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Abstract

Constraint Satisfaction Problems in the Logic LFP+Rank

Master of Science 2015

Aklilu Habte

Applied Mathematics

Ryerson University

Constraint satisfaction problems (CSPs) are one of the central topics in theoretical computer

science, in particular, in the area of artificial intelligence. Their computational complexity

is due to relatively recent results from areas of mathematics, including finite-model-theory,

algebra and graph homomorphisms.

The main conjecture by Feder and Vardi states that any CSP over a finite relational

template is either in P or is NP-complete. Further, it amounts to showing that every non

NP-complete CSP can be expressed as an extension of first-order logic.

A finite template is Mal’tsev, a compatible algebraic operation, which is closely related

to an affine space over a finite field. The so-called Bulatov-Dalmau algorithm, a natural

generalization of the Gaussian elimination on vector spaces, shows such CSPs are tractable.

In this work, we prove that CSPs described over a finite template Mal’tsev are expressible

in logic LFP+rnk, providing a logical proof that such CSPs are tractable.
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Chapter 1

Introduction

In general, the constraint satisfaction problem (CSP) is NP-complete. The motivating

problem is to find under what circumstances one can design a polynomial time algorithm

for solving it. Tractable cases can be achieved by restricting the relation that appear in a

constraint to belong to a given set Γ. Identifying all sets Γ of relations over a finite domain

leads to a class instance of CSP(Γ) that guarantees tractability [2, 3]. Hence, we focus on

restricted CSP in which an algorithm decides whether there is a solution or not in polyno-

mial time. Restricted CSPs that are now widely studied, includes 2-SATISFIABILITY, GRAPH

H-COLOURABILITY. Constraint satisfaction problems cover a wide range of areas of study. It

arises in the areas of algebra, combinatorics, artificial intelligence (AI), graph theory, logic

and other domains. For further discussion on various approaches to the study of constraint

satisfaction problems, see [7].

In Chapter 4, we provide an original work, a logical proof to the so called Bulatov-Dalmau

algorithm, that decides whether an instance of CSP has a solution or not in polynomial time.

As a result, we show an implementation of the algorithm on finite CSP, via least fixed-point
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CHAPTER 1. INTRODUCTION 1.1. CONSTRAINT SATISFACTION PROBLEM

(LFP) logic with matrix rank (rnk) operator.

The details of LFP, an extension of first-order (FO) logic, and the expressive power of the

rank of a matrix is discussed in Chapter 2. The chapter also discusses, LFP logic together

with rank operator (LFP+rnk) in relation to finite model theory (FMT).

The outline of the Bulatov-Dalmau algorithm is given in Chapter 3. In addition, the

chapter provides an illustration of the algorithm of fixed CSP, a system of linear equations,

defined over the field of two elements, F2.

In addition to a summary, Chapter 5 includes some open problems in relation to few

subpowers [13]. The chapter also discusses how the k-edge operation and its template can

be extended to the original work shown in Chapter 4.

Next we present some examples of CSPs in relation to some of the domains mentioned

above. However, we shall first define the preliminaries to the CSPs in general, the related

relational structures and the ternary template Mal’tsev.

1.1 Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) consists of a set of variables, a set of values for each

of the variables and a set of constraints on those variables. Constraints are relations among

the variables, in which they restrict the values that these variables may simultaneously be

assigned. A solution to a CSP specifies values for all the variables in which the constraints

are satisfied. As a result, finding a global assignment to all the variables while satisfying

2



CHAPTER 1. INTRODUCTION 1.1. CONSTRAINT SATISFACTION PROBLEM

all of the constraints is NP-complete. Consequently, it motivates researchers in the field in

devising an algorithm where CSPs can be determined in polynomial time.

In general, CSPs can be categorized into two main classes namely Satisfiability and Op-

timization type of problems [17]. The former deals with finding an assignment of values to

variables that satisfies some constraints. However, assignment of values often require optimal

assignment. That is, each assignment of a value to each variable has a related cost or an

objective value to it. Optimization type of problems deal with finding such an assignment

with the least cost or with the highest objective value. However, often algorithms are de-

signed with the intent purpose for both satisfiability and optimization.

In this writing by constraint satisfaction problem means a finite CSP, in which the con-

straints are fixed over a finite domain. The goal is to find a value for each of the variables

in which all the constraints are satisfied. Hence, if there are n variables, where each variable

can take k values in the domain, then there are kn possible assignments. That is , each

variable xi has a domain Ai, which is the set of possible values that the variable can take.

The following definition describes the content of a typical instance of a finite constraint sat-

isfaction problem.

Definition 1.1. A constraint satisfaction problem (CSP) contains a finite set of variable,

written V , a finite set of values (or domain) for each of the variables and a finite set of

constraint, denoted by C, on those variables. Hence, let V = {x1, . . . , xn}, A be a domain

of values and C = {C1, . . . , Cm}. In addition, let a CSP instance P = (V,A, C), in which all

constraint relations, denoted by S, belongs to the set of relations Γ.
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CHAPTER 1. INTRODUCTION 1.1. CONSTRAINT SATISFACTION PROBLEM

The problem is whether P has a solution. The solution to a CSP instance involves a

mapping of f : V → A, which satisfies each constraint in C.

The CSP representation allows analysis of the problem structure. That is, CSP states

can be defined by values of a fixed set of variables, while goal tests (or allowable values)

can be defined by constraints on variable values. The following example is a typical CSP

representation of a system of linear equations (algebra).

Example 1.1. A CSP representation on a system of linear equations, over any algebraic

field:

C1 : a11x1 + a12x2 + · · · + a1nxn = b1

C2 : a21x1 + a22x2 + · · · + a2nxn = b2

...
...

...

Cm : am1x1 + am2x2 + · · · + amnxn = bm

The problem could then be defined as assigning values to all the variables xi, where [n]

is the set {1, . . . , n} and i ∈ [n], while satisfying all the constraints Cl, where l ∈ [m]. For

instance, the familiar tool for solving system of linear equations is through Gaussian elim-

ination. This means there is an algorithm that decides if such a system has a solution in

polynomial time [6]. In particular, the algorithm accepts a linear system of size s as input

and its running time is bounded by f(s), where f is polynomial. We say that the particular

system is an instance of CSP of LINEAR SYSTEM. Although systems of linear equations are
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CHAPTER 1. INTRODUCTION 1.1. CONSTRAINT SATISFACTION PROBLEM

in P, in contrast there is no known polynomial time algorithm for nonlinear, that is NON-

LINEAR SYSTEM. The above computational complexities indicates that certain CSPs are

not solvable in polynomial time.

The conjecture presented by Feder and Vardi illustrates that a constraint satisfaction

problem over finite domains are either in P or is NP-complete [9]. We adopt a computa-

tional complexity notation from [6] in describing an asymptotic upper bound running time

of functions. That is, problems that can be solved in O(nk), where k is a constant and n is

the size of the input, are considered to be in class P. However, NP-complete problems are

very unlikely to be solvable in polynomial time. The work of [12] shows a methodology, by

way of polynomial time reductions, in proving a given problem is not solvable in polynomial

time. This notion of polynomial time reduction is mostly known as Cook-Levin Theorem [1].

Informally, a problem P1 is in class NP-complete if it is as hard as every other problem

P2 in the class NP. A solution to either of these problems in turn can be verified in polyno-

mial time. The existence of intractable cases is a compelling evidence that P 6= NP. That

is, if any NP-complete problem is solvable in polynomial time then every problem in NP

can be solved in polynomial time, which means P = NP. However, to date no polynomial

time algorithm exist for problems of class NP-complete. Further, since NP-complete is the

maximal member of class NP, assuming P 6= NP, then there must be problems in NP \P

that are not in NP-complete. For details of the subject and related proof we refer the reader

to [12, 17].

Identifying a problem posed to belong to a certain complexity class is a powerful tool

used in searching and or devising an efficient algorithm. In general, algorithms designed for
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CHAPTER 1. INTRODUCTION 1.1. CONSTRAINT SATISFACTION PROBLEM

specific problems perform better. We illustrate a CSP instance by posing a simple system

of linear equations.

Example 1.2. Consider the following system of linear equations defined over F2, a field

with two elements. Let a finite set of variables, V = {x1, x2, x3, x4} with a finite domain,

A = {0, 1} and a finite constraint relations, Si for each line of equation. Let the relation

containing all the variables be denoted by R.

x1 + x3 = 0

x2 + x3 + x4 = 1

Problem: find a relation R that satisfies the entire system simultaneously.

The solution to each constraint, representing each line of equation, is as follows:

S1 = {(x1, x3) : (0, 0), (1, 1)}; and

S2 = {(x2, x3, x4) : (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}.

The system can simultaneously be satisfied with the following relations:

R = {(x1, x2, x3, x4) : (0, 0, 0, 1), (0, 1, 0, 0), (1, 0, 1, 0), (1, 1, 1, 1)}.

