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Abstract

This thesis is focused on automatic lung nodule detection in CT images. CAD 

systems are suited for this task because the sheer volume of information present in CT 

data sets is overwhelming for radiologists to process. The system developed in this thesis 

presents a fully automatic solution that applies a sequential algorithm which strongly 

focuses on nodule context. The system operates at a rate of 80% sensitivity with 3.05 FPs 

per slice. Our testing data, consisting o f 19 CT data sets containing 239 lung nodules, is 

extremely robust when compared with other documented systems. In addition it 

introduces many new approaches such as a tight bounding, vessel connectivity, perimeter 

analysis, adaptive MLT and region growing based lung segmentation. The experimental 

results produced by this system are an affirmation of the competitiveness o f its 

performance when compared to other documented approaches.
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Chapter 1 

Introduction

Computers have revolutionized the modem world. They have accelerated the 

flow, presentation and processing o f data. In virtually all professions they play a 

significant role either directly or indirectly. In direct use they can be used as a tool to help 

make a task more complete, accurate, simple or quick. One realm where computers play a 

significant role is image processing [1], [2].

Image processing applications have led to computers checking for manufacturing 

defects during the production process to reading license plates [3]. A particularly 

important application is medical imaging [4], Here, computers are used to help diagnose 

and interpret medical images of patients. Systems have been designed to analyze and 

interpret things from brain scans to radiograms [5-7]. Technologies such as computerized 

tomography (CT) and magnetic resonance imaging (MRI) in conjunction with computer 

hardware advancements have lead to an explosion of research in medical imaging 

applications.

1.1 CT imaging

CT imaging was invented in the early 1970’s by Sir Godfrey N. Hounsfield and 

Professor Allan M. Cormack independently of each other [3]. CT imaging basically 

consists o f an x-ray source with sensors on the opposite side of a concentric circle which 

is rotated around the eircle’s z-axis. A patient lies down, contained within this circle, in 

between the x-ray souree and the sensors. Many images are taken sequentially in the 

direction o f the circle’s perpendieular axis to obtain a 3D representation of a particular 

region o f the patient. The intensities in the CT images are representative o f Hounsfeld



U nits (HU) which m easure the attenuation o f  the x-rays as they pass through that 

particular location. CT images are stored in the Digital imaging and Communications in 

Medicine (DICOM) file format which keeps the data in a lossless state with up to 15 bits of 

resolution per pixel. O ver the years CT im aging has im proved by using less radiation and 

providing thinner slices to produce m ore accurate data sets.

CT im aging has allowed doctors to get more detailed and inform ative images than 

were available w ith conventional radiograms. For example, the image in figure 1.1 

represents a single image from a 65 slice data set o f  a patient’s lungs w here in the past 

one or two radiogram  images would have been taken from the front and sides o f  a patient 

in the diagnosis procedure. Slices are cross sections o f  the patient at specific points, 

usually a series consists o f  spatially sequential slices.

Figure 1.1: A CT image o f  a section o f  the thorax



Figure 1.2: a single radiogram taken from in front of a patient representing an entire lung 

volume

The evolution of CT, and its resultant more detailed images, has given rise to 

certain challenges. Radiologists now must potentially go through in excess o f a hundred 

images to diagnose a single case where in the past they would only have to look through 

a handful o f radiograms [8], [9]. CT imaging provides a huge volume o f useful 

information which makes it that much more challenging and demanding to evaluate a CT 

data set thoroughly. Radiologists can often miss important details due to the amount of 

detail present in a CT data set [10-13]. In this case there is an abundant amount o f 

information but difficulty in processing it. This makes processing CT image data sets and 

appropriate task for Computer Aided Diagnosis (CAD) systems [12-13]. CAD systems 

allow for complete and thorough analysis o f all the data which can then be used as an aid 

to the radiologist in their diagnosis. Cancer, for example, is one disease that is commonly 

screened for using CT imaging.



1.2 Cancer Statistics

In looking at statistics from the US, cancer is the leading killer o f  people under 

the age o f  85 [14]. In particular it is the second leading killer o f  children aged 1 to 14 

only behind accidents. The life time probability o f  getting cancer for a m an is 46%  w here 

for a w om an it is 38%. It is also estimated that just over h a lf  a million Am ericans will die 

from  cancer in 2005.

Cancer

Type

N um ber o f  expected new 

cases

Percentage o f  expected 

cancer cases, « % \

m en w om en total m en w om en total

Prostate 232,090 0 232,090 32.69% 0.00% 16.90%

B reast 1,690 211,240 212,930 0.24% 31.87% 15.51%

Lung and 

Bronchus
93,010 79,560 172,570 13.10% 12.00% 12.57%

Colon

and

Rectum

71,820 73,470 145,290 10.11% 11.08% 10.58%

Pancreas 16,100 16,080 32,180 2.27% 2.43% 2.34%

Leukem ia 19,640 15,170 34,810 2.77% 2.29% 2.54%

T o ta l 710,040 662,870 1,372,910

Table 1.1: 2005 US statistics on expected new  cancer cases [14]



Cancer Type
JNumber o f expected deaths

Percentage of expected 1

cancer deaths i
.

men women total men women total %

Prostate 30,350 0 30,350 10.28% 0.00% 5.32%

Breast 460 40,410 40,870 0.16% 14.69% 7.17%

Lung and 

Bronchus
90,490 73,020 163,510 30.65% 26.55% 28.67%

Colon and 

Rectum
28,540 27,750 56,290 9.67% 10.09% 9.87%

Pancreas 15,820 15,980 31,800 5.36% 5.81% 5.58%

Leukemia 12,540 10,030 22,570 4.25% 3.65% 3.96%

Total 295,280 275,000 570,280

Table 1.2; 2005 US statistics on expected cancer deaths [14]

Cancer

Type

All Stages % Local % Regional % Distant % -

Prostate 99.3% 100.0% 100.0% 33.5%

Breast 87.7% 97.5% 80.4% 25.5%

Lung and 

Bronchus

15.2% 49.4% 16.1% 2.1%

Colon

and

Rectum

63.4% 89.9% 67.3% 9.6%

Pancreas 4.4% 15.2% 6.8% 1.8%

Table 1.3: 2005 US statistics on 5 year survival rates [14] depending on what stage the 

cancer is found. Local means the cancer has not spread, Regional involves the cancer 

spreading to lymph nodes or organs in the immediate region and Distant refers to cancer 

which has spread to parts o f the body that are remote from the origin o f the cancer.



Table 1.1 shows the expected deaths and new  cases o f  some o f  the m ost com m on 

forms o f  cancer. M en and wom en are m ost susceptible to prostate and breast cancer 

respectively [14], [15], but the survival rates for both are excellent w hen caught early. 

Lung cancer is the second most likely form o f cancer for both men and wom en and the 

third m ost com m on over all. In table 1.2, however, it can be seen that lung cancer 

accounts for the most cancer deaths o f  any cancer; it actually accounts for m ore cancer 

deaths than leukem ia, prostate, breast, colon and rectum  cancer combined. As seen in 

table 1.3 a lung cancer patient has a significantly better chance o f survival i f  they are 

diagnosed early. Based on the overall survival rate for lung cancer it can be observed that 

the m ajority o f  lung cancer is detected after it has spread significantly. I f  the survival rate 

could be brought closer to the early detection rate for lung cancer then a truly significant 

num ber o f  lives could be saved. A ssum ing good detection techniques could bring the 

overall survival rate up to 40% then that would equate to approxim ately 42,000 lives 

saved each year due to early detection in the U nited States alone.

1.3 Lung Nodules

It is because o f the potential to save lives and continued advancem ents in 

com puting pow er that autom ated lung nodule detection has becom e an active research 

area in the m edical im aging com m unity for CAD systems. Lung nodules refer to growths 

w ithin the lungs that are potentially cancerous. N odules are generally defined to be any 

grow th in the lungs that is sm aller than a 30 m m  sphere [8], [9], [16], [17]. Figures 1.3 

through 1.7 give good illustrations o f  some o f  the different types o f  nodules that can be 

found in a CT image.



Figure 1.3: Circled on the left side is a typical lung nodule; just below two more nodules 

are circled which are touching the lung wall (juxtapleural nodules)

Figure 1.4: Near the middle o f the lung a ground glass nodule is circled and just below it

is a nodule in contact with the lung wall



Figure 1.5: A  nodule is circled that is overlapping with vascular structures, in this case a 

blood vessel at the bottom  right portion o f  the nodule

X '

Figure 1.6: A  pair o f  nodules overlapping with the diaphragm  as it enters the CT data set

near the bottom  o f  the lungs



Figure 1.7: A large nodule attached to the lung wall near the top o f the image is circled, 

as well there are many other nodules in the image that are left unlabeled

Nodules are generally sub-classified as solitary nodules (fig. 1.3), juxtapleural 

nodules (fig. 1.3, 1.4, 1.7) and ground glass opacity nodules (fig. 1.4). Solitary nodules 

are generally well formed isolated nodules, which tend to be circular but can also have a 

strongly elliptical shape. Juxtapleural nodules are nodules that are in contact with the 

lung walls. Their shape tends to be less defined than isolated nodules and they do tend to 

get bigger than isolated nodules, though they can also be very small. Ground glass 

opacity nodules are just basically areas of opaque irregularities that do not tend to be 

particularly well formed. Ground glass nodules often have contact with the lung walls. 

All of the different types of nodules can overlap with normal vascular objects; an 

example of this can be seen with a nodule overlapping a vessel in fig. 1.5. In fig. 1.6 two 

nodules are seen that are overlapping with the diaphragm as it enters the CT data set from 

below. A very large nodule is found in fig. 1.7 which reflects the tendency for some 

juxtapleural nodules to be very elliptical. The nodule in this case is growing along the 

contour o f the lung where some juxtapleural nodules may be attached by only a faint 

connection as can be seen in one of the nodule in fig. 1.3. One of the main points to take



from  this description is that nodules do have tendencies based on their respective 

classifications, even w ith these tendencies there are always exceptions in practice. 

Intensity, shape definition, location and connectivity are all variables that provide for 

m any different types o f  contexts and appearances given nodules o f  the same basic type. 

This m akes lung nodule detection a challenging and necessarily robust process for a 

com puter system.

1.4 CAD System

Lung nodule detection consists basically o f  three steps. First, the lung volum es 

need to be segm ented from the body. Though this m ay seem to be a sim ple and 

straightforw ard step it is a very im portant one that does dem and careful consideration. 

N ext, R egions o f  Interest (ROIs) are extracted from the lung volum e to include all objects 

that are rem otely suspicious o f  being cancerous. This step is usually closely integrated 

w ith the final step so they can sometimes be grouped together as a single stage depending 

on the approach used. The final step is False Positive (FP) reduction. This step takes all 

RO Is and tries to elim inate as many candidates that are not nodules w hile retaining as 

m any suspicious candidates as possible. This last step is key to delivering an effective 

CAD system  because it greatly affects the confidence behind the objects w hich are 

labeled as potential nodules.

A com plete lung nodule detection system that builds upon effective com ponents 

from  previous approaches and uses original techniques to deliver a unique and innovative 

system  has been developed. It contains a new approach in lung segm entation that uses 3D 

region growing to provide more complete lung volum es by including parts o f  the lungs at 

the top and bottom  o f the CT data set that are elim inated with traditional volum etric 

approaches [18]. An adaptive, non-linear multi-level thresholding (M LT) approach is 

used that evolved from an existing fixed, linear M LT technique for ROI extraction [8], 

[19]. The adaptive and non-linear aspects use the cum ulative density function (CDF) o f 

the lung volum e to m ake the approach m ore robust. The FP reduction stage uses original 

and creative approaches such as a “tight” bounding box metric, vessel and lung wall

10



connectivity, 3D compacting and analysis and vertical contrast to produce the final output 

o f the system.

The effectiveness of this work along with the results obtained by other researchers 

shows significant promise for using a CAD system in the area o f lung nodule detection to 

increase the accuracy of diagnosis by taking advantage of the information available 

through advances in CT imaging [17].

1.5 Outline

The next chapter contains the literature review. It presents different approaches 

that have been presented for lung nodule detection. The merits and drawbacks o f each 

approach are analyzed, and based on these a course o f action is chosen for the 

development of a nodule detection system.

Chapter 3 deals with a lung nodule synthesis technique that was developed as a 

precursor to the actual lung nodule detection system. The purpose behind the technique 

along with its value within lung nodule detection is discussed. It is used to ereate a 

preliminary test set for the nodule detection system, and the results o f the system’s 

performance on this test set is also presented in the results section, chapter 6.

Chapters 4 and 5 are the focus of the research and present the entire design o f the 

lung nodule detection system. Chapter 4 explains the lung segmentation procedure, while 

ehapter 5 deals with ROI extraction and FP reduction. These chapters contain the 

methodologies and the parameters under which the system performs in its final state o f 

testing.

Chapter 6 provides all o f the results for the system at different stages o f 

development along with the changes the system underwent as it progressed in the 

experimentation proeess. Critical analysis at each stage is offered, and through this 

analysis the changes to the system are conceived and implemented.

The last chapter, ehapter 7, deals with the eonclusions that have been made about 

the system at its current stage of development. It also points out where the system needs 

improvement, along with offering many avenues that can be pursued towards this end.
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Chapter 2 

Literature Survey

A utom ated lung nodule detection is a relatively new area o f  research. One o f  the 

first papers in the field o f  lung nodule detection using CT im ages w as published by [20] 

based out o f  the D epartm ent o f Radiology at the University o f  Chicago. This early w ork 

helped to set in m otion future research in the area, especially as com puters got faster and 

CT im aging becam e m ore prevalent. It was only a m atter o f  time before technology 

caught up enough to be able to design effective CAD systems. N ow , a basic hom e PC can 

be used for image processing work that would have been unm anageable for m ost 

pow erful com puters back in the mid-1990s.

N ow , research in this area is increasing and CAD system s are showing prom ising 

results. The results and approaches o f more developed techniques such as the ones by [8] 

and [9] using Linear D iscrim inant Analysis (LDA) and rule based approaches are used as 

im portant input into m ore recent approaches. Recent w ork by [17] is an excellent 

exam ple o f  evolving and refining the techniques o f previous w ork w hile adding on their 

own unique contributions. Others look to apply existing com puter image processing 

techniques such as tem plate matching as done by [21] and neural netw orks as presented 

by [22]. The num ber o f  approaches available allows researchers to exam ine their 

effectiveness and choose their own path for developing a lung nodule detection 

technique.

2.1 LDA Based Techniques

A  system using LDA tries to exploit statistical feature differences betw een 

different classes to separate them. The system developed by [8] uses threshloding and

1 2



LDA. The body is first separated from the background by analyzing the grey level values 

of a diagonal line from the top right comer to the center of each CT image. A threshold 

value is obtained from an analysis o f this line and an outer thoracic border is obtained to 

separate the background from the body pixels. To segment the lungs a grey level 

histogram of the body pixels is analyzed to obtain a threshold that provides a maximum 

distance between pixels representing body and non-body pixels. A contour o f the lungs is 

obtained and used as the initial lung border. To fill in any holes the lung contour is 

processed by a rolling ball filter to smooth the contours.

For the ROI stage they apply multiple grey-level thresholding on the lung 

volumes. At each level, all objects that exist above the threshold are considered to be 

nodule candidates if  their volume is less than that o f a 3 cm diameter sphere. The 

thresholds are evenly spaced out and are at fixed levels for all cases.

The final stage of the process involves FP reduction. The system computes nine 

nodule features: volume, sphericity, radius of the equivalent sphere, maximum 

compactness, maximum circularity, maximum eccentricity, mean grey level within the 

nodule, the nodule’s grey level standard deviation and the threshold at which the object 

first decreases below the volume criterion. These features are then put into a LDA 

classifier to produce the final nodule candidates.

This approach by [9] provides some positive tactics. It uses multi-level 

thresholding (MLT) which is a good way to try to separate objects within the lungs based 

on their intensity differences. The volume restriction tries to ensure that nodules are not 

assimilated into larger objects. The features used for LDA foeus strongly on the 

candidates shape and intensity characteristic, while only using one indirect feature (the 

threshold at which the object first decreases below the volume criterion). One o f the 

deficiencies in the approach is the lack o f nodule context. The features focus almost 

exclusively on grey level content o f the nodule and the geometric properties without 

having any direct way to evaluate the context of the nodules within the lung volume. In 

addition, the thresholding approach uses fixed threshold levels and spacing. This will be 

problematic if the CT scans analyzed are darker or brighter as a whole than what is 

expected by the pre-selected thresholding levels. By fixing the thresholding levels the 

system can not adapt to variations in the distributions of the CT scans.
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The reported results o f  their early w ork [8] list a sensitivity o f  70%  and 

approxim ately 3 FPs per CT slice. Future w ork using the same features and systemic 

approach drew FPs down to approxim ately 1.5 while retaining 70% sensitivity [19]. They 

im proved their system  by adding rule based elimination to the FP reduction stage. (

2.2 Rule Based Techniques

Rule based techniques try to detect nodules using a set o f  features w hich are then 

applied to binary rules, the outcome o f which are used to identify nodules. One such 

technique w as developed by [9] and focuses heavily on rule based feature analysis w ith a 

strong em phasis on nodule context.

