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Abstract
SOFTWARE-HARDWARE ANALYSIS OF SIGNAL FEATURE CLASSIFICATION

ALGORITHMS
c© Hamidreza Asefi-Ghamari, 2010

Master of Applied Science
in the Program of

Electrical and Computer Engineering,
Ryerson University.

Over the last few decades, signal feature analysis has been significantly used in a wide variety
of fields. While several techniques have been proposed in the area of signal feature extraction
and classification, all of these techniques are achieved by using modern computers, which rely
on softwares, such as MATLAB. However, in real-time applications or portable devices, software
implementation is not enough by itself, and a hardware-software co-design or fully hardware im-
plementation needs to be considered.

The selection of the right signal feature analysis tool for an application depends not only on
the software performance, but also on the hardware efficiency of a method. However, there is not
enough studies in existence to provide comparison of these signal feature extraction methods from
the hardware implementation aspect. Therefore, the objective of this thesis is to investigate both
the hardware and algorithmic perspectives of three commonly used signal feature extraction tech-
niques: Autoregressive (AR), pole modeling, and Mel-frequency Cepstral coefficients (MFCCs).

To fulfill this objective, first, the hardware analysis of AR, pole modeling, and MFCC feature
extraction methods is performed by calculating the computational complexity of the mathematical
equations of each method. Second the FPGA area usage of each feature extraction methods is
estimated. Third, algorithmic evaluation of these three methods is performed for audio scene
analysis.

Once the results are obtained from the above stages, the overall performance of each feature
extraction method is compared in terms of both the hardware analysis and algorithmic perfor-
mances. Finally, based on the performed comparison, pole modeling feature extraction approach
is proposed as the suitable method for the audio scene analysis application.

The suitable method (pole modeling feature extraction) + linear discriminant analysis (LDA)
classifier are implemented in Altera DE2 Board using Altera Nios II soft-core processor. The audio
classification accuracy obtained using this implementation is achieved to be equal to the MATLAB
implementation. The classification time for one audio sample is determined to be 0.1s, which is
fast enough to be considered as a real-time system for audio scene analysis application.
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Chapter 1

Introduction

1.1 Motivation

S
IGNAL analysis has been a field of considerable interest and significant growth over the last

century. A wide variety of fields, such as, communication, security, biomedicine, biology,

physics, finance and geology has benefited from the science ofsignal analysis. They use signal

processing methods and algorithms implemented on computers or in electric hardware to design

algorithms, develop models, and make informed decisions based on the models. For instance, in

the filed of communication, audio signals are important sources of information for understanding

the content of multimedia. Therefore, audio analysis techniques have been developed in order to

characterize the audio signals for applications, such as, multimedia indexing and retrieval, and

auditory scene analysis.

Several signal analysis techniques have been developed to analyze, interpret, manipulate, and

process our surrounding signals in an attempt to acquire theuseful information toward human’s

benefit. However, one of the remaining challenges is dealingwith the dynamic characteristics of

these real world signals. Signals are either stationary or non-stationary. The former is denoted

to signals which their statistics (such as mean and variance) are fixed over time and follow a

probabilistic distribution. The latter refers signals with variable dynamics in time. A majority

of real-world signals generated by nature belong to non-stationary. For example, speech signals,

heart signals (ECG: electrocardiogram), and brain signals (EEG: electroencephalogram), are non

stationary in nature.
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The analysis of real-world signals is challenging as the dynamic nature of the real-world system

causes the signal to have stochastical and non stationary behavior. To address this issue, the para-

metric or non-parametric modeling method has been proposed. This approach, which is termed

feature analysis, involves extracting discriminatory features from the signal and feeding them into

a classifier. While several techniques have been proposed in the area of signal feature extraction

and classification, all of these techniques are achieved by using modern computers, which rely on

softwares, such as MATLAB. In recent years, the hardware technology has been significantly de-

veloped and gained significant attention from technology leaders. Hardware technologies, such as

VLSI (Very Large Scale Integration) technology, have been commonly used in devices, like com-

puters, digital cameras, cell phones, MP3 players, digitalTV sets and so forth. Recently, FPGA

(Field Programmable Gate Array) is found more appealing dueto strong functions of FPGA itself,

such as shorter time to market, ability to reprogram, and lower non-recurring engineering costs.

The selection of the right signal feature analysis tool for an application depends on both the

software performance and the hardware efficiency of a method. For example, the software imple-

mentation evaluates the overall performance of each signalprocessing method for the application

in hand, and the hardware implementation investigates thatthe implementation of which method

is more suitable. While the literature contains a significantamount of software-based analysis and

comparison as related to different signal feature extraction methods, there is not enough studies in

existence that provide comparison of these methods from thehardware implementation aspect. To

address this shortcoming, there is a need to investigate signal analysis in both the hardware and

the software domain. The objective of this thesis is to provide such an understanding by investi-

gating both the hardware and software analysis of three commonly used signal feature extraction

techniques.

1.2 Signal Feature Analysis State-of-The-Art

Feature analysis aims to classify a given data based on groups of measurements in the data. De-

pending on the application, these measurements or observations are collected based on either a

priori knowledge or a set of statistical information extracted from the data. The block diagram in
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Fig. 1.1 shows the four stages exist in a feature analysis system. The first block includes a sensor

that gathers the observations to be classified or described.Sensors measure physical quantities and

convert them into signals which can be recorded for further analysis. Some examples of sensors

include: thermometer for temperature, and microphone for audio and speech. The second block is

signal preprocessing. The preprocessing stage may containof one or two signal processing stages

that provide an optimum representation of the signal. This stage could include a segmentation stage

which divides the signal into shorter durations which can beconsidered stationary. The third block

is feature extraction that maps the signal into some points in an appropriate multi-dimensional

space (ie. feature space). The final block is a classifier thatdoes the actual task of classifying the

signals relying on the extracted features.

Figure 1.1: General schematic of a signal feature analysis system

1.2.1 Feature Extraction

Feature extraction involves simplifying the amount of resources required to accurately describe a

large set of data. When performing analysis of complex data one of the major problems stems from

the number of variables involved. Analysis with a large number of variables generally requires a

large amount of memory and computation power. Feature extraction is a general term for methods

of constructing combinations of the variables to get aroundthese problems while still describing

the data with sufficient accuracy. As mentioned, features play a very important role in any pattern

recognition system. If the extracted features are so well defined, even simple classification methods

will be good enough to accurately and efficiently classify the data. Therefore, developing more

powerful features and understanding the feature space should be a vital consideration in designing

automatic decision making algorithms. Several parametricand non-parametric features have been

proposed in the literature as explained below.
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Parametric Features: Parametric features are obtained based on parametric modeling of ran-

dom signals with the assumption that the signals are stationary and can be presented in terms of

the linear combination of several past values of model output plus the linear combination of present

and past values of model input [2]. Many researches have demonstrated that parametric modeling

is a useful method when dealing with random time series [3, 4,5] and segmentation is an efficient

approach to deal with non stationary signals [2, 6, 7]. Examples of parametric representations in-

clude: reflection coefficients, linear prediction coefficient (LPC), line spectral frequencies (LSFs),

autoregressive (AR) modeling, and dominant pole modeling. Among parametric features, autore-

gressive (AR) modeling and dominant pole modeling are of interests and investigated for use in

signal analysis.

It has been demonstrated that in many cases, AR spectrum provides a better resolution than

traditional Fourier spectrum [2], which can make the signalanalysis easier. To obtain the AR spec-

trum, one has to obtain the AR coefficients of the signal first [8]. Moreover, AR coefficients can be

easily used in pattern classification [9, 10] and data compression application [11]. Pole modeling

obtained from AR model of signals have given promising results in classifying the phonocardio-

gram [12], electrocardiogram [13], electrocorticogram [14], and vibroarthrogram signals [3].

Non-parametric Features: Non-parametric features are derived based on the characteristics of

the signals without any assumption about the signal model [15]. Features such as signal energy,

pitch, zero crossing rate [16, 17] and Entropy modulation [18] have been used for audio classifi-

cation. Other non-parametric features include 4 Hz modulation energy, percentage of low-energy

frames, spectral roll off point, spectral centroid, mean frequency, cepstral coefficients [19, 20],

high and low frequency slopes [21], and spectrum flux (SF) [19]. Mel-frequency Cepstral coef-

ficients (MFCCs) [22] are well-known non-parametric featuresused for the purpose of modeling

the human auditory perception system in the area of audio andspeech processing [23, 24, 25, 26].

Fig. 1.2 shows the focus of the present thesis. This thesis isbased on three well-known para-

metric and non-parametric feature extraction methods: AR and pole modeling, and MFCC. A

comprehensive explanation of these methods are explained in Chapter 2.
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Figure 1.2: Feature extraction methods in this thesis

1.2.2 Classifier

Classification refers to a prediction rule that assigns the signals into different classes. Various clas-

sifiers have been utilized in the literature. Audio content analysis at Microsoft research commonly

uses Gaussian mixture models (GMM) [27], k-nearest neighborhood (K-NN) [28] and support vec-

tor machine (SVM) [29] for audio classification. Other popular classifiers for audio classification

include linear discriminant analysis (LDA) [30], hiddenMarkov models (HMM) [31] and artificial

neural networks (ANN) [32]. There are some works that focus attention on developing new clas-

sifiers, or comparing existing classifiers for audio classification applications. For instance, in [33],

Buchler et. al. compare simple classifiers (e.g., rule-basedand minimum-distance classifiers) with

complex approaches (e.g., Bayes classifier, neural network and hidden Markov model).

While these studies are beneficial, the aim of the present study focuses on investigating the

right feature extraction method in hardware device. Therefore, in this thesis, we avoid complex

classifiers and apply LDA as a simple linear classifier to evaluate the feature extraction methods.

This classifier is further explained in Chapter 2.
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1.3 Hardware/Software Implementation State-of-The-Art

Implementation of feature analysis algorithms have been generally performed in computers using

commonly used software programs such as MATLAB [34], and Mathematica [35], C program-

ming, and so forth. However, software implementation is notenough by itself in case of many

real-world applications as follows: (i) real-time applications and (ii) portable devices. Real-time

performance is desirable in many applications, such as audio scene analysis in hearing aids or tar-

get tracking in computer vision. However, with the high computational complexity of developed

signal analysis algorithms, it is difficult to achieve the real-time goal with software-only implemen-

tation. For example, performing the discrete Fourier transform (DFT) of a signal withN samples

takes O(N2) arithmetical operations, which means that the complexityorder increases with order

2 of the signal length. Hardware-software co-design or fully hardware implementation can be

considered as a solution to this demand in real-time applications.

