend estimation

approach called the ratio approach. In the ratio approach, the zero-crossing number of i-th

IMF is denoted by Zi, and Ri = Zi−1

Zi
for i ≥ 2. According to the filter-bank property of EMD

(Section A.2), Ri ≈ 2 holds for generic broadband processes. Therefore, any deviation from

Ri ≈ 2 helps identify the IMF with index i containing a trend component. The study in [43]

also presents a combination of the energy and ratio approaches as the energy-ratio approach,

which allows trend estimation with more confidence. These EMD-based approaches are also

compared in [43] to existing trend estimation approaches, namely the l1-trend filtering and

the Hodrick-Prescott filtering, and found to have similar performance without requiring any

assumptions about the trend, or parameter estimation. An improvement to the energy-ratio

approach by using noise-assisted EMD, (called Ensemble Empirical Mode Decomposition,

or EEMD [50]), instead of EMD is proposed in [51] to reduce the effects of mode-mixing.

The study in [51] further extends the EEMD-based energy-ratio approach by incorporating

a seasonality checking criterion to cater for seasonal time-series de-trending, to overcome the

limitations of the energy-ratio approach when de-trending seasonal time-series.
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2.4.1 Experiment: Mental Task Classification using EEG Signals

In this Section a practical application taking advantage of the de-trending capability of EMD

will be described. A novelty of this application is the use of a non-linear energy operator,

namely the Teager-Kaiser energy operator, for feature extraction, as will be described in the

next sections.

2.4.1.1 Background

Identification of patterns in electroencephalography (EEG) signals corresponding to various

types of mental tasks performed by human subjects can have important applications in

the context of a brain-computer interface to take various actions, such as computer cursor

movement or selection of a letter for a typing task [52]. EEG signals are known to be non-

stationary and non-linear in nature [53][15], hence EEG signal analysis can benefit from

analysis using EMD.

Another useful tool for non-stationary and non-linear signal analysis comes in the form

of the Teager-Kaiser energy operator (TEO) [54]. The TEO is a non-linear operator that

can be used for energy estimation of amplitude-frequency (AM-FM) modulated representa-

tions of non-stationary and non-linear signals. There is considerable research using EMD

in conjunction with the TEO for non-stationary signal analysis, whereby a non-stationary

signal is decomposed into AM-FM modulated representations, and the TEO is applied to

these representations in various contexts, for example in creating energy-time-frequency rep-

resentations [55] or feature extraction for classification of normal and abnormal biomedical

signals [56].

The TEO was developed from the point of view of the energy required to generate a

signal x[n]. This non-linear energy-tracking operator Ψ is given in its discrete form as [54]:

Ψ(x[n]) = x2[n]− x[n+ 1] · x[n− 1] (2.14)

The TEO is nearly instantaneous, given that only three samples are required for computing
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the energy at a given time instant, as can be seen from Equation 2.14. This also makes the

operator easy to implement efficiently.

In the next Sections, a novel method for mental task classification using EMD and the

Teager energy operator for parameter extraction from EEG signals will be presented. This

method achieves an average correct classification rate of more than 85% for classification

between different tasks for each test subject. Furthermore, these results were obtained using

a limited number of parameters extracted from the EEG signals.

2.4.1.2 Data

The data used for this experiment is in the form of EEG signals recorded on 7 subjects, who

performed five tasks each. These tasks were 1) baseline task, which required subjects to relax

and think of nothing in particular; 2) multiplication task, involving mental multiplication of

2 multi-digit numbers; 3) letter task, in which subjects mentally composed a letter without

vocalizing; 4) rotation task, requiring subjects to visualize a three dimensional object being

rotated; finally, 5) counting task, in which subjects imagined a blackboard with numbers

being written on it. The subjects performed the tasks in ten trials each over two days, and

for each trial, EEG was recorded from six electrodes at positions (C3, C4, P3, P4, O1, O2) for

ten seconds at a frequency of 250 samples per second. Further details about the data are

available in [52], and the data is also available for public download1.

2.4.1.3 EMD and de-trending

EEG data of each subject, per trial, consists of 5 tasks. For each of these tasks, there are

6 EEG signals corresponding to the 6 electrodes, as mentioned in the previous subsection.

Each EEG signal is of 10 seconds duration, and contains 2500 samples. For this experiment,

the data of the first and last seconds was discarded, and hence 2000 samples from the second

till the ninth seconds were used. EMD was applied to each of 6 EEG signals, for each task.

In general, each EEG signal was decomposed into 9 IMFs. The IMFs with the lower indices

1http://www.cs.colostate.edu/eeg/
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Figure 2.3: An original EEG signal used in the experiment.

correspond to high frequency oscillations, whereas those with higher indices correspond to

the trend in the signal. Therefore it is possible to separate the trend from the original

signal, and obtain a de-trended signal, using a simple method as described in [34]. This

de-trending method falls under the energy approach described previously. Each IMF, by

definition, ci(t); i = 1 to l, is a zero-mean function. Therefore, given a signal x(t), a method

for finding the de-trended signal yd(t) is through partial reconstruction of the signal as

yd(t) =
l∑

i=1

ci(t) (2.15)

and observing for which i = l the mean of yd(t) varies significantly from zero. Figure 2.3

shows an original EEG signal used in the experiment. EMD is applied to this original signal,

which is then partially reconstructed by adding up the IMFs, starting from lower indices.

Figure 2.4 shows that the mean of yd(t) changes significantly from zero after l = 5. It should

be mentioned here that l = 5 was obtained very consistently in tests using a large number

of EEG signals from different subjects and different tasks.

Therefore the de-trended signal can be separated by partial reconstruction of the original

signal through summing up IMFs 1 to 5, as shown in the upper plot of Fig 2.5. The trend
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Figure 2.4: Mean of IMFs during partial reconstruction; mean changes significantly from 0
after IMF number l = 5

can be separated from the original signal by summation of IMFs 6 to 9, illustrated in the

lower plot of Figure 2.5.

2.4.1.4 Calculation of Teager energy

For each subject, and for all 5 tasks performed by a subject, EMD was applied to each of

the 6 EEG signals per task. The de-trended signal (sum of IMFs 1-5) and the trend (sum of

IMFs 6-8, ignoring the last IMF, which is the residue) is obtained for each EEG signal using

the method described in the Section 2.4.1.3. The next step in the process involves calculating

the average Teager energy for each IMF separately, for both sets of IMFs, corresponding to

the higher indices 1-5, and the lower indices 6-8. The average Teager energy, ec, is calculated

as [57]:

ec =
1

N

N∑
n=1

| Ψ[ci(n)] | (2.16)

where N is equal to the number of samples in the IMFs, Ψ[·] is the discrete-time TEO and

i = 1− 5 or i = 6− 8.
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Figure 2.5: (A De-trended EEG signal (top), and Trend of the EEG signal (bottom).

2.4.1.5 Parametrization and classification

The Teager energy is used for the parametrization of the EEG signals in the following way.

For each task performed by a subject, we have a feature vector with 30 parameters (1 task

→ 6 EEG signals→ first 5 IMFs) consisting of the average Teager energy of the higher index

IMFs, and another feature vector of dimension 18 (1 task → 6 EEG signals → last 3 IMFs

excluding the residue) corresponding to the lower index IMFs. These feature vectors are

called high frequency energies (HFE) and low frequency energies (LFE) respectively, given
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that the higher index IMFs correspond to higher oscillation rates in the original signal, and

the lower index IMFs correspond to lower frequencies.

The two feature vectors obtained for each task were used to discriminate between the

tasks for each subject using Linear Discriminant Analysis (LDA). For this purpose, both the

high frequency energies (HFE) and the low frequency energies (LFE) were used, and the

results obtained are discussed in Section 2.4.1.6.
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Table 2.1: Classification Accuracy For Classification Of Mental Tasks For All Subjects

Task Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7

Combination H.F.E L.F.E H.F.E L.F.E H.F.E L.F.E H.F.E L.F.E H.F.E L.F.E H.F.E L.F.E H.F.E L.F.E

base-count 80% 83.3% 70% 100% 90% 83.3 % 80% 83.3% 90% 83.3% 100% 83.3% 80% 100%
base-letter 70% 100% 80% 83.3% 90% 83.3% 90% 66.7% 90% 100% 90% 83.3% 70% 100%
base-math 80% 100% 70% 83.3% 80% 83.3% 80% 100% 70% 100% 90% 100% 100% 83.3%
base-rot 90% 66.7% 80% 100% 90% 100% 90% 100% 80% 66.7% 100% 100% 80% 100%

letter-count 80% 66.7% 80% 83.3% 90% 83.3% 80% 100% 90% 83.3% 100% 83.3% 80% 83.3%
letter-rot 100% 100% 80% 100% 80% 83.3% 80% 100% 90% 100% 100% 100% 100% 100%

math-count 70% 83.3% 70% 83.3% 70% 100% 80% 83.3% 80% 100% 90% 100% 100% 66.7%
math-letter 100% 100% 90% 100% 100% 83.3% 80% 100% 80% 66.7% 100% 66.7% 90% 100%
math-rot 80% 100% 60% 100% 90% 100% 80% 66.7% 90% 100% 90% 100% 100% 100%
rot-count 80% 100% 80% 100% 80% 100% 90% 83.3% 90% 66.7% 90% 100% 100% 100%

Average 83% 90% 76% 93.3% 86% 89.9% 83% 88.3% 85% 86.7% 95% 91.6% 90% 93.3%

H.F.E = High Frequency Energy; L.F.E. = Low Frequency Energy.
Tasks: base=baseline; math=multiplication; rot=rotation; count=counting;
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2.4.1.6 Results and discussion

The results of the analysis are presented in Table 2.1. The table lists the correct classification

percentages for discrimination between tasks for each subject as obtained using both feature

vectors, the high frequency energies and low frequency energies. Both feature vectors have

an average correct classification rate above 80%, with the exception of subject 2 when using

the high frequency energies. For many task combinations across all subjects, 100 % correct

classification is obtained. At the same time, it is clear that the average correct classification

rate using the low frequency energy feature vector is higher than that of the high frequency

energy, except for subject 6, as shown in Figure 2.6. Also, the difference in the average

correct classification rate using high and low frequency energies is significant in the case of

subjects 1 and 2. Based on these results, the following conclusions can be drawn:

1. The correct classification rate obtained using the approach presented here is higher

than or comparable to other approaches using the same data [58].

2. The dimensions of the feature vector used in this approach are low, especially using

the low frequency energy feature vector.

3. The parameters of the feature vectors can be calculated easily and efficiently. Impor-

tantly, the whole EEG signal is used for extracting the parameters. This is in contrast

to the approach presented in [58], where empirical mode decomposition was applied

to 1 second segments of the EEG signal. This segmentation, or windowing, which can

artificially remove the non-stationarity inherent in the data, does not benefit from the

application of EMD.

4. The approach presented here also uses all the IMFs, by dividing them into two groups.

The results show that the lower index IMFs, which capture the trend of the EEG

signal, possess important discriminatory information. This is also in contrast to the

works reported in [58] [59] where only the first 3 IMFs are used.
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Figure 2.6: Average correct classification percentage for all subjects using high and low
frequency energies, listed as HFE (left bars) and LFE (right bars), respectively.

In summary, this experiment presented a novel methodology for classification of mental tasks

using EEG signals by application of EMD and the TEO. This methodology can be easily and

efficiently implemented, and results in low-dimension feature vectors. It was also shown that

both the de-trended EEG signal, as well as its trend, contain discriminatory information,

which can be used for mental task classification.

2.5 Feature Analysis using EMD

The importance of of feature analysis was discussed in Chapter 1, and it was mentioned that

feature analysis is used to obtain representative parameters from signals being analyzed with

the help of a signal analysis method. Feature analysis is an important aspect of automated

decision making systems, and the quality of such systems depends on the features being rep-

resentative and meaningful, as well as discriminative and localized, as discussed in Chapter

1.

EMD has been used extensively for feature analysis for automated decision making sys-

tems in a wide-range of domains, using various types of signals (e.g. [17][18][60][61][22]

[23][25][26][4], among many others). EMD decomposes signals based on their local time-
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scales, and the characteristics of the signals hidden at these local time-scales are spread out

into different IMFs. An important advantage of using EMD is that signal analysis can be

performed in the time domain [18], or in the frequency domain using the methodology pre-

sented in Section 2.3.1, or in both domains [4], thereby allowing flexibility in feature analysis.

In addition, the ability to calculate values of instantaneous energy and frequency from IMFs

allows formulation of novel instantaneous features.

In the next Section, an experiment for pathological speech classification using EMD will

be described. The use of EMD for decomposition of the speech signals and extraction of novel

features from the obtained IMFs will be discussed. Since speech signals are non-stationary

in nature [62], EMD is well-suited for analysis of speech signals.

2.5.1 Experiment 1: Pathological Speech Signal Analysis and Clas-

sification

2.5.1.1 Background

Pathological speech refers to speech problems that result from damage or malfunction of

the human speech organs. These problems are exacerbated in people who use their voice

professionally, for example professors, lawyers, actors and singers. The traditional way of

diagnosing pathological speech is based on listening to a patient’s voice. However, such ap-

proaches are subjective to the training and expertise of the specialist performing the diagnosis

[63]. Significant attention has thus been paid to objective assessment of speech pathology,

making automated speech pathology detection an active field of research [64][65][66][67].

The main goal of automated pathological speech detection systems is to enable char-

acterization of any input voice as either normal or pathological. These systems use signal

processing tools, such as temporal, spectral and cepstral methods (e.g. [68][69][70]), or the

more recently introduced joint time-frequency methods (e.g. [71][72]), as a means for accu-

rate and discriminatory feature extraction. A classifier is then applied to the features thus

calculated in order to discriminate between normal and pathological speech.

An important aspect to consider in pathological speech classification is whether the fea-
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tures have been obtained from sustained vowels or continuous speech. Although sustained

vowels offer a more controlled way of quantifying voice characteristics, and in general pro-

duce good classification results, they are not representative of speaking as they are of singing

[62]. On the other hand, continuous speech signals capture important attributes of speech,

such as rapid voice onset and termination, changes in voice frequency and amplitude, as well

as sudden voice breaks. These attributes are also important in perception of voice quality

of a speaker in everyday life [62], as has been assessed in recent works [71][72].

While extraction of features from sustained vowels and their effectiveness in classification

of speech signals has been studied extensively in literature, similar studies using continuous

speech signals are fewer in number. Moreover, the use of sustained vowels has been moti-

vated by the resulting simple acoustic structure, hence resulting in simpler and consistent

voice quality assessment [62]. Studies analyzing continuous speech signals rely in general on

segmentation of speech to identify the voiced, unvoiced and silent periods in speech. This

is required for features used to quantify periodicity and regularity in speech, such as the

harmonic-to-noise ratio, cepstral peak prominence and pitch amplitude, which hold only for

voiced regions of speech. Speech signals, however, have non-stationary dynamics, and sta-

tionarity of signals cannot be assumed over short time intervals. It is possible for important

signal characteristics to be lost if segmentation occurs at intervals containing non-stationary

dynamics [72]. One of the reasons for the scarcity of works on feature extraction from con-

tinuous speech is the challenge of segmenting the speech signal into voiced, unvoiced/silent

periods prior to feature extraction [71]. The study in [62] has pointed out the challenge

involved in the analysis of continuous speech due to the inherent non-stationarity of the

signal.

This makes non-stationary signal analysis techniques, which do not require segmenta-

tion of the signals, and which can better reveal non-stationary behaviour of signals such as

trends, discontinuities and repeated patterns, more attractive for the analysis and automatic

classification of speech signals. Therefore, EMD was used for this experiment. Furthermore,

EMD lends itself well to extraction of temporal and spectral descriptors from the original
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signals, as it decomposes a signal into IMFs, which are functions of time from which spectral

information may also be obtained. However, application of EMD to analysis of speech signals

is scarce. A noise-enhanced algorithm of EMD has been used to extract the fundamental

frequency from sustained vowels as described in [73], whereas EMD-based classification of

normal and pathological voices is presented in [74]. However, the work in [74] is also based

on sustained vowels, and not continuous speech, thereby not realizing the full potential of a

non-stationary signal analysis technique like EMD.

With this background, the goal of this experiment is to apply EMD in its simplest form

to randomly selected continuous speech portions of both normal and pathological signals so

as to extract meaningful and well-defined temporal and spectral features. With an emphasis

on simplicity and effectiveness of the proposed methodology, the efficacy of the features

presented in this experiment are demonstrated by applying a simple classification scheme to

classify normal and pathological signals with high accuracy. It should also be pointed out that

there is no evidence of pathological voice classification using randomly selected continuous

speech portions having been done before. In this context, this experiment can also be seen

as a preliminary step towards text-independent pathological voice classification. The overall

methodology of the experiment is shown in Figure 2.7. The flow of the methodology is

indicated by the solid directional lines, whereas the dashed lines represent the feedback

that was incorporated in selection of speech segment length and the number of IMFs to be

included for further analysis (as described later in Section 2.5.1.7).

2.5.1.2 Speech data

The data used in this experiment has been obtained from the Massachusetts Eye and Ear

Infirmary (MEEI) voice disorders database from 1994 [75]. Comprehensive details of the

database and a list of studies using this database have been presented in [65]. Many studies,

however, have only used a subset of the database, whether sustained vowels (e.g. 53 normal

and 173 pathological [63], 53 normal 53 pathological [74]) or continuous speech (e.g. 51

normal and 161 pathological [71][72][76]). This experiment also uses a subset of the database,
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Figure 2.7: Block diagram for pathological speech classification described in Experiment
1. The dashed lines represent feedback links used to determine speech segment length and
number of IMFs (Section 2.5.1.7).

consisting of continuous speech signals from 51 normal and 161 pathological speakers. This

allows a good reference to compare the results of this experiment with those obtained using

other approaches on the same database. All of the speakers spoke the same sentence, which

is: ”when the sunlight strikes rain drops in the air, they act like a prism and form a rainbow”.

The speech signals are sampled at 25 kHz and quantized at 16 bits/sample. Depending on

the speaker, and also on the extent of voice pathology, the amount of time to speak the

same sentence is different for different speakers. Therefore all speech signals, normal and

pathological, are of different lengths.

2.5.1.3 Selection of speech portion length

Using the whole signal length for decomposition and feature extraction would have been

computationally prohibitive, hence it was decided to use shorter portions of continuous

speech selected randomly from different parts of the speech signals. The length of the speech

portions was chosen based on the following design criteria:

1. Using a portion length long enough to incorporate actual speech, and not consisting

entirely of unvoiced/silence period.
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Figure 2.8: 800 ms portions of randomly chosen normal (upper figure) and pathological
(lower figure) speech signals and their corresponding first 10 IMFs.

2. Having a portion length which preserves the non-stationarity present in the speech

signals.

3. Achieving a fair compromise between classification accuracy and computational time

required by the methodology.

Regarding Point 1, it has been suggested in [77], which uses the same speech database as

in this work, that a good classification score between normal and pathological speech may

be achieved by using the silence parts of the database, which demonstrates the differences
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between the recordings. Therefore, the length of the speech portion should be a fair com-

promise that mitigates differences between normal and pathological speech that may arise

due to reasons other than speech pathology, while at the same time reducing the overall

computation time.

Point 2 relates to the non-stationarity aspects of portions of speech signals. Stationarity

of speech signals is accepted over 10-30 ms segments [78], and any portion of continuous

speech having a much longer length is able to capture the non-stationarity present in the

signal. Though the 10-30 ms limit has been studied for normal speech, the presence of more

transients, and larger spread of formants in pathological speech, as mentioned later in this

Chapter (Section 2.5.1.5) and elsewhere (e.g. [72]), gives reasons for confident assumption

of non-stationarity for pathological speech segments of length much greater than 10-30 ms,

specially if the speech portions have been obtained from different parts of the signal. In the

same context, confidence in the use of EMD as a means of temporal and spectral feature

extraction can be had due to the demonstrated superiority (e.g. [36]) of time-frequency

resolution of the EMD-based method, which is independent of the length of signal used.

To objectively select a speech portion length representing a compromise between classi-

fication accuracy and computational burden, as listed in Point 3, while also taking Points 1

and 2 into consideration, different lengths of the speech signals were chosen, and the clas-

sification accuracy checked for each length using the features described in Section 2.5.1.5.

Based on this analysis, the results of which are presented in Section 2.5.1.7, a speech portion

length of 800 ms was selected, which corresponds to 20,000 samples, for further analysis and

feature extraction. These 800 ms portions were extracted randomly from different parts of

the normal and pathological speech signals.

2.5.1.4 Selection of IMFs

For this experiment, the publicly available Matlab implementation [79] of EMD was used.

Figure 2.8 shows 20,000 samples of randomly chosen continuous normal and pathological

speech signals obtained from the database used in this experiment (Section 2.5.1.2) and first
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10 of their corresponding IMFs obtained after application of EMD to the signals. The IMFs

bring out the differing characteristics of the normal and pathological signals at different time-

scales, which can be quantified in features useful for classification of normal and pathological

speech.

Application of EMD to 20,000 samples of each speech signal results in the signals being

decomposed into between 11 and 15 IMFs. The minimum number of IMFs was 11 for

normal speech signals, and 13 for pathological speech signals. Since normal speech is in

general more coherent than pathological speech, normal speech signals are expected to be

decomposed faster than pathological speech.

In order to have uniformity in comparison between all speech signals, it was decided

to use the same number of IMFs from all signals, making 11 the highest number of IMFs

to be used for further analysis. Similar to the approach taken for selecting the length of

the speech portion described in Section 2.5.1.3, the number of IMFs to be used for analysis

and feature extraction was selected objectively. For this purpose, the accuracy of classifica-

tion between normal and pathological speech signals was measured using features extracted

(Section 2.5.1.5) from 11 IMFs obtained from both normal and pathological speech signals.

Thereafter, the IMFs were excluded from feature extraction one-by-one, starting from IMF

11, and the classification accuracy measured. In the same way, the classification accuracy

was measured with IMFs removed one-by-one, but starting from IMF 1.

Based on the results of this approach, more details of which are provided in Section

2.5.1.7, it was decided to use IMFs 1-10 for feature extraction, as the highest classification

accuracy was obtained using this combination of IMFs.

2.5.1.5 Features

The first 10 IMFs obtained from each of the normal and patholgical speech signals were

carefully analyzed, and discriminative temporal and spectral features extracted from the

IMFs. These features are described in this Section.
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Energy of intrinsic mode functions: The energy of the analyzed IMFs ci of the normal

and pathological signals is selected as temporal feature. The energy, Ei, is calculated as:

Ei =
N∑
n=1

c2i [n], i = 1 to 10 (2.17)

where N is the length of the time samples.

Due to the normal speech being more coherent than pathological speech, the amplitude

of normal speech signals in general has lesser variations than pathological signals. This dif-

ference is manifested in the decomposition process, whereby the amplitude variations of the

pathological signals are spread over a larger number of IMFs as compared to normal speech

signals, as can also been seen in Figure 2.8. Therefore the energy values Ei of IMFs i are

expected to capture the spreading of the pathological signals’ energy over a larger number

of IMFs. It is also for this reason that using the energy values of the IMFs was found to be a

better choice than using the energy of the signals themselves, as the distribution pattern of

the signal energy into different IMFs is generally different for normal and pathological sig-

nals, which, together with the other features described next, helps increase the classification

accuracy.

Instantaneous joint time-frequency features: Pathological speech is characterized by

the more likely presence of transients and discontinuities, and more noisiness at higher

frequencies. Normal speech generally has stronger and more distinguishable formant fre-

quencies, whereas the formants in pathological speech are more spread and less structured.

These differences are expected to be reflected in the instantaneous frequency and amplitude

attributes, which can be extracted from IMFs as described previously in Section 2.3.1. It

may also be re-iterated that the instantaneous amplitude represents the energy value of a

particular frequency component at a given time instant. A time-frequency plot of IMF 7

from both normal and pathological speech signals is shown in Figure 2.9.

A set of two temporal features, and a set of two spectral features is calculated from the

instantaneous amplitude and instantaneous frequency values obtained from each IMF. The
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Figure 2.9: Time-Frequency plot of IMF 7 of both normal (upper figure) and pathological
(lower figure) speech signals, showing a more even instantaneous frequency structure for
normal speech signals.

set of instantaneous temporal features measures the following two values for each IMF i:

1. The spread of the instantaneous temporal energy, SPi(ITE), measured in terms of the

instantaneous amplitude ai. This is given by:

SPi(ITE) =
1

N

N∑
n=1

a2i [n]− (
1

N

N∑
n=1

ai[n])2 (2.18)

2. The deviation of the instantaneous temporal energy, Di(ITE). This is given by:

Di(ITE) =
1

N

N∑
n=1

n · ai[n] (2.19)
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In both equations above, ai represents the instantaneous amplitude of IMF i, and N is the

length of the time samples.

Similarly, the set of instantaneous spectral features contains the following two feature

values for each IMF i:

1. The spread of the values of the instantaneous frequency, SP (ωi). This is given by:

SP (ωi) =
1

N

N∑
n=1

ω2
i [n]− (

1

N

N∑
n=1

ωi[n])2 (2.20)

2. The deviation of the instantaneous spectral energy, Di(ISE).

Di(ISE) =
1

N

N∑
n=1

ai[n]ωi[n] (2.21)

In the two equations above, ai and ωi represent the instantaneous amplitude and frequency,

respectively, of IMF i, whereas N is the length of the time samples.

Sum of marginal spectrum: Due to the noisy and irregular nature of pathological speech,

there are more components with higher energy at higher frequencies for pathological speech

signals. This effect also depends on the level of speech pathology present in the speech, and

can be exploited by extracting a feature from the marginal spectrum of the speech signals.