The first step involves extracting the lung fields from the CT data set. This 

approach involves using a fixed threshold to perform  an initial segm entation o f  the lungs. 

To only include the lungs in the segm entation other objects that would also fall below  the 

threshold such as the trachea are elim inated based on their cross-sectional and intra-series 

positions. The rem aining volum es are considered to be the lungs. Contours are taken for 

the lungs on each slice w here they exist. The contours are then sm oothed to fill any gaps 

along the borders. This approach is similar to the one perform ed by [8] but it uses border 

pixel analysis along w ith shortest point linear connections to fill gaps. The effect is very 

sim ilar to the rolling ball algorithm  mentioned earlier. The lung volum e is then analyzed 

and split up into 4 sections w here groupings o f  adjacent CT slices belong to a particular 

section.

Before extracting the RO ls the lungs would be preprocessed. The lungs w ould be 

sm oothed by using basic m orphology operations followed by unsharp m asking to 

im prove ROI extraction by providing more strongly defined and separated structures. 

A fter the preprocessing the ROI extraction phase begins.

The lung regions are separated into air and organ clusters. The nodule candidates 

belong to the organ cluster. They then apply thresholding on the organ cluster to extract 

the ROIs. Next, they perform  surface curvature analysis in the intensity plane o f  the ROI 

candidates in order to further refine them. W ith the ROIs defined they now  proceed to 

rule based FP reduction.
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The first stage of FP reduction involves extracting the feature set for each ROI. 

The features are: area, thickness, circularity, grey-level, variance o f grey-level, 

localization, variance o f gradient, distance from the lung wall, convexness and contrast. 

From these features they develop rules which deal with nodules in different cases. They 

take separate approaches for nodules which are interior and those which contact the lung 

wall.

One of the major positives about this approach is distinguishing interior nodules 

from lung wall nodules and evaluating them using separate rules. Another good point to 

note is that the features chosen do make an attempt to take the context into account. The 

convexness and the contrast features are used to analyze the surrounding pixels for 

nodules contacting the lung wall.

The reported results for this system were 90% sensitivity and 0.3 FPs per slice. 

These good results along with a well thought through approach make this a very 

promising system.

Another rule based approach was developed by [23]. For lung extraction a grey 

level histogram of the data set is analyzed and a threshold, to separate the lungs from 

their surroundings, is found based upon separating the two major peaks of the histogram. 

Volumetric analysis and 3D connectivity is used to form a complete lung volume. 

Morphological closing is applied to fill in any gaps and to smooth out the lung contours.

For ROI extraction a 3D local density maximum (LDM) algorithm is used. The 

lungs are thresholded from an intitial value to a bottom value incrementally in evenly 

spaced steps. The top threshold can be chosen as the highest pixel value in the lung 

volume while the lowest can be the smallest. Objects are identified at each threshold and, 

if  taken as a ROI, are kept separate by not allowing them to be assimilated into larger 

objects at lower thresholds. This attempts to separate connected components with 

different density profiles.

A rule based approach is used to reduce FPs using three features; object volume to 

modified bounding box volume ratio, maximum depth to cross-sectional projection 

length and major to minor cross sectional bounding box ratio. These features focus 

strongly on shape properties while also looking at the compactness of the ROI.
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The results produced a sensitivity o f  84.2% w ith 5 FPs per CT case. It should be 

strongly noted that these results w ere perform ed on a set o f  266 sim ulated nodules as the 

researchers did not have access to a real CT database o f  lung nodules. This technique 

presents a new  approach to ROI detection that is geared towards being able to separate 

connected com ponents. This is an im portant goal because nodules due tend to overlap 

w ith other structures which makes them  more difficult to segm ent properly. Also, the rule 

based approach is a simple approach that focuses on 3D structure. This technique was 

im plem ented for this thesis because o f  its simplicity and good reported results. 

Experim ents found the system to perform  very poorly on our CT data; further details are 

presented in the results section, chapter 6.

2.3 Template Matching Techniques

A tem plate m atching technique attem pts to use a prior database o f  nodules that 

can be used to find sim ilar objects in the target analysis. Rules are often used after the 

tem plate m atching step to reduce the FPs.

A tem plate m atching approach is attempted by [21]. This system  is based on 

m atching nodule candidates to members in a pre-existing nodule tem plate database w hile 

using rules to  reduce the num ber o f FPs.

The basic prem ise o f  template matching is that a database o f  nodule tem plates 

could be used to find sim ilar candidates in the lung volume. They used a spherical m odel 

w ith a Gaussian distribution based on their analysis o f  the characteristics o f  real lung 

nodules. They used four 3D lung nodules which were evenly spaced in diam eter from 10 

to 40 pixels, where one pixel was 0.638 mm. To detect nodules that appear in only one 

slice, the m iddle sections o f  each 3D model were used as 2D models. A genetic algorithm  

w as used to find nodule candidates by locating areas that were sim ilar to any o f  the 

m em bers o f  the tem plate library. They also perform ed a separate search along the lung 

w alls for ROIs that did not use a genetic algorithm. They would use a general tem plate 

m atching technique by going around the border o f  the lungs and using a m odified version 

o f  the tem plate library. The tem plate library was m odified by stretching the G aussian 

m odels in the x-direction and using halves o f  those ellipsoids as the new  tem plates. For
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the lung walls the templates were rotated to be tangent with the lung wall surface for each 

point of inspection.

For FP reduction they used a rule based approach incorporating a set o f 16 

features: mean, standard deviation, area, circularity, irregularity, contrast, max mean CT 

value, directional variance o f pixel gradient, directional cross-correlation o f pixel 

gradient, inverse difference moment, entropy, second area, second mean, local mean, 

local standard deviation and local directional variance of pixel gradient.

Their results for the technique indicated a sensitivity o f approximately 72% with 

5.5 FPs per CT case. This was an improvement over their previous work [24] where they 

had the same sensitivity but a much higher number of FPs at 30.8 per CT case. In the 

previous experiment they used only 11 features as opposed to 16 in the current one for FP 

reduction.

One of the major challenges with this kind of approach is the nodule template 

library. In this case the library was relatively small but even with a more comprehensive 

library it remains difficult to try to account for all possible nodule cases. One o f the major 

positive contributions from this paper is the realized FP reduction by improving a rule 

based technique from their previous approach.

2.4 Fuzzy Neural Network Technique

This approach uses a combination o f fuzzy logic with traditional neural network 

based training. This approach is interesting as it tries to blend together two approaches 

which separately can work well for feature based decision problems.

A fuzzy neural network approach was presented by [22]. To segment the lungs 

they use a threshold value to form a binary image. This image is then median filtered and 

operated on by morphological closing. Finally, region growing is applied to fill any gaps 

remaining in the lung fields.

For the ROI acquisition mechanism a histogram analysis is performed. The grey 

level value that retains the top 20% of the pixels in the lung volume is used to threshold 

the image. The objects that remain after the tresholding are the ROIs.
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For feature reduction, a fuzzy neural network approach is used. As inputs to the 

netw ork three features are m easured for each ROI: area, circularity and mean grey leveL 

A fuzzy neural netw ork is a com bination o f  fuzzy logic and neural networks. The m ain 

prem ise behind fuzzy logic is that it is an intuitive way o f looking at problem s, instead o f  

using specific equations general truths are used, implem ented through rules [25]. These 

rules provide the appropriate guidelines for a solution. For example, in this 

im plem entation the area feature is assigned a membership value between 0 and 1 for 

three fuzzy m em bership functions that determine the ROIs m em bership to three different 

categories o f  size: small, m edium  and large. All o f  the m em bership functions are then 

applied to rules and then into a defuzzification layer which detennines w hether the ROI is 

a nodule or not. The neural network portion o f  the system is responsible for the w eights 

assigned to the inputs going into the fuzzification layer and weights assigned to the 

output o f  each rule going into the defuzzifaction layer. The neural network uses the 

gradient steepest descent m ethod [22] to train using a set o f  20 patterns (12 nodules, 8 

non-nodules) cyclically until the m ean square error falls below a certain target.

Their reported results were a sensitivity o f 89.3% with 0.3 FPs per CT slice. The 

target size o f  objects they can detect is between the areas o f  circles w ith diam eters in the 

range o f  10 m m  to 50 mm.

Some o f  the positives from this approach are that fuzzy logic is a potentially good 

candidate as an approach for lung nodule detection. Fuzzy logic is very effective in 

techniques that need more than a binary process [25-27]. A pplying a neural netw ork to a 

fuzzy system  is a good attempt at integrating two systems that are often used for 

problem s that depend on feature analysis. The im plem entation o f  the system appears to 

need m ore refinement. The ROI acquisition stage is a very simple single level 

thresholding approach, which is a regression from a M LT approach in term s o f  

thoroughness. The num ber o f  features used is limited to three while providing no context 

for the ROI in terms o f  3D features or its surroundings. Also, the neural fuzzy netw ork is 

trained using a very small set that consists o f  only 20 unique patterns which is not ideal 

for a robust problem  sueh as lung nodule detection. Also, the target size o f  nodules being 

over 10 mm limits the effectiveness o f  this approach as a significant portion o f  nodules 

tend to be below  10 m m  in size. Though this approach does introduce an interesting
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fusion o f two potentially effective techniques the implementation and execution need to 

be refined to explore the true potential of this kind o f a system.

2.5 Hybrid Rule Based and LDA systems

This kind o f approach tries to combine rule based techniques and LDA based 

techniques. Both have been used as the primary form of FP reduction separately but in 

this kind of approach both techniques are fully implemented into the system.

A combination of a thorough rule based approach and LDA was proposed by [17]. 

For lung segmentation a fixed low threshold was used to segment the body form the 

background initially. The lungs were extracted using k-means clustering. In this case k = 

2 since there are only two classes, air and body pixels. The lungs were further separated 

into sections by splitting lungs on each CT slice into a peripheral sub-region and a central 

sub-region which would be used later for FP reduction. To fill discontinuities along the 

lung borders they used indentation detection [17] which similarly to previous techniques 

used a straight line to connect gaps in the lung borders.

To obtain the ROIs a k-means clustering technique was used with k -  2, similar to 

the approach used for segmenting the lungs. The number o f pixels belonging to each 

class was related by a ratio which varied depending on where the clustering was being 

done. For upper slices and lower slices less ROIs were expected so the algorithm used a 

higher ratio of background to object pixels. For the middle portion of the lung the ratio 

was smaller so more objects could be detected. Some of the outputs due to this technique 

would contain holes; these were filled since nodules are considered to be full structures.

FP reduction was a multi-stage process. First 2D rule based reduction was 

applied, based on the ratio of major to minor axis of an equivalent ellipse followed by a 

compactness criterion. The remaining 2D objects would then be connected using 26 point 

connectivity. Four more rules were then applied for these objects relating to the bounding 

box size, maximum circularity and a relation of the location of the object to its size. At 

this point 3D features were extracted from the remaining candidates: volume, surface 

area, mean grey level, grey level standard deviation, skew and kurtosis o f the grey level 

histogram. The last part of FP reduetion involved applying LDA. For the LDA process
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the following features w ere used: volum e, surface area, m ean grey level, standard 

deviation o f the grey levels, m axim um  cross sectional area, perim eter, m ajor and m inor 

axis, circularity and eccentricity.

The results after the rule based elimination were a sensitivity o f  87% and 2.92 FPs 

per slice. A fter applying LDA the sensitivity fell to 84% w hile reducing FPs to 1.74 per 

CT slice.

This approach results in a thorough and prom ising com bination o f  LDA and FP 

reduction. The approach uses an extensive and effective com bination o f rules and 

features to perform  FP reduction. The rule set was large and tried to account for nodule 

context and internal properties. The LDA perfoim ance suggests it can be an effective tool 

to use in order to reduce FPs while retaining good sensitivity perform ance.

2.6 Automatic Lung Segmentation System

A system  focused solely on automatic lung segm entation w as produced by [18]. 

In m ost papers lung segmentation is treated as a precursor to nodule segm entation, 

how ever, in this paper lung segmentation is the focus and is addressed w ith m ore depth 

and attention. This is beneficial because proper lung segm entation is very im portant in 

the proper identification o f nodules along the lung walls as well as producing com plete 

and proper lung volum es.

The process begins with choosing a threshold for the lungs. The threshold is based 

on a technique called optimal thresholding [18]. This tries to find a threshold that w ill 

separate air voxels from body voxels through an iterative feedback process. Once the 

threshold value is found it is applied to the CT scans the background is elim inated by 

finding air voxels that are connected to the borders o f  the CT images. The lungs are 

obtained by only obtaining those air groupings which meet a m inim um  size criterion. 

A fter this volum etric based reduction the trachea is identified and elim inated using a slice 

by slice region grow ing approach. Topological analysis is used to fill in any enclosed 

holes left in the lungs after thresholding. To fill in any indentations left along the lung 

walls a m orphological closing is applied.
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This paper presents thorough and detailed guidelines for lung segmentation that 

are not present in works where the main focus is lung nodule detection. They also provide 

a performance metric by comparing their segmentation results to manual traces o f the 

lung regions. The mean difference between the borders of the manual traces and the lung 

segmentation system was 0.48 pixels.

2.7 Comparing Results

Comparing results to objectively evaluate the relative performance of different 

techniques is very important. For proper comparison you would have a robust, publicly 

available test set that all techniques could use. This way the results would have merit 

relative to each other and also in an absolute sense due to the integrity o f the test data. 

Currently there are no such databases but there is a government initiative in the US to 

produce one [28]. This initiative has produced a preliminary 23 nodule database that is 

intended to contain 400 nodules when it is complete.

Given the current climate, all the researchers to date have needed to find their 

own data sets and obtain results from them. This point especially makes it difficult to 

compare techniques based on their reported results since there is no absolute way to judge 

the differences between nodule sets. In addition this makes it difficult to implement 

learning algorithms in a system because researchers are limited with the cases they have 

access to. As alluded to in the introduction there are many different types of nodules that 

can exist in many different contexts. Even with access to a significant amount o f data it 

would be difficult to gauge if it was complete enough to produce a completely robust 

system.

The problem of objectively comparing the results of differing techniques is one 

that has been recognized and investigated to some degree [17]. An example o f the 

disparity that can occur for the same system using different data sets was examined by 

[17]. This problem is further addressed in the results section, chapter 6, which includes an 

evaluation o f the technique produced by [23].

The results in table 2.1 can show how much the data set can affect the 

performance of a system. This is reflected very strongly in the system by [29] which had
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excellent results on their initial data but failed significantly on a subsequent data set [17]. 

The system  in [8] had w eaker initial perform ance but their approach proved to be m ore 

robust and they actually im proved their FP perform ance by refining their system [19]. 

The m ain point that is reinforced in table 2.1 is that the experim ental results can not be 

used as an absolute com parison metric since everyone is using different test data. From  

table 2.1 it can be seen that the technique that had excellent results initially failed on a 

different data set.

System
Initial

Sensitivity

Secondary

A ssessm ent
V ariation

Initial

FPs

Secondaiy

A ssessm ent
.

V ariatio ijjl

Fiebich et  

al.
95.7% 30% -65.7% 0.3 6.3 6

Armato et 

al.
72% 71% -1% 4.6 1.5 -3.1

Table 2.1: Perform ance results o f  nodule detection system in initial and follow  up studies

from [ 17]

M any o f the techniques listed involve a rule based stage for FP reduction. A rule 

based approach is an excellent foundation for a nodule detection system as it can be 

easily controlled and it is easy to directly im plem ent advice from radiologists. The w ork 

by [9] is entirely rule based and has good reported results. The reported perform ance 

results for the techniques that have been listed are in the range o f 70%  to 90%  where FPs 

have ranged between 0.5 to 4.6 FPs per slice. These are good general guidelines for the 

working param eters o f  a system since this encom passes a wide range o f  perform ance 

results using different systems over different data sets.