Electronic portable devices are emerging in the market withthe focus on high performance

signal analysis in order to improve the quality of life. For example, a portable device that can detect

certain medical conditions (blood pressure, breath alcohol level, and so on) from a users touch [36].

Many such capabilities could be integrated into a portable wireless device that also contains the

users medical history. It may even be possible to detect certain contextual information, such as the

users level of anxiety, based on keystroke patterns. After analyzing data input, the device could

transmit an alert message to a healthcare provider, the nearest hospital, or an emergency system

if appropriate. Another example is in hearing aids [32]. People with hearing disability depend

on assistive devices such as hearing aids to listen to the sounds around them. It is very important

for these assistive devices to determine the environment using the auditory clues in order to build

better instruments with automatic switching features [37]. This would improve the quality of life

of people with disability. Some practical situations wouldbe in adaptively changing the noise

reduction strategy depending on the noise environments, alerting the hearing-impaired listener

when a fast approaching automobile is detected, and audio source localization for navigation.

An essential part in portable devices is the use of hardware architectures to implement the signal

processing algorithms developed and evaluated in a programming software. Since 1970s, VLSI
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technology has significantly been used in electronic devices. These devices rely on VLSL chips,

including both ASIC (Application-Specific Integrated Circuit) and FPGA (Field Programmable

Gate Array). In most recent years, the FPGA technology has been significantly developed and

gained more and more preference due to its advantages of low design effort, shorter time to market,

ability to reprogram and lower non-recurring engineering costs. Many applications have been

achieved by using FPGA techniques in various areas, i.e. digital signal processing, aerospace,

medical imaging, computer vision, speech recognition, ASIC prototyping, bioinformatics.

There are some recent publications dealing with FPGA implementations of calculating MFCC

and Linear-scale Filterbank Cepstral Coefficients (LFCC) for a real-time feature extraction solu-

tion. In [38, 39, 40] the implementation of a feature extraction system based on a dedicated hard-

ware which consists of several stages designed to calculatethe feature vectors, based on MFCC

and LFCC. There are few papers which discuss the implementation of AR modeling. One im-

plementation can be found in [41] which implements the Burg algorithm onto the AMD29500

microprogrammable byte slice DSP and NECµPD77230 single-chip DSP. The AMD DSP system

can have a sixteenth-order modeling rate at 17kHz while the NEC DSP system can have a sixteen-

order model at 8kHz. The other hardware implementation of ARmodeling is the work in [42]

which the authors implement AR model of order 3 based on the Burg-lattice algorithm using fixed

point arithmetic. They take advantage of Xilinx System generator to implement the algorithm in

Xilinx Virtex II Pro device. In this thesis, an FPGA implementation of a pole modeling method

feature analysis approach is presented using the Altera NiosII soft-core processor.

1.4 Research Objective

The objective of this thesis is to investigate both the hardware and software perspectives of three

commonly used signal feature extraction techniques: Autoregressive (AR), pole modeling, and

Mel-frequency Cepstral coefficients (MFCCs). The present thesis presents a comparison of both

the hardware and software analysis of AR, pole modeling and MFCC signal feature extraction

techniques. These contributions are explained as follows:

• Hardware analysis of AR modeling, pole modeling, and MFCC. Thecomputational com-
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plexity of these three techniques is analyzed in details using the mathematical equations of

each method. Based on this analysis, an area comparison of these feature extraction methods

in FPGA is provided.

• Implementation and evaluation of AR and pole modeling-, andMFCC-based features for

audio scene feature analysis. An algorithmic performance comparison of these three well-

known feature extraction techniques is provided using MATLAB programing.

• Performance comparison of AR, pole, and MFCC feature extraction methods. This compar-

ison is performed based on both hardware and algorithmic performance obtained from two

previous contributions.

• Implementation of audio signal feature analysis based on AR-pole modeling feature extrac-

tion and LDA classifier. Using NiosII soft-core processor, acomplete pole modeling feature

extraction and classification is implemented in Altera DE2 Board.

1.5 Thesis Organization

Fig. 1.3 displays the organization and contribution of thisthesis. The contributions of the present

thesis are highlighted. This thesis consists of six Chaptersas follows: Chapter 1 introduced the

significance of signal feature analysis and the challenges in real-world signal analysis applications.

A comprehensive signal analysis is explained. This chapteralso described the importance of in-

vestigating both the hardware and software analysis of the existing feature analysis methods. It

also reviewed some of the commonly employed feature analysis tools as related to non stationary

and complex signals.

Chapter 2 covers the detailed analytical procedures of threewell-known feature extraction

methods (AR, Pole, and MFCC), and a simple and commonly used feature classifier (LDA classi-

fier).

Chapter 3 computes the complexity of AR modeling, pole modeling, and MFCC feature ex-

traction methods for hardware implementation purposes. The computational complexity of these

three techniques is analyzed in details using the mathematical equations of each method. The pole
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Figure 1.3: Thesis Organization.
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modeling computational complexity is the first known investigation for hardware implementation

analysis.

Chapter 4 evaluates and compares the algorithmic performance and hardware analysis results

of AR, Pole, and MFCC feature analyses for environmental audioscene analysis application. This

comparison is the first known work presented in the literature.

Chapter 5 explains the implementation of the pole modeling feature extraction + LDA classifier

using ALTERA DE2 development board and Niose II embedded system design. This contribution

is the first known work performed in the literature.

Chapter 6 concludes the thesis and presents discussion for future work of this research.



Chapter 2

Feature Analysis Algorithms

2.1 Introduction

Previous Chapter studied current feature analysis methods developed to classify environmental

audio signals, and selected three well-known feature extraction methods (ie. AR, pole, and MFCC)

and a commonly used feature classifier (ie. LDA). In the present Chapter, a detailed explanation

of these methods are described. Fig. 2.1 displays the organization of this Chapter. AR modeling

and MFCC features have been previously proposed for audio signal classification; however, as

highlighted in the diagram of Fig. 2.1, the pole features areused in audio signal classification for

the first time. The classifier used in this thesis is LDA. This classifier is used in software evaluation

in MATLAB programming and FPGA implementation using Nios IIsoft-core processor.

2.2 Autoregressive Modeling

Autoregressive Modeling is one of the commonly used parametric modeling methods in feature

extraction algorithms. In parametric modeling the value ofthe model output is presented by a

linear combination of several past values of the model output plus the linear combination of present

and past values of model input, this is presented in the following equation:

y(n) = −
m

∑

k=1

aky(n − k) + G
Q

∑

l=0

blx(n − l) (2.1)

In the above equation,b0 = 1, x(n) is the model input,y(n) is the model output, andG is

11
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Figure 2.1: Chapter 2 - Feature Analysis Algorithms.
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the gain factor. Transfer function for parametric modelingcan be easily extracted by applying

z-transform to the above equation (2.1):

H(z) =
Y (z)

X(z)
= G

1 +
∑ Q

l=1 blz
−l

1 +
∑ m

k=1 akz−k
(2.2)

Based on the parameters above, three modeling methods can be defined for a signal:

• AR(Autoregressive) modeling corresponds to the situation that bl in Equation (2.2) is all

equal to zero.

H(z) =
Y (z)

X(z)
=

G

1 +
∑ m

k=1 akz−k
(2.3)

• MA(Moving average) modeling corresponds to the situation thatak is all zero.

H(z) =
Y (z)

X(z)
= G(1 +

Q
∑

l=1

blz
−l) (2.4)

• ARMA(Autoregressive moving-average) modeling corresponds to the situation thatak and

bl both are not all equal to zero.

H(z) =
Y (z)

X(z)
= G

1 +
∑ Q

l=1 blz
−l

1 +
∑ m

k=1 akz−k
(2.5)

Among these three methods, AR modeling has been most commonly used in dealing with audio

signals mainly since audio signals have an underlying autoregressive structure, and can better be

represented using this model [43]. For an AR model, the output is modeled as the linear combina-

tion of m past values of the model output and the present model input (no past values of the model

input are used) as (2.1):

y(n) = −
m

∑

k=1

aky(n − k) + Gx(n) (2.6)

By applying the z-transform to the above equation, the AR transfer function is:

H(z) =
Y (z)

X(z)
=

G

1 +
∑ m

k=1 akz−k
(2.7)
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In AR modeling, the purpose is to obtain those AR parametersak (also known as AR coefficients).

In the majority of real-world applications, e.g. the speechrecognition or biomedical signal model-

ing, the inputx(n) is totally unknown. Hence, we are only interested in predicting the outputy(n)

as the linear combination of previous output samples, whichmeans thatGx(n) has to be removed

in Eqn. 2.6:

ỹ(n) = −
m

∑

k=1

aky(n − k) (2.8)

As a result of such an assumption, there will be an error as defined in the following equation:

e(n) = y(n) − ỹ(n) = y(n) +
m

∑

k=1

aky(n − k) (2.9)

From equation in Eqn. (2.9), the general block diagram of an AR model can be shown as in Fig.

2.2. ỹ(n) is the predicted value of the current sampley(n) and the forward prediction error ise(n).

Figure 2.2: Signal-flow diagram of AR model

Computing the AR Coefficientsak to minimize the prediction errore(n) is the purpose of AR mod-

eling. Several methods have been proposed in the literatureto compute the AR model coefficients

in such a way that the above prediction error is minimized [44]. Generally, two approaches has

been taken in computations of the AR model coefficients: directly or iteratively. However, since
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the iterative methods cost more computation to achieve a desired degree of convergence than the

direct methods [45], the present thesis focuses on direct approaches.

Burg method is one of the approaches proposed by Burg in 1967 [46] for computation of AR

modeling coefficients. Burg algorithm uses the lattice structure for computing forward/backward

prediction errors as shown in Fig. 2.3. This method uses a lattice filter and directly estimates re-

Figure 2.3: Burg-lattice Filter

flection coefficients{γ1 . . . γm}. The key step in the algorithm involves minimizing the sum ofthe

norm of the forward and backward residual vectors, as a function of the reflection coefficient ma-

trices. Since the computed coefficients are the harmonic mean between the forward and backward

partial autocorrelation estimates, the Burg procedure is also known as the Harmonic algorithm.

