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Abstract
SOFTWARE-HARDWARE ANALYSIS OF SIGNAL FEATURE CLASSIFICATION

ALGORITHMS

© Hamidreza Asefi-Ghamari, 2010
Master of Applied Science

in the Program of

Electrical and Computer Engineering,
Ryerson University.

Over the last few decades, signal feature analysis has bgeificantly used in a wide variety
of fields. While several techniques have been proposed inrtee @ signal feature extraction
and classification, all of these techniques are achievedsimgumodern computers, which rely
on softwares, such as MATLAB. However, in real-time applmas or portable devices, software
implementation is not enough by itself, and a hardwareaso# co-design or fully hardware im-
plementation needs to be considered.

The selection of the right signal feature analysis tool feragplication depends not only on
the software performance, but also on the hardware effigieha method. However, there is not
enough studies in existence to provide comparison of thgealdeature extraction methods from
the hardware implementation aspect. Therefore, the obgeoct this thesis is to investigate both
the hardware and algorithmic perspectives of three comynased signal feature extraction tech-
niques: Autoregressive (AR), pole modeling, and Mel-freguyeCepstral coefficients (MFCCSs).

To fulfill this objective, first, the hardware analysis of ARyl modeling, and MFCC feature
extraction methods is performed by calculating the contprtal complexity of the mathematical
equations of each method. Second the FPGA area usage of estahef extraction methods is
estimated. Third, algorithmic evaluation of these thredhoes is performed for audio scene
analysis.

Once the results are obtained from the above stages, thallgverformance of each feature
extraction method is compared in terms of both the hardwaetysis and algorithmic perfor-
mances. Finally, based on the performed comparison, potkelimg feature extraction approach
is proposed as the suitable method for the audio scene @afydication.

The suitable method (pole modeling feature extractionhedr discriminant analysis (LDA)
classifier are implemented in Altera DE2 Board using AlterasNI soft-core processor. The audio
classification accuracy obtained using this implememadt@chieved to be equal to the MATLAB
implementation. The classification time for one audio sanpldetermined to be 0.1s, which is
fast enough to be considered as a real-time system for acei@sanalysis application.
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Chapter 1

Introduction

1.1 Motivation

IGNAL analysis has been a field of considerable interest ggnifecant growth over the last
S century. A wide variety of fields, such as, communicatiorqusiey, biomedicine, biology,
physics, finance and geology has benefited from the sciensigdl analysis. They use signal
processing methods and algorithms implemented on congpaten electric hardware to design
algorithms, develop models, and make informed decisiosedan the models. For instance, in
the filed of communication, audio signals are important sesiof information for understanding
the content of multimedia. Therefore, audio analysis tephes have been developed in order to
characterize the audio signals for applications, such agtimedia indexing and retrieval, and
auditory scene analysis.

Several signal analysis techniques have been developetlyra, interpret, manipulate, and
process our surrounding signals in an attempt to acquiregkéul information toward human’s
benefit. However, one of the remaining challenges is dealitiy the dynamic characteristics of
these real world signals. Signals are either stationaryoorgstationary. The former is denoted
to signals which their statistics (such as mean and varjaaiee fixed over time and follow a
probabilistic distribution. The latter refers signals hwitariable dynamics in time. A majority
of real-world signals generated by nature belong to notestary. For example, speech signals,
heart signals (ECG: electrocardiogram), and brain sigiei<S; electroencephalogram), are non

stationary in nature.
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The analysis of real-world signals is challenging as theaglyic nature of the real-world system

causes the signal to have stochastical and non stationbhayioe. To address this issue, the para-
metric or non-parametric modeling method has been proposkis approach, which is termed
feature analysis, involves extracting discriminatorytéieas from the signal and feeding them into
a classifier. While several techniques have been proposéx iarea of signal feature extraction
and classification, all of these techniques are achievedingunodern computers, which rely on
softwares, such as MATLAB. In recent years, the hardwarentgolgy has been significantly de-
veloped and gained significant attention from technologgéss. Hardware technologies, such as
VLSI (Very Large Scale Integration) technology, have beemmonly used in devices, like com-
puters, digital cameras, cell phones, MP3 players, digitakets and so forth. Recently, FPGA
(Field Programmable Gate Array) is found more appealingtdsrong functions of FPGA itself,
such as shorter time to market, ability to reprogram, anektavon-recurring engineering costs.
The selection of the right signal feature analysis tool foragplication depends on both the
software performance and the hardware efficiency of a methodexample, the software imple-
mentation evaluates the overall performance of each sgoakssing method for the application
in hand, and the hardware implementation investigatesthigaimplementation of which method
is more suitable. While the literature contains a signifi@anbunt of software-based analysis and
comparison as related to different signal feature exwaatiethods, there is not enough studies in
existence that provide comparison of these methods frorhalsware implementation aspect. To
address this shortcoming, there is a need to investigatalsamnalysis in both the hardware and
the software domain. The objective of this thesis is to ptevduch an understanding by investi-
gating both the hardware and software analysis of three amtyhused signal feature extraction

techniques.

1.2 Signal Feature Analysis State-of-The-Art

Feature analysis aims to classify a given data based on g@upeasurements in the data. De-
pending on the application, these measurements or obesvatre collected based on either a

priori knowledge or a set of statistical information exteatfrom the data. The block diagram in
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Fig. 1.1 shows the four stages exist in a feature analystemsysThe first block includes a sensor

that gathers the observations to be classified or descr@mtsors measure physical quantities and
convert them into signals which can be recorded for furtmedyssis. Some examples of sensors
include: thermometer for temperature, and microphoneuddraand speech. The second block is
signal preprocessing. The preprocessing stage may caftame or two signal processing stages
that provide an optimum representation of the signal. Tlaigescould include a segmentation stage
which divides the signal into shorter durations which cacdmsidered stationary. The third block
is feature extraction that maps the signal into some pomtsni appropriate multi-dimensional
space (ie. feature space). The final block is a classifierdibes$ the actual task of classifying the

signals relying on the extracted features.

Signal Feature e
Sensor I—— | i > X 3| Classifier
Processing Extraction

Figure 1.1: General schematic of a signal feature analysis system

1.2.1 Feature Extraction

Feature extraction involves simplifying the amount of rgses required to accurately describe a
large set of data. When performing analysis of complex dagsobthe major problems stems from
the number of variables involved. Analysis with a large nem@f variables generally requires a
large amount of memory and computation power. Featureaidreis a general term for methods
of constructing combinations of the variables to get arotnesge problems while still describing
the data with sufficient accuracy. As mentioned, featurag alvery important role in any pattern
recognition system. If the extracted features are so wéhee, even simple classification methods
will be good enough to accurately and efficiently classifg ttata. Therefore, developing more
powerful features and understanding the feature spacddshew vital consideration in designing
automatic decision making algorithms. Several paramatre€cnon-parametric features have been

proposed in the literature as explained below.
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Parametric Features: Parametric features are obtained based on parametric imgab|ran-

dom signals with the assumption that the signals are statyoend can be presented in terms of
the linear combination of several past values of model duyijus the linear combination of present
and past values of model input [2]. Many researches have detnaded that parametric modeling
is a useful method when dealing with random time series [3] 4nd segmentation is an efficient
approach to deal with non stationary signals [2, 6, 7]. EXespf parametric representations in-
clude: reflection coefficients, linear prediction coeffitiédPC), line spectral frequencies (LSFs),
autoregressive (AR) modeling, and dominant pole modelingoAg parametric features, autore-
gressive (AR) modeling and dominant pole modeling are ofr@#ts and investigated for use in
signal analysis.

It has been demonstrated that in many cases, AR spectrundesoa better resolution than
traditional Fourier spectrum [2], which can make the sigrallysis easier. To obtain the AR spec-
trum, one has to obtain the AR coefficients of the signal fBktfMoreover, AR coefficients can be
easily used in pattern classification [9, 10] and data cosgioe application [11]. Pole modeling
obtained from AR model of signals have given promising rssial classifying the phonocardio-

gram [12], electrocardiogram [13], electrocorticogram][®nd vibroarthrogram signals [3].

Non-parametric Features: Non-parametric features are derived based on the chasticteiof
the signals without any assumption about the signal moddl [Eeatures such as signal energy,
pitch, zero crossing rate [16, 17] and Entropy modulatid®] Have been used for audio classifi-
cation. Other non-parametric features include 4 Hz modhrisgnergy, percentage of low-energy
frames, spectral roll off point, spectral centroid, meaqtrency, cepstral coefficients [19, 20],
high and low frequency slopes [21], and spectrum flux (SF).[Mel-frequency Cepstral coef-
ficients (MFCCs) [22] are well-known non-parametric featwesd for the purpose of modeling
the human auditory perception system in the area of audigp@ech processing [23, 24, 25, 26].
Fig. 1.2 shows the focus of the present thesis. This thediagsd on three well-known para-
metric and non-parametric feature extraction methods: AR @ole modeling, and MFCC. A

comprehensive explanation of these methods are explain@dapter 2.



Feature Extraction

! !

Parametric Non-parametric

! ¢

AR modeling Pole Modeling MFCC

Figure 1.2: Feature extraction methods in this thesis

1.2.2 Classifier

Classification refers to a prediction rule that assigns tipesds into different classes. Various clas-
sifiers have been utilized in the literature. Audio conterelgsis at Microsoft research commonly
uses Gaussian mixture models (GMM) [27], k-nearest neididumd (K-NN) [28] and support vec-
tor machine (SVM) [29] for audio classification. Other pautlassifiers for audio classification
include linear discriminant analysis (LDA) [30], hiddenMav models (HMM) [31] and artificial
neural networks (ANN) [32]. There are some works that fodtesnéion on developing new clas-
sifiers, or comparing existing classifiers for audio clasatfon applications. For instance, in [33],
Buchler et. al. compare simple classifiers (e.g., rule-basedminimum-distance classifiers) with
complex approaches (e.g., Bayes classifier, neural netvmorki@den Markov model).

While these studies are beneficial, the aim of the preseny $aalises on investigating the
right feature extraction method in hardware device. Theeefin this thesis, we avoid complex
classifiers and apply LDA as a simple linear classifier to s the feature extraction methods.

This classifier is further explained in Chapter 2.



