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ABSTRACT 

 

NUMERICAL STUDY OF THE TARGETED ENERGY TRANSFER BETWEEN THE 

EULER-BERNOULLI BEAM AND A NONLINEAR ENERGY SINK 

© Mohi Uddin Rahamat Ullah, 2013 

Master of Applied Science 

In the program of  

Mechanical Engineering 

Ryerson University 

 

Targeted energy transfer (TET) refers to the spatial transfer of energy between a primary 

structure of interest and isolated oscillators called the energy sink (ES). In this work, the primary 

structure of interest is a slender beam modeled by the Euler-Bernoulli theory, and the ES is a 

single-degree-of-freedom oscillator with either linear or cubic nonlinear stiffness property. The 

objective of this study is to characterize the TET and the effectiveness of ES under impact and 

periodic excitations. By using the scientific computation package, MATLAB, numerical 

simulations are carried out based on excitations of various strength and locations. Both time and 

frequency domain characterizations are used. For the impact excitation, the ES with the cubic 

nonlinear stiffness property is more superior to the linear oscillator in that larger percentage of 

the impact energy can be dissipated there. The main energy transfer was found to be due to a 3-

to-1 frequency coupling between the first bending mode and the ES. For the periodic excitation, 

however, both linear and nonlinear ES exhibit generally poorer performance than the case with 

the impact excitation. Future works should focus on the frequency-energy relationship of the 

periodic solution of the underlying Hamiltonian, as well as using finite element model to verify 

the simulation results.  
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Chapter 1 

Introduction and Literature Review 

 

Vibration analysis of structure is of critical importance in applications: from the structural 

integrity of the skyscraper, stability of the offshore oil platform, to the comfort of a running 

vehicle, and the motion of the satellite. The central theme of such analysis has been to discover 

innovative ways to channel and to dissipate unwanted vibration energy in a timely and effective 

fashion. Classical tuned mass damper based on the notion of vibration absorption of linear 

oscillator provides the prime example of how the vibration of a main system of interest can be 

completely annihilated by attaching a secondary oscillatory system [1]. Indeed, such concepts 

have been successfully put into use in well known slender structures all over the world, such as 

the Dublin Spire in Ireland, the Bloomberg building in New York City, and the Taipei 101 

building in Taiwan. 

While the idea of vibration absorption can be successfully implemented, improving the 

effectiveness and efficiency of the vibration energy transfer and achieving better robustness 

against environmental variation remain as major challenges facing the field. In recent decades, 

the idea of using nonlinear oscillators as the secondary system attached to a primary system has 

been considered, and shown to be capable of meeting these challenges.  

 

1.1. Background  

This thesis describes the investigation on the Targeted Energy Transfer (TET) from a 

multimodal beam vibration to the Energy Sink (ES). The beam can experience various external 

disturbances such as impact loading, periodic or random excitation. The purpose of the ES is to 

absorb or dissipate the unwanted vibration of the beam due to the disturbance. An ES is normally 

modelled with a nonlinear or linear stiffness term and a linear viscous damping term. It can 

therefore be categorized as nonlinear energy sink (NES) or linear energy sink (LES). The main 

energy transfer mechanism is contributed by “mode locking” of specific frequency of vibration 

of the beam and the ES. For the beam, or more generally, other structural members, this 

frequency is mostly the natural frequency. For the ES, it is related to the frequency of the limit 

cycle. Hence, the energy is channeled through a kind of resonance mechanism or resonant modal 
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interaction to ES [2, 3]. The attachment of the ES can be grounded or ungrounded and it can be 

single-degree-of-freedom (SDOF) or multi-degree-of-freedom (MDOF) system depending on the 

design and use. 

 In this work, an ungrounded and light-weight ES is chosen. In addition, the so-called 

“essentially” nonlinear ES is considered. For the NES this is when the nonlinear restoring force 

does not contain a linear stiffness term and only cubic nonlinearity is included (Chapter 2). As a 

result, NES does not have any resonance frequency in the sense of linear oscillator. 

 

1.2. Literature Review   

This section contains the survey of pertinent literature of TET. In the context of vibration theory, 

TET can in general be regarded as the method of energy control. Vakakis [4] suggested that the 

NES can be considered as a generalization of the concept of the classical linear vibration 

absorber. Nayfeh and Mook [5] showed that in a vibration system with coupled nonlinear 

oscillators, energy interactions can occur via the mechanism of internal resonance where the 

vibration of the coupled oscillators “locked” into a specific frequency ratio. In connection to 

TET, Vakakis [4] coined the term resonance capture to describe TET. The analysis of internal 

resonance is a technically challenging task, and requires basic concepts, methodologies and 

computational techniques from the dynamical systems and applied mathematics, such as 

bifurcation theory, asymptotic approximations, and numerical signal processing [6].  

In the works by Gendelman et al. [8] and Vakakis et al. [7] a grounded and relatively 

heavy nonlinear attachment is investigated.  To obtain a better understanding of the energy 

transfer, the authors analyzed the dynamics of the underlying Hamiltonian system. Lee et al. [9] 

examined the energy exchange between the oscillators in the damped vibration of a 2-DOF 

system and identified at least three different energy transfer mechanisms. They are either 

fundamental and subharmonic resonance captures or nonlinear beat phenomena.   

Malatkar and Nayfeh [10] experimentally analyzed the nonlinear energy transfer between 

widely spaced modes in harmonically forced system.  The authors showed that passive energy 

transfer is caused by the resonance interaction at the Hopf bifurcation frequency of the NES and 

the natural frequency of the first mode of the linear oscillator.  

Lee et al. [2] studied the multimodal vibration of the primary structure and demonstrated 

resonance interaction between NES and the vibration modes of the primary structure. By 
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facilitating these energy transfers, through the excitation of periodic and quasi-periodic motions, 

significant input energy dissipation via the oscillation of NES was shown.  

Glendelman et al. [11] investigated the dynamics of a linear oscillator coupled to an 

essentially nonlinear attachment of substantially lower mass. It is demonstrated that efficient 

energy transfer can be obtained for a small attachment mass with properly chosen damping and 

coupling terms of the system. Two mechanisms of energy transfer in the system were revealed; 

one is the resonance capture and the second is related to the non-resonant excitation of the 

attachment at the high frequency.  

Dynamics of a linear oscillator with strongly nonlinear attachment having small mass and 

multiple states of equilibrium has been investigated by Gendelman and Lamarque [12]. Three 

types of dynamical regimes during the energy transfer were revealed in their works. First, energy 

pumping where the energy is efficiently transferred to the nonlinear attachment, second, smooth 

damping where the system loses its energy smoothly without essential pumping to the 

attachment, and third, transient chaos between the primary mass and the attachment. 

Gendelman et al. [13] considered MDOF NES and demonstrated the TET can be 

significantly enhanced. They showed that, if the primary structure is excited by the shock energy 

above a certain critical threshold, the NES can effectively absorb the vibration energy from the 

primary structure in an irreversible manner. In addition, they showed that the efficiency of 

vibration protection and shock mitigation using NES exceeds those of the linear tuned mass 

damper. Besides, due to their essential stiffness nonlinearities, the NESs can operate over broad 

frequency ranges. But these authors found that high TET efficiency of the SDOF NES is only 

achieved in the relatively narrow range of the external forcing amplitudes. 

In the works by Gendelman et al. [8] the use of a combination of coupled, linear and 

nonlinear ES to achieve energy transfer was considered. It was shown that 1:1 stable 

subharmonic motion of the underlying Hamiltonian system was mainly responsible for the 

energy transfer between the ES and the primary system. Kerschen et al. [14] studied energy 

transfer from a damped linear oscillator to an ungrounded light-weight nonlinear oscillator. It is 

shown that energy transfer is caused by either fundamental or subharmonic resonance capture 

and in some cases it is initiated by nonlinear beat phenomena.  

Jiang et al. [15] demonstrated application of NESs to shock isolation. Essentially non-

linear stiffness elements were used for robust energy transfer at a sufficiently fast timescale, 
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because fast energy transfer at the early stage is crucial for shock isolation purposes. By adding 

two symmetrically placed NESs these authors showed that it is possible to achieve dual mode 

shock isolation to reduce unwanted disturbances generated at different ends of the primary 

system.  

 

1.3. Research Objectives    

The external disturbance of impact or periodic excitation is considered in this investigation. The 

objective of this study is to conduct numerical simulation to analyze TET and the beam. Of 

particular interest is the energy transfer pattern in terms of how it varies with the parameters of 

the input excitation, such as impact strength, periodic forcing amplitude, frequency as well as the 

location of the disturbance. Numerical analysis is also focused on the estimation of frequency 

modes involved in the energy transfer and how such coupling varies with the input parameters.  

