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Abstract 

Laminar flamelets are often used to model premixed turbulent combustion. The libraries 

of rates of conversion from chemical to thermal enthalpies used for flamelets are typically based 

on counter-flow, strained laminar planar flames under steady conditions. The significance of 

transient strain has been discussed in the literature with most assertions being that their chemical 

time scales are sufficiently short compared to the turbulent time scales to treat them as quasi-

steady. Less discussed is the unsteady motion of a curved flame front component of stretch rate. 

This thesis seeks further understanding of the effect of stretch rate on premixed flames by 

developing and validating a model for use with transient premixed laminar flame dynamics in a 

cylindrically-symmetric outward radial flow geometry (i.e., inwardly propagating flame). A 

FORTRAN code is developed and validated which models a laminar premixed flame exposed to 

an oscillating mass flowrate. This code solves transient equations of continuity, momentum, 

energy, and individual species in radial coordinates. 

In this model, flame response is studied when the flow and scalar fields remain aligned 

(i.e., no strain). The model is applied to conditions in which the flame expands (positive stretch) 
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and contracts (negative stretch) radially by the addition of the externally-defined oscillating mass 

flow rate. The transient response of laminar premixed flames results in amplitude decrease and 

phase shift increase with increasing frequency.  

In order to implement the transient behaviour of flamelets in turbulent modelling more 

efficiently, a frequency response analysis is applied as a process characterization tool to simplify 

the complex non-linear behaviour using flame transfer functions. It is shown that with increasing 

frequency of the perturbation, when equivalence ratio is kept constant, or with decreasing 

equivalence ratio in the same frequency, non-linear behaviour of the flame becomes prominent. 

Therefore, linear models can only predict the flame behaviour with accuracy below the threshold 

of when the fluid and chemistry time scales are the same order of magnitude. Various nonlinear 

models are studied in order to find the most appropriate flame transfer function for higher 

frequencies to extend the predictive capabilities of these models. 
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Chapter 1: Introduction 

1.1 Background and Motivation 

Numerical simulation of turbulent combustion has significance in practical devices, such 

as industrial furnaces, stationary gas turbines, aero-combustors or internal combustion engines. 

The goal of these simulations is to design more efficient and cleaner combustion systems. 

Premixed turbulent combustion is a canonical case for the reactant state of some practical 

combustion systems, such as HCCI (Homogeneous Charge Compression Ignition) engines. The 

modelling of such systems is a challenging task due to the unsteady, multi-component and 

multidimensional nature, and the large range of length and time scales of these flows. These 

complexities have been discussed in the literature as part of the accurate determination of the rate 

of conversion of reactants to products, and the sensitivity of the turbulent burning rate to the 

geometry of the flame [1]. 

The range of potential couplings between the various scales of turbulence and the chemistry 

occurring within the structure of a flame are typically captured by ratios of time scales known as 

the Damkohler (Da) and Karlovitz (Ka) numbers. At large Damkohler numbers the small-scale 

chemistry is essentially decoupled from large-scale flow features.  In these instances, premixed 

turbulent flames have often been viewed as ensembles of premixed laminar stretched flames that 

are wrinkled by the turbulent flow field, in the so-called ‘flamelet’ approach [2]. The local burning 

characteristics have been calculated from steady strained laminar flames as a function of 

equivalence ratio, pressure, temperature, and strain rate [3], but without consideration of potential 

impacts of spatial gradients of these quantities over the flame surface or any temporal gradient. 

The effect of strain rate on the laminar premixed flame has been examined by many studies (e.g., 



2 

 

 

[4]) and it has been shown how different phenomena can affect local burning rates when small 

sections of the turbulent flame experience a range of stretch rates locally [5]. 

Premixed turbulent flames that are employed in low emission combustion systems have 

been the focus of recent work due to their being prone to combustion instabilities [6]. The 

challenges related to these flames have been discussed extensively because of their time-dependent 

and multidimensional aspects. One of the unresolved challenges related to the time dependent 

nature of turbulent flame modeling is the transient response of flamelets to unsteady stretch rates. 

