
Pricing Spread Options under Levy Jump-Diffusion

Models

by

Matthew Cane

B. Eng. Mgmt., Mechanical Engineering and Management

McMaster University

Hamilton, Ontario, Canada, 2009

A Thesis presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the Program of

Applied Mathematics

Toronto, Ontario, Canada, 2011
c©Matthew Cane, 2011



I hereby declare that I am the sole author of this thesis or dissertation.

I authorize Ryerson University to lend this thesis or dissertation to other

institutions or individuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis or disserta-

tion by photocopying or by other means, in total or in part, at the request

of other institutions or individuals for the purpose of scholarly research.

ii



Pricing Spread Options under Levy Jump-Diffusion Models

Master of Science, 2011

Matthew Cane

Applied Mathematics

Ryerson University

Abstract

This thesis examines the problem of pricing spread options under market

models with jumps driven by a Compound Poisson Process and stochastic

volatility in the form of a CIR process. Extending the work of Dempster and

Hong, and Bates, we derive the characteristic function for two market models

featuring normally distributed jumps, stochastic volatility, and two different

dependence structures. Applying the method of Hurd and Zhou we use the

Fast Fourier Transform to compute accurate spread option prices across

a variety of strikes and initial price vectors at a very low computational

cost when compared to Monte-Carlo pricing methods. We also examine the

sensitivities to the model parameters and find strong dependence on the

selection of the jump and stochastic volatility parameters.
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Chapter 1

Introduction

Options are a class of derivative securities (securities whose value depends

on another asset) which give the holder the right to execute a trade or

receive a payoff at a given time (called the maturity). They range from

the most basic call and put options, which give the holder the right to buy

or sell a stock at a certain price, to complex exotic options such as basket

options, whose value is a function of the prices of many stocks. Options are

often used to hedge against the uncertainty in the future price of assets. For

example, a car company may purchase call options on steel to lock in a future

price. Options can also be used to speculate on the future movement of the

underlying securities (the assets from which the option derives its value).

The problem of pricing options is a crucial one in finance, as improperly

valuing options can decrease the profitability of firms using them to hedge,

or can lead to losses for traders attempting to profit through their sale.

The Fundamental Theorem of Arbitrage Pricing says that the value of any

derivative in a complete market is simply the expected value of the derivative

at maturity, discounted back to the present time at the risk free rate [10].

Since we know both the time to maturity and can observe the risk free rate,

all that remains is to calculate the expected value of the option.

This calculation, however, is easier said than done. There are many dif-

ferent models describing how the price of a stock changes with time, and

many options have complex payoff functions which are difficult to analyze.
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While the Black-Scholes model [4] was an important leap for the mathemat-

ical modeling of asset prices, the model makes many assumptions that don’t

hold true in financial markets. Heston [15] extended the Black-Scholes model

by including a stochastic volatility term to better model the volatility smiles

and smirks observed in financial markets. Cont and Tankov [9] provide an

extensive overview of the use of jumps in market models, while Bates [3]

presents a model including both stochastic volatility and jumps and prices

European call options under this market model. As Alvarez, Escobar and

Olivares [2], and Cont and Tankov [9] note the presence of both jumps and

stochastic volatility terms allows for a much greater flexibility in modeling

both shorter and longer term smiles.

Another growing area of interest is the modeling of assets in multivariate

settings, and the pricing of derivatives whose value depends on multiple as-

sets. These derivatives allow a hedger to protect themselves against things

like the production cost of a product, or changes in the exchange rates for

assets denominated in other currencies. Spread options in particular have

been studied quite thoroughly in the works of Dempster and Hong [11], Hurd

and Zhou [17], Carmona and Durrleman [6], and Hikspoors and Jaimungal

[16]. Spread options provide a unique challenge, however, as analytical solu-

tions are unavailable for most market models, and all of the authors above

rely on numerical methods in some form for all but the most basic of models.

Fourier transform methods, such as those introduced by Carr and Madan [7]

and outlined in depth by Eberlein, Glau, and Papapantoleon [12], provide

an efficient method for pricing options under a variety of market models.

This thesis will extend the work of Dempster and Hong [11] and ap-

ply the Fourier transform methods introduced by Hurd and Zhou [17] to

price spread options under two jump-diffusion market models with stochas-

tic volatility. Chapter 2 will present a variety of multi-asset options and

look at the problem of pricing derivative securities. Chapter 3 examines

both Monte-Carlo and Fourier transform methods for pricing options, and

walks through the derivation of the pricing method outlined by Hurd and

Zhou [17]. It also presents two small modifications to extend their method

beyond the base case where the strike price K is equal to 1, and an algo-
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rithm to select a Fourier step size to guarantee both assets fall on the pricing

grid. Chapter 4 looks at the development of market models describing the

movement of asset prices, and the rationale behind our selection of market

models. We examine the need to include both stochastic volatility and jump

terms in our market model, and present two market models which feature

both these characteristics. We then work through the derivation of the char-

acteristic function for both of our market models. Chapter 5 will look at

the numerical results from our implementation of both a Monte-Carlo and

Fourier transform pricing tool, and examine the sensitivity of our models to

the various input parameters. Finally, Chapter 6 contains a summary of the

work presented, as well as suggestions for future areas of investigation.
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Chapter 2

Derivatives and the Pricing

Problem

2.1 The Pricing Problem

The Fundamental Theorem of Arbitrage Pricing states that the value of

any derivative security is equal to the expected value of that derivative at

maturity, discounted1 at the risk-free rate [10]. For a derivative with an

arbitrary payoff, P (XT ), dependant on the value of an asset X at maturity

date T , the Fundamental Theorem of Arbitrage Pricing states that the value

(or price) of the derivative at time t is given by:

V (X|Xt) = e−rf (T−t)EQ(P (XT )|Xt)

where rf
2 is the risk-free interest rate, Q indicates a Risk-Neutral Mea-

sure3 or the measure for which the discounted price is a martingale, and EQ

1Discounting refers to the process of reducing the value of a future payout by some
rate to calculate the value of that future payout today (it’s present value).

2Note that in this case we take rf to be a constant, for models where the risk-free rate
varies, the e−rfT term should appear inside the expectation.

3While we take for granted in this paper the fact that the risk-neutral measure under
our model is unique, this is not the case for all market models.
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indicates the expected value under Q as defined for a random variable X as:

EQ(X) =

∞∫

−∞

xf(x)dx (2.1)

where f(x) is the probability density function of X. This calculation is

relatively straightforward if the PDF of X is known, however in most cases

this is not true, and the models for which the PDF is known often rely

on poor assumptions and fail to capture important characteristics of the

financial markets. As such, researchers have sought out other methods to

evaluate the formula given in (2.1), often relying on numerical methods to

do so.

2.2 Derivatives: Definitions

2.2.1 Spread Options

Spread options are derivatives whose value is based on the difference between

two asset prices. The value of a European Call spread option at maturity T

is given by:

VT (S1, S2,K) = (S1 − S2 −K)+

where K is called the strike price, and the notation (x)+ indicates maximum

of 0 and x.

Spread options are used both as hedging tools and as speculative instru-

ments. Spread options are common in commodity markets, where they can

be used to hedge against the conversion or production costs for raw goods.

For example the crack spread is based on the difference in prices between

refined oil products (such as gasoline) and crude oil, while the value of a

spark spread is used to gain exposure to the production cost of electricity.

Spread options can also be used as speculative tools, as they allow the

purchaser to effectively “bet” on the correlation between the two assets. For

example, if an investor believes that the correlation between the assets will
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decrease (and thus the spread may widen) the investor would long a call4,

while if they believe a correlation increase will occur (and thus the spread

will likely hold at the same level), they should write a call on the underlying

assets.

As stated earlier, the price of a spread option is determined by the ex-

pected value of the option at maturity discounted at the risk free rate, i.e.:

P (K) = e−rf (T−t)EQ

(
(S

(1)
T − S

(2)
T −K)+|S

(1)
t , S

(2)
t

)

The pricing of spread options is a widely studied topic as the methods

developed to price them often serve as a stepping stone to pricing more com-

plicated multivariate assets. Dempster and Hong [11], and Hurd and Zhou

[17] both use Fourier transform methods to price spread options and also

extend their methods to other option types, while Hikspoors and Jaimungal

[16] look at models for spread options in Energy markets. In addition, Car-

mona and Durrleman [6] provide a broad overview of the various methods

used to price spread options, and of the various types of spread options

actually available in the market.

2.2.2 Other Multivariate Derivatives

While this thesis explores only the pricing of spread options, here we present

other multivariate derivatives and their payoffs to illustrate a selection of the

products that are traded both over-the-counter and through exchanges. The

methods developed later in this thesis for pricing spread options are easily

extended to the derivatives outlined below.