1.3 Hardware/Software Implementation State-of-The-Art

Implementation of feature analysis algorithms have be@eigdly performed in computers using
commonly used software programs such as MATLAB [34], andhdatatica [35], C program-
ming, and so forth. However, software implementation is emugh by itself in case of many
real-world applications as follows: (i) real-time applicas and (ii) portable devices. Real-time
performance is desirable in many applications, such a®aodine analysis in hearing aids or tar-
get tracking in computer vision. However, with the high cargtional complexity of developed
signal analysis algorithms, itis difficult to achieve thelréme goal with software-only implemen-
tation. For example, performing the discrete Fourier ti@ms (DFT) of a signal with\V samples
takes O(V?) arithmetical operations, which means that the complexitier increases with order
2 of the signal length. Hardware-software co-design oryfakirdware implementation can be
considered as a solution to this demand in real-time agjiita

Electronic portable devices are emerging in the market Wiéhfocus on high performance
signal analysis in order to improve the quality of life. Feample, a portable device that can detect
certain medical conditions (blood pressure, breath alldekiel, and so on) from a users touch [36].
Many such capabilities could be integrated into a portableless device that also contains the
users medical history. It may even be possible to detedioerbntextual information, such as the
users level of anxiety, based on keystroke patterns. Aftatyaing data input, the device could
transmit an alert message to a healthcare provider, thestdaospital, or an emergency system
if appropriate. Another example is in hearing aids [32]. teavith hearing disability depend
on assistive devices such as hearing aids to listen to thelsaround them. It is very important
for these assistive devices to determine the environmemng tise auditory clues in order to build
better instruments with automatic switching features [J#is would improve the quality of life
of people with disability. Some practical situations woblel in adaptively changing the noise
reduction strategy depending on the noise environmengstiraj the hearing-impaired listener
when a fast approaching automobile is detected, and audreestocalization for navigation.

An essential part in portable devices is the use of hardwahatactures to implement the signal

processing algorithms developed and evaluated in a pragmagnsoftware. Since 1970s, VLSI
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technology has significantly been used in electronic deviddese devices rely on VLSL chips,

including both ASIC (Application-Specific Integrated Cijuand FPGA (Field Programmable
Gate Array). In most recent years, the FPGA technology has B&nificantly developed and
gained more and more preference due to its advantages o&lsigrdeffort, shorter time to market,
ability to reprogram and lower non-recurring engineerimgts. Many applications have been
achieved by using FPGA techniques in various areas, i.eitatigjgnal processing, aerospace,
medical imaging, computer vision, speech recognition,\fiototyping, bioinformatics.

There are some recent publications dealing with FPGA implaations of calculating MFCC
and Linear-scale Filterbank Cepstral Coefficients (LFCC) faeal-time feature extraction solu-
tion. In [38, 39, 40] the implementation of a feature exti@cisystem based on a dedicated hard-
ware which consists of several stages designed to caldhiateature vectors, based on MFCC
and LFCC. There are few papers which discuss the implementafidéR modeling. One im-
plementation can be found in [41] which implements the Bugpathm onto the AMD29500
microprogrammable byte slice DSP and NHD 77230 single-chip DSP. The AMD DSP system
can have a sixteenth-order modeling rate at 17kHz while t6€ BSP system can have a sixteen-
order model at 8kHz. The other hardware implementation ofmdteling is the work in [42]
which the authors implement AR model of order 3 based on thg-Ritice algorithm using fixed
point arithmetic. They take advantage of Xilinx System gatw@ to implement the algorithm in
Xilinx Virtex 1l Pro device. In this thesis, an FPGA implemation of a pole modeling method

feature analysis approach is presented using the AltersiINioft-core processor.

1.4 Research Objective

The objective of this thesis is to investigate both the hamvwand software perspectives of three
commonly used signal feature extraction techniques: Agi@ssive (AR), pole modeling, and
Mel-frequency Cepstral coefficients (MFCCs). The presentgh@esents a comparison of both
the hardware and software analysis of AR, pole modeling an€®Bignal feature extraction

techniques. These contributions are explained as follows:

e Hardware analysis of AR modeling, pole modeling, and MFCC. @tmputational com-
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plexity of these three techniques is analyzed in detailsgudie mathematical equations of

each method. Based on this analysis, an area comparisorseffgedure extraction methods
in FPGA is provided.

e Implementation and evaluation of AR and pole modeling-, BiCC-based features for
audio scene feature analysis. An algorithmic performarmeceparison of these three well-

known feature extraction techniques is provided using MABLprograming.

e Performance comparison of AR, pole, and MFCC feature extnactiethods. This compar-
ison is performed based on both hardware and algorithmiogeance obtained from two

previous contributions.

¢ Implementation of audio signal feature analysis based ompAR-modeling feature extrac-
tion and LDA classifier. Using Niosll soft-core processocomplete pole modeling feature

extraction and classification is implemented in Altera DE2&b

1.5 Thesis Organization

Fig. 1.3 displays the organization and contribution of thissis. The contributions of the present
thesis are highlighted. This thesis consists of six Chaer®llows: Chapter 1 introduced the
significance of signal feature analysis and the challenge=al-world signal analysis applications.
A comprehensive signal analysis is explained. This chegdser described the importance of in-
vestigating both the hardware and software analysis of Xistieg feature analysis methods. It
also reviewed some of the commonly employed feature arsallgsis as related to non stationary
and complex signals.

Chapter 2 covers the detailed analytical procedures of tiwedeknown feature extraction
methods (AR, Pole, and MFCC), and a simple and commonly usedaréectassifier (LDA classi-
fier).

Chapter 3 computes the complexity of AR modeling, pole modeland MFCC feature ex-
traction methods for hardware implementation purpose® cimputational complexity of these

three techniques is analyzed in details using the matheab&ijuations of each method. The pole
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modeling computational complexity is the first known invgation for hardware implementation

analysis.

Chapter 4 evaluates and compares the algorithmic perforeramdt hardware analysis results
of AR, Pole, and MFCC feature analyses for environmental asckoe analysis application. This
comparison is the first known work presented in the liteetur

Chapter 5 explains the implementation of the pole modeliagufe extraction + LDA classifier
using ALTERA DE2 development board and Niose Il embeddedesystesign. This contribution
is the first known work performed in the literature.

Chapter 6 concludes the thesis and presents discussiortdoe fuork of this research.



Chapter 2

Feature Analysis Algorithms

2.1 Introduction

Previous Chapter studied current feature analysis methedslaped to classify environmental
audio signals, and selected three well-known feature etxtramethods (ie. AR, pole, and MFCC)
and a commonly used feature classifier (ie. LDA). In the pre&hapter, a detailed explanation
of these methods are described. Fig. 2.1 displays the aa@om of this Chapter. AR modeling
and MFCC features have been previously proposed for audi@lsaiassification; however, as
highlighted in the diagram of Fig. 2.1, the pole featuresiueed in audio signal classification for
the first time. The classifier used in this thesis is LDA. Théssifier is used in software evaluation

in MATLAB programming and FPGA implementation using Niosdft-core processor.

2.2 Autoregressive Modeling

Autoregressive Modeling is one of the commonly used pamametodeling methods in feature
extraction algorithms. In parametric modeling the valugha model output is presented by a
linear combination of several past values of the model dytjus the linear combination of present

and past values of model input, this is presented in theviahig equation:

m Q
y(n) == > apy(n —k)+G Y ba(n —1) (2.1)
=1 1=0

In the above equatiorh, = 1, z(n) is the model inputy(n) is the model output, and' is

11
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the gain factor. Transfer function for parametric modelaam be easily extracted by applying

z-transform to the above equation (2.1):

Y(z) o 1+ 9 bzt
X(2) 1+ XY agz7"
Based on the parameters above, three modeling methods cafifieddor a signal:

H(z) = (2.2)

o AR(Autoregressive) modeling corresponds to the situatiat 4, in Equation (2.2) is all

equal to zero.

Y(z) G
H(z) = = 2.
(2) X(z) 14+ apz7* (2:3)
¢ MA(Moving average) modeling corresponds to the situati@atd, is all zero.
Y(2) < -1
H(z) = =G(1+ ) bz (2.4)
() = x5 =G0+ b

¢ ARMA(Autoregressive moving-average) modeling correspotadthe situation that, and

b, both are not all equal to zero.

Y(2) _G 1+ 2 bz
X(2) 1+, apz=F

H(z) = (2.5)

Among these three methods, AR modeling has been most coryirasetl in dealing with audio
signals mainly since audio signals have an underlying agtessive structure, and can better be
represented using this model [43]. For an AR model, the duspmodeled as the linear combina-
tion of m past values of the model output and the present model inpyigst values of the model
input are used) as (2.1):

y(n) = — g:l ary(n — k) + Gz(n) (2.6)
By applying the z-transform to the above equation, the ARStierfunction is:

Y(z) G
X(z) 1+Xm a2

H(z) = (2.7)
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In AR modeling, the purpose is to obtain those AR parametefalso known as AR coefficients).

In the majority of real-world applications, e.g. the spesstognition or biomedical signal model-
ing, the inputz(n) is totally unknown. Hence, we are only interested in predicthe outputy(n)
as the linear combination of previous output samples, whiehns thatzx(n) has to be removed
in Eqn. 2.6:

jn) = — f ary(n — k) (2.8)

As a result of such an assumption, there will be an error asetfn the following equation:
e(n) =y(n) —gn) =y(n) + >_ ary(n — k) (2.9)
k=1

From equation in Eqn. (2.9), the general block diagram of BwnAodel can be shown as in Fig.

2.2.y(n) is the predicted value of the current sample) and the forward prediction error ign).

y(#) P P

Figure 2.2: Signal-flow diagram of AR model

Computing the AR Coefficients, to minimize the prediction erraf(n) is the purpose of AR mod-
eling. Several methods have been proposed in the literedwempute the AR model coefficients
in such a way that the above prediction error is minimized.[43enerally, two approaches has

been taken in computations of the AR model coefficients:ctliyeor iteratively. However, since
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the iterative methods cost more computation to achieve iaededegree of convergence than the

direct methods [45], the present thesis focuses on dirgrbaphes.
Burg method is one of the approaches proposed by Burg in 19¢7dd6omputation of AR
modeling coefficients. Burg algorithm uses the lattice stmecfor computing forward/backward

prediction errors as shown in Fig. 2.3. This method usestiaddilter and directly estimates re-

£0) h/Z\ £(n)

o0 0 ﬁ
bm—l(ﬁ)

Oz
by (n) by(n)

Figure 2.3: Burg-lattice Filter

by (n)

flection coefficientd~; ..., }. The key step in the algorithm involves minimizing the sunthef
norm of the forward and backward residual vectors, as a iimaif the reflection coefficient ma-
trices. Since the computed coefficients are the harmoniaiietveen the forward and backward
partial autocorrelation estimates, the Burg proceduress khown as the Harmonic algorithm.
This algorithm starts with a first-order model and compukbesgrediction parameters (reflection
coefficients) for successively higher model orders.

The ith reflection coefficient in Fig. 2.3 is a measure of the catieh betweeny(n) and
y(n — i) after the correlation due to the intermediate observatigns- 1), ....,y(n — i + 1) has
been filtered out. As the recursion constrains the filter padefall within the unit circle stability
of the filter is guaranteed. The Burg method is particularlfulsfor estimating coefficients from
segments of unequal length. This method is based on Lewsnsmarsions and estimates the AR

filter parameters through the associated reflection coefiisiconstraining the AR coefficients to
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satisfy Levinson equations. As the Burg algorithm usesclatiructure, it inherits the advantages

of lattice structure such as stability, modularity, congtiginal simplicity and efficiency. The Burg
lattice structure is modular which means by increasing tieroof the filter requires adding only
one extra module, leaving all other modules and its assatidter parameters the same. Besides
these, it is proven to be an efficient linear prediction tégh@ and is probably the most widely
known method to estimate AR coefficients [42]. Considerirgdtvantages of Burg-lattice algo-

rithm, in this thesis, Burg method is used for AR parametereting.