Several efforts have been made to address the importance of unsteady strain rate on the burning 

rate and heat release of flamelets [7]. Less discussed is the unsteady motion of a curved flame front 

component of stretch rate. In flamelet modeling, the properties of a turbulent flame are calculated 

from an ensemble of laminar flamelets. The structure and information of these flamelets are stored 

in a library of strained laminar flames that contain scalar quantities as a function of equivalence 

ratio, pressure, temperature, and strain rate. Since these libraries are based on the steady strained 

flames, the unsteady stretch rate could play an important role in estimation of the actual local 

burning rate and heat release. Therefore, in the continuing effort to address the effect of unsteady 

stretch rate on the flamelet dynamics, the transient response of laminar premixed flames is studied 

as a potential modification to the flamelet library, by considering the effects of curved flame front 

motion. The method that is proposed in this thesis is to capture the transient effects of a curved 

flame in a mathematical relationship such as transfer functions. 

 

1.2 Literature Review 

In this section, a brief literature review is presented to facilitate a concise overview of the 

previous investigations into numerical simulation of laminar premixed flames, transient response 
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of stretched laminar flames, flame transfer functions, and their applications in turbulent 

combustion modeling using flamelet libraries. It is intended to illustrate the areas where further 

research is required. More extensive literature reviews on specific topics are provided at the 

beginning of Chapters 2-4. 

 

1.2.1 Numerical Simulation of Laminar Premixed Flames 

Flame structure and combustion products (especially environmental pollutants) are two 

major aspects of practical combustion devices that need to be comprehensively analyzed and 

understood. Understanding combustion behavior in terms of these aspects and modeling these 

phenomena in detail can be achieved by combining combustion theory with available high 

performance computing technology [8]. The computational revolution in combustion and the 

development of reliable numerical methods for simulating flames using detailed chemical kinetic 

and transport models began decades ago upon the advent of digital computers. The accurate and 

efficient numerical solution of flames is a relatively recent development in the history of 

combustion science and an ongoing research area in the computational combustion field. 

In this thesis, the initial objective is to develop an algorithm to simulate a time-dependent 

laminar premixed flame in cylindrical geometry with detailed chemistry and thermodynamic 

properties. A laminar flame in a one dimensional radial outward flow field not only permits the 

study of the unstretched structure of a reacting flow but also enables the researchers to analyze the 

flame transient response when exposed to a perturbation such as a sinusoidal variation in mass 

flow rate. The motion of a flame front in this geometry results in a stretched flame, while the 

tangential strain rate is non-existent. The unique feature of this geometry is that it generates 
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positive and negative stretch rates in a flame and enables researchers to analyze the flame structure 

and dynamics in a wide range of stretch rates without the effects of having a strain rate. 

Hirschfelder et al. [9] and Spalding [10] were among the first researchers who applied 

numerical methods to model combustion. Numerical simulation of laminar premixed flames has 

essentially followed two approaches [11]. The first one is adopted from Hirschfelder et al. [9], 

who introduced a solution to the time-independent one-dimensional equation in a two-point 

boundary value problem. In the second approach, Spalding [10] described the full time-dependent 

equations not requiring that the flame speed be known a priori. This description appears to be 

mathematically more straight-forward than the steady-state approach. Spalding [10] solved a 

steady adiabatic chemical kinetics problem which included a three-step mechanism. The approach 

Spalding took was marching the time-dependent system of nonlinear partial differential equations 

in time to reach the steady-state solution. 

In the next major advancement in combustion modeling, Dixon-Lewis [12] used time-

dependent partial differential equation solution methods to study hydrogen/oxygen flames. Since 

then, modeling one-dimensional and two-dimensional laminar flames has become the interest of 

several researchers in this field [13, 14, 15, 16]. A promising approach was to use finite-difference 

or finite-volume discretizations to linearize the set of partial differential equations. The equations 

are then solved using a damped, modified Newton's method. Early works using Newton's method 

have included simulation of burner-stabilized methane-air premixed flames [17] and counter-flow 

methane-air diffusion flames [18]. 

Turbulent combustion modeling has become the focus of several research groups since the 

power of computers increased in the 1990s. Methods of simulating turbulent flames that are 

commonly found in the literature include unsteady flamelet modeling [19], PDF modeling [20, 
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21], Direct Numerical Solution (DNS) [22], and large-eddy simulation [23]. With regard to direct 

bearing on algorithmic issues for the aforementioned turbulent flame simulation approaches, the 

accurate and efficient computation of time-dependent laminar flames needs to be modified and 

improved in terms of accuracy and complexity. For example, DNS of turbulent reacting flows has 

been the topic of ongoing research projects recently due to its capability to capture all the time 

scales and therefore the transient effects in the simulations. However, with regard to the current 

computational resources, this method is not efficient in combustion systems with complex 

geometries. 