This algorithm starts with a first-order model and computes the prediction parameters (reflection

coefficients) for successively higher model orders.

The ith reflection coefficient in Fig. 2.3 is a measure of the correlation betweeny(n) and

y(n − i) after the correlation due to the intermediate observationsy(n − 1), ...., y(n − i + 1) has

been filtered out. As the recursion constrains the filter poles to fall within the unit circle stability

of the filter is guaranteed. The Burg method is particularly useful for estimating coefficients from

segments of unequal length. This method is based on Levinsons recursions and estimates the AR

filter parameters through the associated reflection coefficients constraining the AR coefficients to
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satisfy Levinson equations. As the Burg algorithm uses lattice structure, it inherits the advantages

of lattice structure such as stability, modularity, computational simplicity and efficiency. The Burg

lattice structure is modular which means by increasing the order of the filter requires adding only

one extra module, leaving all other modules and its associated filter parameters the same. Besides

these, it is proven to be an efficient linear prediction technique and is probably the most widely

known method to estimate AR coefficients [42]. Considering the advantages of Burg-lattice algo-

rithm, in this thesis, Burg method is used for AR parameter modeling.

2.3 Pole Modeling

Fig. 2.4 displays the overall stages in the pole modeling used in this thesis. Pole parameters are

calculated from a standard autoregressive model of orderm followed by a root finding method

to calculate the poles of the AR transfer function. Applyingthe z-transform to Eqn. 2.6 the AR

Figure 2.4: Pole Modeling overall diagram.

transfer function can be described as follows:

H(z) =
Y (z)

X(z)
=

1

1 +
∑ m

k=1 akz−k
(2.10)

Factorizing the denominator polynomials in Eqn. 2.10, the transfer function can be expressed as

given below:

H(z) =
1

1 +
∏ m

k=1 (1 − pkz−k)
(2.11)

or:

H(z) =
1

(z − p1)(z − p2)(z − p3)...(z − pm)
(2.12)

The parameterspk, (k = 1, 2, ...,m), are the poles ofH(z), the system representation. In order to

compute these parameters, a root finding algorithm is applied as follows:
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2.3.1 Roots Finding Algorithm

Pole parameters in Eqn. 2.12 can be obtained by finding the roots of the polynomialP in the

dominator of Eqn. 2.10 as shown below:

P (z) = 1 + a1z
−1 + a2z

−2 + a3z
−3 + ... + amz−m (2.13)

Consideringam = 1, Eqn. 2.13 can be re-structured as following monic polynomial without losing

generality:

P (z) = a0 + a1z
1 + a2z

2 + a3z
3 + ... + zm (2.14)

The problem of solving the polynomial equation is a well-developed field of mathematics and com-

puter science, and there are several root-finding techniques for solving such a problem. There are

two types of roots finding techniques: Analytical and Numerical. Analytical Root-finding Tech-

niques such as quadratic equation for polynomial equation of degree two or analogous formulate

exist for polynomials of degree three and four. However, forpolynomials of degree five and higher,

analytical solutions are not always possible, and only numerical solutions are possible [47]. A nu-

merical method for determining zeros of a polynomial generally is an iterative method to construct

one or several sequences of complex numbers supposed to converge to a zero of the polynomial

[47]. As one would expect, each algorithm has its advantagesand disadvantages and therefore the

choice of the ‘best’ algorithm for a given problem is never easy. Here are some desirable properties

that an algorithm may have:

• Converges to a zero of the given polynomial,

• Finds both real and complex roots of a polynomial,

• Satisfies global convergence: Algorithms that do not require a sufficiently close starting

value to converge are globally convergent,

• Satisfies unconditional convergence: If an algorithm is convergent (locally or globally) for

all polynomials, it is unconditionally convergent,

• Fast speed of Convergence,
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Selection of the right technique depends on the nature of a problem. In fact, for some problems,

the majority of the techniques may fail to find a solution at all, whereas only one technique can

succeed. For other problems, several techniques may, indeed, be able to solve the problem and the

numerical analyst may select the one that is more computationally efficient compared to the others

[47]. For example, the bisection method is a simple and reliable method for computing roots of

a function when they are known to be only real values. Newton’s method is locally convergent

and will converge to complex zeros only if the initial approximation is complex. However, a good

combination of Muller’s and Newton’s Methods can produce a reliable and fast program. Muller’s

method computes estimation of roots and these estimated values are used as the initial values for

Newton’s method. The J-T algorithm is fast and globally converges for any distribution of zeros

[48]. Also, few critical decisions have to be made by the program which implements the algorithm.

For instance, shifting is incorporated into the algorithm itself in a natural and stable way. Shifting

breaks equimodularity and speeds the convergence. Eigenvalues of Companion Matrix is a very

accurate method for computing zeros of a polynomial [49]. Table 2.1 summarizes the algorithms

used by some of the most popular numerical software programs. In this thesis, Eigenvalues of

Companion Matrix algorithm is used, which is commonly used inthe literature and also employed

in MATLAB software. This algorithm is explained in detail inChapter 3.

Table 2.1: Root finding algorithms used by commonly used numerical software.
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2.3.2 Pole Modeling Parameters as Features

As shown in Fig. 2.4, the poles of the model could be used as features to construct feature vectors

for signal representation and classification [50]. The dimension of the feature vector are the same as

the model order. The superior performance of poles in tracking the frequency or spectral behavior

of a signal makes them an appropriate choice for parametric representation of signals. The poles

should also assist in associating the features with physical characteristics of the signal source. A

pole in z-plane can be represented by two characteristics: magnitude and angle. In this thesis

two features are extracted from the poles obtained in each signal segment in a way that they best

represent the signals’ poles in z-plane. These features areappended together to form a combined

feature vector. These two features are: the spectral bandwidth and the pole angle in z-plane are as

explained below:

Let us considerpi = a + jb as a complex pole of the system. The spectral bandwidthfB is

measured as the distancer =
√

a2 + b2 of a pole from the origin in the complex z-plane [50]:

fB = cos−1

[

(1 + r2) − 2 (1 − r)

2r

]

(2.15)

The angle ofpi is calculated as follows:

θ = tan−1

[

b

a

]

(2.16)

2.4 Mel Frequency Cepstral Coefficients(MFCC)

The original MFCC was introduced by Davis and Mermelstein in 1980 [51]. Mel-scaled Frequency

Cepstral Coefficients (MFCC) is a non-parametric method of modeling the human auditory per-

ception system. The termmeldenotes some kind of measurements of perceived frequency orpitch

of a tone. The auditory response of the human ear is non-linear which is mapped by using MFCC.

MFCCs are based on the Mel frequency scale which approximates the non-linear way that humans

perceive sounds by emphasizing the lower frequencies more than the higher frequencies [51]. The

mapping between the real frequency scale (Hz) and the perceived frequency scales (mels) is ap-

proximately linear below 1KHz and logarithmic at higher frequency. The formula that models their
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relationship is described as[52]:

Fmel = 2595 × Log10

(

1 +
FHZ

700

)

(2.17)

The perceptual masking in MFCC is achieved by using the Mel-filter bank shown in Fig. 2.5.

Figure 2.5: Mel scale filter bank

The overall process of the MFCC is shown in Fig. 2.6. First, discrete Fourier transform (DFT)

is applied to the speech signal. Next, the output of the DFT ispassed through a perceptually

spaced bank of twenty equal height triangular filters to obtain the energy of signals. Finally, a set

of discrete cosine transform is applied to logarithmicallycompressed filter-output energies to gain

the MFCCs.

2.5 Feature Classifiers

The classifier used in this thesis is LDA. This method is explained as follows.
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Figure 2.6: MFCC Block diagram

2.5.1 Linear Discriminant analysis (LDA)

Linear Discriminant analysis DA (LDA) (or Fishers linear discriminant) originally developed in

1936 by R.A. Fisher. LDA is a classic method of classification that has been widely used in many

signal processing applications. LDA is a simple and efficient discriminant analysis which produces

compatible accuracies compared to complex classifier methods. In the discriminant analysis, the

feature vector containing the set of the features were transformed into canonical discriminant func-

tions such as:

f = a + v1b1 + v2b2 + ... + vnbn (2.18)

where{v1, v2, ..., vn} is the vector containing the set of features, and{b1, b2, ..., bn} anda are the

classifier coefficients and constant, respectively. Using the discriminant functions values (scores)

and the prior probability values of each group, the posterior probabilities of each sample occurring

in each of the groups are computed [53]. The sample is then assigned to the group with the highest

posterior probability. Fig. 2.7 shows an LDA classifier for two target groups and 2D feature space

{v1, v2}. In the scenario shown in Fig. 2.7, the LDA classifier is the line separating the feature

samples of Group A and Group B signals. When a new feature sample is going to be classified
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Figure 2.7: LDA shematic.

based on the LDA classifier, the group of the new feature sample will be defined depending on its

location in the feature space in respect to the classifier line. If the sample falls above the line, the

system will decide that the signal belongs to Group A; otherwise, the signal will be classified as

Group B signal.

2.6 Summary

In this Chapter, a detailed explanation of AR, pole modeling and MFCC have been presented. The

next Chapter will calculate the computational complexity ofeach of the three techniques in details

using the mathematical equations of each method.



Chapter 3

Computational Requirements Analysis

3.1 Introduction

The algorithmic explanation of three well-known feature extraction method (ie. AR, pole, and

MFCC) were provided in Chapter 2. Fig. 3.1 displays the organization of the present Chapter. The

aim of this Chapter is to compute the complexity of AR modeling, pole modeling, and MFCC for

hardware analysis.

As shown in Fig. 3.2, the computational complexity of each ofthe three techniques will be

analyzed in details using the mathematical equations of each method. For each method, first each

algorithm is divided into its consisting mathematical stages. Second, the sequencing graph (SG)

of each mathematical stage is plotted. A sequencing graph presents the operations and their partial

order. Next, based on the SG of each stage, the number of required mathematical operations is

obtained. Finally, the numbers of operations in each stage are added to obtain the total number

of operations for each feature extraction algorithm. It should be noted that the pole modeling

computational complexity is the first known investigation for hardware implementation analysis.

3.2 AR modeling with Burg algorithm

Fig. 3.3 shows one stage in the lattice structure for computing forward/backward prediction error.