As described in Section 2.3.2, the marginal spectrum represents the total amplitude (and

hence energy) contribution from each frequency value over the whole signal length. It can be

observed from Figure 2.10 that beyond a frequency threshold, values of which for each IMF

are explained later in this Section, difference between the marginal spectrum amplitude for

normal and pathological speech is discernable. Therefore the sum of the marginal spectrum,

h(ω), above a frequency threshold, for IMFs 1 till 10, is used as a spectral feature, and is

given by:
fmaxi∑
f=fthi

hi(ω), i = 1 to 10 (2.22)
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where fthi represents the frequency threshold for each IMF used in the feature, fmaxi is the

maximum value of the frequency in each IMF, and ω = 2πf . The selection of the frequency

threshold for each IMF is described next.
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Figure 2.10: Figures showing marginal spectrum h(ω) of IMFs 4, 5, 6 and 7 of both normal
(solid lines) and pathological (dashed lines) speech signals. These figures illustrate that
the marginal spectrum for pathological speech has higher amplitude beyond the frequency
thresholds for the respective IMFs as compared to marginal spectrum for normal speech.

An experiment using a non-parametric statistical method, namely the Wilcoxon rank

sum test [80], was designed to determine the frequency threshold beyond which there is

discernable difference in the marginal spectrum of both normal and pathological speech

signal. Firstly, frequency threshold values for each IMF based on visual analysis of the

marginal spectrum plots of normal and pathological signals were selected. Then, four values,

at fixed intervals, greater than each of these frequency thresholds, and four value less than the

thresholds at the same intervals were used in the test to obtain that value of threshold which

provides maximum separation between the marginal spectrum of normal and pathological

speech signals. To carry out the test, first the sum of marginal spectrum was calculated
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Table 2.2: Thresholds for calculating the sum of marginal spectrum as a discriminative
feature.

IMF Frequency threshold Frequency threshold
No. by visual inspection by statistical test

1 5000 Hz 5100 Hz

2 2100 Hz 2100 Hz

3 1550 Hz 1575 Hz

4 900 Hz 925 Hz

5 500 Hz 500 Hz

6 300 Hz 400 Hz

7 150 Hz 125 Hz

8 100 Hz 20 Hz

9 50 Hz 40 Hz

10 25 Hz 15 Hz

for each IMF for each of the 9 frequency threshold values for 25 randomly selected normal

and pathological signals. Then the Wilcoxon rank sum test was performed using the sum of

marginal spectrum for all the 25 normal and pathological speech signals for each frequency

threshold value to test the separation between the sum of marginal spectrum values for

normal and pathological speech. The frequency threshold value with the lowest p-value was

then chosen as the threshold for that particular IMF. Table 2.2 lists the frequency thresholds

decided by visual analysis of marginal spectrum plots, and the thresholds selected by the

experiment described in this Section. These thresholds were used to obtain the feature values

represented by Equation 2.22.

2.5.1.6 Classification

In order to employ a simple classification scheme for classification of normal and pathological

speech signals, a linear discriminant analysis (LDA) based classifier [81] was employed. A

LDA-based classifier works in the following way: the feature vector is transformed into
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canonical discriminant function values given by

f = a+ b1v1 + b2v2 + b3v3 + b4v4 + b5v5 + b6v6 (2.23)

where {v} represents the set of temporal and spectral features described in Section 2.5.1.5,

{b} represents the coefficients, and a is a constant. The posterior probability of each sample

that occurs in each of the two groups is calculated using the discriminant scores and the prior

probability values of each group. Based on the posterior probability, the sample is assigned

to the group with the highest posterior probability.

The classification accuracy for pathological speech classification was calculated using

stratified 10-fold cross-validation on the whole speech data set. This technique randomly

divides the training set into 10 disjoint subsets, where each subset has roughly equal size

and same class proportions as in the training set. One subset is removed, and the classifier is

trained using the other 9 subsets. The trained classifier is then used to classify the removed

subset. This is repeated by removing each of the 10 subsets one at a time.

2.5.1.7 Results

Speech portion length and IMF number selection: The analysis and feature extrac-

tion of normal and pathological signals previously described was based on 10 IMFs extracted

from continuous speech portions of 800 ms length chosen randomly from different parts of

the signals. This length for the speech portions was selected as a result of the objective

methodology described in Section 2.5.1.3, which had the aim of finding a portion length

offering a fair balance between classification accuracy and computational time. In this con-

text, the classification accuracy obtained for different continuous portion lengths is shown

in Table 2.3.

It can be seen from Table 2.3 that a portion length of 800 ms results in the highest

classification accuracy compared to any smaller portion length. The decrease in accuracy

for a shorter length of speech portion can be explained by the greater likelihood of silent

periods, which have noise-like characteristics, affecting the correct classification of normal
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Table 2.3: Classification accuracy (rounded to nearest whole number) obtained using differ-
ent continuous speech portion lengths.

Portion length Classification Accuracy

80 ms 83%

160 ms 82%

240 ms 83%

320 ms 87%

400 ms 87%

480 ms 85%

560 ms 87%

640 ms 84%

720 ms 89%

800 ms 96%

1200 ms 98%

signals. At the same time, a portion length of 1200 ms led to greater classification accuracy,

due to the fact that more discriminatory characteristics of normal and pathological signals

can be included in longer portion lengths, but at the cost of a higher computational time for

signal decomposition and feature extraction.

The objective methodology for selection of the number of IMFs used for feature extraction

was also described in Section 2.5.1.4. The focus of this methodology was to find the number

of IMFs which lead to the highest classification accuracy. Table 2.4 lists the classification

accuracy obtained for different number of IMFs used, with features extracted from IMFs

1-10 having the highest accuracy. The classification accuracy for less than 6 IMFs was

lower than 90%. Also, removing the IMFs one-by-one, but starting from IMF 1, resulted

in a classification accuracy of less than 90%. This demonstrates that the lower index IMFs

contribute more to the discrimination than the higher index IMFs.

The empirical methods for selecting the speech portion length and the number of IMFs
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Table 2.4: Classification accuracy (rounded to nearest whole number) obtained using differ-
ent number of IMFs.

Number of IMFs Classification Accuracy

1 - 11 93%

1 - 10 96%

1 - 9 94%

1 - 8 95%

1 - 7 92%

1 - 6 92%

works well for different signal lengths, as well as for different number of signals, thereby

forming objective methodologies than can be used in different experimental setups.

Effectiveness of extracted features: To check the effectiveness of the extracted features

in discriminating between normal and pathological speech, un-paired t-tests were used to

test the null hypothesis that the feature values obtained from each of the 10 IMFs for both

normal and pathological speech have the same mean. The p-values thus obtained are shown

in Table 2.5 for each of the six features, and IMFs 1 to 10. It can be observed from Table 2.5

that the null hypothesis is rejected for all cases except for IMFs 9 and 10 for the feature Ei,

and IMFs 4 and 10 for the feature SPi(ITE). The combination of all the extracted features

determines the effectiveness in discrimination between normal and pathological speech.

Classification results: The accuracy of classification between normal and pathological

speech signals is calculated with a LDA based classifier on the whole speech data set. The

confusion matrix obtained using stratified 10-fold cross-validation on the speech data set is

shown in Table 2.6. From this table it can be seen that out of 51 normal speech signals, 49

were correctly classified, whereas 2 were misclassified as pathological. Out of 161 pathological

speech signals, 154 were correctly classified, and 7 were misclassified as normal. The overall

total classification accuracy represented by these results was calculated using the definition

of true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) as
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Table 2.5: p-values obtained by performing unpaired t-tests of the null hypothesis that the
feature values obtained for each of 10 IMFs of normal and pathological signals used in the
study have the same mean.

Feature IMF 1 IMF 2 IMF 3 IMF 4 IMF 5

Ei 0.00365 3.85×10−9 1.38×10−7 0.03045 0.01508

Di(ITE) 5.72×10−5 0.01088 0.00575 0.00651 0.00156

Di(ISE) 4.22×10−42 2.95×10−27 1.78×10−22 4.94×10−19 3.60×10−16

h(ω) 9.47×10−22 9.60×10−10 1.50×10−17 1.48×10−24 1.27×10−22

SPi(ITE) 0.00428 9.57×10−9 1.64×10−6 0.10234 0.01351

SP (ωi) 1.44×10−11 9.12×10−12 2.93×10−12 2.60×10−14 1.75×10−13

Feature IMF 6 IMF 7 IMF 8 IMF 9 IMF 10

Ei 4.29×10−10 3.43×10−9 4.84×10−8 0.0526 0.75809

Di(ITE) 0.00172 0.00589 0.00075 0.00788 0.00365

Di(ISE) 9.46×10−16 1.67×10−17 5.17×10−19 1.78×10−20 5.34×10−17

h(ω) 2.23×10−20 4.58×10−23 6.34×10−15 1.41×10−19 1.61×10−16

SPi(ITE) 1.03×10−9 1.03×10−12 4.97×10−6 0.01415 0.08220

SP (ωi) 8.49×10−14 1.04×10−12 9.82×10−12 1.43×10−9 1.72×10−16

(TP+TN)/(TP+TN+FP+FN) [2]. The classification accuracy thus obtained is 95.7%. The

misclassified pathological signals were analyzed in detail, and it was found that these speech

portions, extracted randomly from different parts of pathological signals, were more similar

to normal speech in their characteristics, as demonstrated by a lack of noisiness, as well as of

transients and discontinuities. Although the pathological signals from which these portions

were extracted were perceptually quite similar to normal, we may speculate the resulting

false negatives as a consequence of random selection of speech portions and a limited speech

portion length. This, however, is corroborated by the finding discussed earlier in Section

2.5.1.7 that an increase in speech portion length leads to better classification accuracy.

To further ensure no bias in the classification accuracy due to the unequal class sizes, the

experiment was repeated with 50 normal signals, as well as 50 pathological signals randomly

selected from the 161 available. In this case, the classification accuracy using 10-fold cross-

validation was 95.8%, thereby demonstrating the robustness of the methodology.
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Table 2.6: Classification Results using Linear Discriminant Analysis with 10-fold cross-
validation. TP:True Positive, TN:True Negative, FP:False Positive, FN:False Negative

True Classification
Pathological Normal

Predicted Classification
Pathological 154 (TP) 2 (FP)

Normal 7 (FN) 49 (TN)

2.5.1.8 Discussion

This experiment presented a methodology based on EMD to automatically discriminate

between normal and pathological speech. A main strength of this approach is the simplic-

ity and effectiveness of the methodology with respect to decomposition, feature extraction,

and classification. Also important in the methodology is the ability to extract meaning-

ful features from both the time and frequency domains. In this regard, extraction of true

instantaneous features at different time-scales distinguishes this methodology from other ap-

proaches. The efficacy of instantaneous features in capturing the discriminatory information

hidden in normal and pathological speech signals is demonstrated by the high classification

accuracy obtained in this experiment.

Another strength of the proposed approach lies in the use of continuous speech sam-

ples instead of sustained vowels. Compared to approaches that rely on sustained vowels or

segmented portions of speech signals, this approach offers a more realistic automated as-

sessment of voice quality, and demonstrates the advantage of using a non-stationary signal

analysis technique to classify signals with non-stationary dynamics. An important point in

this regard is that the use of continuous speech does not require an extra processing step

to separate the sustained vowels from the speech. This is an advantage, as any error in

the sustained vowel separation will propagate to the pathological speech classification stage.

Due to the nature of pathological speech, which has a less periodic structure compared to

normal speech, errors in sustained vowel detection and separation could be very common.

For this experiment, 800 ms portions of continuous speech were selected randomly from
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different parts of the speech signals. This length of speech portion, which was selected

objectively, corresponds to 20,000 samples and can effectively capture the non-stationarity

present in speech. At the same time, extracting different portions from different parts of the

signals contributes to the robustness of the methodology. A large subset of the IMFs was

also selected for feature analysis using an objective methodology. This is important, since

the useful temporal and spectral properties of signals are spread into a large subset of all

IMFs.

The methodology of this experiment may also be compared favourably with another

EMD-based approach for pathological speech classification [74] which uses speech signals

from the same database as used in this experiment. The approach in [74], based on sustained

vowels instead of continuous speech, uses only 3 IMFs, numbers 2-4, without a rationale for

excluding the rest of the IMFs. Also, the approach in [74] uses the maximum power spectral

density and the corresponding frequencies of these 3 IMFs as the feature vector. Since the use

of EMD can result in mode-mixing, which is a known issue with EMD [50], features dependent

on frequency values alone might not be robust to a wide range of speech signals. In case

the noise-assisted EMD [50] is used to reduce the effect of mode-mixing, the methodology

becomes computationally prohibitive. Furthermore, as already discussed previously, EMD is

a non-stationary signal analysis technique, and should be taken advantage of for analyzing

non-stationary signals, such as continuous portions of speech signals.

The results of this experiment can also be compared with some recent approaches us-

ing a similar methodology and the same speech database. The time-frequency-matrix-

decomposition approach [72] using the same voice database and an LDA classifier achieves

a correct classification result of 98.6% using speech segments of 80 ms. In comparison, the

proposed methodology achieves comparable classification accuracy using text-independent

portions of speech while using a less complex method.

Another approach based on adaptive time-frequency decomposition based on matching

pursuit [71] using the same voice database achieves a correct classification result of 93.4%

using an LDA classifier. Features extracted from the ambiguity domain [76], but using
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segmented speech signals, reach a classification accuracy of 97.5%, again using the same

database and classifier as used for this experiment. The work in [76] does not provide details

about the segmentation.

An aspect of EMD decomposition that needs to be kept in view is the processing time

required to extract all the IMFs. Since EMD is an iterative algorithm, the length of the signal

to be decomposed adds to the processing time. In this regard, using shorter portions of speech

signals is also an engineering compromise to keep a check on the processing time required

by the decomposition process. In the methodology presented here, by far the largest chunk

of the overall processing time is represented by the decomposition process, which consumes

on average 10 seconds for each speech signal consisting of 20,000 samples. Extraction of

the 6 features takes on average 2 seconds per speech signal. It should be mentioned here

that these numbers have been calculated on a laptop computer (AMD processor, with 4 GB

of RAM) running MATLAB software version 7.10.0, and are provided as a representative

measure only. Other works to which this experiment has been compared to in this Section

([74][72][71][76]) do not provide estimates of processing times.

In the next Section, application of EMD for classification of telephone-quality pathological

speech using a similar set of features will be described. This also demonstrates the robustness

and efficacy of the extracted features by achieving high classification accuracy for pathological

speech signals under different conditions.

2.5.2 Experiment 2: Telephone-Quality Pathological Speech Clas-

sification

2.5.2.1 Background

The methodology used for this experiment is similar to the methodology for the previous

experiment described in Section 2.5.1. However, in this case, the speech signals represent

telephone quality speech. Automation of speech pathology detection improves the accuracy

of assessment, and allows long distance identification and monitoring of pathological speech

for patients in distant geographical areas. In this regard, tele-medicine has an important
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role to play, since transmitting the voice over telephone channels allows a low-cost alterna-

tive for automated voice pathology assessment and vocal quality monitoring [2]. However,

the literature on telephone-quality pathological speech classification is sparse. The work de-

scribed in [2] uses descriptors such as pitch and amplitude measures and harmonic-to-noise

ratio extracted from sustained vowels to classify telephone-quality pathological speech with

an accuracy of 74.2 %. In this Section, a methodology based on application of EMD on

continuous speech samples to calculate features for classification between telephone quality

normal and pathological speech is presented. Using four unique features, among them two

based on instantaneous temporal and spectral measures not readily available in other popu-

lar approaches for speech analysis, telephone quality speech under different noise conditions

will be classified with classification accuracy higher than that reported in [2]. In this context,

the methodology presented in this Section elucidates the possibility of remote detection and

assessment of voice pathology.

2.5.2.2 Data

For this experiment, the same database as described for the previous experiment in Section

2.5.1.2 is used. However, as described in the next Section, the data is manipulated to simulate

telephone quality speech.

Telephone-quality speech simulation: In order to simulate telephone quality speech

from the original data, distortions introduced by telephone transmission were incorporated

into the original speech data, for both normal and pathological speech [2]. First, all the

speech signals were down-sampled to 8 kHz, with the effective bandwidth being 4 kHz. Care

was taken to low-pass filter the signals in order to prevent aliasing. The down-sampled data

was then band-pass filtered with a linear filter having the frequency range 300 - 3400 Hz,

which is the bandwidth of telephone transmission. The final manipulation of data included

addition of additive white Gaussian noise (AWGN). The AWGN was added with 3 different

signal-to-noise (SNR) ratios, which are 50 dB, 40 dB and 30 dB. This allowed testing of the

proposed methodology with different levels of noise present in the telephone quality speech.
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It should be mentioned that the 30 dB SNR was chosen to compare the obtained results

with those presented in [2].

2.5.2.3 Decomposition

EMD was used to decompose the telephone-quality normal and pathological speech signals

into IMFs. For this, the first 800 ms of each signal, which correspond to 6400 time samples,

were used. The signals of length 800 ms are decomposed into between 12 and 14 IMFs. The

IMFs resulting from the application of EMD to all speech signals were rigorously examined.

It was found that IMFs 11 and higher exhibited insignificant temporal or spectral structure,

with extremely low signal amplitudes and number of signal oscillations. Therefore, IMFs 1

till 10 for all normal and pathological signals were selected for further analysis and feature

extraction.

2.5.2.4 Extraction and evaluation of features

For this experiment, the features extracted are similar to the features described previously

in Section 2.5.1.5. These are described next.

Energy of IMFs: The energy, Ei, of the 10 IMFs (1 till 10) of the normal and pathological

signals is selected as a feature. The energy of the IMFs represents a temporal feature, and

is calculated as:

Ei =
N∑
n=1

c2i [n], i = 1 to 10. (2.24)

Variance of instantaneous measurements: As features, the variance, V ar(ai) (tempo-

ral feature), of the instantaneous amplitude ai, and the variance, V ar(ωi) (spectral feature),

of the instantaneous frequency ωi, are obtained from each of the 10 IMFs. The instantaneous

amplitude and instantaneous frequency are calculated by means of the analytic signal zi as

explained in Section 2.3.1.
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Table 2.7: Average classification accuracy with different levels of noise added

SNR (dB) 30 40 50

Avg. classification accuracy 89.7 % 91.3 % 92.6 %

Table 2.8: Classification results for one run of experiment in terms of measures de-
fined in [2]. SNR: signal-to-noise ratio. Acc: Accuracy. Sens: Sensitivity. Spec:
Specificity. Pos Pred: Positive Predictivity. Neg Pred: Negative Predictivity.
Acc(%):(TP+TN)/TP+TN+FP+FN. Sens(%):TP/(TP+FN). Spec(%):TN/(TN+FP). Pos
Pred(%):TP/(TP+FP). Neg Pred(%):TN/(TN+FN).

SNR (dB) Acc(%) Sens(%) Spec(%) Pos Pred(%) Neg Pred(%)

50 93.8 96.9 84.3 95.1 89.6

40 92.5 98.8 72.5 91.9 94.9

30 91.5 98.1 70.6 91.3 92.3

Sum of marginal spectrum: The sum of the marginal spectrum, h(ω), above a frequency

threshold, for IMFs 1 till 6, is used as a spectral feature, and is given by:

fmaxi∑
f=fthi

hi(ω), i = 1 to 10 (2.25)

where fthi represents the frequency threshold for each IMF used in the feature, fmaxi is the

maximum value of the frequency in each IMF, and ω = 2πf . The frequency thresholds in Hz,

for IMFs 1 to 6, are, respectively, 2000, 1500, 1100, 900, 500, 300. The frequency thresholds

were selected using the Wilcoxon rank sum statistical test as described in Section 2.5.1.5.

2.5.2.5 Classification results and discussion

For this experiment, 10 IMFs (1-10) of all the speech signals were used, and the feature

vector was constructed from the features extracted from these IMFs. This way the feature

vector consisted of 36 elements, given that 3 features were extracted from each of the 10

IMFs, and 1 feature from the first 6 IMFs. For classification, a linear discriminant analysis
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(LDA) based classifier was employed. The average classification results for different levels of

noise added to the telephone quality signals are presented in Table 2.7. Given the addition

of AWGN to the speech signals after down-sampling and filtering, the experiment consisting

of application of EMD to continuous speech samples (downsampled, filtered, noise-added),

extraction of feature vector, and classification, was performed 5 times for each value of the

SNR. The classification accuracy obtained for each value of SNR was then averaged over the

5 runs of the experiment. From Table 2.7, it can be observed that as the SNR is decreased

from 50 dB to 30 dB, the average classification accuracy decreases by less than 3% only.

The classification accuracy of 89.7% at SNR of 30 dB compares very favorably with the

classification accuracy of 74.2 % presented in [2].

Furthermore, these results are illustrated using the measures defined in [2]. These mea-

sures are defined in terms of True Positives (TP), True Negatives (TN), False Positives (FP)

and False Negatives (FN). The classification results in terms of these measures for one run

of the experiment for each value of SNR used are shown in Table 2.8. In terms of these

measures as well, results using the proposed methodology show significant improvement.

The decrease in classification accuracy with an increase in the noise level in the speech sig-

nals can be explained by the fact that addition of noise to the normal speech signals makes

their characteristics similar to pathological speech, as also illustrated by the increase in false

positives. In general, these results also demonstrate the efficacy of instantaneous descriptors

extracted from signals, such as instantaneous amplitude and frequency, and in general, of

EMD, which allows such descriptors to be extracted with ease. Also, since continuous speech

segments were used, the methodology presented in this experiment can be carried over to an

automated telephone-based pathological speech classification system.

2.6 Chapter Summary

This Chapter presented Empirical Mode Decomposition (EMD), which is an empirical ap-

proach for non-stationary and non-linear signal analysis. This was followed by discussion of

using EMD for the important signal processing task of de-noising and de-trending, supported
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by an experiment for mental task classification to demonstrate the practical application of

EMD-based de-noising and de-trending. Feature analysis using EMD was also presented in

this Chapter in the context of experiments using pathological speech that highlighted the

efficacy of EMD in terms of novel feature calculation from both the time and frequency

domains.
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Chapter 3

Empirical Mode

Decomposition-Modified Peak

Selection (EMD-MPS)

3.1 Introduction

As discussed previously, Empirical Mode Decomposition (EMD) is a technique for decom-

position of non-stationary and non-linear signals into amplitude and frequency modulated

waveforms called intrinsic mode functions (IMFs), which are obtained by adaptive extraction

of all the oscillatory modes present in a signal. EMD is defined by an algorithm, and the

IMFs are extracted through a process called sifting. The details of the EMD technique were

presented in Chapter 2, along with a discussion of some of its important properties.

Although the original EMD technique as presented in [6] is widely used in a broad range of

domains as discussed in the previous Chapter, a number of variations of the EMD technique

have been proposed in literature. In general, the purpose of these variations is to overcome

one or more of the issues identified in the original technique, or to enhance the algorithm

in a particular way. One aspect of the decomposition, however, that is missing from the

original EMD technique and its variations, relates to control of the decomposition process

through a time-scale based decomposition. For instance, the EMD algorithm separates the
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Figure 3.1: Chapter 3 describes Empirical Mode Decomposition-Modified Peak Selection
(EMD-MPS), which is a novel modification of EMD, and discusses the method’s decompo-
sition properties.

different oscillatory components into IMFs based on their local time-scales, but the algorithm

does not provide a way such that, based on a particular time-scale, some of the oscillatory

components are decomposed, while the others are not.

In this Chapter, the proposed variations of the original EMD technique will be categorized

first, with reference made to some of the important works in this regard. Then a variation

of the EMD technique, developed in the context of this dissertation, will be presented. This

technique, named Empirical Mode Decomposition-Modified Peak Selection (EMD-MPS),

allows a novel time-scale based decomposition. Some important properties of EMD-MPS

will be established, along with highlighting how EMD-MPS provides a new insight into the
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original EMD technique. The concept of hierarchical decomposition will also be presented,

which is a novel methodology made possible through the use of EMD-MPS.

3.2 Variations of Empirical Mode Decomposition

As already mentioned, a number of variations of the original EMD algorithm have been

proposed over the years in order to overcome the issues with the original algorithm. These

variations may be categorized in terms of the issues with EMD the variations are designed

to address. The categories may broadly be defined as follows:

• Mode-mixing

• Envelope formation

• Replacement of sifting process

These categories are not rigid in scope, and have been broadly defined, as a variation of

EMD that replaces the traditional sifting process with another framework may provide an

alternative formulation of the envelope and might prevent mode-mixing in certain scenarios

as well.

Mode-mixing: The phenomenon of mode-mixing refers to an IMF containing signals of

widely disparate time-scales, or a signal of the same time-scale appearing in different IMFs

[50]. This may compromise the physical meaning of the IMFs and hence the robustness

of the applications using EMD. The main reason for mode-mixing is intermittency in the

signal being decomposed, which refers to component(s) of widely disparate time-scales oc-

curring intermittently within the signal. An initial attempt to overcome mode-mixing due

to intermittency was described in [8], whereby mode-mixing could be prevented using an

intermittence test. However, the intermittence test required a subjectively selected time-

scale, which infringed upon the adaptivity of the EMD technique. The intermittence test
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was also not found to work well for the cases where components of different time-scale were

not clearly separable, but mixed over a range continuously [50].

An important and widely used method to alleviate mode-mixing, called Ensemble Em-

pirical Mode Decomposition (EEMD), was first proposed in [50]. The EEMD belongs to

the category of noise-assisted data analysis methods, and takes advantage of the dyadic

filter-bank property of EMD when applied to white noise [37][82]. In the EEMD method,

multiple realizations of white noise with a small amplitude are added to the signal before

decomposition using EMD. This way, the whole time-frequency space is uniformly populated

by the added white noise, such that the resulting IMFs exhibit a dyadic filter bank structure,

with the result that parts of the signal with different time-scales are automatically separated

into the IMFs corresponding to the correct time-scale. Importantly, an ensemble mean of

the IMFs resulting from different trials is calculated to cancel the effect of the added noise

within each IMF, hence giving the method its name. There are, however, a number of is-

sues associated with EEMD. For instance, as pointed out in [83], if a desired signal resides

in multiple dyadic sub-bands, then a noise-assisted decomposition method such as EEMD

will by design spread the signal into different IMFs, leading to unwanted mode-mixing. In

addition, the optimal size of the ensemble and the amplitude of the added noise sequences

are still open questions [84]. Also, for added noise to cancel out in the ensemble averaging

process, the size of the ensemble has to be sufficiently large, which means that the EEMD

technique is computationally prohibitive, as the decomposition has to be performed for every

added noise sequence.