 

1.4. Thesis Overview 

This research is arranged in five chapters. Chapter two presents the mathematical model of the 

beam and ES. The equations of motion for both beam and ES are derived using Newton’s second 

law of motion. In Chapter three, numerical analysis of the TET due to impact intensity is 

presented based on the free vibration analysis and periodic excitation is discussed in Chapter 

four. Finally Chapter five contains a summary of the contributions of this research and 

suggestion for future work.  
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Chapter 2 

Mathematical Model of Beam and Energy Sink 

 

In this chapter the mathematical modeling of a beam structure with an energy sink component is 

described. This base model is used to investigate the targeted energy transfer.  In section 2.1 the 

beam and energy sink models are presented. In section 2.2, dimensionless equations of motion 

are derived. In section 2.3, modal characterizations of the beam vibration are described. In 

section 2.4, the kinetic and potential energies of the beam are derived and in section 2.5, other 

energy terms that are used to characterize TET in both the beam and ES are defined. 

 

2.1. Modeling of the Beam and Energy Sink 

2.1.1. Equation of Motion of the Beam 

The beam model considered in this research has a clamped-clamped boundary condition with a   

cross-sectional area A, density  and length L. A standard Cartesian coordinates system is used to 

describe the beam transverse displacement ),( txw ; see Figure 2.1. Let the transverse external 

load per unit length be ),( txf , a damping force per unit length ,
t

w
fc 


   flexural rigidity of 

the beam EI, where E is the Young’s elastic modulus for the beam and I is the cross-sectional 

area moment of inertia about the z-axis.   

In this study, Euler-Bernoulli beam is assumed. Hence, the beam is a slender beam (large 

width-to-depth ratio) and only small amplitude oscillation is considered.   

 

Figure 2.1: Clamped-clamped beam. 
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The energy sink is assumed to consist of a spring and viscous damper element. Both linear and 

nonlinear springs (cubic nonlinearity) will be considered. In addition, the following 

simplifications are made. 

 Uniform mass per unit length.   

 Linear, homogeneous, isotropic and elastic material. 

  Constant E, I and A.   

 

 

 Figure 2.2: Free body diagram (FBD) of a small element of the beam. 

Figure 2.2 shows the free body diagram of a small beam element as it is deformed by the 

external force ),( txf , where ),( txw denotes transverse deflection of the beam. 

Here, ),,( txM V (x, t)  and M (x  dx, t),V (x  dx, t) represent the bending moment, and the shear 

force at the left and right ends of the beam element, respectively. The shear force and bending 

moment relationships are given as 

.
),(

),(,
),(

),(
2

2

x

txw
EItxM

x

txM
txV








       (2.1) 

By the Newton’s law of motion the following equation of motion for the Euler-Bernoulli beam 

can be obtained: 

).,(
2

2

4

4

txf
t

w

t

w
A

x

w
EI 










         (2.2)  

Note that the term ),( txf from the above denotes the external force applied to the beam. The 

reaction force from the energy sink at the point of attachment will be the primary source of this 

load (see section 2.1.2). The case of the beam subjected to an external impulsive or a harmonic 
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force excitation will also be considered. In that case, f (x, t) will be given by the sum of two 

terms: one from the reaction force of the energy sink and the other from the external forcing.   

 

2.1.2. Equations of Motion for the Energy Sink 

The energy sink (ES) attached to the beam is modeled as a lumped mass-spring-damper system 

of mass m , damping coefficient c and stiffness constant k . A linear and nonlinear ES denoted as 

LES and NES, respectively, are considered. A LES is given by the standard linear mass-spring-

damper system. A NES is characterized by a strongly nonlinear spring element of cubic 

nonlinearity without a linear stiffness term. Let )(ty , )(twd  and )(tF  be the vertical absolute 

displacement of the damper mass, beam and damping force at the location ,dx  respectively; 

(see Figures 2.1).  Applying Newton’s 2nd law of motion (see Figure 2.3) yields  

Fym             (2.3) 

where 

  3)( dd wykwycF     

for the NES (Figure 2.4), and 

 dd wykwycF  )(    

for the LES (Figure 2.5). Together, the coupled equations (2.2) and (2.3) represent the model 

used in the investigation of this study.  

 

 

 

 

 

 

 

Figure 2.3: ES attached to 

the actual model. 

 

Figure 2.4: FBD for NES. 

 

Figure 2.5: FBD for LES. 
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2.2. Dimensionless Equations of Motion 

The analysis of the system equations of motion (2.2) and (2.3) will be conducted based on their 

dimensionless forms. This is achieved by introducing the following dimensionless variables, 

.,,,,
L

d
D

T

t

L

w
W

L

y
Y

L

x
X         (2.4)   

Substituting these variables into the equations of motion yields 

)(),(
34

2

2

2

4

4

4

DXFtxf
EI

LW

EIT

LW

EIT

AL

X

W
ES 










 







    (2.5) 

where FES represents the dimensionless force that exerted by the ES and is defined in equation 

(2.8) and (2.9) below. To be specific )()(),( dxtFtxf   is used to complete the derivation of 

the equation of the beam where )(tF  is given in equation (2.3). 

Let 
EIT

L

EIT

AL 4

22

4

1 ,
  , equation (2.5) now reads 

)(21 DXFWWW ESXXXX          (2.6) 

where the subscript X and  denote the derivative with the dimensionless X and , respectively. 

For the ES, repeating the same procedure on equation (2.3) yields 

ESFY     (2.7a)  

where 

   3
22

, DDES WY
m

TkL
WY

m

cT
F          (2.7b)   

for the NES, and 

   DDES WY
m

kT
WY

m

cT
F 

2

,         (2.7c)   

for the LES. Letting 
m

TkL
b

m

kT
b

m

cT
b

22

3

2

21 ,,   and with (2.7b), (2.7c), (2.7a) becomes  

    03
3,1  DD WYbWYbY         (2.8) 

for the NES, and  

    02,1  DD WYbWYbY         (2.9)  

for the LES. Equations (2.8) and (2.9) describe the equations of motion for the ES with the 

viscous damping coefficient b1, linear and nonlinear stiffness coefficients b2 and b3, respectively. 
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2.3. Modal Characterizations of the Beam Vibration 

In this research, TET will first be characterized based on the impact excitation. The objective of 

this section is to show the response and derive the energy measures to characterize the energy 

transfer. The Euler-Bernoulli beam displacement ),( XW  can in general be solved using 

separation of variables technique     





N

n
nn gXaXW

1

)()(),(          (2.10)   

where na denotes the n th mode shape (see Appendix A)   

)sin(sinh)cos(cosh)( XXXXXa nnnnnn       (2.11) 

and )(ng  is the modal response function. Substituting the above into equation (2.6) and by 

orthogonal condition knnk dXXaXa 
1

0

)()( , where kn is the Kronecker delta, the modal 

equation of motion can be written as 

ESfkkkck FCgCgCg   ,,         (2.12) 

where  

.
)(

,, 1

0

2
1

1

4

1

2

dXa

Da
CCC

k

k
f

k
kc











  

 

2.4. Kinetic and Potential Energy of the Beam 

To assess the energy transfer between the beam and the ES, it is necessary to excite the beam and 

estimate the energy dissipation in the ES. Both impact and periodic excitations are considered in 

this work. By the basic impulse momentum principle, the impact can be characterized by giving 

an initial velocity for the beam element. The purpose of this section is to derive the initial 

conditions due to the impact and the energy terms that are necessary to characterize the energy 

transfer between the beam and the ES.   

 

2.4.1. Initial Conditions of the Beam due to an Impulsive Force  

Assume a dimensionless impulsive force FI applied at the location X=D1. The equation of 

motion for the beam is now described by     
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).()()( 121   DXFDXFWWW IESXXXX      (2.13)  

Substituting the equation (2.10) into (2.13) and applying orthogonality condition, the above 

becomes 

    ).()()()()()( 1

1

0

,2,1
42   DaFDaFgggdXXa kIkESkkkkk    (2.14) 

Integrating equation (2.14) from 0- to 0+ yields 

  .)()(

)()()()(

0

0

1

0

0

1

0

0

0

,2

0

0

,1

0

0

42



 

dDaFdDaF

dgdgdgdXXa

kIkES

kkkkk



 



































   (2.15)  

Assume the beam is in static equilibrium before the impact. That means, due to the nature of the 

impulsive force, the impulse by the ESF  will be insignificant during the short timespan of the 

impact and, thus, 

    .0)(
0

0






dDaF kES   

Dropping this term from equation (2.15) and rearranging terms, yields  

         
.

)(

)()()( 1

0

2

10

02
0

0,1
0
0

4
















dXXa

DaF
ggg

k

kI
kkkk       (2.16) 

The assumption of the beam in static equilibrium means  

 0)0()0()0( ,  
kkk ggg .     