For any model order increase, the AR coefficients is computedby simply adding one or more

lattice stages without affecting the earlier computationsfor the lower orders. Fig. 3.4 shows the

23
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Figure 3.1: Thesis Organization.
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Figure 3.2: Chapter 3 - Computational Complexity Analysis.

flow chart for calculation the AR coefficients. The detailed mathematical analysis used in each

step in the flow-chart 3.4 is explained below:

• Initialization of the forward/backward error:

f0(n) = b0(n) = x(n)

n = 0, 1, ..., L − 1

a0 = 1

(3.1)
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Figure 3.3: The lattice structure for one stage of Burg algorithm.

• Calculation of the reflection coefficient in the Burg algorithm:

γr = 2
∑ L−1

n=r
fr−1(n)br−1(n−1)

∑ L−1

n=r
f2

r−1
(n)+b2

r−1
(n−1)

r = 1, 2, 3, ...,m

(3.2)

• Calculation of the forward/backward prediction errors:

fr(n) = fr−1(n) − γr × br−1(n − 1)

n = r, r + 1, ..., L − 1
(3.3)

br(n) = br−1(n − 1) − γr × fr−1(n)

n = r, r + 1, ..., L − 1
(3.4)
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Figure 3.4: Flow chart of calculation the AR coefficients using Burg algorithm.

• Finally, calculation of the AR Coefficients:

ar,0 = 1

ar,r = −γr

ar,k = ar−1,k − γr × ar−1,r−k

r = 2, 3, ...,m

k = 1, 2, ..., r − 1

(3.5)

3.2.1 Sequencing Graph and Number of operations

Sequencing graphs is plotted for three computational stageas follows:
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Stage 1: Stage one is calculating the reflection coefficient in the Burgalgorithm. Fig. 3.5 shows

the SG for this step. The reflection coefficient needs to be calculated for each iteration of the

Figure 3.5: SG of the reflection coefficient calculation.

algorithm and each signal segment. This means that for eachn in the iteration (r), γr is computed

from the forward errorfr−1(n) and backward errorbr−1(n − 1). AssumingP is the maximum

number of iteration (ie. the AR model order) andN is the maximum number of samples in each

segment of the input signal, operations required for this step are calculated using the SG shown in



29
Fig. 3.5 as follows:

Numberofmultipliers :
∑ m

r=1 [3 × (L − 1 − r) + 1]

Numberofadders :
∑ m

r=1 (L − 1 − r)

Numberofdivisions : m

(3.6)

Stage 2: Fig. 3.6) shows the SG for calculating forward and backward errors in each iteration

of the AR algorithm. The forward errorfr(n) and the backward errorbr(n) are calculated based

Figure 3.6: SG representing the forward/backward prediction errors calculation.

on γr which is calculated in the previous step and the forward error fr−1(n) and backward error

br−1(n) from the previous iteration. Based on sequencing graph shownin Fig. 3.6, the operations

required for this step are as follows:

Numberofmultipliers :
∑ m

r=1 [2 × (L − 1 − r)]

Numberofadders :
∑ m

r=1 [2 × (L − 1 − r)]
(3.7)

Stage 3: Fig. 3.7 shows the sequencing graph for calculating AR coefficients in each iteration of

algorithm. The AR coefficientsar,k are calculated based onγr and the AR coefficients obtained in
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Figure 3.7: SG of the AR coefficients calculation.

the previous iteration. Based on the sequencing graph of Fig.3.7, operations required for this step

are as below:

Numberofmultipliers :
∑ m

r=1 (r − 1)

Numberofadders :
∑ m

r=1 (r − 1)
(3.8)

3.2.2 Total Number of required operations

Total number of mathematical operations required for computing the AR coefficients using Burg

algorithm can be extracted based on Eqns. 3.6, 3.7, and 3.8. These operations are listed in Table

3.1.

3.3 Poles from AR Modeling using Eigenvalues of Companion
Matrix

As discussed in Chapter 2, finding AR-model poles can become a problem of finding roots of the

polynomialP (z) as given below:

P (z) = a0 + a1z
1 + a2z

2 + a3z
3 + ... + zm (3.9)
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Table 3.1: Total number of operations required in AR modeling.

Computing roots of a polynomial can be posed as an eigenvalue problem by forming the companion

matrix. The eigenvalues of companion matrix method is an accurate method for computing zeros

of a polynomial. The companion matrixA associated with this polynomial is defined as follows:

A =



























−am−1 . . . −a2 −a1 −a0

1 0 0
1 0 .

. .

. .

. .

1 0



























(3.10)

This matrix has the characteristic polynomial as defined below:

Pc(z) = det (zI − A) = P (z) (3.11)

Finding the zeros of Eqn. 3.9 is equivalent to computing the eigenvalues of matrixA in Eqn.

3.10. The eigenvalues of matrixA can be found using the QR algorithm. Fig. 3.8 is the flow

chart of AR model poles calculation using eigenvalues of companion matrix. Fig. 3.8 shows that

QR algorithm is deployed to compute the eigenvalues of the companion matrix. The classic QR

algorithm performs a QR decomposition or factorization to factorize the matrixAi as a product

of an orthogonal matrixQi and an upper triangular matrixRi. In each iteration of QR algorithm,

matrix Ai is factorized to matrixQi andRi using QR factorization. Then matrixAi+1 is formed



32

Figure 3.8: AR model poles calculation using eigenvalues of companion matrix.

by multiplying the factors in the following order:

Ai+1 = Ri × Qi (3.12)

After several iterations, matrixAi is converted to a triangular matrix, and the diagonal elements of

the matrix converge to the matrix eigenvalues.

3.3.1 QR Factorization

There are several algorithms to perform the QR decomposition of a matrix. For example, Cholesky

QR, the Gram-Schmidt process, Givens rotations, or Householder reflectors [54]. Most of general-
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purpose software for QR uses either Givens rotations or Householder reflectors as two important

transformation techniques. One advantage of Givens rotations method over Householder transfor-

mations is that they can easily be parallelized, and often for very sparse matrices they have a lower

operation count. In this thesis Givens rotations is used forperforming the QR decomposition.

Companion matrixA is an upper Hessenberg form and it is already nearly upper-triangular. By

applying Givens rotation technique and zeroing out the onlyone nonzero entry below each diagonal

element, matrixA becomes a triangular matrix. The Givens rotation matricesG1, G2, G3, ..., Gm−1

are constructed so that:

Gm−1 × Gm−2...G2 × G1 × A = R (3.13)

As it is demonstrated below, the orthogonal matrixQT is formed from the concatenation of all the

Givens matrices :

Q = GT
1 × GT

2 ... × GT
m−2 × GT

m−1

QT = Gm−1 × Gm−2...G2 × G1

(3.14)

The two Eqns. 3.14 and 3.13 are combined as it is shown below:

QT A = R (3.15)

and then:

QQT A = QR

IA = QR

A = QR

(3.16)

Eqn. 3.16 shows that using Givens rotation method, matrixA can be factorized toQ andR. In

factorization the idea is to first findG1 to zero out the sub-diagonal element belowa11 which is

shown below:

A1 = G1A = G1



























a11 a12 . . . a1m

1 0 0
0 1 0 .

. . .

. . .

. . .

0 1 0



























=



























ā11 ā12 . . . ¯a1m

0 ā22 . . . ¯a2m

0 1 0 .

. . .

. . .

. . .

0 1 0



























(3.17)
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At the next stepG2 is multiplied byG1 and the sub-diagonal element in the second column below

the ā22 is zeroed :

A2 = G2G1A = G2



























ā11 ā12 . . . ¯a1m

0 ā22 . . . ¯a2m

0 1 0 .

. . .

. . .

. . .

0 1 0






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After m − 1 iterations, matrixAk is converged to a triangular matrix and the eigenvalues could be

found easily from the diagonal elements of the matrix. A Givens rotation matrix to zero out the

sub-diagonal element bellow the elementaj,j is represented by a matrix of the following form:

G(j, j + 1, θ) =
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(3.19)

wherec = cos(θ) ands = sin(θ). As the name Givens rotation indicates,GT (j, j + 1, θ) × X is

a counterclockwise rotation of the vectorX in the (j, j + 1) plane ofθ radians. Givens rotations

are clearly orthogonal matrices. Consideringaj,j is a diagonal element of matrixA andbj+1,j is

a sub-diagonal element of matrixA. Givens rotations technique zeros out thebj+1,j by using this

function:
[

c s

−s c

]T [

a

b

]

=

[

r

0

]

(3.20)

where:

r =
√

a2 + b2

c = a
√

a2+b2

s = b
√

a2+b2

(3.21)
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Here the detail algorithm to perform QR factorization is explained. Assuming matrixA is an upper

Hessenberg matrix, then matrixA can be factorized asA = QR whereQ is orthogonal andR is

upper triangular.

For j = 1 : m − 1

c = A(j,j)√
A(j,j)2+A(j+1,j)2

s = A(j+1,j)√
A(j,j)2+A(j+1,j)2

A(j : j + 1, j : m) =

[

c s

−s c

]T

A(j : j + 1, j : m)

Gj(j, j) = c

Gj(j + 1, j + 1) = c

Gj(j, j + 1) = s

Gj(j + 1, j) = −s

End

R = A

Q = GT
1 × GT

2 ... × GT
m−2 × GT

m−1

(3.22)

Q = GT
1 × GT

2 ... × GT
m−2 × GT

m−1 is a product of Givens rotationsGj(j, j + 1, θ). These

algorithm is applied to companion matrixA from Eqn. 3.10 which is an upper Hessenberg matrix.

In a companion matrix all the sub-diagonal elements areA(j + 1, j) = 1, so the algorithm is
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simplified as follows:

For j = 1 : m − 1

c = A(j,j)√
A(j,j)2+1

s = 1√
A(j,j)2+1

A(j : j + 1, j : m) =

[

c s

−s c

]T

A(j : j + 1, j : m)

Gj(j, j) = c

Gj(j + 1, j + 1) = c

Gj(j, j + 1) = s

Gj(j + 1, j) = −s

End

R = A

Q = GT
1 × GT

2 ... × GT
m−2 × GT

m−1

(3.23)

The QR algorithm is shown Fig. 3.8; the QR decomposition block in the QR algorithm is replaced

by the algorithm which is explained above in Eqn. 3.23. Fig. 3.9 shows the block diagram for QR

algorithm using Givens rotations technique to performing the QR factorization.

3.3.2 Sequencing Graph and Number of Operations

Fig. 3.9 shows the flow chart of the QR Algorithm which employsthe Givens rotation technique to

perform QR decomposition. In this section SG for each step ofthe algorithm is plotted and number

of required mathematical operations are calculated.