Exchange Options

Exchange options give the purchaser the right (but not the obligation) to

exchange one asset for another at maturity. The Exchange option can be

4A “call” is an option which pays some function of the asset prices less the strike price,
while a put pays the strike price less some function of the asset prices. To go “long” a
derivative is to purchase it (i.e. to receive the payoff at maturity) while to go “short” a
derivative is to sell the derivative (i.e. to receive payment initially and pay the payoff at
maturity)
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seen as a specific case of a spread option with K = 0. The payoff for an

exchange option is then given as:

P (XT ) = (X
(1)
T −X

(2)
T )

+

Margrabe [18] first looked at the value of these options under the Black-

Scholes framework, while Cheang and Chiarella [8] evaluate exchange op-

tions under a jump-diffusion market model.

Basket Options

Basket options are a multivariate extension of a European call or put. A

basket option takes the weighted average of a group of d stocks (the basket)

as the underlying, and produces a payoff equal to the maximum of 0 and

the difference between the weighted average and the strike (or the opposite

difference for the case of a put). Index options, whose value depends on

the movement of an equity or other financial index such as the S&P500, are

examples of basket options. The payoff for a basket option is given by:

P (XT ) =

[(
d∑

i=1

wiX
(i)
T

)
−K

]+

Hurd and Zhou [17] provide an extension of their spread pricing method

to pricing a specific higher-dimension basket option where the first asset,

X(1) has weight 1, and the other assets in the basket, X(2)...X(d) have weight

-1.

Correlation Options

A correlation option is another extension of the plain vanilla European call

to two dimensions. Its payout is the product of two European calls with

different strikes. Similar to spread options correlation options allow the

purchaser to speculate on how asset prices will move together, as the option

requires both assets to move in the same direction in order for the value at

maturity to be non-zero. The payoff of a correlation option is given as:

7



P (XT ) = (X
(1)
T −K1)

+
(X

(2)
T −K2)

+

Dempster and Hong [11] outline a method for pricing correlation options,

and use the techniques outlined to extend their method to price spread

options using Fourier transform methods.

Quanto Options

Quanto Options are options in which the contract is settled in a different

currency from the currency of the underlying asset. The contract is settled

at maturity at a fixed exchange rate determined at the initiation of the con-

tract. In a quanto option our market model must capture the dynamics of

both the underlying asset and the exchange rate (since the actual exchange

rate may change, but the settlement exchange rate is a constant) between

the currencies involved in the transaction. Quantos are attractive instru-

ments for both speculators and hedgers as they provide an exposure to the

underlying asset without assuming any foreign exchange risk.

The payout of a European quanto call option on an asset Xt denominated

in currency U , with strike K, maturity T , and settled in currency C is given

as:

P (XT ) = RC/U ∗ (XT −K)+

where RC/U is the fixed rate of exchange between U and C as set at the

beginning of the contract.

8



Chapter 3

Pricing Methods

3.1 Monte Carlo Simulation

Monte-Carlo methods are often the simplest numerical pricing methods to

implement, however they are also the most computationally costly. Monte-

Carlo methods rely on the simulation of a large set of sample price paths

based on an Euler (or other) discretization of our market model, and take

the average of the payouts at maturity over the set of sample paths. If we

denote XT,j the value of the asset(s) at time T for the jth simulated path,

then the Monte-Carlo price of a derivative with payoff function P (XT ), after

N sample paths is given by:

V (X0) =

N∑

j=1

P (XT,j)

N
.

The benefit of Monte-Carlo methods is mainly their flexibility. Once a given

market model is implemented in a Monte-Carlo setting, one simply needs

to add a variety of payoff functions based on the sample paths to create a

robust pricing tool. While Monte-Carlo methods allow for a great degree

of freedom, and are often the only method available to price certain ex-

otic options, their computational cost is often far too great to justify their

use. In addition, as the models used to describe the asset prices increase
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in complexity, and the number of assets modeled also increases, the compu-

tational cost increases significantly, which makes ensuring convergence in a

reasonable time nearly impossible.

3.2 Fourier Transform Pricing

Fourier Transform methods provide an efficient and widely-used alternative

to Monte-Carlo and other numerical methods when the characteristic func-

tion of the underlying market model is known. Carr and Madan [7] first used

the Fourier transform to price European call options, while both Dempster

and Hong [11], and Hurd and Zhou [17] derived Fourier Transform methods

to price spread options. Eberlien et al. [12] give an overview of both the

univariate and multivariate cases which have been examined so far, and look

at pricing options based on the minimum price of a basket of assets.

Fourier Transform methods rely on knowledge of the characteristic func-

tion for the underlying market model. The characteristic function of a ran-

dom vectorX = (X(1),X(2), ...,X(d)) is denoted φXT
(u) with u = (u1, u2, ..., ud),

and is defined as:

φXT
(u) = E

(
eiu·X

)

where a · b denotes the scalar product of a and b. This formulation can

be alternately viewed as the Fourier transform of the probability density

function of the underlying random vector X. Since the characteristic func-

tions of many market models are known or can be derived, pricing through

Fourier transform techniques can allow a trader to easily compare the ef-

fects of various models on the price of an option, and provides a great deal

of flexibility in the development of numerical pricing tools.

Knowing the Fourier transform of the price process of a given market

model, there are several approaches that can be taken to price an option.

Carr and Madan [7] apply Fourier transform techniques in the univariate

case to price call options by expressing the Fourier transform of the damped

payoff function1 as a function of the Characteristic Function φXT
(u) of the

1The payoff function CT (K) = (ST −K)+ is not square-integrable, however the

10



underlying market model. Specifically, they show that the price of a Euro-

pean Call is given by:

CT (K) =
e−αK

2π

∞∫

−∞

e−iuKψT (u)du

with ψT (u) defined as:

ψT (u) =
e−rfTφXT

(u− (α+ 1)i)

α2 + α− u2 + i(2α + 1)u

Dempster and Hong extend the work of Carr and Madan to two dimen-

sions, using the Fourier transform to price correlation and spread options.

For spread options they first note that the boundary of the payoff region

for a spread is non-linear, and use a matrix of spread prices produced by

the Fast Fourier Transform (FFT) to create an estimate of the non-linear

boundary. While their work provides a template for the type of analysis nec-

essary, the methods they present are specific to the correlation and spread

options respectively, and are not easily extended to other payoffs.

3.2.1 Hurd and Zhou’s Method

Hurd and Zhou’s method [17] takes a different approach from Dempter and

Hong’s. Rather than integrating over the payoff region, Hurd and Zhou

derive the characteristic function of the payoff function, and then take the

inverse Fourier transform of the product of the characteristic functions of the

given market model and the payoff function. Their method is applicable not

just to spread options, but is easily extendible to other derivatives, as one

simply needs to find Fourier transform of the payoff function and substitute

it into the appropriate formula. For a derivative dependent on two assets,

with an arbitrary payoff P (XT ) with Fourier transform P̂ (u), the price at

damped payoff function cT (K) = e−αKCT (K), α > 0 is.
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time t = 0 of the derivative can be calculated as:

V (X0) =
e−rfT

(2π)2

∫∫

R2+iε

eiu·X0φXT
(u)P̂ (u)d2u (3.1)

where we note that if the increments in Xt −X0 are independent of X0

(as it will be in all the models we analyze), we can write:

E(eiu·XT |X0) = eiu·X0φXT
(u)

As Hurd and Zhou suggest, this integration can be numerically calculated

using the inverse Fast Fourier Transform. We begin by discretizing the

complex domain as:

Γ = {u(k) = (u(k1), u(k2))|k = (k1, k2),∈ {0, 1, ..., (N−1)}2}, u(ki) = −ū+kiη

over N points, with η being the step-size in the complex domain and ū = Nη
2

being the truncated end-points for our numerical integration. Based on our

choices for N , η and ū, we can discretize the real domain as:

Γ∗ = {x(l) = x(l1), x(l2)|l = (l1, l2),∈ {0, ..., (N − 1)}2}, x(li) = −x̄+ liη
∗

where η∗ = 2π
Nη and x̄ = Nη∗

2 . The value of our payoff P can then be

estimated as:

V (X0) ∼ (−1)l1+l2e−rfT
(
ηN
2π

)2
e−ε·x(l)

[
1
N2

∑N−1
k1,k2=1 e

−2πik·l
N H(k)

]

= (−1)l1+l2e−rfT
(
ηN
2π

)2
e−ε·x(l) [ifft2(H(k))] (l)

where the initial price is the vector X0 = (X
(1)
0 ,X

(2)
0 ), and ifft2(J) indicates

the 2-Dimensional inverse fast Fourier transform (or any discrete Fourier

transform) of J , and H(k) is defined as:

H(k) = (−1)k1+k2φXt(u(k) + iε)P̂ (u(k) + iε)