The objective is to m ake an initial attempt at creating a robust system, but m ore 

im portantly one that can serve as a foundation which can be built upon. For this reason it 

was initially desired to design a simple rule based approach inspired by the w ork o f  [23] 

w ho have delivered a system that uses a simple rule based FP reduction stage along w ith 

an innovative new  RO I extraction algorithm. This approach is later exam ined in the
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results section, chapter 6, and is found to have significant problems. For the development 

o f the lung segmentation stage most papers do not produce much detail so the work done 

by [18] served as a good model from which to develop a lung segmentation technique.
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Chapter 3 

Lung Nodule Synthesis

The m ost im portant resource needed for developing a lung nodule detection 

system  is a lung nodule database. Unfortunately, there have been no public data sets until 

recently [28] so obtaining test data has been a challenge in and o f  itself. Even this data set 

is prelim inary and is still being completed. To obtain data researchers partnered with 

hospitals to gain access to the resources they need. For schools that can not establish 

these partnerships research in the area o f  lung cancer detection has been difficult. To 

w ork around this problem  some researchers have created data sets by creating synthetic 

nodules w hich they then insert into the test data [23], [30], [31]. Synthetic nodules can 

even be used to test techniques built on real nodules or to potentially increase a lim ited 

data set that m ight be available to a researcher. This can allow the researcher to 

artificially create cases that are not present in their data or to create an artificially large 

database to evaluate the potential o f using synthetic nodules as input into learning based 

approaches. C om er cases are an excellent application o f  a lung nodule synthesis 

technique as even with a real nodule database it can be difficult to find them. Learning 

based techniques usually require a large and diverse set o f  inputs to train the system to a 

point o f  stability; synthetic nodules have the potential to produce the volume and context 

necessary in such a data set. In these regards synthetic nodules can be useful for a variety 

o f  developm ent and testing purposes that are limited by a clinical CT data set.

3.1 Lung Nodule Synthesis Approach

CT im ages o f real lung nodule cases formed the basis for the lung nodule creation 

technique [30-38]. The prim ary focus o f  this w ork was to create nodules w hich are
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relatively circular. This allows the nodule synthesis system to target a particular structure 

in order to clearly define the goal o f the synthesis technique. As already discussed, 

nodule shape and size can vary significantly, so it is important to have a clear focus for 

the type o f structure to be simulated. Using a circular model, which allows for elliptical 

deviation, permits the system to simulate a large subset of nodules. There is freedom to 

set the context of these nodules as they can be placed anywhere in the lung volume.

In figure 3.3 the nodule resembles a sharp bell shaped structure. Based on this 

observation a Gaussian shape was used for the synthetic nodule structure. A Gaussian 

distribution has been used as a structural base in other experiments involving synthetic 

nodules [23]. It has also been used as the foundation for nodule templates in detection 

techniques [24]. The magnitude and standard deviation of the Gaussian are all parameters 

that can be manipulated. The following formulas are used to create the Gaussian that 

forms the basis for the synthetic nodule [3]:

= g (3.1)

The X and y  terms in (3.1) refer to spatial coordinates along the x and y axes in a 2D 

surface and the o term refers to the standard deviation of the Gaussian. In (3.1) the 

scaling term is omitted in order for the Gaussian G{x,y) to be equal to one at its center. 

This result, G{x,y), is then sampled to create an MxN matrix, G[m,n], centered on the 

origin. The samples are taken using Ax and Ay equal to 1 as the sampling period. The 

Gaussian that is created is a perfectly symmetric 2D intensity image; however, the 

original nodule is clearly not symmetric as seen in figure 3.2.
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Figure 3.1: A CT scan containing a nodule in the right lung (left side o f  image)

Figure 3.2: The image from figure3.1 zoomed into the lung nodule w hich has been 

circled
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Figure 3.3: Mesh of real lung nodule from Figure 3.2

The next step in the creation of the synthetic lung nodule addresses this issue. A random, 

asymmetric matrix is added to the Gaussian to provide it with an authentic look that 

would not be present if  the image was a perfectly symmetric Gaussian.

R{m,n) -  random^ „ 

random^  ̂ & { - \ , \ \ ,  distributed uniformly 

F{m, ?î) = «  X G[m, n] + x R[m, n] (3.2)

In (3.2) a and p  are scaling terms. These are used to control the magnitude and 

asymmetry o f the nodule during the nodule insertion process.

The final step is to take the modified Gaussian, F[m,n], and insert it into a real 

CT image. This is done using a Graphical User Interface (GUI) that reads in the DICOM 

image data. To blend the nodule smoothly into the image any values of the nodule that 

are less than those o f the image at the insertion coordinates are replaced with the original 

image value.
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The param eters that determ ine the appearance o f  the nodule are accessible in the 

GUI. These param eters are the peak intensity and standard deviation o f the base 

Gaussian, the dim ensions M and N  o f the sampling matrix and the interval o f  the random  

matrix. The process o f  inserting the nodule involves adjusting the param eters until the 

inserted nodule appears as desired by the user. From other studies real nodules were 

observed to have some com m on characteristics. Nodule diam eter is generally less than 

30 mm, and they tend to be circular and slightly elliptical. For one nodule detection 

technique small synthetic nodules with a diam eter between 2 and 7 m m  were created 

[23]. These nodules were restricted to circular shapes or ellipses where one diam eter did 

not exceed the other by m ore than a factor o f  1.5. A different study [17] that used a 

database o f  64 real lung nodules provided statistics o f  their diam eter values. Figure 3.4 

contains the diameters o f  the nodules in this study, where a value o f  8 m m  means the 

diam eter was in the range (4 mm, 8 mm]. The diam eters had a m ean o f  8.89 mm, 

standard deviation o f  5.66 mm, minimum o f 2 mm and a m axim um  o f 25 mm. About 

78% o f  the nodules in their database had a diam eter less than or equal to 12 mm.

"5■o
o

E3

12 16 20 

Diameter (mm)

Figure 3.4: D istribution o f  nodule diameters observed in the test data used by [17]

To produce credible lung nodule images the feedback o f  a radiologist, or som eone who 

has professional experience w ith lung nodules in CT im ages, is desired. This is im portant
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to produce nodules with a realistic density distribution, shape and placement since visual 

assessment is the primary mode of verifying the realism of the inserted nodules. Ideally, 

the person using the GUI to create synthetic lung nodules would be an experienced 

radiologist.

3.2 Lung Nodule Synthesis Results

An example of a synthetic nodule is presented in figure 3.5 alongside a real

nodule.

Figure 3.5: A real nodule and a synthetic nodule below it are identified by a circle

From figure 3.5 it can be seen that the two circled objects are very similar in 

terms o f intensity and size. Also, the synthetic nodule is more circular than the real 

nodule in this particular case though this is adjustable. Looking at the synthetic nodule 

asymmetry is clearly present in the nodule which provides needed authenticity to the 

nodule.

A radiologist confirmed that a set o f 23 synthetic nodules that were created had an 

authentic visual appearance. In general, nodules are judged primarily using visual 

analysis by a radiologist so the quality of the synthetic nodules was validated after they 

passed visual inspection by an expert radiologist.
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Inspection o f  the mesh plot in figure 3.6 for the synthetic nodule also yields a 

good com parison to the real nodule depicted in figure 3.3. The shapes are sim ilar to each 

other. The synthetic nodule does have the fundamental Gaussian shape as expected from 

(3.1) and the asym m etry gives it a gentle, natural noisy appearance in both the m esh and 

intensity images. The nodule does blend very well with its environm ent as seen in figure 

3.5. The blending approach o f using the largest pixel value between the nodule and the 

background is used instead o f filtering as it tries to alter as few pixels in the im age as 

possible. Sharp drop offs for very dark backgrounds are not a concern as nodules can 

have very  defined borders and high contrast w ith their im m ediate surroundings.

Figure 3.6: A mesh o f the synthetic nodule from figure 3.5

The value behind creating synthetic lung nodules was three fold. Initially, there 

w as no available CT data set with lung nodules so this was going to provide, at the very 

least, som e data to experim ent on. Secondly, it provided an opportunity to learn m ore 

about nodules and their properties through studying them  more extensively. Lastly, it 

provided the opportunity to expand our own CT data prim arily for testing. Inserting the 

nodules as irregular separate structures should cause them  to be detected regardless o f
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their exact density distribution due to the simple fact that they are abnormalities within 

the lung volume.

■> N o d u lc _ e u !

Reset to Ongtnal Zoom ROI select

Enhencment ROI selectOnginellmage

Enhance

Uppet MapUppef Otg

Lowei Otg Lowet Map

Enhanced Image

Zoomed 
Enhanced Image

Q iü

Value rrwd Seed

1 1 50 1 0
RH Peak

S ave Name:
1 5

RV

j 380 

FuBness
Edil Text i 5 1 2.7

Save J
R eset nodule ptopefües

TctjL u 'j e n -  .... ........... ............-  ' ‘mm ■
Figure 3.7: A screenshot of the nodule synthesis GUI
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Chapter 4 

Lung Volume Segmentation

Lung volum e segmentation is a necessary step in a lung nodule detection system. 

Lung nodules are found within the lungs so separating them from the rest o f  the CT data 

is im portant in order to target a lung nodule detection system only in the areas w here lung 

nodules can occur. In addition to being a necessary step, it is also the first stage o f  a lung 

nodule detection system, the basic outline o f which is shown in figure 4.1.

CT Data

Lung Nodules

Lung Segmentation

ROI Detection

FP Reduction

Figure 4.1 : General structure o f  a lung nodule detection system

There have been few publications that deal in depth w ith lung segmentation [18], 

[39] which is unfortunate since good lung segmentation is an im portant factor in the total
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process. By ensuring the lung volume is completely segmented the best opportunity is 

afforded to find all possible lung nodules. A simple and effective approach was provided 

by [18].

4.1 Lung Volume Thresholding

The initial step in segmenting the lungs is to find an appropriate threshold to 

begin with. To find the threshold value a modified version of the technique used by [18] 

is used. The CT values are considered to consist of body pixels and non-body pixels, 

finding a threshold attempts to identify a good boundary between these two regions.

In figures 4.2 and 4.3 a single CT slice is presented and analyzed. Figure 4.2 (b) 

shows the area of a CT image that represents the actual scan. This area is intuitively 

correct since CT scans occur in tube shaped chambers which lead to circular CT scan 

areas. Figure 4.3 shows the HU distribution of the CT image in figure 4.2 giving an idea 

of the intensity value distribution of the slice. In general, the area between -800 HU and - 

200 HU in a CT scan of the body tends to be a valley but in this case there is a hill like 

distribution. This makes finding the appropriate CT threshold value particularly 

challenging for this slice since lung segmentation techniques usually try to find a value 

that is directly between the two major peaks at -950 HU and 150 HU which represent 

non-body and body pixel clusters respectively [18]. This approach is founded on the 

belief that a shallow valley exists between the two clusters. It is important to note that 

non-body pixels denote air and low density tissue where body pixels refer to high density 

objects within the body.
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(a) (b)

Figure 4.2: (a) a single CT scan, (b) The effective CT scan area o f  figure 4.2 ( a ) , areas in

black are not part o f  the actual CT data
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Figure 4.3: The HU distribution o f  the CT scan in figure 4.2

The approach by [18] tries to separate the body and the non-body pixel clusters 

using an iterative approach. The threshold value T, defines the threshold value at iteration 

i. The initial value is To = -500 HU the midpoint between -1000 HU and 0 H U  the 

approxim ate values for air and w ater respectively. The mean values o f  the non-body and 

body pixels are obtained at each iteration, represented as fx„ and ^b-
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fM  ^  M„ +Jh  (4 .1)
2

The process described by (4.1) continues until is equal to T  rounded to two decimal 

places.

This approach works well in dividing the HU distribution in a manner that 

provides a large separation between the major peeks o f the body and non-body pixels in a 

CT image. This approach works well for cases where the two major peaks are separated 

by a shallow valley, as is the case in most CT scans. This does not work well for the CT 

slice denoted in figure 4.2, the reason being that the two peaks are separated by a hill-like 

distribution. Clustering into two relatively evenly split sets becomes challenging and 

ineffective in this case.

The key to resolving this problem is that even in cases where the two peaks are 

separated by a shallow valley there is a large range of acceptable values that can be 

chosen for the threshold. The value can fall anywhere in the valley between the bases of 

the two peaks and the threshold will provide a good separation. This means biasing the 

threshold to the body cluster peak would be acceptable in the general case and in the case 

where the shallow valley does not separate the two major peaks in the HU distribution. 

This system uses the algorithm of (4.1) but it does not include any pixels below -874 HU 

in its calculations. This value was found experimentally by adding 250 to the HU floor of 

1024. This biases the threshold value higher while not being affected by rare distributions 

since the adjustment is absolute and not density dependant. Using the system’s approach 

the threshold was found to be -220 HU where using all pixel values the threshold was 

found to be -440 HU.

As can be seen from figure 4.4 using the higher threshold value included a 

significant portion of the lung volume in the non-body pixels that was not present in the 

initial thresholding. A significant portion of the lungs in this case would have been 

omitted without using a threshold value closer to the body pixel cluster in figure 4.3. By 

using the higher threshold value it can be observed that the lung volumes were segmented 

properly by the thresholding step.
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(a) (b)

(c)

Figure 4.4: the results o f  thresholding the CT slice in figure 4.2 with HU values o f -440 

(a) and -220 (b) w here the white pixels are considered body pixels. The image in (c) 

shows pixels that are reclassified as non-body pixels when com paring (b) to (a).

In figure 4.5 a more normal example o f a CT slice containing the lungs is seen. 

The HU distribution in figure 4.6 shows o ff a more typical distribution for these kinds o f  

CT images characterized by a shallow valley between the two m ajor pixel clusters. U sing 

the approach by [18] the threshold obtained was -440 HU and by our technique it was 

-363 HU.
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Figure 4.5: A sample CT image with normal contrast and HU distribution
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Figure 4.6: The HU distribution of figure 4.5, in this case characterized by a shallow 

valley between the two major pixel clusters

An example of thresholding a normal CT slice containing the lungs using both 

approaches is presented in figure 4.7. Both thresholds do a good job of segmenting out 

the lung volumes. It can be seen that the two segmentation results provide the same basic 

segmentation by observing the difference image in figure 4.7 (c).
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(a) (b)

(c)

Figure 4.7: the results o f  thresholding the CT slice in figure 4.5 with HU values o f -440 

(a) and -363 (b) where the white pixels are considered body pixels. The image in (c) 

shows pixels that are reclassified as non-body pixels when com paring (b) to (a).

N ow  that this thresholding approach has been shown to be robust and effective 

the process can proceed to the next step o f  actually extracting the 3D lung volum e.
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4.2 3D Lung Volume Extraction ^

With a thresholding approach being well defined the rest o f the lung volume 

segmentation process continues. The first step after thresholding involves removing the 

background pixels. This is done by eliminating 2D 8-connected non-body components 

that are contacting the image border.

Figure 4.8: The grey pixels around the white pixel are considered connected to the white
pixel in an 8-connectivity scheme

Figure 4.16 is the result of eliminating the non-body pixels connected to the 

border o f the image in figure 4.15. Here it is seen that the majority o f the background is 

eliminated save for some small objects around the lungs and an artifact at the bottom of 

the image which resulted form non-body pixels being isolated from the image border. 

These artifacts are eliminated later on.
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Figure 4.9: The results o f  thresholding figure 4.5 using a CT value o f  -363 HU w here the
non-body pixels are represented in white

Figure 4.10: The result o f eliminating all non-body pixels which are connected to the

image border in figure 4.9

The next step in the process involves removing any holes that are com pletely 

contained w ithin a non-body object. This consists o f finding body pixel objects w hich 

have no contact w ith the image border. From figure 4.10 many body objects can be seen 

that are represented with black pixels contained com pletely within the lung objects. The 

results o f  rem oving these isolated objects can be seen in figure 4.11.

40



Figure 4.11 : The results of removing the isolated body pixel objects from the lungs in

figure 4.10

After removing the holes from the lungs the next step in the process involves 

finding a seed image for the rest o f the lung segmentation process. The seed image is 

used to perform 3D region growing to allow for a complete and well defined lung 

volume. The technique developed by [18] for complete lung volume segmentation is used 

only to find the seed image for the system’s lung segmentation process. The existing lung 

segmentation technique basically retains all non-body objects on the current slice which 

exceed 1% of the total pixel count of the image. In this ease the image is 512x512 pixels 

meaning the 1% limit is any object above 2621 pixels. If  more than two objects exceed 

this minimal limit than the two largest ones are retained. This criterion effectively 

eliminates the trachea from the segmentation since it is generally too small to exceed 1% 

of the total number of pixels. On the negative side, when a lung is split up into multiple 

large pieces, such as when the diaphragm enters the CT images at the bottom of the data 

set, part of the lung will be eliminated because there will be more than two pieces which 

constitute the lungs on that particular slice. This erroneously excludes part o f the lung 

volume. This also affects the lung volume when it is divided into multiple pieces by 

vascular tissue. Also, near the top and bottom of the lungs, parts of the lungs will not 

necessarily exceed the 1% threshold so they will also be incorrectly eliminated from the 

lung volume. Therefore, this technique, developed by [18], works well for the larger, well
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defined parts o f  the lungs but has difficulties near the top and bottom  o f  the lung 

volumes.