2.3 Pole Modeling

Fig. 2.4 displays the overall stages in the pole modelingl uise¢his thesis. Pole parameters are
calculated from a standard autoregressive model of ardésllowed by a root finding method

to calculate the poles of the AR transfer function. Applythg z-transform to Eqn. 2.6 the AR

Feature Extraction
Sensor Signal AR . Root Poles Classifier
Processing Modeling Finding Features
Figure 2.4: Pole Modeling overall diagram.
transfer function can be described as follows:
Y(z 1
H(z) = L) (2.10)

X(2) DS oy agz7k
Factorizing the denominator polynomials in Eqn. 2.10, thegfer function can be expressed as

given below:
1
H(z) = 2.11
D e ) @4
or:
H(z) = ! (2.12)

(2 =p1)(z = p2)(2 = p3)--(2 = Pm)
The parametersg, (k = 1,2, ...,m), are the poles off (z), the system representation. In order to

compute these parameters, a root finding algorithm is agpppbefollows:
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2.3.1 Roots Finding Algorithm

Pole parameters in Eqn. 2.12 can be obtained by finding this aiahe polynomialP in the

dominator of Eqn. 2.10 as shown below:
P(z)=14az 4agz 2 +azz® + ..+ apz™ (2.13)

Considering:,,, = 1, Eqn. 2.13 can be re-structured as following monic polyradmithout losing
generality:

P(z) = ag + aiz' + az2” +azz” + ... + 2" (2.14)

The problem of solving the polynomial equation is a well-eleped field of mathematics and com-
puter science, and there are several root-finding techsifpuesolving such a problem. There are
two types of roots finding techniques: Analytical and Nuro&li Analytical Root-finding Tech-
niques such as quadratic equation for polynomial equatiategree two or analogous formulate
exist for polynomials of degree three and four. Howeverpfaynomials of degree five and higher,
analytical solutions are not always possible, and only migaksolutions are possible [47]. A nu-
merical method for determining zeros of a polynomial gelheigan iterative method to construct
one or several sequences of complex numbers supposed tergeno a zero of the polynomial
[47]. As one would expect, each algorithm has its advantagdglisadvantages and therefore the
choice of the ‘best’ algorithm for a given problem is nevesyeddere are some desirable properties

that an algorithm may have:

e Converges to a zero of the given polynomial,

Finds both real and complex roots of a polynomial,

Satisfies global convergence: Algorithms that do not regairsufficiently close starting

value to converge are globally convergent,

Satisfies unconditional convergence: If an algorithm isveogent (locally or globally) for

all polynomials, it is unconditionally convergent,

Fast speed of Convergence,
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Selection of the right technique depends on the nature adlalgmm. In fact, for some problems,

the majority of the techniques may fail to find a solution &tahereas only one technique can
succeed. For other problems, several techniques may,dnbdeable to solve the problem and the
numerical analyst may select the one that is more computhoefficient compared to the others
[47]. For example, the bisection method is a simple andbkdianethod for computing roots of
a function when they are known to be only real values. Newtométhod is locally convergent
and will converge to complex zeros only if the initial appiroation is complex. However, a good
combination of Muller’s and Newton’s Methods can producelable and fast program. Muller’s
method computes estimation of roots and these estimatads/are used as the initial values for
Newton’s method. The J-T algorithm is fast and globally @ges for any distribution of zeros
[48]. Also, few critical decisions have to be made by the paogwhich implements the algorithm.
For instance, shifting is incorporated into the algorithgelif in a natural and stable way. Shifting
breaks equimodularity and speeds the convergence. Eigesvaf Companion Matrix is a very
accurate method for computing zeros of a polynomial [49pl&2.1 summarizes the algorithms
used by some of the most popular numerical software progrdmshis thesis, Eigenvalues of
Companion Matrix algorithm is used, which is commonly usethaliterature and also employed

in MATLAB software. This algorithm is explained in detail @hapter 3.

. Numerical
Algorithm Software
Modified Laguerre NAGF77 library CO2AFF
companionmatrix | MATLAB roots
Madsen-Reid HSL PA16
Jenkins-Traub IMSL CPOLY
Jenkins-Traub Mathematica NSolve

Table 2.1: Root finding algorithms used by commonly used numerical software.
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2.3.2 Pole Modeling Parameters as Features

As shown in Fig. 2.4, the poles of the model could be used asrisato construct feature vectors
for signal representation and classification [50]. The disien of the feature vector are the same as
the model order. The superior performance of poles in trackie frequency or spectral behavior
of a signal makes them an appropriate choice for paramefpiesentation of signals. The poles
should also assist in associating the features with phlysiaaacteristics of the signal source. A
pole in z-plane can be represented by two characteristiegnitude and angle. In this thesis
two features are extracted from the poles obtained in eartaksegment in a way that they best
represent the signals’ poles in z-plane. These featurespgended together to form a combined
feature vector. These two features are: the spectral baltiohand the pole angle in z-plane are as
explained below:
Let us considep; = a + jb as a complex pole of the system. The spectral bandwidtts

measured as the distance- v/a? 4 b2 of a pole from the origin in the complex z-plane [50]:

1 ) —2(1—
fz=cos™* (1+r7) ( T)] (2.15)
2r
The angle op; is calculated as follows:
1 |b
0 = tan " (2.16)

2.4 Mel Frequency Cepstral Coefficients(MFCC)

The original MFCC was introduced by Davis and Mermelsteird8@[51]. Mel-scaled Frequency
Cepstral Coefficients (MFCC) is a non-parametric method of mieglehe human auditory per-
ception system. The termeldenotes some kind of measurements of perceived frequenmichr
of a tone. The auditory response of the human ear is nonrlie&h is mapped by using MFCC.
MFCCs are based on the Mel frequency scale which approxinmfaeson-linear way that humans
perceive sounds by emphasizing the lower frequencies rharethe higher frequencies [51]. The
mapping between the real frequency scale (Hz) and the pertéiequency scales (mels) is ap-

proximately linear below 1KHz and logarithmic at higheruency. The formula that models their
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relationship is described as[52]:

FHZ
Fo, =2 Logy (14 212 217
| = 2595 x ogm< n 700) (2.17)

The perceptual masking in MFCC is achieved by using the Migrfidlank shown in Fig. 2.5.
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Figure 2.5: Mel scale filter bank

The overall process of the MFCC is shown in Fig. 2.6. Firsigrdite Fourier transform (DFT)
is applied to the speech signal. Next, the output of the DFpaissed through a perceptually
spaced bank of twenty equal height triangular filters to inkitae energy of signals. Finally, a set
of discrete cosine transform is applied to logarithmicaliynpressed filter-output energies to gain

the MFCCs.

2.5 Feature Classifiers

The classifier used in this thesis is LDA. This method is exyld as follows.
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|
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Figure 2.6: MFCC Block diagram

2.5.1 Linear Discriminant analysis (LDA)

Linear Discriminant analysis DA (LDA) (or Fishers linearsdiiminant) originally developed in
1936 by R.A. Fisher. LDA is a classic method of classificatioett has been widely used in many
signal processing applications. LDA is a simple and effictkscriminant analysis which produces
compatible accuracies compared to complex classifier mdsthim the discriminant analysis, the
feature vector containing the set of the features werefwamgd into canonical discriminant func-
tions such as:

f =a+ U1b1 + U2b2 + ...+ Unbn (218)

where{uv,vq, ..., v, } is the vector containing the set of features, ahd b, ..., b, } anda are the
classifier coefficients and constant, respectively. Udmggdiscriminant functions values (scores)
and the prior probability values of each group, the postgniobabilities of each sample occurring
in each of the groups are computed [53]. The sample is thegreskto the group with the highest
posterior probability. Fig. 2.7 shows an LDA classifier faottarget groups and 2D feature space
{v1,v2}. In the scenario shown in Fig. 2.7, the LDA classifier is tme Iseparating the feature

samples of Group A and Group B signals. When a new feature saisigloing to be classified
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f=a+ﬁﬁ+@%i
i

-

Featurel

Feature 2 ¥;

Figure 2.7: LDA shematic.

based on the LDA classifier, the group of the new feature samil be defined depending on its
location in the feature space in respect to the classifier linthe sample falls above the line, the
system will decide that the signal belongs to Group A; otheewthe signal will be classified as

Group B signal.

2.6 Summary

In this Chapter, a detailed explanation of AR, pole modelind) i CC have been presented. The
next Chapter will calculate the computational complexitgath of the three techniques in details

using the mathematical equations of each method.



Chapter 3

Computational Requirements Analysis

3.1 Introduction

The algorithmic explanation of three well-known featurdragtion method (ie. AR, pole, and
MFCC) were provided in Chapter 2. Fig. 3.1 displays the orgaioizaf the present Chapter. The
aim of this Chapter is to compute the complexity of AR modelipgie modeling, and MFCC for
hardware analysis.

As shown in Fig. 3.2, the computational complexity of eachhaf three techniques will be
analyzed in details using the mathematical equations df esthod. For each method, first each
algorithm is divided into its consisting mathematical gSecond, the sequencing graph (SG)
of each mathematical stage is plotted. A sequencing graggepts the operations and their partial
order. Next, based on the SG of each stage, the number ofedguathematical operations is
obtained. Finally, the numbers of operations in each stag@dded to obtain the total number
of operations for each feature extraction algorithm. Itudtidoe noted that the pole modeling

computational complexity is the first known investigation hardware implementation analysis.

3.2 AR modeling with Burg algorithm

Fig. 3.3 shows one stage in the lattice structure for comgutrward/backward prediction error.
For any model order increase, the AR coefficients is comphbtedimply adding one or more

lattice stages without affecting the earlier computatiforghe lower orders. Fig. 3.4 shows the

23
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flow chart for calculation the AR coefficients. The detailedthematical analysis used in each

step in the flow-chart 3.4 is explained below:

e Initialization of the forward/backward error:

fo(n) = bo(n) = z(n)

n=01,.,L—1

a,():l

(3.1)
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by (n)

by (m)

Figure 3.3: The lattice structure for one stage of Burg algorithm.

e Calculation of the reflection coefficient in the Burg algorithm

5 S P feoi()be—1(n—1)

L Sy TN RN Y (3.2)
r=1,2,3,..m
e Calculation of the forward/backward prediction errors:
fr(n) = fr—l(n) —Vr X br—l(n - 1)
(3.3)
n=rr+1,.,L—1
by(n) = by (n = 1) =7, X foa(n)
(3.4)

n=rr+1,..,L—1



«(n)
|

Initialization

!

> 7,

f.(n) b.(n)

ar, k

k=k+1 NO

Figure 3.4: Flow chart of calculation the AR coefficients using Burg algorithm.