12



where P̂ (u) is defined as the Fourier transform of the payoff function. There

are a variety of multidimensional payoff functions with known Fourier trans-

forms. Eberlein et al. [12], for example, give the transform of a payoff paying

the minimum of a basket of assets less a strike (K) to be:

P̂ (u) =
K1+i

∑d
m=1(um)

(−1)d
∏d

m=1(ium)
(
1 + i

∑d
m=1(um)

) (3.2)

Hurd and Zhou also give the Fourier transform of a spread option, P̂ (u)

for the case of K = 1 as:

P̂ (u) =
Γ(i(u1 + u2)− 1)Γ(−iu2)

Γ(iu1 + 1)
(3.3)

where Γ(a) is the complex gamma function defined for <(a) > 0. The

derivation of this formula is quite straightforward, and is outlined here as in

Hurd and Zhou [17] for completeness. We start by defining P̂ (u), u = (u1, u2)

as:

P (x) = (2π)−2
∫∫

R2+iε

eiu·xP̂ (u)d2u (3.4)

with ε = (ε1, ε2), ε2 > 0, ε1 + ε2 < −1 (it can be shown that with these

restrictions on ε, eε·xP (x) is square integrable). By the Fourier inversion

theorem, we know that:

P̂ (u) =

∫∫

R2+iε

e−iu·xP (x)d2x (3.5)

We then apply our knowledge of the payoff region of P (x) to restrict the

intervals which we’re integrating over. If we let x(m) = ln(S(m)),m = 1, 2

for a spread option with K = 1, our payoff function becomes:

P (x) = (ex
(1)

− ex
(2)

− 1)+.

Given that x(1) = ln(S(1)) we know that x(1) > 0 is a lower bound on x(1),

and we also know that the value of the payoff is zero in any regions where

13



ex
(2)
> ex

(1)
− 1. By Fubini’s Theorem we can rewrite equation (3.6) as:

P̂ (u) =
∞∫
0

e−iu1x(1)




ln(ex
(1)

−1)∫
−∞

e−iu2x(2)
[ex

(1)
− 1− ex

(2)
]dx(2)


 dx(1) (3.6)

=
∞∫
0

e−iu1x(1)
(ex

(1)
− 1)(1−iu2)[ 1

−iu2
− 1

1−iu2
]dx(1). (3.7)

If we perform the change of variables z = e−x(1)
then P̂ (u) becomes:

P̂ (u) =
1

(1− iu2)(−iu2)

1∫

0

ziu1

(
1− z

z

)1−iu2 dz

z
. (3.8)

We then note that the Beta function is defined as:

B(a, b) =
Γ(b)Γ(b)

Γ(a+ b)
=

1∫

0

za−1(1− z)b−1dz.

Applying this to equation (3.8), and knowing that by the properties of the

gamma function Γ(z) = (z− 1)Γ(z− 1), we can derive equation (3.3) above.

This method can be easily extended to the case of K 6= 1, K > 0, by

simply making a change of variables. If we define the spread value when

K = 1 and with initial asset prices S
(1)
0 , S

(2)
0 by:

Spr(S
(1)
0 , S

(2)
0 , 1) = e−rfTEQ

(
(S

(1)
T − S

(2)
T − 1)

+
|S

(1)
0 , S

(2)
0

)

then for the case of K 6= 1 we can write the spread price as:

Spr(S
(1)
0 , S

(2)
0 ,K) = e−rfTEQ

(
(S

(1)
T − S

(2)
T −K)

+
|S

(1)
0 , S

(2)
0

)
.

If we make a simple change of variable, Y
(m)
t =

S
(m)
t

K then our equation

becomes:
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Spr(S
(1)
0 , S

(2)
0 ,K) = e−rfTEQ

(
K
(
Y

(1)
T − Y

(2)
T − 1

)+
|Y

(1)
0 , Y

(2)
0

)

= K ∗ e−rfT ∗ EQ

((
Y

(1)
T − Y

(2)
T − 1

)+
|Y

(1)
0 , Y

(2)
0

)

= K ∗ Spr(Y
(1)
0 , Y

(2)
0 ,K) = K ∗ Spr

(
S
(1)
0

K
,
S
(2)
0

K
, 1

)
.

We can also take steps to ensure that both of our initial asset prices land

on the inverse grid Γ∗. Hurd and Zhou implement a model with equal step

sizes of ηm and η∗ = 2π
Nη along the x and y axes of the complex and real

planes respectively. If we instead specify the step size along each axes of

each plane (i.e. η(1), η(2) and η∗(1), η∗(2)), we can eliminate the need for any

interpolation between grid points. We can additionally specify a minimum

integration interval in the complex plane umin , and use the algorithm given

in 3.2.1 to find a step size size with a minimum truncation error and each

initial asset price on the grid.

Algorithm 3.2.1. Algorithm for Selecting Step Size η(m) given N , S
(m)
0

and umin

1. Select N , ūmin

2. For each asset m = 1, 2, with initial price S
(m)
0 set log-price X

(m)
0 =

S
(m)
0 /K, strike price K.

3. For j = 1 to N

4. Set ūTest =
πi−N/2

X
(m)
0

5. If ūTest > ūmin then return ūTest

6. Else Loop.

3.2.2 Greeks

One of the other benefits of Fourier transform methods are that they allow

for easy computation of the Greeks. The Greeks represent the sensitivity of

15



the price to the various parameters in a given model, and are used both as a

measure of risk, and as a means to hedge against the risk of a given factor.

For example, one could protect against changes in the risk free rate rf by

creating a portfolio with a total ρ = ∂V
∂rf

equal to 0.

By substituting the partial derivative of the characteristic function with

respect to the required parameter into equation (3.1) above, one can find

the desired Greek. For example, for a spread option, the delta (sensitivity

to the price of the underlying asset) with respect to the long-asset is given

by:

∆(1) =
∂V (K)

∂S(1)
=
e−rfT

(2π)2

∫∫

R2+iε

eiu·X0
∂Φ(u;T )

∂S
(1)
0

P̂ (u)d2u

The other Greeks can be defined in a similar manner by replacing the
∂Φ(u;T )

∂S
(1)
0

with the appropriate partial derivative.
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Chapter 4

Market Models

4.1 Univariate Models

4.1.1 Black-Scholes

The Black-Scholes model [4] was one of the first models used to price Eu-

ropean options. The model describes the movement of an asset price over

time as:

dSt = Stµdt+ StσdWt,

where µ is the expected return of the asset, σ is the volatility of the asset

and Wt is a Wiener process.

While the Black-Scholes method is popular due to its ability to provide

analytical prices for a variety of payoffs, it does have several shortcomings,

based primarily on the assumptions about the movement of assets prices.

First, it assumes that the returns on an asset distribute normally, when in

fact evidence has displayed that they do not (in fact they have fatter tails,

and non-zero skew and kurtosis). In addition, it assumes that the volatility

of the underlying asset is a constant, an assumption which also does not

hold true in financial markets. Because of these shortcomings, many other

models have been developed to attempt to address some of the criticisms

levied at the Black-Scholes model while retaining the simplicity in analysis

that it contains.
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4.1.2 Heston Stochastic Volatility

Heston’s model was one of the first to introduce a stochastic volatility com-

ponent [15]. The Heston model extends the traditional Black-Scholes model

by adding a stochastic volatility component, driven by a Cox-Ingersoll-Ross

(CIR) process. The model describes the movement of the stock price and

volatility as:

dSt = Stµdt+ Stσ
√
VtdW

S
t

dVt = ξ(η − Vt)dt+ θ
√
VtdW

V
t .

(4.1)

The CIR process is ideal for modeling the volatility of an asset because it

contains a mean reverting term, which is observed in the volatility of assets

in the market, and is strictly positive, as a volatility must be positive (when

yt hits zero the stochastic term vanishes, and the process moves back towards

its mean) [9]. The parameters of the CIR process ξ, η, and θ represent the

rate of mean reversion, long-run mean of the variance, and volatility of the

variance respectively. The Wiener process which drives the CIR process

can also be related to the Wiener process driving the asset price using the

equation1

dW V
t = ρdW s

t +
√

1− ρ2dZt.

Stochastic volatility methods are used primarily because of their ability

to produce an implied volatility smile. The volatility smile is the phenom-

ena observed in options markets where at-the-money options show a lower

implied volatility than both in and out-of-the-money options.2 By adding a

stochastic volatility process to our market model we are better able to repli-

cate the smiles observed in the market, and can therefore be more confident

1While this holds for the single asset case, in the multivariate setting the Cholesky de-
composition of the covariance matrix defines the relationships between assets and volatil-
ities, see [14].

2An options “moneyness” refers to the current intrinsic value of the option. An at-the-
money option is one where the current price of the underlying asset is equal to the strike
price, while for in and out-of the-money options current value of the underlying asset is
above and below the strike respectively.
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in the prices that our model produces. These effects, however, are only seen

for longer maturities, as the stochastic volatility component alone is unable

to produce realistic behaviour for shorter maturities.