To address these shortcomings region growing approach was introduced which 

uses a set o f  seed images. The initial seed image is found by finding the first slide from 

the top o f  the CT scan that has at least two objects which exceed the 1% volum e criterion, 

i f  there are m ore than two then the two largest ones are retained. Unfortunately, there are 

infrequent cases where parts o f the lungs are cut-off due to high intensity vascular tissue 

in the lung volum e such as illustrated in figures 4.13 and 4.14. In that case the isolated 

region w ould be excluded from the lung volume. To address this two m ore seed im ages 

are obtained. The next two slides are chosen as these seed images and the same volum e 

constraint is used to obtain two lungs. This redundancy is an attem pt to m axim ize the 

chances that at least one seed image is a proper representation o f the lung volum e for that 

particular slice. The seed images are further processed using the m athem atical 

m orphology operators o f  dilation and erosion [3], [40], [41]. The purpose behind this 

approach is to smooth the lung borders and to fill in any indentations. Indentations are 

often caused by vascular tissue along the lung wall. Any objects along the lung borders 

have a high chance o f being lung nodules so it is very im portant that the lung volum e 

include these objects. Large vessels near the centre o f  the CT images also cause large ruts 

in the lung borders; they also need to be included in the lung segmentation.
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(a) (b)

Figure 4.12: (a) The lower portion o f the lung volume where the diaphragm has entered 

into the scan for both lungs, (b) shows the results o f thresholding (a) producing three 

pieces that are legitimate parts o f the lung volume

Figure 4.13: A CT slice with a significant amount o f vascular tissue in the left lung

indicated by a circle
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(a) (b)

Figure 4.14: (a) The result o f  thresholding figure 4.13 resulting in a piece o f  the lung 

being separated by vascular tissue as is illustrated in (b) where the section being cut-off is

zoomed in on

Figure 4.15: A CT slice near the top o f the lung volum e
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Figure 4.16: (a) the result of thresholding figure 4.15. (b) The result of retaining only 

objects which are larger than 1% of the pixel count o f the image in (a).

In figures 4.18 (b), it can clearly be seen that the segmentation process to this 

point has not properly reproduced the border o f the lungs from the original image in 

figure 4.17. This is more obviously seen in figure 4.18 (c) which shows a close-up of the 

right lung.

Figure 4.17: A CT slice with significant objects near the lung borders
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(a) (b)

(c)

Figure 4.18; (a) the results o f thresholding the CT slice in figure 4.17. (b) The result o f  

filling, elim inating the background and retaining the two largest objects that satisfy the 

volum e criterion from (a), (c) An enlarged image o f the right lung from (b) clearly

showing the state o f  the lung border.

To alleviate this problem m orphological closing using a 30mm disc as the 

structuring elem ent is used. The choice for size o f  the structuring elem ent arises from the 

typical m axim um  agreed upon size for a lung nodule. In extreme cases nodules have 

exceeded the 30 mm diam eter characterization; however, in the vast m ajority o f  cases this
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structuring element is sufficient. The structuring element can close gaps in the borders up 

to 30 mm wide. It does a good job o f filling in omitted vessels and it is small enough to 

prevent the two lungs from being joined. The reason the structuring element is circular is 

to produce curved boundaries after closing since the lung boundary is generally curved.

After morphological closing a complete and accurate segmentation o f the lungs is 

produced. A comparison between the two segmentations and the final results are 

illustrated by figures 4.20 and 4.21.

Figure 4.19: The results o f morphologically closing the objects in figure 4.18 (b) using a 

disc structuring element with a 30 mm diameter
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(a) (b)
Figure 4.20: (a) The grey area represents the original segmentation from figure 4.18 (b); 

the w hite area represents the new area covered by figure 4.19. (b) is a m agnified image o f

the right lung (left side o f image)

(a) (b)

Figure 4.21 : The results o f  the (a) pre-m orphology and (b) post morphology segm entation

o f the CT slice in figure 4.17

Having obtained the final seed images the process can proceed onto the rest o f  the 

segm entation procedure which deals prim arily w ith region growing. The region growing 

aspect o f  this segm entation technique allows it to overcome the weaknesses present in a
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pure volumetric approach which are excluding small top and bottom portions o f the lungs 

as well as omitting chunks of the lungs because they are separated by vascular tissue.

Before the actual region growing process begins the rest of the CT slices are also 

processed in a manner similar to the seed images. All CT images are thresholded using 

the same CT value as the seed image. After thresholding all non-body objects in contact 

with the image border are eliminated. All body objects contained within non-body objects 

are converted to non-body pixels; this is basically filling in the holes within the lungs. At 

this point the non-seed images are left for the region growing process. It is important to 

note since there are 3 separate seed images and this process is done in parallel for each 

seed image then each seed image is a normal slice in 2 of the other processes. This means 

that the region growing approach actually applies to the seed images due to the parallel 

and independent nature of the region growing technique.

Having processed all of the images each CT slice consists o f multiple non-body 

pixel objects. For connected components in 3D a 26 point connectivity scheme is used. 

This means that for a given pixel any other pixel contained within a 3x3 cube centered at 

the given pixel is connected. The premise behind the region growing approach is that if  

non-body pixels are connected to the lung volume on an adjacent slice then they are part 

o f the lung volume. This means the non-body object does not fall under volume 

constraints and there is no limit to the number of objects in a CT slice that can be 

included in the lung volume. The seed image is the master lung volume that the rest of 

the volume is grown from. The lungs are grown both up and down. Another attribute o f 

the lung volume analysis also identifies objects in the target slice by which object they 

are connected to in the seed slice. Morphological closing is applied independently on 

these groupings to attempt to join objects that are separate but in fact belong to the same 

object and also to keep objects separate which do not belong together. This particular 

approach basically refers to keeping the left and right lungs separate as well as rejoining 

any parts o f the same lung that might have been faintly separated during the thresholding 

process as in figure 4.14. When the adjacent slice to the seed image is done with the 

morphological closing then it is complete and acts as the seed image for the slice adjacent 

to it that has not been processed. Once a CT slice with no more attached non-body 

objects is reached then the process stops. This process is done in both top and bottom
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directions starting from the seed image. Once all three o f  the lung volum es are com pleted 

in parallel then the results o f each are logically ORed together to produce the final lung 

volum e. The entire lung segmentation process is summarized in figure 4.22. The stages 

w hich involve processes which have been developed or created in this system are 

highlighted.

The system ’s overall lung segmentation process improves on past processes by 

including regions in the top and bottom  o f the lungs which are elim inated in volum etric 

based approaches. The system is also able to reattach parts o f  the same lung that are 

separated by vascular tissue due to the region growing approach. In addition, by using 

connectedness as an attribute the lungs can be closed separately. This prevents 

m orphological closing from joining the two lungs if  they are close together into one large 

lung volum e. N ow  with the lung volume properly extracted nodule detection stages o f  the 

system  can be examined.
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Figure 4.22: An overview of the lung segmentation process where grey boxes represent 

our unique contribution to the lung segmentation process
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Chapter 5 

Lung Nodule Detection

The m ain focus o f this thesis lies in the lung nodule detection portion o f  the 

process. In the complete system overview from figure 4.1 the lung nodule detection 

process encom passes both the second and third stages o f  ROI D etection and FP 

reduction. The first part o f the process involves acquiring the actual nodule candidates 

from  the lung volum e; the second portion involves reducing the num ber o f  candidates by 

elim inating as m any FPs as possible.

5.1 Lung ROI Extraction

The approach used for ROI extraction is based on M LT [8], [42-44]. The m ain 

reason for using this technique is that it is both easy to control and at the same time has 

proven to be effective [19], [45]. Initially, a technique based upon the LDM  algorithm  

from  [23] w as being developed because o f the reported potential for perform ing well in 

segm enting connected but unrelated objects.

The M LT technique obtains thresholding levels using the CDF o f  the lung 

volum e. This allows us to adaptively choose our thresholding levels in a way that is 

relevant to the density values represented in the lung volume. This non-linear approach is 

an innovation over the technique used by [19] where uniform ly spaced intervals were 

used at preset threshold values. By using adaptive thresholding our technique is m ore 

robust to cases where the density values in the lung volumes are irregular and the density 

values o f  interest range over different intervals. An example o f  a CT scan w ith an 

irregular density distribution is provided in figure 4.2.
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To select the thresholding values two ranges of interest are identified, the nodule 

range and the vessel range. The nodule range refers to density values that could likely 

make up nodules. The vessel range identifies very high intensity density values that can 

belong to well defined blood vessels or nodules alike. This definition implies that the 

vessel range is a proper subset o f the nodule range. From this point on the term density 

refers to the grey level value not the HU  metric. The HU  unit provides a primarily 

negative value range in the lung volume where the grey level provides only positive 

values.

Grey Level -  HU  + 1024 (1)

The HU  values range between -1024 and 3072 for a given CT scan where the grey level 

equivalents range between 0 and 4096. Based on the presented range it is easy to infer 

that the density values in our CT scans are represented by 12-bit values. A number of 

CDFs o f the lung volume from a CT scan can be seen in figure 5.1.

I
s
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Figure 5.1: Three CDFs of three separate lung volumes

53



Figure 5.2: Three CT slices coming from the three separate lung volum es represented by 

the CDFs in figure 5.1 aligned from left to right

In term s o f  the nodule density range the goal was to look at the range o f  intensity 

values where nodules would be likely found. The approach by [22] uses a single 

threshold at the 80% value from the CDF and gives at least a good starting point w ithin 

w hich to experim ent for the bottom  o f the nodule range. Here the grey level values 

corresponding to a range o f CDF values for the three different lung volum es are looked 

at.

60% 65% 70% 75% 80% 85% :L
CT S tu ^  1 I 191 202 215 232 256 296 374
CT Study 2 . 294 311 331 357 393 445 528
CT Study 3 335 354 377 407 448 504 586

Table 5.1: The grey level values at different CDF percentage values for the three lung

volumes from figure 5.1

The first thing observed from table 5.1 is that the grey level values can be very 

different for the same CDF values between lung volumes. These results support the use 

o f  the CDF because the CDF is context sensitive to the variations in the intensity values 

o f  the lung volum es w here absolute grey level threshold values are not. By using the CDF 

the thresholding is perform ed relative to the density profile o f  the particular lung volum e 

[46].
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Figure 5.3: the first CT slide from figure 5.2 thresholded at each CDF value from 60%

through to 90% from table 5.1 from left to right, top to bottom
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Figure 5.4: the second CT slide from figure 5.2 thresholded at each CDF value from 60%

through to 90% from table 5.1 from left to right, top to bottom
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Figure 5.5: the third CT slide from figure 5.2 thresholded at each CDF value from 60%

through to 90% from table 5.1 from left to right, top to bottom
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The goal o f  obtaining the bottom  threshold for the nodule range w as to have a CT 

value below  w hich it is unlikely that a nodule would exist. Based on the coverage o f  the 

different CT levels from figures 5.3 to 5.5 the threshold was initially chosen to be 65%. 

This w as later chosen to be the bottom o f the nodule range. In some cases where the 

density profile is very high the 65% CDF level would still be too high to detect faint 

nodules. To address this issue an absolute grey level floor value for thresholding was 

found and tested against. I f  the 65% CDF value was above 300 then the lowest 

thresholding value was set to 300. The levels between the 65% CDF value and the 300 

grey level value were uniform ly spaced at 20 and were used to only detect nodules. This 

step size was based upon observed steps in the nodule range during testing and is small 

enough to provide good segmentation results.

In defining the bottom  o f the vessel range the main objective is to include only - 

well defined, strongly formed vessels. To satisfy this condition a very conservative 

approach was taken and a CDF value o f 92.5% was chosen for the bottom , this exceeds 

the highest threshold values presented in figures 5.3 to 5.5. From figures 5.3 to 5.5 it can 

be seen that using a 90% threshold value already leaves only very high intensity objects, 

by choosing a higher threshold it ensures a very rigorous standard for what objects can be 

considered vessels in terms o f  their density. A high threshold value attem pts to prevent 

separate connected objects from being classified as vessels since connections betw een 

objects tend to be o f  a lower density value than solid individual objects.

The initial threshold value is common for both ranges and is the highest level used 

in the thresholding process. This level is the starting point for the threshoding process and 

is higher than both the bottom  values o f  the nodule and vessel ranges. The initial 

threshold value is chosen as the 97.5% CDF value. Even at 92.5% only very high 

intensity objects will exceed the threshold and objects are very well separated. The CDF 

value o f  97.5% is a very safe initial threshold in that with very high certainty objects at 

this threshold w ill be separate unless they are actually strongly connected, or in fact the 

same object.

In figure 5.6 it can be seen what the objects look like that exceed the bottom  

threshold value o f  65%. This image clearly illustrates how far the bottom  nodule range 

value o f  65% goes towards trying to detect low intensity structures as em phasized in
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figure 5.7. Table 5.2 shows that all o f the studies listed are close to having the 65% CDF 

value near 300 or below. In these cases using 300 as a bottom threshold does not 

significantly change the CDF based approach.

65% 92.5%
CT Study 1 202 444 668
CT Study 2 311 586 768
CT Study 3 354 638 804

Table 5.2: The grey level values at the threshold defining CDF values from figure 5.1

/ £  ...,

Figure 5.6: The thresholding of the CT slice at the top left comer using CDF values at 

65%, 92.5% and 97.5%. The thresholded images retain their original pixel densities

where the threshold value is exceeded
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Figure 5.7: A comparison o f the 65% threshold o f the slice from figure 5.6 and the 

resulting image w hen the mask is applied to the original CT slice. O f note is how many

dark pixels exceed the threshold.

N ow  that the ranges are defined a set o f thresholds is defined. Given the relatively , 

small CDF difference within the vessel range o f  92.5%  and 97.5%, 10 evenly spaced 

threshold levels are used in this range inclusive o f range end points. The range b e tw een , 

65% and 92.5%  contains 20 evenly spaced threshold levels including the 65%  value but 

not the 92.5%  value which is contained in the previous range. This increase in the 

num ber o f  levels is determined by the more important role that this range plays in the 

lung volum e since it encompasses 27.5% o f the CDF. The num ber o f  levels and the use 

o f  the CDF were determined through experimentation. The various stages and 

perform ances using different thresholding approaches are detailed in the results section 

chapter 6.

One novel component to the M LT approach that has been added was using a 

density range to obtain one set o f ROIs. The premise behind this is that if  a nodule is 

attached to a high intensity object that is denser than itself it will not be separated from 

that object w ith traditional thresholding. In this case the nodule range is used, which is 

defined to be betw een the 92.5% and 65% CDF value and does not include the absolute 

bottom  m entioned earlier. All pixels that fall within the nodule region are left on w hile all 

others are left off. This separates medium intensity objects from high intensity objects. In 

this im plem entation it only leaves on pixels present in the nodule range. The 

im plem entation o f  the approach is relatively simple but in its current form it is an
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exploratory look at a concept that could be expanded upon and potentially used to 

produce an entirely new ROI extraction process. Instead of thresholds a range that is 

moved in steps from the top to the bottom of the density profile o f the data set could be 

used and it would be able to separate objects with density differences. This offers a new 

and interesting approach to ROI extraction that is worth exploring in future research.

Returning the focus on the implemented ROI extraction process, each level uses 

an 8 connectivity 2D scheme to identify objects on each slice. Each threshold produces 

ROI objects. ROI objects in the vessel range are considered for both nodule and vessel 

candidates. Objects detected in or below the nodule range but not in the vessel range are 

considered only as potential nodule candidates. This produces thousands to tens of 

thousands o f objects at each level. The MLT approach will process hundreds of 

thousands of objects for each CT scan due to because at least 24 thresholding levels will 

exist.

A comparison between our approach and a technique developed by [23] which 

uses local density peaks to identify ROIs was carried out during the development process. 

Performance, time and ROI extraction are compared in the results section, chapter 6.

5.2 FP reduction

In order to reduce the number of ROIs a FP reduction system needs to be 

implemented. The very first step taken to reduce the number o f FPs is size filtering. The 

datasets that are targeted contain 5 mm thick CT slices. In addition, this system initially 

targeted nodules whose areas are greater than or equal to a circle o f 4 mm in diameter (ie. 

12.6mm^). In addition, since wall nodules are inherently more suspicious and can be quite 

small their minimum size needed to be larger than a circle with a diameter o f 3 mm 

(7.1mm^). Experimentation led to making the area range variable as opposed to fixed. 