The solution obtained above can easily be verified by substituting the corresponding values

into the given system of equations. For instance take R(x1, x2, x3, x4) = (0, 0, 0, 1) as a so-

lution to the system. That is, by substituting the values into the first and second line of

equations, respectively, we get the L.H.S. ≡ x1 + x3 = 0 + 0 = 0 ≡ R.H.S.; and similarly
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CHAPTER 1. INTRODUCTION 1.1. CONSTRAINT SATISFACTION PROBLEM

the L.H.S. ≡ x2 + x3 + x4 = 0 + 0 + 1 = 1 ≡ R.H.S. (L.H.S. and R.H.S. denotes the

left and right hand side of an equation, respectively.)

Next we give another CSP example from the propositional logic. That is, let a boolean

formula ϕ, consist of the variables x1, . . . , xn and the logical operators AND(∧), OR(∨) and

NOT (¬). For instance, (x1 ∧ x2)∨ (x2 ∧ x3) is a boolean formula. Hence, let ϕ(v) represent

the value of the formula in relation to the variables assigned from the domain A, where

v ∈ A. In general, a formula ϕ is satisfiable if there exists some assignment v such that ϕ(v)

is TRUE, otherwise the formula is not satisfiable.

Further, a formula ϕ is said to be in conjunctive normal form (CNF) if it has a con-

junction of clauses, where a clause is a disjunction of literals [1]. That is, in logical term, a

formula in CNF contains an AND(∧) of OR′s(∨) of variables or their negation. In general,

a formula in CNF has the conjunction of disjunction of the form: ∧i(∨juij), where uij are

literals and the terms ‘(∨juij)’ are clauses of the formula with distinct literals. That is, each

uij is either a variable xk or its negation ¬xk.

In addition, a kCNF is a CNF formula in which all clauses contain at most k literals [1].

As a result, if we denote all satisfiable CNF formulae as SAT problems then, for instance,

3SAT problem is in reference to all satisfiable 3CNF formulae with 3 distinct literals. The

following is an example of a 3CNF formula.

Example 1.3. Let the boolean formula ϕ be an instance of 3CNF problem with one clause.

That is, let ϕ be defined over the variables V = {x1, x2, x3} and the domain A = {0, 1},

7



CHAPTER 1. INTRODUCTION 1.1. CONSTRAINT SATISFACTION PROBLEM

where 0 is FALSE and 1 is TRUE. Let a finite constraint relations, Si represent each disjunction

of literals (a clause). Hence, let the boolean formula is defined as follows:

ϕ = (x1 ∨ ¬x2 ∨ x3).

Problem: is the formula ϕ satisfiable?

If we consider each clause in a given formula as a relational constraint, Si then ϕ is satisfiable

if all the clauses are evaluated to TRUE. That is, if S1 ∧ S2 ∧ · · · ∧ Si = TRUE.

The solution to the constraint (clause) in the formula ϕ is as follows:

S1 = {(x1, x2, x3) : (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)} and

hence, ϕ is satisfiable.

Note that, in the above simple example the formula ϕ is expressed over a single clause,

which in turn contains only three variables . It can easily be verified, say using a truth table,

that is requires at most 23 steps in verifying if the given formula is satisfiable. However,

if a formula in 3CNF is expressed with more than one clause, and possibly more distinct

variables between each constraints, verifying the satisfiability of all possible outcomes require

much greater than polynomial time.

In general, if a formula ϕ contains n number of variables, there are 2n possible assign-

ments. Checking every assignment requires Ω(2n) time. As a result, over the length of ϕ,

determining whether the formula is satisfiable does not run in polynomial time [6]. This

demonstrates that 3CNF is indeed NP-complete. In fact, satisfiability of boolean formu-

8



CHAPTER 1. INTRODUCTION 1.2. CSP AND RELATIONAL STRUCTURES

las is NP-complete. The polynomial reduction due to Cook and Levin, introduced above,

is a useful tool in proving other problems of being NP-complete. For instance, satisfiable

problems or SAT can be reduced to 3SAT. In turn it can be used to prove to more restricted

language of boolean formulas, without restricting the language itself, by considering fewer

cases as in satisfiability of 3CNF. For details and proof of reducibility see [1, 6, 12].

Similarly, from the domain of graph theory, graph colouring is another example of a

widely studied class of satisfiability problem. One such application is the colouring of a

geographical map with minimum possible number of colours, in which neighbouring regions

would have distinct colours and hence, the constraint. The following is an example of a

typical graph colouring problem over a given graph.

Example 1.4. k-colouring problem [6]. Let G be an undirected graph and without any

isolated vertices. Let V and E be a nonempty set of vertices and edges, respectively. Hence,

for a graph G = (V,E), let f : V → C is a k-colouring function such that f(u) 6= f(v) for

every edge (u, v) ∈ E, where C = {1, 2, . . . , k} containing a set of distinct number of colours.

The task is to find the minimum number of distinct k colours that can satisfy the constraints

imposed on a graph.

1.2 CSP and Relational Structures

Constraint satisfaction problem (CSP) is a relational homomorphism problem [11]. Recall

that homomorphism preserves adjacency by mapping vertices between graphs. For instance,

consider two graphs G and H. If G is homomorphic to H then there is a mapping of vertices

in which f : V (G)→ V (H) such that f(u)f(v) ∈ E(H), where uv ∈ E(G). In addition, if a

9



CHAPTER 1. INTRODUCTION 1.2. CSP AND RELATIONAL STRUCTURES

homomorphism of G to H exists then graph G is H-colourable. If graph H is k-colourable

then we say G is H-colourable and hence, GRAPH H-COLOURABILITY. In fact, homomorphism

generalizes graph colourings. As shown in Example 1.4 above, a mapping of vertices of a

graph G to k-colouring preserves that f(u) 6= f(v), where uv ∈ E(G). Therefore, CSP can

be treated as a relational homomorphism problem. For more on the complexity of the graph

colouring problem, the reader is directed to [11].

The following definition describes a homomorphism between a pair of relational struc-

tures A and B.

Definition 1.2. Let A = (A;R) and B = (B;R′) be a pair of finite relational structures,

where R and R′ are of the same type. That is, they both contain the same number of

relations of the same arity. A homomorphism,

h : A→ B

is a function which for every k-ary relation symbols Ri in the common type of A and B

satisfies,

(a1, . . . , ak) ∈ RA
i if and only if (h(a1), . . . , h(ak)) ∈ RB

i .

We write A→ B to indicate that there is a homomorphism h : A→ B.

In general, given a pair of relational structures, (A,B) determining the presence of a

solution is homomorphism [2, 3]. In which, each relation of A contain tuples of variables.

The corresponding relation B contain tuples of values in which the variable tuples may take.

10



CHAPTER 1. INTRODUCTION 1.3. MAL’TSEV OPERATION

Analogous to homomorphism relation, the tuples of variables in A maps to the tuples of val-

ues in B. As a result, we have the following definition of CSP in relation to finite relational

structure.

Definition 1.3. Let A = (A;R) and B = (B;R) be a pair of finite relational structures,

where R is finitely defined over each structures, as in RA
i and RB

i , respectively. We define

the relational CSP over B, CSP(B), by:

CSP(B) = {A | A→ B}

The homomorphic definition of the CSP, as shown above, gives rise to the relational CSP

defined over a particular structure. That is, if we consider a homomorphic from G to H

as H-colouring, then according to the definition the problem is equivalent to CSP(H) [2].

Similarly, if we consider a 3SAT problem with a relational structure A3SAT = (A;Rt1 , . . . , Rt8)

we have CSP(A3SAT), where A = {0, 1} and t1, . . . , t8 are the eight 3-tuples on A.

The Dichotomy Conjecture presented by [9], discussed above, is also applicable to CSPs

of relational structures. That is, for any finite structure B, the problem CSP(B) is either

NP-complete or solvable in polynomial time. In addition, the method of polynomial time

reduction, discussed above, can also be applied to relational structures.

1.3 Mal’tsev Operation

As discussed above, given two general relational structures, a constraint satisfaction problem

is a homomorphism problem among the structures. For instance, the truth assignment in

11



CHAPTER 1. INTRODUCTION 1.3. MAL’TSEV OPERATION

satisfying the 3CNF problem discussed above is homomorphism. That is, each clause re-

quires several ternary relations of boolean values that satisfy the formula, ϕ.

Let us consider a CSP defined over two general relational structures S and T , in which

the homomorphism relation is defined as f : S → T , where T is fixed with a template P . It

requires to check, if an input S with template P admits a homomorphism to T [11].

Over the years, researchers in the field have devised several templates in relation to oper-

ations like near-unanimity, majority-minority, edge. The edge (or as its known the k-edge)

operation is discussed in Chapter 5. In this writing, we consider the ternary operation,

Mal’tsev. Hence, we give the following definition over a finite set A.

Definition 1.4. Consider a finite set A and an operation, ϕ. A 3-ary operation, ϕ : A3 → A,

is said to be Mal’tsev if it satisfies the following template, such that:

ϕ(x, y, y) = ϕ(y, y, x) = x, for all x, y ∈ A.

The use of the Mal’tsev operation over a finite set invariant under ϕ, satisfying all x, y

in A, leads to a class of instances of CSP solvable in polynomial time [3]. That is, the

constraint problem over the invariant, Inv(ϕ) or CSP(Inv(ϕ)) is tractable. For a detailed

proof see [3]. As a result, we assume that Mal’tsev operation, as defined above, preserves

the relation.