4.1.3 Bates

The Bates model [3] extends the Heston model by adding jumps to the price

process. From our model given in (4.1), we add a jump term St−dZ̃t, where

the jumps are described by a Compound Poisson process to produce the

model given below:

dSt = Stµdt+ Stσ
√
VtdW

S
t + St−dZ̃t

dVt = ξ(η − Vt)dt+ θ
√
VtdW

V
t

(4.2)

where Z̃t is a compound poisson process.

A Compound Poisson Process Xt is a stochastic process defined by:

Xt =
Nt∑

i=1

Yi (4.3)

where Nt is the number of jumps up to time t, which follows a Poisson distri-

bution with parameter λ, and Yi are independent and identically distributed

jumps. Our model assumes that the jumps are drawn from a normal distri-

bution with mean k and variance δ2. The timing of the jumps is set such

that Ti − Ti−1 is distributed exponentially with parameter λ. While Equa-

tion (4.3) describes a univariate Compound Poisson Process, we will extend

it to our n-dimensional space in the next section by assuming jump sizes for

the assets have the same as the correlation matrix as the one used with the

Wiener Processes driving the asset price.

The Bates model has the benefit of incorporating both stochastic volatil-

ity and jumps, which overcomes some of the problems with shorter matu-

rities that the Heston model experiences [9]. The jump component can be

calibrated to effectively generate smiles and skews at shorter maturities,

while the stochastic volatility parameters can be used for long-term smiles.
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4.2 Multivariate Models

4.2.1 Multivariate Bates

Extending the Bates model to the multivariate case, our market model de-

scribes the movement in asset prices and volatilities as:

dS
(m)
t = S

(m)
t µ(m)dt+ S

(m)
t σ(m)

√
V

(m)
t dW

S(m)
t + S

(m)
t−

d
˜
Z

(m)
t

dV
(m)
t = ξ(m)(η(m) − V

(m)
t )dt+ θ(m)

√
V

(m)
t dW

V (m)
t for m = 1, 2, ...d

(4.4)

where W
S(m)
t and W

V (m)
t are Wiener processes driving the movement of

the mth asset and volatility respectively, and Z̃t is a compound poisson

process with jump intensity factor λ and jump sizes distributed multivariate

log-normally (log(Z̃t) ∼ N(k,∆2)).

Applying Ito’s lemma to X
(m)
t = ln

(
S
(m)
t

)
produces:

dX
(m)
t = (r − λk(m) −

1

2
σ(m)2V

(m)
t )dt+ σ(m)

√
V

(m)
t dW

S(m)
t + dZ

(m)
t (4.5)

where Z
(m)
t is a compound Poisson process with multivariate normal dis-

tribution, Zt ∼ N(k,∆2). The drift component µ(m) is fixed under the

risk-neutral measure to be r − λk(m).

Since the jump and continuous components of our model are indepen-

dent, the characteristic function of Xt is the product of the characteristic

functions of each component:

φXt(u) = φXc
t
(u)φZt(u).

As such we first consider only the continuous component of our model,

where we define dX
(m)
t

c
as:

dX
(m)
t

c
= (r − λk(m) −

1

2
σ(m)2V

(m)
t )dt+ σ(m)

√
V

(m)
t dW

S(m)
t
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with

dX
(m)
t = dX

(m)
t

c
+ dZ

(m)
t .

Theorem 4.2.1. For the market model described in (4.4) the characteristic

function of the continuous component of Xt satisfies the following PDE:

0 =
∂f

∂t
+

d∑

m=1

[
∂f

∂x(m)

(
r − λk(m) −

1

2
σ(m)2v(m)

)
+

∂f

∂v(m)

(
ξ(m)(η(m) − v(m))

)]

+
1

2

d∑

m,n=1

[
∂2f

∂x(m)∂x(n)
ρs(m)s(n)

σ(m)σ(n)
√
v(m)v(n)

+2
∂2f

∂x(m)∂v(n)
ρs(m)v(n)

σ(m)θ(n)
√
v(m)v(n)

+
∂2f

∂v(m)∂v(n)
ρv(m)v(n)

√
v(m)v(n)θ(m)θ(n)

]

(4.6)

with terminal condition f(~x,~v, T, ~u) = ei~u·~x.

Proof: Following the arguments of Cont and Tankov [9], and Heston

[15] we let:

f(~x,~v, t, ~u) = EQ(e
iu·Xc

T |~x = Xc
t , ~v = Vt)

where EQ denotes the expectation under the risk-neutral measure Q. If we

take Xc
t to be Xc

0 and Vt = V0 then f is the characteristic function of Xc
t .

Applying Ito’s lemma to f gives us:

df =
d∑

m=1

(
∂f

∂x(m)
dx(m) +

∂f

∂v(m)
dv(m)

)
+

1

2

d∑

m,n=1

(
∂2f

∂x(m)∂x(j)
d[x(m), x(n)]

+2
∂2f

∂x(m)∂v(j)
d[x(m), v(n)] +

∂2f

∂v(m)∂v(j)
d[v(m), v(n)]

)
+
∂f

∂t
dt.

(4.7)
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We know that:

d[x(m), x(n)] = ρs(m)s(n)

√
v(m)v(n)dt

d[x(m), v(n)] = ρs(m)v(n)

√
v(m)v(n)θ(m)dt

d[(v(m), v(n)] = ρv(m)v(n)

√
v(m)v(n)θ(m)θ(n)dt

where [A,B] denotes the quadratic covariation of A,B, defined as in Cont

and Tankov [9] as:

[A,B]t = AtBt −A0B0 −

t∫

0

As−dBs −

t∫

0

Bs−dAs.

Applying this to equation (4.7) yields:

df =
d∑

m=1

[
∂f

∂x(m)

(
(r − λk(m) −

1

2
σ(m)2v(m))dt+ σ(m)

√
v(m)dW

s(i)
t

)

+
∂f

∂v(m)

(
ξ(m)(η(m) − v(m))dt+ θ(m)

√
v(m)dW

v(i)
t

)]

+
1

2

d∑

m,n=1

(
∂2f

∂x(m)∂x(j)
ρs(m)s(n)

σ(m)σ(n)
√
v(m)v(n)dt

+2
∂2f

∂x(m)∂v(n)
ρs(m)v(n)

σ(m)
√
v(m)v(n)θ(m)dt

+
∂2f

∂v(m)∂v(n)
ρv(m)v(n)

√
v(m)v(n)θ(m)θ(n)dt

)
+
∂f

∂t
dt

(4.8)

We can show that f is a martingale by iterated expectations, and there-

fore the drift term must be equal to zero. Applying this to equation (4.8)

produces the result stated in (4.6). In general equation (4.6) is non-linear in

the co-efficients and a solution is not available without making simplifying

assumptions.

We now consider two specific cases of our model, and limit ourselves to

two assets. In the first, we assume no correlation between the asset prices
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in the continuous component (although we allow for correlation through

the jumps) which we’ll refer to as the Independent Volatility Case (in the

sense that each asset has an Independent Volatility driving its correlated

continuous component). In the second we extend the models of Dempster

and Hong [11], and Bates [3], which features a single stochastic volatility

process which drives both assets, to include jumps. We refer to this case

as the Proportional Volatility or Common Volatility case. In both cases we

assume that the compound Poisson process driving the jumps is independent

of the Wiener processes driving the continuous components of our price

processes.

For the Independent Volatility case, we make the following assumptions:

ρs(m)s(n)
= 0 for m 6= n; 1 for m = n

ρv(m)v(n)
= 0 for m 6= n; 1 for m = n

ρs(m)v(n)
= 0 for m 6= n (4.9)

Given the simplifications given in (4.9), we can solve the PDE given in (4.6).

Theorem 4.2.2. For the market model described in (4.4), with the assump-

tions given in (4.9) the characteristic function of Xt is given by:
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φXt(u) = φXc
t
(u)φZt(u) (4.10)

where

φXc
t
(u) = ei~u·

~X0+C(T−t)+ ~V0·
~D(T−t)

φZt(u) = etλ(exp(iu
T k− 1

2
uT∆u)−1)

D(m)(s) =
2ζ(m)(1− e−γ(m)s)

2γ(m) − (γ(m) − ω(m))(1 − e−γ(m)s)

C(s) =

2∑

m=1

(
iu(m)

(
r − λk(m)

))
s

−
ξ(m)η(m)

θ(m)2

[
2 ln

(
2γ(m) − (γ(m) − ω(m))(1 − e−γ(m)s)

2γ(m)

)
+ (γ(m) − ω(m))s

]

ζ(m) = −
1

2
θ(m)2(iu(m)σ(m) + u(m)2σ(m)2)

ω(m) = ξ(m) − iθ(m)σ(m)ρs(m)v(m)
u(m)

γ(m) =

√
ω(m)2 − 2θ(m)2ζ(m)

for m = 1, 2.