The area range now depends upon the X, Y resolution of the CT scan. For scans with an 

X, Y resolution above 0.65 mm the minimum areas remain at the 3 mm and 4 mm circles 

for the wall and interior nodules respectively. For scans with a higher resolution, a pixel 

area o f 0.5 is used when calculating the area. The main reasoning behind this was that 

visually, at a resolution o f 0.7 mm, 3 and 4 mm circles represented objects that were
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clearly identifiable w hen looking at the picture. W ith higher resolutions, sm aller objects 

w ill appear bigger than they would in a lower resolution scan. Since the 3 and 4 mm 

circle m odels worked well for resolutions around 0.7 mm the approxim ate area o f  

0.5 mm^ was used from these CT images to calculate the minim um  areas for higher 

resolution CT scans. The effectiveness along with the implem entation o f this approach is 

further exam ined in the results section, chapter 6. Size constraints are a very im portant 

consideration in the FP reduction process as they are very effective and usually represent 

the first stage o f  FP reduction. U sing size alone brings down the num ber o f  ROIs at each 

threshold level from hundreds o f  thousands to a few thousand or hundred. This not only 

also saves a lot o f  com putational pow er by eliminating so many candidates early on in the 

FP reduction process.

The FP reduction system uses two separate approaches to reduce FPs for nodule 

candidates w ith and without contact to the lung walls, the effectiveness o f  a dual 

approach like this has shown to produce good nodule detection results [17], [19].

It is generally more difficult to segment some nodules which are in contact w ith 

the lung wall, in particular when they are growing along the lung wall. In these cases the 

ROI extraction system  can usually identify a portion o f the lung nodule because o f  

m orphological closing. Also, objects in contact with the lung w alls are generally m ore 

suspicious than interior objects so the system is more sensitive by considering a w ider 

range o f  wall connected objects through the m ore permissive m inim um  area criterion. A s  

an im portant addition at this point there is one significant problem  that arises from the! 

lung segm entation that affects the FP reduction process. W hen looking at m any o f  the 

segm ented images, a haloing affect around the lung border can be observed. These pixels 

interfere w ith feature extraction for the FP reduction phase. This haloing effect can be 

seen around the lung borders distinctly in figure 5.5. To remove this border a sim ple 

erosion o f  the lung segmentation area is perform ed using a disc structuring elem ent w ith 

radius 1. This erosion is perform ed prior to any features being calculated for the ROIs, 

including the area.
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Figure 5.8: A disc structuring element o f radius I

It can be clearly seen in figure 5.9 that eroding the lung volume helps to 

significantly reduce the lung border effect in particular at higher threshold values since 

less of the border is included in the threshold. At this stage the effect is reduced enough 

to allow for real border objects to be identified. The remaining lung border artifacts are 

dealt with later on in the FP reduction process or are eliminated during the area filtering 

procedure. At this stage of the process nodule type classification is explored.

Figure 5.9: The effect of eroding the lung volume on the thresholded images at CDF

values of 65% and 80% from figure 5.5
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To classify nodules as interior or wall nodules the perim eter  feature is calculated. 

The feature is calculated by dilating the object using a disc elem ent o f  radius 2. By 

looking at figure 5.10 the disc structuring element is exactly w hat a single pixel at the 

centre w ould look like if  it was dilated using figure 5.8 tw ice in a row.

Figure 5.10: A disc structuring elem ent o f  radius 2

A fter dilation, those pixels which are new to the object would be considered perim eter 

pixels. I f  any o f  those pixels lay outside o f  the lung volume then those are considered to 

be external pixels.

Peperim eter = P  =
Ph

(5.1)

The perim eter, P, is basically the percentage o f  surrounding pixels that are outside 

o f  the lung volum e where pe are the number o f  perim eter pixels external to the lungs and 

Pb are the num ber o f  external pixels which are internal to the lungs. It is important to note 

that even though the surrounding pixels are not all in direct contact with the object, given 

the structuring element in figure 5.10, they are still at most separated by one pixel. 

V isually, a spacing o f one pixel would usually be interpreted as connected since the 

object would be very close to the lung border. Therefore, in the worst case some objects 

w ould have a perim eter  value greater than 0 if  they are extremely close to the lung wall 

w hich could be practically interpreted as being connected. Given these observations the 

structuring elem ent in figure 5.10 is suitable to use for the perim eter  feature.

The m ain use o f  the perim eter  value is to check whether or not the object is 

connected to the lung walls. I f  the object has a perim eter value greater than 0 it is
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considered a wall nodule candidate, if  it is equal to 0 then it is an interior nodule 

candidate. The actual perimeter metric is unique to this detection system, as other 

systems have distinguished between wall and interior nodules before [17], [9] without 

actually quantifying the strength o f the connection as has been done through the 

perimeter feature. This measurement is used further along in the FP process for more 

than just separating nodules into wall and interior nodules. It also classifies wall nodules 

as lightly or strongly connected.

The next step in FP reduction proceeds onto identifying nodules and vessels from 

the wall and interior nodule candidates. Nodules range in shape from spherical to 

ellipsoidal in terms of 3D shape. In terms of cross-sectional shapes this amounts to 

nodules being circular to elliptical. The shape of an ellipse is determined by its major to 

minor axis ratio. A circle is the case where an ellipse has a major to minor axis ratio of 

one. The shape o f an ellipse and a circle also tend to be very compact. One way to 

evaluate compactness is to look at the area of an object and compare it to the area o f its 

bounding box [17], [23].

From figure 5.11 the bounding box of an object can easily be visualized. 

However, this bounding box idea does not traditionally work well for angled objects 

since the bounding box has been predicated on the X and Y dimensions o f the object.

Figure 5.11: A couple of ellipse with their accompanying bounding boxes

The difference between a fitted tight bounding box and the traditional X,Y 

bounding box can be seen in figure 5.12. With the X, Y bounding box both the sides o f 

the rectangle and compactness are dependant on the orientation of the object. With a tight 

bounding box an object could be at any orientation and the rectangle dimensions and 

compactness would be the same.
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V, *v

Figure 5.12: A n example o f  what an X, Y based bounding box looks like on the left and a

proper, tight bounding box on the right

In an attem pt to obtain a tight bounding box the orientation o f  the object is 

obtained. The orientation is found as the angle between the x-axis and the ellipse w ith the 

same second m om ents as the object [46], [47].

(5.2)

In (5.2) a  and b are constants which determine the order o f  the m om ent 

represented by  rrtab- Also, x and y  refer to spatial coordinates on the x and y axes on a 2D 

surface. The order o f  the m oment in (5.2) is equal to a + b. The orientation o f  the object 

is determ ined by using (5.3) which defines the orientation o f  an ellipse based on its 

second order moments.

tan 2Û =
2m,

^ 0 2  ^ 2 0

(5 3)

In (5.3) 0 is the angle that represents the orientation o f the object with second m om ents 

m]j, mo2 and m2Q. Once the orientation is obtained using (5.3) it is then rotated [47] w ith 

bi-eubic interpolation [48] applied in order to set its new orientation at 0°. Onee the 

objects orientation is at 0° the bounding box can be obtained. This technique basically 

amounts to rotating objects such that the trivial X, Y bounding box represents the tight 

bounding box. Obtaining a tight bounding box for each object is unique to this technique.
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Two features are computed using the tight bounding box, the compactness [23] 

and the axis ratio.

axis ratio = (5.4)
m i n { L ^ , L y )

compactness -  C -  —— (5 5)
\ h

Both of these features relate to shape of the object. In (5.4) refers to the length 

along the x-axis of the bounding box where I,, refers to the length along the y-axis. In 

(5.5) Ao refers to the area of an object and Abb refers to the area of the objects bounding 

box. The axis ratio, Ran looks at the ratio of the long side o f the bounding box to that of 

the short side to get an idea of the 2D symmetry of the object. A long axis ratio is usually 

associated with objects such as horizontal vessels in the lungs. Compactness, C, is a good 

identifier o f nodules, ellipses or other generally compact shapes. Since nodules tend to 

appear as circular or elliptical objects on CT slices then a high compactness is another 

discriminating feature for nodules. Looking at the areas of circles, ellipses and rectangles 

[47] expected compactness values can be attained.

Area o f Circle = Â  -  nr^ (5.6)

Area o f Ellipse -  A^= nab (5.7)

Area o f Rectangle = A^= Iy.h (5.8)

Compactness o f  a circle = C ^ -  —-

nr^
C = ------- , where I = h = 2r

Ixh

Q  = -----— -----  = - ^  = -  = 0.79
(2r)X (2r) 4r 4
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Compactness of an ellipse = C =

C =

nab
Ix h

-, where I = 2a, h =  2b

nab
{2a)x{2b)

^  =  ^  =  0.79
Aab 4

In the above equations r refers to the radius o f a circle, a and b refer to the m ajor 

and m inor axes o f  an ellipse and I and h refer to the length and height o f  a rectangle. 

From  the above equations, both ellipses and circles have theoretically the same 

com pactness o f  0.79. In practice, since these are represented using discreet matrices and 

there is no guarantee they are perfectly well formed, due to a nodule’s actual shape along 

with im age noise, its compactness will vary. The compactness and axis ratio  chosen for 

the system  were based on experimental results and the specific perform ance o f targeted 

border cases.

G iven that lung nodule detection is image based this system used a nodule that 

was visually judged to be a good border case in terms o f compactness and axis ratio, as 

identified in figures 5.13 -  5.15. Border cases are important in setting thresholds for 

separating nodules from non-nodules and in classification problem s in general [49].

Figure 5.13: A CT slice with an example o f  a nodule, circled in black, that was used to 

shape the compactness and axis ratio nodule thresholds for the system
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Figure 5.14: A threshold of figure 5.13 at the 72.5% CDF level

Figure 5.15: The nodule circled in figure 5.13 and thresholded in figure 5.14

This nodule has a slight L shaped feature which will reduce its compactness, showing 

how an elliptical object can be slightly skewed in a noisy, discreet environment. It also is 

relatively long and so falls within the extreme case o f what an acceptable nodule’s axis 

ratio would be. The traditional X, Y bounding box provides a compactness o f 0.5 and an 

axis ratio of 1.44. Since the nodule is on an angle the compactness is obviously lower 

then a tight bounding box would represent. Likewise, obtaining the axis ratio is also

69



inaccurate as 1.44 is too low. A fter obtaining the tight bounding box the new 

compactness is 0.65 and the axis ratio is found to be 1.86. These numbers are m ore 

intuitively inline w ith the visual interpretation o f the object in figure 5.14. To allow for 

some flexibility w ith these thresholds the system used slightly less strict values than the 

values calculated for this nodule. The compactness threshold was 0.6 and the axis ratio 

threshold w as chosen as 2.0. The nodule in figure 5.14 is approxim ately equivalent to a 

circle w ith a diam eter o f  6 mm. It is important to note that these values are thresholds 

used for the interior nodules. All interior nodules which passed these thresholds along 

w ith exhibiting a perim eter  value below 0,05 and an area minimum were accepted. The 

low perim eter  threshold allows nodules which are weakly connected to still be considered 

interior nodules. The area threshold was examined earlier in the chapter as the m inim um  

size o f  a nodule that could be detected.

N odules in contact with the lung wall are handled differently. Objects that exceed 

the m inim um  area criterion, in contact with the lung wall, are considered very likely lung 

nodule candidates. W all nodules have slightly more lenient compactness and axis ratio 

requirem ents o f  0.5 and 2.5 compared to that o f an interior nodule candidate. W all 

nodules that are attached weakly to the lung wall often can be more elongated and less 

com pact than interior nodules due to the connection, so that is the reasoning behind using 

a low er compactness value and a higher axis ratio. W eakly connected wall nodules are 

considered to have a perim eter  value o f 0.25 or lower, m eaning at most 25%  o f their 

perim eter pixels are connected to the lung wall. Strongly connected nodules are 

considered to have a perim eter  value between 0.25 and 0.65. Strongly connected nodules 

do not have any compactness or axis ratio restrictions as they can take on irregular, 

shapes and curvatures that are heavily influenced by the lung wall contour due to their 

strong connections. The upper limit o f  0.65 is never practically surpassed as objects w ith 

higher perim eter values would not be segmented since they do not intrude into the lung 

volum e significantly. Even a semi-circle would have a perim eter ratio o f  approxim ately 

0.61 and that is with the orientation o f the curved side touching the lung wall.

It is important to note that all wall nodules have to be eonsidered thick as well. 

This addresses haloing artifacts that remain after lung volume segmentation. Before FP 

reduction m orphology was used to reduce the lung volume to reduce the haloing artifacts
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as seen in figure 5.9. Even with this reduction some haloing artifacts remain, and in a 

further step to eliminate them all wall nodules must be able to be morphologieally eroded 

using the structuring element in figure 5.10 without being eliminated. This process 

attempts to get rid of any remaining thin artifacts along the lung wall and will not 

consider them as wall nodules.

Lastly, at this stage of the process the system attempts to identify vessels and 

vessel groupings. As mentioned earlier, vessels can only be identified in the vessel 

thresholding range. Objects in this density range must be larger than a 5 mm diameter 

circle, have a compactness o f over 0.4, an axis ratio of over 2.5 and a perimeter value o f 

under 0.05. Vessels are generally very compact so using a minimum compactness value 

of 0.4 is lenient and allows for V-shaped, branching or curved vessels which are less 

compact than straight, horizontally oriented vessels. A minimum axis ratio o f 2.5 ensures 

the vessels are elongated, which is consistent with horizontal vessels. A perimeter 

maximum of 0.05 ensures vessels are not significantly connected to the lung walls, which 

prevents irregularly shaped wall nodules from being considered vessels.

To address the issue of large groupings of vessels, any objeets in the vessel 

density range which exceed the size of a 20 mm diameter circle and have a perimeter 

value below 0.2 are considered to be large groupings of vessels. Also the perimeter value 

needs to be greater than 0 ensuring contact with the lung wall. The size threshold ensures 

only large groupings that are unlikely to be nodules are eonsidered. The perimeter value 

is consistent with the idea that vessel grouping branches will skew the perimeter towards 

a lower value since the branches would dominate the perimeter rather than the connection 

to the lung wall. Also, a maximum compactness value of 0.55 is used as vessel groupings 

are expected to have branches that will tend to lower the compactness measurement.

To prevent nodules from getting too big an upper area limit is placed upon them. 

No interior nodule can be larger than a 15 mm circle. From our data sets only nodules 

connected to the lung wall ever approached or surpassed this size limit. This prevents 

large sections or entire slices of the lungs from being considered lung nodules at lower 

thresholds. A summary of these constraints is presented in table 5.3.
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S’s ^ m
Interior N odule

W eakly Connected 

W all N odule

variable (min) 

15 mm (max)

variable

0.6 (min)

0.5 (min)
2.5

(max)

0.05 (max)

>0

0.25 (max)

Strongly C onnected 

W all N odule
5 mm

> 0 .2 5  

0.65 (max)

V essel 5 mm 0.4 (min)
2.5

(min)
0.05 (max)

V essel G rouping 20 mm 0.55 (max)
>0 

0.2 (max)

Table 5.3: A  sum m ary o f ROI groupings and there corresponding feature thresholds

The next stage o f  the process looks at all interior nodule candidates that are only 

one CT slice deep. Any nodule that exists on one CT slice needs good contrast with 

adjacent slices, otherwise it is most likely connected to a vessel, m eaning it itse lf is m ost 

likely a vertical vessel.
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Figure 5.16: Three rows of grey level corresponding to nodule vertical contrast analysis.

The middle row is grey level values left to right ranging from 1000 to 100 in increments 

of 100. The range of gray values is between 1200 and 0, corresponding to white and 

black respectively. The top row is 85% of the middle grey level value. The bottom row is

the middle row value minus 100.

For contrast analysis the mean value of adjacent pixels above and below the 

nodule candidate are compared to the mean value of the nodule’s pixels. The contrast 

value for the adjacent pixel’s mean is calculated using the mean of the nodule candidate.

Vertical Contrast = -  min(7V x0.15, 100) (5.9)

In (5.9) Nmean refcrs to the mean pixel value of the nodule. The contrast criterion from 

(5.9) is visualized in figure 5.15. Given a nodule of the average intensity represented by 

the middle row o f figure 5.15 the vertical contrast needs to be at least that of the brighter 

of the two squares directly above and below the value. It can be seen that this contrast 

requirement is lenient. The reason for this is to not be overly aggressive in eliminating 

nodules during this stage. The certitude of the reasoning behind the contrast analysis is 

that one slice nodules need to be more intense than their vertically adjacent pixels. There 

is no particular specification of how much contrast is required so a moderate contrast 

value in (5.9) is used to ensure this elimination rule is not overly aggressive.

The next stage of FP reduction is designed to produce 3-D compact 

representations of all nodule candidates. The premise behind compaction of the nodule 

can be seen in figure 5.17.
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Figure 5.17: The conceptual idea behind compacting nodule candidates. From left to right 

the original nodule, nodule with weak connections such as small vessels eliminated, 

nodule with only significant cross-sectional components retained

First there is a desire to eliminate all weakly 3D connected objects such as small 

adjacent vessels or small vessels that are feeding blood into the nodule. This is done by 

elim inating all 2D nodule candidates that are 3D connected to any other nodule 

candidates w ho are at least 4 times larger then themselves. Again, this criterion is 

relatively lenient and strives to ensure that the 2D object being eliminated is relatively 

insignificant in its 3D context. This first step is the transition between the first and second 

image in figure 5.17.