Stage 1: First step in each iteration of QR algorithm is over writing matrix Ai using the QR

factorization asAi = QiRi whereQi is orthogonal andRi is upper triangular. The QR factorization

is an iterative algorithm which starts withj = 1 and continues tillj = m− 1. Each iteration of the

QR factorization by itself contains the following three steps:
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Figure 3.9: QR Algorithm using Givens rotations technique,

QR factorization Step 1: is calculatingcj andsj. Fig. 3.10 shows the SG for calculatingcj

andsj in each iteration of QR factorization. Based on SG 3.10 numberof required mathematical

operations for calculatecj andsj in each iteration of QR factorization are as follows:

Numberofmultipliers : 2

Numberofadders : 1

Numberofsquareroots : 1

Numberofdividers : 1

(3.24)
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Figure 3.10: Computingc ands

Then total number of operations for calculatingcj andsj in m − 1 iterations are:

Numberofmultipliers : 2(m − 1)

Numberofadders : (m − 1)

Numberofsquareroots : (m − 1)

Numberofdividers : (m − 1)

(3.25)

QR factorization Step 2: in QR factorization is calculating newA as follows:

A(j : j + 1, j : m) =

[

c s

−s c

]T

A(j : j + 1, j : mM)

A(j : j + 1, j : m) =

[

c s

−s c

]T [

aj,j aj,j . . . aj,m

aj+1,j aj+1,j . . . aj+1,m

]

(3.26)
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Eqn. 3.26 is a matrix multiplication. Matrixg has two rows and two columns. MatrixA(j :

j + 1, j : m) has two rows and numbers of its column is different in each iteration and equals to

m − j + 1. Number of operation for creating MatrixA(j : j + 1, j : m) are:

Numberofmultipliers : 4(m − j + 1)

Numberofadders : 2(m − j + 1)
(3.27)

Then total number of operations for creating matrixA(j : j + 1, j : m) in m − 1 iterations are:

Numberofmultipliers : 4
∑ m−1

j=1 m − j + 1 = 2(m − 1)(m + 2)

Numberofadders : 2
∑ m−1

j=1 m − j + 1 = (m − 1)(m + 2)
(3.28)

QR factorization Step 3: is the last step in QR factorization. In this step product of Givens

rotations are calculatedQ = GT
1 GT

2 ...GT
m−1. This computation is a matrix multiplication. Givens

rotation matricGj(j, j + 1, θ) multiplies by a matrix withm rows and columns as it is presented

below:

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
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. . . . .

. . . . .
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. . . . .

. . . . .

. . . . .
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







(3.29)

Number of operation required to perform this matrix multiplication are:

Numberofmultipliers : 4m

Numberofadders : 2m
(3.30)

Then number of total required operations for calculatingQ in m − 1 iteration are:

Numberofmultipliers : 4m(m − 1)

Numberofadders : 2m(m − 1)
(3.31)
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Based on Eqns. 3.25, 3.28 and 3.31 total number of required mathematical operation for perform-

ing the QR factorization in one iteration of QR algorithm areas follows:

Numberofmultipliers : 2(m − 1)(3m + 1)

Numberofadders : (m − 1)(3m + 1)

Numberofsquareroots : (m − 1)

Numberofdividers : (m − 1)

(3.32)

Stage 2: Next step of QR algorithm is calculating the new matrixAi+1 = RiQi whereQi is

orthogonal andRi is upper triangular. Also it is confirmed in [54] that matrixQ = GT
1 GT

2 ...GT
m−1

is upper Hessenberg ifG1, G2, ..., Gm−1 are the Givens rotations. So calculatingAi+1 contains

multiplication of the matrixRi which is upper triangular by matrixQi which is upper Hessenberg,

as it is shown below:
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(3.33)

Then number of operations required for creatingAi+1 are as follows:

Numberofmultipliers : m2(m+3)
4

Numberofadders : m(m−1)(m+2)
4

(3.34)

3.3.3 Total Number of required operations

Total number of required mathematical operations to perform QR algorithm using Givens rotation

technique are calculated based on Eqns. 3.32 and 3.34. Theseoperations are listed in Table 3.2.

3.4 Mel Frequency Cepstral Coefficients (MFCC)

The MFCC computation for a given signal consists of the following steps:
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Table 3.2: Total number of operations required in pole modeling.

• Construct the filter bank with M equal height triangular filters Hi(K) based on Mel-scaled

frequency from Eqn. 2.17,

• Transform the input signalX(n) from time domain to frequency domainX(K) by applying

DFT,

• Find the energy spectrum|X(K)|,

• Calculate the energy in each channel
∑ L−1

K=0 |X(K)| × Hi(K),

• Proceed with logarithm and cosine transforms,

In the next section SG for each stage of the algorithm is plotted and number of required mathemat-

ical operations are calculated.

3.4.1 Sequencing Graph and Number of Operations

Stage 1: Stage one in computing MFCC is transforming the input signal from time domain to

frequency domain by applying discrete Fourier Transform (DFT). Letx(0), ...., x(L−1) be a vector

of input signal samples. ConsiderL as the frame size or number of samples in each segment. Then
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DFT is defined by the formula:

X(k) =
∑L−1

n=0 x(n)e−
2iπ
L

kn k = 0, ..., L − 1 (3.35)

ConsiderWL = e−
2iπ
L is the primitiveLth root of unity, DFT is presented as anL-by-L matrix

multiplication as follows:

X(k) =
∑L−1

n=0 x(n)W kn
L k = 0, ..., L − 1 (3.36)
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(3.37)

The direct implementation of the Eqn. 3.37 requires order ofL2 complex multiplications and

additions. The direct evaluation of DFT involves the following operations counts:

Numberofmultipliers : L2

Numberofadders : L(L − 1)
(3.38)

Stage 2: Second step in MFCC is calculating the energy spectrum as follows:

|X(k)| k = 0, ..., L − 1 (3.39)

Number of required mathematical operations for calculating energy spectrum is:

Numberofmultipliers : L

Numberofsquareroots : L

(3.40)

Stage 3: In the next step, for each channel of Mel scale filter, the energy of signal is calculated. It

is assumed that construction of the filter bank withb equal height triangular filtersHi(K) has been

done once and it is known during all the iterations. Number ofmathematical operations required

for creating Mel scale filter bank does not count in this thesis. b is considered as the number of Mel
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windows in Mel scale, which usually varies from 20 to 24.Hi is the triangular filter associated

with theith channel in Mel scale:

Hi(K) k = 0, ..., L − 1 and i = 0, ..., b − 1 (3.41)

The energy of signal is calculated by the formula which is presented below:

S(i) =
∑ L−1

K=0 |X(K)| × Hi(K) i = 0, ...,m − 1 (3.42)

For the convenience of estimation Eqn. (3.42) is expressed in a matrix form:
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Number of required mathematical operations for this calculation is:

Numberofmultipliers : b × L

Numberofadditions : b × (L − 1)
(3.44)

Stage 4: Finally by proceeding with logarithm and cosine transforms, the MFCCs are computed

as follow:

C(l) =
∑ b−1

i=0 Log(S(i)) × Cos
[

l(i + 05)π
b

]

l = 0, ...,m − 1 (3.45)

m is the desired order of MFCC. Again for the convenience of estimation equation (3.45) is ex-

pressed in a matrix form as follows:

F (l, i) = Cos
[

l(i + 05)π
b

]

i = 0, ..., b − 1 and l = 0, ...,m − 1

C(l) =
∑ b−1

i=0 Log(S(i)) × F (l, i) i = 0, ..., b − 1 and l = 0, ...,m − 1

(3.46)
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Table 3.3: Total number of operations required in MFCC.

Number of required mathematical operations for the last stage are:

Numberofmultipliers : m × b

Numberofadditions : m × (b − 1)

Numberoflogarithms : b

(3.48)

3.4.2 Total Number of required operations

Total number of mathematical operations required to calculate MFCCs is extracted as below based

on Eqns. 3.38, 3.40, 3.44 and 3.48. These operations are listed in Table 3.3.

3.5 Summary

In this Chapter the computational complexity of AR modeling,pole modeling and MFCC are

analyzed in detail using the mathematical equations of eachmethod. Each algorithm is divided

into its consisting mathematical stages and the number of required mathematical operations is

obtained. Next Chapter will estimate the total number of LUT needed for the implementation of

AR, pole modeling, and MFCC on the Altera Cyclone FPGA, based on the complexity of each
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method calculated in this Chapter. The algorithmic and hardware performances of these three

feature analysis methods will be compared in the next Chapteras well.



Chapter 4

Application: Audio Environment Scene
Analysis

4.1 Introduction

The algorithmic explanation of three well-known feature extraction methods (ie. AR, pole, and

MFCC) were provided in Chapter 2. Chapter 3 computed the complexity of AR modeling, pole

modeling, and MFCC for Hardware analysis. As shown in Fig. 4.1, the present Chapter evaluates

and compares the algorithmic and hardware performances of AR, Pole, and MFCC feature analy-

ses for environmental audio scene analysis application. This comparison is the first known work

presented to the best of the author’s knowledge.

This Chapter is continued as follows: first the background andliterature review of audio scene

analysis is presented. Next, the database used in the present evaluation is explained, followed by

the properties of the employed classifier and feature extraction methods. Finally, both algorithmic

and hardware performances of these three feature analysis methods are provided and compared.

The most efficient feature analysis method is selected for the NIOS II implementation in the next

Chapter.

Audio feature extraction and classification are important tools for audio signal analysis in many

applications, such as multimedia indexing and retrieval, and auditory scene analysis. However, due

to the non-stationarities and discontinuities exist in these signals, their quantification and classifi-

cation remains a formidable challenge. The general methodology of audio classification involves

46
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Figure 4.1: Chapter 4 - Environmental Audio Scene Analysis.
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extracting discriminatory features from the audio data andfeeding them into a pattern classifier.

The better and more effective features are extracted from audio signals, the higher performance

will be achieved in the audio classification technique. Therefore, the specific aim of this Chapter

is to study audio environment classification accuracy vs. hardware cost problem.

4.2 Audio Classification

Audio signals are important sources of information for understanding the content of multimedia.