Proof: Our assumptions reduce the PDE given in (4.6) to:

0 =

2∑

m=1

[
∂f

∂x(m)

(
r − λk(m) −

1

2
σ(m)2v(m)

)
+

∂f

∂v(m)

(
ξ(m)(η(m) − v(m))

)

+
1

2

(
∂2f

∂x(m)2
σ(m)2v(m) + 2

∂2f

∂x(m)∂v(m)
ρs(m)v(m)

σ(m)v(m)θ(m) +
∂2f

∂v(m)2
v(m)θ(m)2

)]
+
∂f

∂t
.

(4.11)

Extending the work of Heston [15] we guess a solution of the form:

f(~x,~v, t, ~u) = ei~u·~x+C(T−t)+~v·~D(T−t)
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where ~C(T − t) and

~D(T − t) =

[
D1(T − t)

D2(T − t)

]

are functions of t alone. Applying our guess to (4.11) gives us:

C ′ +
2∑

m=1

D′

(m)v
(m) =

2∑

m=1

[(
iu(m)

(
r − λk(m) −

1

2
σ(m)2v(m)

))

+D(m)ξ
(m)(η(m) − v(m)) +

1

2

(
−u(m)2σ(m)2v(m)

+D2
(m)v

(m)θ(m)2 + 2(iu(m)D(m)ρs(m)v(m)
σ(m)v(m)θ(m))

)]

(4.12)

where C ′ and D′ represent the derivatives with respect to t of C and D

respectively. This produces a series of Riccati ODE’s:

D′

(m)(s) = −
1

2
σ(m)2

(
iu(m) + u(m)2

)
−
(
ξ(m) − iu(m)ρs(m)v(m)

σ(m)θ(m)
)
D(m)

+
1

2
θ(m)2D(m)

2 (4.13)

for m = 1, 2, and

C ′(s) =

2∑

m=1

((
iu(m)

(
r − λk(m)

))
+ ξ(m)η(m)D(m)(s)

)
(4.14)

which, following from the terminal condition of (4.6), have initial conditions

D(m)(0) = 0 and C(0) = 0. The solutions to these equations are given in

(4.10) above. It should be noted that because the continuous components

of the asset prices are independent of each other, the characteristic function

given above can also be written as:

φXt(u) = φ
X

(1),c
t

(u)φ
X

(2),c
t

(u)φZt(u)

where φ
X

(m),c
t

(u) is the characteristic function of the continuous component

of the mth asset, as given by Albrecher et al [1].

Looking at the jump component, we know from the LevyKhintchine
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formula (see [9]) that the characteristic function of a compound poisson

process is given by:

E(eiu·Zt) = etλ
∫
Rd

(eiu·x−1)f(dx)

where f is the cumulative distribution function of the jump size distribution.

Since the jumps in Zt are distributed normally with mean k and covariance

matrix ∆, t he characteristic function of the jump component is given as:

φZt(u) = etλ(e
(iu′k− 1

2u′∆u)
−1)

where in this case ′ indicates the transpose operator.

We now consider the case of proportional stochastic volatilities as in

Dempster and Hong [11]. In this case we require only one volatility pro-

cess for all of the assets and use the parameter σ(m) to allow for varying

volatilities between the assets. Our model for the log-prices and volatility is

thus:

dX
(m)
t = dX

(m)
t

c
+ dZ

(m)
t

dX
(m)
t

c
= (r − λk(m) −

1

2
σ(m)2Vt)dt+ σ(m)

√
VtdW

S(m)
t

dVt = ξ(η − Vt)dt+ θ
√
VtdW

V
t . (4.15)

Theorem 4.2.3. For the market model described in (4.15), the character-

istic function of Xt is given by:
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φXt(u) = φXc
t
(u)φZt(u) (4.16)

where

φXc
t
(u) = ei~u·

~X0+C(T−t)+V0D(T−t) (4.17)

D(s) =
2ζ(1− e−γs)

2γ − (γ − ω)(1− e−γs)

C(s) =
( d∑

m=1

iu(m)
(
r − λk(m)

))
s−

ξη

θ2

[
2 ln

(
2γ − (γ − ω)(1− e−γs)

2γ

)
+ (γ − ω)s

]

ζ = −
1

2

[ d∑

m=1

iσ(m)2u(m) +
d∑

m,n=1

σ(m)σ(n)u(m)u(n)ρs(m)s(n)

]

ω = ξ − iθ(

2∑

m=1

ρs(m)vu
(m))

γ =
√
ω2 − 2θ2ζ

(4.18)

with φZt(u) defined as in (4.10) above.

Proof: Repeating the analysis above the characteristic function of X
(c)
t

must satisfy the following PDE:

0 =

d∑

m=1

[
∂f

∂x(m)

(
r − λk(m) −

1

2
σ(m)2v(m)

)
+

∂2f

∂x(m)∂v
ρs(m)vσ

(m)θv

]

+
1

2

d∑

m,n=1

(
∂2f

∂x(m)∂x(n)
ρs(m)s(n)

σ(m)σ(n)v

)
+
∂f

∂v
ξ(η − v) +

1

2

∂2f

∂v2
θ2v +

∂f

∂t
.

(4.19)

As above we guess the following form of the solution:

f(~x, v, t, ~u) = ei~u·~x+C(T−t)+vD(T−t).
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Which, when applied to equation (4.19) yields the ODE’s:

D′(s) = −
1

2

[ d∑

m=1

σ(m)2iu(m) +

d∑

m,n=1

(u(m)u(n)σ(m)σ(n)ρs(m)s(n)
)
]

+
[ d∑

m=1

iu(m)ρs(m)vσ
(m) − ξ

]
D +

1

2
θ2D2 (4.20)

C ′(s) =

d∑

m=1

iu(m)
(
r − λk(m)

)
+ ξηD(s).

Once again, our initial conditions are C(0) = 0 and D(0) = 0. The

solutions to (4.20) are:

D(s) =
2ζ(1− e−γs)

2γ − (γ − ω)(1 − e−γs)

C(s) =
( d∑

m=1

iu(m)
(
r − λk(m)

))
s−

ξη

θ2

[
2 ln

(
2γ − (γ − ω)(1− e−γs)

2γ

)
+ (γ − ω)s

]
.

where

ζ = −
1

2

[ d∑

m=1

iσ(m)2u(m) +

d∑

m,n=1

σ(m)σ(n)u(m)u(n)ρs(m)s(n)

]

ω = ξ − iθ(
2∑

m=1

ρs(m)vum)

γ =
√
ω2 − 2θ2ζ.
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Chapter 5

Numerical Computation of

Spread Option Prices

5.1 Pricing

Table 5.1 compares the results produced by Monte-Carlo simulation with

the results produced by our Fast-Fourier transform method for the propor-

tional volatility case for various strikes. The second column give s the prices

obtained from 1, 000, 000 Monte-Carlo simulations of 2000 time steps each,

while the subsequent columns present the percent error obtained using the

FFT method for various values of N .

Much like Hurd and Zhou we observe that the price produced by our

FFT method is consistently biased low against the Monte-Carlo price, al-

though we observe that the bias is greater in magnitude than under their

models. One possible reason for this is the presence of jumps in our model

which increase the potential for error in our Monte-Carlo simulation (as we

require more simulations for convergence), and also may increase the trun-

cation error under our model. In spite of this, it is obvious that the FFT

method provides an accurate means for the price of a spread option under

our common volatility jump-diffusion model.

Similarly Table 5.2 compares the errors for the Independent Volatilities

case. In this case we see an error of a similar magnitude to the proportional
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Table 5.1: Comparison of Monte-Carlo method with FFT method for pro-
portional volatility case for umin = 20.
S

(1)
0 = 100 , S

(2)
0 = 96, σ(1) = 1, σ(2) = 0.5, ξ = 1, η = 0.04, θ = 0.05, V0 = 0.04, λ = 1,

k(1) = k(2) = 0.05, δ(1) = δ(2) = 0.05, ρS(1)S(2) = 0.5, ρS(1)V = −0.5, ρS(2)V = 0.25,
rf = 0.1, T = 1

K MC 128 256 512 1024

2 8.359781 -0.008902 -0.008902 -0.008855 -0.008902

2.2 8.264856 -0.009001 -0.009001 -0.008967 -0.009

2.4 8.170669 -0.009127 -0.009127 -0.009081 -0.009127

2.6 8.063694 -0.007571 -0.00757 -0.007533 -0.00757

2.8 7.984489 -0.009357 -0.009356 -0.009308 -0.009356

3 7.879148 -0.007781 -0.00778 -0.007743 -0.00778

3.2 7.787975 -0.007905 -0.007905 -0.007849 -0.007905

3.4 7.697545 -0.008 -0.008 -0.007956 -0.008

3.6 7.633466 -0.011431 -0.011431 -0.011392 -0.011431

3.8 7.544433 -0.011586 -0.011586 -0.011531 -0.011586

4 7.456122 -0.010902 -0.010902 -0.010856 -0.010901

volatility case, but we note that there is significantly less discretization error

in this case, as the error size remains fairly constant as we increase the

number of steps.