The transition from the concept o f the middle image to the last image is now 

perform ed. This tries to retain the most significant 3D portions o f  the nodule candidate. 

This is done by retaining only those 2D components which are within 50% o f the area o f  

the largest 2D com ponent for a particular 3D nodule candidate. This processing is 

attempts to counteract the partial volume effect due to thick slice CT scanning. This stage 

serves as pre-processing for the rest o f the FP reduction process which deals with the 

nodule in a 3D context. It does this by attempting to retain the most significant portions 

o f  each nodule. In addition by eliminating weak connections, it also serves to potentially 

separate unique 3D objects that were previously connected.

A t this stage the vessels identified near the beginning o f  the FP reduction stage 

are finally utilized. They are used to process interior nodule candidates. The prem ise 

behind this next stage is that i f  a nodule candidate is engulfed by vessels then it is m ost
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likely a vertical vessel. Often a vertical vessel that appears to be a nodule will be covered 

by a horizontal vessel in an adjacent slice. Also, vertical vessels tend to be represented by 

a higher grey value when the vessel they branch off o f in the same CT slice, so it may be 

identified as a nodule, but in context it is actually branching vertically from a vessel. It is 

viewed as a nodule by the system at a higher threshold where the horizontal vessel would 

not pass. Some contexts for vertical vessels are illustrated through figure 5.18.

Figure 5.18: A CT slice that identifies an isolated vertical vessel on the right and multiple 

vertical vessels that are branching from horizontal vessels on the left.

This next step looks at any 2D object that overlaps by more than 50% of its pixels 

with vessel objects in the current and adjacent slices. In figure 5.19 it can be seen how 

vessels from adjacent slice can cover portions of a potential nodule candidate to identify 

it as a vertical vessel.
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Figure 5.19: The conceptual idea o f a potential nodule represented by the circle actually 

being a vertically vein bridge between two horizontal vessels on adjacent slice. The 

image shows how  projecting vessels onto the current slice covers the majority o f  the area

o f the potential nodule.

The threshold for what is considered covered is the majority o f the nodule 

candidate’s area, m eaning 50% or more. Any 2D object at this point is a significant 

portion o f  a 3D object due to the previous stage’s eompaction and so if the 2D object is 

elim inated any other slices that are part o f  that object in a 3D context are also eliminated. 

This is possible due to the careful and strict 3D trimming that took place in the previous 

step.

W all nodules are not eliminated in this process because vessels do not often 

extend out to the lung wall in any significant manner. Vessels are m ainly identified near 

the centre o f  the lungs and near the trachea entrance at the lung wall. Therefore, it is 

highly unlikely that a wall nodule candidate could be covered by vessels. This doubt is 

what prevents the system from applying this FP elimination process on wall nodules.

The last FP reduction step involves analyzing the depth o f any nodule rem aining 

that spans m ore than one CT slice. This is basically a final attempt to eliminate any 

vertical vessels that might have slipped through the system to this point. This step uses 

the 3D equivalent o f  the axis ratio, it is called the vertical ratio.

(slices - 1) X slice thickness
vertical ratio  ------ — ------- ;— — ----- 7̂ — P -o j

m ax(X  lengths, Y lengths)
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The vertical ratio is designed specifically for thick slice CT processing on interior 

nodules. To account for any potential partial volume artifacts the 3D depth o f the object 

less one slice is used. This is a precautionary measure which keeps in line with the theme 

of being cautious rather than too aggressive in the FP reduction process. The vertical ratio 

is basically the depth of the nodule candidate less one slice divided by the longest length 

of all the tight bounding boxes for each 2D cross section, keeping in mind that this 

analysis focuses on nodule candidates that are more than one slice thick. One slice 

objects will have a vertical ratio o f zero. Any object which has a vertical ratio greater 

than 3.0 is eliminated from consideration. This is more permissible than the axis ratio 

which has a cut-off of 2.0. This is again a testament to how careful this system is using 

3D features in such a thick slice environment. Wall nodules are not considered for this 

step because they can have significantly more irregular shapes than interior nodules, in 

particular when they are large. This is based on observations of CT data sets along with 

radiologist’s diagnosis of nodules in these same data sets.

After this last step wall nodules and interior nodules that have made it to this 

point are combined into one set and these represent the final nodule set that is output by 

the system. A summary o f the FP reduction process can be seen in figure 5.20.
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Vessels W all N od u les
Interior Nodules

Vessel Reduction

Contrast Analysis

3D trimming

Combine Wall and Interior Nodules

Shape and Size Analysis

Figure 5.20: A summary o f the FP reduction process
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Chapter 6 

Experimental Results

This chapter presents all the experimental results that deal with the final output o f 

the system. It also presents various comparisons and results for testing done on different 

portions of the lung nodule detection system. For experimentation one CT data set that 

contained 10 synthetic nodules along with 19 CT data sets that contained a total o f 239 

real nodules were used for testing system performance. Images were acquired using a GE 

LightSpeed Ultra CT scanner, with a slice thickness of 5 mm in all cases with an 

effective pixel resolution of 12 bits.

6.1 Lung Segmentation

The lung segmentation process was detailed in chapter 4. The main irmovation 

presented in this technique was that 3D region growing increased the size o f true lung 

volume extracted compared to a standard volumetric based approach [18]. Parts o f the 

lung volume that would have been eliminated due to the volume threshold or separated 

due to vascular tissue within the lungs are retained.
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m  study ID 

2099069

Pixels - 
Volumetric 

-  ^
451599

Pixels - 
Region 

Growing 
577303

% pixel 
difference

27.84%

# slices - 
volumetric

21

# slices T 
regiohi 

qrowlHHü
32

# slice 

11
2124347 454350 537819 18.37% 25 40 15
2173232 1021103 1132014 10.86% 41 55 14
2045724 1139669 1243561 9.12% 43 53 10
2161056 616996 714572 15.81% 29 39 10
1673108 1431887 1582161 10.49% 47 55 8
2110370 567832 636755 12.14% 30 33 3
2174158 724028 838172 15.77% 27 32 5
2118038 1835559 2041767 11.23% 43 52 9
2063289 810363 913602 12.74% 41 48 7

Table 6.1: Statistics comparing volumetric and region growing based lung segmentation

A  com parison o f the volumetric lung segmentation technique and the region 

growing technique is presented in table 6.1. A simple and effective way o f looking at the 

perform ance difference between the two is how many more pixels one includes in the 

lung volum e than the other. It can be seen, from table 6 .1, that the region growing 

approach includes m ore o f  the lung volume, usually between 10-15%, than the volume 

based approach. The num ber o f  slides containing a portion o f the lung volume is also 

higher in each case. These results are consistent, since the region growing approach is 

designed to include sm aller lung volumes on a slice.

These results support the idea that region growing is a superior approach to 

volum etric analysis when it comes to lung volume segmentation. The inherent benefit is 

m uch m ore com plete lung segmentation at the top and bottom o f the lung volume. There 

is an additional benefit that any portions o f  the lung that are cut-off in a CT slice will be 

retained as long as that volume is 3D connected to the lung volume in an adjacent slice.
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Figure 6.1 : An example of part of the lung volume near the top of the scan that was 

retained with the region growing approach but not retained with volumetric based lung

segmentation

Figure 6.2: An example of part of the lung volume near the bottom of the scan that was 

retained with the region growing approach but not retained with volumetric based lung

segmentation
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Figure 6.3: The tip o f  the left lung is an example o f  a portion o f  the lung volume that is 

cu t-off from the rest o f  the lung but is retained in the lung volume due to the region

growing approach

6.2 ROI Extraction Results

This lung nodule detection system involves a novel approach at M LT that uses the 

lung volum e’s density profile to establish the thresholds in an adaptive manner. The 

technique ensures the thresholds are generated based on the CDF o f the particular lung 

volume.

There is a new approach, a LDM technique proposed by [23] which focuses on 

local density m axim um s. It also uses a form of MLT; however, objects are distinguished 

based on their density profile and connections to other objects. The potential o f  the 

approach is that it can separate overlapping structures as long as they were represented by 

distinct density profiles. A good way o f visualizing this is with two mountains, one lower 

than the other. The peak of the lower mountain will distinguish it from the larger 

mountain. This has good potential in separating nodules from vessels when they overlap 

in the CT slice. For a M LT approach this is a challenge and often the attached objects 

will not be separated, particularly when the nodule is o f  a lower intensity than the object
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to which it is attached. Given these facts the MLT that was incorporated in this system 

was compared to the proposed LDM algorithm.

The first major difference between the techniques was that the LDM approach 

took approximately eight times longer to run than the adaptive MLT approach used in 

this system. The running time for the LDM fell in the area of 4 hours where the MLT 

approach ran in approximately 30 minutes on the same data set. This is a significant 

difference but it is still acceptable if the results of the LDM are significantly better than 

the MLT approach used by the system.

The next major failing with the LDM system was that the size threshold was so 

low that objects would be identified small and fail to properly fill out. On the other hand 

the MLT technique performs an excellent job of filling out nodule candidates, in 

particular larger ones. Basically, the MLT approach consistently failed to produce 

accurate or even acceptable representations of nodules in the CT data that it was tested 

on, as can be seen in figure 6.4.
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Figure 6.4; A CT slice with ROIs (black spots within high intensity structures) obtained 

by the LD M  algorithm  in the top image and the adaptive MLT approach in the bottom

image.

The adaptive M LT produces ROIs that are better representations o f  nodule 

candidates than the LDM  technique. For larger objects it can be seen that the LDM  

algorithm  often does not fill them  out, in particular a very large nodule near the top o f  the
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right lung (left side o f image) in figure 6.4. The idea behind the LDM approach is 

promising but at this stage of development a technique that was proven and effective was 

needed for the ROI portion of the system so the LDM algorithm was not used. Also, by 

using MLT it made it possible to identify vessels, this would have been extremely 

difficult, if  at all possible, using the LDM algorithm. Most likely, an entirely separate 

system would have been created alongside the LDM algorithm to detect vessels since the 

LDM algorithm uses the definition of a nodule in how it segments the image from one 

threshold to another. The adaptive MLT is simpler in that each threshold is independent 

of other thresholds; this allows for more flexible processing afterwards.

Based on these observations from testing the two systems the adaptive MLT 

approach was incorporated. It produces more complete ROI representations within the 

lung volume and allows for very flexible analysis of ROIs which led to the development 

o f vessel identification and application in FP reduction.

6.3 Lung Nodule Detection Results

The most significant portion o f the results section is actual data on how well the 

system deteets nodules. Initially the system was tested using simulated nodules produced 

by the system described in chapter 3. The simulated nodules were applied onto a single 

CT series that contained no other nodules.

# of simulated 

nodules 

detected

#of31)

objects

detected

Sensiii\it\ $0h!
67 10 10 108 100%4 98 1.46

Table 6.2: The results of applying the lung nodule detection system onto a set o f

simulated nodules

Testing with simulated nodules the system performed very well. The sensitivity 

shows that 100% of the nodules were detected. The number o f FPs was also very good at
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1.46 per slice. The results for the simulated nodules are encouraging, however, these 

results are som ew hat expected since the nodules were well formed and regular. For 

example, all o f  the nodules were large enough to satisfy the minim um  area criteria o f  the 

system. A dditionally, the nodules are very well fonned since they are synthetic, and 

therefore are easier to segment.

The data com piled in tables 6.3 through 6.6 consists o f  sensitivity and FP analysis 

when the system  w as applied to 19 real CT data scans. The tables represent the results o f 

the system  at four different phases in the development process. The data sets are actually 

divided into two m ajor sets, those beginning with the letters “ID ” and those beginning 

w ith the letters “FB ” . The suffix letter o f each set represents the testing phase; “C” 

represents the first phase and “F” represents the fourth and final phase by using 

alphabetical order. The “ID ” set was the first set that was obtained and used for m ost o f  

the developm ent until the phase 1 results. The results on the “FB” test set in table 6.3 

w ere basically  a b lind test at that point having developed the system using the “ID ” set 

only. In addition to blind testing, the “FB” set was used as an indicator at that point to see 

if  the system  could help improve the sensitivity o f a radiologist’s diagnosis.

The experim ents and results are obtained as follows. The truth sets were obtained 

by getting an expert radiologist to examine and mark all o f  the data sets in each location 

that he detected a nodule. The “ID” and “FB” test sets were done separately but as entire 

sets in one session each. When the “FB” set was introduced the system was at the 

perform ance level displayed in table 6.3. The radiologist identified 4 additional nodules 

that w ere not initially detected. This means originally the set had 56 identified nodules as 

opposed to the 60 currently listed. This means the system helped to identify 7% more 

nodules. Three w ere identified in FB3 and one was found in FB9. The m ost im portant 

thing to note from this result is that the system only perform ed at 50% sensitivity for the 

data set at the tim e o f  this test as seen in table 6.3 for the “FB ” data set. This result 

im plies that even at low sensitivity values the com puter aided diagnosis can help im prove 

diagnosis accuracy.
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Series
#  of 

nodules
#

detected
#

Missed Sensitiv ity
Total
Slices

Objects
Detected

FPs / 
slice

Initial
Interior Contrast Jrimmirici

V essel
reduced

Depth 
/  Final

Wall 
, only

FB1C 1 0 1 0.00% 40 62 1.55 0 0 0 0 0 0
FB2C 0 0 0 N A 67 95 1.42 0 0 0 0 0 0
FB3C 34 20 14 58.82% 57 124 1.82 18 16 16 16 16 4
FB4C 1 1 0 100.00% 50 70 1.38 1 1 1 1 1 0
FB5C 1 0 1 0.00% 61 112 1.84 0 0 0 0 0 0
FB6C 13 4 9 30.77% 40 116 2.80 2 2 2 2 2 2
FB7C 0 0 0 N A 37 112 3.03 0 0 0 0 0 0
FB8C 1 1 0 100.00% 53 109 2.04 1 1 1 1 1 0
FB9C 8 4 4 50.00% 59 138 2.27 0 0 0 0 0 4

FB1GC 1 0 1 0.00% 35 80 2.29 0 0 0 0 0 0
ID101C 58 50 3 86.21 % 65 352 4.65 33 33 33 32 32 18
ID51C 0 0 0 N A 32 98 3.06 0 0 0 0 0 0
ID52C 103 68 35 66.02% 38 213 3.82 15 15 15 11 11 57
ID53C 13 10 3 76.92% 61 181 2.80 2 2 1 1 1 9
ID54C 1 ^  0 1 0.00% 46 138 3.00 0 0 0 0 0 0
ID55C 0 0 0 N A 51 81 1.59 0 0 0 0 0 0
ID56C 0 0 0 N/A 56 90 1.61 0 0 0 0 0 0
ID57C 3 2 1 66.67% 55 118 2.11 0 0 0 0 0 2
ID58C 1 0 1 0.00% 44 147 3.34 0 0 0 0 0 0

S e t FB 60 30 30 50.00% 499 1018 1.98 22 20 20 20 20 10
S e t ID 179 130 49 72.63% 448 1418 2.88 50 50 49 44 44 86
T otal 239 160 79 66.95% 947 2436 2.40 72 70 69 64 64 96

o o

Table 6.3: Results o f using the nodule detection system with the MLT thresholds set at the 90% CDF value for the top of the vessel 

range, 80% for the bottom of the vessel range and 65% for the bottom of the nodule range



Series
# o f

nodules
#

detected
#

Missed Sensitivity
Total'
Slices

"Objects
Detected

FPs D
slice

Initial-
Interior Contrast Trimminfl

V essel
reduced

Depth
/Final

■Wallf
only#

FB1D 1 0 1 0.00% 40 71 1.78 0 0 0 0 0 0
FB2D 0 0 0 N A 67 95 1.42 0 0 0 0 0 0
FB3D 34 20 14 58.82% 57 124 1.82 18 16 16 16 16 4
FB4D 1 1 0 100.00% 50 70 1.38 1 1 1 1 1 0
FB5D 1 0 1 0.00% 61 112 1.84 0 0 0 0 0 0
FB6D 13 5 8 38.46% 40 122 2.93 3 3 3 3 3 2
FB7D 0 0 0 N/A 37 109 2.95 0 0 0 0 0 0
FB8D 1 1 0 100.00% 53 109 2.04 1 1 1 1 1 0
FB9D 8 4 4 50.00% 59 140 2.31 0 0 0 0 0 4

FB10D 1 0 1 0.00% 35 80 2.29 0 0 0 0 0 0
ID101D 58 50 8 86.21% 65 415 5.62 33 33 33 32 30 20
1D51D 0 0 0 N A 32 107 3.34 0 0 0 0 0 0
ID52D 103 76 27 73.79% 38 259 4.82 18 16 16 15 15 61
1D53D 13 10 3 76.92% 61 184 2.85 2 2 1 1 1 9
ID54D 1 0 1 0.00% 46 138 3.00 0 0 0 0 0 0
1D55D 0 0 0 N A 51 83 1.63 0 0 0 0 0 0
ID56D 0 0 0 N A 56 90 1.61 0 0 0 0 0 0
ID57D 3 2 1 66.67% 55 120 2.15 0 0 0 0 0 2
ID58D 1 0 1 0.00% 44 164 3.73 0 0 0 0 0 0
Set FB 60 31 29 51.67% 499 1032 2.01 23 21 21 21 21 10
S et ID 179 138 41 77.09% 448 1560 3.17 53 51 50 48 46 92
Total 239 169 70 70.71% 947 2592 2.56 76 72 71 69 67 102

00
00

Table 6.4: Results of using the nodule detection system with the MLT thresholds set at the 90% CDF value for the top of the vessel 

range, 80% for the bottom of the vessel range and 65% for the bottom of the nodule range. In addition if the bottom of the nodule 

range is higher than 300 then 300 is used as the bottom of the nodule range at steps of 20 between thresholds from the 65% threshold.