A variation of the EEMD technique, named Complete Ensemble Empirical Mode Decom-

position with Adaptive Noise (CEEMDAN) is described in [85]. In contrast to the EEMD

technique, where each signal with the added noise sequence is independently decomposed

and then the resulting IMFs ensemble averaged, in CEEMDAN the first IMF is obtained in

the same way as EEMD, but thereafter the noise addition and ensemble averaging is done

over the residue obtained after extraction of each mode. This process is continued until all

modes have been extracted and the algorithm terminates according to the stopping criterion.
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Compared to EEMD, the CEEMDAN technique requires less than half the number of sifting

operations and a smaller ensemble size, resulting in a reduction of the algorithm computation

time. However, selection of the amplitude of the added noise is still a subjective choice.

Another interesting method to overcome mode-mixing is described in [86], whereby a

masking signal is added to the signal under analysis to aid in the decomposition. This

masking signal, which is a sinusoid, prevents the lower frequency components to be included

in the IMF as mode-mixed components. Since the masking signal is known, it can be

removed from the obtained IMF using the methodology defined in [86]. However, the method

described in [86] can resolve mode-mixing for two sinusoids only, and the success of the

method also depends on how accurately the higher frequency component in the signal is

estimated.

A generalization of the masking signal approach is described in [87], whereby a high fre-

quency frequency-modulated (FM) signal is used as a masking signal to prevent mode-mixing

in amplitude-modulated/frequency-modulated (AM-FM) signals. This method, however,

also requires estimation of the highest frequency component in the signal to be decomposed,

and is only geared to signals that can be modeled as multi-component AM-FM signals.

A relatively different technique to weaken mode-mixing based on examining the band-

width of the obtained IMFs is presented in [88]. In this technique, after an IMF has been

obtained using the normal EMD sifting process, the sifting process is continued until a de-

fined amplitude bandwidth of the IMF is smaller than a defined threshold, after which the

sifting continues till the minimum of a defined frequency bandwidth is found. This approach

is shown to weaken mode-mixing, but not resolve it comprehensively.

Envelope formation: The upper and lower envelopes, which are formed as part of the

sifting process, are an indispensable part of the EMD algorithm used for extraction of the

local mean. However, there is no formal definition of the envelope, with the cubic spline

interpolation considered a simple, effective and popular choice for envelope formation [7].

However, the cubic spline is not necessarily an acceptable envelope, for reasons discussed
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in [7]. A number of different attempts have been made at providing alternative envelope

formation mechanisms, or a formal definition of the envelope.

The use of B-splines for envelope formulation is described in [31], due to the B-spline

formulation being more amenable to mathematical study, with the work limited to showing

decomposition results comparable to cubic spline envelope formation. A class of envelopes

which minimize a quadratic penalty cost function involving cost parameters is proposed

in [89]. In this formulation, the adjustment of the cost parameters allows adjustment of

the frequency resolution of the IMFs. However, the described approach has a significant

computational cost, and efficient and useful methods for changing the cost parameters have

yet to be developed.

An alternative envelope formation approach, which uses four neighboring extrema in a

particular time interval for envelope formation, is discussed in [90]. Although this approach

is mathematically tractable, it is defined only for a two tone signal model. The work in

[91] presents a methodology whereby instead of forming upper and lower envelopes using

interpolation and calculating their average, a local mean curve of the signal is formed by

interpolating data points that are local integral averages over segments between successive

extrema of the signal. This sifting method, defined on the concept of the local integral mean,

is shown to separate frequency components with a frequency ratio up to 0.8, which is an

improvement over the frequency resolution power of EMD. However, the local integral mean

based sifting is still dependent on the extrema of the signal, and is therefore susceptible to

errors that may be induced due to noise present in signals.

A generalization of the local integral mean method is presented in [92], which uses a

windowed average method for forming the local mean using a rectangular moving window.

This method does not depend on discrete point detection or interpolation, and is more

amenable to signals with noise, however the advantages of the method come at the cost of

adaptability, as the method requires three parameters that have to be estimated, or supplied

empirically.

Another windowed approach that replaces the cubic spline interpolation with raised cosine
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interpolation is demonstrated in [93]. This method requires specifying the roll-off factor of the

raise cosine pulse, as well as the window shape and size before the start of the decomposition

process. Except for the interpolation, the rest of the methodology is the same as for EMD.

A re-definition of the signal mean envelope by means of new characteristic points is

proposed in [33]. This method, called the Turning Tangent EMD, provides a new geometric

definition of the mean envelope operator that interpolates the barycenters of particular

oscillations. The method is shown to have decomposition performance comparable with

EMD, and is computationally light, but requires signals to be in class C 1 , or to have an

appropriate numerical estimation of the derivative.

Replacement of sifting process: Given the empirical nature of the sifting process, vari-

ations of EMD that aim to replace the sifting process with a more mathematically tractable

framework have also been proposed. The decomposition approach described in [94] makes

use of a constrained optimization step to replace the sifting process, which seeks a trend of

order k belonging to the class of spline functions. This approach is studied with respect to

the sensitivity of the method to its parameters, and the accuracy of the method is found to

depend on the estimation of the parameters. Also, the approach requires a pre-processing

step to de-noise signals containing noise.

A similar approach which replaces the sifting process with a convex optimization pro-

cedure is presented in [95]. This method is based on proximal tools, and compared to the

previously mentioned approach of [94], does not require the use of splines or a first estimate

of the trend of order k. However, this method too is strongly dependent on the appropriate

selection of its two parameters, and the sensitivity of the decomposition to the parameter

values as well as robustness of the method to signals with noise is yet to be studied.

Approaches that seek to provide mathematically defined envelopes in the context of a

sifting process implemented in a partial differential equation based framework are described

in [96][97][98]. Although these models show good decomposition performance in certain sce-

narios, the models are defined only for a certain class of signals, or require model parameters
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to be empirically chosen, or both.

3.3 Empirical Mode Decomposition-Modified Peak Se-

lection (EMD-MPS)

In the previous Section, a number of different variations of EMD were highlighted, which

address issues with different aspects of the EMD algorithm. While these variations enhance

the algorithm, in general the enhancement comes at the cost of signal adaptivity of the al-

gorithm, which is a unique strength of EMD. The same is the case with the mathematical

models developed for different aspects of EMD, such as the sifting process. While the math-

ematical formulations provide capability for more precise analysis of different aspects of the

algorithm, the models require estimation of their parameters for efficient and correct signal

decomposition, which in turn has to be done empirically, or requires certain assumptions to

be made. The model parameter estimation for one type of real life signals cannot, in general,

be carried over to a different signal type, thereby requiring a different estimation for each

signal type. Due to its data adaptive nature, the EMD algorithm is by nature empirical, and

while mathematical models can be provided for certain aspects of the algorithm, the model

parameters have to be estimated empirically for different signal types, thereby reducing the

efficacy of the mathematical formulation.

On the other hand, the original EMD algorithm, and the different variations, many of

which were referenced in the last Section, do not provide the facility for a time-scale based

decomposition process, whereby signals can be decomposed according to a specified time-

scale. In this Section, a novel variation of EMD, named Empirical Mode Decomposition-

Modified Peak Selection (EMD-MPS), will be described, which allows signal decomposition

based on a particular time-scale, using intelligent peak selection for envelope formation

during the sifting process.

The sifting process of EMD considers the oscillatory modes in the signal at the very

local time-scale, and the EMD algorithm defines steps to extract these modes. The most
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local time-scale is defined by two consecutive extrema, hence identification of all the extrema

(peaks) in the signal is an important part of the sifting process. As described previously,

the sifting process involves approximating the local average of the signal to be decomposed.

This is done by forming upper and lower envelopes for the signal by interpolating through

all the identified maxima and minima in the signal. The local average is then approximated

as the mean of the envelopes. This also means that a change in the choice of extrema will

result in limiting the time-scale over which the sifting process allows an oscillatory mode in

the signal to pass un-decomposed.

EMD-MPS exploits this idea of selective extrema selection. In the EMD-MPS method,

the sifting process uses intelligent peak selection in short-time windows of length τ , where τ

represents a length of time from within which only the extrema with the maximum/minimum

value are selected. Based on different values of τ , different decompositions of a signal into

modes termed as τ -functions are possible. Therefore the short-time window acts as an oper-

ator which allows separation of different frequency components in a signal into τ -functions,

as determined by the length τ of the short-time window. A relation between the decomposed

frequency components and the value of τ will be established and empirically verified.

In the next sections, first the EMD-MPS method will be described, and then the be-

haviour of EMD-MPS analyzed by applying it to decompose fractional Gaussian noise (fGn)

with different values of the Hurst exponent. The spectral analysis of the obtained τ -functions

will be used to establish decomposition properties of EMD-MPS, as has been done previously

in the case of EMD [37][99]. Importantly, the relationship between EMD and EMD-MPS will

be pointed out, and it will be shown how EMD-MPS provides novel insight into EMD-based

decomposition.

3.3.1 EMD-MPS Method

The sifting process in EMD-MPS uses a criterion for choosing the extrema based on short-

time windows of length τ , instead of using a time-scale based on successive extrema, as

is done in the case of EMD. Let an operator W τ
i (·) be defined, W τ

i (·), i = 1...k, i ∈ Z,
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0 < τ < L, L ∈ R, which, given a signal x[n] of length L, produces the i-th τ -function Ti,

such that Ti[n] = W τ
i (x[n]). This happens as defined in Algorithm 2, and can be explained

as follows:

1. For a given signal x[n], a short-time window length denoted by τ is chosen, and for each

interval τ over the whole signal length, the highest/lowest from among the maxima

and minima within τ are selected.

2. The maxima/minima thus identified (one maxima and minima each per τ) are con-

nected using cubic splines to form the upper and lower envelopes.

3. The mean En(mean) of the upper and lower envelopes is calculated, and x[n] is updated

by subtracting the mean from it x[n]← x[n]− En(mean).

4. These steps, which are similar to EMD-based sifting, are continued till a stopping

criterion is met, at which point x[n] is reduced to the τ -function T1.

5. This τ -function is subtracted from x[n] to get a residue, which is then taken as the

starting point instead of x[n], and previous steps of the algorithm are repeated to find

all the τ -functions Ti in the signal.

Unlike IMFs extracted by the EMD algorithm, the coarse-grained τ -functions may con-

tain different coexisting modes of oscillation, each superimposed on the other. This happens

because the choice of extrema based on short-time window length τ limits the scale over

which the sifting process allows frequency component(s) to pass, resulting in τ setting an

upper limit on the periods of the oscillations that can be included in any given τ -function

obtained using the EMD-MPS method. This limit is determined by :

F =
Fs
τ

(3.1)

where Fs represents the sampling frequency. As an example for this relation, a value of

τ = 25 (in samples) corresponds to a frequency value F = 40 samples/second for Fs = 1000
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Algorithm 2 EMD-MPS Algorithm

1: Choose a short-time window τ .

2: For each interval τ over the whole signal length, identify the highest/lowest from among

the maxima/minima within τ .

3: Find the upper and lower envelopes En(U) and En(L) by interpolating all maxima/minima

identified (one maxima and minima each per τ).

4: Calculate the local mean of the upper and lower envelopes En(mean) =
En(U)+En(L)

2
.

5: Update x[n] by subtracting the mean from it x[n] ← x[n] − En(mean). Continue the

previous steps till a stopping criterion is met, at which point x[n] is reduced to a τ -

function T1.

6: Subtract T1 from x[n] to get a residue r[n].

7: Take r[n] as the starting point instead of x[n], and repeat the previous steps of the

algorithm till all τ -functions Ti in the signal are found.

samples/second. Using this value of τ , only one peak (maxima and minima each) in each 25

sample interval will be used in the envelope formation, and the sifting process should then

decompose all F ≤ 40 samples/second oscillatory components, and let all components with

F > 40 samples/second pass through un-decomposed in one τ -function. In practice, the

value of τ is qualified by a scaling constant k, such that τ̂ = kτ , and 0 < k ≤ 1. The relation

in Equation 3.1 and the scaling constant k are empirically validated in Sections 3.3.2.4 and

3.3.2.5.

Assuming Nyquist sampling, it can also be seen that the minimum value of τ is given

by τmin = Fs
Fmax

, where Fmax = Fs
2

. This gives the minimum value of τ as τmin = 2. At this

value of τ , all the maxima and minima present in the signal are selected, and EMD-MPS

is equivalent to the EMD algorithm. This means that all frequency components present

in the signal are decomposed, and the τ -functions are the same as IMFs. This relation of

EMD-MPS with EMD allows shedding new light on the decomposition behaviour of EMD in

terms of EMD-MPS, which is done in later sections. Similarly, τmax represents the maximum

possible value of τ , at which value the signal remains un-decomposed. Therefore the range
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of possible values of τ can be written as:

2 ≤ τ <
Fs
Fmin

(3.2)

where Fmin is the lowest frequency present in the signal to be decomposed. Practically,

however, the maximum value of τ will be limited by the length of the signal (see also Section

3.3.2.3 for relation to EMD algorithm termination).

3.3.2 Important Properties of EMD-MPS

In this Section, some important properties of EMD-MPS will be established and discussed.

As with EMD, the properties of EMD-MPS will be established empirically using numerical

means. The main tool here will be the decomposition of fractional Gaussian noise using

EMD-MPS. Fractional Gaussian noise (fGn) represents a versatile model for a full-spectrum

process which is not dominated by any particular frequency band, and has been previously

used in studies to establish properties of EMD [99]. The fGn of parameter H, which is

the Hurst exponent, can be defined as the zero-mean stationary Gaussian process with

autocorrelation sequence rH [k] := E{xH [n]xH [n+ k]},

rH [k] =
σ2

2
(| k − 1 |2H − 2 | k |2H + | k + 1 |2H) (3.3)

For H = 0.5, fGn reduces to discrete white noise, whereas other values of H correspond to

non-zero correlations (negative for: 0 < H < 0.5; positive for: 0.5 < H < 1).

For this work, extensive experiments were carried out with decomposition of fGn pro-

cesses using EMD-MPS with different values of τ in the operator W τ
i (·). For each of the

different values of H used (0.2, 0.5, 0.8, and also 0.1 and 0.9, but for fewer values of τ), 2500

independent sample paths of fGn were generated, each of length 2048 samples. EMD-MPS

was applied to each of the 2500 sample paths, using the following values of τ and i in the

operator W τ
i (·): i = 1, 2, 3, 4, 5, and τ = 1− 50. This means that for each value of τ for each

sample path, five τ -functions (T1 to T5) were obtained. The number of τ -functions was fixed
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to have a uniform reference for different values of τ for each path of fGn, and also because

for larger values of τ , the higher index τ -functions have insignificant temporal or spectral

content.

3.3.2.1 Filter bank behavior of EMD-MPS

Filter banks represent a collection of bandpass filters which can isolate different frequency

bands in the input signal. Spectral analysis of IMFs obtained by application of EMD on

white noise or fGn has shown frequency responses similar to that of a dyadic filter bank,

as discussed later in Appendix A. In order to test the behaviour of τ -functions Ti obtained

by decomposing fGn with EMD-MPS, using different values of τ in the operator W τ
i (·), the

power spectrum of each τ -function (T1 to T5) was estimated by computing its autocorrela-

tion function for each fGn sequence, which was then ensemble averaged over all sequences

and then Fourier transformed. Figure 3.2 shows the spectra of the τ -functions for three

different values of τ for fGn sequences with H = 0.5.

It can be observed from Figure 3.2 that when τ -functions display a band-pass behavior,

the pass-bands overlap in a way such that the lower half-band of τ -function Ti represents

a frequency range which is roughly covered by the upper half-band of τ -function Ti+1, in-

dicating a quasi-dyadic filter-bank structure. In the case of EMD, the dyadic filter-bank

structure for IMFs has previously been quantified by establishing an exponentially decreas-

ing relationship between the number of zero-crossings in IMFs (as an indication of the mean

frequency in an IMF) and the IMF index number [99][33]. Since τ -functions may contain

multiple modes of oscillation, the number of zero-crossings is not a good estimate of the mean

frequency. Instead, the center-frequency Fi of the τ -functions Ti with band-pass frequency

response was used, and it was found that Fi is a decreasing exponential of the τ -function

index i related by:

Fi ∝ β−i (3.4)

where β is very close to 2. It is interesting to note that the value of β remains close to 2 even

as τ increases, i.e. the dyadic filter-bank behaviour is demonstrated as long as τ -functions
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Figure 3.2: Mean spectra (power spectral density in dB on y-axis, and log2(frequency)
on x-axis) of τ -functions T1 to T5, obtained using three different values of τ for 2500 fGn
sequences with value of H = 0.5. Unlabeled numbers in the figures represent the indicies of
τ -functions.

have band-pass like characteristics. This is illustrated in Figure 3.3, which shows, for the

three values of H used, the values of log2(Fi) plotted against the τ -function index i. As

expected by Equation 3.4, the slopes of the least-square fits to the points are very close to

-1 even as the value of τ increases.
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Figure 3.3: Center frequency of τ -functions T2, T3, T4 obtained using different values of τ
plotted against the τ -function index i, using different values of H (top: H = 0.2, center: H
= 0.5, bottom: H = 0.8). The slopes of the least-square fits and the values of τ are indicated
on the plots.

Self-similarity of the spectra of band-pass IMFs is an important property of EMD filter-

banks [99]. For τ -functions with band-pass frequency response, approximate self-similarity

of spectra holds as well. For τ = 2, where EMD-MPS is equivalent to EMD, self-similarity

85



holds according to the following relation:

Si(f) = CSj(f)(β(i−j)f) (3.5)

where Si(f) represents the power spectrum of the i-th τ -function Ti with band-pass spectrum,

i > j ≥ 2, β ≈ 2, and C = βα, with α = 2(2H−1). When normalized according to Equation

3.5, the power spectra of the τ -functions obtained using EMD-MPS collapse to a single curve,

as shown in Figure 3.4. However, the value of C in Equation 3.5 holds only for values of

τ close to 2. As the value of τ increases, the value of α → 0, leading to C → 1. This

change with increasing values of τ is not uniform for different values of H, as is illustrated

for H = 0.2 in Figure 3.4, where a lower value of C given by C = β
α
2 leads to τ -functions

collapsing onto a single curve for τ = 5.

One other aspect of EMD-MPS that may be noted from the filter-bank behaviour is that

the spectrum of τ -functions starts changing from band-pass to low-pass as τ increases. For

sufficiently large value of τ , all τ -functions Ti, i > 1 demonstrate low-pass behaviour. This

is to be expected, since as the value of τ increases, most of the frequency components pass

un-decomposed in the first τ -function, and only low frequency components present in the fGn

sequence are decomposed into τ -functions with index i > 1. Similarly, for a large enough

increase in τ , τ -function T1 assumes approximately all-pass characteristics. Additionally,

the behaviour of τ -function T1 is different from other τ -functions. For lower values of τ , T1

displays high-pass behaviour, as in the case of EMD (corresponding to τmin = 2). However,

as τ is increased, T1 displays band-pass characteristics, whereas for large values of τ , T1

assumes characteristics akin to low-pass behaviour. It can however be noticed from Figure

3.2 that for τ -function T1, the attenuation in the ”stop-band” is much less than for other τ -

functions (except when T3, T4 and T5 assume low-pass characteristics with increasing values

of τ). Importantly, though, T1 and T2 share approximately the same frequency bands but

with different levels of attenuation. This can explain the efficacy of EMD-MPS in de-noising

of signals, as described in [100]. When T2 assumes low-pass behaviour for large values of τ ,

T1 displays approximately all-pass characteristics.
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Figure 3.4: Normalized power spectra (with power spectral density in dB on y-axis, and
log2(frequency) on x-axis) of 3 τ -functions according to Equation 3.5. The τ -functions were
obtained using a value of τ = 5. The spectra for H = 0.2 were obtained using C = βα/2 in
Equation 3.5.

3.3.2.2 Horizontal and vertical behavior

Given that the decomposition of EMD-MPS and EMD is driven by the sifting process, the

similarity in behaviour is not surprising. However, according to Equation 3.1, we can relate

the dyadic behaviour across modes (τ -functions or IMFs) to a change in the value of τ : a
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change in the value of frequency by half implies an increase in value of τ by a factor of 2.

This means that after the extraction of the first mode (whether IMF or τ -function), the

sifting process behaves as if the value of τ has been doubled. To test this, the value of τ

was increased by a factor of 2 after each τ -function had been extracted, with this change

resulting in no difference in the spectra of the τ -functions. However, increasing the value of

τ by a factor of 4 after each τ -function extraction resulted in decrease of the spectra to half

the previous value.

This suggests that the ”horizontal” (i.e. across modes) dyadic filter-bank behaviour also

exists ”vertically” (i.e. for the same mode, but for specific values of τ) for EMD-MPS, in that

the same τ -function Tτ
n displays a dyadic behaviour for different values τj, where τj+1 = 2τj.

As for the horizontal case, the vertical behaviour can be quantified as:

F τ
n ∝ β−τj (3.6)

where β is very close to 2. This is shown in Figure 3.5, which demonstrates the vertical

behaviour for values of τj starting from 2 (upper plot) and 4 (lower plot) using F τ
2 . The

solid lines in both plots are the least-square fits with a slope nearly equal to -1.

At the same time, Figure 3.5 reveals a very interesting phenomenon for values of τ starting

from 2 (upper plot), which corresponds to normal EMD behaviour. There is a very clear

deviation of the frequency value F 2
2 , indicating a lower value than expected. This implies that

for EMD decomposition, the oscillatory components in the first mode have higher frequencies

than expected by the vertical model, and going from mode 1 to 2 is not the doubling of τ , but

instead amounts to a τ2 which is almost three times τ1, τ2 ≈ 3τ1, (slight difference in values

for different values of H is not discussed here). According to Equation 3.1, the frequencies

to be separated and the value of τ are inversely proportional, hence for good separation of

components with frequencies f1 and f2, f2 > f1, the frequency ratio f = f1
f2

should have a

value f ≈ 1
3
. Interestingly, the separation limit established for two-tone separation in [101]

is given by f ≈ 2
3
, above which the two components cannot be separated by EMD regardless

of the amplitude ratio of the components. Using the analysis presented here, it can be said
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Figure 3.5: Center frequency of τ -function T2 (log2 values) obtained for different values of
τ , plotted against the index j.

that the separation limit for EMD decomposition of full spectrum random noise sequences

is less than that for the two-tone model, and for all practical purposes, EMD can separate

components according to a separation limit fsep � 2
3
.

Similarly, the difference in behaviour of the first IMF has been mentioned previously

in [102], but formulation of this behaviour in terms of the vertical behaviour presented by

EMD-MPS, as done in the last paragraph, can provide better insight into the decomposition

properties of EMD, and relate it to previous results as well. As an example, the band-pass

to low-pass change in IMF behaviour [99] can be explained keeping in view IMF extraction

in terms of an increase in τ as mentioned at the end of Section 3.3.2.1.

Furthermore, the vertical behaviour can be used to demonstrate and explain the evolution

of the probability density function (PDF) of the extracted modes, which has been shown

to be bi-modal for the first IMF, and Gaussian-like for other IMFs in the case of EMD
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decomposition of white noise and fractional Gaussian noise [37][29]. The bi-modal nature of

the first IMF is justified for the white noise case (H = 0.5) in [29] as follows: the PDFs of

Gaussian white noise maxima and minima are labeled by p+(x) and p−(x). Then, since the

first IMF has high-pass characteristics, and by construction EMD only maintains positive

maxima and negative minima, the PDF of the first IMF can be expressed as p∗(x) :=

max(p−(x), p+(x)), which reproduces the main structure of the bimodal PDF of the first

IMF.

None of the previous works have studied the evolution of the PDF from bi-modal for IMF

1 to Gaussian-like for IMF 2 and above. However, it is possible to observe the evolution of

the PDF of the extracted modes using the vertical behaviour in the context of EMD-MPS.

This is shown in Figure 3.6, which shows the PDF of three τ -functions Tτ
i , where i is the

index of the τ -functions, and τ is the value used to obtain the τ -function Ti. The τ -functions

have been obtained from 2500 fractional Gaussian noise sequences with a value of the Hurst

exponent H = 0.5, as described previously in Section 3.3.2. The PDF of each τ -function was

estimated using a Gaussian smoothing function estimate using 500 equally spaced points

covering the whole range of data of the τ -functions. The dashed lines in Figure 3.6 represent

the average PDF of all the individual PDFs.

The bi-modal nature of the PDF of the τ -function T2
1 is evident in Figure 3.6 (a). The

τ -function T2
1 has been obtained after application of EMD-MPS to fractional Gaussian noise

sequences using a value of τ = 2. At this value of τ , EMD-MPS is the same as EMD, as

mentioned in Section 3.3.1, and T2
1 is equivalent to IMF 1. Similarly, Figure 3.6 (c) shows

the PDF of the τ -function T2
2, which is the second τ -function extracted using a value of

τ = 2, and is therefore equivalent to IMF 2. It can be seen from Figure 3.6 (c) that the

average PDF, shown in bold red line, appears approximately Gaussian, as expected based

on previous results [37][29].

Interestingly, the PDF of τ -function T5
1 shown in Figure 3.6 (b) has a curve shape inter-

mediate between bi-modal and Gaussian-like. This intermediate curve shape represents the

evolution of the PDF across modes, as explained by the vertical behaviour in the context of
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Figure 3.6: Probability density function (PDF) estimates of 2500 realizations of three τ -
functions of fractional Gaussian noise with H = 0.5 obtained using a Gaussian smoothing
function estimate. The dashed lines represent the average PDF of all the PDFs of individual
τ -functions.