Substituting the above into equation (2.16) gives the initial velocity of the kth mode 

   
1

1
1

0

2
1

1
,

)(

)0(





DaF

dXXa

DaF
g kI

k

kI
k 


 .       (2.17) 

 

2.4.2. Kinetic Energy  

The kinetic energy of the beam can be expressed as 


L

dxwAKE
0

2

2

1
  
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By using dimensionless variables the above can be written as 

.
2

1 1

0

21  dXW
L

EI
KE 

         (2.18) 

By the orthogonal condition, equation (2.18) can be written as the sum of kinetic energy of the 

modes, 2
,

1

2

1



nn g

L

EI
T  , n = 1, 2, …, N, 

 



N

n
nTKE

1

.            (2.19) 

 

2.4.3. Potential Energy  

The potential energy (PE) of a beam element is derived from the strain energy. For the Euler-

Bernoulli beam, only the strain energy from the flexural bending is considered. The strain energy 

U of the beam is the same as the work done in deforming the beam. If the beam deforms through 

an angle dθ then work done by a bending moment M is Md . Therefore, the total strain energy 

stored in the beam over the length 0 to L is 


L

MdPEU
02

1           (2.20) 

 where M  is given by the equation (2.1) and 
x

w




  is the slope of the deformed beam element 

[16]. Thus, the above equation can be written as 

.
2

1
2

0
2

2

dx
x

w
EIPE

L

 










  

By using dimensionless variables the above can be expressed as  

.
2

1
21

0
2

2

dX
X

W

L

EI
PE  











         (2.21) 

Expressed in modal sum, the equation (2.21) becomes
     

 
  


N

n

M

m
mnnmXXmXXn

N

n

M

m
mn ggkdXaagg

L

EI
PE

1 1

1

0

,,
1 1 2

1

2

1
    (2.22) 

where 
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  .
1

0

,, dXaa
L

EI
k XXmXXnnm           (2.23) 

By orthogonality, integration by parts and boundary conditions, the above is simplified to 

  dXa
L

EI
k XXnnn 

1

0

2
,          (2.24) 

So that 

.
2

1

1

2



N

n
nnngkPE          (2.25) 

Substituting equation (2.23) into (2.24) yields the final PE form used in the analysis 

 .
2

1

1

2
4





N

n
n

n g
L

EI
PE


          (2.26) 

 

2.5. Energy Variables for ES and TET Analysis 

In this section, the energy variables that are used to characterize the TET between the beam and 

ES are defined. Both the energy remaining in the beam and the ES as well as the energy 

dissipated by the ES are of main importance in the characterization. When the excitation is by 

the impulsive force, the total instantaneous energy of the beam, beamET , is calculated by adding 

kinetic energy and potential energy of all the vibration modes ( mnE ). The total instantaneous 

energy of the ES, ESET , is calculated from the Hamiltonian of the undamped ES. 

Let 2
4

2

1
n

n
n g

L

EI
P


  and recall 2

,
1

2

1



nn g

L

EI
T  . The following energy terms are defined: 

,nnmn PTE   

,
1




N

n
mnbeam EET          (2.27)  

,)(
4

1

2

1 4
3

2
DNES WYbYET          (2.28)  

and 

.)(
2

1

2

1 2
2

2
DLES WYbYET          (2.29) 
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The instantaneous energy in the ES and bending modes can be examined by computing the non-

dimensional energy ratio Ed  and bnE , respectively. Here Ed denotes the portion of instantaneous 

total energy stored in the ES, and bnE  denotes the ratio of the amount of energy in each mode to 

the total amount of energy in the beam and sink, where 

LESNESbeam

LESNES
LESNESd ETET

ET
E

,

,
,, 

        (2.30)   

and 

Nn
ETET

E
E

LESNESbeam

mn
bn ...,2,1.

,




         (2.31) 

Energy dissipated E  in a viscously damped system in equation (2.8) and (2.9) with damping 

force DF and viscous damping coefficient 1b   is given by  

        .
0

2
,1

0

,1

0
 

















dWYbd
d

WYd
WYbWYdFE D

D
DDD    

The energy dissipation measure ESE  represents the percentage of impulsive energy dissipated by 

the end of damped motion. A quantitative measure of the capacity of the ES to dissipate 

impulsive energy from the beam can be obtained by the ratio of the energy dissipation by the ES 

to the total input impulsive energy in the beam, where  

 
.

)0(
2

1

1

2
,

1

0

2
,1

,























N

n
n

D

LESNES

g
L

EI

dWYb

energyInput

E
E










    (2.32)  
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Chapter 3     

Targeted Energy Transfer Under Impact Excitation 

 

In this chapter numerical analysis of the TET of the clamp-clamp Euler Bernoulli beam subjected 

to impact will be given. The system equations (2.8), (2.9) and (2.12) will be simulated for 

different impulse strength applied at various locations along the beam. Both time and frequency 

domain characterizations will be used to analyze the TET between the beam and the ES. They 

include the long-time energy dissipation in the ES, total energy in the beam and the ES, and the 

power spectral density (PSD) of the beam and ES. The main objective of the numerical 

experiment is to examine the effectiveness of the ES in achieving the TET. The results from the 

LES will be given to provide the contrast with the NES. All simulations are conducted using the 

scientific package MATLAB [18] and the numeric codes are listed in Appendix B.  

For the numerical simulations, the beam of dimensionless length L1 = 1, the mass per unit 

length 11  , damping coefficient 02.02  , and flexural rigidity EI =1 is considered. For both 

LES and NES, 20,2.0 21  bb and 203 b  are used for the damping, linear and nonlinear 

stiffness coefficients, respectively. The dimensionless impulsive force is varied over the range 

IF =10.5 to 40 in 0.5 increment. A sampling frequency of 1,000 Hz is used in all numerical 

simulations and 200,000 data points are collected to calculate various energy terms defined in 

section 2.5. The primary mode of energy transfer is estimated from the PSD of the response. This 

is calculated using the periodogram and with a Hanning windowing to eliminate aliasing. 

To demonstrate energy transfer and its basic characteristics, results from NES based on 

an impact delivered at the mid-span of the beam D1 = 0.5 will first be discussed in section 3.1. Its 

linear counterpart given by the LES is presented in section 3.2. These sections show mainly 

time-domain characterization. In section 3.3, the frequency-domain method is used to provide 

further details of the underlying dynamics of the energy transfer process for different impact 

locations.    

 

3.1. Targeted Energy Transfer by the NES at D1 = 0.5 

Figure 3.1 reveals the relationship between the energy dissipation by the LES and NES as a 

function of FI. It is seen that 35% to 75% energy dissipation is achievable by the NES. NES 
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appears more advantageous than the LES for larger FI whereas LES is more beneficial of the 

system for low FI.  To examine the dynamics that carry the energy transfer, the time history and 

PSD of the response from four cases are studied in detail. These cases are identified in Figure 3.1 

as A, B, C and D. They correspond to IF = 10.5, 14.5, 18 and 23.5, respectively.  

 

 

Figure 3.1: Energy dissipation by the NES and LES as a function of impact intensity. 

 

Figures 3.2 and 3.3 show the response at 5.10IF  (point A in Figure 3.1). Figure 3.2b 

shows that the oscillation is concentrated initially in the first mode (Figure 3.2). But, after the 

transient period elapsed, most of the energy flowed into the 3rd mode (Figure 3.3c). Overall, it 

took 60  of dimensionless time for the NES to dissipate the energy (Figure 3.3d). In this case, 

only 36.5% input energy is dissipated by the NES (Figure 3.3e).   

When FI increases from 10.5 to 14.5 (point B in Figure 3.1), different dynamical 

behaviour is realized (Figures 3.4 and 3.5). At the beginning, NES is oscillating with small 

amplitude. The main difference is noticed in the NES response. In particular, NES exhibits faster 

oscillation as FI increases. Qualitatively, the energy flows among the modes and NES are similar 

to the FI =10.5 case. The residual energy is seen to remain mainly in the 3rd mode with a rather 

drastic transition compared to FI =10.5 case. Most energy transfer is seen to be completed after 

65  and it dissipates around 42% of input energy (Figures 3.5d and 3.5e).  
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Figure 3.2: Transient response of the system when 5.10IF : (a) Beam and NES response; 

 (b) Close-up of the Beam and NES response. 

Figure 3.3: Transient dynamics of the system when 5.10IF :  (a) Instantaneous total energy in 

the 1st mode; (b) 2nd mode and (c) 3rd mode; (d) Instantaneous energy in the NES; (e) energy 

dissipation by the NES and (f) Power Spectral Density of system response. 
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Figure 3.4: Transient response of the system when 5.14IF : (a) Beam and NES response; 

(b) Close-up of the Beam and NES response.  