Therefore, developing audio classification techniques that better characterize audio signals plays

an essential role in many multimedia applications, such as,multimedia indexing and retrieval, and

auditory scene analysis. In multimedia indexing and retrieval, audio classification is used along

with other kinds of medium to classify the content of the multimedia. In auditory scene analysis,

audio classification is used to distinguish between different environmental sounds. For example,

in an efficient hearing aids (HA), in order to improve the quality of the audio for hearing impaired

people, before amplifying the audio signals, the HA device uses an audio classifier to distinguish

between different environmental sounds, such as speech, music and noise, and then the signals are

amplified accordingly [55].

Another application of audio classification is in audio-visual signal processing. One of the ex-

amples of audio-visual processing is controlling the observation of a driver which is an application

of Multimedia for human’s safety purposes. By means of auditory scene detection and the visual

data, the watchfulness of the driver can be detected to avoidaccidents due to lack of concentration.

Audio classification and analysis also help in retrieving the accurate information from the digital

media. Development of powerful audio effect processors such as EMU10K1 [56] for the personal

computers has made it possible for criminals to create a fakeevidence by adding environmental

simulation, 3-D positioning, and special effects to audio to create environment adaptations such

as train, plane, public place or etc. Determination of the authenticity of the speaker’s environment

can play a substantial role in investigations of the collected multimedia evidence to prove a crime

[57].
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4.3 Audio Environment Database

The performance of a classification procedure depends on thedesign parameters, diversity of the

classifiers, as well as the assessment database which are usually different in each analysis method.

This fact, together with non-availability of databases or algorithms for other works, makes com-

parison of methods a difficult task. In literature, althoughsome techniques reported high accuracy

rates, they used a few audio groups in the evaluation stage. For example, in [58], the authors use

two classes (i.e., speech and music) and achieve 95% accuracy rate, while audio content analysis at

Microsoft research [30] uses three audio classes (i.e., speech, music, and environment sound) with

96.5%. Freeman et al [59] use four classes of speech (i.e., babble, traffic noise, typing, and white

noise), and achieve 97.9% accuracy rates using artificial neural networks (ANN). The authors in

[27] obtain a lower accuracy rate (82.3%) for classificationof 14 different environmental scenes

(i.e., inside restaurants, playground, street traffic, train passing, inside moving vehicles, inside

casinos, street with police car siren, street with ambulance siren, nature-daytime, nature-nighttime,

ocean waves, running water, raining, and thundering). Overall, when more diverse signal types are

defined in the evaluation stage, the classification accuracytends to be reduced.

The focus of the present study is to evaluate the performanceof audio classification for human

and non-human classification. For this purpose, an audio database is used which is developed

in the signal analysis research (SAR) group at Ryerson University [32], and contains different

environmental audio signals. This database used in this experiment consists of 80 audio signals

of 5 s duration each with a sampling rate of 22.05 kHz and a resolution of 16 bits/sample. The

arrangement of this database is shown in Fig. 4.2. It is designed to have different signal types

including 8 aircraft, 8 helicopters, 8 drums, 8 flutes, 8 pianos, and the speech of 20 males and 20

females. Most of the audio samples were collected from the Internet and suitably processed to

have uniform sampling frequency and duration.
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Figure 4.2: Organization of audio database used in this work.

4.4 Audio Classifiers

Various classifiers have been utilized for audio classification. Audio content analysis at Microsoft

research commonly uses Gaussian mixture models (GMM) [29],k-nearest neighborhood (K-NN)

[30] and support vector machine (SVM) [31] for audio classification. Other popular classifiers

for audio classification include linear discriminant analysis (LDA) [32], hidden Markov models

(HMM) [33] and artificial neural networks (ANN) [59]. There are some works that focus atten-

tion on developing new classifiers, or comparing existing classifiers for audio classification ap-

plications. For instance, in [55], Buchler et. al. compare simple classifiers (e.g., rule-based and

minimum-distance classifiers) with complex approaches (e.g., Bayes classifier, neural network and

hidden Markov model). While these studies are beneficial, theaim of the present study focuses

on performance evaluation of three well-known feature extraction methods. Therefore, in this

Chapter, we avoid complex classifiers and apply LDA as a simplelinear classifier to evaluate the

features.

4.5 Audio Features

Over the last few years, several audio feature extraction techniques have been introduced. In gen-

eral, all the feature extraction methods utilize one of the following three signal representation
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domains: temporal domain, spectral or joint time-frequency (TF) distribution. Temporal domain

features, such as, signal energy, pitch, zero crossing rate [16, 17] and Entropy modulation [18]

have been used for audio classification. Examples ofSpectral featuresinclude 4 Hz modulation

energy, percentage of low-energy frames, spectral rolloffpoint, spectral centroid, mean frequency,

cepstral coefficients [19, 20], and high and low frequency slopes [21]. Additionally, the variation

in the structural behavior of audio signals from one frame tothe adjacent frames motivated the

development of several features to characterize the existing spectral difference between the neigh-

boring frames. For example, spectrum flux (SF) [19] is definedas the average variation value of

spectrum between the two adjacent frames. There have been some attempts to derive jointTF fea-

tures[60, 61, 62, 27, 28] from audio signals. Although, a significant attention is paid to the feature

extraction techniques as mentioned above, the hardware implementation of these methods has not

been explicitly studied in the literature. In this Chapter, we investigate the hardware and software

performances of three well-known features: AR, Pole, and MFCCfeatures. The analytical expla-

nation of these features are explained in Chapters 2 and 3. Thefollowing Chapter explains the

details of these features as employed in the developed audioclassification system.

AR Features: Fig. 4.3 demonstrates the AR feature extraction as used in this analysis. Each

audio signal is divided into segments with duration of 25ms.Sine the signal duration is 5s, 200

segments are derived for each signal (k = 200 in Fig. 4.3). AR features are extracted from each

segment. These AR features area1, . . . am in Eqn. 2.7. In this application AR model order of 13 is

used which means that 13 AR audio features are extracted (m = 13). There are 80 signals in this

database (N = 80). Therefore, the AR feature vectors are(80 × 200) vectors with13 features in

each vector.

Pole Features: The Pole feature extraction is shown in Fig. 4.4. Similar to the AR feature

extraction, each audio signal is divided into 200 segments with duration of 25ms. Once 13 AR

features are extracted from each segment, 13 poles are computed for each segment. Therefore, the

polynomial in Eqn. 3.9 is of order 13, and the associated companion matrix in Eqn. 3.10 is a13×13

matrix. To find the poles (ie. the eigenvalues of the companion matrix), the QR factorization is
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Figure 4.3: General schematic of the AR audio feature extraction.

repeated 13 times. Next, two features are extracted for eachpole: the spectral bandwidth and the

angle as explained in Eqns. 2.15 and 2.16, respectively. Thepole features contain(80 × 200)

vectors with2 × 13 features in each vector.

MFCC Features: 13 MFCC features are extracted as explained in Section 2.4. Fig. 4.5 shows

that the MFCC features contain(80×200) vectors with13 features in each vector. In this analysis,

20 mel scale filter bank is used for calculation of the MFCC features.

4.6 Results

As mentioned in Chapter 1, a comprehensive performance evaluation should be based on the ac-

curacy rate of a method as well as the hardware analysis. Therefore, the first part presents the

accuracy evaluation of the three audio features as explained in previous sections. The second part

compares these methods in terms of their hardware efficiency.
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Figure 4.4: General schematic of the pole audio feature extraction.
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Figure 4.5: General schematic of the MFCC audio feature extraction.

4.6.1 Algorithm Performance

An audio classification is performed in MATLAB as follows: 1)First, all the 80 audio signals

are transformed into AR, pole, and MFCC features. Next, the extracted features are fed into the

classifier based on LDA. A binary classification is performed(Human and non-human). Table 4.1

displays the accuracy rate of AR, pole, and MFCC features.

As it can be seen in this table, MFCC acquires the highest classification accuracy with 87.5%

overall rate, followed by pole and AR modeling features with85% and 72.5% rates, respectively.

4.6.2 Hardware Efficiency

Implementing an algorithm in hardware is a labor intensive and expensive process [63]. Because

of the high development cost, it is very important to have a quick metric to compare the algorithm

complexity vs. algorithm accuracy without the need to actually implement the algorithm in hard-

ware. There are several metrics for this purpose, such as instruction count, execution time and



55

Table 4.1: Accuracy evaluation of audio classification methods based on AR, pole, and MFCC.

LUT count. The instruction count, which is the number of instruction executed during each run

of the algorithm, is not a good metric since multiply instructions represent a much greater use of

hardware resources than addition instructions [64]. Execution time is not a good metric either since

the same algorithm might execute differently on different platforms. For example, a processor with

multiplication unit and a processor without multiplication unit will have different execution time

for the same algorithm. On the other hand, the total number ofLUTs needed to implement the

algorithm is a suitable metric since it quantifies the maximum amount of FPGA resources that will

be needed to implement the algorithm if the algorithm can be fully parallelized in FPGA hardware.

In this thesis, we use the computational complexity to estimate the number of LUTs. First, the

number of mathematical operations for an algorithm are calculated. Second, the number of LUTs

required for implementing an operation in the Altera CycloneFPGA using the Altera Qaurtus II is

estimated. In the third step, the number of operations required for each algorithm is multiplied by

the number of required LUTs for each operation, and the totalnumber of LUTs required for each

method is extracted.

The LUT count method used in this thesis is a very fast and low cost method which does not

require an actual hardware implementation while represents an absolute mathematical upper bound

on the real hardware cost. However there might be many different real hardware costs since there

will be many different ways of implementing the same design on an FPGA depending on how

someone might schedule the algorithm into hardware.
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Table 4.2: Total number of operations required in AR and pole modeling, and MFCC.

In Chapter 3, the total numbers of multiplications, additions, and divisions of AR, poles, and

MFCC features are computed as shown in Tables 3.1, 3.2, and 3.3, respectively. Table 4.2 lists

these calculations for each method. Assumem is the AR model order, which is also the number

of poles and the desired order of MFCC.L is the maximum number of samples in each segment

of the input signal.b is the number of mel windows in mel scale, which is assumed to be 20 in

this application. In pole modeling, the number of iterations before the QR algorithm converges is

denoted withI. The value ofI depends on the nature of each signal, but the MATLAB analysis

showed thatI = 10 can be selected as the average number of iterations in different segments.

Including the appropriate values of parametersm,L, I, andb as utilized in Table 4.2, the num-

ber of the actual operations can be calculated for each method. The total number of operations is

shown in Table 4.3.