91



EMD-MPS. The τ -function T5
1 represents the first mode extracted from the noise sequences

using a value of τ = 5. This allows us to use the vertical behaviour (for the same mode n

represented as Tτ
n, but for different values of τ) to explain the horizontal behaviour (across

modes i represented as Tτn
i , but for the same τ value given by τn), since the extraction of

modes represents an increase in the value of τ , as discussed earlier in this Section. Therefore

it can be seen that the change from the bi-modal PDF to a Gaussian-line PDF is gradual,

and goes through intermediate stages. This can be explained in terms of the gradual change

of the filtering behaviour of τ -functions from band-pass to low-pass as τ increases.

The work in [103] presents a discussion on the PDF of IMFs obtained by application

of EMD on Gaussian white noise, and also considers the influence of data length on the

PDF. One finding of the study in [103] relates to the shape of the PDF of IMFs with index

i > 1 becoming bi-modal and even multi-modal as the length of the data increases. Again

using the vertical behaviour in the context of EMD-MPS, the evolution of the PDF due

to an increase in the signal length can be demonstrated using the PDF of τ -function T5
1.

This τ -function represents the first mode extracted from the noise sequences using a value

of τ = 5, and the PDF is shown in Figure 3.7. It can be seen from Figure 3.7 that the PDF

curve starts changing from a flat shape (compare to Figure 3.6 (b)) to multi-modal as the

length of the noise sequence being decomposed increases.
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Figure 3.7: Probability density function (PDF) τ -function T5
1 for different lengths of the

fractional Gaussian noise signal with H = 0.5. As the length of the noise sequence increases,
the PDF curve starts changing to multi-modal.
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Another aspect of the study reported in [103] relates to testing the null hypothesis that

the PDFs obtained from IMFs have a Gaussian distribution. This has been done using the

Jarque-Bera and Lilliefors normality tests in [103], and the null hypothesis was rejected for

all except a few IMFs obtained by using different parameters (sifting number, signal length)

for the decomposition. However, in this work, the application of the same two normality

tests to all the τ -functions obtained using the different values of τ led to a rejection of the

null hypothesis, even for the cases where the shape of the PDF curve was Gaussian-like.

3.3.2.3 Convergence of EMD algorithm

Since EMD does not admit an analytic formulation, it is not possible to verify the properties

of the algorithm mathematically. Among these properties is the convergence of the algo-

rithm [31]. However, convergence of the EMD algorithm is accepted based on the empirical

observation that the IMF ci+1 has strictly fewer local extrema than IMF ci, as pointed out

in [7], among others.

Interestingly, EMD-MPS can be used to explain the convergence of the EMD algorithm

in terms of an increase in τ . Previous studies have established the limit for the number of

IMFs that can result from applying EMD to a signal as J ≤ log2N , where J is the number

of IMFs obtained from a signal of length N [104]. In terms of EMD-MPS behaviour, we can

formulate the extraction of an IMF as the doubling of τ . Therefore, for the dlog2Ne-th IMF,

the value of τ ≥ N , which means no further decomposition is possible, since at most one

minima and maxima each will be selected, and the algorithm will terminate as no envelope

formation is possible. In practice, the number of IMFs can be less than log2N , because,

depending on the signal, the number of extrema can drop to less than 3 before τ ≤ N , which

is when most implementations of EMD are programmed to terminate the algorithm.

The concept in the preceding paragraph is illustrated in Table 3.1 for a signal with length

N=1024 samples, which shows the doubling of τ after each IMF is extracted, where the first

IMF is extracted when τ = 2, which corresponds to normal EMD, as previously explained in

Section 3.3.1. For a signal length N = 1024 samples, the number of IMFs J expected after
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Table 3.1: Illustration of the convergence of EMD algorithm due to doubling of τ after each
IMF extraction for a signal with length N = 1024 samples

IMF No. τ

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

application of EMD to the signal is given by J ≤ log2N , which for this case leads to J ≤ 10.

It can be seen from Table 3.1 that for the dlog2Ne-th IMF, which is IMF 10, the value of

τ = N . At this value of τ , no further decomposition is possible, hence the algorithm will

terminate.

3.3.2.4 Relation between decomposed frequencies and τ

To study the relationship between the decomposed frequencies and τ , the center-frequency

F2 of the second τ -function T2 is used, since T2 maintains a band-pass behaviour over a

large range of τ for the data length used in these experiments. Figure 3.8, which plots F2

against τ for 3 values of H used in this experiment, demonstrates the existence of a non-linear

relationship between center-frequency Fi and τ , and can also be seen as characterizing the

non-linear nature of the extrema-based decomposition. It can be observed from Figure 3.8

that the change in frequency per unit change in τ decreases as the value of τ increases. As

the value of τ increases, the number of extrema used in the decomposition process (Section

3.3.1) decreases, hence leading to smaller change in the frequency content of the τ -functions

obtained. Also, for lower values of τ , Figure 3.8 shows difference in the values of the center-
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frequency F2 for different values of H, which corresponds to the properties of fGn with these

values of H. However, this difference in the frequency values decreases as the value of τ

increases, which can be seen as the consequence of selecting fewer and fewer peaks as τ

becomes large, thereby reducing any correlations present in the noise sequences.

It is possible to empirically validate Equation 3.1 by using the following relation for a

τ -function Ti having band-pass frequency response with center frequency F :

τn
τm

= x(
Fn
Fm

)−1, ∀ n,m ∈ Z, n 6= m (3.7)

Equation 3.1 suggests a value of x = 1 (since Fs = τF ), however x ≈ 1 in Equation 3.7 holds

only for values of τ > 6 (for all values of H), whereas 0.7 ≤ x ≤ 1 for 2 ≤ τ ≤ 6, with x

approaching 1 as τ increases to a value of τ = 6. The reason for this behaviour is related

to the different vertical behaviour inherent in the decomposition using a value of τ = 2, as

mentioned in Section 3.3.2.2.
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Figure 3.8: Relationship between decomposed frequencies and τ for different values of H.

3.3.2.5 Scaling factor for τ

It was previously mentioned in Section 3.3.1 that the value of τ in Equation 3.1 is qualified

by a scaling factor k. The scaling factor k was first estimated as 0.5 < k < 0.63, based

on experiments with different test signals and different values of τ [100]. Although this

range of k held well for simulated and real-world signals, the work in [100] reported a value
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lower than k = 0.5 giving much better results in terms of expected decomposition into τ -

functions. Using fGn analysis as described here, a better estimation of the scaling factor for

τ is available, which is now written as (valid for all values of H):

0.25 < k < 0.44 (3.8)

The range of the values of k was found by estimating the center frequency of τ -function T2

resulting from a value of τ̂ used for decomposition, and relating it to the value of τ by τ̂ = kτ ,

where τ is the value which would have resulted in the same frequency value according to

Equation 3.1.

Importantly, the value of k is related to the difference in behaviour of τ in the same

way as previously mentioned, with the value of k = 0.44 valid for values of τ > 6, and

0.25 ≤ k < 0.44 for 2 ≤ τ < 6, with k increasing exponentially to 0.44 as τ increases to a

value of 6. The estimation of the scaling constant k also allows us to relate the change in

frequency ∆f to the change in τ between values τ1 and τ2 as:

∆f = Fs(
k1
τ̂1
− k2
τ̂2

) (3.9)

For value of τ > 6, k1 = k2 = 0.44, whereas for other values of τ the values of k1 and k2

depend on the value of τ being used.

The scaling factor k has a lower value for lower values of τ , and higher for higher values

of τ . This indicates that in order to separate higher frequency components from a signal

using EMD-MPS, it is practical to use a value of τ scaled by the lower limit in Equation 3.8.

In simple terms, this can be explained as requiring more peaks to accurately separate higher

frequency components.

3.3.2.6 Validation of the scaling factor k using two-tone separation

The two tone separation problem using EMD has been studied in [101] using a performance

measure to quantify the quality of separation of the two tones using the following signal
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model:

x(t; f) = cos 2πt+ cos(2πft), t ∈ R. (3.10)

To validate the scaling factor described in the previous Section, EMD-MPS is used to test

separation of two tones, using the same signal model, and the performance measure given

by Equation 3.11. This performance measure gives a value close to zero for good separation,

and a value approaching 1 in case of poor separation between components [101], as the high

frequency tone (frequency f1) is expected to pass un-decomposed into τ -function T1, and

the low-frequency tone (frequency f2) to be decomposed into τ -function T2.

c(f) =
||T1 − cos 2πt||2
|| cos 2πft||2

(3.11)
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Figure 3.9: Value of the performance measure in Equation 3.11 plotted against fτ/f2.

Figure 3.9 shows the results of using EMD-MPS to decompose the signal x(t), where the

frequency ratio f of the two components has a value 0.3. At this value of f , the performance

measure c(f) should have a value close to zero [101]. The performance measure is plotted

against fτ/f2, where fτ = fs
τ̂
·k, obtained using Equation 3.1 and the scaling relation τ̂ = kτ .

Here τ̂ represents the actual value of τ used to decompose the signal, and k = 0.44. EMD-

MPS does not decompose a frequency component with value greater than fτ , which passes

un-decomposed in τ -function T1.

For this experiment, a value of the ratio fτ/f2 � 1 represents the case where fτ is greater

than f2, which means the tone with higher frequency f1 passes un-decomposed in τ -function
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T1, whereas the tone with frequency f2 � fτ is decomposed into τ -function T2. However,

the ratio fτ/f2 decreasing towards 1 and lower represents fτ becoming close to, and then

less than f2. In this case, a clean separation of the tones is not possible. This is depicted

in Figure 3.9, where, for values of the ratio fτ/f2 close to and less than 1, the value of

performance measure increases towards 1, showing an increasingly less effective separation

of the tones.

3.3.2.7 Effect of modified peak selection on computational cost

The number of extrema used for the envelope formation in the sifting process of EMD-MPS

depends on the value of τ used for decomposition, as explained previously in Section 3.3.1.

Using a fewer number of extrema for envelope formation, instead of all the possible extrema,

also has implications for the computational cost of the sifting process, as discussed in this

Section.

In the case of EMD, estimation of the computational cost of the algorithm depends on the

particular implementation of the algorithm. Here we use the estimation of the computational

cost of one sifting iteration in terms of the number of multiplications and divisions (number

of flops) as given in [33]. Let FEMD(ci, k+ 1) be the number of flops for one sifting iteration

required to obtain the i-th IMF ci,k+1 from ci,k, where k denotes the number of sifting

operations. Then F (ci, k + 1) is given by the following expression [33]:

FEMD(ci, k + 1) = 18L+ 15MEMD(i, k) (3.12)

where L represents the length of the signal being decomposed, and MEMD is the number of

extrema.

For EMD-MPS, the number of extrema MEMD−MPS will depend on the the value of τ

used for decomposition. Given that only one maxima/minima is selected per τ , MEMD−MPS

will be given by:

MEMD−MPS ≤
L

τ
(3.13)
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It should be noted that Equation 3.13 has to be qualified with the value of τ given by τ > 2,

since MEMD = MEMD−MPS when τ = 2.

Using fewer extrema for envelope formulation, as is the case with EMD-MPS, leads

to a decrease in the computational cost of the algorithm, with the number of flops for one

sifting operation required to obtain the i-th τ -function Ti,k+1 from Ti,k given by the following

expression:

FEMD−MPS(Ti, k + 1) ≤ 18L + 15(
L

τ
) (3.14)

The total computational cost of the EMD-MPS method can be estimated by summing

FEMD−MPS(Ti, k) over both the number of iterations and the number of τ -functions, as is

done for the case of EMD [33]. It can be seen from Equation 3.14 that a larger value of τ

used for the decomposition will lead to a lesser overall computational cost.

3.4 Hierarchical Decomposition using Empirical Mode

Decomposition-Modified Peak Selection

The ability of the EMD-MPS based method for a time-scale based decomposition allows the

development of the concept termed here as hierarchical decomposition. Using hierarchical

decomposition, it is possible to decompose the signals into frequency bands, which can be

chosen based on application of Equation 3.1. This concept is illustrated in Figure 3.10, which

shows decomposition of a signal into a three-level hierarchy, with the first, second and third

levels denoted by a, b and c.

The hierarchy of decomposition shown in Figure 3.10 is determined by selecting the

values of τ at each level of decomposition. The first decomposition level a is determined by

selecting a value τa, such that the signal with sampling frequency fs is decomposed into two

τ -functions Tτa
1 and Tτa

2 . According to the frequency separation criterion given by Equation

3.1, the τ -function Tτa
1 contains oscillatory components with frequency values fTτa1 > fτa ,

where fτa = fs
τa

. Similarly, the τ -function Tτa
2 contains frequency components with frequency

values fTτa2 < fτa .
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Figure 3.10: Hierarchical decomposition of a signal into a hierarchy of three levels a, b and
c. The values of τ given by τa, τb and τc determine the hierarchy of decomposition.

The second level b of the hierarchical decomposition is then obtained by using EMD-MPS

to decompose the τ -function Tτa
1 with a value of τ given by τb, where τb < τa. The τ -function

Tτa
1 is decomposed into two τ -functions Tτb

1 and Tτb
2 , with the frequency separation value fτb

determined by the value of τb as fτb = fs
τb

. In the second level of decomposition b, the τ -

function Tτb
1 contains oscillatory components with frequency values fTτb1 > fτb . Importantly,

though, the τ -function Tτb
2 now contains oscillatory components within a range of frequencies

given by fτa < fTτb2 < fτb .

Similarly, the third level c of the hierarchical decomposition is then obtained by decom-

posing the τ -function Tτb
1 using EMD-MPS with a value of τ given by τc, where τc < τb.

As in the previous levels, the τ -function Tτb
1 is decomposed into two τ -functions, given in

this case by Tτc
1 and Tτc

2 . Here, the τ -function Tτc
1 contains oscillatory components with fre-

quency values fTτc1 > fτc , whereas the τ -function Tτc
2 contains oscillatory components with

frequencies in the range fτb < fTτc2 < fτc .

It is important to note that the hierarchical decomposition may be started from a de-

sired frequency separation level fτa , where τa is the value used for EMD-MPS decomposition
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obtained using Equation 3.1. This allows decomposition of a signal into desired frequency

bands which can be obtained through τ -functions T
τj
2 , where j represents a hierarchy level

obtained through the use of a value of τ given by τj. The concept of hierarchical decompo-

sition is next illustrated first by using a synthetic signal consisting of three sinusoids, and

then by using a real-world EEG signal.

3.4.1 Illustration of Hierarchical Decomposition using Synthetic

and Real Signals

The concept of hierarchical decomposition using EMD-MPS as described in Section 3.4 is

illustrated using two examples in this Section. The first example uses a synthetic signal,

whereas the second example uses a real-world EEG signal.

3.4.1.1 Hierarchical decomposition of a synthetic signal

The synthetic signal used to illustrate hierarchical decomposition is shown in Figure 3.11.

This signal has a sampling frequency fs = 2048 cycles/second, and consists of three sinusoids

at frequency values 16, 64 and 256 cycles/second.
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Figure 3.11: Synthetic signal (plot at the bottom) containing 3 sinusoids at frequency values
16, 64 and 256 cycles/second (top three plots).
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Table 3.2: Separation of the frequency components of the synthetic signal shown in Figure
3.11 using hierarchical decomposition

Decomposition level τ -function τ Frequency component (cycles/second)

a Tτa
1 τa 64 and 256

a Tτa
2 τa 16

b Tτb
1 τb 256

b Tτb
2 τb 64

The power spectral density of the signal of Figure 3.11 is shown in Figure 3.12, which

illustrates the three frequency components. For this signal, two levels of hierarchical decom-

position can result in separating the three frequency components. The decomposition levels,

the corresponding τ -functions and the frequency components contained therein are shown

in Table 3.2.
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Figure 3.12: Power spectral density plot of the synthetic signal shown in Figure 3.11 which
illustrates the three frequency components in the signal.

From Table 3.2, it can be observed that the three frequency components 16, 64 and 256

cycles/second are separated in the τ -functions Tτa
2 , Tτb

2 and Tτb
1 respectively. For frequency

separation at levels a and b, the values of τa and τb are selected such that the frequency

corresponding to τa and τb, given by fτa and fτb respectively, is such that 16 < fτa < 64 and

64 < fτb < 256. For actual decomposition, the values of τa and τb were scaled by the scaling

constant k as mentioned in Section 3.3.2.5, using a value of k = 0.44.
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The power spectral density plots of the τ -functions Tτa
1 , Tτa

2 , Tτb
1 and Tτb

2 are shown in

Figure 3.13 to illustrate the separated frequency components in the τ -functions.
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Figure 3.13: Power spectral density plots of the τ -functions Tτa
1 , Tτa

2 , Tτb
1 and Tτb

2 obtained
by hierarchical decomposition of the synthetic signal shown in Figure 3.11.

3.4.1.2 Hierarchical decomposition of an EEG signal

In this Section the hierarchical decomposition of a real-world scalp EEG signal segment will

be described. For this purpose, and for later experiments also, the CHB-MIT Scalp EEG

Database has been used, which is a publicly available database [105]. The signals in this

database consist of multi-channel EEG signals sampled at a sampling frequency fs = 256 Hz.
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To demonstrate hierarchical decomposition, a randomly chosen four second segment (1024

samples) was obtained from one channel. Further, this segment was taken from an interval

marked as a seizure. A plot of the EEG segment is shown in Figure 3.14.
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Figure 3.14: EEG signal segment of length four seconds (1024 samples) used to demonstrate
hierarchical decomposition to separate frequency components in the frequency range 3 ≤
f ≤ 29.

Although seizures can have a broad spectrum, it is accepted that seizures in recorded

EEGs occur between 3 and 29 Hz [106]. Therefore the purpose of the hierarchical decomposi-

tion is to decompose the seizure segment into a frequency band given by the range 3 ≤ f ≤ 29

Hz. Here f represents the range of values of the frequency components present in the τ -

function containing the desired frequency band obtained after hierarchical decomposition.

EMD-MPS can be used for hierarchical decomposition of the EEG segment to obtain the

desired frequency range 3 ≤ f ≤ 29 Hz in a τ -function using a two-level hierarchy. This

is illustrated in Table 3.3, which shows that the desired frequency range 3 ≤ f ≤ 29 is

obtained in Tτb
2 in the second level of the hierarchical decomposition. For this hierarchical

decomposition, the values of τa and τb were chosen according to the required frequency

separation values fτa and fτb respectively, where fτa = 3 Hz and fτb = 29 Hz, and τa = fs
fτa

,

and τb = fs
fτb

. For actual decomposition, the values of τa and τb were scaled by the scaling

constant k as mentioned in Section 3.3.2.5, using a value of k = 0.44.
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Table 3.3: Hierarchical decomposition of the EEG signal segment shown in Figure 3.14 using
two-level hierarchical decomposition

Decomposition level τ -function τ Frequency components (cycles/second)

a Tτa
1 τa f > 3

a Tτa
2 τa f ≤ 3

b Tτb
1 τb f > 29

b Tτb
2 τb 3 ≤ f ≤ 29

3.4.1.3 Flexibility of equality signs in hierarchical decomposition of real signals

The power spectral density plots of τ -functions Tτa
1 , Tτb

1 and Tτb
2 mentioned in the previous

Section are shown in Figure 3.15. The range of the frequency values of the oscillatory

components contained in each frequency component are mentioned in each plot in the figure.

There is evidence of frequency spillage beyond the ranges indicated in the figures. This

happens due to mode-mixing, which may result from not having a sampling frequency with a

value ten times higher than the frequency value of the highest frequency component present in

the signal (Section A.1 in Appendix A), and also the ratio of frequency values of components

being higher than two-thirds (Section A.2 in Appendix A). However, for real life signals it is

not always possible to control these parameters. At the same time, the behaviour of extrema-

based decomposition methods is well-understood, and as such the slight deviations from

expected behaviour can easily be accounted for. Furthermore, it is also possible to eliminate

or overcome mode-mixing by using noise-assisted decomposition [50], thereby minimizing

the effect of deviation from expected behaviour.

3.4.1.4 Depth of hierarchical decomposition

It was previously mentioned in Section 3.4 that the hierarchical decomposition may be started

from a desired frequency separation level fτa using a value of τa. From this level a, the

hierarchical decomposition may be continued to further levels using appropriate values of τ ,

as previously described. However, the scaling constant k and the minimum possible value
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Figure 3.15: Power spectral density plots of the τ -functions Tτa
1 (a), Tτb

1 (b) and Tτb
2 (c)

obtained by hierarchical decomposition of the EEG signal shown in Figure 3.14.

of τ as given by Equation 3.2, limit the depth of the hierarchical decomposition. This is

explained next.
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For a desired frequency separation value f , the value of τ can be obtained as τ = fs
f

using Equation 3.1, where fs is the sampling frequency of the signal. However, the value

of τ has to be scaled by k, as explained in Section 3.3.2.5, so that the value of τ used for

decomposition is given by τ̂ , where τ̂ = kτ . This leads to the following relationship between

τ̂ and k:

τ̂ =
fs
f
· k (3.15)

However, τ̂ requires a value τ̂ > 2 in order to represent a time-scale based decomposition,

since EMD-MPS at a value of τ̂ = 2 is reduced to the EMD algorithm, as explained in

Section 3.3.1. Since EMD-MPS requires τ̂ > 2, we have, from Equation 3.15, k · fs
f
> 2, so

that:

f <
k

2
· fs (3.16)

where k = 0.44.

The depth of the hierarchical decomposition is determined by Equation 3.16, thereby

limiting the number of levels in the decomposition hierarchy.

3.5 Chapter Summary

The focus of this Chapter was a novel modification of the EMD algorithm, namely EMD-

MPS, which allows a time-scale based decomposition. The properties of EMD-MPS were

studied empirically, and its use for a novel hierarchical decomposition methodology was

presented. The next Chapter will present how EMD-MPS can be used for time-scale based

de-noising and de-trending, and compare this to more involved and subjective approaches

based on EMD.
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Chapter 4

De-Noising and De-Trending with

Empirical Mode

Decomposition-Modified Peak

Selection

4.1 Background

The efficacy of Empirical Mode Decomposition (EMD) for de-noising and de-trending of

signals was discussed in Chapter 2. EMD decomposes signals into a set of intrinsic mode

functions (IMFs), which contain oscillatory components of the signal at different time-scales.

For cases in which the signal of interest is contaminated with noise, the IMFs resulting from

decomposition of the signal using EMD can be quantified with respect to the information

content or the noise, and a partial reconstruction of the signal by excluding the IMFs dom-

inated by noise results in a de-noised signal. Similarly, partial reconstruction of the signal

using only IMFs determined as containing the trend of the signal results in extraction of the

signal trend. The most widely used methods used for de-noising and de-trending using EMD

were also discussed previously in Chapter 2.

While EMD-based methods have proven to be successful for de-noising and de-trending of
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EMPIRICAL METHODS

EMPIRICAL ANALYSIS FOR NON-STATIONARY SIGNAL DE-NOISING, DE-TRENDING AND DISCRIMINATION APPLICATIONS
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Figure 4.1: Chapter 4 focuses on de-noising and de-trending using the time-scale based
decomposition made possible by the EMD-MPS method. Practical applications of time-
scale base de-trending in terms of mental task classification and seizure detection are also
presented.

a wide-variety of signals in diverse domains, there are a number of short-comings associated

with EMD-based methods. EMD-based de-noising and de-trending methods were categorized

into the following categories in Section 2.4 of Chapter 2:

1. Signal-specific methods

2. Statistical approaches

3. Energy and Energy-Ratio approaches

The signal-specific methods have been developed with particular signals and domains
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in mind, e.g. speech signal enhancement and ground penetrating radar data de-noising.

Therefore the analysis of IMFs obtained by decomposing these particular signals cannot be

generalized to signals in diverse domains. On the other hand, the statistical approaches

and energy and energy-ratio approaches are more general in application. However, these

can suffer from mode-mixing, whereby oscillations at disparate time-scales may appear in

one IMF at different time instants. Such issues can affect the accuracy of quantification of

IMFs as consisting of noise or containing useful signal content. The effect of mode-mixing

can be reduced using noise-assisted EMD, however such approaches are computationally

prohibitive. These also require careful selection of the parameters of noise to be added to

the signals before the decomposition process, thereby also making the overall methodology

less adaptive. Furthermore, the statistical approaches have generally been formulated using

white noise or fractional Gaussian noise models. For successful application of these methods,

knowledge of statistical properties of the signals under analysis is required, or the statistical

properties have to be accurately determined. This is not always possible, and if possible,

requires an additional processing step. Also, a very important point related to all categories

of EMD-based de-noising approaches relates to consideration of the first IMF as consisting

mainly of noise, and exclusion of the first IMF in partial reconstruction for the de-noised

signal. However, it has been argued in [28] that the first IMF contains important signal

information, and hence removal of this IMF leads to important signal information being

lost.

The most important aspect absent from the EMD-based approaches for de-noising and

de-trending relates to incorporation of the time-scale information for de-noising and de-

trending. This information is relevant as EMD decomposes signals into IMFs based on

different time-scales. Also, in many cases the signal of interest is known to exist only within

certain time-scales, and extraction of only that part of the signal can lead to simplified and

accurate de-noising. A relevant example here is a speech signal contaminated with noise,

where the speech of interest is bandlimited to a known frequency range. A decomposition

approach which can be used to decompose non-stationary and non-linear signals can extract
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information within the desired time-scale, if the decomposition can incorporate the time-scale

information.

Incorporation of the time-scale information for de-trending is also extremely important,

since the definition of trend may depend on the observation time-scale, as previously dis-

cussed in Section 2.4 of Chapter 2. Also, trends usually have time-scales associated with

them, such as a 3-monthly or 6-monthly trend associated with changing values of a finan-

cial time-series, or the yearly or 5-yearly trend associated with climate data. A de-trending

method should therefore allow trend extraction based on a required time-scale.