 

 

Figure 3.5: Transient dynamics of the system when 5.14IF : (a) Instantaneous total energy in 

the 1st mode; (b) 2nd mode and (c) 3rd mode; (d) Instantaneous energy in the NES; (e) energy 

dissipation by the NES and (f) Power Spectral Density of system response.   
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Moving towards the higher 18IF  (point C in Figure 3.1), qualitatively, similar 

dynamics is observed (Figure 3.6 and 3.7). NES continues the trend of moving towards the 

higher frequency oscillation. The energy transfer follows the same pattern as the previous case. 

Initially all the input impulse energy is in the beam then it flows back and forth between the 

beam and NES.  Figure 3.7d shows that for 60 , 5% of the total energy still remains in the 

NES, but, after a while ( >80), this number starts to drop down to near 0%. In fact, this energy 

flows back to the beam where the third mode is capturing most of the energy (Figure 3.7c). For 

this case, around 42% of the input energy is dissipated by the NES (Figure 3.7e).   

Moving to the even higher energy 5.23IF (see Figures 3.8, 3.9 and point D in Figure 

3.1), the pattern of oscillations of the modes and NES, and the energy transfer contains the trend 

indicated in previous cases. Namely, NES oscillates at higher frequency and most residual 

energy remains primarily in the third mode.  

To gain better understanding of the underlying dynamics of the energy transfer, dominant 

Fourier mode in the PSD of the beam modes and NES are identified and compared.  The PSD 

results from the cases discussed above have been shown in Figures 3.3f, 3.5f, 3.7f, and 3.9f. Here 

for each FI value, the frequency ratio (FR) between the dominant Fourier modes of the mode and 

NES recalculated and displayed in a FR Vs. FI diagram.      

 

3.2. Targeted Energy Transfer by Linear Energy Sink  

In this section, results from the LES are given. They are to provide the contrast with the 

performance of NES with the same parameter setting (section 3.1). 

  

3.2.1. Simulation Results 

To demonstrate, results used in section 3.1 from the same IF  values are shown. Similar to NES, 

the dominant mode of energy transfer continues to be the first bending mode as it has the largest 

vibration amplitude. Compared to the NES, there is a more specific frequency ratio between the 

LES and the first bending mode. For example, there is clear 5:1 frequency ratio seen here 

compared to that in Figure 3.2b. In addition, all bending modes oscillate in their own resonance 

frequency whereas those of the NES case show more complicated pattern.  
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Figure 3.6: Transient response of the system when 18IF : (a) Beam and NES response; 

(b) Close-up of the Beam and NES response.  

 

 

Figure 3.7: Transient dynamics of the system when 18IF :  (a) Instantaneous total energy in 

the 1st mode; (b) 2nd mode and (c) 3rd mode; (d) Instantaneous energy in the NES; (e) energy 

dissipation by the NES and (f) Power Spectral Density of system response.  
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Figure 3.8: Transient response of the system when 5.23IF : (a) Beam and NES response;  

(b) Close-up of the Beam and NES response. 

 

 

Figure 3.9: Transient dynamics of the system when 5.23IF :  (a) Instantaneous total energy in 

the 1st mode; (b) 2nd mode and (c) 3rd mode; (d) Instantaneous energy in the NES; (e) energy 

dissipation by the NES and (f) Power Spectral Density  of system response. 
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In particular, the second mode exhibits beating characteristics in the NES case (Figure 

3.2b), but not in LES case (Figure 3.10b). This implies more significant energy transfer in and 

out of the second mode in the NES case, albeit it is a very small proportion compared to that in 

the first mode. These characteristics are also reflected in the results from various energy 

measures. For example, residual energy portion in second mode is higher in NES than in LES.  

The PSDs confirm the more complicated dynamics in the NES than the LES case. 

However, for IF =10.5, more energy is dissipated by the LES (47% versus 36% in the NES). In 

addition, LESE  (Figure 3.11e) rises faster than NESE  (Figure 3.3e), suggesting a more efficient 

energy transfer for LES in the low IF  range. Similar observations are made for other IF =14.5 

(Figures 3.12, 3.13), 18 (Figures 3.14, 3.15) and 23.5 (Figures 3.16, 3.17). Namely, as expected 

the dynamics of the LES is much simpler compared to the NES. With regard to energy transfer 

pattern, the )(LESE in most cases rises faster than )(NESE  for 23IF , NES is able to dissipate 

energy much faster. This can be shown more clearly by the  p
(NES ),  p

(LES )  versus IF  plot, where 

),( LESNES
p  is determined from pE LESNES

pLESNES )( ),(
,   (Figure 3.18).  

 

3.3. Dominant Frequency Components in TET  

To gain better understanding of the underlying dynamics of the energy transfer, dominant 

Fourier modes of the beam and NES are identified from the PSD and compared. The PSD results 

from the cases discussed above have been shown in Figures 3.3f, 3.5f, 3.7f, and 3.9f. For each FI 

value the frequency ratio (FR) between the dominant Fourier modes of the beam and NES, LES 

are calculated. The results are displayed in a FR Vs. FI diagram. 

 

3.3.1. Dominant Frequency Components in TET for Impact Location D1 = 0.5 

To gain further understanding of the energy transfer between the beam and the ES, a frequency 

domain characterization is adopted. In particular, the frequency of the dominant Fourier modes 

of the beam and ES are first located and, then, compared to identify potential coupling. Such 

coupling can contain valuable information as it implies the dominant motion that carries the 

energy transfer between the beam and ES. 
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Figure 3.10: Transient response of the system when 5.10IF :( a) Beam and LES response; 

 (b) Close-up of the Beam and LES response. 

 

Figure 3.11: Transient dynamics of the system when 5.10IF : (a) Instantaneous total energy in 

the 1st mode; (b) 2nd mode and (c) 3rd mode; (d) Instantaneous energy in the LES; (e) energy 

dissipation by the LES and (f) Power Spectral Density of system response. 
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Figure 3.12: Transient response of the system when 5.14IF :( a) Beam and LES response; 

 (b) Close-up of the Beam and LES response. 

 

 

Figure 3.13: Transient dynamics of the system when 5.14IF : (a) Instantaneous total energy in 

the 1st mode; (b) 2nd mode and (c) 3rd mode; (d) Instantaneous energy in the LES; (e) energy 

dissipation by the LES and (f) Power Spectral Density of system response.  
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Figure 3.14: Transient response of the system when 18IF : (a) Beam and LES response; 

 (b) Close-up of the Beam and LES response. 

 

Figure 3.15: Transient dynamics of the system when 18IF : (a) Instantaneous total energy in 

the 1st mode; (b) 2nd mode and (c) 3rd mode; (d) Instantaneous energy in the LES; (e) energy 

dissipation by the LES and (f) Power Spectral Density of system response. 
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Figure 3.16: Transient response of the system when 5.23IF : (a) Beam and LES response;  

(b) Close-up of the Beam and LES response. 

 

Figure 3.17: Transient dynamics of the system when 5.23IF : (a) Instantaneous total energy in 

the 1st mode; (b) 2nd mode and (c) 3rd mode; (d) Instantaneous energy in the LES; (e) energy 

dissipation by the LES and (f) Power Spectral Density of system response. 
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Figure 3.18: Required time for dissipating a certain amount of energy as a function of FI : (a) 5% 

energy dissipation; (b) 15% energy dissipation; (c) 30% energy dissipation; (d) 45% energy 

dissipation. 

 

Figures 3.19 and 3.20 show the dominant frequencies as a function of FI for the case of 

NES and LES. Of particular importance is the dominant frequency of the NES fD
NES in TET and 

its relationship with the dominant frequencies of the bending modes, fD
Beam . For example, in 

Figure 3.3f, two dominant frequencies fD1
NES ~ 0.89 (point A1) and NES

Df 2 ~ 3.57 (point B1) are 

identified. The Fourier amplitudes at these two frequencies are very close. It is seen 

that NES
Df 2 matches well with the dominant frequency of the first bending modes, fD1

Beam  ~ 3.57. 

This result may follow intuitively in that most of the impact energy is captured by the first 

bending mode, which exhibits the largest amplitude of vibration (see, e.g., Figures 3.2a, 3.4a, 

3.6a, and 3.8a). It is plausible that the main energy transfer should involve the first bending 

mode. This frequency coupling is found to persist in general for all the FI value. But for FI > 23.5 

(Figure 3.9f), a bifurcation pattern emerges where a third NES
Df 3 appears between NES

Df 1  and NES
Df 2 . 

The results of Figure 3.19 can be summarized in Figure 3.21(c) where the dominant 

frequency ratio of the first bending mode and NES fD1
Beam / fD1, D2

NES  are shown. Frequency ratio 
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between NES and other bending modes is not considered since their Fourier amplitudes are 

generally orders of magnitude smaller, albeit they are physically coupled in the model. 