A complete example of a system of linear equations, over a finite field with two elements

F2, is given in Chapter 3. The example also illustrates the use of the Mal’tsev operation

12



CHAPTER 1. INTRODUCTION 1.3. MAL’TSEV OPERATION

discussed here.

Several real world constraint satisfaction problems are NP-complete [1]. As a result,

much research effort has been put forth in relation to the conjecture made by Feder and

Vardi. In closing the chapter on the preliminaries, we give a list of some known CSP in-

stances of class P and NP-complete and related areas of domain, respectively. For details

see [1, 6, 12].

Example 1.5. CSP instances of tractable and intractable cases.

P, (or polynomial time) problems:

LINEAR SYSTEM - A system of linear equations.

2-COLOURABILITY - A complete bipartite graph Km,n, where m and n represents

the number of vertices in each set of the partition.

2SAT - The set of satisfiability formulas as in 2CNF.

NP-complete problems:

NONLINEAR SYSTEM - A system of nonlinear equations.

3-COLOURABILITY - See Example 1.4 above on k-colouring.

3SAT - The set of satisfiability formulas as in 3CNF. See Example 1.3 above.

HAMPATH - A Hamiltonian path in a graph, in which a path visits all vertices exactly

once.

13



CHAPTER 1. INTRODUCTION 1.3. MAL’TSEV OPERATION

kCLIQUE - The problem of determining whether a finite graph contains a clique with

at least k vertices.

For more examples, see [1, 6, 12].
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Chapter 2

Least Fixed-Point Logic with Rank

Operators

In this chapter, we introduce the least fixed-point (LFP ) logic, with rank (rnk) operators

applied on matrices. Further, we discuss the expressiveness of LFP logic with rank operators,

LFP+rnk, in comparison to other similar operators like least fixed-point logic with counting,

LFP + C. The main source for this chapter is, “Logics with Rank Operators,” by Dawar,

Grohe, Holm and Laubner [8].

2.1 LFP+rnk and its relation to First-Order Logic

One of the main open problem in descriptive complexity and database theory is the question

whether there exist a logic which captures polynomial time [5, 10]. By this we mean, a logic

in which precisely those properties which are decidable in polynomial time can be defined.

As an initial point, it is reasonable to assume that such a logic must be an extension of

first-order (FO) logic, which also admits recursive definitions. We begin by defining a finite

15



CHAPTER 2. LEAST FIXED-POINT, RANK 2.1. RELATION TO FO LOGIC

set of relations of a given vocabulary.

Definition 2.1. A vocabulary τ is a finite set of relation symbols of R1, . . . , Rn. Every rela-

tion symbol has an arity and a natural number associated to it. That is, an m-ary relational

symbol R may be denoted by R(x1, . . . , xm).

For simplicity, we assume that a vocabulary can contain constraints and function sym-

bols. Hence, let a vocabulary, containing a finite set of relational symbols, is defined by the

set τ = {R1, . . . , Rn}, where Ri is an m-ary relation symbol. Similarly, let the structure of

the vocabulary (τ -structure) be A = (A; RA1 , . . . , R
A
n ), where A is a finite domain set and

Ri is an m-ary relation on A, the interpretation of Ri.

We assume the basic familiarity with first-order (FO) logic, including the basic notation.

See [15] for details on the subject. Now, let S be a k-ary predicate symbol not in the

vocabulary, τ . Next, let the first-order formula, in which S is positive and X̄ = (x1, . . . , xk),

be expressed by the formula ϕ(X̄, S). Assuming that A is a finite τ -structure, we set the

initial of the k-ary predicate S to an empty set. The subsequent k-ary predicate is then

determined, knowing the fact that the first-order formula ϕ, in which the previous k-ary S,

is satisfied the structure A (τ -structure). Therefore, we define the k-ary predicate S, so that

S0 = ∅ and Si+1 = {ā : A |= ϕ(ā, Si)}. It is clear that, S0 ⊆ S1 ⊆ . . . ⊆ Si ⊆ . . . ⊆ A. Since

A is a finite set, eventually for some i > 0, we have that, Si = Si+1. Hence, we define S∞

to be this particular Si and here we call it the least fixed-point of ϕ(X̄, S). As a result, the

following holds:

A |= S∞(ā) if and only if ϕ(ā, S∞).
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That is, the least fixed-point obtained by the predicate S (S is not in τ) is satisfied in

the structure A (τ -structure), if and only if, it is defined by the first-order formula, ϕ. It is

easy to see the relation between fixed-point and first-order logic (more on this follows). The

following example applied on a graph G, demonstrates the concept we have just discussed.

It illustrates, the connection of vertices through edge binary relation, E in relation to the

first-order formula, ϕ defined above.

Example 2.1. Let G be a finite graph with vocabulary τ , containing an edge relation, E.

That is, τ = {E}. The first-order formula then can be defined as follows:

ϕ(x, y, S) : xEy ∨ ∃z(xEz ∧ S(z, y)).

The first-order formula, expresses that vertices x and y are connected through edge binary

relation E, or there exist some vertex z connected to x by an edge relation and z is connected

to y through binary predicate relation S. Therefore, S∞ defines the binary connectedness

relation on G and hence the first-order formula, ϕ. It is a well-known fact that connectedness

in graphs, because of the Compactness Theorem, cannot be expressed in first-order logic [15].

The least fixed-point (LFP) shares some properties with first-order logic. It can be gen-

eralized to a finite collection of formulas with distinct positive relational symbols. Consider

two relational symbols, S and R, not occurring in τ . Next, consider two first-order formu-

las, namely ϕ1(X̄, S,R) and ϕ2(X̄, S,R), in which both relational symbols in the formulas

occur positively. Initially, the two relational symbols are empty. By applying simultaneous
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recursion on both symbols, S and R, we obtain the following:

S0 = ∅

R0 = ∅

Si+1 = {ā : A |= ϕ1(ā, Si, Ri)}

Ri+1 = {ā : A |= ϕ2(ā, Si, Ri)}

It can easily be observed that, for a sufficiently large i (as i → ∞), Si = Si+1 and

Ri = Ri+1. Therefore, S∞ and R∞ can be defined as simultaneous least fixed-points of

ϕ1(X̄, S,R) and ϕ2(X̄, S,R), respectively.

Definition 2.2. Suppose, the Least Fixed-Point (LFP) logic consists of relations that are de-

fined as follows. That is, suppose ϕi(X̄, S1, . . . , Sk), for i = 1, . . . , k, are first-order formulas

and positive in S1, . . . , Sk. Now, let (S∞1 , S
∞
2 , . . . , S

∞
k ) be the simultaneous least fixed-point

of first-order formulas of ϕi(X̄, S1, . . . , Sk). Hence, such fixed-points, S∞1 , . . . , S
∞
k are in LFP.

As a result, the following theorems captures the relation between first-order logic and

least fixed-point, and consequently PTIME.

Theorem 2.1. [16] (1.) first-order logic ⊆ LFP

(2.) LFP ⊆ PTIME

(3.) LFP is closed under the ∧, ∨, ∃, ∀, ¬, substitution and

relativization.
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For example, by (1.), we mean that every problem on finite relational structures that can

be expressed in first-order logic can be expressed in the logic LFP, and similarly for (2.).

Theorem 2.2. [14, 18] On ordered structures, LFP = PTIME.

In the late 1980s, as an extension of fixed-point logic, Immerman [14] introduced fixed-

point logic with counting operator, FP+C. It seemed to be a suitable candidate for capturing

polynomial time. That is, the least fixed-point logic with counting, LFP+C was promising

in capturing polynomial time on several classes of structures including planar graphs, struc-

tures of bounded tree width. However, the following is true about LFP+C.

Theorem 2.3. [4] LFP+C does not capture polynomial time on all finite structures.

The result of Theorem 2.3 is deep and relies heavily on the construction of the so called

CFI-property (after Cai, Fürer and Immerman) and used to distinguish LFP+C from poly-

nomial time. As a result, we define an even more expressive expansion of LFP, the logic

LFP+rnk. It provides the capability in computing the rank (rnk) of a given matrix over a

general finite field of Fp, defined by a formula over n-tuples, where p is a prime number and

n is a positive integer.

Recall, the τ -structure discussed above, is defined by A = (A; R1, . . . , Rm). We shall

equip the structure with an additional integer sort. As a result, we give a general definition

of a two sorted structure as follows.
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Definition 2.3. A structure A is a two sorted structure in a finite vocabulary {R1, . . . , Rm},

where Ri is the ki-ary relation, if A is the union of two disjoint nonempty sets A1 and A2 so

that Ri ⊆ B1 × , . . . , × Bki where B1, . . . , Bki ∈ {A1, A2}.

Hence, we define A+, as an extension of A, by the standard model of arithmetic, such

that:

A+ = (A, ω, {Ri}i6k, +, ·, 6, 0, 1).