De-noising and de-trending methods based on EMD do not perform de-noising or de-

trending based on time-scales, but instead on criteria requiring IMF analysis. De-noising and

de-trending also requires partial reconstruction of the original signal by using only a subset

of the IMFs resulting from the decomposition of the original signal. There is incorporation

of the time-scale information in the work presented in [40], which studies application of

EMD to de-trend non-stationary and non-linear time-series. This study uses climate data

to demonstrate trends at different time-scales. The time-scales are found by a generalized

zero-crossing method, which determines the time spans between various combinations of

the critical points defined as the union of all of the zero-crossings and extrema of an IMF.

A weighted mean of the different time spans is computed to obtain the time-scale. This

method, however, requires complete decomposition of the signal into IMFs, and is also prone

to the effects of mode-mixing, which can lead to inaccurate estimations of the time-scale.

Noise-assisted EMD is also not likely to help, as the residual noise left in the IMFs can lead

to inaccuracies in identification of zero-crossings and extrema. Furthermore, the extraction

of trend by the method requires partial reconstruction of the signal.

It can therefore be argued that a decomposition methodology that allows the time-scale

information to be incorporated into the decomposition process can allow time-scale based

de-noising and de-trending. The de-noising and de-trending can then happen without re-

quiring complete signal decomposition into IMFs followed by partial reconstruction using

only a subset of the IMFs, which require identification using different criteria. Empirical
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Mode Decomposition-Modified Peak Selection (EMD-MPS) is such a method, as presented

in Chapter 3, which incorporates the time-scale information in the decomposition process.

This is done by the following relation, also explained in Chapter 3.

F =
Fs
τ

(4.1)

where Fs represents the sampling frequency.

In the next sections, the use of EMD-MPS for time-scale based de-noising and de-trending

of signals will be described, and illustrated using synthetic and real-world examples.

4.2 Time-scale based De-noising and De-trending

EMD-MPS allows a novel time-scale based de-noising and de-trending of signals, which does

not require estimation of a trend model for model-based de-trending, or knowledge of the

statistical properties of IMFs. In this context, with EMD-MPS, appropriate selection of

τ representing a required time-scale allows separation of the faster oscillations from the

slowly-varying trend, where ”slowly-varying” is controlled by the value of τ , according to

Equation 4.1. This in turn can be used for both de-noising and de-trending, depending on

the time-scale used. EMD-MPS de-noising and de-trending can be related to EMD partial

reconstruction, in the context of the vertical behaviour of EMD-MPS (Section 3.3.2.2 in

Chapter 3), where this is equivalent to combination of lower order IMFs, which pass un-

decomposed in one τ -function, and of higher-order IMFs, which combine to form the trend.

4.2.1 De-noising and De-trending of Synthetic Signals

As an example, we consider de-noising of a 10 Hz sinusoidal signal contaminated with additive

white Gaussian noise (AWGN) at different signal-to-noise (SNR) ratios. This synthetic signal

is similar to the examples considered in [84] for demonstrating the de-noising performance

of noise-assisted EMD, and is also a realistic example in the context of electrical noise

interference corrupting voltage signals [19]. Using an appropriate value of τ selected using

112



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

Time

A
m

p
li

tu
d

e

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time

A
m

p
li

tu
d

e

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

Time

A
m

p
li

tu
d

e

 

 

(c)

−8 −4 0 4 8 12 16 2020
0.7

0.75

0.8

0.85

0.9

0.95

1

Signal−to−Noise ratio (dB)

V
a

lu
e

 o
f 

c
o

rr
e

la
ti

o
n

 c
o

e
ff

ic
ie

n
t

(d)

Figure 4.2: De-noising of a sinusoidal signal contaminated with additive white Gaussian
noise (AWGN) using EMD-MPS. (a) Signal contaminated with AWGN: SNR = 20dB. (b)
Extracted noise in τ -function T1. (c) Recovered signal in τ -function T2 superimposed on
the original signal. (d) Value of correlation coefficient (τ -function T2 and original sinusoidal
signal) plotted against SNR of test signal to quantify de-noising performance of EMD-MPS.

Equation 4.1, the noise is extracted in τ -function T1, whereas the low frequency sinusoid

is extracted in τ -function T2. This is shown in Figure 4.2 for a sinusoid contaminated

with AWGN with a SNR of 20 dB. However, as the SNR decreases, the degradation in the

de-noised signal compared to the original signal is much less severe as compared to EMD,

as demonstrated in Figure 4.2 (d), which plots the correlation coefficient as an objective

measure of similarity between the de-noised and original signals for different values of the
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SNR. On the other hand, in case of EMD, severe mode-mixing will render extraction of the

original signal practically impossible even for relatively higher values of SNR, as shown in

Figure 4.3.
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Figure 4.3: De-noising of a sinusoidal signal contaminated with AWGN using EMD. Severe
mode-mixing results even at a relatively high SNR of 16 dB.

Also, since EMD-MPS does not attempt to decompose signals into mono-component

IMFs, but instead into τ -functions where different modes of oscillation may coexist, mode-

mixing does not affect EMD-MPS as it does EMD. This is demonstrated using a large

amplitude sinusoidal signal which has intermittently occurring small amplitude sinusoids of

higher frequency values. Such signals will lead to mode-mixing when decomposed with EMD

[8], and are also relevant practically [19]. An example of such a signal is shown in Figure

4.4, which also shows the IMFs resulting from decomposing the signal using EMD. As is

clear from Figure 4.4 (b), the resulting IMFs demonstrate mode-mixing, and de-noising of

the desired signal using partial reconstruction is not possible. On the other hand, Figure 4.5

shows the same signal, and the de-noised signal resulting from application of EMD-MPS with

an appropriate value of τ selected using Equation 4.1. As can be seen from Figure 4.5 (b),

the de-noised signal is practically the same as the original signal, with some imperfections

in the beginning samples due to algorithm implementation issues.

Numerous synthetic examples with different types of trend have been covered in literature

(e.g. [51][43]). Some similar examples are utilized to demonstrate time-scale based de-noising

and de-trending using EMD-MPS in Appendix B.
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Figure 4.4: Demonstration of EMD mode-mixing, making removal of intermittently occur-
ring low amplitude sinusoidal signals impossible. (a) Sinusoidal signal with intermittently
occurring low amplitude components of higher frequency. (b) Mode-mixed IMFs resulting
from EMD decomposition of signal in (a).
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Figure 4.5: Removal of intermittently occurring low amplitude sinusoidal signals from the
larger amplitude sinusoid using EMD-MPS. (a) Sinusoidal signal with intermittently occur-
ring low amplitude components of higher frequency. (b) De-noised signal (dashed line) using
EMD-MPS compared with the original signal (solid line).

4.2.2 De-noising and De-trending of Real-life Signals

In this Section, the use of EMD-MPS to de-noise and de-trend real life non-stationary signals

based on required time-scales will be demonstrated. The signals used as examples in this

Section consist of financial time-series, and biomedical signals consisting of EEG and ECG

signals. Some further examples using pathological speech signals as well as ECG signals are
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presented in Appendix B.
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Figure 4.6: Time-scale based de-trending of S&P 500 index data from Novermber 6, 2001 to
October 11, 2011, showing the monthly trend in (a) and the 3-monthly trend in (b).

Financial time-series: The financial time-series used to demonstrate time-scale based de-

trending using EMD-MPS is in the form of S&P 500 daily index from November 6th, 2001

to October 11th, 2011, which consists of 2500 data points. The time-scales for de-trending

consist of the monthly and 3-monthly cycles. Therefore values of τ representing monthly

and 3-monthly cycles were calculated in the following way. Let Fs be equal to N , where N

represents the number of days of the daily data being de-trended. For a 3-monthly cycle, let

F be equal to 90, and the value of τ is obtained from Equation 4.1. This way, the values of τ

representing monthly and 3-monthly cycles are calculated, and a different trend is extracted
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from the S&P data for each of these two time-scales. The trends at different time-scales,

superimposed with the original time-series, are shown in Figure 4.6, which illustrates the

different levels of the slowly-varying detail captured by trends at these different time-scales.
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Figure 4.7: De-trending EEG signals using EMD-MPS. (a) De-trended EEG signals from 4
selected channels. (b) Marginal spectrum of the de-trended signal and the trend, showing
clear separation between the spectra.

EEG signals: In EEG signals, the interference and the signal of interest are mixed together

in a non-stationary and non-linear way, and an effective method to separate the signal of

interest is required [107]. Here EEG signals from 4 selected channels are used to illustrate

use of EMD-MPS to extract the low frequency trend according to a desired time-scale. The

EEG signals have a length of 2500 samples (10 seconds duration), and have been sampled at

250 Hz. For these signals, the frequencies of interest are in the range of frequencies below 20

Hz. Traditional filtering methods would result in cutting off frequency content belonging to

both the desired and undesired parts of the signal [107]. For a time-scale based de-trending

corresponding to a frequency value of 20 Hz, a value of τ = 12.5 is used, as obtained using

Equation 4.1. The τ -functions, containing the de-trended signal and the trend, obtained after

decomposing the EEG signals with EMD-MPS using this value of τ , are shown in Figure 4.7

(a). The marginal spectrum of the τ -functions obtained from all 4 channels are shown in

Figure 4.7 (b). The marginal spectrum clearly shows the strength of the method in the low
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frequency range (below 20 Hz), where overlapping of both spectra is common. EMD-MPS

filtered out only the interference, leaving low-frequency activity undisturbed. This has also

been achieved with minimal complexity of the method, compared to approaches based on

EMD [107].

0 5000 10000 15000
Number of Samples

Figure 4.8: De-trending for baseline wander removal of a 15000 sample portion of Holter
ECG signal. The upper graph shows the original signal along with the extracted trend
(baseline wander), whereas the lower graph shows the de-trended ECG signal.

ECG signals: De-noising and de-trending of ECG signals is an important problem in

signal processing, with baseline wander removal an important aspect of processing of ECG

signals. As with other real-life signals, de-noising and de-trending methods for ECG sig-

nals based on non-adaptive filtering approaches have not shown to perform well in practice

[108][109]. Numerous improved methods for ECG signal de-noising and de-trending have

been proposed, which use data adaptive methods such as wavelets and EMD [110][111][109].

Wavelet-based methods however require careful selection of the wavelet basis function, and

also an appropriate wavelet thresholding method.

Methods based on EMD are generally more adaptive in nature, as the basis is selected

from the data, however partial reconstruction to obtain the desired signal may result in

important QRS information being lost in the discarded IMFs, as some parts of the QRS

complex might have been decomposed into IMFs judged to be noise. The method described

in [111] first uses a windowing function to preserve the QRS complex in the IMFs, and then

uses statistical properties of IMFs to identify the IMFs to be excluded as noise in the partial

118



reconstruction of the clean ECG signal. After this, a bank of low-pass filters is applied to

the higher order IMFs to extract the baseline wander. The methodology presented in [112]

combines EMD with wavelet shrinkage, by first using a windowing function on IMFs to

preserve the QRS complex while removing as much noise as possible. Then these IMFs are

transformed into the discrete wavelet domain, where soft thresholding based noise reduction

is applied. The EMD-based technique presented in [109] for baseline wander removal is

based on selective IMF reconstruction based on a slope minimization critera for IMFs. The

procedure requires taking the fast Fourier transform of the original signal, segmentation of

the signal and calculation of the slopes for all segments, addition of individual slopes to form

the global slope, and then minimization of the global slope by exclusion of higher order IMFs

one by one. After a number of further steps, baseline wander removal is achieved.

As can be observed from the discussion just presented, the de-noising and de-trending

methods used for ECG signals represent complicated procedures. Also, for EMD-based

methods using partial reconstruction, the possibility of losing important signal information

is very high, and complicated procedures have to be adopted to minimize this loss. On the

other hand, EMD-MPS allows formulation of the baseline wander removal as a de-trending

problem. By selection of an appropriate time-scale, the baseline wander can be removed

from the ECG signal in just one decomposition step. This is illustrated in Figure 4.8, which

shows baseline wander removal from a 15000 samples segment of a Holter ECG signal (Holter

ECG signals are ambulatory in nature). The ECG signal has been sampled at 1024 samples

per second, and a value of τ = 1000 was used for decomposition using EMD-MPS. This

decomposition resulted in the trend representing the baseline wander being decomposed into

τ -function T2, and the de-trended signal being contained in τ -function T1.

4.2.3 Discussion

In the previous Sections the effectiveness of EMD-MPS for time-scale based decomposition

was demonstrated using different synthetic and real signals. These examples also illustrate

the power of a data-adaptive decomposition approach, which is suitable for non-stationary
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and non-linear signals. The use of a time-scale allows conceptually and practically simple

decomposition, and does not require a complete decomposition followed by partial recon-

struction based on some criteria. This is especially advantageous, since partial reconstruc-

tion done by excluding certain decomposed components may lead to a distorted signal, or a

reconstructed signal with incomplete information, as useful signal information is spread in

different IMFs.

4.2.4 Experiment: Mental Task Classification using EEG Signals

This Section presents an experiment that uses EMD-MPS as the central part of the methodol-

ogy for mental task classification. This experiment has the same objective as the experiment

described in Section 2.4.1 of Chapter 2, where a methodology based on EMD was described.

However, instead of using an EMD-based de-trending based on partial reconstruction of

IMFs, a time-scale based de-trending based on EMD-MPS will be used. The next sections

will describe the EMD-MPS based methodology for mental task classification in more detail,

and also make comparison with the EMD based method previously described in Chapter 2.

4.2.4.1 Background

For details about the background of this experiment and the data used, reference may be

made to Sections 2.4.1.1 and 2.4.1.2 in Chapter 2, in order to avoid duplication of the details

here.

This experiment presents a novel method for mental task classification based on applica-

tion of EMD-MPS and Teager energy operator (TEO) on EEG signals. EMD-MPS is used

to decompose the EEG signals into two τ -functions representing the trend and a de-trended

component. TEO is applied to both τ -functions to obtain values of the average Teager en-

ergy, which are used to form the feature vectors. One-versus-one classification of mental tasks

using these feature vectors is performed with a 1-NN classifier [81]. The overall methodology

of this EMD-MPS based experiment is depicted in Figure 4.9. This method achieves an

average correct classification rate of 87% for a one-versus-one classification scheme, improv-
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Figure 4.9: Schematic representation of the methodology described in this experiment.

ing on previous results using EMD-based methodologies on the same EEG signals [58][113].

At the same time, this EMD-MPS based method is characterized by the simplicity of the

decomposition, feature extraction, as well as classification.

4.2.4.2 Decomposition using EMD-MPS

EMD-MPS is used for a time-scale based de-trending of EEG signals, such that each EEG

signals is decomposed into two τ -functions, one representing the de-trended signal containing

the higher frequency components, and the other representing the low frequency trend of the

signal. This is done by appropriate selection of a value of τ according to the relation presented

in Equation 4.1. For de-trending of EEG signals used in this study, two different values of

τ were used to obtain two different sets of τ -functions, containing frequency components

separated according to Equation 4.1. The first value of τ corresponds to a frequency value

F = 8 Hz, such that the τ -function T1 contains frequency components with frequency values

greater than 8 Hz, and the τ -function T2 represents the trend containing frequencies lower

than 8 Hz. Using Equation 4.1 and sampling frequency value Fs = 250 Hz, the value of τ

obtained is given by τ = 31.25. However, for decomposition, the value τ̂ is used, which is τ

scaled by a constant k as described Section 3.3.2.5 of Chapter 3. A good estimate for the
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Figure 4.10: EEG signal from Subject 1 performing Task 2 (top). τ -function T1, repre-
senting de-trended signal (middle). τ -function T2, representing the trend (bottom). These
τ -functions have been obtained using a value of τ = 31.25 (τ̂ = 14), corresponding to a
frequency separation value of F = 8 Hz.

value of k is given by k ≈ 0.44 [114], such that τ = 31.25 corresponds to τ̂ = 14. Similarly,

the other set of τ -functions were obtained corresponding to F = 4 Hz, such that τ = 62.5,

with the corresponding τ̂ = 28.

All EEG signals used in this study were decomposed using EMD-MPS using these two
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values of τ̂ . In this regard, Figure 4.13 shows an example EEG signal, and the τ -functions

T1 and T2 obtained with a value of τ̂ = 14.

4.2.4.3 Feature analysis

After the decomposition of EEG signals (6 EEG signals per subject per task, with 5 trials

of each task), the TEO was applied to each of the two τ -functions obtained per EEG signal

to estimate the average Teager energy of each τ -function.

The TEO was developed from the point of view of the energy required to generate a

signal. This non-linear energy-tracking operator Ψ is given in its discrete form [54] as:

Ψ(x[n]) = x2[n]− x[n+ 1] · x[n− 1] (4.2)

The TEO is nearly instantaneous, given that only three samples are required for computing

the energy at a given time instant, as can be seen from Equation 4.2. This also makes the

operator easy to implement efficiently. The average Teager energy, ei, for a τ -function Ti is

calculated as:

ei =
1

N

N∑
n=1

| Ψ[Ti(n)] | (4.3)

where N is equal to the number of samples in the τ -functions, Ψ[·] is the discrete-time TEO

and i = 1, 2.

The average Teager energy ei is calculated for each τ -function according to Equation 4.3.

This way, for each EEG signal, there are two values of ei corresponding to each τ -function

Ti. Given that 6 EEG signals per task are used, the feature vector contains 12 elements

consisting of the average Teager energy values. This is a significant reduction in feature

vector dimension compared to the previous EMD-based work [113], and other related works

[58][15].

The feature vectors obtained for the tasks were used in a one-versus-one classification

scheme using a linear classifier, namely the 1-NN classifier. The classification accuracy
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for each task combination was estimated using the tenfold cross-validation method. The

classification results are discussed in the next Section.

4.2.4.4 Results

The classification results obtained with the methodology presented in this experiment are

shown in Table 4.1. The classification accuracy for different task combinations listed in

Table 4.1 has been obtained using τ -functions extracted with both values of τ̂ used in the

analysis. It can be seen from Table 4.1 that the classification accuracy for most of the

task combinations is greater than 80%, with many task combinations having a classification

accuracy of 100%. This is true for both values of τ̂ used for decomposition using EMD-MPS.

However, for subjects 3 and 6, the average classification accuracy for all task combinations is

considerably higher for a value of τ̂ = 14, compared to a value of τ̂ = 28. For other subjects,

the difference in average classification accuracy over all tasks using both values of τ̂ is not

large, as can be seen in Figure 4.11. Overall, the average classification accuracy obtained

with τ̂ = 14 is 86.8%, which is about 3% better than that obtained with τ̂ = 28, and is

higher than previously reported works [58][113][15].
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Table 4.1: Classification Accuracy for Classification of Mental Tasks For All Subjects using 1-NN Classifier and 10-fold
Cross-Validation.

Task Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Mean
Combination τ̂=14 τ̂=28 τ̂=14 τ̂=28 τ̂=14 τ̂=28 τ̂=14 τ̂=28 τ̂=14 τ̂=28 τ̂=14 τ̂=28 τ̂=14 τ̂=28 τ̂=14 τ̂=28

base-count 100% 100% 90% 90% 80% 60 % 100% 100% 70% 70% 90% 80% 90% 90% 88.6% 84.3%
base-letter 90% 90% 100% 100% 90% 90% 90% 100% 90% 70% 90% 50% 90% 70% 91.4% 81.4%
base-math 90% 100% 80% 90% 90% 70% 80% 100% 70% 80% 90% 90% 80% 90% 82.8% 88.6%
base-rot 100% 100% 90% 100% 60% 60% 80% 80% 80% 80% 90% 100% 100% 100% 85.7% 88.6%

letter-count 100% 100% 60% 90% 50% 50% 100% 100% 70% 70% 90% 80% 100% 80% 81.4% 81.4%
letter-rot 100% 100% 100% 100% 60% 70% 80% 60% 90% 90% 100% 90% 100% 100% 90% 87.1%

math-count 100% 100% 70% 60% 50% 50% 80% 70% 60% 60% 100% 100% 100% 100% 80% 77.1%
math-letter 100% 100% 100% 100% 80% 80% 100% 90% 100% 100% 100% 100% 100% 100% 97.1% 95.7%
math-rot 100% 100% 90% 90% 90% 60% 80% 60% 80% 90% 100% 70% 80% 90% 88.6% 80%
rot-count 80% 70% 100% 80% 50% 40% 80% 90% 70% 70% 100% 100% 100% 100% 82.8% 78.6%

Average 96% 96% 88% 90% 70% 63% 87% 85% 78% 78% 95% 86% 94% 92% 86.8% 84.3%

Tasks: base=baseline; math=multiplication; rot=rotation; count=counting;
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The average classification accuracy for subject 3 is relatively low, having a value of 70%.

This is due to three task-combinations having a low classification accuracy of 50%. For these

task combinations, the following approach was used as a remedial measure. For both values

of τ̂ , the feature vectors obtained from τ -functions T1 and T2 were used independently for

classification. For the math-count task combination, the classification accuracy increased

from 50% to 80% when only the feature vector obtained from T2 extracted with τ̂ = 14 was

used. There was no change in the classification accuracy for the other two tasks, using either

τ -function obtained with either value of τ̂ . Therefore, decomposition was performed using

a lower value of τ̂ = 7, which corresponds to a frequency separation value of F = 16 Hz.

For this value of τ̂ , there was no change in classification accuracy for the task combinations

rot-count and letter-count using feature vectors from both T1 and T2 together, or the feature

vector from T2 individually. However, using only the feature vector obtained from T1, the

classification accuracy increased to 70% and 60% for the rot-count and letter-count task

combinations respectively.

This shows that for rot-count and letter-count task combinations in case of subject 3, the

de-trended component T1 containing the higher frequency components of the signals leads

to better classification accuracy, whereas the lower frequency signal trend contained in T2

is more relevant for the math-count task combination. Importantly, the used τ -functions in

this case were obtained with different values of τ̂ . This also demonstrates the flexibility of

the method, whereby decomposition can be adapted to different time-scales, and either of

the de-trended component, or the trend, can be used to extract discriminatory features for

classification.

The average classification accuracy of nearly 87% obtained in this experiment improves

on the classification accuracy of 85% reported in Section 2.4.1.6 of Chapter 2. However, the

methodology presented in this experiment (denoted by Experiment A) improves on the

previous EMD-based approach (denoted by Experiment B, and described in Section 2.4.1

of Chapter 2) in the following ways:

1. Experiment B uses EMD to decompose the EEG signals into at most log2(N) IMFs
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[6], whereN is the length of the signals. On the other hand, Experiment A uses EMD-

MPS to decompose the signals into two τ -functions, which makes the decomposition

computationally more efficient.

2. Experiment B obtains the de-trended part of the signal and the signal trend by

partial reconstruction based on checking a criterion. This criterion needs to be checked

for every set of signals, and will change for different sets, e.g. if signal lengths are

different. Experiment A, however, uses time-scale based de-trending of signals, which

separates the trend according to a frequency separation criterion. Not needing to

check a criterion, and not having to perform partial reconstruction after decomposition,

makes Experiment A more computationally efficient and, importantly, portable to

different signal types.

3. Experiment B uses two feature vectors of dimensions 30 and 18, whereas both feature

vectors used in Experiment A have dimension 12. The improvement in classification

accuracy in Experiment A is obtained with a reduced dimension feature vector.

4. Importantly, Experiment A allows flexibility in feature extraction, by allowing dif-

ferent time-scale based decompositions, to deal with difficult classification cases, as

demonstrated earlier in this Section. This is a unique feature of the methodology.

1 2 3 4 5 6 7 Mean
0

20

40

60

80

100

Subjects

C
la

s
s

if
ic

a
ti

o
n

 A
c

c
u

ra
c

y
 (

%
)

 

 

Figure 4.11: Classification accuracy for all subjects corresponding to τ̂ = 14 (left bars) and
τ̂ = 28 (right bars).
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4.2.4.5 Experiment summary

This Section presented a simple and effective method for mental task classification using

EMD-MPS in conjunction with the TEO. This method is distinguished by the simplicity

and flexibility of the decomposition, as well as the low dimensions of the feature vector. The

efficacy of the feature vectors obtained is demonstrated by the high classification accuracy for

one-versus-one mental task classification using a simple classifier. The average classification

accuracy obtained is higher than previously reported results using similar approaches on the

same data.

4.2.5 Experiment: EEG Seizure Detection and Epilepsy Diagnosis

4.2.5.1 Background

Epilepsy is a neurological disorder affecting a very large number of people worldwide [59].

There is considerable research concerned with computer-based methods for seizure detection

and epilepsy diagnosis using EEG signals [115]. Given the non-stationary and non-linear

nature of EEG signals, signal processing methods for non-stationary signal analysis, such

as EMD, time-frequency analysis, and wavelets, have been frequently used for automated

seizure detection using EEG signals, e.g. [59][115][116][117]. The adaptive nature of EMD-

based decomposition methods makes them particularly suitable for non-linear signal analysis

[15].

In this experiment, a novel method for epilepsy diagnosis and seizure detection using

EEG signals based on EMD-MPS is presented. The first part of the presented methodology

consists of using EMD-MPS to decompose EEG signals into a de-trended component, and

a trend, using a frequency separation criterion. Features are then obtained from the two

decomposed components, which form feature vectors used for classification using a linear

classifier, namely the 1-NN classifier. A schematic representation of the proposed method-

ology is shown in Figure 4.12.
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Figure 4.12: Diagram representing the methodology described in this experiment.

4.2.5.2 Data

The EEG signals used in this experiment come from the data made public by the University

of Bonn [118]. The data consists of EEG signals in five sets named A, B, C, D and E. Signals

in sets A and B are from epilepsy free volunteers, whereas signals in sets C, D and E come

from epilepsy patients. The signals in sets C and D have been recorded during epilepsy-free

intervals, with set E containing only seizure signals. In each set there are 100 scalp EEG

signals of 23.6 seconds duration sampled at 173.61 Hz, with each signal having 4097 samples,

and a spectral bandwidth ranging from 0.5 Hz to 85 Hz. This data has been used in numerous

previous studies (e.g. [26][115][116][117][119]), but in general many of the previous studies

have tested classification only between sets A and E, and between sets ABCD and E. For

this experiment, the proposed methodology is applied for testing binary classification in the

following three scenarios:

1. Classification between sets A and E. This is the most commonly used scenario in

previous works, and has been used to test the efficacy of proposed methodologies for

seizure detection.