¢ Finally, calculation of the AR Coefficients:

Qro = 1
Qryr = —Yr

Arg = Ar—1k — Vr X Qr—1r—k

3.2.1 Sequencing Graph and Number of operations

Sequencing graphs is plotted for three computational stagellows:

27

(3.5)
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Stage 1: Stage one is calculating the reflection coefficient in the Blggrithm. Fig. 3.5 shows

the SG for this step. The reflection coefficient needs to beutated for each iteration of the

Figure 3.5: SG of the reflection coefficient calculation.

algorithm and each signal segment. This means that forreackhe iteration f), -, is computed
from the forward errorf,_;(n) and backward errob,_;(n — 1). AssumingP is the maximum
number of iteration (ie. the AR model order) andis the maximum number of samples in each

segment of the input signal, operations required for tl@p stre calculated using the SG shown in
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Fig. 3.5 as follows:

Numberofmultipliers : > 7" [3x (L —1—1r) + 1]
Numberofadders : > 7 (L —1—r) (3.6)

Numberofdivisions : m

Stage 2: Fig. 3.6) shows the SG for calculating forward and backwardrs in each iteration

of the AR algorithm. The forward errof.(n) and the backward errar.(n) are calculated based

fr—l(”) —7, br—l(n_l)

b,(n) )

Figure 3.6: SG representing the forward/backward prediction errors calculation.

on -, which is calculated in the previous step and the forwardrefro, (n) and backward error
b,_1(n) from the previous iteration. Based on sequencing graph shoWwig. 3.6, the operations

required for this step are as follows:

Numberofmultipliers : > ", [2 x (L —1—1)]
(3.7)
Numberofadders : > 70 [2x (L —1—71)]
Stage 3: Fig. 3.7 shows the sequencing graph for calculating AR aweffts in each iteration of

algorithm. The AR coefficients, , are calculated based onand the AR coefficients obtained in
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ar—l,k - :Vr ar—l,r—k

ar, k

Figure 3.7: SG of the AR coefficients calculation.

the previous iteration. Based on the sequencing graph of3Figoperations required for this step
are as below:

Numberofmultipliers : > (r — 1)
(3.8)
Numberofadders : > 7" (r — 1)

3.2.2 Total Number of required operations

Total number of mathematical operations required for caimpgithe AR coefficients using Burg
algorithm can be extracted based on Eqns. 3.6, 3.7, and BékeToperations are listed in Table
3.1.

3.3 Poles from AR Modeling using Eigenvalues of Companion
Matrix

As discussed in Chapter 2, finding AR-model poles can becomeldgon of finding roots of the

polynomial P(z) as given below:

P(2) = ag + a1z + agz® +asz® + ... + 2" (3.9)
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Multipliers Z(5L—4?‘—6)
r=1

Adders i(35_2r_4)
r=1

Divisions m

Table 3.1: Total number of operations required in AR modeling.

Computing roots of a polynomial can be posed as an eigenvedié=mn by forming the companion
matrix. The eigenvalues of companion matrix method is ani@te method for computing zeros

of a polynomial. The companion matri associated with this polynomial is defined as follows:

—Am—1 - . . —Q2 —aip —Qo
1 0 0
10 .
A= . : (3.10)
1 0

This matrix has the characteristic polynomial as definedveel
P.(z) =det (zI — A) = P(z) (3.11)

Finding the zeros of Eqn. 3.9 is equivalent to computing tigerevalues of matrix4 in Eqgn.
3.10. The eigenvalues of matrix can be found using the QR algorithm. Fig. 3.8 is the flow
chart of AR model poles calculation using eigenvalues of ganion matrix. Fig. 3.8 shows that
QR algorithm is deployed to compute the eigenvalues of tmepamion matrix. The classic QR
algorithm performs a QR decomposition or factorizationaotérize the matrix4; as a product
of an orthogonal matrix); and an upper triangular matri;. In each iteration of QR algorithm,

matrix A; is factorized to matrixQ; and R; using QR factorization. Then matri®; ., is formed
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Figure 3.8: AR model poles calculation using eigenvalues of companion matrix.
by multiplying the factors in the following order:
A1 = Ry X Q; (3.12)

After several iterations, matri®; is converted to a triangular matrix, and the diagonal elémen

the matrix converge to the matrix eigenvalues.

3.3.1 QR Factorization

There are several algorithms to perform the QR decompofia matrix. For example, Cholesky

QR, the Gram-Schmidt process, Givens rotations, or Houdeho¢flectors [54]. Most of general-
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purpose software for QR uses either Givens rotations or étolder reflectors as two important

transformation techniques. One advantage of Givens oo&tnethod over Householder transfor-
mations is that they can easily be parallelized, and oftemdoy sparse matrices they have a lower
operation count. In this thesis Givens rotations is usegéoforming the QR decomposition.

Companion matrix4 is an upper Hessenberg form and it is already nearly upzareular. By
applying Givens rotation technique and zeroing out the onlynonzero entry below each diagonal
element, matrix4d becomes a triangular matrix. The Givens rotation matriees+s, Gs, ..., G,_1
are constructed so that:

Go1 X Gpeo..Ga x G1 x A=R (3.13)

As it is demonstrated below, the orthogonal magik is formed from the concatenation of all the

Givens matrices :
Q=G xGI...xGL _,xGI |

(3.14)
QT = Gm_1 X Gm_Q...GQ X G1
The two Eqns. 3.14 and 3.13 are combined as it is shown below:
QT"A=R (3.15)
and then:
QQ"A=QR
IA=QR (3.16)
A=QR

Egn. 3.16 shows that using Givens rotation method, matroan be factorized t¢) and R. In
factorization the idea is to first fin@; to zero out the sub-diagonal element below which is

shown below:

11 Q12 A1m a1 a12 A1im
1 O 0 a52 aim
0 1 0 1 0
Al - GlA - G1 (317)
0 1 0 1
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At the next steff, is multiplied byG, and the sub-diagonal element in the second column below

theasy, is zeroed :

Ay = GG A =Gy

ar
0
0

0

a1
a22

1

0

A1
2m

1

0

an
0
0

0

a2
@22

0

1m
Ao2m
A3m

1

0

(3.18)

After m — 1 iterations, matrix4, is converged to a triangular matrix and the eigenvaluesicoeil

found easily from the diagonal elements of the matrix. A Gs/eotation matrix to zero out the

sub-diagonal element bellow the elemepy is represented by a matrix of the following form:

G(j,j+1,0)=

1

0

0l

0

0

1

(3.19)

wherec = cog#) ands = sin(f). As the name Givens rotation indicatés’ (5, j + 1,6) x X is

a counterclockwise rotation of the vectarin the (j,j + 1) plane ofd radians. Givens rotations

are clearly orthogonal matrices. Consideritig is a diagonal element of matrix and’+! is

a sub-diagonal element of matrik Givens rotations technique zeros out t#he'7 by using this

function:

(3.20)

where:

.
C= Vo (3.21)
S
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Here the detail algorithm to perform QR factorization islexped. Assuming matrix is an upper

Hessenberg matrix, then matrikcan be factorized agd = QR where( is orthogonal and? is

upper triangular.
Forj=1:m-—1

A(j.4)
VAG)2HAG+1,5)2
A(j+1,9)
VAU PHAG+1.5)>

CcC =

S =

T
AG:j+1,5:m)=| < 7| AG:j+1,j:m)
S C

Gj(j,j):c 3.22
Gij+Lj+1)=c (3.22)
Gi(j,j+1)=s

Gi(j+1,j)=—s

End

R=A

Q=G"xGl.. xGY ,xGT |

Q= GF xGI...x GI_, x G _, is a product of Givens rotations;(j,j + 1,6). These
algorithm is applied to companion matrikfrom Eqn. 3.10 which is an upper Hessenberg matrix.

In a companion matrix all the sub-diagonal elementsAf¢+ 1,j) = 1, so the algorithm is
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simplified as follows:

Forj=1:m-—1

oo AGY)
vV A(jij)2+1

S - o .
A5,9)%+1

i) =c¢ (3.23)

Q=G xGI...xGL _,xGI |

The QR algorithm is shown Fig. 3.8; the QR decompositionlblodhe QR algorithm is replaced
by the algorithm which is explained above in Egn. 3.23. Fi§.shows the block diagram for QR

algorithm using Givens rotations technique to performimg®R factorization.

3.3.2 Sequencing Graph and Number of Operations

Fig. 3.9 shows the flow chart of the QR Algorithm which empltys Givens rotation technique to
perform QR decomposition. In this section SG for each stepeélgorithm is plotted and number

of required mathematical operations are calculated.

Stage 1: First step in each iteration of QR algorithm is over writingtnix A; using the QR
factorization asd; = Q); R; where(); is orthogonal andk; is upper triangular. The QR factorization
is an iterative algorithm which starts wigh= 1 and continues til; = m — 1. Each iteration of the

QR factorization by itself contains the following threepse
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Figure 3.9: QR Algorithm using Givens rotations technique,

QR factorization Step 1: is calculatingc; ands;. Fig. 3.10 shows the SG for calculating

ands; in each iteration of QR factorization. Based on SG 3.10 nurmbegquired mathematical

operations for calculate; ands; in each iteration of QR factorization are as follows:

Numberofmultipliers : 2
Numberofadders : 1
Numbero fsquareroots : 1

Numbero fdividers : 1

(3.24)
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Figure 3.10: Computinge ands

Then total number of operations for calculatiggands; in m — 1 iterations are:

Numberofmultipliers : 2(m — 1)

Numberofadders : (m — 1)

(3.25)
Numberofsquareroots : (m — 1)
Numberofdividers : (m — 1)
QR factorization Step 2: in QR factorization is calculating new as follows:
c 1T
AG g+l m)=| A(G:j+1.5:mM)
(3.26)
c s | g a; a; a;
A(j:7+1,5:m) = I Pl Jm
(] / / ) L s ¢ i Q41,5 Aj+15 - - - Ajrim
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Eqgn. 3.26 is a matrix multiplication. Matriy has two rows and two columns. Matrix(; :

Jj + 1,7 : m) has two rows and numbers of its column is different in eaataiten and equals to
m — j + 1. Number of operation for creating Matrix(j : j + 1,5 : m) are:
Numbero fmultipliers : 4(m — j + 1)
Numberofadders : 2(m — j + 1) (3.27)
Then total number of operations for creating matfi% : j + 1, : m) in m — 1 iterations are:
Numberofmultipliers : 43 "5 'm — j+ 1 =2(m — 1)(m + 2)

Numberofadders : 23 ™ 'm —j+ 1= (m — 1)(m + 2) (3.28)