 

 

Figure 3.19: Dominant frequency as a function of FI at D1 = 0.5 for NES.     

 

 

Figure 3.20: Dominant frequency as a function of FI at D1 = 0.5 for LES.    
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3.3.2. Dominant Frequency Components in TET for Different Impact Locations   

Detailed energy dissipation pattern of ENES, ELES, according to the impact locations are shown in 

Figure 3.22. The percent dissipation captured by these variables varies depending on how close 

the impact is delivered relative to the ES location (D = 0.4): higher percentage of dissipation is 

obtained when the impact is delivered closer to the ES location. A unique FI level appears to 

exist where ENES, LES begins to rise. Such a transition appears particularly sharp when the impact 

is applied at exactly the location of the ES (D = 0.4). In addition, ELES is independent of FI. This 

particular property can be shown using the linear system theory [17]. Briefly, both the energy 

dissipation by ES in the numerator and the input energy from the impact in the denominator of 

ELES, equation (2.32), can be expressed as linear functions of FI. The dependence of FI in LES is 

therefore cancelled out; see Appendix C for details.  

Similar to the case at D1 = 0.5 (sections 3.1, 3.2), the frequency-domain analysis at 

different impact locations continues to show the first bending mode being the dominant degree-

of-freedom involving in the energy transfer with the ES. In contrast, the dominant Fourier modes 

of the other bending modes exhibit much smaller amplitudes of vibration. These results are 

summarized in Figures 3.21, and 3.23 through 3.26 for NES and Figures 3.27 through 3.30 for 

LES at D1 = 0.3, 0.4, 0.6 and 0.7, respectively. It is also observed that the underlying dynamics is 

more complex when the impact is applied away from the boundaries. In particular, more Fourier 

modes are excited when the impact is delivered around the mid-span area of the beam. The 

estimated FR in different impact locations has been summarized in Figure 3.21 for the NES and 

Figure 3.31 for the LES. Here, two FRs are provided based on the first two dominant Fourier 

modes of the ES: FR1 = fD1
Beam / fD1

NES, LES  and FR2 = fD1
Beam / fD2

NES, LES . For the NES, FR1 and FR2 

exhibit an initial drop for small FI before they appear to approach the “asymptotic” values FR1 ~ 

3, FR2 ~ 1 for large FI; see also Figure 3.21. For the LES, the FR is constant: FR1 = 5, FR2 = 1 

for all FI values. Note that energy transfer is more effective for larger FI values since ENES, ELES 

are larger. The corresponding FR1, FR2 values in this parameter range may therefore be 

significant. 

The estimated frequency ratios reported above may be observable from the oscillation of 

the first bending mode and the ES, granted it can be less obvious when it comes to the nonlinear 

response of NES. For example, shown in Figures 3.32 through 3.36 are samples of )(1 g and 

)(Y for NES and Figures 3.37 through 3.41 for the LES with FI = 10.5, 14.5, 18, 23.5 and D1 = 
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0.3, 0.4, 0.5, 0.6, and 0.7, respectively. A decreasing FR can be observed in Figures 3.32 through 

3.36 over the same 5-sec period, there are roughly 3 cycles of )(Y for FI = 10.5 and this number 

increases to approximately 8 cycles for FI = 18. When examined closely, it is also seen at a high 

frequency component that appears to oscillate in 1:1 synchronization with )(1 g . For LES, there 

is a very clear 5:1 frequency ratio between )(1 g and )(Y : over the same 5-sec period, there is 

roughly 17.5 cycles of )(1 g  and 3.5 cycles of )(Y . Similar to the NES case, the high 

frequency component in )(Y that exhibits 1:1 synchronization with )(1 g is also discernable. 

These counts verify the FR1 = 5 and FR2 = 1 estimates from Figures 3.27 through 3.30.  

 

 

Figure 3.21: Frequency ratio as a function of FI for NES: (a) D1 = 0.3; (b) D1 = 0.4; (c) D1 = 0.5;  

(d) D1 = 0.6, and (e) D1 = 0.7. 
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Figure 3.22: Energy dissipation as a function of FI for various locations: (a) D1 = 0.3; (b) D1 = 

0.4; (c) D1 = 0.6 and (d) D1 = 0.7. 

 

 

Figure 3.23: Dominant frequency as a function of FI at D1 = 0.3 for NES. 
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Figure 3.24: Dominant frequency as a function of FI at D1 = 0.4 for NES.    

 

 

Figure 3.25: Dominant frequency as a function of FI at D1 = 0.6 for NES.    
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Figure 3.26: Dominant frequency as a function of FI at D1 = 0.7 for NES.    

 

 

 

Figure 3.27: Dominant frequency as a function of FI at D1 = 0.3 for LES.    
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Figure 3.28: Dominant frequency as a function of FI at D1 = 0.4 for LES.    

 

 

Figure 3.29: Dominant frequency as a function of FI at D1 = 0.6 for LES.    
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Figure 3.30: Dominant frequency as a function of FI at D1 = 0.7 for LES.    

 

 

 

Figure 3.31: Frequency ratio as a function of FI for LES: (a) D1 = 0.3; (b) D1 = 0.4; (c) D1 = 0.5;  

(d) D1 = 0.6 and (e) D1 = 0.7. 
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Figure 3.32: Time response for the 1st mode and NES when FI applied at D1 = 0.3: (a) FI = 10.5; 

(b) FI = 14.5; (c) FI = 18, and (d) FI = 23.5; 1st mode,  NES. 

 

 

 

 

Figure 3.33: Time response for the 1st mode and NES when FI applied at D1 = 0.4: (a) FI = 10.5; 

(b) FI = 14.5; (c) FI = 18, and (d) FI = 23.5; 1st mode,  NES.  
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Figure 3.34: Time response for the 1st mode and NES when FI applied at D1 = 0.5: (a) FI = 10.5; 

(b) FI = 14.5; (c) FI = 18, and (d) FI = 23.5; 1st mode,  NES.    

 

 

 

Figure 3.35: Time response for the 1st mode and NES when FI applied at D1 = 0.6: (a) FI = 10.5; 

(b) FI = 14.5; (c) FI = 18, and (d) FI = 23.5; 1st mode,  NES. 
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Figure 3.36: Time response for the 1st mode and NES when FI applied at D1 = 0.7: (a) FI = 10.5; 

(b) FI = 14.5; (c) FI = 18, and (d) FI = 23.5; 1st mode,  NES. 

 

 

 

Figure 3.37: Time response for the 1st mode and LES when FI applied at D1 = 0.3: (a) FI = 10.5; 

(b) FI = 14.5; (c) FI = 18, and (d) FI = 23.5; 1st mode,  LES. 



38 
 

 

Figure 3.38: Time response for the 1st mode and LES when FI applied at D1 = 0.4: (a) FI = 10.5; 

(b) FI = 14.5; (c) FI = 18, and (d) FI = 23.5; 1st mode,  LES. 

 

 

 

Figure 3.39: Time response for the 1st mode and LES when FI applied at D1 = 0.5: (a) FI = 10.5; 

(b) FI = 14.5; (c) FI = 18, and (d) FI = 23.5; 1st mode,  LES. 
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Figure 3.40: Time response for the 1st mode and LES when FI applied at D1 = 0.6: (a) FI = 10.5; 

(b) FI = 14.5; (c) FI = 18, and (d) FI = 23.5; 1st mode,  LES. 

 

 

 

Figure 3.41: Time response for the 1st mode and LES when FI applied at D1 = 0.7: (a) FI = 10.5; 

(b) FI = 14.5; (c) FI = 18, and (d) FI = 23.5; 1st mode,  LES. 
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Chapter 4 

Targeted Energy Transfer Under Periodic Excitation 

 

In this chapter numerical analysis of the TET under periodic excitation will be given. In this 

work, a cosine function of dimensionless amplitude pF  and forcing frequency  is used to 

simulate the periodic force applied to the beam at 1DX  . The dimensionless beam and ES 

equations introduced in equation (2.6), (2.8) and (2.9) will be simulated over a selected range of 

D1 and . The simulated modal and ES responses will then be used to calculate the average 

energy dissipation by the ES, total energy in the beam and ES for each cycle.  