2. Classification between sets AB and CD. This is used to test performance of the method
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in classifying signals mixed with different observational conditions or recordings at dif-

ferent spatial locations. Also, this scenario is relevant for the case of epilepsy diagnosis,

as sets AB contain normal signals, and sets CD epileptic signals.

3. Classification between sets ABCD and E. This is relevant in terms of a seizure detection

scenario, and also has relevance for clinical applications [116].

4.2.5.3 Decomposition using EMD-MPS

EMD-MPS is used for a time-scale based de-trending of EEG signals, such that each EEG

signal is decomposed into one τ -function T1 representing the de-trended signal containing

the higher frequency components, and another τ -function T2 representing the trend of the

signal. As in the experiment presented in Section 4.2.4, this is done by appropriate selection

of a value of τ according to Equation 4.1.

A value of τ for decomposition of EEG signals using EMD-MPS was found as follows.

First, a frequency separation value of F = 8 Hz was chosen, such that T1 contains frequency

components with frequency values greater than 8 Hz, and T2 represents the trend containing

frequencies lower than 8 Hz. The value of F = 8 Hz was objectively selected based on the

highest classification accuracy obtained compared to other values of frequency separation

evaluated.

Using Equation 4.1 and the signals’ sampling frequency value of Fs = 173.16 Hz, the

value of τ obtained for F = 8 Hz is given by τ = 21.6. However, for decomposition, the

value τ̂ , which is τ scaled by a constant k is used, as described in the previous experiment.

A good estimate for the value of k is given by k ≈ 0.44 [114], such that τ = 21.6 corresponds

to value of τ̂ = 9.5. Therefore, all EEG signals were decomposed using τ̂ = 9.5. In this

regard, Figure 4.13 shows an example EEG signal from set C, and the τ -functions T1 and

T2 obtained with a value of τ̂ = 9.5.
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Figure 4.13: EEG signal from an epilepsy patient from set C (top). τ -function T1, repre-
senting de-trended signal (middle). τ -function T2, representing the trend (bottom). These
τ -functions have been obtained using a value of τ = 21.6 (τ̂ = 9.5) corresponding to a
frequency separation value F = 8 Hz.

4.2.5.4 Feature analysis

After decomposition of the EEG signals into two τ -functions each, a total of four features

are obtained. One feature is extracted from the τ -functions, and the remaining three from

the frequency-domain representation of the τ -functions obtained using the discrete Fourier
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transform (DFT). Computationally fast implementations of the DFT algorithm are available

in different software packages, hence this approach is expected to be computationally more

efficient than time-frequency and wavelet decomposition based approaches, e.g. [115][117].

The DFT of both τ -functions Ti results in a complex-valued function F̂i. The real-valued

single-sided amplitude spectrum of the τ -functions, given by f̂i, is then obtained by taking

the absolute value of F̂i. Three features are subsequently extracted from f̂i.

The four extracted features are listed below:

1. The energy Ei of the τ -functions Ti, given by:

Ei =
N∑
n=1

T2
i [n], i = 1, 2 (4.4)

where N is the length of Ti.

2. The sum of the amplitude spectrum, Sf̂i , calculated as:

Sf̂i =
M∑
n=1

f̂i[n], i = 1, 2 (4.5)

3. The sparsity of the amplitude spectrum, SPf̂i , calculated as:

SPf̂i =

√
M − (

∑M
n=1 f̂i[n])/

√∑M
n=1 f̂

2
i [n]

√
M − 1

, i = 2 (4.6)

4. The sum of derivative of the amplitude spectrum, Df̂i
, calculated as:

Df̂i
=

M−1∑
n=1

ˆ́
fi[n]2, i = 1 (4.7)

where
ˆ́
fi[n] = f̂i[n+ 1]− f̂i[n], for n = 1, ...,M − 1, and M is the length of f̂i.

The features SPf̂i and Df̂i
have been successfully used previously for pathological speech

classification [72]. In general, onset of seizure results in development of rhythmic activity
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Table 4.2: Classification accuracy for the 3 scenarios (Section 4.2.5.2) using 1-NN classifier
and 10-fold cross-validation

Sets: A & E AB & CD ABCD & E

Classification Accuracy: 100% 99% 98.2%

typically containing multiple frequency components [120]. Therefore EEG signals containing

seizure activity are expected to have lower values for the sparsity feature SPf̂i compared to

values obtained from EEG signals without seizures. In order to reduce the number of feature

vectors, this feature is extracted only from τ -function T2, which represents the low frequency

trend of the EEG signals. This way, the difference in rhythmic activity occurring in the lower

frequency range contained in the trend will be captured as a discriminative feature.

Similarly, the feature Df̂i
is a good measure of abrupt changes and discontinuities in the

signal representation in the frequency domain. This feature is extracted from the τ -function

T1, which represents the de-trended part of the signals, and contains higher frequency com-

ponents, where abrupt changes and discontinuities are more likely. In total, six feature

vectors are obtained from the four features.

4.2.5.5 Results

The four features described in the previous Section were used to form feature vectors in

order to test classification between the sets in the three scenarios. In order to keep the

overall methodology simple, a 1-NN classifier [81] was chosen, and classification results were

estimated using the ten-fold cross validation method. The classification results thus obtained

for the three scenarios are shown in Table 4.2, and discussed in the next sections.

Classification between sets A and E: The classification accuracy obtained for clas-

sification between sets A and E was 100%, thereby matching the results in recent works

[115][116], and improving on previous results (e.g. as listed in [115]). Importantly, however,

the 100% classification accuracy in this experiment has been obtained using just a single
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feature, namely Sf̂i , the sum of the amplitude spectrum. This demonstrates the efficacy and

simplicity of the proposed approach, as well as the utility of approaches based on adaptive

signal decomposition.

Classification between sets AB and CD: The classification between EEG signals from

healthy subjects (sets AB) and epileptic patients (sets CD) is relevant in terms of epilepsy

diagnosis, and a 99% classification accuracy is obtained for this case using all four features.

This is comparable to the 100% classification accuracy presented in [115], which is one work

where this classification case is considered, using wavelet variances as features in conjunction

with a 1-NN classifier. However, the method presented here achieves a high classification

accuracy using a computationally simpler and adaptive decomposition approach compared

to wavelet decomposition. Furthermore, it was found that removing the feature vector of

feature Ei obtained from τ -function T2 did not affect the classification accuracy. Hence only

5 feature vectors were used to obtain the classification accuracy of 99%.

Classification between sets ABCD and E: Classification between sets ABCD and E

represents the case of seizure detection. For this scenario, and using the same five feature

vectors as described in the previous Section, a classification accuracy of 98.2% was obtained.

This result improves on the classification accuracy of 97.7% presented in [117], and is com-

parable to the classification accuracy of 98.3% presented in [116]. Both of these results,

however, have been obtained with more involved signal analysis methods used with compli-

cated classifiers, namely time-frequency analysis with feed-forward artificial neural network

in the case of former, and multi-wavelet transform and entropy feature with multi-layer

perceptron neural network (MLPNN) for the latter. The result of this experiment is also

comparable to the classification accuracy of 100% presented in [115], which has been obtained

with wavelet variance features extracted after wavelet decomposition of the signals and using

a 1-NN classifier. In comparison with the methodology of [115], the signal analysis method

of this experiment is computationally more simple and adaptive, as the decomposition does

not require finding an appropriate basis.

134



4.2.5.6 Experiment summary

In this experiment a novel EEG signal analysis method was presented. This method can be

used for epilepsy diagnosis and seizure detection using a simple classification scheme. The

signal analysis method is based on a novel decomposition scheme, which is characterized by

its computational simplicity and adaptivity. Features are calculated from the decomposed

components of the signal, and a 1-NN classifier is used to obtain high classification accuracy

for different classification tasks. The classification results obtained are better than or com-

parable to other approaches using more involved signal analysis methods and complicated

classifiers. A very important advantage of this method is the flexibility of decomposition and

feature extraction, since decomposition is based on a frequency separation criterion, and dif-

ferent features may be extracted from the τ -functions. This allows the method to be ported

to a different set of biomedical signals in a different domain, as has been demonstrated in

the context of mental task classification in Section 4.2.4.

4.3 Chapter Summary

This Chapter focussed on the de-noising and de-trending capabilities of EMD-MPS, and

explained how a time-scale based de-noising and de-trending is made possible by EMD-MPS.

The time-scale based de-noising and de-trending was demonstrated using synthetic signals,

as well as different real life signals. Finally, the efficacy of time-scale based de-trending was

illustrated using experiments for mental task classification and EEG seizure detection and

diagnosis, both using EEG signals which are known to possess non-stationary and non-linear

characteristics.
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Chapter 5

Empirical Sparse Dictionary Learning

5.1 Background

Dictionary learning, or training, using a signal or a set of signals, as opposed to selecting a

pre-existing basis (such as Fourier or Wavelet, among others), is a more recent approach to

dictionary design that has been shown to better capture the structure and features specific

to the signals being analyzed [121][122]. Most of the dictionary learning approaches have

been designed in terms of sparse and redundant signal representation using over-complete

dictionaries, with diverse applications such as signal and image compression, de-noising and

face recognition, e.g. [123][124]. There is also considerable research for dictionary learning in

the context of signal and image classification [125][126][127][128]. In such works, the problem

of signal classification is also formulated as finding a sparse representation of the signal in a

given over-complete dictionary. However, the difference from dictionary learning for sparse

signal representation lies in the approach whereby redundant non-parametric dictionaries

are first trained, and second, sparse signal representations are learned with an explicit dis-

criminative goal. This makes such models different from reconstructive ones. For example,

dictionary learning algorithms first learn dictionaries from the labeled data set, in either a

supervised or weakly supervised setting, and use features of the sparse decomposition of the

test signals for classification. These features can take the form of the reconstruction error or

coefficients of orthogonal projections over atoms of a dictionary.
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EMPIRICAL METHODS
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Figure 5.1: Chapter 5 presents details of the novel empirical sparse dictionary learning
framework, which is based on signal decomposition using EMD. The use of the framework
for signal classification is also described, including seizure detection using long-term data.

The reconstruction error, (given by ||x−Dα||22, where x, D and α are the signal, learned

dictionary and coefficient vector, respectively) is a popular discriminant known to be effec-

tive for classification [127]. For example, given N signals belonging to N different classes, a

dictionary could be learned for each class, which allows approximation of each signal with a

constant sparsity using each dictionary to give N different reconstruction errors, which can

then be used as classification features. In this context, the work in [127] proposes a mea-

surement for the quality of sparse representation that caters to both the reconstruction error

and the sparseness of the representation with respect to a learned dictionary, and shows this

measurement to have discrimination power. Similarly, the reconstruction error is replaced
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with a function representing the discriminative power in the objective function of the sparse

representation in the work presented in [125], which makes the extracted feature (coefficient

vector α, given by x = Dα) as discriminative as possible. In contrast to approaches where

dictionary learning and classifier training are considered separate processes, more recent

approaches utilize a mixed reconstructive and discriminative formulation, thereby simulta-

neously learning over-complete reconstructive and discriminative dictionaries [128].

Empirical Mode Decomposition (EMD) is a recent signal processing algorithm that was

discussed in Chapter 2. EMD does not assume a pre-defined basis, rather the decomposition

is data-adaptive in nature, and has been shown to be well-suited for analysis of non-stationary

and non-linear signals. EMD decomposes a signal x(n) into a number of intrinsic mode

functions (IMFs) aq(n), q ∈ {1, ..., J}, such that x(n) = ΣJ
q=1aq(n) (ignoring the residue).

Application of EMD results in separation of the temporal and spectral content of a signal

into different IMFs. The lower index IMFs contain the faster oscillations present in the

signal, whereas higher index IMFs contain the slower oscillations.

In this Chapter, a novel empirical framework for dictionary learning based on EMD is

presented, with an application to signal classification. In this framework, training signals

belonging to different classes are decomposed into IMFs using EMD, which form atoms

of what is termed as a raw dictionary. This raw dictionary is then trained with the same

training signals using a matching-pursuit like algorithm [129], which leads to a sparse learned

dictionary. The sparsity of the dictionary is meant in terms of the dictionary dimensions,

as the number of atoms of the raw dictionary is much smaller than the dimensions of the

signals. The dictionary learning algorithm then further reduces the number of dictionary

atoms. It should be mentioned here that the pursuit method is not for sparse coding, as

generally used in dictionary learning approaches, but for learning a sparse dictionary. The

under-complete trained dictionary so obtained can then be used for signal classification,

whereby test signals of different classes are projected against the trained dictionary, and the

projection coefficients thus obtained are used to classify the test signals.

Although the framework presented in this Chapter learns dictionaries empirically, the
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use of the coefficient vector α as a classification feature vector is also demonstrated. The co-

efficient vector is obtained using the trained dictionary. Further, even though the dictionary

learning framework is not defined as reconstructive, signal reconstruction is demonstrated

using properties of the learned dictionary. The potential of using the reconstruction error ε

as a feature for signal classification is also pointed out.

The use of EMD and IMFs to form dictionaries is scarce in literature. The work in [130]

presents a decomposition methodology as an improvement over the original EMD method

whereby an over-complete dictionary of analytically formulated IMFs is used for signal de-

composition, with the approach formulated as a non-linear minimization problem. As has

been checked in literature, there is no other work which uses IMFs for dictionary construction,

specifically in the context of dictionary construction for signal classification. The framework

presented in this Chapter does not seek to learn over-complete dictionaries which are re-

constructive [131], or which combine reconstruction and discrimination [128]. Instead, the

objective of this framework is to learn a sparse dictionary, which can be applied to signal

discrimination tasks using traditional features (e.g. projection coefficients and coefficients

vector). In this regard, EMD plays an important role in imparting discriminative capability

to the learned dictionary, as using IMFs for dictionary formation, and learning the dictionary

to select only the most relevant IMFs for signals of each class, allows a better capture of the

discriminatory content of the signals in sparse dictionaries.

The utility of the proposed framework for signal classification tasks is tested using real-

life EEG signals, and is described in Section 5.3. The classification accuracy obtained for

these signals using different features validates the rationale behind the proposed empirical

dictionary learning framework. Also, classification of biomedical signals in the context of

dictionary learning approaches is an emerging area of research, and the proposed frame-

work demonstrates the applicability of empirical approaches in this area. The results of

investigation of application of the empirical dictionary learning framework for automatic

seizure detection using long-term scalp EEG data will also be presented in Section 5.5. The

next sections will present more details of the different aspects of the dictionary learning
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framework.

5.2 Discriminative Dictionary Learning Algorithm

One starts with a training matrix Xc
Train ∈ Rn×kc , whose columns consist of kc training

signals xc ∈ Rn associated with class c, (c ∈ C, C ⊃ {c1, ..., cK}), assuming there to be

K classes. The first step of the methodology is to form a raw dictionary DC
raw= {ψm}Mm=1,

where the dictionary atoms ψ consist of IMFs, and M < n. The task is to learn a trained

dictionary DC
Train = {ψp}Pp=1, where P < M .

The dictionary formation and learning algorithm, called Discriminative Dictionary Learn-

ing Algorithm, consists of the following steps:

1. The signals xc in Xc
Train are decomposed into IMFs aq using EMD, such that xc =

ΣJ
q=1a

c
q(n). It should be noted that J is dependent on the implementation of the EMD

algorithm, and might not be the same number for all signals xc.

2. The IMFs thus obtained are used to form class-specific raw dictionaries Dc
raw =

[d1|d2, ..., |dL] ∈ Rn×L, L = kc × J . The atoms arranged in columns are constrained

to have l2-norm less than or equal to 1, such that dr= âcq, r ∈ {1, ..., L}, q ∈{1, ..., J},
and âcq = acq/||acq||2.

3. The class specific dictionaries are merged together to form a combined raw dictionary

DC
raw= [Dc1

raw|Dc2
raw, ..., |DcK

raw] ∈ Rn×M .

Starting from the raw dictionary DC
raw, the trained dictionary DC

Train is learned using the

dictionary learning algorithm, which is described next.

5.2.1 Learning the Trained Dictionary

The learning algorithm uses a matching pursuit like algorithm to learn the trained dictionary

DC
Train, which is shown in Algorithm 3. The termination of the algorithm is described next.
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Algorithm 3 Trained Dictionary Learning Algorithm

1: Initialize Xc
Train {all training matrices}, DC

raw = {ψm}Mm=1 {merged raw dictionary},
Dc
Train = [ ] {empty matrix}

2: repeat for each signal xc:
3: Find the projection coefficient: αm =< xc, ψm >
4: Select the dictionary atom ψ̃m with the highest value of |αm|
5: if ψ̃m not in Dc

Train then add ψ̃m to Dc
Train: Dc

Train = [Dc
Train|ψ̃m]

6: end if
7: Calculate the residue rx = xc − ψ̃m < xc, ψ̃m >
8: Set the atom ψ̃m = 0 in DC

raw

9: Set: xc = rx

10: until Termination (see Section 5.2.1.1)
11: Merge the class specific trained dictionaries to form a combined trained dictionary DC

Train

= [Dc1
Train|Dc2

Train, ..., |DcK
Train] ∈ Rn×P .

5.2.1.1 Termination rules

There are two possible ways to terminate the Trained Dictionary Learning Algorithm:

1. The procedure shown in Algorithm 3 stops after a fixed number of iterations S. The

number of iterations determines the size of the dictionary, as well as the ”depth” of the

residue. More iterations lead to a larger number of atoms in the dictionary (Section

5.2.2), and a ”deeper” residue means that more higher index IMFs will also be added

as dictionary atoms. This is due to Step 7 of Algorithm 3, which is similar to the

decomposition step of EMD, given the subtraction of an IMF from the residue rx after

iteration x.

2. The second way of terminating the learning algorithm is to use a validation scheme to

establish the number of iterations. The validation scheme described here is based on

maximizing the distance between the vectors Γci and Γcj , containing, respectively, the

projection coefficients obtained using training signals x̂c from different classes ci and cj.

Importantly, the signals x̂c have not been used for the initial dictionary formation or

learning. For each signal x̂c, the projection coefficient αm =< x̂c, ψm > is calculated,

and added to the appropriate coefficients vector Γc. Letting S represent the number of

iterations, ΓSc represents the vector of projection coefficients obtained after S iterations.
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The number of iterations for termination of the algorithm is then decided according to

the following criterion:

max
S
||ΓSci − ΓScj ||22 (5.1)

It should be mentioned here that other validation schemes are possible here as well, for

example a scheme which maximizes the classification accuracy using a classification method.

5.2.2 Some Characteristics of the Learned Dictionary

5.2.2.1 Change in dictionary size

The raw dictionary DC
raw ∈ Rn×M has M atoms consisting of IMFs obtained from k training

signals, each of which has n samples. Although the number of IMFs obtained through EMD

is dependent on the EMD algorithm implementation, it has previously been established that

the number of IMFs J obtained from a signal x(n) is such that J ≤ log2(n) [104] . Therefore

M ≤ k × log2(n), where M < n. The trained dictionary DC
Train, learned using Algorithm

3, has P < M atoms. Since the same number k of training signals is used for learning the

trained dictionary, a maximum of k atoms can be added to the trained dictionary after each

iteration in the algorithm, as given by Step 4 of Algorithm 3. This means that the change in

size of the dictionary, going from the raw dictionary to the trained dictionary, can be seen

in the following ways:

1. The number of atoms M of the raw dictionary DC
raw can be at most k × log2(n). The

number of atoms P of DC
Train, learned using Algorithm 3, can be at most k×S, where

S is the number of iterations after which Algorithm 3 terminates.

2. k × S is an upper bound on the size of the trained dictionary DC
Train. This is due to

Step 5 of Algorithm 3, whereby if the selected atom is already present in the dictionary,

it is not added. Therefore the number of atoms added to the trained dictionary after

each iteration can be less than k.

3. The change in size of the dictionary going from DC
raw to DC

Train can be represented as
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the ratio:

∆(M → P ) =
k × log2(n)

k × S (5.2)

Equation 5.2 gives a good estimate of the magnitude of the decrease in dictionary size

going from the raw to the trained dictionary. In general, the number of atoms M of

the raw dictionary will be less than k × log2(n). Similarly, as mentioned in Point 2

previously, the number of atoms P in the trained dictionary will in general be less

than k × S. Therefore the actual magnitude of decrease may be more or less than

the quantity in Equation 5.2. The maximum decrease in dictionary size occurs when

Algorithm 3 terminates after S = 1 iterations, since in this case P �M .

This is depicted in Figure 5.2, which compares the actual increase in dictionary size with

the expected increase in size during the learning phase using examples presented in Section

5.3. It can also be seen from Figure 5.2 that the actual increase in dictionary size is nearly

linear and matches the expected increase.
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Figure 5.2: Increase in size of learned dictionary plotted against the number of iterations
in Algorithm 3, showing expected and actual increase in dictionary size using examples
described in Section 5.3.

5.2.2.2 Increase in dictionary learning time with number of iterations

The number of iterations S required to terminate Algorithm 3 has implications for the

computational time it takes to train the learned dictionary. However, as explained in Section
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5.2.2.1, the maximum number of atoms that can added to the dictionary after each is given by

k. Therefore one expects the computational time for dictionary learning to increase linearly

with the increase in the number of iterations. This is depicted in Figure 5.3, which shows

a nearly linear increase in computation time of Algorithm 3 with increase in the number of

iterations using data described later Section 5.3.1.
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Figure 5.3: Increase in computational time of Algorithm 3 with increase in number of iter-
ations. The solid line represents a least-squares fit. The values have been obtained using
data described in Section 5.3.1.

5.2.2.3 Increase in computational time for signal projection with increase in

learned dictionary size

The size of the trained dictionary DC
Train has implications for the computational time it

requires to project test signals against the dictionary to obtain the projection coefficients.

As with the nearly linear increase in dictionary size with increase in number of Algorithm 3

iterations presented in the previous Section, one can expect the computational time for signal

projection against the trained dictionary to increase linearly with an increase in dictionary

size for the same number of signals. This can be inferred from the linear increase in dictionary

size presented in Section 5.2.2.1. This holds to be true in practice also, as is shown in Figure

5.4, which uses test signals and a trained dictionary created using data described in Section

5.3.1.
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Figure 5.4: Increase in computational time for projecting a fixed number of signals against
the trained dictionary DC

Train, with an increase in dictionary size, represented here by the
number of iterations for Algorithm 3. The solid line represents a least-squares fit, and the
values have been obtained using data described in Section 5.3.1.

5.2.2.4 Semi-orthogonality of trained dictionary

Although the trained dictionary D has been constructed empirically, it is nearly semi-

orthogonal, with DTD ≈ I. Therefore it is possible to obtain the coefficients vector α

using the following relation:

x = Dα (5.3)

In the context of the presented approach, it is possible to obtain the coefficients vector using

the relation shown below:

α = (D)†x (5.4)

where x represents a testing signal, and (D)† is the left pseudo-inverse of the trained dictio-

nary DC
Train.

In addition, even though the learned dictionary D is not designed as a reconstructive

dictionary, it is possible to obtain a reconstruction of the signal x using the relation:

x̂ = D(D)†x (5.5)

The reconstruction error, given below in Equation 5.6, is however expected to be large,

especially when using a trained dictionary with a smaller number of atoms, which would
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typically result if the dictionary learning algorithm terminates after a smaller number of

iterations.

ε = ||x̂− x||2 (5.6)
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Figure 5.5: Original signal in dashed line superimposed with the reconstructed signal ob-
tained using the relation in Equation 5.5. For the plot in (a), the trained dictionary was
obtained after one iteration of Algorithm 3, and after 10 iterations for the plot in (b).

Using a test signal from one class and a two-class trained dictionary constructed from

the data described in Section 5.3.1, and using the relation in Equation 5.5, the reconstructed

signal along with the original signal is shown in Figure 5.5 (a). As can be seen from this

figure, the reconstruction error is large. However, the reconstruction error can be expected

to decrease with a trained dictionary having a larger number of atoms. This is indeed the

case, as can be seen in Figure 5.5 (b), where the reconstructed signal has been obtained
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using a dictionary trained after 10 iterations of Algorithm 3.

Using the same signal as used in Figure 5.5, and a trained dictionary obtained after differ-

ent number of iterations, the decrease in the reconstruction error with increase in dictionary

size, as indicated by the iteration number, is shown in Figure 5.6.
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Figure 5.6: Decrease in reconstruction error with an increase in size of the trained dictionary,
as indicated by the iteration number.

Using a test signal from the second class and the same two-class trained dictionary,

the reconstructed signal along with the original signal is shown in Figure 5.7 (a). The

reconstructed signal obtained using a dictionary trained after 10 iterations of Algorithm 3

is shown in Figure 5.7 (b). As before, the decrease in the reconstruction error is evident.

Similarly, as in the previous case, the decrease in reconstruction error with an increase in

size of the trained dictionary is indicated in Figure 5.8.

The graphs in Figures 5.6 and 5.8 are unique to the behaviour of the signals they rep-

resent, and also to the trained dictionary being used to demonstrate the reconstruction.