7=1
QR factorization Step 3: is the last step in QR factorization. In this step product ve@s
rotations are calculated = GTGY...GT _,. This computation is a matrix multiplication. Givens

rotation matricG, (7, 5 + 1,6) multiplies by a matrix withn rows and columns as it is presented

below:
1 ok 0 0
a1 a12 ... Qim
921 Q99 . . . A9m
i1 ' 4 asy Qs . . . 0G3m
o ... g s .. .0 (3.29)
0 —S; G 0
Am1 Am2 - - . Amm
o ... 0 o0 . . .1
Number of operation required to perform this matrix multgtion are:
Numberofmultipliers : 4m
Numberofadders : 2m (3:30)
Then number of total required operations for calculatihop 1 — 1 iteration are:
Numberofmultipliers : 4m(m — 1)
(3.31)

Numberofadders : 2m(m — 1)
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Based on Eqgns. 3.25, 3.28 and 3.31 total number of requireldemmetical operation for perform-

ing the QR factorization in one iteration of QR algorithm assfollows:

Numbero fmultipliers : 2(m — 1)(3m + 1)

Numberofadders : (m —1)(3m + 1)
(3.32)
Numberofsquareroots : (m — 1)

Numberofdividers : (m — 1)

Stage 2: Next step of QR algorithm is calculating the new matdx.; = R;Q; where(); is
orthogonal andz; is upper triangular. Also it is confirmed in [54] that mattix= GTGI...GT |

is upper Hessenberg ¥, Gs, ..., G,,,_1 are the Givens rotations. So calculatidg,; contains
multiplication of the matrixR; which is upper triangular by matri; which is upper Hessenberg,

as it is shown below:

aip a1z . . . dim ayp a1z . . . A1m

0 aszy . . . A2, o1 Q22 . . . aom,

0 0 ce A3m 0 asa . . . a3m
0o . . . . (3.33)

0 0 . . 0 amm 0 0 . . Gum-1 Gmm

Then number of operations required for creatityg, are as follows:

m2(m+3)

Numbero fmultipliers : 1

(3.34)

Numberofadders : M

3.3.3 Total Number of required operations

Total number of required mathematical operations to perf@R algorithm using Givens rotation

technique are calculated based on Egns. 3.32 and 3.34. dpesaions are listed in Table 3.2.

3.4 Mel Frequency Cepstral Coefficients (MFCC)

The MFCC computation for a given signal consists of the follay\steps:
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2
Multipliers I{Z(m_lx3m+l)+W]

Adders I[(m_lx3m+1)+ m‘(m—:)(m+ 2)}

1)

Square Roots I(m 1)

Divisions I(m

Table 3.2: Total number of operations required in pole modeling.

e Construct the filter bank with M equal height triangular fittéf;(K') based on Mel-scaled
frequency from Eqn. 2.17,

e Transform the input signal (n) from time domain to frequency domaii( K') by applying
DFT,

e Find the energy spectrunX (K)

e Calculate the energy in each charél_} | X (K)| x H;(K),
e Proceed with logarithm and cosine transforms,

In the next section SG for each stage of the algorithm is¢guicdind number of required mathemat-

ical operations are calculated.

3.4.1 Sequencing Graph and Number of Operations

Stage 1. Stage one in computing MFCC is transforming the input sigr@ahftime domain to
frequency domain by applying discrete Fourier Transforfa TP Letz(0), ...., z(L—1) be a vector

of input signal samples. Considéras the frame size or number of samples in each segment. Then
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DFT is defined by the formula:

X(k)=YElan)e T k=0,..,L—1 (3.35)

ConsideriV, = ¢~ is the primitive Lth root of unity, DFT is presented as dnby-L matrix

multiplication as follows:

X(k)=Stlta(myWir k=0,.,L—1 (3.36)
X (1) 1 1 1 1 z(1)
X(2) oW, W Wi z(2)
X(3) 1 W wi o Wi z(3)
=1 . . S . x . (3.37)
X(L-1) Lo e e | ap-

The direct implementation of the Eqn. 3.37 requires ordef.otomplex multiplications and

additions. The direct evaluation of DFT involves the follogyoperations counts:

Numbero fmultipliers : L?

(3.38)
Numberofadders : L(L — 1)
Stage 2: Second step in MFCC is calculating the energy spectrum asafsil
|IX(k) k=0,..,L—1 (3.39)
Number of required mathematical operations for calcutpéinergy spectrum is:
Numberofmultipliers : L
(3.40)

Numberofsquareroots : L

Stage 3: Inthe next step, for each channel of Mel scale filter, theggnef signal is calculated. It
is assumed that construction of the filter bank wigrqual height triangular filterd;(K) has been
done once and it is known during all the iterations. Numbeamathematical operations required

for creating Mel scale filter bank does not count in this thésis considered as the number of Mel
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windows in Mel scale, which usually varies from 20 to 24; is the triangular filter associated

with theith channel in Mel scale:
Hi(K) k=0,.,L—1 and i=0,..,b—1 (3.41)
The energy of signal is calculated by the formula which ispreéed below:
S(i) =S FL I X(K)| x H(K)  i=0,..m—1 (3.42)

For the convenience of estimation Eqn. (3.42) is expressadnatrix form:

S(0) Ho(0) . . . Hy(L—1) 1X(0)]

S(1) H(0) . . . H(L-1) 1X(1)]

5(2) Hy(0) . . . Hy(L—1) X(2)

. = : Coe . X . (3.43)
S(m — 1) Hy () . . . Hyo(L—1) X(L—1)

Number of required mathematical operations for this cakooih is:
Numberofmultipliers : b x L
(3.44)
Numberofadditions : b x (L — 1)
Stage 4: Finally by proceeding with logarithm and cosine transfarthe MFCCs are computed

as follow:
C(l) = X 1=y Log(S(i)) x Cos|i(i+05)F]  1=0,...,m—1 (3.45)

m is the desired order of MFCC. Again for the convenience of esion equation (3.45) is ex-
pressed in a matrix form as follows:
F(1,i) = Cos|l(i + 05)7 ] i=0,..b—1 and 1=0,...,m—1

(3.46)
C(l) =X 23 Log(S(i) x F(l,3) i=0,...b—1 and 1=0,...m—1
C(1) F(0,0) . . . F0,b—1) Log (S(0))
C(2) F(1,0) . . .  F(,b—1) Log (S(1))
C(3) F(2,0) . . .  F(2,b—1) Log (S(2))
: = . S : X : (3.47)

Clm —1) Flm—1,0) . . . Fim—1b—1) Log (S(b— 1))
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Multipliers P+ L+bxL+mxb
Adders LL-1)+b(L-1)+mlb-1)
Logarithms b

Square Roots L

Table 3.3: Total number of operations required in MFCC.

Number of required mathematical operations for the lagfestae:

Numberofmultipliers : m x b
Numberofadditions : m x (b—1) (3.48)

Numberoflogarithms : b

3.4.2 Total Number of required operations

Total number of mathematical operations required to catelMFCCs is extracted as below based
on Egns. 3.38, 3.40, 3.44 and 3.48. These operations ad iisfTable 3.3.

3.5 Summary

In this Chapter the computational complexity of AR modelipgle modeling and MFCC are
analyzed in detail using the mathematical equations of easttnod. Each algorithm is divided
into its consisting mathematical stages and the numberafired mathematical operations is
obtained. Next Chapter will estimate the total number of LWEEded for the implementation of

AR, pole modeling, and MFCC on the Altera Cyclone FPGA, basechercomplexity of each



45
method calculated in this Chapter. The algorithmic and hardvperformances of these three

feature analysis methods will be compared in the next Chaterell.



Chapter 4

Application: Audio Environment Scene
Analysis

4.1 Introduction

The algorithmic explanation of three well-known featuré¢ragtion methods (ie. AR, pole, and
MFCC) were provided in Chapter 2. Chapter 3 computed the contplekiAR modeling, pole
modeling, and MFCC for Hardware analysis. As shown in Fig, thé present Chapter evaluates
and compares the algorithmic and hardware performancefoPAle, and MFCC feature analy-
ses for environmental audio scene analysis applicatioms ddmparison is the first known work
presented to the best of the author’s knowledge.

This Chapter is continued as follows: first the backgroundlgecture review of audio scene
analysis is presented. Next, the database used in the pesdumation is explained, followed by
the properties of the employed classifier and feature eidramethods. Finally, both algorithmic
and hardware performances of these three feature analgsieds are provided and compared.
The most efficient feature analysis method is selected ®NIOS Il implementation in the next
Chapter.

Audio feature extraction and classification are importaats for audio signal analysis in many
applications, such as multimedia indexing and retrievad, auditory scene analysis. However, due
to the non-stationarities and discontinuities exist irsthsignals, their quantification and classifi-

cation remains a formidable challenge. The general metbggmf audio classification involves

46
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Figure 4.1: Chapter 4 - Environmental Audio Scene Analysis.
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extracting discriminatory features from the audio data fadling them into a pattern classifier.

The better and more effective features are extracted frafioagignals, the higher performance
will be achieved in the audio classification technique. €fae, the specific aim of this Chapter

is to study audio environment classification accuracy vedware cost problem.

4.2 Audio Classification

Audio signals are important sources of information for ustending the content of multimedia.
Therefore, developing audio classification techniquesthi#ter characterize audio signals plays
an essential role in many multimedia applications, sucimadtjmedia indexing and retrieval, and
auditory scene analysis. In multimedia indexing and redéfieaudio classification is used along
with other kinds of medium to classify the content of the nmétdia. In auditory scene analysis,
audio classification is used to distinguish between diffeesvironmental sounds. For example,
in an efficient hearing aids (HA), in order to improve the dfyadf the audio for hearing impaired
people, before amplifying the audio signals, the HA devisesuan audio classifier to distinguish
between different environmental sounds, such as speedic amd noise, and then the signals are
amplified accordingly [55].

Another application of audio classification is in audiouassignal processing. One of the ex-
amples of audio-visual processing is controlling the obesteon of a driver which is an application
of Multimedia for human’s safety purposes. By means of augisaene detection and the visual
data, the watchfulness of the driver can be detected to aaaidents due to lack of concentration.
Audio classification and analysis also help in retrieving #tcurate information from the digital
media. Development of powerful audio effect processorf siscEMU10K1 [56] for the personal
computers has made it possible for criminals to create adaldence by adding environmental
simulation, 3-D positioning, and special effects to audicteate environment adaptations such
as train, plane, public place or etc. Determination of thibeunticity of the speaker’s environment
can play a substantial role in investigations of the coldanultimedia evidence to prove a crime
[57].



4.3 Audio Environment Database “

The performance of a classification procedure depends otetsign parameters, diversity of the
classifiers, as well as the assessment database which aily aiferent in each analysis method.
This fact, together with non-availability of databases lgo&thms for other works, makes com-
parison of methods a difficult task. In literature, althosgime techniques reported high accuracy
rates, they used a few audio groups in the evaluation stageeXample, in [58], the authors use
two classes (i.e., speech and music) and achieve 95% agceatacwhile audio content analysis at
Microsoft research [30] uses three audio classes (i.eecépenusic, and environment sound) with
96.5%. Freeman et al [59] use four classes of speech (ilebldaraffic noise, typing, and white
noise), and achieve 97.9% accuracy rates using artificialah@etworks (ANN). The authors in
[27] obtain a lower accuracy rate (82.3%) for classificatdri4 different environmental scenes
(i.e., inside restaurants, playground, street traffiantmassing, inside moving vehicles, inside
casinos, street with police car siren, street with ambw@airen, nature-daytime, nature-nighttime,
ocean waves, running water, raining, and thundering). &levhen more diverse signal types are
defined in the evaluation stage, the classification accueaays to be reduced.