Table 5.2: Comparison of Monte-Carlo method with FFT method for Inde-
pendent Volatilities case for umin = 20.
S

(1)
0 = 100 , S

(2)
0 = 96, σ(1) = 1, σ(2) = 0.5, ξ = 1, η = 0.04,

θ = 0.05, V0 = 0.04, λ = 1, k(1) = k(2) = 0.05, δ(1) = δ(2) =
0.05, ρS(1)S(2) = 0.5, ρS(1)V = −0.5, ρS(2)V = 0.25, rf = 0.1, T = 1

K MC 128 256 512 1024

2 10.227759 -0.00744657937788033 -0.007447 -0.007447 -0.007447

2.2 10.132205 -0.007322 -0.007322 -0.007322 -0.007322

2.4 10.065256 -0.009958 -0.009958 -0.009958 -0.009958

2.6 9.947149 -0.007493 -0.007493 -0.007493 -0.007493

2.8 9.890918 -0.011133 -0.011133 -0.011133 -0.011133

3 9.73777 -0.00495 -0.00495 -0.00495 -0.00495

3.2 9.715475 -0.011996 -0.011996 -0.011996 -0.011996

3.4 9.597358 -0.00922 -0.00922 -0.00922 -0.00922

3.6 9.525911 -0.011181 -0.011181 -0.011181 -0.011181

3.8 9.43138 -0.010694 -0.010694 -0.010694 -0.010694

4 9.339695 -0.010437 -0.010437 -0.010437 -0.010437

We also examine the accuracy of our method when we vary the jump

parameters, to ensure that our method is flexible in the arguments that it
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produces reliable results for. As we see in Table 5.3 we continue to generate

reliable results even as we increase the jump parameters to introduce further

volatility into our model. This result is encouraging, as it gives us comfort

that our model can be modified to better simulate a variety of assets while

still generating accurate results.

Table 5.3: Comparison of Monte-Carlo method with FFT method for pro-
portional volatility case while varying jump parameters
S

(1)
0 = 100 , S

(2)
0 = 96, K = 1, σ(1) = 1, σ(2) = 0.5, ξ = 1, η = 0.04, θ = 0.05, V0 = 0.04,

λ = 1, k(1) = k(2) = 0.05, δ(1) = δ(2) = 0.05, ρS(1)S(2) = −0.5, ρS(1)V = +0.5,
ρS(2)V = −0.25, rf = 0.1, T = 1, N = 512, ūmin = 40

k(1) = k(2)

0.05 0.10 0.15 0.20 0.25

λ

2 -0.0033 -0.0057 -0.0006 -0.0029 -0.0038
3 -0.0007 -0.0059 -0.0036 -0.0031 -0.0048
4 -0.0017 -0.0026 -0.0037 -0.0037 -0.0040
5 -0.0033 -0.0061 -0.0045 -0.0011 -0.0038
6 -0.0064 -0.0037 -0.0004 -0.0019 -0.0003

In addition to the accuracy of the method, it is also useful to compare the

computational effort required to price spread options under each method.

We can compare the execution times for the FFT method for both the pro-

portional volatility case and the independent volatility case, as well as for

1,000,000 Monte-Carlo simulations of 2000 time steps, which are given in ta-

ble 5.4. This is where the benefits of the FFT method become more clear, as

Table 5.4: Run times in seconds for FFT vs. Monte-Carlo Simulation,
ūmin = 20

Grid Size Proportional Volatility Independent Volatilities

64 0.020426 0.054677

128 0.050574 0.084188

256 0.233219 0.346391

512 0.997439 1.454524

1024 3.970557 5.920600

MC 1368.67 1503.42

the FFT method vastly outperforms the Monte-Carlo method. In addition,
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because of the additional variance introduced when we add a jump compo-

nent to our model the Monte-Carlo method is very slow to converge and

requires a high number of simulations and a fine grid to accurately generate

a price. Our Proportional Volatility Case also outperforms the Independent

Volatility case, due mainly to the fact that the Independent Volatility case

essentially requires the calculation of 3 characteristic functions (one for each

asset-volatility pair, and one for the correlated jumps), while our Propor-

tional Volatility case requires only 2 (one for the continuous component, and

one for the jumps).

Finally, we compare the FFT prices produced by the Proportional Volatil-

ity and Independent Volatility Cases. Fixing all parameters but the correla-

tion (since this is essentially the area where the two models vary) Figure 5.1

shows the difference in prices Pprop−Pind for various values of the correlation

between assets. Note that while the independent case does not have correla-

tion between the Wiener processes driving the continuous component, it does

have correlation in the jump component. The results appear as we would

expect them to, with the Independent Volatility Case producing a higher

prices when the correlation in the Proportional Volatility case is high, while

the reverse is true when the correlation in the Proportional Volatility case

is low. It should be noted that we see a much greater difference in prices

when we decrease the Common Volatility correlation, showing the price in

the Common Volatility model is much more dependent on the correlation.

5.2 Parameter Sensitivities

We now consider just the Proportional Volatility case, and examine the sen-

sitivities of the price to the various parameters in our model. For all the cases

stated below the following parameters were used, unless otherwise stated:

S
(1)
0 = 100 , S

(2)
0 = 96, σ(1) = 1, σ(2) = 0.5, ξ = 1, η = 0.04, θ = 0.05,

V0 = 0.04, λ = 1, k(1) = k(2) = 0.05, δ(1) = δ(2) = 0.05, ρS(1)S(2) = 0.5,

ρS(1)V = −0.5, ρS(2)V = 0.25, rf = 0.1, T = 1, K = 1. We additionally

select a grid size of N = 512, damping parameter ε = (−3, 1), and a min-

imum truncation interval of umin = 40, with the actual truncation interval
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Figure 5.1: Price Difference between Proportional Volatility Model and In-
dependent Volatility Model with Asset Correlation ρs(1)s(2)

selected using Algorithm (3.2.1).

We first look at some simpler plots to confirm that the prices produced

when we vary our parameters behave as we intuitively know they should.

Figure 5.2 and Table 5.5 show the price as we vary both the initial moneyness

of our option and the time to maturity. Obviously we would expect the price

of the option to increase as the option ranges from out-of-the-money to in the

money, and also to increase as the time to maturity rises, both facts which

we observe. The data shows that a large variation based on the moneyness

and time to maturity, and the plot also shows that at shorter maturities the

effect of increasing the moneyness of the option is much greater, which we

would again expect.

In Figure 5.3 we look at how moneyness and strike affect the price of the

our spread option. We again observe results as we expect, with the price

increasing as both the moneyness increases, and as the strike decreases.

We also notice that for a given strike the change in price is non-linear as a

function of the moneyness, an indication of a skew in the implied volatilities.

33



0
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6
1.8

2

−4

−3

−2

−1

0

1

2

3

4

5
0

2

4

6

8

10

12

14

S(1) − S(2)
T

P
ri
ce

Figure 5.2: Price with Variation in Moneyness and Time to Maturity
σ(1) = 1, σ(2) = 0.5, ξ = 1, η = 0.04, θ = 0.05, V0 = 0.04, λ = 1, k(1) = k(2) = 0.05,
δ(1) = δ(2) = 0.05, ρS(1)S(2) = 0.5, ρS(1)V = −0.5, ρS(2)V = 0.25, rf = 0.1, K = 1

Table 5.5: Comparison of Prices for variation in Moneyness and Time to
Maturity T

T
0.1 0.31 0.52 0.73 0.94 1.16 1.37 1.58 1.79 2

S
(1)
0 − S

(2)
0

5 4.79 6.3 7.41 8.33 9.13 9.86 10.52 11.13 11.71 12.25
4 4.06 5.67 6.82 7.76 8.57 9.3 9.97 10.6 11.18 11.73
3 3.4 5.08 6.25 7.21 8.03 8.78 9.45 10.08 10.67 11.22
2 2.8 4.53 5.72 6.69 7.52 8.27 8.95 9.58 10.17 10.73
1 2.28 4.02 5.22 6.19 7.03 7.78 8.46 9.1 9.69 10.26
0 1.82 3.55 4.75 5.72 6.56 7.31 8 8.64 9.23 9.8
-1 1.43 3.12 4.31 5.27 6.11 6.87 7.55 8.19 8.79 9.35
-2 1.1 2.73 3.9 4.86 5.69 6.44 7.13 7.76 8.36 8.92
-3 0.83 2.37 3.51 4.46 5.29 6.03 6.72 7.35 7.95 8.51
-4 0.62 2.05 3.16 4.09 4.91 5.65 6.32 6.96 7.55 8.11