 

With the harmonic forcing function, the dimensionless beam equation (2.6) becomes 

).(cos)()( 121 DXFDXFWWW pESXXXX     `  (4.1) 

By separation of variables and orthogonality, the modal equation of motion is  
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The simulation is conducted based on the fixed 15pF  for 21~5.0 Hz, with 0.5 Hz 

increment, and D1 = 0.3 ~ 0.7, with 0.1 increment. To ensure the steady state is reached, 400,000 

data points are simulated and the last 200,000 data points are used to calculate the relevant 

energy terms. For the periodic forcing, the energy transfer is characterized on the cycle-to-cycle 

bases. Here, the energy terms introduced in section (2.5) are modified accordingly,  
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where, 

2

1 T is the forcing period and  denotes a temporal average overall the T1-

dimensionless time segments in the steady state period. The energy dissipation in ES is modified 

similarly, 

  .
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In addition, the energy ratio is defined to characterize the energy dissipation of the ES per total 

energy of the beam, 
beam

LESNES

ET

E
R

,

1  . 

The results of these energy quantities are given in Figures 4.1~4.5. As expected, the data 

indicate that most of the energy remains in the resonance mode of the beam when the forcing 

frequency lies in the neighborhood of the natural frequencies. Multi-modal vibration appears 

more prevalent when the forcing frequency lies in between the natural frequencies of the beam 

(Figures 4.1a~4.5a). But such a frequency range also defines a neighborhood where the ES can 

be less effective. In particular, R1, which measures the ratio of the dissipated energy by ES and 

the total beam energy can drop significantly (Figures 4.1c~4.5c). (Note that the results shown in 

these figures are in logarithmic scale.) For example, R1 drops significantly in the frequency 

neighborhoods around 5.7f Hz and 21f Hz at D1 = 0.3. As D1 increases, the drop around 

f  begins to diminish, while the drop around f  persists with 21f  Hz at D1 = 0.3 and 

5.15f  Hz at D1 = 0.7.  

The overall effectiveness of the ES appears to be minimal. For example, only R1  e5 is 

reached in all cases. However, the performance of the ES appears quite “uniform” in that R1 in 

selected frequency range does not show large variation. The frequencies ranges are mostly found 

in the neighbourhood of the resonance frequency. The location of the applied periodic force D1 

can affect the location as well as the length of such frequency ranges. In particular, such 

frequency range is widened as the periodic force moves towards the center portion of the beam. 
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Figure 4.1: Energy characterization of the beam with the forcing frequency at D1 = 0.3: (a) total 
energy in the beam and each vibration mode; (b) stored and dissipated energy of the ES and (c) 
the ratio of the energy dissipation by the ES and the total energy in the beam (solid lines refer to 
NES and symbols refer to LES). 

 

Figure 4.2: Energy characterization of the beam with the forcing frequency at D1 = 0.4: (a) total 

energy in the beam and each vibration mode; (b) stored and dissipated energy of the ES and (c) 

the ratio of the energy dissipation by the ES and the total energy in the beam (solid lines refer to 

NES and symbols refer to LES). 
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Figure 4.3: Energy characterization of the beam with the forcing frequency at D1 = 0.5: (a) total 
energy in the beam and each vibration mode; (b) stored and dissipated energy of the ES and (c) 
the ratio of the energy dissipation by the ES and the total energy in the beam (solid lines refer to 
NES and symbols refer to LES). 

 

Figure 4.4: Energy characterization of the beam with the forcing frequency at D1 = 0.6: (a) total 
energy in the beam and each vibration mode; (b) stored and dissipated energy of the ES and (c) 
the ratio of the energy dissipation by the ES and the total energy in the beam (solid lines refer to 
NES and symbols refer to LES). 
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Figure 4.5: Energy characterization of the beam with the forcing frequency at D1 = 0.7: (a) total 
energy in the beam and each vibration mode; (b) stored and dissipated energy of the ES and (c) 
the ratio of the energy dissipation by the ES and the total energy in the beam (solid lines refer to 
NES and symbols refer to LES). 
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Chapter 5 

Discussions, Conclusion and Future Works 

 

5.1.    Discussions and Conclusion 

Numerical results of the targeted energy transfer between the Euler-Bernoulli beam and ES are 

presented. Both NES and LES are considered for the beam under impact and periodic 

excitations. The investigation was focused on the effectiveness of the TET by varying the 

location of the excitation, the impact strength and the forcing amplitude and frequency of the 

periodic excitation. Other interesting and equally important parameters, including the ES 

location D, ES parameters, b1 (dimensionless damping coefficient), b2 (dimensionless linear 

stiffness coefficient), b3 (dimensionless nonlinear stiffness coefficient), and the beam parameters, 

CC (dimensionless damping coefficient), CK (dimensionless stiffness coefficient), were held fixed 

and their effects were not examined. To determine the interesting parameter range is part of the 

challenge of the investigation. In this work, weak damping is considered. This is aimed at 

allowing the resonance modal interaction to be the primary contributor to the underlying energy 

transfer. While intuition would suggest more energy dissipation with a higher damping, it is 

plausible that the “signature” of the resonance mode vibration may become less obvious. 

Nevertheless, this, as well as other parameters, would be the part of the considerations intended 

for the future work. 

The main observation of the numerical results is the predominant role of the first bending 

mode in the TET with the ES. This is consistently observed in the impact and periodic forcing 

excitations, and is independent of the location of the applied force. Given the particular 

geometrical fixed-fixed boundary condition used in the present study, and the fact that only one 

excitation force is applied, it is a reasonable outcome since the first bending mode is more likely 

excited than the higher order modes. 

For the impact excitation, the effectiveness of the LES in TET as measured by the ELES is 

independent of the impulsive force magnitude FI. This result can be verified based on the linear 

system theory (Appendix C). But for NES, the results from ENES indicated that a threshold FI 

value exists, beyond which more efficient energy transfer can be achieved. The effectiveness of 

the TET appears to depend on the relative locations between the applied force and the ES 
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location: the farther away the applied force from the ES, the less effective is the NES. For 

example, the largest value of ENES (>80%) is reached when the applied force is exactly located at 

the attachment site of the NES. The same FI threshold discussed above also affects the time 

period for the energy dissipation, % p
( NES ) . In particular, % p

( NES )  can drop significantly for larger FI 

value. For the LES, % p
(LES )  is again independent of FI since ELES  is independent of FI. Given any 

% p, the threshold value for the % p
( NES,LES )varies with the location of the applied force: a much 

shorter time to achieve % p dissipation when the applied force is closer to the ES. Further 

understanding of % p
(NES,LES )can be of practical interest for the design of ES since it reflects how 

efficient the ES can be for the TET. 

In an attempt to understand the underlying modal interaction, the dominant Fourier 

modes in the vibrations of the beam and the ES are extracted directly from the PSD calculations. 

Since the dynamics of the LES is independent of FI, the dominant Fourier modes change only for 

the NES case. Two specific frequency ratios, FR1 and FR2, are used to summarize the modal 

interaction between the first bending mode and the NES. An initial drop of these ratios can be 

observed for small FI. Interestingly, an “asymptotic” FR1 ~ 3, FR2 ~ 1 are observed for large FI. 

This implies the modal interaction between the beam and the NES remained unchanged when the 

impulsive force is large. 

For the periodic excitation given by the harmonic function, three major observations were 

made. First, the ratio, R1, which measures the energy dissipation relative to the amount of total 

energy in the beam, exhibits relatively small variation across a wide forcing frequency range. 

Secondly, there exist particular frequency windows where R1 can drop significantly. It is found 

that both the width of these frequency windows as well as the location on the frequency axis vary 

with the forcing location. Once again, the variation appears to depend on the relative locations 

between the ES and the applied force: the closer the applied force is to the attachment site of the 

ES, the less pronounced the change is seen in the R1 ratio. The last observation is that the poor 

performance of the ES when it comes to energy dissipation on the cycle-to-cycle basis. For 

example, for D = 0.4 and D1 = 0.4, R1 only reaches approximately ~ e0.5. 
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5.2. Recommendations for Future Work 

While the preliminary investigation has uncovered several interesting features in the TET 

between the Euler-Bernoulli beam and the ES, there is still a large parameter space to explore. In 

particular, the following future research works may be considered. 

 Numerical simulations should be expanded with a broader consideration of other system 

parameters. In addition to those mentioned at the beginning of this chapter, the location of 

the ES attachment site, different material properties are also of importance when it comes to 

the design and vibration control of eliminating unwanted vibration. In addition, numerical 

analysis using more bending modes may be necessary when nonlinear effect of the beam 

vibration is considered. 

 Analytical study of the underlying Hamiltonian system will add new insights to the 

underlying dynamics of TET between beam type structure and ES. The analysis can lead to 

the identification of specific periodic orbits of the NES, the so-called the nonlinear normal 

modes (NNM), and their coupling with the vibration of the beam. The understanding of the 

dynamics of the NNM allows a more detail examination of the so-called resonance capture 

in the TET process. 

 It is of interest to further explore the dynamics of the NES in the chaotic regime. From the 

attachment site, NES is directly driven by the dynamics of the beam. For the Euler-Bernoulli 

beam, chaos is less likely since the beam is only capable of “simple” harmonic oscillation. 