In addition, symbols like ‘+’ and ‘·’ are the usual mathematical operators of addition

and multiplication of integers, respectively; and the symbol ‘6’ is the usual linear order.

We shall distinguish the variables coming from A-sort and ω-sort. Hence, we will use small

letters from the Greek alphabets (like α, β, γ, . . .) for the latter case, ω-sort. In addition,

quantifiers over numerical variables must be bounded in order to prevent undecidability with

logical values of 0 (false) and 1 (true).

Note that since 1 (one) is a constant, every n ∈ ω is definable. Although, the logical

formulas are dependent on their truth values, which takes values of 0 (false) or 1 (true).

However, it is more convenient to treat the values as numerical terms. As a result, the

following definition expresses the concept behind the treatment of the values mentioned.

Definition 2.4. Let η(x̄, ȳ) be a numerical term defined using both numerical and A-

variables (i.e. x̄ is a tuple containing variables of both sorts, as is ȳ).

Hence, for each pair of tuples ā, b̄, which may contain elements of both sorts, we define:

mā,b̄ = ηA(ā, b̄). We consider, M = [mā,b̄], as an integer-valued matrix, whose rows are

20



CHAPTER 2. LEAST FIXED-POINT, RANK 2.1. RELATION TO FO LOGIC

indexed by |~x|-tuples and columns by |~y|-tuples, respectively. So, for a prime number, p, let

Mp be the matrix, such that:

Mp = M(mod p).

That is, we can think of Mp as a matrix over the field Fp with p elements and rnkpMp

will be its corresponding rank. Hence, we define LFP+rnkp to the extension of LFP by the

operator rnkp. Therefore, if we extend LFP by all rnkp, for p > 2, we obtain the extension

LFP+rnk (least fixed-point logic with operator that computes the rank of a definable ma-

trix). The following example, for p = 2, proves that LFP+rnk2 is at least as expressive as

LFP+C.

Example 2.2. We show that LFP+rnk2 is at least as expressive as LFP+C. Let φ(x̄) be a

formula whose free variables x̄ are of A-sort. In order to determine the number of tuples in

A for which φ(ā) is true, we consider the following formula:

ϕ(x̄, ȳ) : φ(x̄) ∧ x̄ = ȳ.

Clearly, rnk2 ϕ(x̄, ȳ) will output the number of all ā for which A |= φ(ā).

Hence, we define the following theorem, concluding the expressive power of LFP+rnk

over LFP+C. In addition, we make similar list to Theorem 2.1, in relation to the rank of a

matrix.
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Theorem 2.4. [8] (1.) LFP+C ⊆ LFP+rnk

(2.) LFP+rnk ⊆ PTIME

(3.) LFP+rnk is closed under the ∧, ∨, ∃, ∀, ¬, substitution and

relativization

For example, by (1.), we mean that every problem on finite relational structures that can

be expressed in logic LFP+C can be expressed in the logic LFP+rnk, and similarly for (2.).

Next, we define a predicate Θ(γ), used in determining the smallest (minimum) value of

γ, as shown in equation (4.4). For details and descriptions of γ, see Chapter 4.

Definition 2.5. Let Θ(γ) be a predicate with a free variable, for some γ ∈ ω. Hence, we

define min
γ

Θ(γ), to be the numerical term (function) in which outputs the smallest value of

γ ∈ ω for which Θ(γ) holds.

Therefore, as shown in Theorem 2.1, least fixed-point (LFP) logic is an expressive power

extension of first-order (FO) logic. In addition, LFP allows inductive definitions simultane-

ously, as in recursive functions, while still shares some properties with FO. Note that FO

logic uses quantified variables over some non-logical objects. Further, in a topological space,

S to contain fixed-point property (FPP), for any continuous function, f : S → S, there must

exist s in S, where f(s) = s. Thus, the FPP is a topological invariant and expressed by any

homomorphism.
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2.2 Other Operators

The extension of LFP with rank operators, LFP+rnk, has the property that the truth of

a formula in any finite structure can be verified in polynomial time. However, instances

of similar complexity are not definable in LFP with counting operators, LFP+C. Further,

LFP+rnk is equipped with counting capability the dimension of a definable matrix, over

a definable vector space. However, the operation of LFP+C just counts the cardinality of

a definable set, in which it is already included in LFP+rnk. As a result, LFP+rnk is a

generalization of the counting operations, including the operation through matrix determi-

nants. In addition, whenever the fixed-point operations are not present, the rank operator

still remains as expressive, as in system of linear equations (linear algebra).

Further, a chosen type of rank (rnk) operator defines the rank of a particular matrix over

a finite field Fp, where p is a prime number. The variation over n-tuples and the values of p,

where n is a positive integer, leads to several possible expressive power of logic that can be

defined, as in LFP+rnkp. For instance, in Chapter 4, for p = 2, the least fixed-point logic

together with the rank operator, LFP+rnk2, is used in counting the nonzero entries (rows)

of a given matrix. That is, the rank (rnk2) is defined over the field F2 over n-tuples. For

more details on the properties of the logic LFP+rnk, see [8].

23



Chapter 3

Outline of Bulatov-Dalmau’s

Algorithm

In this chapter, we present the outline of the “Bulatov-Dalmau’s” algorithm as depicted in

[3]. The algorithm in consideration depends on five main procedures namely: Solve, Next,

Next-beta, Nonempty and Fix-values. The algorithm, together with the sub-procedure

calls, provides tractable cases where any finite constraint satisfaction problem (CSP) defined

over a finite domain, can be solved in polynomial time. Further, using the procedure Next, it

extends to handle general cases where any CSP can be solved in polynomial time. Procedure

Next is designed with the intention that the algorithm would handle any cases. Hence, we

defer its details while giving priority to the other remaining procedures.

We shall also maintain similar variables, symbols and relative relationships as shown in [3].

As a result, the procedures are reproduced for discussion purposes. We begin by introducing

the preliminaries and some basic background in which the algorithm is expressed. We refer

the reader to [3] for correctness and proof of the procedures.
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3.1 Preliminaries to the Algorithm

The constraints, for positive integers n, are defined over an n-ary tuple, t = (t1, . . . , tn) of

elements i1, . . . , ij in [n] and i ∈ {1, . . . , n}.

3.1.1 Projection of a Tuple

The projection of a tuple over the elements is denoted by (ti1 , . . . , tij). In addition, for

all n-ary relation R defined over a finite domain A and for all elements in [n], the j-ary

relation over the projection R is the set defined by {pri1,...,ijt : t ∈ R}, where t is a j-ary

tuple. In particular, having t and t′ of two n-ary tuples, the tuples (t, t′) witness (i, a, b) if

pr1,...,i−1t = pr1,...,i−1t
′, prit = a and prit

′ = b, where (i, a, b) ∈ [n]× A2.

3.1.2 Signature of Relation

The signature of the relation R is the set containing all those relations witnessed by tuples.

That is, the signature of R, denoted by SigR ⊆ [n] × A2, is a set containing tuples (t, t′)

that witness (i, a, b), such as:

SigR = {(i, a, b) ∈ [n]× A2 : ∃t, t′ ∈ R such that (t, t′) witnesses (i, a, b)}.

Note that, every relation R has a compact representation, denoted by R′, if |R′| 6 2|SigR|.

In addition, a compact representation R′, in which R′ ⊆ R, is a representation of R if

SigR = SigR′ . That is, the existence of tuples in R′, in which such tuples witness (i, a, b)

means such tuples are also in R, and hence its signature.
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To illustrate the above, consider the projection of a tuple e on j (j-ary relation) satisfying:

prje
d
i,a =

 a if i = j

d otherwise,where d ∈ A and (i, a) ∈ [n]× A.

That is, the tuples (edi,a, e
d
i,b) witnesses (i, a, b), for all (i, a, b) ∈ [n] × A2. The compact

representation over the relation An is the set of tuples {edi,a : i ∈ [n], a ∈ A}. Observe that,

a process by the tuples (t, t′) that witness (i, a, b) requires the ternary operation Mal’tsev

on all relations on A invariant under ϕ.

The following lemma shows that the ternary operation Mal’tsev and the representation

of the relation R are the focal points on the construction of the algorithm.

Lemma 3.1. (Bulatov and Dalmau [3]) Let a Mal’tsev operation, over a finite set of domain

A be defined as ϕ : A3 → A. Let R′ be a representation of R, where the relation R on A

is invariant under ϕ. Hence, let 〈R〉ϕ be the smallest relation R′ that contains R in which

invariant under ϕ. Then 〈R′〉 = R.

The proof to Lemma 3.1 uses the fact that the projection of 〈R′〉 and R on i, applied

inductively for all i ∈ {1, . . . , n}, is equivalent. That is, for each tuple in the relation R,

having (i, prit, prit
′) is in SigR means it is also in SigR′ . See [3] for details.

3.2 Algorithm Detail and its Complexity

The algorithm Solve, as proposed in Theorem 1 of [3], decides correctly whether a constraint

satisfaction problem instance invariant under ϕ, CSP(Inv(ϕ)), has a solution in polynomial
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time. The input to the algorithm is a CSP(Inv(ϕ)) instance, equipped with a set of finite

variables, V = {v1, . . . , vn}, a finite set of domain A and a finite set of constraints, C =

{C1, . . . , Cm}.