The focus of the present study is to evaluate the performainaedio classification for human
and non-human classification. For this purpose, an aud@bdae is used which is developed
in the signal analysis research (SAR) group at Ryerson Uriiyd32], and contains different
environmental audio signals. This database used in thisrempnt consists of 80 audio signals
of 5 s duration each with a sampling rate of 22.05 kHz and aluen of 16 bits/sample. The
arrangement of this database is shown in Fig. 4.2. It is desigo have different signal types
including 8 aircraft, 8 helicopters, 8 drums, 8 flutes, 8 pmrand the speech of 20 males and 20
females. Most of the audio samples were collected from thernet and suitably processed to

have uniform sampling frequency and duration.
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Figure 4.2: Organization of audio database used in this work.

4.4 Audio Classifiers

Various classifiers have been utilized for audio classificatAudio content analysis at Microsoft
research commonly uses Gaussian mixture models (GMM) R8garest neighborhood (K-NN)
[30] and support vector machine (SVM) [31] for audio classifion. Other popular classifiers
for audio classification include linear discriminant arsay(LDA) [32], hidden Markov models
(HMM) [33] and artificial neural networks (ANN) [59]. Thereeasome works that focus atten-
tion on developing new classifiers, or comparing existirggsifiers for audio classification ap-
plications. For instance, in [55], Buchler et. al. comparmee classifiers (e.g., rule-based and
minimum-distance classifiers) with complex approachesg,(Bayes classifier, neural network and
hidden Markov model). While these studies are beneficialathreof the present study focuses
on performance evaluation of three well-known featureastion methods. Therefore, in this
Chapter, we avoid complex classifiers and apply LDA as a sittndar classifier to evaluate the

features.

4.5 Audio Features

Over the last few years, several audio feature extracticmigues have been introduced. In gen-

eral, all the feature extraction methods utilize one of thkoWwing three signal representation
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domains: temporal domain, spectral or joint time-freqyefid=) distribution. Temporal domain

features such as, signal energy, pitch, zero crossing rate [16, Ad]Entropy modulation [18]
have been used for audio classification. ExampleSpctral featuresnclude 4 Hz modulation
energy, percentage of low-energy frames, spectral rghoifit, spectral centroid, mean frequency,
cepstral coefficients [19, 20], and high and low frequenopess [21]. Additionally, the variation
in the structural behavior of audio signals from one framéht adjacent frames motivated the
development of several features to characterize the egispectral difference between the neigh-
boring frames. For example, spectrum flux (SF) [19] is defiagdhe average variation value of
spectrum between the two adjacent frames. There have beenatempts to derive joiftF fea-
tures[60, 61, 62, 27, 28] from audio signals. Although, a significattention is paid to the feature
extraction techniques as mentioned above, the hardwailenmgntation of these methods has not
been explicitly studied in the literature. In this Chaptee, mwestigate the hardware and software
performances of three well-known features: AR, Pole, and MFg&z@ures. The analytical expla-
nation of these features are explained in Chapters 2 and 3.follbeving Chapter explains the

details of these features as employed in the developed aladisification system.

AR Features: Fig. 4.3 demonstrates the AR feature extraction as useddratialysis. Each
audio signal is divided into segments with duration of 251881e the signal duration is 5s, 200
segments are derived for each sigriaH 200 in Fig. 4.3). AR features are extracted from each
segment. These AR features ase. . . a,, in EQn. 2.7. In this application AR model order of 13 is
used which means that 13 AR audio features are extrasted (13). There are 80 signals in this
database{ = 80). Therefore, the AR feature vectors 88 x 200) vectors with13 features in

each vector.

Pole Features: The Pole feature extraction is shown in Fig. 4.4. Similarite AR feature
extraction, each audio signal is divided into 200 segmeiritis euration of 25ms. Once 13 AR
features are extracted from each segment, 13 poles are tenfpu each segment. Therefore, the
polynomial in Eqn. 3.9 is of order 13, and the associated @magn matrix in Eqn. 3.10isEx 13

matrix. To find the poles (ie. the eigenvalues of the compamatrix), the QR factorization is
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Figure 4.3: General schematic of the AR audio feature extraction.

repeated 13 times. Next, two features are extracted for paleh the spectral bandwidth and the
angle as explained in Eqns. 2.15 and 2.16, respectively. pdlee features contaif80 x 200)

vectors with2 x 13 features in each vector.

MFCC Features: 13 MFCC features are extracted as explained in Section 2g4.4% shows
that the MFCC features contajR0 x 200) vectors withl3 features in each vector. In this analysis,

20 mel scale filter bank is used for calculation of the MFCCufezH.

4.6 Results

As mentioned in Chapter 1, a comprehensive performanceati@iushould be based on the ac-
curacy rate of a method as well as the hardware analysis.efdrer the first part presents the
accuracy evaluation of the three audio features as explamprevious sections. The second part

compares these methods in terms of their hardware efficiency



Audio Signal

|

Segmentation

|

AR Calculation

[}

Pole
Calculation

|

Feature Vector

|

LDA
Classification

53

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Signal_lsegment_1 e fz;...f5,06:...06,

Signal_1 segment_2 === f,, ...f; 6,..6,
i
:

Signal_1 segment_k == f,, ...f; 6,..0,
i
:

Signal_N segment_1 e f;,...f;,0,...8,
i
!

Signal_N segment_k == f;,...f;,,0,...0,,

----------------------------------------------------------------------------------------

FeatureVector (N*k)by2m

Figure 4.4: General schematic of the pole audio feature extraction.
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Figure 4.5: General schematic of the MFCC audio feature extraction.

4.6.1 Algorithm Performance

An audio classification is performed in MATLAB as follows: Ejrst, all the 80 audio signals
are transformed into AR, pole, and MFCC features. Next, theaetdd features are fed into the
classifier based on LDA. A binary classification is perfornjldgdman and non-human). Table 4.1
displays the accuracy rate of AR, pole, and MFCC features.

As it can be seen in this table, MFCC acquires the highestifitzggon accuracy with 87.5%

overall rate, followed by pole and AR modeling features V@89 and 72.5% rates, respectively.

4.6.2 Hardware Efficiency

Implementing an algorithm in hardware is a labor intensivé expensive process [63]. Because
of the high development cost, it is very important to have iglgmetric to compare the algorithm
complexity vs. algorithm accuracy without the need to adttumplement the algorithm in hard-

ware. There are several metrics for this purpose, such &siétisn count, execution time and
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Human (40) Non-Human (40) Overall Accuracy

AR - Human 40 %100 0

%72.5
AR- Non-Human 22 18 %45
Pole -Human 38 %95 2

%85

Pole— Non-Human 10 30 %75
MFCC- Human 40 %100 0

%87.5
MFCC—Non-Human 10 30 %75

Table 4.1: Accuracy evaluation of audio classification methods based on AR, paléV&CC.

LUT count. The instruction count, which is the number of iastion executed during each run
of the algorithm, is not a good metric since multiply instians represent a much greater use of
hardware resources than addition instructions [64]. Etxectime is not a good metric either since
the same algorithm might execute differently on differdatforms. For example, a processor with
multiplication unit and a processor without multiplicatianit will have different execution time
for the same algorithm. On the other hand, the total numb&idfs needed to implement the
algorithm is a suitable metric since it quantifies the maximamount of FPGA resources that will
be needed to implement the algorithm if the algorithm carublg parallelized in FPGA hardware.

In this thesis, we use the computational complexity to estinthe number of LUTSs. First, the
number of mathematical operations for an algorithm arewtaed. Second, the number of LUTs
required for implementing an operation in the Altera Cycl&f&A using the Altera Qaurtus Il is
estimated. In the third step, the number of operations redudor each algorithm is multiplied by
the number of required LUTs for each operation, and the tataiber of LUTs required for each
method is extracted.

The LUT count method used in this thesis is a very fast and last method which does not
require an actual hardware implementation while repressmaibsolute mathematical upper bound
on the real hardware cost. However there might be many diftereal hardware costs since there
will be many different ways of implementing the same designao FPGA depending on how

someone might schedule the algorithm into hardware.
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ARmodeling Pole Modeling MFCC

¥l p)

Multipliers > (SL—47-6) I{Q(m—lXquLl)Jer It Lt b Lt mxh
r=1

Adders >, (BL-2r-4) 1[(m—1)(3m+1)+’"(m?(’"+2)] LI -1)+b(L-1)+m(b-1)
r=1

Divisions m I(m—1)

Square I(m—l) I

Roots

Logarithms b

Table 4.2: Total number of operations required in AR and pole modeling, and MFCC.

In Chapter 3, the total numbers of multiplications, addigioand divisions of AR, poles, and
MFCC features are computed as shown in Tables 3.1, 3.2, ande3ctively. Table 4.2 lists
these calculations for each method. Assumeés the AR model order, which is also the number
of poles and the desired order of MFCLis the maximum number of samples in each segment
of the input signal.b is the number of mel windows in mel scale, which is assumect@din
this application. In pole modeling, the number of iterasidrefore the QR algorithm converges is
denoted with/. The value ofl depends on the nature of each signal, but the MATLAB analysis
showed thaf = 10 can be selected as the average number of iterations inatitfeegments.

Including the appropriate values of parameterd., I, andb as utilized in Table 4.2, the num-
ber of the actual operations can be calculated for each mefifiwe total number of operations is

shown in Table 4.3.

Table 4.3: The number of operations2
Operations AR Poles | MFCC
Multiplications | 13858 16360| 53280

Additions 8346 | 10650| 52807
Division 13 120
Square roots 120 220

Logarithms 20
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For each operation, the number of area usage is calculateas of LUT allocated to perform

that operation. According to the Megawizard plug in for Adt€Quartus Il Web Edition FPGA
design software, the number of LUTs allocated for each nmasttieal operation is shown in Table
4.4. Each operation is considered with Floating point deyibécision 64bits using Altera Cyclone
FPGA.

Table 4.4: Number of LUTSs - Altera Cyclone FPGA - Floating point double precisionit4b

Operations Lut
Multiplications | 3399
Additions 812
Division 6842

Square roots | 4604
Logarithms 19700

Combining Tables 4.3 and 4.4, the total required LUTSs for eadatio feature extraction algo-

rithm are calculated and displayed in Table 4.5.