Table 4.3: The number of operations2
Operations AR Poles MFCC
Multiplications 13858 16360 53280
Additions 8346 10650 52807
Division 13 120
Square roots 120 220
Logarithms 20
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For each operation, the number of area usage is calculated interms of LUT allocated to perform

that operation. According to the Megawizard plug in for Altera Quartus II Web Edition FPGA

design software, the number of LUTs allocated for each mathematical operation is shown in Table

4.4. Each operation is considered with Floating point double precision 64bits using Altera Cyclone

FPGA.

Table 4.4: Number of LUTs - Altera Cyclone FPGA - Floating point double precision 64bits
Operations Lut
Multiplications 3399
Additions 812
Division 6842
Square roots 4604
Logarithms 19700

Combining Tables 4.3 and 4.4, the total required LUTs for eachaudio feature extraction algo-

rithm are calculated and displayed in Table 4.5.

Table 4.5: Number of LUTs for each method
Method Lut
AR 53969240
Pole 65628960
MFCC 225384884

4.6.3 Accuracy/Hardware Comparison:

Fig. 4.6 shows the classification accuracy vs. hardware areausage for each method. Based on this

figure, it can be concluded that pole modeling can be an appropriate tool for audio scene analysis

application. Although AR modeling requires a low hardware area usage, it provides a classification

performance of much lower than MFCC and pole modeling. However, pole modeling offers a

comparable accuracy rate in respect to MFCC (87.5% and 85% respectively) while its hardware

area usage is much fewer than the MFCC method. The hardware area perfromance of pole is

88.45% higher than MFCC as calculated by100
LUTMFCC−LUTpole

LUTpole

.



58

Figure 4.6: Audio environment classification accuracy vs. hardware area usage.

4.7 Summary

In this Chapter, software performance and hardware analysisfor AR modeling, Pole modeling,

and MFCC were performed and compared for environmental audioscene analysis application.

Based on the results obtained, the pole modeling feature analysis method is proposed for NIOS II

implementation as will be explained in the next Chapter.



Chapter 5

Pole Modeling FPGA Embedded
Implementation

5.1 Introduction

Pole modeling is selected in Chapter 4 as an appropriate feature extraction method for audio scene

analysis. As shown in Fig. 5.1, the present Chapter explains the implementation of the pole

modeling feature extraction + LDA classifier using ALTERA DE2development board and Niose

II embedded system design. The pole modeling + LDA implementation is the first known work

performed to the best of the author’s knowledge.

5.2 Pole Modeling Feature Analysis Embedded System Imple-
mentation

The main focus of this section is to design the pole modeling feature analysis using pole features

and LDA classifier into an embedded system. As it is explainedin section 2.2.1, pole modeling

includes a roots finding algorithm which calculates the roots of theP polynomial in the dominator

of AR model. Roots finding is an iterative and algorithmic intensive method. Because embedded

software implementation is more suitable for algorithmic intensive algorithms, in this thesis, pole

modeling is implemented in the Altera Nios II processor, which is a softcore processor. The details

of the main steps of design with required tool for each step are summarized in Table 5.1, and

the system architecture of the design is shown in Fig. 5.2. The first stage is developing the C++

59
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Figure 5.1: Chapter 5 - Hardware Implementation.
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Table 5.1: Main design steps in the project.

codes for pole modeling and LDA classifier. Stage 2 creates the embedded system into Altera Nios

II system using programmable-on-chip (SoPC) builder. Stages 3 to 5 performs the uploading and

simulation of the codes in the DE2 development board, and theC++ code is executed on the Nios II

platform. The pole modeling SoC hardware is connected to host computer via a JTAG UART serial

communication protocol. Finally, the classification accuracy and execution time of pole modeling

hardware implementation are compared with the MATLAB implementation.

5.2.1 ALTERA DE2 Development Kit

The target device for hardware implementation on this thesis is a development circuit board avail-

able from ALTERA called ALTERA DE2 board. ALTERA’S DE2 Board shown on the Figs. 5.3

and 5.4[1].

The DE2 board features a Cyclone II 2C35 FPGA in a 672-pin package. All important compo-

nents on the board are connected to pins of this chip, allowing the user to control all aspects of the
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Figure 5.2: System architecture of the design.
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Figure 5.3: ALTERA DE2 board [1].

boards operation. The DE2 board includes a sufficient numberof switches, LEDs, and 7-segment

displays for simple experiments. Also, there are SRAM, SDRAM,and Flash memory chips, as

well as a 16 x 2 character display.

With its advanced Cyclone II FPGA, flexible memory options, and advanced I/O devices, the

DE2 board is a very good platform for the implementation and development of digital systems.

Furthermore, the DE2 board is a suitable choice for implementing and developing embedded ap-

plications such as the ones that feature the Altera Nios II embedded processor.

Altera Nios II is designed as a rapid prototyping resource, and therefore it is used in this thesis.

The Nios II processor can be used with a variety of other components to form a complete system.

Alteras DE2 Development board contains several componentsthat can be integrated into a Nios II

system. An example of such a system is shown in Fig. 5.5 which is used in this work.

The Nios II processor and the interfaces needed to connect toother chips on the DE2 board are

implemented in the Cyclone II FPGA chip. These components areinterconnected by means of the
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Figure 5.4: Block diagram of the DE2 board [1].
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Figure 5.5: Block diagram of Nios II system implemented on the DE2.
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interconnection network called the Avalon Switch Fabric. Memory blocks in the Cyclone II device

can be used to provide an on-chip memory for the Nios II processor. They can be connected to

the processor either directly or through the Avalon network. The SRAM and SDRAM and Flash

memory chips on the DE2 board are accessed through the appropriate interfaces. Input/output

interfaces are instantiated to provide connection to the I/O devices used in the system.

A special JTAG UART interface is used to connect to the circuitry that provides a Universal

Serial Bus (USB) link to the host computer to which the DE2 boardis connected. This circuitry

and the associated software is called the USB-Blaster. Another module, called the JTAG Debug

module, is provided to allow the host computer to control theNios II processor. It makes it pos-

sible to perform operations such as downloading programs into memory, starting and stopping

execution, setting program breakpoints, and collecting real-time execution trace data. The SOPC

Builder tool in the Quartus II software used to implement a desired system by choosing the re-

quired components and specifying the parameters needed to make each component fit the overall

requirements of the system. Next subsection is a detail explanation of an NIOS II system which we

design using SOPC Builder tool. This embedded system used forimplementing the pole modeling

feature analysis on Altera DE2 board.

5.2.2 Nios II Embedded System Design

As shown in Table 5.1, once the C code of the pole modeling is developed, the first stage in the

hardware design, the second row in the Table, is creating theNios II Embedded System. Next

stage, as shown in the third row of Table 5.1, is to upload the designed Nios II Embedded System

program to the FPGA. These stages are explained in this section as follows.

Nios II SoPC development environment, Nios II embedded processor serves as the general-

purpose processor, and other peripherals such as UART, various IO controllers, memory, timer and

custom instruction are connected to Nios II via Avalon System Bus as shown in Fig. 5.5. For the

purpose of this thesis, an Nios II Embedded System is designed using Altera SOPC Builder tool.

As it is shown in Figs. 5.6 and 5.5, the following components are included in the Nios II

Embedded System designed in this work:
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Figure 5.6: Embedded computer system in SOPC builder.
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• Altera Nios II processor (CPU): The system includes Altera Nios II/s processor which is a

32-bit CPU that can be instantiated in an Altera FPGA chip.

• On-chip Memory: The designed embedded system includes a 32-Kbyte memory that is

implemented in the Cyclone II FPGA chip (On-chip Memory). This memory is organized as

8K x 32 bits, and spans addresses in the range 0x00901000 to 0x00901FFF.

• SRAM: The SRAM Controller provides a 32-bit interface to the staticRAM (SRAM) chip

on the DE2 Board. This SRAM chip is organized as 256K x 16 bits, and is mapped to the

address space 0x00880000 to 0x0088FFFF.

• Avalon-MM Tristate Bridge : The Avalon-MM Tristate Bridge is added , which allows the

Nios II processor to interface with the flash memory.

• Flash Memory Interface (CFI): The system includes an interface to the 4MB flash memory

on board. To add flash memory chip to the system, first the Avalon-MM Tristate Bridge is

added. Nios II Embedded System reads the input signal information from the host computer

and stores on flash memory to read during the operation.

• Interval timer : The designed Nios II Embedded System contains a timer that can be used

to measure various time intervals. The interval timer is loaded with a preset value, and

then counts down to zero using the 50-MHz clock signal provided on the DE2 board. The

programming interface for the timer includes six 16-bit registers. The 16-bit registers are

employed to provides status information about the timer, control the settings such as start

or stop, change the period of the timer, capture a snapshot ofthe counter value, and read to

obtain the count value. This timers are used to measure the execution time of the program.

• System ID Peripheral: The system ID module provides a unique value that identifiesthe

Nios II Embedded System. The host computer connected to the DE2 board can query the

system ID module by performing a read operation through the JTAG port. The host computer

can then check the value of the returned identifier to confirm that the DE2 Basic Computer

has been properly downloaded into the DE2 board. This process allows debugging tools on
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the host computer to verify that the DE2 board contains the required computer system before

attempting to execute code that has been compiled for this system.

• JTAG UART : The JTAG port implements a communication link between the DE2 board

and its host computer. This link is automatically used by theQuartus II software to transfer

FPGA programming files into the DE2 board.

After all the required elements are added to the design in theSOPC builder, the base addresses

are needed to be set to avoid conflicts between the system components. Final step in Altera SOPC

builder tool is generating the system. Now that the SOPC system is built as explained in this

section, it is required to be integrated in a block diagram file in the QuartusII project. To complete

the hardware design in the QuartusII project, the followingstages have to be completed:

• Instantiate the module generated by the SOPC Builder into theQuartusII project: All we

need to do is instantiate the Nios II system in our top-level design file, and connect inputs and

outputs of the parallel I/O ports, as well as the clock and reset inputs, to the appropriate pins

on the CycloneII device. The instantiation of the generated module depends on the design

entry method chosen for the overall QuartusII project. We have chosen to use schematic

entry, but the approach is similar for both Verilog and VHDL methods.

• Assign the FPGA pins in QuartusII.

• Compile the designed circuit in QuartusII.

• Program and configure the Cyclone II FPGA in the JTAG programming mode on the DE2

board using system programmer tool.