While the calculation of the implied volatilities and correlations is beyond

the scope of this paper, it should be noted that the skews and smiles in

univariate models tend to occur because the market is overestimating the
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Figure 5.3: Price with Variation in Moneyness and Strike
S

(1)
0 = 100 , S

(2)
0 = 96, σ(1) = 1, σ(2) = 0.5, ξ = 1, η = 0.04, θ = 0.05, V0 = 0.04, λ = 1,

k(1) = k(2) = 0.05, δ(1) = δ(2) = 0.05, ρS(1)S(2) = 0.5, ρS(1)V = −0.5, ρS(2)V = 0.25,
rf = 0.1

Table 5.6: Comparison of Prices for variation in Moneyness and Strike K
K

0.25 1.28 2.3 3.33 4.36 5.38 6.41 7.43 8.46 9.49

S(1) − S(2)

5 12.92 12.28 11.67 11.07 10.49 9.93 9.39 8.87 8.37 7.89
4 11.57 10.98 10.4 9.84 9.31 8.79 8.29 7.81 7.35 6.91
3 10.32 9.76 9.23 8.71 8.22 7.74 7.28 6.85 6.43 6.03
2 9.15 8.64 8.14 7.67 7.21 6.78 6.36 5.97 5.59 5.23
1 8.07 7.6 7.15 6.71 6.3 5.91 5.53 5.17 4.83 4.51
0 7.08 6.65 6.24 5.85 5.47 5.12 4.78 4.46 4.16 3.87
-1 6.18 5.79 5.42 5.07 4.73 4.41 4.11 3.83 3.56 3.31
-2 5.37 5.02 4.68 4.37 4.07 3.79 3.52 3.27 3.03 2.81
-3 4.64 4.32 4.02 3.74 3.48 3.23 3 2.77 2.57 2.37
-4 3.98 3.7 3.44 3.19 2.96 2.74 2.54 2.34 2.16 2

volatility of away from the money options (which, since the price of an option

is a function of the volatility, translates into higher than expected prices).

Thus the non-linearity we see in the price can be taken as evidence of the
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presence of a skew in our implied volatilities and correlations, as we would

expect with both a stochastic volatility and jump component.
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Figure 5.4: Price with Variation in Asset-Volatility Correlation ρs(m)v,
ρs(1)s(2) = +0.5

S
(1)
0 = 100 , S

(2)
0 = 96, σ(1) = 1, σ(2) = 0.5, ξ = 1, η = 0.04, θ = 0.05, V0 = 0.04, λ = 1,

k(1) = k(2) = 0.05, δ(1) = δ(2) = 0.05, rf = 0.1, T = 1, K = 1

We consider next the variation of the correlation between each asset and

the driving volatility process. We look first at the case where the assets have

positive correlation, as given in Figure 5.5. In this plot we see an increase

in the price as the correlation between the short asset and the volatility

increases, while we also observe an increase in the price for a constant ρs(2)v

as we decrease the value of ρs(1)v. The highest price is observed for a strong

correlation between the short asset and the volatility, and a strong negative

correlation between the the long asset and the volatility.

In the alternative case, as shown in Figure 5.5, we see the surface rotated,

with the maximum price occurring when both ρs(1)v and ρs(2)v = 1. For both

cases however, as Table 5.7 shows, the selection of correlation parameters has

very small effects on the price produced, as we see little variation between
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Figure 5.5: Price with Variation in Asset-Volatility Correlation ρs(m)v,
ρs(1)s(2) = −0.5

S
(1)
0 = 100 , S

(2)
0 = 96, σ(1) = 1, σ(2) = 0.5, ξ = 1, η = 0.04, θ = 0.05, V0 = 0.04, λ = 1,

k(1) = k(2) = 0.05, δ(1) = δ(2) = 0.05, rf = 0.1, T = 1, K = 1

the high and low prices produced in this example.

Table 5.7: Comparison of Prices for Variation in Asset-Volatility Correlation
ρs(m)v with ρs(1)s(2) = −0.5

ρs(2)v
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

ρs(1)v

-1 12.47 12.48 12.49 12.5 12.5 12.51 12.52 12.53 12.53 12.54
-0.8 12.47 12.48 12.49 12.5 12.51 12.51 12.52 12.53 12.54 12.54
-0.6 12.48 12.48 12.49 12.5 12.51 12.52 12.52 12.53 12.54 12.55
-0.4 12.48 12.49 12.49 12.5 12.51 12.52 12.53 12.53 12.54 12.55
-0.2 12.48 12.49 12.5 12.5 12.51 12.52 12.53 12.54 12.54 12.55
0 12.48 12.49 12.5 12.51 12.51 12.52 12.53 12.54 12.55 12.55
0.2 12.48 12.49 12.5 12.51 12.51 12.52 12.53 12.54 12.55 12.56
0.4 12.48 12.49 12.5 12.51 12.52 12.52 12.53 12.54 12.55 12.56
0.6 12.48 12.49 12.5 12.51 12.52 12.53 12.53 12.54 12.55 12.56
0.8 12.48 12.49 12.5 12.51 12.52 12.53 12.53 12.54 12.55 12.56
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Looking at the effects of the jump frequency and asset correlation in

Figure 5.6 we see interesting results. While we see the expected results of

the price increasing with both the frequency of jumps, and as our correlation

moves towards −1, the increase in price is not linear.
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Figure 5.6: Price with Variation in Jump Frequency and Asset Correlation
S

(1)
0 = 100 , S

(2)
0 = 96, σ(1) = 1, σ(2) = 0.5, ξ = 1, η = 0.04, θ = 0.05, V0 = 0.04,

k(1) = k(2) = 0.05, δ(1) = δ(2) = 0.05, ρS(1)V = −0.5, ρS(2)V = 0.25, rf = 0.1, T = 1,
K = 1

As seen in table 5.8 for lower jump frequencies the effects of decreasing

the correlation tends to decrease in the area around -1, while for higher jump

frequencies the effect remains strong right to ρs(1)s(2) = −1. Obviously as we

increase the jump frequency for negative correlations we expect more jumps

to occur, and as such we expect more sudden movements of the underlying

asset prices in opposite directions, which manifests itself in the higher prices

produced under our model. We also observe that both parameters have a

strong effect on the price, as we see it range from the low end of 7.02 up to

18.9 at the high end.

It is also interesting to observe the effects of varying the mean jump size

parameter, k, for each asset. As Figure 5.7 shows we see a large increase
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Table 5.8: Comparison of Prices for Variation in Jump Frequency λ and
Asset Correlation ρs(1)s(2)

ρs(1)s(2)
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

λ

0.1 13.37 14.07 14.74 15.39 16.02 16.63 17.22 17.79 18.35 18.9
1.14 12.85 13.51 14.14 14.76 15.35 15.92 16.48 17.03 17.56 18.08
2.18 12.3 12.92 13.51 14.09 14.64 15.18 15.71 16.22 16.72 17.21
3.23 11.71 12.29 12.84 13.38 13.9 14.4 14.89 15.37 15.84 16.29
4.27 11.1 11.62 12.13 12.62 13.1 13.56 14.01 14.46 14.89 15.31
5.31 10.43 10.91 11.37 11.81 12.24 12.66 13.07 13.47 13.86 14.24
6.35 9.72 10.13 10.54 10.93 11.31 11.68 12.04 12.39 12.74 13.08
7.39 8.93 9.28 9.62 9.95 10.27 10.58 10.89 11.19 11.49 11.77
8.44 8.05 8.32 8.58 8.84 9.09 9.33 9.57 9.81 10.04 10.27
9.48 7.02 7.19 7.35 7.52 7.68 7.83 7.99 8.14 8.3 8.45

in the price produced as we move away from equal expected jump sizes.

While this result is expected (if we believe one asset will jump with larger

magnitude than the other than naturally we should believe that the spread

between the assets will change), the extent of the variation is interesting to

observe.

We also observe that the price increases as long as the mean jump sizes

are not equal, but regardless of the sign of the mean jump sizes. Table

5.9 shows that the price is extremely sensitive to the mean jump size, and

particularly to the differences in the mean jump size. This effect is magnified

when we increase the parameter λ as the number of jumps, and hence the

effect of the jumps on the price increases. In these cases the slope as we

leave the region where the mean jump sizes are equal tends to increase more

rapidly.