Table 4.5: Number of LUTSs for each method
Method| Lut

AR 53969240
Pole 65628960
MFCC | 225384884

4.6.3 Accuracy/Hardware Comparison:

Fig. 4.6 shows the classification accuracy vs. hardwarelmage for each method. Based on this
figure, it can be concluded that pole modeling can be an apptegool for audio scene analysis
application. Although AR modeling requires a low hardwaesausage, it provides a classification
performance of much lower than MFCC and pole modeling. Howgwale modeling offers a
comparable accuracy rate in respect to MFCC (87.5% and 85g@ctreely) while its hardware
area usage is much fewer than the MFCC method. The hardwaaeparomance of pole is

88.45% higher than MFCC as calculated]b)jbLUT”fLCJEI‘-_LUTP"’E.
pole
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Figure 4.6: Audio environment classification accuracy vs. hardware area usage.
4.7 Summary

In this Chapter, software performance and hardware andiysi&R modeling, Pole modeling,
and MFCC were performed and compared for environmental asckoe analysis application.
Based on the results obtained, the pole modeling featurgsisahethod is proposed for NIOS I

implementation as will be explained in the next Chapter.



Chapter 5

Pole Modeling FPGA Embedded
Implementation

5.1 Introduction

Pole modeling is selected in Chapter 4 as an appropriateréeattraction method for audio scene
analysis. As shown in Fig. 5.1, the present Chapter expléiesmplementation of the pole
modeling feature extraction + LDA classifier using ALTERA DE@velopment board and Niose
Il embedded system design. The pole modeling + LDA imple@n is the first known work

performed to the best of the author’s knowledge.

5.2 Pole Modeling Feature Analysis Embedded System Imple-
mentation

The main focus of this section is to design the pole modelgajure analysis using pole features
and LDA classifier into an embedded system. As it is explaineskction 2.2.1, pole modeling
includes a roots finding algorithm which calculates the sadtthe P polynomial in the dominator
of AR model. Roots finding is an iterative and algorithmic img®&e method. Because embedded
software implementation is more suitable for algorithnmtensive algorithms, in this thesis, pole
modeling is implemented in the Altera Nios Il processor,eths a softcore processor. The details
of the main steps of design with required tool for each stepsammarized in Table 5.1, and

the system architecture of the design is shown in Fig. 5.2 firkt stage is developing the C++
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Figure 5.1: Chapter 5 - Hardware Implementation.
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Design Steps Tools

1 - Implement Pole Modeling

[ ++
algorithm in C++ Language Visual C++ Software

2 - Create the Embedded System
into Altera Nios Il system
programmable-on-chip (SoPC)

3 - Upload the system in FPGA (DE2
board)

4 - Simulate and upload the Pole

Altera Nios Il system programmable-
on-chip (SoPC) Builder

Quartus Il (programmer)

Niosll IDE
modeling codes in FPGA (DE2 board) 108
5 - Create the serial connection
between the Hardware and the Niosll IDE

Software.

Table 5.1: Main design steps in the project.

codes for pole modeling and LDA classifier. Stage 2 createsitibedded system into Altera Nios
Il system using programmable-on-chip (SoPC) builder. &t&y® 5 performs the uploading and
simulation of the codes in the DE2 development board, an@#iecode is executed on the Nios Il
platform. The pole modeling SoC hardware is connected tbdursputer via a JTAG UART serial

communication protocol. Finally, the classification a@ayrand execution time of pole modeling

hardware implementation are compared with the MATLAB innpéstation.

5.2.1 ALTERA DE2 Development Kit

The target device for hardware implementation on this thissh development circuit board avail-
able from ALTERA called ALTERA DE2 board. ALTERA'S DE2 Board shown the Figs. 5.3
and 5.4[1].

The DE2 board features a Cyclone 11 2C35 FPGA in a 672-pin packaljimportant compo-

nents on the board are connected to pins of this chip, allptfia user to control all aspects of the
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Figure 5.2: System architecture of the design.
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Figure 5.3: ALTERA DEZ2 board [1].

boards operation. The DE2 board includes a sufficient numb®&wvitches, LEDs, and 7-segment
displays for simple experiments. Also, there are SRAM, SDRANY Flash memory chips, as
well as a 16 x 2 character display.

With its advanced Cyclone 1l FPGA, flexible memory optionsi] advanced I/O devices, the
DEZ2 board is a very good platform for the implementation aadetbpment of digital systems.
Furthermore, the DE2 board is a suitable choice for implémgrand developing embedded ap-
plications such as the ones that feature the Altera Nios Hexfded processor.

Altera Nios Il is designed as a rapid prototyping resourod,therefore it is used in this thesis.
The Nios Il processor can be used with a variety of other corapts to form a complete system.
Alteras DE2 Development board contains several compotieatsan be integrated into a Nios Il
system. An example of such a system is shown in Fig. 5.5 whiciseéd in this work.

The Nios Il processor and the interfaces needed to connetitiéo chips on the DE2 board are

implemented in the Cyclone Il FPGA chip. These componentséeeconnected by means of the
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Figure 5.4: Block diagram of the DE2 board [1].
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Figure 5.5: Block diagram of Nios Il system implemented on the DE2.
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interconnection network called the Avalon Switch Fabrierivbry blocks in the Cyclone Il device

can be used to provide an on-chip memory for the Nios Il premesThey can be connected to
the processor either directly or through the Avalon netwdrke SRAM and SDRAM and Flash
memory chips on the DE2 board are accessed through the apeomterfaces. Input/output
interfaces are instantiated to provide connection to Bedivices used in the system.

A special JTAG UART interface is used to connect to the ctrguhat provides a Universal
Serial Bus (USB) link to the host computer to which the DE2 baarcbnnected. This circuitry
and the associated software is called the USB-Blaster. Anatibelule, called the JTAG Debug
module, is provided to allow the host computer to controlXhes Il processor. It makes it pos-
sible to perform operations such as downloading prograrasritemory, starting and stopping
execution, setting program breakpoints, and collectiradrtiene execution trace data. The SOPC
Builder tool in the Quartus Il software used to implement airéelssystem by choosing the re-
quired components and specifying the parameters neededke each component fit the overall
requirements of the system. Next subsection is a detaibegpion of an NIOS Il system which we
design using SOPC Builder tool. This embedded system usehjpdementing the pole modeling

feature analysis on Altera DE2 board.

5.2.2 Nios Il Embedded System Design

As shown in Table 5.1, once the C code of the pole modelingvsldped, the first stage in the
hardware design, the second row in the Table, is creatingNtbe Il Embedded System. Next
stage, as shown in the third row of Table 5.1, is to upload #sghed Nios Il Embedded System
program to the FPGA. These stages are explained in thioaesdifollows.

Nios Il SoPC development environment, Nios Il embedded gssor serves as the general-
purpose processor, and other peripherals such as UARdugi® controllers, memory, timer and
custom instruction are connected to Nios Il via Avalon Sysius as shown in Fig. 5.5. For the
purpose of this thesis, an Nios Il Embedded System is desigsiag Altera SOPC Builder tool.

As it is shown in Figs. 5.6 and 5.5, the following components iacluded in the Nios Il

Embedded System designed in this work:
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Target Clock Settings
Device Family: :Cyclone I - Mame Source tHT
clk External 50.0
Use  Connectio... Module Mame Dezcription Clack Ease End IR
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avalon_zram_slave Axalon Memory Mapped Slave clk 000880000 |Ox00Sfffff
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avalon_zslave Axalon Memory Mapped Slave clk

tristate_master Avalon Memory Mapped Tristate Master
cfi_flazsh_0 Flazh Memary (CFl)

=1 Avalon Memory Mapped Tristate Slave  |clk 000400000 |0x007fffff
sysid System 1D Peripheral

control_slave Axalon Memory Mapped Slave clk 000903028 |0x0090302f

Remove Ediit...

e Maove Lp

¥ Mowe Down

[ Address Map.. ]

[ Fitter ...

Figure 5.6: Embedded computer system in SOPC builder.
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Altera Nios Il processor (CPU):. The system includes Altera Nios Il/s processor which is a

32-bit CPU that can be instantiated in an Altera FPGA chip.

On-chip Memory: The designed embedded system includes a 32-Kbyte mematysth
implemented in the Cyclone Il FPGA chip (On-chip Memory). Shiemory is organized as
8K x 32 bits, and spans addresses in the range 0x00901000890kFFF.

SRAM: The SRAM Controller provides a 32-bit interface to the st&&M (SRAM) chip
on the DE2 Board. This SRAM chip is organized as 256K x 16 bitd,iamimapped to the
address space 0x00880000 to OxO088FFFF.

Avalon-MM Tristate Bridge : The Avalon-MM Tristate Bridge is added , which allows the

Nios Il processor to interface with the flash memory.

Flash Memory Interface (CFIl): The system includes an interface to the 4MB flash memory
on board. To add flash memory chip to the system, first the AvBMM Tristate Bridge is
added. Nios Il Embedded System reads the input signal irgftbom from the host computer

and stores on flash memory to read during the operation.

Interval timer : The designed Nios Il Embedded System contains a timer #rabe used

to measure various time intervals. The interval timer isd&mhwith a preset value, and
then counts down to zero using the 50-MHz clock signal predidn the DE2 board. The
programming interface for the timer includes six 16-bitisegys. The 16-bit registers are
employed to provides status information about the timentrob the settings such as start
or stop, change the period of the timer, capture a snapshbeafounter value, and read to

obtain the count value. This timers are used to measure #wiggn time of the program.

System ID Peripherat The system ID module provides a unique value that identifies

Nios Il Embedded System. The host computer connected to B#loard can query the
system ID module by performing a read operation throughTA&Jport. The host computer
can then check the value of the returned identifier to confirat the DE2 Basic Computer

has been properly downloaded into the DE2 board. This psoaésys debugging tools on
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the host computer to verify that the DE2 board contains thaired computer system before

attempting to execute code that has been compiled for teiesy

e JTAG UART : The JTAG port implements a communication link between ti2 Doard
and its host computer. This link is automatically used by@uartus Il software to transfer

FPGA programming files into the DE2 board.

After all the required elements are added to the design iS@®BC builder, the base addresses
are needed to be set to avoid conflicts between the systemocanis. Final step in Altera SOPC
builder tool is generating the system. Now that the SOPCesys$ built as explained in this
section, it is required to be integrated in a block diagramifilthe Quartusll project. To complete

the hardware design in the Quartusll project, the follonstapes have to be completed:

¢ Instantiate the module generated by the SOPC Builder intdunrtusll project: All we
need to do is instantiate the Nios Il system in our top-leesigin file, and connect inputs and
outputs of the parallel I/O ports, as well as the clock andtreguts, to the appropriate pins
on the Cyclonell device. The instantiation of the generatedute depends on the design
entry method chosen for the overall Quartusll project. Weehehosen to use schematic

entry, but the approach is similar for both Verilog and VHDEtmods.
e Assign the FPGA pins in Quartusill.
e Compile the designed circuit in Quartusl.

e Program and configure the Cyclone Il FPGA in the JTAG programymnode on the DE2

board using system programmer tool.