- # o f  ; 
n o d u les '

#
detected

#
Missed Sensitivity

Total
Slices

Objects
Detected

FPs/
slice

Initial
Interior Contrast Trimming

V e sse lf
reduced*

FB1E 1 0 1 0.00% 40 89 2.23 0 0 0 0 0 0
FB2E 0 0 0 N A 67 98 1.46 0 0 0 0 0 0
FB3E 34 24 10 70.59% 57 133 1.91 14 14 14 14 14 10
FB4E 1 1 0 100.00% 50 91 1.80 1 1 1 1 1 0
FB5E 1 0 1 0.00% 61 126 2.07 0 0 0 0 0 0
FB6E . 13 7 6 53.85% 40 127 3.00 3 3 3 3 3 4
FB7E 0 0 0 N/A 37 122 3.30 0 0 0 0 0 0
FB8E 1 1 0 100.00% 53 133 2.49 1 1 1 1 1 0
FB9E 8 6 2 75.00% 59 139 2.25 1 1 1 1 1 5

FB10E 1 0 1 0.00% 35 106 3.03 0 0 0 0 0 0
ID101E 58 52 6 89.66% 65 421 5.68 38 37 37 35 34 18
ID51E 0 0 0 N A 32 113 3.53 0 0 0 0 0 0
ID52E 103 78 25 75.73% 38 263 4.87 21 19 19 18 18 60
ID53E 13 10 3 76.92% 61 197 3.07 2 2 1 1 1 9
ID54E 1 0 1 0.00% 46 150 3.26 0 0 0 0 0 0
ID55E 0 0 0 N/A 51 97 1.90 0 0 0 0 0 0
ID56E 0 0 0 N/A 56 116 2.07 0 0 0 0 0 0
ID57E 3 2 1 66.67% 55 120 2.15 0 0 0 0 0 2
ID58E 1 0 1 0.00% 44 180 4.09 0 0 0 0 0 0

Set FB 60 39 21 65.00% 499 1164 2.25 20 20 20 20 20 19
Set ID 179 142 37 79.33% 448 1657 3.38 61 58 57 54 53 89
Total 239 181 58 75.73% 947 2821 2.79 81 78 77 74 73 108

o o

Table 6.5; The same system configuration as in table 6.4 except that now the top of the vessel range is now the 97.5% CDF value and

the bottom of the vessel range is the 92.5% CDF value.



Series
. # o f  

nodules
#

detected
#

Missed Sensitivity
Total
Slices

Objects
Detected

F P s/
slice

Initial
Interior Contrast Trimminçi

V esse l
reduced

Depth 
/  Final

-wair
o n l#

FB1F 1 0 1 0.00% 40 89 2.23 0 0 0 0 0 0
FB2F 0 0 0 N/A 67 98 1.46 0 0 0 0 0 0
FB3F 34 25 9 73.53% 57 138 1.98 19 19 18 18 18 7
FB4F 1 1 0 100.00% 50 91 1.80 0 0 0 0 0 0
FB5F 1 0 1 0.00% 61 126 2.07 0 0 0 0 0 0
FB6F 13 9 4 69.23% 40 142 3.33 5 5 5 5 5 4
FB7F 0 0 0 N/A 37 152 4.11 0 0 0 0 0 0
FB8F 1 1 0 100.00% 53 165 3.09 1 1 1 1 1 0
FB9F 8 6 2 75.00% 59 139 2.25 1 1 1 1 1 5

FB10F 1 0 1 0.00% 35 132 3.77 0 0 0 0 0 0
ID101F 58 52 6 89.66% 65 421 5.68 38 37 37 35 34 18
1D51F 0 0 0 N/A 32 130 4.06 0 0 0 0 0 0
ID52F 103 85 18 82.52% 38 334 6.55 45 42 42 40 40 45
1D53F 13 10 3 76.92% 61 205 3.20 4 4 3 2 2 8
ID54F 1 0 1 0.00% 46 173 3.76 0 0 0 0 0 0
ID55F 0 0 0 N/A 51 94 1.84 0 0 0 0 0 0
ID56F 0 0 0 N/A 56 116 2.07 0 0 0 0 0 0
ID57F 3 2 1 66.67% 55 122 2.18 0 0 0 0 0 2
ID58F 1 0 1 0.00% 44 215 4.89 0 0 0 0 0 0

Set FB 60 42 18 70.00% 499 1272 2.46 26 26 25 25 25 16
Set ID 179 149 30 83.24% 448 1810 3.71 87 83 82 77 76 73
Total 239 191 48 79.92% 947 3082 3.05 113 109 107 102 101 89

vû
O

Table 6.6: The same system configuration as in table 6.5 except now the minimum nodule size is dependant on the cross sectional 

resolution of the CT slices to allow for smaller nodules being detected on slices that have a higher resolution.



The layout of the information in tables 6.3 through 6.6 is identical. The first column 

identifies the particular CT data set. At the bottom each separate set is identified as well 

as a row representing all the sets together. Columns two through four provide nodule 

information about the CT set and the performance o f the nodule detection system. The 

fifth column is highlighted, and identifies the sensitivity performance for the data sets 

identified in the first column. The sixth column relates how many CT slices are contained 

in the data identified in the first column. The seventh column shows how many objects 

were detected by the nodule detection system. The eighth column reports the FPs per 

slice for the particular data set. This number equals the number of objects detected less 

nodules detected, all divided by the number of slices in column six. The last six columns 

identify how many true nodules are identified as nodule candidates at different stages of 

the FP reduction system described in chapter 5. The “Initial Interior” candidates relate to 

nodules that satisfy the minimum area, compactness and major to minor axis ratio criteria 

directly after ROl identification. This refers to nodules that basically pass the first stage 

o f FP reduction. The last column, “Wall only”, refers to nodules that were detected 

because they were identified as wall nodules and were not picked up as interior nodules. 

The other five columns refer to progressive stages of processing interior nodules in the 

FP reduction process. The “Contrast” lists how many nodules still remained after vertical 

contrast analysis for single slice nodules in addition to further area analysis. The 

“trimming” column shows how many nodules survived the 3D trimming stage o f the FP 

reduction process. The “Vessel Reduced” column refers to nodules that survive the FP 

reduction stage that uses vessel objects to check for connectivity and eliminate likely 

vertical vessels that are still considered nodule candidates. The “Depth / Final” column 

declares which nodules passed the 3D depth analysis, the final stage in nodule FP 

reduction. The detected nodules are the sum of the “Wall Only” and the “Depth / Final” 

columns.

The first phase of testing is presented in table 6.3. The performance of the system 

can best be summarized by the sensitivity and FP performance. The sensitivity over all 

data was shown to be 67%. The “ID” set performed at 73% sensitivity with 2.88 FPs per 

slice. If  IDlOl was eliminated from consideration, which dominates the statistical results 

since it contains 103 nodules, the sensitivity was 82% (62/76) with 2.79 FPs per slice.
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This perform ance was prom ising on the ID set especially w hen looking at the set w ithout 

ID 101. The m ain reason for optimism was through an analysis o f  previous techniques and 

their results. Sensitivity and FP performance for various nodule detection techniques can 

be seen in table 6.7.

D etection System Sen&ühntyrange

(max[FPs per slice], m in[FPs per

Arm ato et al. (72% [4.6], 71% [1.5])

Gurcan et al. (84% [1.74])

Fiebich et al. (95.7% [0.3], 30% [6.3])

Zhao et al. (84.2% [5 per set], fail [fail])

Lee et al. (72% [1.1])

K anazawa et al. (90%  [0.3])

P aik  et al. (90% [5.6 per set])

Brown et al. (78% [15 per set])

Our system (80% [3.05])

Table 6.7: Sensitivity and FP performance from different nodule detection systems [8], 

[9], [17], [19], [23], [24], [29], [50], [51] including best and worst reported perform ance

if  available

The range o f  reported sensitivities for different systems varies significantly. The 

w ork done by [19] shows an improvement o f their system in terms o f  FP perform ance not 

due to using  a different data set but because they modified their system. The system does 

perform  consistently  at around 70% sensitivity. FP performance tends to be very good for 

systems that have been evaluated using one testing data set. Quite different results are 

produced w hen some systems are tested on different data sets. For example [29] reported 

excellent results in sensitivity and FP performance. When their system was applied to a 

second data set it perform ed at unacceptable levels o f  30% sensitivity and 6.3 FPs per 

slice [17] as seen in table 6.7. A similar experience was encountered when applying the 

technique designed by  [23] to the “ID” data set used for testing our lung nodule detection
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system. The system actually failed to produce meaningful results as it could not segment 

nodules properly using the LDM technique mentioned earlier in this chapter. The FP 

reduction stage also performed so poorly that no meaningful data was presented. The 

number o f nodule candidates for any CT set exceeded 1000 nodules, o f which the vast 

majority were not formed properly due to the failure of the LDM algorithm on the target 

data set. Even looking at the results by [50] that showed excellent performance their 

system only found nodules that were equal to or larger than a 6 mm sphere. Given this 

consideration, the system would perform poorly on many other data sets, including our 

own, which include many nodules smaller than this criterion. This shows that systems 

that show very promising results need to be evaluated carefully, and that high sensitivity 

and low FPs are no guarantee that the system can maintain that performance on different 

data sets. The system created by [8] reports much more conservative sensitivity and FP 

numbers, but subsequent testing [19] showed this level of performance was maintained in 

terms of sensitivity and improved in the realm of FPs. Also, the data set from [19] was 

perhaps the most similar to the one analyzed by this system as it consisted o f 17 data sets 

and 187 nodules, where our data set has 19 cases and 239 nodules. This data association 

makes their performance results a good minimum benchmark for this system. Given all of 

these results and the preliminary state of this system the performance on the “ID” data set 

was encouraging both in terms of sensitivity and FP performance.

Subsequent testing on the “FB” data set produced significantly worse results than 

the “ID” data set with a sensitivity of only 50% but an improvement in FP performance at 

1.98 per slice. In addition, an examination of the FP reduction stage to stage results is 

helpful to see how the FP system performed. In total, 8 nodule candidates were 

eliminated during the FP reduction stage leading to a decrease from a potential sensitivity 

o f 70% (168/239) to an actual sensitivity of 67% (160/239). This is not a significant 

decrease in sensitivity and the FP reduction process at the initial stage can contain 

approximately 40 FPs per slice, which is an unmanageable number for diagnosis. Given 

this, the FP reduction process is necessary and key to producing an effective system for 

clinical use. The vessel reduction stage was responsible for eliminating most of the 

nodules during the FP process. This occurred in some cases when nodules overlapped 

significantly with large veins. Another problem is that the system does pickup the
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diaphragm  near the bottom  o f  the CT data set, as occurred in case 1D52 and this 

elim inated nodules that w ere overlapped by the diaphragm. To treat this problem  the 

system  attem pts to not include the diaphragm near the bottom  by ensuring the vessel 

clusters have ^perim eter  value below 0.2 as indicated in table 5.3. This exploits the fact 

that the diaphragm  tends to have a large perimeter value when it is in contact with the 

lung w all. H ow ever, this does not work when the segmented diaphragm is thresholded 

when it does not have contact with the lung wall. To alleviate this problem phase 4 o f the 

system, in table 6.6, incorporates a greater than 0 perim eter feature to attempt to reduce 

this effect. R egardless, the diaphragm problem in the vessel reduction stage is not going 

to significantly im prove sensitivity so another modification was made for phase 2 o f  the 

system.

Given that the sensitivity was weak at the beginning o f the FP reduction system, 

the RO I extraction system was targeted. One observation was that for ID52 there were 

many nodules that w ere visibly dense, but fell below the 65% CDF value o f  the lung 

volum e because the CT scan as a whole had a very high density profile. A check was put 

into the system  to ensure faint nodules were not missed due to the 65% CDF cutoff. I f  the 

65% CDF value w as higher than 300, then the threshold levels w ere augmented in 

decreasing increm ents o f  20 from the 65% CDF value to 300. The value o f  300 was 

chosen from  observing figure 5.15 and concluding that the intensity value o f  300 was a 

reasonable value for w hat objectively could be considered to have good contrast with a 

black background. Steps o f  intensity 20 ensure good coverage at that level and are 

adequately sm all to allow  for proper detection o f faint objects. This is based on the 

observation o f  step size and perform ance in the original approach within the nodule range 

o f thresholds.

The results o f  im plem enting this system change in the ROl procedure can be seen 

in table 6.4. The overall sensitivity o f  the system improved to 71 % ( 169/239). There were 

less vessel elim inated nodules at this point for one main reason. There was more o f  a 

skew to detecting wall nodules than before, and since wall nodules are not part o f  the 

vessel elim ination procedure the number o f vessel eliminated nodules dropped from 5 to 

2. A lso the potential sensitivity performance based on the first phase o f  the FP reduction 

process is now  at 74%  (178/239). This is comparable to the difference observed in phase
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1 testing in table 6.3 between potential and actual sensitivity. One major observation is 

that all but one of the new nodules was found in 1D52 so even though sensitivity did 

increase, performance improved mainly due to one CT data set. This is not to say this was 

an ineffective or useless modification. There was one other CT study, FB6, which also 

improved by detecting one additional nodule. Regardless of results the modification was 

one that made sense when the reason for it was examined, in particular when considering 

that it is important to account for CT studies that have irregular density profiles.

Phase 3 was developed with more of a focus towards the “FB” data set. On of the 

major problems with ROl candidates was that some high intensity nodules were not being 

picked up. Due to this the nodule and vessel ranges were reconsidered and new threshold 

CDF values were used for the top and bottom of the vessel range. The 92.5% and 97.5% 

CDF values were used rather than the 80% and 90% values in the previous two results. 

Likewise, only 4 threshold levels were previously used in the vessel range, producing 

steps between thresholds of over 50 in some cases. To alleviate this problem the vessel 

range was chosen to be more compact and the number of threshold levels increased to 10. 

The higher thresholds also ensure a higher standard for the density and connectivity of 

objects that are considered vessels. The previous range was too lenient in terms of the 

density allowance and some diffusion between objects satisfied the vessel density 

criterion. With the higher thresholds there is less of a chance that these diffusions can be 

included as vessels. Also, the higher vessel range and increased inter-level resolution 

ensures that the third phase of development would do a better job of identifying nodules 

which are visually distinct but exist in a high intensity background or are surrounded by 

high intensity objects. The performance of the system at the third phase of development 

can be seen in table 6.5.

The sensitivity results had a decided increase in performance again, now 

perfonuing at 76% in total. This is a 5% increase over the previous phase, which itself 

had a 4% increase over the previous phase. Therefore the total sensitivity improvement is 

consistent with the previous modification on a global sense; however there is a distinct 

difference. The second phase improved sensitivity by basically improving performance in 

case ID52 while only improving the “FB” sensitivity from 50% to 52%. The sensitivity 

for the third phase in the “FB” data set was at 65%, an improvement of 15% and 13%
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over the previous results. This is important because the “ID” set already had relatively 

good sensitivity, even after the first phase o f  testing but the “FB ” set perform ed very 

poorly. A lso, the ID set contains 179 nodules where the “FB” set only contains 60, 

m eaning the ID test set dominates global sensitivity performance. O f the 12 new 

nodules detected, 8 o f  them were from the “FB” set. The significant improvements m ade 

in the FB set in term s o f  detection sensitivity are a very encouraging observation that 

strongly supports the new M LT approach towards the vessel range implemented in the 

third phase o f  the system.

Looking further into the results presented in table 6.5, the potential sensitivity at 

the beginning o f  the FP reduction stage is 79 % (190/239) compared to the actual 

sensitivity o f  76%  (181/239). No one particular FP reduction step is responsible for 

elim inating an exceptional num ber o f  nodules so the FP process seems relatively 

balanced, and has only a small affect on sensitivity.