A typical input P , an instance of CSP, is invariant under ϕ, where P = (V,A, C).

In addition, the n-ary relation on the domain A is denoted Rl = {(s(v1), . . . , s(vn)) :

s is a solution of Pl}, where l ∈ {0, . . . ,m} and Pl = ({v1, . . . , vn}, A, {C1, . . . , Cn}). As

a result, initially P0 does not have a constraint and similarly for l = 0, R0 is just An. Note

that, a compact representation R′0 of R0 is initially encoded almost everywhere, as illus-

trated above, with an arbitrary value d an element of the domain. A subsequent compact

representation R′l+1 of Rl+1 is obtained iteratively, using the procedure Next, in which its

input is the current R′l and the constraint relation Sl+1.

The entire algorithm depends on the iterative calls to procedure Next, from with in

procedure Solve. We look into each procedure and its related complexity, independently.

Finally, we shall conclude that the algorithm is indeed decides correctly if such a solution is

found, in polynomial time. We begin our analysis on the outline of procedure Solve.

3.2.1 Procedure Solve

The input to the procedure Solve is described above. Its output is the compact representa-

tion of the relation, R′ after m iterations. That is, if R′m is not empty it returns ‘yes’ (step

4), otherwise it returns ‘no’ (step 5), in which the CSP instance has no solution.
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Procedure Solve({v1, . . . , vn}, A, {C1, . . . , Cm})

Step 1 select an arbitrary element d in A

Step 2 set R′o := {edi,a : (i, a) ∈ [n]× A}

Step 3 for each l ∈ {0, . . . ,m− 1} do(
let Cl+1 be ((vi1 , . . . , vil+1

), Sl+1)
)

Step 3.1 set R′l+1 := Next(R′l, i1, . . . , il+1, Sl+1)

end for each

Step 4 if R′m 6= ∅ return yes

Step 5 otherwise return no

Initially, the compact representation R′0 (step 2) is set as illustrated above. Further, for

each iteration in step 3, subsequent compact representation R′l+1 is set to a call to procedure

Next(R′l, i1, . . . , il+1, Sl+1). Note that, the return of the calls made to Next is the set, such

that:

Rl+1 = {t ∈ Rl : pri1,...,il+1
t ∈ Sl+1} where l = 0, . . . ,m.

As a result, the total running time of the algorithm is polynomial and is related to the

size of the input. That is, the total running cost of the call is O(n9 + (n+ |Sl+1|)4|Sl+1|n3).

For proof of correctness and its related time complexity of the algorithm, which is procedure

Solve, see [3].

A call to Next, in procedure Solve, makes subsequent calls to Nonempty from procedures
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Next-beta and Fix-values. Hence, next we focus on the procedure Nonempty.

3.2.2 Procedure Nonempty

This procedure takes a compact representation R′, of relation R invariant under ϕ, a sequence

of elements i1, . . . , ij ∈ [n], (n-arity of R) and a j-ary constraint relation S, also invariant

under ϕ. The procedure returns either an n-ary tuple t ∈ R, where pri1,...,ijt ∈ S or such a

tuple does not exist.

Procedure Nonempty(R′, i1, . . . , ij, S)

Step 1 set U := R′

Step 2 while ∃t1, t2, t3 ∈ U such that pri1,...,ijϕ(t1, t2, t3) /∈ pri1,...,ijU do

Step 2.1 set U := U ∪ {ϕ(t1, t2, t3)}

end while

Step 3 if ∃t in U such that pri1,...,ijt ∈ S then return t

Step 4 else return “no”

Initially, the compact representation R′, input to the procedure, is set to U (step 1). As

a result, the number of iterations (step 2) is bound by the size of U . The cardinality of U

increases by one during the iterative loop in step 2. Thus, U is updated (increased) every

time some tuples exist in U invariant under ϕ. Hence, at the end of the execution of the

procedure, the size of U is different from step 1. Therefore, the number of iteration can be

bounded by the size |U |.

29



CHAPTER 3. BULATOV-DALMAU’S ALGORITHM 3.2. ITS COMPLEXITY

The process of checking the existence of some tuples t1, t2, t3 in U (step 2), in which

the projection of such tuples invariant under ϕ not in U , is the dominating cost during each

iteration. That is, trying all possible combinations of n-tuples found in U , requires |U |3

steps, where each step in turn requires of O(|U |) times. In addition, a sequential search

process, in which checking if tuples ϕ(t1, t2, t3) are already in U , requires O(|U |) times. As

a result, step 2 has total running time of O(|U |4n). Recall that, this procedure returns a

tuple t in U satisfying pri1,...,ijt ∈ S applied on n-ary constraint relations, (step 3). Hence,

step 3 has a running time of O(|U ||S|n). Therefore, the procedure has a total running time

of O(|U |5n+ |U ||S|n), in which it can be bound by O(|U |5|S|n).

In step 2, as discussed above, the size of the projection of U increases during each

iteration. However, it is bounded by the size of the projection of the relation R. Also,

recall that the cardinality of the compact representation R′ is bounded by 2n|A|2 (or |R′| 6

2|SigR|), where A is a finite domain. Since the size of A is fixed, the cardinality of R′ is

of O(n). As a result, the procedure can be bounded by O((n + |pri1,...,ijR|)5|S|n). The

output of procedure Nonempty plays a major role throughout the algorithm. In particular,

procedures Fix-values and Next-beta depends on the outcome of this procedure, and

hence the algorithm. For proof of correctness of procedure Nonempty and its related time

complexity, see [3].

3.2.3 Procedure Fix-values

This procedure, unlike the other procedures, takes two sets of objects. That is, a canonical

representation of the relation R invariant under ϕ and a sequence of elements of A, a1, . . . , am,

where m 6 n and n is the arity of R. It returns a compact representation of the relation

R, in which initially R′ is set to Uj (for j := 0). At the end of the iteration, procedure
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Fix-values returns the set Um such that {t ∈ R : pr1t = a1, . . . , prmt = am}.

Procedure Fix-values(R′, a1, . . . , am)

Step 1 set j := 0; Uj := R′

Step 2 while j < m do

Step 2.1 set Uj+1 := ∅

Step 2.2 for each (i, a, b) ∈ [n]× A2 do

Step 2.2.1 if ∃t2, t3 ∈ Uj witnessing (i, a, b) and

(we assume that if a = b then t2 = t3) and

Nonempty(Uj, j + 1, i, {(aj+1, a)}) 6= “no” and

i > j + 1 or a = b = ai then(
let t1 be the tuple returned by

Nonempty(Uj, j + 1, i, {(aj+1, a)})
)

set Uj+1 := Uj+1 ∪ {t1, ϕ(t1, t2, t3)}

end for each

Step 2.4 set j := j + 1

end while

Step 3 return Um

As described above, in step 1 U0 is set to R′, input to the procedure. The iteration starts

in step 2 for m 6 n times. Further, a sub-loop (step 2.2) follows for each (i, a, b) ∈ [n]×A2.

Hence, step 2.2 requires a total iteration of n|A|2 times. However, the most dominating

cost during each iteration is the call to procedure Nonempty, in which tuples (t2, t3) in com-
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pact representation Uj (step 2.2.1) that witness (i, a, b). Recall that, procedure Nonempty

returns a tuple, say t1, where the projection of the tuple is the constraint relation S. The

compact representation then updated using the fact that t1 and ϕ(t1, t2, t3) are tuples in

the relation R and witnesses (i, a, b). As a result, the cost for each iteration of the loop is

O((n + |A|2)4n) = O(n5). Therefore, the running cost of the procedure can be bounded to

O(n7).

The correctness of the procedure follows from the fact that a compact representation,

Uj = Rj = {t ∈ R : pr1t = a1, . . . , prjt = aj}, and proved inductively, for j = 0, . . . ,m. For

complete proof see [3].

3.2.4 Procedure Next-beta

This procedure is similar to procedure Next and has the worst running time. In addition, it

has similar structure to procedure Fix-values. It takes the compact representation R′, a

sequence of elements of i1, . . . , ij ∈ [n] and a constraint relation S. In relation to its input

size, the procedure might have exponential running time. The procedure returns a compact

representation U , in which initially set to empty.
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Procedure Next-beta(R′, i1, . . . , ij, S)

Step 1 set U := ∅

Step 2 for each (i, a, b) ∈ [n]× A2 do

Step 2.1 if Nonempty(R′, i1, . . . , ij, i, S × {a}) 6= “no” then

(let t be Nonempty(R′, i1, . . . , ij, i, S × {a}))

Step 2.2 if Nonempty(Fix-values(R′, pr1t, . . . , pri−1t),

i1, . . . , ij, i, S × {b}) 6= “no”(
let t′ be Nonempty(Fix-values(R′, pr1t, . . . , pri−1t),

i1, . . . , ij, i, S × {b})
)

set U := U ∪ {t, t′}

end for each

Step 3 return U

The iteration in step 2 processes each tuple in which (i, a, b) ∈ [n]× A2. The procedure

makes use of the tuples returned by the call to procedures Nonempty and Fix-values (step

2.2). Recall that procedure Nonempty returns a tuple t in the relation R where the projection

of t ∈ S. In particular, step 2.1 returns a tuple for (i, a) where prit = a. Similarly, step

2.2 returns a tuple t′ in which the projection of t′ ∈ S for (i, b), where prit
′ = b. Note

that, a sub-call to Fix-values, by Nonempty in step 2.2, returns the compact representation

where pr1,...,i−1t
′ = pr1,...,i−1t. Hence, if the condition holds then (t, t′) witnesses (i, a, b).