Fig. 5.5 shows the completed Nios Il Embedded system symig@uartusll. Up to this step a Nios
Il Embedded System designed and loaded to the FPGA on DE# bblaixt subsection explains

the implementation of the software application for the Niag/stem using Nios Il IDE.
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Figure 5.7: Complete system design in Altera Quartus Il

5.2.3 Application Simulation

A Nios Il Embedded system which is an embedded computer onsCHH2GA, is designed and
implemented as explained in the previous subsection. Tla dtage in the hardware design is
uploading the application C++ codes in the FPGA as shown ifeTal. This has been done using
Nios Il integrated development environment(IDE).

The Nios Il integrated development environment (IDE) issb&ware development graphical
user interface (GUI) for the Nios Il processor. All softwaelopment tasks can be accomplished
within the Nios Il IDE, including editing, building, and de@ging programs. The Nios Il IDE is the
window through which all other tools can be launched. Infation on Nios Il IDE can be found
on [65]. The Nios Il IDE is a thin user interface that manigetaother tools behind the scenes,
shields a designer from the details of command line toold, @esents a unified development
environment.

The Nios Il IDE program compiles C++ language programs andnttoads them into the Nios
Il Embedded system. Based on the industry-standard GNU t@ohcthe Nios Il IDE provides
a graphical user interface (GUI) to the GCC compiler. The NIOG®E build environment is

designed to facilitate software development for AlteraieNI processors, providing an easy-to-
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use push-button flow, while also allowing designers to malatie advanced build settings. The

Nios Il IDE build environment automatically produces a nfdkebased on the user’s specific
system configuration (the SOPC Builder-generated PTF fileanGés made in the Nios Il IDE
compiler/linker settings are automatically reflected iis tuto-generated makefile. These settings
can include options for the generation of memory initigi@afiles (MIF), flash content, simulator
initialization files (DAT/HEX), and profile summary files.

The Nios Il IDE contains a robust software debugger basechenGNU debugger, GDB.
The debugger provides many basic debug features, as wedlvasat advanced debug features
not usually available with low-cost processor developmet® Run and debug operations are
available by right-clicking the project. The Nios Il IDE ais a designer to run or debug the
project either on a target board or the Nios Il instructionsgaulator (ISS).

The Nios Il IDE presents a new project wizard used to autorttegeset-up of the C/C++
application project and system library projects. In aduditio the new project wizard, the Nios I
IDE provides software code examples (in the form of projectytlates) to help software engineers
bring up working systems as quickly as possible. Each teimpdaa collection of software files
and project settings. Designers can add their own sourcetodtie project by placing the code in
the project directory or importing the files into the project

In this thesis, the C++ code of the pole modeling is developadicrosoft Visual C++. The
Nios Il IDE tool is next used to build the C++ files and downloldr into the designed Nios Il

Embedded system. The properties of the system library loelve thanged according to Fig. 5.8.

Nios Il Flash Programing In the standard C++ programming, a text file (say, "arcof.jxtan
be uploaded as system'’s input using the following command:

pFile = fopen ("arcof.txt” , "r");

However, in a hardware design, the input programming of #@#4 cannot be performed using
the above command. It is required to upload the text file ihteoftash memory embedded in the
DE2 Board, and then the data can be read by the FPGA from therflastory. The Nios Il IDE

provides the Read-Only Zip File System software componemi;inis easy-to-use tool for storing
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l Help | | Restore Defaults Apply

Figure 5.8: Setting of the System Library.

data to flash memory. As shown in Fig. 5.9, the following foargmeters have to be specified to

configure the file system:

1. The name of the flash device where it is needed to prograrfiléhg/stem. In the present

design, this name is cfi-flash-0.

2. The offset in the address space of this flash device 0IKi800000 in the present work.

EE software Components

Altera Host Based File Systern
Zip Rea ,

MicheStack TCP/IP Stack

(- Lightweight TCP/IP Stack (Deprecated)

Altera Zip Read-Only File System

Specify a Zip file to include in the HAL file systern, The contents became available via C standard library functions, such as fopen(,
[V &dd this software camponent

Flash mernong device cfi_flash_0 =

Offset 000000

Mount-point fmntfrozipfs

Zip file {must be uncompressed)  arcofzip

Figure 5.9: Setting of the ALTERA zip read-only file system.
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3. The name of the mount point for this file subsystem in the Hibd_system. For example,

if the mount point is named /mnt/zipfs, the following codesap the text file ("arcof.txt”) in

the zip file:
pFile = fopen ("/mnt/rozipfs/arcof.txt” , "r");

The above code opens the zip file "arcof.txt” for reading.

4. The name of the zip file to be used is "arcof.zip”. This filesisred in the system library

folder of the C++ project.

5.2.4 Results

The C++ codes for pole modeling and LDA classifier are developios Il IDE, and uploaded
and executed in the designed Nios Il Embedded System via @ JART serial communication
protocol. The feature vetors are listed in a text file and edied to a zip file so that they can be
uploaded to the flash memory using Read-Only Zip File Systdtwace component in the FPGA.
Additionally, the trained LDA classifier parameters arevalploaded in the FPGA device. Once
the pole modeling feature analysis program is executeceiittera DE2 board, the classification
results are displayed in the Nios Il IDE console. The clasaiibn accuracy results obtained using
this implementation is equal to the MATLAB implementatidros/n in Table 4.1.

The execution time of the implementation is recorded usmerial Timer in NIOS Il Embed-
ded System. To achieve this period, the difference betweestarting value of the Interval Timer
and its ending number is measured. Once this differenceided by the interal clock frequency
of the hardware, it represents the execution time. In thegmeimplemenation, the starting value
of the timer is65462 and after the cound down, this value decreasesl $82. Since the interal
clock frequency of the hardware is set tod96\/ H z, the execution time is found to be about 0.5
ms. This time represents the average time that each imptatr@ntechnique spends for classifi-
cation of one feature vector. The average total executioa for one audio signal is measured to
be 0.1s.

As measured above, the total classification time in the dpesel embedded system is 0.1 s
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for one audio sample. Depending on the application on haed;am decide whether this system

can be considered real-time or not. For example, in the asmkae application which is consid-
ered in the present thesis, the developed system can belewegsifor real-time analysis. This can
be explained in the following scenario: When a person withringadisability enters into a new
environment, or when the environment condition changesatiaptive hearing system has to de-
termine whether the audio belongs to human or non-humas stathat the hearing aid instrument
can accordingly switch its mode in order to provide a bettelity hearing for the person. Con-
sidering the human perception which requires at least Ofsas audio to understand the content

[66], the system with only 0.1 s execution time can be comsitla real-time system.

5.3 Summary

The present Chapter explained the NIOS Il implementatioh@fble modeling feature extraction
as an appropriate feature extraction method for audio sealgsis. LDA was used as the classifier
in the implementation. The classification accuracy resaitained using this implementation was
equal to the results from MATLAB implementation. The cléissition time for one audio sample
is determined to be 0.1s, which is fast enough to be considesea real-time system for audio

scene analysis application.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

The objective of this thesis was to investigate and compatie the hardware and software im-
plementation aspects of three commonly used signal featdraction techniques: AR modeling
and pole modeling, and MFCC. Chapter 1 provided the motivatemna the present work as
well as the significance of signal feature analysis and tladleinges in real-world signal analysis
applications. A comprehensive signal analysis is expthirkhis Chapter also described the im-
portance of investigating both the hardware and softwamdmentation aspects of the existing
feature analysis methods. It also reviewed some of the cartyneonployed feature analysis tools
as related to non stationary and complex signals.

Chapter 2 provided the diagram and theroritical backgrodm@oh method used in this thesis.
It explained the detailed analytical procedures of AR, Parel MFCC feature extraction methods,
as well as LDA classifier. The computational complexity of Afle, and MFCC is investigated
in Chapter 3. This Chapter used the theoretical explanati@hapter 2 in order to compute the
number of arithmetical operations each method requiresigir detailed analytical calculations.
Chapter 4 employed AR, pole, and MFCC feature analysis mettordsutlio scene analysis ap-
plication. Furthermore, this Chapter compared these thetbads with respect to two domains:
hardware analysis and algorithmic accuracy. The pole nmuoglé&ature analysis was selected as
the suitable tool among the three approaches and was usbkd following Chapter. Chapter 5

proposed the implementations of pole modeling featureaetitn + LDA feature classifier using

75
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the Altera NIOS Il on DE2 board . The summary of the researdcbarne and the discussion of

the future work are presented in Chapter 6.

6.1.1 Analytical Contributions

e The computational complexity of AR modeling, pole modeliagd MFCC are calculated
as shown in Tables 3.1, 3.2, and 3.3. This contribution isr@ssd in computation of the
hardware analysis performance. This analysis require@ tgke apart each algorithmic
stage into its arithmetic equations, and calculate the muraboperations in each step, ie.

number of multipliers, adders, or dividers.

e The pole modeling computational complexity is the first knomork performed to the best
of author’s knowledge. Furthermore, one of the most imparséages in the pole modeling
method is the root finding algorithm. In this thesis we sadceigenvalues of companion
matrix and QR algorithrnas the root finding method which is suitable for the pole akle

tion of an AR system.

e FPGA area for AR modeling, pole modeling, and MFCC are esghdt/sing the Megawiz-
ard plugin for Altera Quartus Il Web Edition FPGA design sadte, the number of LUTs
allocated for each mathematical operation is extractedah Bperation is considered with
Floating point double precision 64bits using Altera CycldffeRGA. Having the allocated
LUT for each operation and the number of operations in eacthaode the total required
LUTSs for each audio feature extraction algorithm are caltad as shown in Table 4.5. The

number of required LUTs is used as an estimate of the FPGAumsage of each method.

¢ AR and pole modeling, and MFCC features are implemented aaldiaed in MATLAB
software for audio scene analysis as displayed in Table @ar pole modeling feature

extraction is the first known work proposed for audio scersdyasis.

e The classification accuracy vs. hardware area usage for AtRelng, pole modeling, and

MFCC is compared as displayed in Fig. 4.6. Based on this cosmarthe pole modeling
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feature analysis method is proposed as the optimum soltdiomardware implementation

of audio scene analysis application.

6.1.2 FPGA Embedded Implementation

e The pole modeling feature extraction + LDA classifier is iempented in Altera DE2 Board
using Altera Nios Il soft-core processor. The classificaggcuracy results obtained using
this hardware implementation is achieved to be equal to tA€IM\B implementation. The
classification time for one audio sample is determined to.lbs, Qvhich is fast enough to be

considered as a real-time system for audio scene analysisaton.

6.2 Future Work

The future work of the research could be:

e Although pole modeling was proposed as a suitable algorithraudio scene analysis appli-
cation, for other applications any of AR, pole modeling and@®@Falgorithms may perform
better depending on the available hardware resources akhtime requirements. An study
performed for each application can indicate which methodase suitable in terms of clas-

sification accuracy vs. hardware area usage.

¢ In this work, the FPGA usage is estimated and quantified baselde total number of LUT
needed to implement each algorithm. This calculation isthas computational complexity
of each algorithm. A hardware architecture design can be flaneach method to estimate

the hardware performance in terms of area and execution time
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