Future work should include nonlinear elements in the primary structure so as to explore the 

effect of chaotic dynamics in the TET process. Given the sensitivity of the chaotic dynamics 

and the stability of the dynamic regime, it is plausible that more efficient and effective TET 

can be achieved. 
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Appendix A 

A.1   Clamped-clamped boundary configuration for the slender beam 

 

Table A.1: Weighted natural frequencies and mode shapes for clamped-clamped configuration 

of a slender beam [1]. 

Configuration Mode shape 
n  Weighted natural 

frequencies, Ln  

Clamped-Clamped 
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Appendix B 

B.1   MATLAB codes  

The following MATLAB codes were used to determine the response of the beam and energy 

sink as well as energy absorption and dissipation by the energy sink subjected to impact and 

harmonic excitation. 

………………………………………………………………………………………………… 
RESPONSE TO THE IMPACT EXCITATION 

………………………………………………………………………………………………… 
 

function [t,x]=beam(N,d,d1,Imp,J) 
  
[m,b1,b2,b3,ad,ad1,coefC,coefK,coefF]=setparam(N,d,d1); 
dt = 0.001; 
npt = 200000; 
tspan = (1:npt)*dt; 
options = odeset('RelTol',1e-5,'AbsTol',1e-10); 
if isempty(Imp) 
   Imp=10.5:0.5:40; 
   NImp=length(Imp); 
   J=1:NImp; 
else 
   NImp=1; 
end 
  
for i=1:NImp 
   % disp(['Impulse = ',num2str(I(J))]); 
    X0=zeros(2*N+2,1); 
    X0(2:2:2*N)=Imp(J(i))*ad1; 
    [t,x]=ode45(@vf,tspan,X0,options,N,coefC,coefK,coefF,m,b1,b2,b3,ad);     
    output=strcat('d0.4_d10.5_I',num2str(J(i)),'.mat'); 
    eval(['save ',output,' t x']); 
end 
  
% ------------------------------------------------------------------------- 
  
function g = vf(t,X,N,coefC,coefK,coefF,m,b1,b2,b3,ad) 
  
g=zeros(2*N+2,1); 
wd = sum(ad.*X(1:2:2*N-1)); 
wddot = sum(ad.*X(2:2:2*N)); 
FNES = b1*(X(2*N+2) - wddot) + b3*(X(2*N+1) - wd)^3; % for NES 
%FNES = b1*(X(2*N+2) - wddot) + b2*(X(2*N+1) - wd); % for LES 
  
g(1:2:2*N-1)=X(2:2:2*N); 
g(2:2:2*N)= -coefC*X(2:2:2*N) - coefK.*X(1:2:2*N-1) + coefF*FNES; 
g(2*N+1) = X(2*N+2); 
g(2*N+2) = -FNES/m; 
  
% ------------------------------------------------------------------------- 
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function [m,b1,b2,b3,ad,ad1,coefC,coefK,coefF]=setparam(N,d,d1) 
  
load betaL.mat; 
BETA=betaL(1:N); 
  
% ************************** parameters for beam 
EI=1; 
rho=2700; 
A=1/2700; 
L=1; 
gamma=0.02; 
an=inline('cosh(b*x)-cos(b*x) - sigma*(sinh(b*x)-sin(b*x))','b','sigma','x'); 
ad=zeros(N,1); 
ad1=zeros(N,1); 
for i=1:N 
    ad(i,1)=an(BETA(i),sig(i),d); 
    ad1(i,1)=an(BETA(i),sig(i),d1); 
end 
L2=1; % int an^2 dx ~ 1 
  
% ************************** parameters for ES 
m=0.05; 
k=0.05; 
c=5e-4; 
  
T=1; 
% ************************** dimensionless beam parameters 
alpha1=(rho*A*L^4)/(EI*T^2); 
alpha2=(gamma*L^4)/(EI*T); 
coefC=alpha2/alpha1; 
coefK=BETA(1:N).^4./alpha1; 
coefF=(ad./L2)./alpha1; 
  
% ************************** dimensionless ES parameters 
b1=c*T/m; 
b2=k*T^2/m; 
b3=k*L^2*T^2/m; 
  
showparam=0; 
if showparam 
   clc; 
   disp('**************************************************'); 
   disp('parameters used in the simulation:'); 
   disp(['b1 = ',num2str(b1)]); 
   disp(['b2 = ',num2str(b2)]); 
   disp(['b3 = ',num2str(b3)]); 
   disp(['coefC = ',num2str(coefC)]); 
   disp(['coefK = ',num2str(coefK')]); 
   disp(['coefF = ',num2str(coefF')]); 
   disp('**************************************************'); 
end 

 
 
  



51 
 

………………………………………………………………………………………………… 
ENERGY CALCULATION FOR IMPACT EXCITATION 

………………………………………………………………………………………………… 
 
function 
[ETB,EBmode,ETNES,totalE,Eimpact,ENES,rEB,rEBmode,rETNES]=energy_imp(nfiles,N
,d,d1) 
[m,b1,b2,b3,BETA,alpha1,ad,ad1,EI,L]=setparam(N,d,d1); 
Imp=10.5:.5:40; 
L2=1;rhoA=1;dt=0.001; 
  
for J=1:nfiles 
    disp(['processing file #: ',num2str(J)]); 
    eval(['load ' strcat('d0.4_d10.5_I',num2str(J),'.mat')]); 
    [npt,nvar]=size(x); 
    N=nvar/2-1; 
    dt=t(2)-t(1); 
  
    % ************************** KE, PE for the beam 
    KE=zeros(npt,1); 
    PE=zeros(npt,1); 
    for i=1:N 
        KEi=x(:,2*i).^2*L2*alpha1*0.5; 
        PEi=x(:,2*i-1).^2*BETA(i)^4*0.5; 
        KE=KE+KEi; 
        PE=PE+PEi; 
        EBmode(:,i,J)=KEi+PEi; 
    end 
    ETB(:,J)=KE+PE; 
  
    % ************************** KE, PE for the ES 
    wd=zeros(npt,1); 
    wddot=zeros(npt,1); 
    for i=1:N 
        wd=wd+ad(i)*x(:,2*i-1); 
        wddot=wddot+ad(i)*x(:,2*i); 
    end 
         
    KENES=0.5*m*x(:,2*N+2).^2;    
    PENES=0.25*b3*(x(:,2*N+1)-wd).^4; 
    ETNES(:,J)=KENES+PENES; 
  
    % ************************** Other Energy measures     
    totalE(:,J)=ETB(:,J)+ETNES(:,J); 
    for i=1:N 
        rEB(:,J)=ETB(:,J)./totalE(:,J);            % totalE% in beam 
        rEBmode(:,i,J)=EBmode(:,i,J)./totalE(:,J); % totalE% in mode 
        rETNES(:,J)=ETNES(:,J)./totalE(:,J);       % totalE% in NES 
    end 
     
    X0=zeros(2*N+2,1); 
    X0(2:2:2*N)=Imp(J)*ad1; 
    Eimpact(J)=0.5*sum(X0(2:2:2*N).^2)*EI/L*alpha1; 
    ENES(:,J)=cumsum((x(:,2*N+2)-wddot).^2*dt)*b1/Eimpact(J); %b1=0.8  
end 
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 % ************************************************************** 
  
function [m,b1,b2,b3,BETA,alpha1,ad,ad1,EI,L]=setparam(N,d,d1) 
  
load betaL.mat; 
BETA=betaL(1:N); 
  
% ************************** parameters for beam 
EI=1; 
rho=2700; 
A=1/2700; 
L=1; 
gamma=0.02; 
an=inline('cosh(b*x)-cos(b*x) - sigma*(sinh(b*x)-sin(b*x))','b','sigma','x'); 
ad=zeros(N,1); 
ad1=zeros(N,1); 
for i=1:N 
    ad(i,1)=an(BETA(i),sig(i),d); 
    ad1(i,1)=an(BETA(i),sig(i),d1); 
end 
L2=1; % int an^2 dx ~ 1 
  
% ************************** parameters for ES 
m=0.05; 
k=0.05; 
c=5e-4; 
  
T=1; 
% ************************** dimensionless beam parameters 
alpha1=(rho*A*L^4)/(EI*T^2);  % .. unit length beam mass 
  
% ************************** dimensionless ES parameters 
b1=c*T/m; 
b2=k*T^2/m; 
b3=k*L^2*T^2/m; 
 

………………………………………………………………………………………………… 
RESPONSE TO THE PERIODIC EXCITATION 

………………………………………………………………………………………………… 
 
 
function [t,x]=beam_perd(N,d,d1,freq,J) 
  