Otherwise, (i, a, b) is not in SigR∗ , where R∗ = {t ∈ R : pri1,...,ijt ∈ S} invariant under ϕ

(discussed in procedure Next). See [3] for details and the necessary conditions. That is,
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conditions for the existence of a tuple t′ in which (i, a, b) ∈ SigR∗ .

As discussed above, procedure Next-beta is dependent on the outputs of Nonempty and

Fix-values. As a result, the running cost of Next-beta is mainly the consequence of these

two procedures, also discussed above. The iteration through each tuple in step 2 is n|A|

times. The cost of invoking to procedure Nonempty (step 2.1) is O((n + r)4|S|n), where

r = |pri1,...,ijR|. However, in step 2.2, Fix-values is called from Nonempty. Hence, it

requires the sum of the calls already established above. As a result, the total running time

of procedure Next-beta is O((n+ r)4|S|n2 +n8). Note that, in addition to step 2.1, a call to

Fix-values (step 2.2), which in turn invokes Nonempty (see procedure Fix-values). Hence,

it is easy to see that procedure Next-beta has the worst running time. See [3] for details.

3.2.5 Procedure Next

Procedure Next, as discussed above, is designed for general cases of constraint satisfaction

problems. Hence, we limit the details of this procedure to the extent where the algorithm in

discussion is solvable in polynomial time. See [3] for details.

As shown in procedure Solve above, Next is initially encoded from the compact repre-

sentation relation R. The input to the procedure includes, the canonical representation R′

of relation R invariant under ϕ, a sequence of elements i1, . . . , ij ∈ [n] (n-arity of R) and a

j-ary relation S, also invariant under ϕ. It returns the compact representation U , after some

iterative calls to procedure Next-beta.
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Procedure Next(R′, i1, . . . , ij, S)

Step 1 set l := 0, Ul := R′

Step 2 while l < j do

Step 2.1 set Ul+1 := Next-beta(Ul, i1, . . . , il+1, pri1,...,il+1
S)

end while

Step 3 return Uj

The procedure makes a series of calls to Next-beta providing Ul, il, . . . , il+1 and its cor-

responding projection of S, as input. Initially U is set to R′ (for l := 0). Each iteration in

step 2 has the running time of O(n8 + (n + |S|)4|S|n2), in which r is bounded over a fixed

A, where r = |pri1,...,ilS||A|. Since the possible set of constraint relation S that can appear

in instance P is infinite, it is difficult to bound the value of j (j-ary relation). As a result,

in the worst case the value of r = |pri1,...,ijR| can be exponential. The solution would be to

bound the value of j where r can be polynomial over a finite constraints invariant under ϕ,

CSP(Inv(ϕ)), see [3] for details.

In Chapter 4, similar approach has been applied over a fixed set of constraints. Hence,

let m be the number of constraints and S∗ be the largest constraint relation occurring in

P , instance of CSP invariant under ϕ. As shown in Corollary 1 ([3]), the algorithm decides

correctly where P is solvable in O(mn8 + m(n + |S∗|)4|S∗|n2) times. In addition, through-

out the algorithm, procedure Nonempty plays the centre of decision making process of the

existence of tuple (t, t′) that witnesses (i, a, b).
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We have concluded the sketch of the algorithm. As a result, the details of the procedures

clearly shows that the algorithm Solve is indeed tractable. For details see [3]. We conclude

the chapter by providing an illustration of the Bulatov-Dalmau’s algorithm.

3.3 Example - Illustration of the Bulatov-Dalmau’s Al-

gorithm

Next, we provide a simple example of solving a system of linear equations defined over F2

(field with two parameters, 0 (false) and 1 (true)). We assume some basic familiarity with

boolean arithmetic over the defined field.

Example 3.1. Consider the following system of three linear equations expressed using four

variables, namely x, y, z and u over F2:

x+ z + u = 1

y + z = 0

y + u = 1

We remark that for Mal’tsev polymorphism on F2, we can take, for instance:

ϕ(x, y, z) = x+ y + z.

The above system can be translated into a constraint satisfaction problem (CSP) as a

36



CHAPTER 3. BULATOV-DALMAU’S ALGORITHM 3.3. ILLUSTRATION

pair of Ci(constraints) and Si(constraint relations), defined over a finite domain, as:

C1 :
(
(x, z, u), {(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1)}

)
S1 = {(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1)}

C2 :
(
(y, z), {(1, 1), (0, 0)}

)
S2 = {(1, 1), (0, 0)}

C3 :
(
(y, u), {(1, 0), (0, 1)}

)
S3 = {(1, 0), (0, 1)}

Note that, the number of variables, n = 4 and the number of constraints, m = 3. The

compact representation has a solution, if after some iteration R′m 6= ∅. This is achieved using

subsequent calls to procedure Nonempty, as shown in the algorithm.

Initially, we set almost everywhere to d = 0, as shown in procedure Solve, to get initial

compact representation, R′ as:

R′0 = {(1, 0, 0, 0), (0, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}.

Applying iterative process on subsequent relations, we get the next compact representa-

tions, as:

R′1 = {(1, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 0, 0)}

R′2 = {(1, 0, 0, 0), (0, 0, 0, 1), (0, 1, 1, 0)}

R′3 = {(0, 0, 0, 1), (0, 1, 1, 0)}
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R′3 generates the set of all solutions via the Mal’tsev polymorphism. However, it can

be easily checked that (0,0,0,1) and (0,1,1,0) are the only solutions and, in fact, the only

elements in the subuniverse of (F2)4, generated by these two 4-tuples.
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Chapter 4

Bulatov-Dalmau Algorithm via

LFP+rnk

In this chapter, we translate the Bulatov-Dalmau’s algorithm in the logic least fixed-point

(LFP) with matrix rank (rnk) operator, LFP+rnk. As a result, we show such CSPs are

expressible in logic LFP+rnk providing a logical proof such CSPs are tractable. The proce-

dures mentioned below are referring to the original algorithm as shown in [3]. However, we

begin by introducing the necessary variables and the corresponding structure of the language

in relation to the fixed constraint problem.

4.1 Preliminaries

Recall that constraint satisfaction problem (CSP) consists a finite set of variables V , a finite

set of values A, for each of the variables and a set of constraints C between several collections

of variables.
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Hence, let V = {x1, . . . , xk} and C = {C1, . . . , Cm} with constraints Cl, so that l ∈ [m],

where [m] denotes the set {1, . . . ,m}. The constraint scope, {x1, . . . , xk}, corresponds to

k-ary relation on the domain A. Each constraint then contains a tuple of variables and the

corresponding values in relation to A.

We assume that the structure A admits a 3-ary Mal’tsev polymorphism ϕ(x, y, z). In

addition, we assume that ϕ is compatible for all relations in A; namely S1, . . . , Sm.

Now consider a constraint satisfaction problem C as a finite “initial segment” of ω over

a two-sorted structure defined as A+ = (ω,A), where ω = {+, ·, <, 0, 1, rnk2}. An initial

segment means that only finitely many elements of ω appear in the constraints. The en-

coding of the constraint satisfaction problem is given in its general form. That is, as a two

sorted structure, C can be constructed in logspace and therefore, in polynomial time [16].

The rank of a given matrix, rnk2 is an integer, where rnk2 > 0 over F2 (the field with two

elements of binary numbers, 0 and 1). Also, A is a finite relational structure which contains

the relation S1, . . . , Sk and all of its elements are constants. Therefore, the constraint pair

of the form (x1, . . . , xk, S1, . . . , Sk) is a 2k-ary relation.

We want to construct a sentence (formula without free variables) ΦA, which can contain

constants (parameters) from A, such that C |= ΦA if and only if the instance constraint

satisfaction problem coded as C has a solution. Thus, Φ is a 6-ary formula in the two-sorted

language and has the following format:

Φ(β, y, z, u;α, x).
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It contains two variables α and β from the sort of natural numbers and four variables

(u, x, y and z) from the sort A, corresponding to the domain A. The formula Φ is a compact

matrix representation of the solution i ∈ [n], where [n] is a positive integer denoting the

set {1, . . . , n}. In particular, Φ(i, a, b, a(or b);α, x), for all i 6 n, and a, b ∈ A obtained by

replacing β with parameters 1, . . . , n and y, z, u with values from the domain A. That is,

either the assigned parameters to y and u are equal or the parameters assigned to z and u

are equal. Hence, a witness for (i, a, b) is referring to the i-th coordinate of a matrix in which

it contains the value of a or b. Further, a given matrix then contains 1 whenever the α-th

coordinate of the tuple is x and 0 otherwise, where α is at most n. The value of n can be

obtained by utilizing the counting ability of the logic LFP + rnk, as explained in Chapter 2.