However, decrease in the size of reconstruction error with an increase in trained dictionary

size holds for all signals. This is to be expected, since, as explained in Section 5.2.1.1, more

iterations of the procedure shown in Algorithm 3 result in a larger number of higher index

IMFs being added to the trained dictionary. Furthermore, Step 7 of Algorithm 3 is similar

to the decomposition step of EMD, therefore a larger number of iterations will result in a

larger dictionary containing IMFs with indices covering a wide range over all possible index

values. In this regard, Figure 5.9 shows four different atoms from the trained dictionary

147



0 500 1000 1500 2000 2500 3000 3500 4000
−1.5

−1

−0.5

0

0.5

1

Number of Samples

N
o

rm
a

li
z
e

d
 A

m
p

li
tu

d
e

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
−1

−0.5

0

0.5

1

Number of Samples

N
o

rm
a

li
z
e

d
 A

m
p

li
tu

d
e

(b)

Figure 5.7: Original signal in dashed line superimposed with the reconstructed signal ob-
tained using the relation in Equation 5.5. For the plot in (a), the trained dictionary was
obtained after one iteration of Algorithm 3, whereas for the plot in (b) the trained dictionary
was obtained after 10 iterations.
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Figure 5.8: Decrease in reconstruction error with an increase in size of the trained dictionary,
as indicated by the iteration number.
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DC
Train learned after 10 iterations of Algorithm 3. The plots (a) and (d) in Figure 5.9 rep-

resent IMFs of the first and last indices respectively, whereas plots (b) and (c) are IMFs

of intermediate indices. In a trained dictionary learned after fewer iterations of Algorithm

3, most of the atoms in the trained dictionary would consist of IMFs of lower indices only,

thereby leading to a large signal reconstruction error.
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Figure 5.9: Examples of dictionary atoms from a trained dictionary DC
Train learned after 10

iterations of Algorithm 3.
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5.2.2.5 Use of features other than the projection coefficient

Traditional approaches of classification using dictionary learning (e.g. [125]) use the relation-

ship x = Dα to employ the coefficients vector α as a feature vector obtained using a learned

dictionary D and a signal x. As mentioned previously in Section 5.2.2.4, it is possible to

obtain this feature vector with the proposed approach as well, using the relation in Equation

5.4. The use of α as a feature vector will be described in Section 5.3.

Another feature that may be used for signal classification using the proposed approach

is the reconstruction error given in Equation 5.6. As demonstrated in Figures 5.6 and 5.8,

signals from different classes are expected to have different reconstruction behaviours using

a trained dictionary according to the relation in Equation 5.5, which has the potential to

make the reconstruction error a discriminant feature.

5.2.3 Signal Classification Using the Trained Dictionary

The trained dictionary can be used for signal classification by using coefficients of projections

of test signals over the atoms of the trained dictionary as features to discriminate between

different classes. The projection coefficients are expected to form distinct clusters in the

feature space, and a classifier can then be used to classify between the projection coefficients

obtained from signals of different classes. This expectation follows from the application of

EMD to the training signals, which results in the different characteristics of signals of each

class being decomposed into different IMFs. The dictionary learning algorithm then selects

only the most relevant IMFs of each class [132], which not only results in a sparse dictionary,

but one whose atoms contain the most relevant characteristics of the different classes being

analyzed.

The projection coefficients are obtained in the same way as described in Step 3 of Algo-

rithm 3. For each test signal xct and all atoms ψm of the trained dictionary, the projection

coefficient αm =< xct , ψ
m > with the maximum value is selected as the feature point. Sim-

ilarly, it is possible to obtain the coefficients vectors using the test signals, as described in

Section 5.2.2. Next the use of these features to classify test signals in different classification
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scenarios is described.
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Figure 5.10: Scatter plot of projection coefficients of test signals from two classes, D (shown
as crosses) and E (shown as circles). Clear separation of the signals in the feature space is
visible.

5.3 Experiments

To demonstrate the methodology presented in the previous sections, real-life data in the form

of EEG signals is used. The details of these EEG signals have been described previously

in Section 4.2.5.2 of Chapter 4. This data consists of 5 sets of signals named A, B, C, D

and E. Signals in sets A and B are from epilepsy free patients, whereas signals in sets C, D

and E are from epilepsy patients. The signals in sets C and D have been recorded during

epilepsy-free intervals, and signals in set E are seizure signals. For experiments using the

proposed methodology, binary classification is tested in the following three scenarios:

1. Scenario I: Classification between signal sets D and E.

2. Scenario II: Classification between signal sets ABCD and E.

3. Scenario III: Classification between signal sets AB and CD.

The first two scenarios are relevant in the context of seizure detection, whereas the third

scenario is meant to test the performance of the method for epilepsy diagnosis.
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5.3.1 Scenario I

For classification between sets D and E, 50 signals from each set were decomposed into IMFs

using EMD, and used to form the raw dictionary consisting of 1067 atoms. The dictionary

was trained using these 50 signals as described in Algorithm 3, and the algorithm was termi-

nated by the second method in Section 5.2.1.1. For this, 25 signals of each class were used in

the validation step to estimate the maximum separation between the projection coefficient

vectors, which was obtained after 1 iteration. The dictionary learning stage resulted in a 92%

decrease in dictionary size, with the trained dictionary consisting of 83 atoms. Finally, 24

signals of each class were used as test signals, and projected against the trained dictionary to

obtain the projection coefficients. Figure 5.10 shows a grouped scatter plot of the projection

coefficients so obtained from test signals of sets D and E, clearly showing the separation

between the classes in the feature space, thereby making the use of a classifier unnecessary.

5.3.2 Scenario II

To test the second scenario related to classification between sets ABCD and E, 25 signals

from each individual set were decomposed into IMFs and used to form the raw dictionary

consisting of 1303 atoms. The raw dictionary was trained using these 125 signals as per

Algorithm 3, which terminated after 3 iterations according to Equation 5.1 using 5 validation

signals from each of the individual sets in ABCD, and 20 validation signals from E. The

dictionary learning step resulted in a trained dictionary containing 368 atoms, representing

a reduction in dictionary size of 72%. Figure 5.11 shows examples of dictionary atoms taken

from this trained dictionary. For testing, the remaining unused 70 signals in each individual

signal set in ABCD, and the 55 unused signals in set E were used. These 335 test signals

(280 belonging to set ABCD and 55 belonging to set E) were projected against the trained

dictionary, and the projection coefficients obtained were used to test the discrimination

performance between sets ABCD and E. For this case, the highest classification accuracy

was obtained using a 3-NN classifier, with a correct classification rate of 95.8% obtained

using 10-fold stratified cross-validation. The sensitivity and specificity values were 92.7%
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Figure 5.11: Example of dictionary atoms consisting of IMFs of decomposed signals taken
from the trained dictionary described in Section 5.3.2

and 96.4% respectively.

5.3.3 Scenario III

The third scenario involves testing the proposed method for classification between classes

AB and CD, representing normal and inter-ictal signals respectively. For this purpose, a

raw dictionary was created using IMFs from 25 signals of each of the signal classes A, B,

C and D, which consisted of 1050 atoms. A trained dictionary was learned using these

25 signals from each class, and 15 further validation signals from each class were used for

terminating the algorithm, which, in this case, terminated after 1 iteration according to

Equation 5.1. This resulted in a trained dictionary with 97 atoms, representing a decrease in

dictionary size of 91%. Using the remaining 40 signals in each signal set as test signals, the

coefficients of projections were used as features to test classification between classes AB and

CD. For this scenario, the highest classification accuracy of 83.8% was obtained using linear

discriminant analysis tested with 10-fold stratified cross-validation, giving a sensitivity of

87.5% and specificity of 80%.

In addition, to demonstrate the use of the coefficients vector α as a feature vector, ob-

tained using α = (D)†x, as described in Section 5.2.2, the classification performance using

this feature vector was also tested. In this case the linear classifiers resulted in lower classifi-

cation accuracies, close to 70% correct classification rate. However, the highest classification
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accuracy of 89.6% was obtained using a Support Vector Machine (SVM) classifier using a

quadratic kernel, having a sensitivity of 94.2% and a specificity of 85%.

5.3.4 Discussion

The classification accuracy for the three test scenarios presented previously compares favourably

to the results of recent studies using the same EEG data, e.g. [117][116][115][26], where clas-

sification accuracy and sensitivity and specificity values in the range of 90% to 100% have

been demonstrated. These values have been obtained using methodologies based on wavelets,

time-frequency analysis, and higher-order statistical analysis in the EMD domain, and us-

ing a variety of classifiers, such as k-NN classifier, artificial neural network, and multi-layer

perceptron neural network.

The method presented here is classifier agnostic, and it is possible to choose a classifier

empirically, as has been done with the three scenarios presented. In the first scenario, clear

separation of the two classes was visible in the feature space. For the second and third

scenarios, linear classifiers provided high classification accuracy, whereas the highest classi-

fication accuracy when using coefficients vector α as a feature vector in the third scenario

was obtained using a SVM classifier with a quadratic kernel.

The main advantage of the proposed method lies in being able to create a dictionary using

a small number of signals. This is also relevant in the context of the computational time

requirements, since EMD decomposition of signals is the most computationally expensive

step of the overall methodology. The dictionary learning step then further reduces the size

of the dictionary, retaining only the atoms which have strong correlation with the training

signals of different classes. A small number of dictionary atoms makes projection of test

signals computationally fast, which is advantageous for long-term data, as presented in

[106]. In such a scenario, the dictionary could be formed and trained using a small segment

of the available data. Features for classification could be extracted from the remaining

data by projecting the data against the trained dictionary, without having to manipulate or

transform the whole data into a different domain, as is done in almost all current approaches.
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5.4 Conclusions

The method presented in the previous sections represents a novel approach to sparse dic-

tionary learning for signal classification based on EMD, with sparsity understood in terms

of the low number of dictionary atoms compared to the signal dimensions. The dictionary

atoms consist of IMFs, obtained from signals using EMD, hence the dictionary is learned

from the data, and not formed using a pre-defined basis, making it more adaptive to the

data to be analyzed. The dictionary learning framework is also distinguished by its sim-

plicity, as the aim of the framework is not to learn reconstructive, or jointly reconstructive

and discriminative dictionaries. Instead, the framework focusses on learning a sparse, under-

complete dictionary, whose small number of atoms contain representative characteristics of

their respective classes. At the same time, the framework allows the use of the learned

dictionary to extract traditional features, which can be used for signal classification using

an appropriate classifier. The utility of the empirical framework presented here was demon-

strated using real-world data, and it was shown that it is possible to extract features using

the under-complete dictionary which can be used for signal classification.

5.5 Automatic Seizure Detection Based on Empirical

Dictionary Learning Using Long-term EEG Data

Automatic seizure detection has important implications for long-term monitoring, diagnosis

and rehabilitation in case of epilepsy [106]. The traditional method of seizure detection,

which relies on visual analysis of EEG recordings by trained professionals, is costly and

tedious. This is particularly relevant when EEG data to be analyzed may include multiple

EEG recordings from a single patient, consisting of multi-channel data and having a duration

of many hours. Earlier in this Chapter the Empirical Sparse Dictionary Learning Framework

was presented, and the application of this framework for classification of real-life EEG data

was also demonstrated, as described in Section 5.3.

In this Section application of the Empirical Sparse Dictionary Learning Framework for
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Table 5.1: Gender and Ages of Patients.

Gender Age range (years) Average age (years)

10 females and 5 males 1.5 - 22 9.3

automatic seizure detection in long-term scalp EEG recordings will be presented. Scalp EEG

is a non-invasive measure of the electrical activity of the brain, and using this measure for

seizure detection is challenging because the numerous classes which the brain’s electrical

activity is composed of have overlapping characteristics [105].

The next sections will describe the EEG data used, details of the experimental set-up,

as well as conclusions drawn from the seizure detection results.

5.5.1 Data

The data used to demonstrate the Empirical Sparse Dictionary Learning Framework has

been obtained from the CHB-MIT Scalp EEG database [105]. This database consists of

EEG recordings from pediatric subjects with intractable seizures. It should be noted that

pediatric scalp EEG displays greater variability in seizure and non-seizure activity, compared

to adult scalp EEG [105].

The original database consists of EEG recordings from 24 patients. There are multiple

EEG recordings for each patient, obtained using the International 10-20 system of electrode

positions and nomenclature, and the EEG recordings are available in the standard .edf file

format. All EEG signals in the database have been sampled at 256 samples per second with

16 bit resolution. For each patient there are between 9 and 42 continuous .edf files. For

most of the patients, the .edf files contain one hour of digitized EEG signals, though for

some patients the .edf files may contain two or four hour long EEG signals. The signal

length in files with seizures is generally shorter. A list of .edf files containing seizures (one

or more) is available, and the start and end times of seizures within these files is annotated.

All the records contain a total of 198 seizures.
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Most of the .edf files contain data from 23 EEG signals, whereas a few contain 24 and 26

signals. In some records, signals other than EEG are also recorded, e.g. the ECG signal in

case of patient number 4, and the vagal nerve stimulus (VNS) signal in some files belonging

to patient number 9, however these other signals were not used for this study.

For the experiment described next, EEG recordings from 15 patients were used, mainly

due to the enormity of the data available. Details related to the gender of the patients and

their ages are shown in Table 5.1. From within the EEG recordings of these 15 patients,

data consisting of 87 seizures was used, with the number of seizures per patient listed in

Table 5.2.

Also, given the length of the signals in case of long-term EEG recordings, EEG signals are

usually segmented into smaller intervals for efficient processing. Segments of 2 or 4 seconds

length are generally used [105][106], and for the experiments in this study, it was decided to

segment the EEG signals into 4 second segments, consisting of 1024 samples.

The plots in Figure 5.12 and Figure 5.13 show 27 second segments of EEG signals from

patient number 1 during seizure and non-seizure states respectively. These figures present

adequate illustration of the following aspects of scalp EEG signals [105]:

1. There is considerable overlap in the EEG associated with seizure and non-seizure states

for epilepsy patients.

2. A set of EEG channels develop rhythmic activity composed of multiple frequency

components following the onset of most seizures. The channels on which the rhythmic

activity develops most prominently, and the structure of the rhythmic activity differs

from patient to patient.

3. Despite the variance of seizures across patients, the seizures for any one patient show

consistency, provided these emerge from the same brain region.

The points presented above represent some of the challenges associated with automatic

seizure detection using scalp EEG data, consisting of multiple recordings of multi-channel

signals. Keeping these points and the details of the data presented in this Section in view, the
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data processing used by the Empirical Sparse Dictionary Learning Framework is described

next.

Number of Samples

Figure 5.12: EEG signals from a 27 seconds seizure segment from a recording of patient
number 1. The channels, from top to bottom, are, respectively: FP1-F7, F7-T7, T7-P7, P7-
O1, FP1-F3, F3-C3, C3-P3, P3-O1, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8,
P8-O2, FZ-CZ, CZ-PZ.

Number of Samples

Figure 5.13: EEG signals from a 27 seconds non-seizure segment from a recording of patient
number 1. The channels, from top to bottom, are, respectively: FP1-F7, F7-T7, T7-P7, P7-
O1, FP1-F3, F3-C3, C3-P3, P3-O1, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8,
P8-O2, FZ-CZ, CZ-PZ.
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Table 5.2: Number of Seizures Used Per Patient.

Patient No. Number of seizures used

1 6

2 3

3 7

4 4

5 5

6 7

8 5

9 4

10 6

11 3

12 11

13 8

14 7

15 8

Total Number of Seizures: 87

5.5.2 Data Processing For Dictionary Creation and Learning

In this Section processing of the EEG data for dictionary creation and learning, and for

subsequent testing of the EEG signals for automatic seizure detection will be described.

First the processing of seizure signals from the 15 patients will be described, followed by

description of the processing of non-seizure signals. The most important consideration for

data processing was to use small amounts of the available data for dictionary creation, so as to

create a sparse dictionary, which makes projection of a large number of test signals against the

trained dictionary computationally fast. However, using fewer signals for dictionary creation

and learning has the drawback of creating a dictionary which is not representative of the

underlying characteristics of the data. Therefore the amount of data used for both seizure

and non-seizure signals represented a compromise between these competing considerations.

Furthermore, experiments with this amount of data allowed important conclusions to be

drawn, which are presented in Section 5.5.5.
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5.5.2.1 Data processing for seizure segments

The steps involved in the processing of the seizure segments are represented in the block

diagram shown in Figure 5.14. These steps are as follows:

1. For each patient i, the data for k seizures from different recordings is loaded into the

software from the .edf files. The number of seizures k is different for each patient, as

listed in Table 5.2.

2. For each seizure segment, 3 channels were randomly selected, and the signals from these

3 channels were segmented into 4 seconds long lengths, consisting of 1024 samples.

3. The 4 second long segments from the 3 randomly selected channels were decomposed

into IMFs using EMD for dictionary creation and learning, as described in Section

5.5.3.

4. The signals from rest of the channels were separated, and also segmented into 4 sec-

ond long lengths. These 4 second long segments were kept separate for testing the

methodology.

Using these steps, the total number of 4 second segments from the 3 randomly selected

channels turned out to be 4635 from all 15 patients. The number of segments kept separate as

test signals for projection against the trained dictionary were different for different patients,

and their numbers are listed in Table 5.3.

5.5.2.2 Data processing for non-seizure segments

The block diagram representing the steps in the processing of non-seizure segments from all

15 patients is shown in Figure 5.15. These steps are similar to those presented for seizure

segments in Section 5.5.2.1. However, there are also differences in the steps in order to

incorporate the large amount of non-seizure signals involved.

The first step involved loading multiple .edf files representing non-seizure EEG signals

representing recordings of more than 5 hours. The steps for raw dictionary creation are
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Figure 5.14: Block diagram representing the data processing for seizure signals from all 15
patients.

similar to those presented for seizure signals in Section 5.5.2.1, except that after segmentation

of the signals into 4 second segments, the number of 4 second segments chosen for EMD

decomposition is made the same as that for seizure segments, so as to avoid having a large

difference between the number of IMFs resulting from both the seizure and non-seizure

segments.

Once signals from 3 randomly channels were separated for dictionary creation and learn-

ing from the initially loaded data, the signals from rest of the channels were kept separate.

In the case of non-seizure signals, the duration of these signals was at least one hour, with

some patients having recordings of two or more hours as well. To reduce the amount of data,

10 channels were then randomly selected from these remaining channels, and these selected

signals were then segmented into 4 second long segments. Further random selection was

made from these 4 second long segments such that the selected segments represented EEG

data of at least 5 hours. The actual number of non-seizure segments per patient used for

testing is listed in Table 5.3.
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Figure 5.15: Block diagram representing the data processing for non-seizure signals from all
15 patients.

5.5.3 Dictionary Formation and Training

The number of 4 second segments selected for dictionary formation and training, as de-

scribed in Section 5.5.2.1 and Section 5.5.2.2, was the same for both seizure and non-seizure

segments at 4635 segments. These 4 second segments were decomposed into IMFs using

EMD, resulting in 37863 IMFs from the seizure segments, and 38146 IMFs from non-seizure

segments.. These IMFs formed the atoms of the class-specific raw dictionaries Dc
raw repre-

senting the seizure and non-seizure signals. The class specific raw dictionaries were merged to

form a combined raw dictionary DC
raw consisting of 76009 atoms, as described in Section 5.2.

However, the combined raw dictionary is not sparse according to the definition of sparsity

presented in Section 5.2.

Learning the trained dictionary DC
Train using Algorithm 3 resulted in the trained dictio-

nary having 8830 atoms. This represents a magnitude decrease of almost 9 times, close to the

maximum possible magnitude decrease of 10 according to Equation 5.2. Furthermore, due
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to the large amount of computational time taken for dictionary learning due to the size of

the raw dictionary and the number of training signals, Algorithm 3 was terminated after just

one iteration. The plots in Figure 5.16 show four example atoms in the trained dictionary

DC
Train which show a wide range of temporal and spectral characteristics.

0 100 200 300 400 500 600 700 800 900 1000
Number of Samples (1024 samples = 4 seconds)

Figure 5.16: Examples of dictionary atoms in the trained dictionary DC
Train.

5.5.4 Results

The results of patient-specific automatic seizure detection obtained by application of the

Empirical Sparse Dictionary Learning Framework on the EEG data described in Section

5.5.1 are shown in Table 5.3. These results were obtained in the following way:

1. The test seizure and non-seizure signal segments from each patient were projected

against the trained dictionary DC
Train, and the projection coefficients used as features

for automatic seizure detection. The number of seizure and non-seizure segments for

each patient listed in Table 5.3.

2. For classification, a SVM classifier with the Gaussian radial basis function (RBF) was

used. An SVM classifier is a good choice, as seizure and non-seizure classes are often

not linearly separable [105].

3. The SVM classifier was trained using a patient-specific methodology by using a speci-

fied fraction of the projection coefficients obtained by projecting the test signals against
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the trained dictionary, as described in point 1. For this purpose, one-half of the seizure

signal projection coefficients, and the same number of non-seizure signal projection co-

efficients were used to train the classifier. For example, there are 1590 seizure projection

coefficients and 4780 non-seizure projection coefficients available for patient 1, as shown

in Table 5.3; from these, 795 seizure and 795 non-seizure projection coefficients were

used to train the classifier. The remaining 795 seizure and 3985 non-seizure projection

coefficients were used to test automatic seizure detection. The same classifier training

procedure was used for all patients.

The results shown in Table 5.3 show large variation in the values of classification accuracy,

sensitivity and specificity. For some patients, e.g. patients 1, 2, 7 and 9, these values are

close to or higher than 85%. However, for some patients, for example patient number 6, the

classification accuracy, sensitivity and specificity values are close to 50%. The automatic

seizure detection results presented in Table 5.3 allow important conclusions to be drawn

about the whole experimental configuration as well as elucidate the implications for the

application of the Empirical Sparse Dictionary Learning Framework to long-term data.

5.5.5 Discussion: From Global to Patient-Specific Dictionaries

A number of conclusions can be drawn from the wide variance in the automatic seizure

detection accuracy rates, which have important implications for data processing, which was

presented in Section 5.5.2, and dictionary formation and learning, presented in Section 5.5.3.

An important aspect of data processing for dictionary creation was to randomly select

limited amount of EEG signals so as to keep the size of the raw dictionary Dc
raw small. At

the same time, the data selected for raw dictionary creation needs to be representative of the

underlying characteristics and structures of the seizure and non-seizure states. With selection

of only limited amount of data, it is possible to miss the various latencies, periodicities and

fractal behaviours associated with the non-stationary and non-linear signals. This can be

used to explain the variance in accuracy rates for automatic seizure detection across different

patients, as not only do the underlying signal structures vary from one patient to the next,
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Table 5.3: Seizure detection performance using data presented in Table 5.1.

Patient No. Acc. (%) Sens. (%) Spec. (%) No. of Seiz. Seg. No. of Non-Seiz Seg.

1 90.3 91.3 90.1 1590 4780

2 86.1 87.8 86.0 770 4780

3 81.1 91.6 78.5 1910 4780

4 71.8 75.4 71.0 1790 4790

5 77.2 69.6 80.2 2690 4780

6 48.3 62.9 47.6 470 4790

7 84.2 85.4 83.9 1530 4790

8 79.8 80.7 79.1 4490 4780

9 86.6 94.0 85.4 1270 4790

10 77.1 72.2 78.2 1790 4790

11 81.7 86.3 78.5 3950 4780

12 61.3 56.2 62.4 1650 4780

13 64.5 54.6 66.3 1474 4780

14 78.1 57.1 79.6 630 4780

15 58.9 54.2 55.8 3514 4780

Acc. = Accuracy; Sens. = Sensitivity; Spec. = Specificity; Seiz. = Seizure; Seg. =
Segments (4 second long test segments having 1024 samples).

there is variation in the signal patterns across different EEG channels in recordings from the

same patient, as explained earlier in Section 5.5.1.

Although only a limited amount of EEG data per patient was selected for dictionary

formation and learning, this data was selected randomly from the different EEG channels

available in the signal recordings. In a previous iteration of the experiment, a limited amount

of data was selected only from particular channels of the EEG data from all patients. This

configuration resulted in very low automatic seizure detection accuracy rates for most of the

patients under study. With the experimental configuration described here, random selection

of EEG signals has helped better capture the patient-specific characteristics of seizure and

non-seizure states, resulting in higher seizure detection accuracy rates for many patients.

However, the random selection of limited amounts of data from EEG recordings of all

patients represents a global approach to dictionary formation and learning, whereby a single
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raw dictionary is formed, trained into a learned dictionary, and then used for signal clas-

sification. The experimental results presented in Table 5.3 provide evidence of important

drawbacks of the global approach to dictionary formation and learning, which are listed

below:

1. A global dictionary formed and trained with limited amount of data does not fully

capture the underlying characteristics of the data, specially when the data is non-

stationary and non-linear in nature.

2. Although dictionary learning results in a considerable decrease in the size of the raw

dictionary, the initial raw dictionary will be large in size for the case where the data

to be analyzed has a large volume. Any attempt to limit the size of the dictionary by

using a limited amount of data leads to the problem mentioned in the previous point.

Furthermore, the raw dictionary, and the subsequently obtained learned dictionary,

will not be sparse according to the definition of sparsity given in Section 5.2.

Therefore, for cases where a large amount of data from multiple sources is available,

which for the current example under study consists of long-term EEG recordings from mul-

tiple patients, a source-specific dictionary formation and training strategy is required. In

the context of the current study, this strategy would entail construction of patient-specific

dictionaries.

5.5.5.1 Patient-specific dictionaries

A patient-specific dictionary in the context of automatic seizure detection using long-term

EEG data would entail dictionary formation and training using EEG data from individual

patients only. This has several important consequences for dictionary formation and learning,

such as:

• Incorporation of larger amounts of patient data for dictionary formation and learning,

thereby allowing the dictionary to be representative of underlying characteristics of

data specific to each individual patient. For example, in the context of the current
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study, instead of using only few channels from the seizure and non-seizure signals,

data from all the available channels could be used, which will allow the dictionary to

capture seizure and non-seizure characteristics spread over different channels.

• Even when using larger amounts of data for dictionary creation and learning, a patient-

specific dictionary will allow faster computational time for dictionary formation and

learning, as well as for projection of test signals against the trained dictionary, since

the patient-specific dictionary will be more sparse than a global dictionary.

An important aspect of the patient-specific dictionary is that such a dictionary can be

formed and trained once, with the available data, and then used by large amounts of data,

which may continually be acquired. For the current study using long-term EEG data, this

is feasible since the characteristics of the EEG data show considerable consistency across

different recordings [105]. Even for a case where the characteristics of the collected data

might change, a source-specific dictionary can be formed in a computationally efficient way,

while retaining representative characteristics of the different classes of data from which it

may have been formed and trained.