In computational combustion, there are four governing equations; continuity, momentum, 

energy, and mass species, that need to be solved. There are different ways to formulate the fluid 

dynamic problems, while the mass fractions and the temperature are typically obtained by solving 

the species and energy equations. The first method is called the “primitive variable formulation” 

in which the mathematical model of the transient laminar flame becomes a parabolic set of 

governing equations. The conservation equations in terms of primitive variables is illustrated in 

the next chapter of this thesis (chapter 2). In primitive variable models, as applied in this work, the 

unknowns include pressure, radial velocities, temperature, and species mass fractions. This method 

has been implemented successfully in different works such as [24, 25]. In this formulation, while 

the velocity profile is obtained by the momentum equation, the pressure field can be dealt with in 

different ways. The first method, which will be applied in this thesis, is solving the continuity 

equation together with the momentum and other governing equations in a fully coupled approach. 

The other way of recovering pressure is estimation in one step of a segregated solution algorithm 

by solving a Poisson equation for the pressure, obtained by taking the divergence of the momentum 

equations [26]. As intrinsically there are two governing equations of continuity and momentum, 
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the discretization of the pressure profile should be consistent with the discretization of the 

continuity equation which can be obtained on a staggered grid. It should be noted that staggered 

mesh schemes have drawbacks in complex geometries, in non-orthogonal curvilinear coordinates, 

and when using sophisticated numerical techniques such as locally adapted grids or multi-grid 

methods [26] which are not relevant in this work. 

 

1.2.2 The Effect of Stretch Rate on Flame Dynamics 

Stretch rate (𝜅) as a mechanism to affect the rate of combustion was first introduced by 

Karlovitz et al. [27] as the Lagrangian time (𝑡) derivative of an element of the flame surface area 

(𝐴) as in Eq. (1.1). 

 

𝜅 = (1 𝐴⁄ )(𝑑𝐴 𝑑𝑡⁄ )      (1.1) 

 

In that work, a planar combustion wave, exposed to a velocity gradient, was analyzed and 

the effect of curvature was ignored. Markstein [28] discussed the impact of the motion of curved 

flame fronts normal to itself for the first time. The combination of these two effects; namely, the 

underlying hydrodynamic strain and the flame surface curvature effects on an interface have been 

expressed as stretch rate [29, 30]. Matalon [29] introduced an expression (Eq. (1.2)) for calculating 

stretch rate of a flame in an arbitrary shape on the flame surface indicated by the function 𝐹(𝑋, 𝑡) =

0. 

 

𝜅 = {𝑣𝑓∇. 𝒏 − 𝒏. ∇ × (𝑽 × 𝒏)}
𝐹=0

      (1.2) 
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where 𝑽 is the fluid velocity, 𝒏 is the local normal to the flame front and parallel to the gradient 

in the scalar field (local normal is considered positive when pointing from reactants to products), 

𝑣𝑓 is the speed of an identifiable flame surface feature and thus can be the local flame speed in 

laboratory coordinates. The first term on the right side of Eq. (1.2) represents the flame curvature 

effects and results from the divergent/convergent flow field and motion of the flame in that flow 

field. The second term illustrates the tangential strain rate and results from a non-uniform flow 

field across a scalar field of the flame. The summation of these two terms creates an equivalence 

between the strain and curvature effects, but that is strictly true only for an interface, while flames 

of a finite thickness and multiple scalar species add uncertainty to this equivalence and introduce 

some unique challenges regarding which interface to consider [31, 32]. 

In counter-flow configurations, due to the planar flame shape, the divergence of the scalar 

field (∇.𝒏 = 𝟎) becomes zero and subsequently the first term in Eq. (1.2) is eliminated; however, 

misalignment of flow and scalar fields ((𝑽 × 𝒏) ≠ 0) results in a non-zero value for the second 

term. Therefore, the laminar premixed flame in this geometry is strained. It should be noted that 

in Eq. (1.2), a fixed frame of reference was used in developing the equation. In this condition, the 

effect of curvature for a stationary flame appears implicitly in the second term of Eq. (1.2). Thus, 

when the second term is expanded using appropriate vector identities, it results in [−(𝑉. 𝑛)∇. 𝑛]. 

The other terms resulting from the expansion of the second term are not proportional to curvature. 