In general, Φ(i, a, b, a(or b);α, x) is the n-tuple, where a witness for (i, a, b) contains a or

b in the i-th coordinate of a given matrix. Thus, for each i-th coordinate of a matrix, having

assigned a or b, it requires 2n overall possible values.

Every time a constraint is processed, Φ is updated accordingly, and produces a compact

representation of the relation R. Hence, let R′ be the compact representation of the relation,

where R′ ⊆ R. The compact representation for the solution requires the processing of two

matrices over the values of the domain A. We define the following constant K, representing

the number of 4-tuples of parameters i, a, b, and c, where c ∈ {a, b}, such that:

K = 2n|A|2.

Hence, the collection of K formulas encodes a compact representation for the solution,

R′. Therefore, as defined above, K is the number of 4-tuples that maintains R′.
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We shall define a bijection g from all 4-tuples (i, a, b, c), where c = a or c = b to the set

{1, . . . , K}, in the logic LFP + rnk. That is, by using the natural ordering 6 of ω and some

fixed ordering (for example, lexicographic) of all triples (a, b, c) from A × A × A, which is

independent of n.

Let d be some fixed element in A. Initially, for each matrix we set all those n-tuples

which are almost everywhere equal to d, as follows:

(a, d, d, . . . , d)

(d, a, d, . . . , d)

...

(d, d, . . . , a, d)

(d, d, . . . , d, a)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(b, d, d, . . . , d)

(d, b, d, . . . , d)

...

(d, d, . . . , b, d)

(d, d, . . . , d, b)

Similarly, the formula Φ(β, y, z, u;α, x) will consist of, for all values of a and b, if u = a,

then:

Φ(i, a, b, a;α, x) : (α = i ∧ x = a) ∨ (α 6= i ∧ x = d) (4.1)

and analogously, if u = b where a replaced with b in the formula (4.1).

Now, consider the following function g, an instance of a bijection from ordered pairs

N× N to N:

g(i, j) = ((i+ j)(i+ j + 1)/2) + i.

We can iterate the function g(i, j) in order to obtain a bijection between N×N×N and
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N. Further, we can alter this bijection in order to obtain a bijection f , such that, there is

a function f which constitutes a bijection between all ordered triples of elements N and N.

Hence, we get a bijection f , an instance of ordered triples of a bijection between N and N:

f : N× N× N→ {K + 1, K + 2, . . .}.

By iterating this bijection, where K is as described above, we can enumerate the ordered

triples in the procedure Nonempty.

We are now in a position to implement the procedures as described in Bulatov-Dalmau’s

algorithm. However, we shall begin by implementing the preliminaries to the procedures.

4.2 Implementation of Supporting Predicates

Recall that, we have a compact representation of the relation R, denoted by R′ together

with a collection of K tuples as described above. We have also defined some given j integers

i1, . . . , ij and some relation S. Implementation of the procedures requires defining two more

relations, namely U(γ) and Coord(γ;α, x).

Hence, U(γ) applies to integers while Coord(γ; α, x) applies to integers γ, α and an

element x ∈ A. These two relations will define the enumeration process of the tuples that

can be constructed from the existing elements of U and the ternary Mal’tsev operation ϕ.

That is, according to the procedure Nonempty, U(γ) will be true if the tuple indexed by γ

winds up being in U . Similarly, the relation Coord(γ;α, x) will be true if the α-th coordinate

of the tuple indexed by γ is x. Note that in the logic LFP, we can define several relations
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simultaneously using least fixed-point iteration. See [16] for details of LFP logic in relation

to system of recursions.

The relation U(γ) is defined using the following facts: γ = 1, . . . , K or there exists

γ1, γ2, γ3 less than some γ, where such γ is equivalent to value found by f(γ1, γ2, γ3). Further,

for all β less than γ, if U(β) is true then, for some δ ∈ {i1, i2, . . . , ij} and for all x ∈ A, the

tuples indexed by β and γ disagree in the δ-th coordinate. That is, a tuple indexed by γ is in

U if it is also in R. Thus, either it is indexed (marked) by one of 1, . . . , K, or it is generated

by some three formulas already in U and it does not agree in coordinates i1, . . . , ij with any

of the tuples already in U . The following is then its logical implementation described above:

U(γ) :

K∨
i=1

γ = i ∨ ∃γ1γ2γ3

(
(γ1 < γ) ∧ (γ2 < γ) ∧ (γ3 < γ) ∧ γ = f(γ1, γ2, γ3)

∧ ∀β < γ
(
U(β)→ ∃δ

j∨
l=1

δ = il ∧ ∀x ∈ A

¬
(
Coord(β; δ, x) ∧ Coord(γ; δ, x)

) ) )
(4.2)

The relation Coord(γ;α, x) is also defined using the following facts: the coordinate agrees

with R if γ = 1, . . . , K and the bijection is equivalent to γ for the first tuples within 1, . . . , K.

Otherwise, γ is referring to K+1, K+2, . . . tuples. That is, there exist some γ1, γ2, γ3, where

the bijection of such γ’s is equivalent to γ; and the α-th coordinate of the tuples indexed by

such γ’s also agree on x. It is obvious that, the value of x must have been obtained by using

the ternary operation, ϕ. Further, the second half of the above statement expresses that, if

the tuple indexed by γ is not one of the original 1, . . . , K found in R, then it must be formed
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using ϕ from some tuples already in U . The logical format of the statement expressed above

follows:

Coord(γ;α, x) :( K∨
i=1

γ = i ∧ g(i, a, b, c) = γ →
(
Coord(γ;α, x) ⇐⇒ Φ(i, a, b, c;α, x)

) )
∨
(
∃γ1∃γ2∃γ3

(
U(γ1) ∧ U(γ2) ∧ U(γ3) ∧ γ = f(γ1, γ2, γ3)

∧ Coord(γ1;α, x1) ∧ Coord(γ2;α, x2)

∧ Coord(γ3;α, x3) ∧ x = ϕ(x1, x2, x3)
) )

(4.3)

Note that, the formula Φ in equation (4.3) was previously defined above, see equation

(4.1), also c ∈ {a, b}.

The two relations, namely U(γ) and Coord(γ;α, x), handles the enumeration process of

the tuples as discussed above. Further, the procedures described in the algorithm invokes

these two predicates during the process. Next, we implement (translate) the procedures,

namely Solve, Nonempty, Next-beta and Fix-values in the logic LFP+rnk.

4.3 Implementation of the Procedures via Logic

We begin by implementing the procedure Solve. We shall implement this procedure from

the fact that ΦA satisfies over the two sorted structure if and only if the encoded constraint

has a solution over the same structure.
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Solve{x1,...,xn},A,{C1,...,Cm} : it takes an instance of the constraint satisfaction problem, CSP.

The CSP contains a list of variables, the value that the variables takes and the list of the

constraints. We aim to construct ΦA, such that:

(ω,A) |= ΦA if and only if CSP encoded as (ω,A) has a solution.

That is, the construction of Φ will satisfy if and only if the constraint over the two sorted

structure has a solution. The constraint C, as shown above, is defined over the two sorted

structure. In addition, the compact representation of the relation R, denoted by R′, contains

almost everywhere d ∈ A. That is, initial R′0 is encoded as (i, a) ∈ [n] × A, where the rest

is d. Hence, let m be the number of constraints, in which it can be obtained by counting

all distinct kj-tuples in the numerical (constant) variables that appear during the encoding

of the constraints. As shown above, the conjunction of the formula ΦA counts the value

of m for which the rank of the matrix, rnk2 is greater than 0. That is, there exists a β

up to including K, that satisfies the formula ΦA, where the α-th coordinate is x. That is,

∃β 6 K ∃y∃z∃u rnk2((R,m)(β, y, z, u;α, x)) > 0. Further, for k = 0, 1, . . . ,m the next

(R, k)(β, y, z, u;α, x) can be recursively defined as follows:

• for k = 0, (R, 0)(β, y, z, u;α, x) is the disjunction of matrix formulas which define

n-tuples, which are almost everywhere d; and

• for k = k + 1, we have (R, k + 1), such as:

– an input to the procedure: Next-beta((R,k),i1,...,ik+1,sk+1)(β, y, z, u;α, x); and

– a subsequent constraint, where Ck+1 = ((xi1 , . . . , xik+1
), Sk+1).
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Note that, Sk+1 is first-order definable from the encoding of the constraint Ck+1 within

the structure (ω,A). Hence, rnk2(NonemtyR′,i1,...,ij ,S(α, x)) > 0 if and only if the matrix-

construct, ΦA contains a non-zero rows in which the encoded CSP has a solution. Similarly,

at the end of the iteration where k = m, if R′m is not empty.

We also need to check whether there are tuples in U , which are also in the constraint

relation S, when projected on to i1, . . . , ij. It is clear that, using the ordering (sort) of N, we

can find M , the maximum γ, for which the relation U(γ) holds. The procedure Nonempty

checks if a witness to such tuple exists. If such a tuple does not exist, this particular tuple

will be filled with 0(false) at every entry of the matrix.