G iven the good sensitivity perform ance produced by the system after m aking 

m odifications prim arily to the M LT process, the FP reduction stage was now modified 

for the fourth and last phase o f  the system, the results o f  which are shown in table 6.6. 

One observation, w hen looking at the results was that some nodules that were well 

form ed did not get detected and it was concluded that the M LT process was not 

responsible, especially given the modifications made to this point to the thresholding 

approach. The system  was calibrated to accept nodules that were greater than a 4 mm disc 

in size w ith in  the interior and a 3 mm disc along the lung wall. It was found that the 

reason for this w as that the nodules that were not being detected were falling below  the 

m inim um  size criteria, when other nodules in other CT scans that were smaller than them 

visually w ere being detected. Any past literature on the topic o f nodule detection always 

dealt w ith a low er bound on nodule size in terms o f an absolute area as our system has 

been using  to this point. The truth o f  the m atter is that when a human observes the 

nodules in a CT scan they are not concerned about the geometric area; they actually focus 

on the p ixel area o f  the object. W hat happened with the nodule that was not being 

detected w as that the X, Y resolution o f the CT scan was very high, m aking sm aller 

nodules appear visually larger since the pixel area was significantly smaller. Analysis o f  

the system  found that m any CT scans had X, Y resolutions that were in the range o f  0.7
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mm. In the case where the nodule was not being detected the X, Y  resolution was actually 

approximately 0.5 mm. This means that smaller nodules visually large but geometrically 

small. The minimum area criteria were established using the visual feedback o f a 0.7 mm 

CT scan, so to adjust the criteria to be sensitive to the size of the object in terms of pixel a 

modification was made to the lower area criteria. It can be seen in table 6.8 that a CT 

scan with an X,Y resolution of 0.5 mm compared to that of one with a resolution of 0.7 

mm actually means that objects had to appear twice as big visually to have the same area.

t> ^ ^ T e s o lu t io n Pixel Area 3 mm disc pixel area 4 mm pixel disc area

0.7 mm 0.49 mm^ 15 pixels 26 pixels

0.5 mm 0.25 mm^ 29 pixels 51 pixels

Table 6.8: A comparison of the effect on visual size by the X,Y resolution o f CT

scan

Given that the pixel area of a 0.7 mm resolution CT scan was approximately 0.5 mm^, 

and that provided good visual resolution, the pixel area was artificially enhanced to that 

value when calculating the 3 and 4 mm disc area for high resolution CT scans with an 

X,Y resolution smaller than 6.5 mm. This stops short o f making the pixel area absolute, 

but it does address the need to be sensitive to the visual representation o f the nodule. 

Given the past systems were sensitive to nodules as small as a 3 mm disc this new criteria 

lowered the minimum sized nodules that the system could detect. The highest resolution 

CT data set in the testing data was 1D52 with an X, Y resolution of 0,4805 mm. This 

means by modifying the pixel area the new effective area minimums of potential nodules 

were actually the equivalent areas of 15 pixel and 26 pixel objects which represent the 

area of a 3mm and 4mm disc respectively. This means the new minimum area for a wall 

nodule was 3.46 mm^ which is equivalent to a disc with a diameter o f 2.1 mm and the 

new area of for an interior nodule was 6 mm^ which is the same as a disc with a diameter 

o f 2.8 mm. This means that the system was now setting the minimum size criteria o f what 

could be considered a nodule based on the X, Y pixel resolution o f the CT scan. This is 

sensible when considering higher resolution CT scans produce larger and better defined
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representations o f  sm aller nodules. Our CT scans ranged in resolution between 0.7 mm 

and 0.5 mm approxim ately. This modification represents the first nodule detection system 

that reports using variable size criteria based on the CT scan resolution and additionally 

represents only the third system that reports being able to detect nodules below 3 mm in 

diam eter [17], [51].

The results o f  the modification produce a significant improvement in the results, 

displayed in table 6.6. The system sensitivity increased to 80% (191/239), boosted by a 

fairly balanced increase from both test sets. It is important to note that this modification 

only im proved the perform ance o f the CT scans which had a high X, Y resolution. From 

table 6.6 they can be seen to be FB3, FB6-8, FBIO, 1D51-55 and 1D58. This means for 

CT scans w here the m odification took effect the old sensitivity o f  72% (120/167) 

im proved to 78%  (130/167). That represents 10 additional nodules and a sensitivity jum p 

o f 6%, w hich is higher than the total sensitivity jum p o f 3%. This was a very effective 

m odification to the system that clearly performed well in the cases that were targeted. 

Now w ith an overall sensitivity o f  80% the system has improved dram atically from the 

first phase o f  developm ent which had a sensitivity o f  67%. W hat is even more impressive 

is that the potential sensitivity o f  the system when looking at the beginning o f  the FP 

reduction process is 85% (202/239), much higher than the previous value o f 79%  in the 

third phase o f  testing.

A nother very prom ising assessment o f performance comes from looking only at 

nodules that satisfy the m inim um  area criteria o f the system, in this case the total num ber 

o f  nodules drops to 211 from 239. This means the sensitivity o f  the system to nodules 

that satisfy the m inim um  area criteria is 91% (191/211). These are excellent numbers in 

terms o f  sensitivity and shows excellent potential for detecting nodules.

U sing the value o f 91% when comparing to any other reported system this 

provides a very favourable comparison and actually provides a good argum ent that other 

systems perform  at a low er sensitivity than our system does based on the data sets they 

have used. For exam ple, a system such as the one proposed by [9] reports sensitivity o f 

90%, w hich from  table 6.7 represents the pinnacle o f nodule detection sensitivity 

perform ance. H ow ever, it only reports detecting nodules which are larger than a disc with 

a diam eter o f  4 m m  or greater. Given that only 211 nodules meet the m odified size
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criteria in phase 4, and that phase 4 had detected 13 more nodules than phase 3, when 

only the size criteria was altered, it is safe to assume that those thirteen nodules fell 

below the previous size criteria. That means, of the 239 nodules, it is reasonable to 

conclude that 41 nodules fall below the 4 mm diameter disc size criteria. This 

automatically means the system proposed by Kanazawa et al. would miss 41 nodules in 

our test set purely due to its size constraints. They also claim that they detected 95% of 

nodules before their FP reduction process which implemented the area cut-off criteria. It 

can be assumed, in the most extreme case, that all of their nodules were eliminated due to 

them being too small. This means that 5% of their data set consisted of nodules below 4 

mm in diameter. Also, assuming the 5% of their data set that was not picked up by their 

ROl process was above 4 mm in diameter then 95% of their data consisted o f nodules 

above 4 mm in diameter. If they detected 90% of all nodules where only 95% were 

detectable due to the size criteria then their system worked at 94.7% sensitivity above 4 

mm. Given that our test set consists of at most 198 nodules above 4 mm in diameter their 

system would have detected 188 nodules if it operated at a sensitivity of 94.7%. This 

means that at its best, their system could have performed at a total sensitivity o f 78.6% 

(188/239). This is a lower sensitivity than was obtained by our system. It is also 

important to note that this is a best case assumption for their system. A similar argument 

can be made for other systems that report higher sensitivity but use a higher minimum 

area cut-off.

Looking at the results of [51], they used thin section CT which makes detecting 

small nodules easier. Also, their system had an overall detection sensitivity of 83.5% on a 

test set of 79 nodules, which is significantly smaller than our test set of 239 nodules. 

Since our system is operating on thicker slices the detection sensitivity should be lower 

than on a system with thinner slice CT scans where there is significantly less inter-slice 

interference. The study by [17] reports a sensitivity of 84% using a data set o f 63 nodules, 

again a significantly smaller data set than our own. If the performance of our system 

using a subset of 60 nodules from 8 CT data sets in table 6.6 was analyzed the system 

performs at a sensitivity of 90% (54/60) which is higher than the reported results by [17] 

but with a comparable data set size in terms of nodules.
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G iven the results, our system does perform very well in sensitivity and the 

argum ent can and has been made that it has class leading sensitivity based on the results 

and test set w hen com pared to the test sets and results o f  other reported techniques.

The m ajor deficiency in our system is the FP perform ance which is at 3.05 FPs 

per slice. The FP perform ance does range between 1.46 and 6.55 FPs per slice so the 

actual range o f  FP results on a case by case basis can be competitive when com pared to 

other techniques listed in table 6.7. Likewise, due to the diverse nature o f  our test set it is 

difficult to com pare the FP performance o f  other systems given how perform ance is 

highly dependant on the actual CT data sets as our own data has shown given the intra-set 

range o f  FP results. The challenges o f the test set aside, the system ’s FP perform ance is 

acceptable at this stage and there is a focus to improve it with further development.

100



Chapter 7 

Conclusions

Creating this system was a significant challenge and a great opportunity at the 

same time. This system has the opportunity to lead the way in automatic lung nodule 

detection in Canada as no other Canadian based research in this field has been found yet. 

The greatest challenge of creating a lung nodule detection system was the scope o f the 

project. The main objective of this work was to create a fully functional system that was 

practical and effective.

One of the largest obstacles to overcome was the sheer volume of work that 

needed to be done to create a complete system. Everything was built from scratch and 

getting started required finding a direction that could be followed.

Looking at the state o f the art in lung nodule detection research there are many 

different approaches but it is difficult to judge the merits of the systems without access to 

them or their data sets. This makes choosing a path difficult because there are no 

guarantees that the chosen approach is going to be successful. The first phase o f this 

research demonstrated this as a system that had excellent potential, based on the 

presented results, was implemented but performed unacceptably on our CT data. In 

retrospect, with a more critical eye and more understanding of lung nodules, the results of 

the system that was initially examined [23] are not surprising. This was a lesson to look 

deeper than what is presented from the direct performance data.

At this stage of the process a completely functional lung nodule detection system 

has been developed that meets the initial design goals and was created in a very short 

period of time. In addition a lung nodule synthesis tool was created that was used in the 

testing process and additionally provided insight into nodules that helped to develop the 

rest of the system. From this point forward future research work will have this system as
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a basis and a springboard. Each o f the systems can be examined individually and with 

m ore detail. In addition, the techniques that have been implemented in this system can be 

further refined and examined. M ost importantly, new approaches can be carried in the 

context o f  the system  w ith more narrow focus and detail since the creation o f  all the 

com ponents does not need to be a concern.

The results o f  the nodule detection system are very encouraging and show good 

progress w as m ade during the development o f the system. The results rose from a 67% 

total case sensitivity to 80%. Also the sensitivity o f  the “FB” test set rose from 50%  up to 

70%, w hich w as another very encouraging sign. In addition, it has been shown that the 

system ’s sensitivity perform ance is class leading when the context o f the CT data is 

applied to the reported results o f  other techniques. In particular, the number o f  nodules 

and the variety  o f  cases makes our CT data set the most robust set that any system has 

been reportedly  tested on.

In addition to excellent sensitivity performance and a robust data set there are 

m any innovations present in the system that can be built upon and applied to other 

systems. First, a unique 3D region growing approach is used for lung segmentation that 

im proves over volum etric approaches by including more o f the lung volume, in particular 

near the top and bottom  o f  the lungs. Next there is a unique M LT approach that selects 

thresholds based on the CDF values o f  the density profile o f  the lungs. It is the first ROI 

acquisition system  that tries to detect vessels in addition to nodules and uses them in FP 

reduction; this is done by uniquely defining a vessel range among the thresholds used in 

RO l extraction. The system  is only the second system that uses thick slice CT scans to 

find nodules below  3 m m  in diameter, the other being the one developed by Gurcan et al.

[17]. In addition this is the only system that adaptively determines the minimum area 

criterion based on the X, Y resolution o f  the image, taking advantage o f CT scans with 

high cross-sectional resolutions to identify small nodules. One o f the most significant 

innovations involves using a tight bounding box to calculate 2D shape features, w here, in 

past system s the orientation o f the nodule would interfere with accurate feature 

extraction. The system  itse lf is o f  a modular design, permitted through a rule based 

approach. This allow s for future development w here rules and stages can be plugged in 

and out at different points o f  the FP reduction process.
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Given the new ideas presented, and the excellent sensitivity performance on the 

data sets, development on the system must be continued. Even with excellent preliminary 

results, comparing systems that were tested using different data sets still prevents an 

absolute comparison; it only allows analysis and interpretation that forms performance 

conclusions as has been done. It can definitely be said that this system is better than what 

others have proposed but it can be inferred that it appears to have the best sensitivity 

performance among these systems when the context of the data sets is considered. One 

step towards producing a semblance of absolute comparison is the development o f a 

public nodule database [28] that will allow direct comparison to some degree between 

systems. The database is intended to contain 400 nodules within thin slice CT scans. Not 

only will this help systems to be compared but it will also allow research in this area to 

flourish as any researcher will have access to a large database of real lung nodules.

7.1 Future Work

There is much opportunity for future development on this system as it currently 

stands. Developing a lung nodule detection system is a large task with many components. 

Lung volume segmentation, ROI extraction and FP reduction can all be very intricate 

projects of their own, but piecing all three together into a complete system while 

developing all them in parallel leaves the door open for improvements in all three areas.

- The automated lung segmentation process is an evolution from previous 

approaches and performs well in our CT data, but further refinement is possible. The 

trachea is a significant object in the CT scans and further looking at how to segment it 

separately and analyze how it enters the lungs can lead to improving how they are 

segmented in those slices. The heart is a significant object that also intrudes on the 

segmentation and developing techniques that identify it and exclude it from the lung 

volume can potentially improve the segmentation process. In addition, identifying the 

bones around the lungs could help the process significantly as they could be used to 

identify shadows on adjacent slices that increase the number of FPs.

The ROl process is a crucial portion of the lung nodule detection system. A major 

focus of this work was finding the right thresholds and regions to use in the system.
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Im proving the RO I extraction process was shown to increase sensitivity by 

approxim ately 10% in chapter 6. Exploring other potential systems is a crucial area o f  

future research, as the R O l extraction process may be the most important stage o f  a lung 

nodule detection system. Properly extracting the nodules is crucial to allow the system to 

analyze the nodules the same way a radiologist would when looking at the picture. It is 

relatively easy for a person to separate attached nodules from a vessel but not so for an 

algorithm . Even though the LDM algorithm presented earlier failed in its implementation 

the idea behind it is a good one. M odification and developm ent o f that algorithm can 

potentially lead to properly extracting nodules which are strongly attached to other 

vascular tissue, in particular when the intensity o f  the nodule is lower than the attached 

object. This scenario is difficult for a pure thresholding approach as the nodule can not be 

separated from  the attached object. One potential thresholding approach that could work 

for such a system  would be using a density range rather than a threshold. All pixels 

w ithin the range w ould be turned on and the range can move through the density profile 

sim ilarly to a threshold. The step between ranges and the size o f the range would be 

crucial developm ent decisions. This system has taken a step in this direction by using the 

nodule range o f  the threshold steps in this m anner during the ROI extraction process.

The FP reduction stage is crucial in the performance o f the system and is 

dependant on a reliable ROI extraction process. M any new and effective techniques have 

been im plem ented at this stage o f developm ent but FP reduction is the main area that 

needs to be im proved upon within this system. Commercial systems claim FP 

perform ance anyw here in the range o f 8 to 30 nodules [52]. This system has significant 

inter study variance in FP perform ance and in cases is competitive with other research 

systems. It is again difficult to absolutely compare, in particular given how perform ance 

varies am ong system s as illustrated in chapter 6. However, given the excellent sensitivity 

results so far, reducing the num ber o f  FPs in the future is the main focus. By m aking the 

system rule based it was being setup for such future work. FP reduction stages can be 

changed independently and easily. One m ajor modification that can be made is applying a 

EDA stage w hich has shown to be very prom ising in other systems [17], [19]. 

D eveloping such a system  would involve a deep analysis o f the feature spaces o f  lung 

nodules and is a m ajor undertaking that can potentially pay significant dividends in FP
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reduction. Also, many features can be examined further such as the perimeter feature that 

is used to identify interior and wall nodules. Adding new features to the system, testing 

their effeetiveness and analyzing the distribution of these features among nodules and 

FPs is a time consuming but crucial part of further developing the system.

Another consideration in the future will be applying the system to thin slice CT 

scans. The system is setup in a general way and can be applied directly to thin section CT 

scans, however it is designed to be very cautious with 3D features given the inaccuracy in 

3D metrics produced my thick slice CT scans. Adapting the system to thin slice CT scans 

will allow it to take advantage of cleaner and more accurate nodule representations 

potentially producing entirely new features to analyze in the FP reduction process.

The system has a very bright future and there are many important areas that can 

be developed. A fully functional system with innovative components has been produced 

in a very short period of time, and there is great anticipation in exploiting its future 

potential through more research.
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