Figure 5.8 shows the variation in price for different values of the asset-

volatility multiplier, σ(m). For both assets we see an increase as we increase

σ(m), as this tends to increase the overall volatility of each asset. The effects

of σ(m) are more muted than other parameters, as shown in Table 5.10, as

they tend to linearly increase the price and the price does not seem to be

more strongly related to either σ(1) or σ(2). Finally, we examine the effect of
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Figure 5.7: Price with Variation in Mean Jump Size
S

(1)
0 = 100 , S

(2)
0 = 96, σ(1) = 1, σ(2) = 0.5, ξ = 1, η = 0.04, θ = 0.05, V0 = 0.04, λ = 1,

δ(1) = δ(2) = 0.05, ρS(1)S(2) = 0.5, ρS(1)V = −0.5, ρS(2)V = 0.25, rf = 0.1, T = 1, K = 1

Table 5.9: Comparison of Prices for variation in Mean Jump Size k(m)

k(2)

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

k(1)

-0.2 8.87 9.56 10.55 11.77 13.14 14.58 16.06 17.52 18.95
-0.15 8.57 8.81 9.38 10.26 11.39 12.67 14.03 15.42 16.81
-0.1 8.83 8.65 8.77 9.22 10 11.03 12.23 13.51 14.82
-0.05 9.6 9.07 8.76 8.74 9.08 9.76 10.7 11.81 13.01
0 10.81 10.01 9.35 8.9 8.75 8.96 9.53 10.38 11.41

0.05 12.39 11.39 10.46 9.67 9.07 8.77 8.86 9.32 10.09
0.1 14.3 13.16 12.04 10.98 10.03 9.28 8.82 8.77 9.13
0.15 16.49 15.27 14.01 12.76 11.55 10.45 9.52 8.9 8.71
0.2 18.97 17.69 16.35 14.97 13.57 12.21 10.92 9.81 9.01

varying the jump-size variance on the price, as shown in Figure 5.9. As we

increase the variance in the jumps for both assets we see the price increase,

as we would expect, and in a non-linear fashion. Increases in the variance

for the long asset tend to have a greater effect on the price, since there’s a
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Figure 5.8: Price with Variation in Asset-Volatility Multiplier σ(m)

S
(1)
0 = 100 , S

(2)
0 = 96, ξ = 1, η = 0.04, θ = 0.05, V0 = 0.04, λ = 1, k(1) = k(2) = 0.05,

δ(1) = δ(2) = 0.05, ρS(1)S(2) = 0.5, ρS(1)V = −0.5, ρS(2)V = 0.25, rf = 0.1, T = 1, K = 1

Table 5.10: Comparison of Prices for variation in σ(m)

σ(2)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

σ(1)

0.5 6.13 6.52 6.98 7.52 8.1 8.72 9.36 10.03 10.72 11.41
0.6 6.53 6.83 7.21 7.68 8.2 8.77 9.37 10 10.65 11.32
0.7 7.01 7.23 7.54 7.93 8.39 8.9 9.45 10.04 10.66 11.3
0.8 7.55 7.7 7.94 8.26 8.66 9.11 9.61 10.15 10.73 11.33
0.9 8.15 8.23 8.41 8.67 9 9.39 9.84 10.33 10.86 11.43
1 8.77 8.81 8.93 9.13 9.41 9.74 10.14 10.58 11.06 11.59
1.1 9.43 9.42 9.5 9.65 9.86 10.15 10.49 10.88 11.32 11.8
1.2 10.1 10.06 10.1 10.2 10.37 10.6 10.89 11.24 11.63 12.07
1.3 10.79 10.72 10.72 10.78 10.91 11.1 11.34 11.64 11.99 12.39
1.4 11.49 11.4 11.37 11.39 11.48 11.63 11.83 12.09 12.4 12.75

greater probability that the long asset will increase it’s spread over the short

asset and increasing the variance of jumps in both assets tends to compound

the effects, as we would expect. Table 5.11 shows that the jump-size variance

parameter has a fairly substantial effect on the price, as increasing from 0.02

to 0.2 can cause an increase of 40% in the price of the spread.
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Figure 5.9: Price with Variation in Jump-Size Variance
S

(1)
0 = 100 , S

(2)
0 = 96, σ(1) = 1, σ(2) = 0.5, ξ = 1, η = 0.04, θ = 0.05, V0 = 0.04, λ = 1,

k(1) = k(2) = 0.05, ρS(1)S(2) = 0.5, ρS(1)V = −0.5, ρS(2)V = 0.25, rf = 0.1, T = 1, K = 1

Table 5.11: Comparison of Prices for variation in Jump-Size Variance δ(m)

δ(2)

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

δ(1)

0.02 8.52 8.57 8.68 8.84 9.05 9.29 9.55 9.84 10.13 10.44
0.04 8.64 8.65 8.72 8.84 9.01 9.22 9.46 9.72 10 10.29
0.06 8.87 8.84 8.86 8.94 9.07 9.25 9.46 9.69 9.95 10.22
0.08 9.19 9.12 9.11 9.14 9.23 9.37 9.54 9.74 9.97 10.22
0.1 9.6 9.5 9.44 9.44 9.49 9.58 9.71 9.88 10.08 10.29
0.12 10.09 9.95 9.87 9.83 9.83 9.88 9.98 10.11 10.27 10.45
0.14 10.64 10.48 10.36 10.29 10.26 10.27 10.33 10.41 10.54 10.69
0.16 11.25 11.07 10.93 10.83 10.76 10.74 10.75 10.81 10.89 11
0.18 11.92 11.73 11.56 11.43 11.34 11.28 11.26 11.27 11.32 11.4
0.2 12.64 12.43 12.25 12.1 11.98 11.89 11.84 11.82 11.83 11.87

5.3 Effect of Discretization and Truncation

As Hurd and Zhou [17] observe, the effect of varying the damping parameter

ε on the price is relatively small. It should be noted, however that this is
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not universally true, and that for values of ε2 < 0.2, or for ε1 − ε2 − 1 < 0.2

we do observe some error in the prices produced by our FFT method, as

seen in Table (5.12).

Table 5.12: Variation in Price for various choices of ε = (ε1, ε2), actual price
= 8.77

ε2
0.1 0.2 0.3 0.4 0.5 1.6 1.7 1.8 1.9

ε1

-3.0 10.7 8.81 8.77 8.77 8.77 8.77 8.77 8.78 9.08
-2.9 10.7 8.81 8.77 8.77 8.77 8.77 8.78 9.1 -
-2.8 10.7 8.81 8.77 8.77 8.77 8.78 9.11 - -
-2.7 10.7 8.81 8.77 8.77 8.77 9.12 7.17E+13 - -
-1.6 10.7 8.81 8.77 8.78 9.29 - - - -
-1.5 10.7 8.81 8.78 9.31 - - - - -
-1.4 10.7 8.82 9.33 - - - - - -
-1.3 10.71 9.39 - - - - - - -
-1.2 11.34 1.20E+15 - - - - - - -

We can also test the sensitivity of our model to variations in the number

of steps and the step size. Note that since ū = Nη
2 for a fixed N if we attempt

to decrease the truncation error by increasing ū (or, in the case of our

optimal step size algorithm, ūmin), our discretization error will increase, as

the step size integration interval is proportional to the step-size. Fortunately,

however, our method shows very little sensitivity to either the step-size or

the truncation interval, as displayed in Table 5.13.
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Table 5.13: Variation in Prices with change in N and ūmin

N
128 256 512 1024

ūmin

40 8.777635 8.772048 8.772048 8.772048
60 - 8.772241 8.772048 8.772048
80 - 8.777052 8.772048 8.772048
120 - - 8.772060 8.772048
140 - - 8.772223 8.772048
160 - - 8.773194 8.772048
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Chapter 6

Conclusion

This thesis has extended the work of Dempster and Hong [11] to investigate

two multivariate market models with both jumps and stochastic volatility,

and derived the characteristic function under each model. Using Fourier

transform techniques and an implementation of Hurd and Zhou’s [17] pricing

method we were able to produce results which very closely matched those

produced by Monte-Carlo methods in a fraction of the time.

As expected, we saw that the prices produced under our models were

very sensitive to both the jump and correlation parameters. Having these

additional components in our models gives us powerful tools to shape our

model through parameter variation to better reflect certain characteristics

observed in financial markets such as volatility and correlation smiles and

smirks. On the other hand, this underscores the need for development of

model calibration tools, which is not a straightforward task in the presence

of jumps.

Further work is needed to investigate the effects of adding jumps to the

volatility processes, and the effects of stochastic correlation. Other areas of

investigation should include models where the assets don’t follow the same

price process (for example hybrid securities where the payoff may be based

on assets from different asset classes such as a rate and currency), and their

use in pricing exotic derivatives.

Finally, the extension of the model to the more general d-dimensional
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case and to a wider variety of derivatives is also a worthwhile pursuit, as

methods in these areas are often limited to Monte-Carlo simulation, which,

as we demonstrated in this case, can be extremely slow to converge partic-

ularly in the presence of jumps.
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