Next, we implement the procedure Nonempty, for which the tuple witness the above, by

defining a new relation formula Θ.

NonemptyR′,i1,...,ij ,S(α, x) : it takes the compact representation of the relation R, sequence of

elements {i1, . . . , ij}, and a constraint relation S, where the element of the α-th coordinate

is x. It will be of the form:

Θ1 ∧Θ2 (4.4)

The definition of each of the relation formulas in equation (4.4) follows:

Θ1 : ∃γ 6M Θ(γ)→ γ0 = min
γ

Θ(γ) ∧ Coord(γ0;α, x), and

Θ2 : ¬∃γ 6M Θ(γ)→ (α 6= α ∧ x 6= x).
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The formula Θ(γ) in the above formulas is the relation defined by:

Θ(γ) : ∃i1, . . . , ik ∃x1, . . . , xj
(
U(γ) ∧ Coord(γ; ik, xk) ∧ S(x1, . . . , xj)

)
.

The formula Θ1 defines the existence of a γ fewer than M , where γ0 is the minimal for

which the assumption (witness) holds, with an element x in the α-th coordinate. That is,

we select the one with smallest index for tuple that witness this. Similarly, the formula Θ2

defines that if the relation defined by Θ1 fails (false), then it is false for all α and x. The

formula Θ is then verifies the existence of such γ for the element x.

Next-betaR′,i1,...,ij ,S : it takes compact representation R, sequence of elements i1, . . . , ij ∈ [n]

and the constraint relation S; and produces the updated K formulas for the compact repre-

sentation.

Now, let the compact representation, Ψ for the relation which consists of all the tuples in

R, which have a1, . . . , am in its first m coordinates, be defined by Ψ(m, i, a, b, a(or b);α, x).

Also note that, for a given matrix P , ai is the element x for which P (i, x), where i = 1, . . . ,m.

Hence, we construct the formula Ψ(k, i, a, b, a(or b);α, x) for k = 0, 1, . . . ,m.

Note that, for k = m, the formula Ψ is simply Φ. Initially, U0 is equivalent to Φ

and R′. That is Ψ(0, i, a, b, a(or b);α, x) will be Φ(i, a, b, a(or b);α, x), in which U0 = Φ

(l := 0, Ul := R′). The next Ψj+1 is expressed from the fact that, if Ψ(j, i, a, b, a(or b);α, x)
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is defined (true) then Ψ(j+1, i, a, b, a(or b);α, x), for 0 6 j 6 m, will also be true as follows:

∀j 6 m ∀i 6 n ∀α 6 n ∀a, b, x, y, z ∈ A

Ψ(j, i, a, b, a;α, x) ∧Ψ(j, i, a, b, b;α, y)

∧ rnk2

(
NonemptyΨj ,j+1,i,{(aj+1, a)}(α, z)

)
> 0 ∧

(
i > (j + 1) ∨ a = b = ai

)
→ Ψ(j + 1, i, a, b, a;α, z) ∧Ψ

(
j + 1, i, a, b, b;α, ϕ(z, x, y)

)

The output of the procedure is then the compact representation of the K formulas. Note

that, the above formula also includes procedure Fix-values. In which, it takes the compact

representation of the relation R, originated from the K tuples over the formula Φ and an

m-tuples (m 6 n) encoded matrix with elements from the domain A.

Hence, the constructed formula Φ will be satisfied in A if and only if the constraint C

over the two sorted structure have a solution. Initially, the compact representation of the

relation R′0, encoded as (i, a) ∈ [n] × A, contains almost everywhere d ∈ A. The number

of constraints m, can be obtained by counting all distinct kj-tuples that appear during the

encoding of the constraints. That is, the conjunction of the formula ΦA counts the value

of m for which the rank of the matrix is greater than 0. Further, for k = 0, 1, . . . ,m and

for β fewer than K, the next constraint relation is defined using (R, k)(β, y, z, u;α, x), that

satisfies the formula ΦA, in which the α-th coordinate is x. As a result, R′m will have a

solution if and only if the matrix-construct, ΦA contains a non-zero (true) rows.

Therefore, we have shown constraint satisfaction problems defined over a finite Mal’tsev

operation are expressible in the logic LFP+rnk. We have also shown a logical proof that such
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CSPs are solvable in polynomial time. Hence, we conclude that Bulatov-Dalmau’s algorithm

can be formulated in the logic LFP+rnk.
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Chapter 5

Conclusion and Open Problems

We conclude by providing the summary on the materials discussed so far and open problems

in relation to the subject area, constraint satisfaction problem (CSP). Hence, we begin by

highlighting the major points discussed in the previous chapters.

5.1 Summary

In Chapter 1, we started by defining the concept behind the constraint satisfaction problem

over a finite relational template. We also illustrated the concept by presenting several ex-

amples.

The content of Chapter 2 was mainly concerned with the introduction of a natural exten-

sion of first-order (FO) logic. In particular, the chapter is more focussed on least fixed-point

(LFP) logic, which can express the concept of recursively definable relations on finite struc-

tures. In addition to recursion, we gave a basic overview of a further expansion of the

expressive power by introducing a two-sorted logic, LFP+rnk. Further, the expansion al-
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lows for basic matrix arithmetic over finite fields, including the computation of the rank

function (or rank of a matrix).

The outline of the so-called Bulatov-Dalmau algorithm, for solving constraint satisfaction

problems on finite templates with Mal’tsev polymorphism, was given in Chapter 3. The ex-

position of this chapter, in turn, summarizes the results of Bulatov-Dalmau [3]. In addition,

at the end of Chapter 3, we provided an example of the application of Bulatov-Dalmau’s

algorithm on a system of linear equations defined over F2.

Finally, by putting all of this together, in Chapter 4 we have demonstrated the original

work. As a result, we have given the proof that Bulatov-Dalmau algorithm can be formulated

in the logic LFP+rnk. Thus, providing a logical proof that Mal’tsev templates gives rise to

tractable constraint satisfaction problems. As a result, we concluded the chapter, in which a

formula ΦA in LFP+rnk such that, A |= ΦA if and only if CSP(A) is in P. Also note that,

it is not known if such formulas exist whenever A is not Mal’tsev or “bounded width”.

5.2 Open Problems

The open problems discussed is in relation to the constraint satisfaction problems presented

in this writing. That is, a finite CSP invariant over the Mal’tsev operation. Hence, we look

into other templates as a natural extension for further research area. The work of [13] shows

the application of a k-edge operation (defined below) on Bulatov-Dalmau’s algorithm. As a

result, we rely on [13] as a primary source over the relational template discussed above. See

[13] for further details.
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Definition 5.1. ([13]) Let a k-edge operation ϕ on a finite template A be the identities,

such that:

ϕ(x, x, y, . . . , y) ≈ ϕ(x, y, x, y, . . . , y) ≈ y,

ϕ(y, y, y, x, y, . . . , y) ≈ ϕ(y, y, y, y, x, y, . . . , y) ≈ · · ·

· · · ≈ ϕ(y, y, y, . . . , y, x) ≈ y.

If a finite relational template A admits a polymorphism, a k-edge operation for some k > 1,

then we say that A has few subpowers.

The Mal’tsev operation (defined in Chapter 1) and near-unanimity are special instances

of k-edge operations. In general, a k-edge operations requires a k + 1-ary operations satis-

fying the identities shown above. A recent algebraic result establishes that every template

with few subpowers is tractable.

Theorem 5.1. ([13]) For any finite relational templates A, if A has few subpowers CSP(A)

is in P.

The proof of this deep fact relies on the fact that Bulatov-Dalmau algorithm can easily be

adopted. Recall that, procedure Fix-values takes pair of objects as input (see Chapter 3).

The compact representation can still be maintained, while only modifying the Fix-values

in order to accommodate the changes, template A.

Thus, we strongly believe that the answer to the following problem is affirmative.
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Problem 5.1. Is the CSP(A) for any finite template with few subpowers expressible in the

logic LFP+rnk?

A more general problem is associated with the main open problem in the area, the so-

called Dichotomy Conjecture, due to Feder and Vardi.

Conjecture. (Dichotomy Conjecture [9]) Every CSP with a finite relational template is

either in P or it is NP-complete.

To date, all available evidence points to the affirmative answer to this conjecture.

Problem 5.2. Is every CSP which is not NP-complete expressible in logic LFP+rnk?

If the answer to Problem 5.2 is “yes”, then the Dichotomy Conjecture holds. That is,

every CSP expressible in LFP+rnk is necessarily tractable.

NP-complete CSPs with finite relational templates can be characterized algebraically.

That is, CSPs whose templates admit a particular algebraically weak polymorphism, can be

reformulated algebraically as the following problem.

Problem 5.3. Is the CSP for any finite relational template admitting a weak unanimity

polymorphism, in which a polymorphism with the property such that:

w(xx . . . xxy) = w(xx . . . xyx) = . . . = w(yx . . . xxx),

definable in LFP+rnk?
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