Fig. 5.5 shows the completed Nios II Embedded system symbol in QuartusII. Up to this step a Nios

II Embedded System designed and loaded to the FPGA on DE2 board. Next subsection explains

the implementation of the software application for the NiosII system using Nios II IDE.
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Figure 5.7: Complete system design in Altera Quartus II

5.2.3 Application Simulation

A Nios II Embedded system which is an embedded computer on DE2’s FPGA, is designed and

implemented as explained in the previous subsection. The final stage in the hardware design is

uploading the application C++ codes in the FPGA as shown in Table 5.1. This has been done using

Nios II integrated development environment(IDE).

The Nios II integrated development environment (IDE) is thesoftware development graphical

user interface (GUI) for the Nios II processor. All softwaredevelopment tasks can be accomplished

within the Nios II IDE, including editing, building, and debugging programs. The Nios II IDE is the

window through which all other tools can be launched. Information on Nios II IDE can be found

on [65]. The Nios II IDE is a thin user interface that manipulates other tools behind the scenes,

shields a designer from the details of command line tools, and presents a unified development

environment.

The Nios II IDE program compiles C++ language programs and downloads them into the Nios

II Embedded system. Based on the industry-standard GNU tool chain, the Nios II IDE provides

a graphical user interface (GUI) to the GCC compiler. The NiosII IDE build environment is

designed to facilitate software development for Altera’s Nios II processors, providing an easy-to-
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use push-button flow, while also allowing designers to manipulate advanced build settings. The

Nios II IDE build environment automatically produces a makefile based on the user’s specific

system configuration (the SOPC Builder-generated PTF file). Changes made in the Nios II IDE

compiler/linker settings are automatically reflected in this auto-generated makefile. These settings

can include options for the generation of memory initialization files (MIF), flash content, simulator

initialization files (DAT/HEX), and profile summary files.

The Nios II IDE contains a robust software debugger based on the GNU debugger, GDB.

The debugger provides many basic debug features, as well as several advanced debug features

not usually available with low-cost processor developmentkits. Run and debug operations are

available by right-clicking the project. The Nios II IDE allows a designer to run or debug the

project either on a target board or the Nios II instruction set simulator (ISS).

The Nios II IDE presents a new project wizard used to automatethe set-up of the C/C++

application project and system library projects. In addition to the new project wizard, the Nios II

IDE provides software code examples (in the form of project templates) to help software engineers

bring up working systems as quickly as possible. Each template is a collection of software files

and project settings. Designers can add their own source code to the project by placing the code in

the project directory or importing the files into the project.

In this thesis, the C++ code of the pole modeling is developed in Microsoft Visual C++. The

Nios II IDE tool is next used to build the C++ files and download them into the designed Nios II

Embedded system. The properties of the system library have to be changed according to Fig. 5.8.

Nios II Flash Programing In the standard C++ programming, a text file (say, ”arcof.txt”) can

be uploaded as system’s input using the following command:

pFile = fopen (”arcof.txt” , ”r”);

However, in a hardware design, the input programming of the FPGA cannot be performed using

the above command. It is required to upload the text file into the flash memory embedded in the

DE2 Board, and then the data can be read by the FPGA from the flashmemory. The Nios II IDE

provides the Read-Only Zip File System software component, which is easy-to-use tool for storing
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Figure 5.8: Setting of the System Library.

data to flash memory. As shown in Fig. 5.9, the following four parameters have to be specified to

configure the file system:

1. The name of the flash device where it is needed to program thefile system. In the present

design, this name is cfi-flash-0.

2. The offset in the address space of this flash device. It is0X000000 in the present work.

Figure 5.9: Setting of the ALTERA zip read-only file system.
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3. The name of the mount point for this file subsystem in the HALfile system. For example,

if the mount point is named /mnt/zipfs, the following code opens the text file (”arcof.txt”) in

the zip file:

pFile = fopen (”/mnt/rozipfs/arcof.txt” , ”r”);

The above code opens the zip file ”arcof.txt” for reading.

4. The name of the zip file to be used is ”arcof.zip”. This file isstored in the system library

folder of the C++ project.

5.2.4 Results

The C++ codes for pole modeling and LDA classifier are developed in Nios II IDE, and uploaded

and executed in the designed Nios II Embedded System via a JTAG UART serial communication

protocol. The feature vetors are listed in a text file and converted to a zip file so that they can be

uploaded to the flash memory using Read-Only Zip File System software component in the FPGA.

Additionally, the trained LDA classifier parameters are also uploaded in the FPGA device. Once

the pole modeling feature analysis program is executed in the Altera DE2 board, the classification

results are displayed in the Nios II IDE console. The classification accuracy results obtained using

this implementation is equal to the MATLAB implementation shown in Table 4.1.

The execution time of the implementation is recorded using Interval Timer in NIOS II Embed-

ded System. To achieve this period, the difference between the starting value of the Interval Timer

and its ending number is measured. Once this difference is divided by the interal clock frequency

of the hardware, it represents the execution time. In the present implemenation, the starting value

of the timer is65462 and after the cound down, this value decreases to41582. Since the interal

clock frequency of the hardware is set to be50MHz, the execution time is found to be about 0.5

ms. This time represents the average time that each implementation technique spends for classifi-

cation of one feature vector. The average total execution time for one audio signal is measured to

be 0.1s.

As measured above, the total classification time in the developed embedded system is 0.1 s
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for one audio sample. Depending on the application on hand, we can decide whether this system

can be considered real-time or not. For example, in the audioscene application which is consid-

ered in the present thesis, the developed system can be considered for real-time analysis. This can

be explained in the following scenario: When a person with hearing disability enters into a new

environment, or when the environment condition changes, the adaptive hearing system has to de-

termine whether the audio belongs to human or non-human class so that the hearing aid instrument

can accordingly switch its mode in order to provide a better quality hearing for the person. Con-

sidering the human perception which requires at least 0.5 s of an audio to understand the content

[66], the system with only 0.1 s execution time can be considered a real-time system.

5.3 Summary

The present Chapter explained the NIOS II implementation of the pole modeling feature extraction

as an appropriate feature extraction method for audio sceneanalysis. LDA was used as the classifier

in the implementation. The classification accuracy resultsobtained using this implementation was

equal to the results from MATLAB implementation. The classification time for one audio sample

is determined to be 0.1s, which is fast enough to be considered as a real-time system for audio

scene analysis application.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

The objective of this thesis was to investigate and compare both the hardware and software im-

plementation aspects of three commonly used signal featureextraction techniques: AR modeling

and pole modeling, and MFCC. Chapter 1 provided the motivation behind the present work as

well as the significance of signal feature analysis and the challenges in real-world signal analysis

applications. A comprehensive signal analysis is explained. This Chapter also described the im-

portance of investigating both the hardware and software implementation aspects of the existing

feature analysis methods. It also reviewed some of the commonly employed feature analysis tools

as related to non stationary and complex signals.

Chapter 2 provided the diagram and theroritical background of each method used in this thesis.

It explained the detailed analytical procedures of AR, Pole,and MFCC feature extraction methods,

as well as LDA classifier. The computational complexity of AR,pole, and MFCC is investigated

in Chapter 3. This Chapter used the theoretical explanation inChapter 2 in order to compute the

number of arithmetical operations each method requires through detailed analytical calculations.

Chapter 4 employed AR, pole, and MFCC feature analysis methods for audio scene analysis ap-

plication. Furthermore, this Chapter compared these three methods with respect to two domains:

hardware analysis and algorithmic accuracy. The pole modeling feature analysis was selected as

the suitable tool among the three approaches and was used in the following Chapter. Chapter 5

proposed the implementations of pole modeling feature extraction + LDA feature classifier using

75
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the Altera NIOS II on DE2 board . The summary of the research outcome and the discussion of

the future work are presented in Chapter 6.

6.1.1 Analytical Contributions

• The computational complexity of AR modeling, pole modeling, and MFCC are calculated

as shown in Tables 3.1, 3.2, and 3.3. This contribution is essential in computation of the

hardware analysis performance. This analysis required us to take apart each algorithmic

stage into its arithmetic equations, and calculate the number of operations in each step, ie.

number of multipliers, adders, or dividers.

• The pole modeling computational complexity is the first known work performed to the best

of author’s knowledge. Furthermore, one of the most important stages in the pole modeling

method is the root finding algorithm. In this thesis we selected ’eigenvalues of companion

matrix and QR algorithm’ as the root finding method which is suitable for the pole calcula-

tion of an AR system.

• FPGA area for AR modeling, pole modeling, and MFCC are estimated. Using the Megawiz-

ard plugin for Altera Quartus II Web Edition FPGA design software, the number of LUTs

allocated for each mathematical operation is extracted. Each operation is considered with

Floating point double precision 64bits using Altera CycloneFPGA. Having the allocated

LUT for each operation and the number of operations in each method, the total required

LUTs for each audio feature extraction algorithm are calculated as shown in Table 4.5. The

number of required LUTs is used as an estimate of the FPGA areausage of each method.

• AR and pole modeling, and MFCC features are implemented and evaluated in MATLAB

software for audio scene analysis as displayed in Table 4.1.Our pole modeling feature

extraction is the first known work proposed for audio scene analysis.

• The classification accuracy vs. hardware area usage for AR modeling, pole modeling, and

MFCC is compared as displayed in Fig. 4.6. Based on this comparison, the pole modeling
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feature analysis method is proposed as the optimum solutionfor hardware implementation

of audio scene analysis application.

6.1.2 FPGA Embedded Implementation

• The pole modeling feature extraction + LDA classifier is implemented in Altera DE2 Board

using Altera Nios II soft-core processor. The classification accuracy results obtained using

this hardware implementation is achieved to be equal to the MATLAB implementation. The

classification time for one audio sample is determined to be 0.1s, which is fast enough to be

considered as a real-time system for audio scene analysis application.

6.2 Future Work

The future work of the research could be:

• Although pole modeling was proposed as a suitable algorithmfor audio scene analysis appli-

cation, for other applications any of AR, pole modeling and MFCC algorithms may perform

better depending on the available hardware resources and real-time requirements. An study

performed for each application can indicate which method ismore suitable in terms of clas-

sification accuracy vs. hardware area usage.

• In this work, the FPGA usage is estimated and quantified basedon the total number of LUT

needed to implement each algorithm. This calculation is based on computational complexity

of each algorithm. A hardware architecture design can be done for each method to estimate

the hardware performance in terms of area and execution time.
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