In the context of EEG signal analysis using long-term data, patient-specific methods have

shown much better results [105][133]. It has also been established that non-patient specific

methods exhibit poor accuracy due to the cross-patient variability in seizure and non-seizure

activity, and exhibit good performance in some cases when restricted to analysis of seizure

types that do not vary much across patients [105]. The EEG data used in this study is

pediatric scalp EEG, which exhibits greater variability in seizure and non-seizure activity.

Therefore, even with a global dictionary, the automatic seizure detection performance of

the presented method, as presented in Table 5.3, represents good results, and holds greater

promise for the same method based on patient-specific dictionaries.
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5.6 Chapter Summary

In this Chapter, a novel empirical sparse dictionary learning framework for signal classifi-

cation based on EMD was presented. At the heart of the framework is the discriminative

dictionary learning framework, which learns sparse dictionaries, where sparsity quantifies

the under-completeness of the learned dictionary. The dictionary formulation and learning

is not meant to be reconstructive, or combined reconstructive and discriminative, as in other

state-of-the-art approaches. The use of the framework was demonstrated with different ex-

perimental scenarios. Furthermore, the empirical sparse dictionary learning framework was

used for automatic seizure detection using long-term EEG data. Based on the experimental

results, it was concluded that the framework presented here could be used for patient-specific

dictionaries for more robust signal analysis.
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Chapter 6

Conclusion

Automated signal analysis provides objective and practical means for better understanding

the characteristics of signals, and thus obtaining an accurate insight into the underlying

mechanisms and processes of the systems which produce the signals. Also important for

automated signal processing is the knowledge that signals in the real world are in general non-

stationary in nature, and often the underlying systems producing the signals have non-linear

dynamics. The methods for automated signal analysis, therefore, should be able to take the

signal non-stationarity and non-linearity into account. In this regard, signal decomposition

methods are particularly useful, as these bring out representative signal information hidden

at characteristic time and frequency scales. This dissertation focused on empirical methods

for signal analysis based on signal decomposition techniques, with emphasis on analysis of

non-stationary and non-linear signals using Empirical Mode Decomposition (EMD) and new

algorithms based on EMD. Based on the work presented in the dissertation, the following

conclusions can be drawn:

• EMD is a viable alternative to existing methods for signal analysis. Its properties and

behaviour are well-understood through empirical and numerical means, which allows

confident application of the algorithm in a particular domain. The efficacy of EMD

comes mainly from its adaptive nature, whereby the signal decomposition does not

depend on a pre-defined basis, but the basis is instead derived from the data. This
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makes it particularly suitable for analysis of non-stationary and non-linear signals.

Furthermore, EMD decomposes a signal into components which are the same length

as the original signal, and thereby allows analysis in the time domain, and also in the

frequency domain, since mechanism for a meaningful transformation of the decomposed

components in the frequency domain is also defined. EMD was applied for pathological

speech classification (Chapter 2), for which a novel set of features was defined and

calculated from the components decomposed from speech signals. The robustness of

the proposed method was also demonstrated by pathological speech classification using

telephone quality speech signals.

• Since EMD decomposes signals based on their local time scales, it is possible to effec-

tively use the decomposition for de-noising and de-trending of signals. In addition, new

frameworks for signal analysis based on de-noising and de-trending of signals can be

developed. The EMD-based de-noising and de-trending approaches were categorized in

Chapter 2, followed by development of a novel framework for mental task classification

using EEG signals.

• EMD does not allow time-scale based decomposition, whereby signals could be decom-

posed according to a specified frequency separation criterion. However, such ability

would add much flexibility to the decomposition process, and open up a host of possibil-

ities for innovative applications. With this in mind, a novel modification of the EMD al-

gorithm was proposed, which is named Empirical Mode Decomposition-Modified Peak

Selection (EMD-MPS) (Chapter 3), and which allows a time-scale based decomposi-

tion. The properties of EMD-MPS were studied, and its use for a novel hierarchical

decomposition, which allows signals to be decomposed into selected frequency bands,

was demonstrated. A novel time-scaled based de-noising and de-trending based on

EMD-MPS was also shown, along with practical applications in the form of mental

task classification and seizure detection using EEG signals (Chapter 4).

• Empirical learned dictionaries, which are neither reconstructive, nor reconstructive-
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discriminative, can be used effectively for signal classification. A novel sparse empirical

dictionary learning framework was presented, and a discriminative dictionary learning

algorithm developed as part of this framework (Chapter 5). The properties of the

learned dictionary were studied, and the features that can be obtained for signal clas-

sification were highlighted. Also, the use of the framework for signal classification was

demonstrated, along with an application for automatic seizure detection using long-

term EEG signals. Implications of the aforementioned application for patient-specific

dictionaries, as well as the potential advantages when using long-term data, were also

discussed.

The following directions for future work can be identified:

• In the current formulation of EMD-MPS , the value of the short-time window τ once

selected, is fixed for the whole length of the signal. Further enhancement of the EMD-

MPS framework is planned, in which the value of τ will not remain fixed for the whole

length of the signal, but will be adaptive to the local properties of the signals being

analyzed.

• In Chapter 3, it was shown how the decomposition behaviour of EMD could be formu-

lated in terms of EMD-MPS, providing novel insight into EMD. Here, it may be realized

that the modified peak selection as defined in the EMD-MPS algorithm, whereby local

extrema are selected conditionally to time-windows of variable length, is analogous to

the methodology of Re-scaled Range (R/S) analysis [134]. Re-scaled range is a statis-

tical analysis used for estimating the scaling exponents of self-similar processes. In this

context, conventional EMD, due to its wavelet-like property of mimicking dyadic filter

banks, is one way of estimating the scaling exponents. It will therefore be an interest-

ing research direction to explore if R/S analysis can be rephrased through EMD-MPS

in such a context in terms of EMD, and/or vice-versa.

• Hierarchical decomposition based on EMD-MPS was also described and demonstrated

in Chapter 3. Further analysis of hierarchical decomposition to establish its proper-
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ties is warranted. This will also allow comparison of the properties of hierarchical

decomposition with the wavelet decomposition.

• Although the empirical dictionary learning framework defined in Chapter 5 does not

learn reconstructive dictionaries, it was shown that the under-complete learned dictio-

nary does allow signal reconstruction, although with a large reconstruction error. The

usability of the reconstruction error as a discriminative feature will form a research

question to be explored. Additionally, an automatic seizure detection system using

long-term EEG data was described in Chapter 5, along with a discussion of extending

the work in the direction of patient-specific dictionaries. Extension of the methodology

with a definition and utilization of patient-specific dictionaries forms the future work in

this context. Another line of future work in the context of empirical dictionary learning

framework will relate to incorporation of compressive sensing concepts into dictionary

learning, whereby training signals can be replaced by the compressive sensing mea-

surements representing these signals [135]. In this regard, use of real world signals

other than the ones used in this dissertation will also be explored. An interesting issue

to explore here would be formation and learning of semantic dictionaries, which may

be considered as dictionaries containing specific signal patterns and characteristics as

identified by domain experts, and using such dictionaries for further signal analysis

and classification.
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Appendix A

EMD: Algorithm Implementation

Issues and Characteristics

This appendix contains discussion related to important EMD algorithm implementation

issues, as well as characteristics of EMD.

A.1 Algorithm Implementation Issues

Stopping criterion for sifting: The sifting iterations are stopped when the oscillatory

mode obtained by subtracting the local mean from the signal fulfils the conditions of an IMF

(Step 5 of Algorithm 1: Section 2.3, Chapter 2). Important here is the second condition for

an IMF, whereby the mean value of the upper and lower envelopes formed by the extrema

of an IMF is either zero, or close to zero. However, a large number of sifting operations in

order to obtain a zero or close-to-zero mean can remove the physically meaningful amplitude

variations in an IMF, reducing it to a FM signal of constant amplitude. Indeed, it has

been pointed out in [31] that too many sifting operations result in IMFs devoid of physical

meaning. The criterion to stop the sifting iterations such that the IMFs do not have the

amplitude or frequency modulation unduly removed, as developed in [6], is based on limiting

the size of the standard deviation calculated from two consecutive sifting results. This value
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of the standard deviation, SD, is calculated as:

SD =
N∑
n=0

|(c1(k−1)[n]− c1k[n])|2
c21(k−1)[n]

(A.1)

The value of SD recommended in [6] is between 0.2 and 0.3, with a value of 0.2 used in many

implementations of the EMD algorithm. However, a flaw with this approach, as pointed out

in [136], is that this approach is unrelated to the definition of an IMF, and only requires

the successive IMF candidates to be nearly equal. The stopping criterion suggested in [136]

is designed to stop the sifting when the number of the zero crossings and extrema differ by

at most one for S sifting iterations. The value of S has to be selected empirically, though

typically a value 3 ≤ S ≤ 5 has proven successful as the stopping criterion compared to the

SD-based criterion [136], and is also used in implementations of the EMD algorithm [83].

A different and improved stopping criterion for the sifting process is described in [137],

which is the default stopping criterion of a popular and freely available implementation of the

EMD algorithm [79]. This criterion is based on two thresholds θ1 and θ2, which is meant to

guarantee globally small fluctuations in the mean (of the upper and lower envelopes) while

allowing locally large variations in the oscillatory mode amplitude. These thresholds are

meant to compare the amplitude of the mean with the amplitude of the corresponding mode

during each sifting step, so as to prevent a very low amplitude threshold for the amplitude

of the mean, which can lead to larger number of iterations and hence over-decomposition.

The thresholds θ1 and θ2 work with the mode amplitude defined as a[n] := (EU − EL)/2

and the evaluation function σ[n] := |m[n]/a[n]|, where m[n] is the mean defined in Step 3

of Algorithm 1. The sifting iterations are continued till σ[n] < θ1 for a prescribed fraction

(1−α) of the total signal duration, and σ[n] < θ2 for the remaining fraction. The values set

as default in the EMD implementation [79] are α = 0.05, θ1 = 0.05 and θ2 = 10θ1.

Border effects: The border effects, also known as boundary effects or end effects, are

related to the EMD algorithm operating on signals of finite lengths. This has implications

for the accuracy of the envelope formation based on extrema, specially at both ends of the
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signals. If not dealt with, the errors due to incorrect envelope formation at the ends of the

signal can propagate inwards with each sifting iteration, and corrupt the mode extraction

process, specially affecting the low frequency components in the signal [6]. A window frame

approach is mentioned in [31], which involves prediction, and extension of data beyond

the ends. The most popular and successful approach to mitigate border effects, however,

involves reflecting, or mirroring, the extrema close to the signal ends [137][35]. This is also

the technique used in the popular EMD algorithm implementation available at [79].

Envelope interpolation: A very important part of the EMD algorithm is the envelope

interpolation using the identified maxima and minima (Step 2 in Algoritm 1). The type of

interpolation chosen to form the envelopes affects the extracted IMFs, and different inter-

polation schemes have been considered, such as the cubic spline interpolation [6], B-spline

interpolation [31], and Akima interpolation [35]. However, it has been empirically found

that cubic spline interpolation gives the most preferable decomposition results [137][35].

Also, most implementations of the EMD algorithm use the cubic spline interpolation for

envelope formation [137][83].

Sampling requirement: Although most real life signals are generated by continuous time

processes, these signals are digitized for using modern digital signal processing methods.

Since the EMD algorithm operates on quantized discrete-time signals, it is important that

the extrema of the signal are correctly identified. In many cases, the extrema of the actual

continuous time signal will not match with sampling instants and be correctly localized

[35]. The misalignment of the sampling instant and local extrema of the signal results in

an erroneous decomposition [138]. To mitigate this error, a fair amount of over-sampling is

suggested [137][35]. The effect of sampling has been studied in [138] using linear frequency

modulated signals, and a sampling limit, which is five times the Nyqvist rate (fs/10, where

fs is the sampling frequency) is recommended. This sampling limit is also tested on a bat

echolocation pulse, which is a real world non-stationary and non-linear signal, and shown to

hold for this signal as well. Similarly, the work in [139] mentions the minimum requirement
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for the sampling period to be at most one half of the minimum distance between extrema,

and provides a detailed analysis of the influence of sampling on EMD.

A.2 Characteristics of Empirical Mode Decomposition

Since EMD does not admit an analytic formulation, its decomposition behaviour has been

studied empirically using numerical simulations. This has allowed a clear understanding of

its decomposition behaviour, and pointed out the issues with the method. This can help

researchers make an informed decision about the application of the method to different

types of signals. In this Section some of the more important characteristics of EMD will be

presented.

Mode-Mixing: Mode-mixing is a very common phenomenon associated with the EMD

algorithm, and refers to the situation where a single IMF contains multiple oscillatory modes,

or a single oscillatory mode resides in multiple IMFs, or both [83]. Mode-mixing is caused by

intermittency occurring in any part of the signal, where intermittency refers to an oscillatory

component that comes into existence or disappears from a signal completely at a particular

time-scale [87]. Mode-mixing and intermittency have been known since the EMD algorithm

was proposed [6], and is an important issue because it can compromise the physical meaning

of the IMFs, and also lead to incorrect instantaneous amplitude and frequency calculation

(Section 2.3.1, Chapter 2). In this regard, Figure A.1 (a) illustrates the phenomenon of

mode-mixing, using a 10 Hz sinusoidal signal which has intermittently occurring 50 and

100 Hz components. Intermittently occurring oscillatory components are reflected through

intermittency in extrema, such that the extrema detected during the sifting process belong

to different oscillatory components, leading to an envelope interpolation reflecting the mode-

mixing, as shown in Figure A.1 (b). This is in turn results in a mode-mixed IMF, which

consists of oscillatory components at different time-scales, which is shown in Figure A.1

(c). Furthermore, as Figure A.1 (d) illustrates, after extraction of the mode-mixed IMF,

the mode-mixing propagates to the rest of the extracted IMFs through intermittency in the
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Figure A.1: Illustration of mode-mixing: (a) A 10 Hz sinusoidal signal containing inter-
mittently occurring 50 and 100 Hz components; (b) Envelope formation using cubic spline
interpolation. The dashed black lines represent the upper and lower envelopes, and the red
line represents the average of the envelopes; (c) The first IMF obtained after the sifting
process, showing mode-mixing, as it contains multiple oscillatory modes; (d) The residue
obtained after the first IMF has been extracted, from which further IMFs will be extracted
by the sifting process. The residue illustrates that mode-mixing is going to propagate to
other IMFs as well.

residue. Many variations of the EMD algorithm have been proposed to overcome mode-

mixing, some of which were discussed in Section 3.2 of Chapter 3.

EMD as a Filter Bank: Based on decomposition of white noise sequences using EMD,

it was reported in [37] that EMD behaves as a dyadic filter which separates white noise into

IMFs having a mean period twice that of the previous IMF. This was found to hold for both
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uniformly distributed and normally distributed white noise. A similar study to ascertain the

behaviour of EMD in case of stochastic conditions involving broadband noise not dominated

by any particular frequency band is described in [82]. This study uses fractional Gaussian

noise (fGn) with values of the Hurst parameter H varying from 0.1 to 0.9. With a value of

H = 1/2, fGn reduces to white noise, whereas lower values of H (0 < H < 1/2) refer to

negative correlation, and higher values of H (1/2 < H < 1) refer to positive correlation.

Using the power spectrum of the IMFs obtained after decomposition, it was found that

the frequency profile of all the IMFs tends to arrange in a filter bank structure reminiscent

of results of wavelet decompositions in similar situations. The filter associated with the first

IMF (having index 1) tended to be essentially high-pass with some non-negligible low-pass

characteristic in the lower half-band, whereas the IMFs of higher indices were organized in

a set of overlapping band-pass filters. Also, each IMF having index (k + 1), k ≥ 2 had a

frequency range which roughly occupied the upper half-band of the spectrum of the previous

IMF with index k, representing a dyadic filter-bank structure. This was quantified using the

number of zero-crossing in the IMFs, zH [k], which provides a rough indication of the mean

frequency of each IMF k, with zH [k] being a decreasing exponential function of the mode

number k given by:

zH [k] ∝ ρ−kH (A.2)

where ρH has a value very close to 2 for all values of H.

Further analysis of fGn decomposition using EMD is described in [99], where self-similarity

in the filter bank structure is quantified in terms of the following relation:

Sk′ (f) = ρ
αH(k

′−k)
H Sk(ρ

k
′−k
H f) (A.3)

where Sk(f) is the power spectrum of the k-th IMF, and k
′
> k ≥ 2. Self-similarity of the

filter bank implies that the power spectra of the IMFs can be collapsed onto a single curve by

appropriate re-normalization. This re-normalization is achieved with a value of αH = 2H−1
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and ρH = 2. Based on this re-normalization, it was found that EMD acts on fGn as a dyadic

filter bank of constant-Q band-pass filters for H > 0.5. For the case of H < 0.5, EMD still

acts as a dyadic filter bank, though the associated IMF filters are not band-pass and the

re-normalization of the IMF spectra is not as well-behaved due to amplitude discrepancies.

Furthermore, it is also possible to estimate the value of the Hurst exponent H through the

progression of variance across the IMFs. Based on the re-normalization relation given in Eq.

A.3, the variance VH [k] of an IMF with index k, k > 1, is such that:

VH [k] ∝ ρ
(αH−1)
H k (A.4)

where α = 2H − 1. According to this model, the IMF variance is an exponentially decaying

function of the IMF index k, k > 1, and the decay rate is a linear function of H. However,

the model holds reasonably well for H ≥ 0.3, with more discrepancy for smaller values of H

[102][99]. Based on these techniques, the work in [99] also describes EMD based estimators of

the Hurst exponent H, and compares these to Discrete Wavelet Transform based estimators.

The performance of both types of estimators was found to be comparable.

It should also be mentioned here that the filter-bank behaviour is considered an essen-

tial property of EMD, and proposed variations of the EMD algorithm are also tested for

conformity to this behaviour (e.g. [33][83][114]).

Non-linearity of Decomposition: EMD is a non-linear decomposition technique, such

that decomposition of a sum of two signals may not produce IMFs equal to the sum of IMFs

obtained after decomposition of each signal individually. The question of EMD linearity is

posed in [7] in terms of whether the following expression holds:

E(s1f1 + s2f2) = s1E(f1) + s2E(f2), f1, f2 ∈ D, s1, s2 ∈ R (A.5)

where E is the EMD operator resulting in IMFs, and D represents the domain of f1 and f2.

This question is answered in the negative in [7], and a proof is also provided in terms of the

following signal model:
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f(x) = cos(x) + εcos(3x) (A.6)

The two components in the signal in Eq. A.6 fulfil the conditions of an IMF, and it is

also shown in [7] that f also is an IMF under certain conditions, and hence will not be

decomposed by EMD. The reason of EMD non-linearity is explained in terms of the reliance

of the envelope formation process on the location and values of the local extrema, whose

dependence on the signal is fundamentally non-linear in nature [7].

EMD non-linearity as shown in terms of a signal model consisting of tones also leads to the

conclusion that separation of tones is not always possible using EMD. The tone separation

aspect of EMD has been studied using mathematical and numerical analysis in [101] using

a two tone model. According to the analysis presented in [101], it is possible to distinguish

three domains with different behaviours depending on the frequency ratio and the amplitude

ratio of the tones. The three domains correspond to the two components correctly identified

and separated by EMD, considered as a single waveform with separation not possible, or a

situation where the behaviour is either half-way between the first two domains, or results

in incorrect decomposition with spurious IMFs. Important, however, is the critical value of

the frequency ratio f of the two components, beyond which it is not possible to separate

the two components, regardless of their amplitude ratio. The value of the frequency ratio

for the two-tone model was established as f ≈ 2
3

in [101]. Similarly, the frequency ratio for

separation of components using EMD decomposition of full spectrum noise sequences was

established as f ≈ 1
3

in Section 3.3.2.2 of Chapter 3. Therefore, for all practical purposes,

EMD requires a frequency ratio f � 2
3

for proper separation of components during the

decomposition process.
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Appendix B

EMD-MPS: De-noising and

De-trending

This appendix contains examples based on synthetic and real-world signals to demonstrate

time-scale based de-noising and de-trending using EMD-MPS.

B.1 De-noising and De-trending of Synthetic Signals

The first two examples presented here are similar to the ones described in [51]. The first

example represents a non-seasonal time-series y1(t), and the second a seasonal (i.e. containing

a periodic component) time-series y2(t), given by the following expressions:

y1(t) = T1(t) + ε(t)

T1(t) = β0 + eαt

y2(t) = T1(t) + S(t)

S(t) = β1cos(
2πt

12
) + β2sin(

2πt

12
)

(B.1)

where t = (1, 2, ..., N), N = 300, β0 = 100, β1 = 24, β2 = 32, α = 0.018 and ε is a white

noise sequence.

The synthetic signals y1(t) and y2(t) along with the trend T1(t) are shown in Figure B.1 (a)

and (c) respectively. The results of extracting the exponential trend T1(t) from both y1(t)
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and y2(t) using EMD-MPS are shown in Figure B.1 (b) and (d) respectively.
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Figure B.1: Non-seasonal and seasonal time-series with exponential trends, represented by
the expression in Eq. B.1. (a) y1(t). (b) Extracted exponential trend from y1(t) compared
with the original trend T1(t). (c) y2(t). (d) Extracted exponential trend from y2(t) compared
with the original trend T1(t).

A synthetic example of a process y3(t) consisting of a piecewise linear trend T2(t) with a

superimposed AR(2) process Y (t), inspired by [43], is given by the following expression:

y3(t) = T2(t) + Y (t)

Y (t) = 0.8Y (t− 1)− 0.4Y (t− 2) + ζ(t)
(B.2)

where t = (1, 2, ..., N), N = 2000 and ζ(t) is a white noise process with variance 104.
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The time-series y3(t) is shown in Figure B.2 (a), and the piecewise linear trend extracted

by application of EMD-MPS to y3(t) is shown in Figure B.2 (b) compared to the original

trend T2(t). The extracted trend in Figure B.2 (b) shows slight amplitude variations, but

these result from an implementation issue concerned with using spline interpolation for EMD-

MPS envelope formation. A linear interpolation is expected to reduce these slight amplitude

variations.
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Figure B.2: Time-series consisting of an AR(2) process superimposed on a piecewise linear
trend, represented by the expression in Eq. B.2. (a) y3(t). (b) Extracted piecewise linear
trend from y3(t) compared with the original trend T2(t).

As an objective measure of the quality of the extracted trend from synthetic signals y1(t),

y2(t) and y3(t), the coefficient of correlation and a distance measure were calculated. The

distance measure d is as defined in [51], and is given by the following expression:

d =
‖ Ti − T̂i ‖2
‖ Ti ‖2

(B.3)

where Ti, i = 1, 2 is the original trend, and T̂i, i = 1, 2 is the trend extracted using EMD-MPS.

The values of these measures are given in Table B.1, and show a performance better than

or comparable to what is demonstrated in [51][43], but using a much simpler and intuitive

approach based on time-scale based de-trending.
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Table B.1: Objective measures of the quality of trends extracted using EMD-MPS from
synthetic signals y1(t), y2(t) and y3(t).

Measure T1(y
1(t)) T1(y

2(t)) T2(y
3(t))

Correlation coefficient 0.9997 0.9956 0.9990

d (Eq.B.3) 0.0114 0.0430 0.0451

B.2 De-noising and De-trending of Real-life Signals

Financial time-series: The first example in this section consists of a financial time-series

in the form of S&P 500 daily index between August 1, 2001 to May 3, 2010. An example

using the same time-series from a different date range was presented in Section 4.2.2 of

Chapter 4, where calculation of the value of τ for extracting trends at different time-scales

was also described. In the same way, the 3, 6 and 9-monthly trends were extracted from the

data being considered here using EMD-MPS with appropriate values of τ . The results are

shown in Figure B.3, and the variability of the trend based on the associated time-scale can

be clearly seen.

Pathological speech: Automated pathological speech detection using analysis of the

speech signals is an active area of research [4]. Pre-processing of the speech signals is often

used as part of such an analysis. Speech de-noising is also an important signal processing

application [44][45].

Figure B.4 (a) shows a 0.5 second segment of a pathological speech signal. In order

to limit the analysis of the speech signal to a spectrum of 2 kHz only, for example to

remove unnecessary noise and interference, EMD-MPS can be applied to the signal to remove

frequency components above the threshold of 2 kHz as τ -function T1, and to have the

components with frequencies within the 2 kHz range in τ -function T2. The speech signal of

Figure B.4 (a) is sampled at 25000 samples per second, and a value of τ = 12.5 corresponding

to 2 kHz is needed for the purpose, according to the relation in Eq. 4.1. The τ -function

T1 containing the frequency components above the threshold is shown in Figure B.4 (b),
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Figure B.3: Time-scale based de-trending of S&P 500 index data from August 1, 2001 to
May 3, 2010, showing the 3-monthly trend in (a), 6-monthly trend in (b) and 9-monthly
trend in (c).

whereas Figure B.4 (c) shows T2 containing the de-noised signal, which can be used for

further analysis. The marginal spectrum of the two τ -functions shown in Figure B.4 (d)
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Figure B.4: Pathological speech signal de-noising using EMD-MPS. (a) A 0.5 second segment
of a pathological speech signal. (b) τ -function T1 containing oscillatory components above a
frequency threshold of 2 kHz. (c) τ -function T2 containing the de-noised signal. (d) Marginal
spectrum of T1 and T2 showing separation of the spectra of the noise and de-noised signal.

clearly shows the separation of the spectra.

ECG signals: The use of EMD-MPS for baseline removal from ECG signals was discussed

previously in Chapter 4. Another example demonstrating baseline wander removal from four

different segments of ECG signals, using the same procedure as described in Section 4.2.2 of

Chapter 4, is shown in Figure B.5.
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Figure B.5: Baseline wander removal from 25000 sample long segments of Holter ECG signals
using EMD-MPS de-trending. The upper graphs in each figure represent the original ECG
segments, whereas the lower graphs represent the de-trended ECG segments.
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