[m,b1,b2,b3,ad,coefC,coefK,coefF,coefP]=setparam(N,d,d1); 
FP=15; 
if nargin==3 
   freq=0.5:0.5:21; 
   Nfreq=length(freq); 
   J=1:Nfreq; 
else 
   Nfreq=1; 
end 
  
dt = 0.001; 
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npt =400000; 
tspan = (1:npt)*dt;  
X0=zeros(2*N+2,1); 
options=odeset('RelTol',1e-5,'AbsTol',1e-10); 
for i=1:Nfreq 
    omega=2*pi*freq(i); 
    
[t,x]=ode45(@vf,tspan,X0,options,N,coefC,coefK,coefF,coefP,m,b1,b2,b3,ad,FP,o
mega); 
    
output=strcat('d',num2str(d),'.d1',num2str(d1),'.freq',num2str(J(i)),'.mat'); 
    eval(['save ',output,' dt x']); 
    X0=x(end,:)'; % passing the last x value as new init cond. 
end 
  
% ------------------------------------------------------------------------- 
  
function g = vf(t,X,N,coefC,coefK,coefF,coefP,m,b1,b2,b3,ad,FP,omega) 
  
wd = sum(ad.*X(1:2:2*N-1)); 
wddot = sum(ad.*X(2:2:2*N)); 
FNES = b1*(X(2*N+2) - wddot) + b3*(X(2*N+1) - wd)^3;  %for NES 
%FNES = b1*(X(2*N+2) - wddot)+b2*(X(2*N+1) - wd);  %for LES 
  
g=zeros(2*N+2,1); 
g(1:2:2*N-1)=X(2:2:2*N); 
g(2:2:2*N)= -coefC*X(2:2:2*N)-coefK.*X(1:2:2*N-
1)+coefF*FNES+coefP*FP*cos(omega*t); 
g(2*N+1) = X(2*N+2); 
g(2*N+2) = -FNES/m; 
  
% ------------------------------------------------------------------------- 
  
function [m,b1,b2,b3,ad,coefC,coefK,coefF,coefP]=setparam(N,d,d1) 
  
load betaL.mat; 
BETA=betaL(1:N); 
  
% ************************** parameters for beam 
EI=1; 
rho=2700; 
A=1/2700; 
L=1; 
gamma=0.02; 
an=inline('cosh(b*x)-cos(b*x) - sigma*(sinh(b*x)-sin(b*x))','b','sigma','x'); 
ad=zeros(N,1); 
ad1=zeros(N,1); 
for i=1:N 
    ad(i,1)=an(BETA(i),sig(i),d); 
    ad1(i,1)=an(BETA(i),sig(i),d1); 
end 
L2=1; % int an^2 dx ~ 1 
  
% ************************** parameters for ES 
m=0.05; 
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k=0.05; 
c=5e-4; 
  
T=1; 
% ************************** dimensionless beam parameters 
alpha1=(rho*A*L^4)/(EI*T^2); 
alpha2=(gamma*L^4)/(EI*T); 
coefC=alpha2/alpha1; 
coefK=BETA(1:N).^4./alpha1; 
coefF=(ad./L2)./alpha1; 
coefP=(ad1./L2)./alpha1; 
  
% ************************** dimensionless ES parameters 
b1=c*T/m; 
b2=k*T^2/m; 
b3=k*L^2*T^2/m; 
  
showparam=0; 
if showparam 
   clc; 
   disp('**************************************************'); 
   disp('parameters used in the simulation:'); 
   disp(['b1 = ',num2str(b1)]); 
   disp(['b2 = ',num2str(b2)]); 
   disp(['b3 = ',num2str(b3)]); 
   disp(['coefC = ',num2str(coefC)]); 
   disp(['coefK = ',num2str(coefK')]); 
   disp(['coefF = ',num2str(coefF')]); 
   disp('**************************************************'); 
end 
 
 

………………………………………………………………………………………………… 
ENERGY CALCULATION FOR PERIODIC EXCITATION 

……………………………………………………………………………………………….. 
 

 
function [totalE,ETB,EBmode,ETNES,ENES,InputE] = energy_perd(N,d,d1,FP) 
  
[m,b1,b2,b3,ad,ad1,alpha1,BETA]=setparam(N,d,d1); 
L2=1; 
  
freq=0.5:0.5:21; 
Nfreq=length(freq); 
for ifreq=1:Nfreq 
    disp(['processing freq.#: ',num2str(ifreq)]); 
    eval(['load ' strcat('d0.4.d10.5.freq',num2str(ifreq),'.mat')]); 
  
    % define segmentation 
    [npt,nvar]=size(x); 
    perd=1/freq(ifreq); % freq in Hz 
    npt1perd=perd/dt; 
    NSEG=npt/npt1perd; 
    id=[0 round((1:NSEG)*npt1perd)]; 
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    for iseg=1:fix(NSEG) 
        J=(1:fix(npt1perd))+id(iseg); 
        nptJ=length(J); 
         
        % ************************** KE, PE for the beam 
        KEiseg=zeros(nptJ,1); 
        PEiseg=zeros(nptJ,1); 
        for i=1:N 
            KEi=x(J,2*i).^2*L2*alpha1*0.5; 
            PEi=x(J,2*i-1).^2*BETA(i)^4*0.5; 
            KEiseg=KEiseg+KEi; 
            PEiseg=PEiseg+PEi; 
            EBmode(iseg,i,ifreq)=mean(KEi+PEi); 
        end 
        ETB(iseg,ifreq)=mean(KEiseg+PEiseg); 
  
        % ************************** KE, PE for the ES 
        wd=zeros(nptJ,1); 
        wddot=zeros(nptJ,1); 
        wddot1=zeros(nptJ,1); 
        for i=1:N 
            wd=wd+ad(i)*x(J,2*i-1); 
            wddot=wddot+ad(i)*x(J,2*i); 
            wddot1=wddot+ad1(i)*x(J,2*i); 
        end 
        KENES=0.5*m*x(J,2*N+2).^2; 
        PENES=0.25*b3*(x(J,2*N+1)-wd).^4; %for NES 
        %PENES=0.5*b2*(x(J,2*N+1)-wd).^2; % for LES 
        ETNES(iseg,ifreq)=mean(KENES+PENES); 
        totalE(iseg,ifreq)=ETB(iseg,ifreq)+ETNES(iseg,ifreq);        
         
        % ************************** Other Energy measures     
        rEB(iseg,ifreq)=ETB(iseg,ifreq)./totalE(iseg,ifreq); 
        rEd(iseg,ifreq)=ETNES(iseg,ifreq)./totalE(iseg,ifreq); 
        for i=1:N 
            rEBmode(iseg,i,ifreq)=EBmode(iseg,i,ifreq)./totalE(iseg,ifreq); 
        end 
        
InputE(iseg,ifreq)=mean(cumsum(cos(2*pi*freq(ifreq)*J').*wddot1))*dt*FP; 
        ENES(iseg,ifreq)=mean(cumsum((x(J,2*N+2)-wddot).^2))*dt*b1; 
    end 
end 
  
  
function [m,b1,b2,b3,ad,ad1,alpha1,BETA]=setparam(N,d,d1) 
  
load betaL.mat; 
BETA=betaL(1:N); 
  
% ************************** parameters for beam 
EI=1; 
rho=2700; 
A=1/2700; 
L=1; 
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gamma=0.02; 
an=inline('cosh(b*x)-cos(b*x) - sigma*(sinh(b*x)-sin(b*x))','b','sigma','x'); 
ad=zeros(N,1); 
ad1=zeros(N,1); 
for i=1:N 
    ad(i,1)=an(BETA(i),sig(i),d); 
    ad1(i,1)=an(BETA(i),sig(i),d1); 
end 
  
% ************************** parameters for ES 
m=0.05; 
k=0.05; 
c=5e-4; 
  
T=1; 
% ************************** dimensionless beam parameters 
alpha1=(rho*A*L^4)/(EI*T^2);  % .. unit length beam mass 
  
% ************************** dimensionless ES parameters 
b1=c*T/m; 
b2=k*T^2/m; 
b3=k*L^2*T^2/m; 
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Appendix C 

C.1   Energy dissipation by the LES due to impulsive force 

 

It is possible to show the independence of the ELES with the impulsive force FI. First, let Yl, l = 1, 

…, N be the solution of the differential equation 
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in (2.9). Now, recall the modal equation of motion of the beam (2.12) and substituteWD, WD, by 
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 and combine (1), (2) to write the equations of motion in the 

vector form 
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Note NN1  from above is an NN   matrix with all its entries being 1.  

To write the above in the first order form, introduce  TTT zzU 
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By the linear system theory [17], the solution to (3) is given by  
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 , it is now clear that all the 

velocity components vary as linear functions of FI. Following (2.32), ELES is therefore 

independent of FI, since the impact energy in the denominator also varies as a linear function of 

FI. 
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