Therefore, the total contribution of the flame curvature to stretch rate can be shown using Eq. (1.3): 

 

𝜅 = −𝑆𝑓∇. 𝑛 = −(𝑉. 𝑛 − 𝑣𝑛)∇. 𝑛      (1.3) 
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For instance, in an expanding (propagating) cylindrical or spherical flame, due to the radial 

uniform flow through the flame, stretch is generated only due to flame motion. In this condition, 

𝑆𝑓 = 𝑣𝑛 and 𝑉 = 0, which means the flame displacement speed is equal to the flame burning rate. 

Therefore, the stretch is calculated based on the radius of the propagating flame front as follows. 

 

𝑉. 𝑛 = 0, 𝑆𝑓 = 𝑣𝑛 =
𝑑𝑅

𝑑𝑡
, 𝜅 = 𝑣𝑛∇. 𝑛 =

1

𝑅

𝑑𝑅

𝑑𝑡
      (1.4) 

 

Another representation of total stretch [33] is when the frame of reference is attached to 

the fluid parcel (Eq. (1.5)). In this condition, the flame is considered to be both strained and curved.  

 

𝜅 = (𝑰 − 𝑛𝑛): ∇𝑢 + (𝑣𝑛)∇. 𝑛      (1.5) 

 

The first term is attributed to hydrodynamic (tangential) strain caused by the flow and the 

second term is attributed to the stretch experienced by a curved surface moving with 𝑣𝑛 (laminar 

flame speed). Equation (1.5) can be rewritten as follows:  

 

𝜅 = (𝑰 − 𝑛𝑛): ∇𝑢𝑡 + (𝑢. 𝑛 + 𝑣𝑛)∇. 𝑛      (1.6) 

 

where 𝑢. 𝑛 is the flow velocity in the normal direction. The first term on the right side denotes the 

total tangential strain and the second term denotes the total normal strain. Therefore, at steady 

state, the balance of normal strain and the curvature (𝑢. 𝑛 = −𝑣𝑛) results in zero stretch rate. 

Equation (1.6) is equivalent to Eq. (1.2). With regard to the flame geometry in this study, the first 

approach was taken to calculate the total stretch rate. The disadvantage of using the second 
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approach is to calculate the normal strain and local flame burning rate by selecting an arbitrary 

iso-surface. In the current research, due to the uniform radial flow through the flame front, it is 

more convenient to use the radial position of the flame iso-surface to calculate the total stretch 

rate. However, in flames with a misalignment between flow field and flame front in their structures, 

the second approach provides more convenience due to the total strain rate term. 

A time-dependent investigation in this geometry was performed by Saitoh and Otsuka [34] 

for both premixed and diffusion flames numerically and experimentally. They varied the velocity 

normal to the stagnation plane sinusoidally around its mean. They concluded that the positional 

amplitude of temperature and concentration fluctuations decreased with increasing oscillation 

frequency. In a similar work, Stahl and Warnatz [3] carried out a numerical investigation on the 

transient response of strained flamelets. They studied the influence of time-dependent sinusoidal 

change of strain rate on the flame front behaviour. The dependence of flame oscillation amplitude 

and phase shift with frequency of the strain rate was analyzed and it was concluded that the 

amplitude of flame position oscillation decreases and the phase shift increases with an increase in 

frequency. 

These studies showed that in a counter-flow configuration, the response of a strained flame 

to a periodic change in flow velocity and strain rate is not instantaneous, implying limitations in 

validity of the quasi-steady laminar flamelet assumption in premixed turbulent modeling. As part 

of this endeavour, Petrov and Ghoniem [35] revisited the validity of this assumption by analyzing 

the transient response of premixed methane-air laminar flames to both stepwise and periodic 

changes in strain rate over a range of Lewis numbers and flame temperatures. They concluded in 

a flamelet model, the response of laminar premixed flames can be considered instantaneous for 

two conditions. First, over the entire range of Lewis number only for high flame temperatures, and 
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second, intermediate flame temperature when Lewis number equals unity. Thus, for low and 

intermediate flame temperatures and non-unity Lewis numbers, the model could be modified to 

reflect the lag between flow and flame.  

In order to stress the significance of unsteady stretch rate, dynamics of a laminar stretched 

hydrogen flame have been analyzed when the flame front was strained and curved [36]. Lauvergne 

and Egolfopoulos [37] studied the transient response of laminar premixed flames in a counter-flow 

geometry wherein the flame is strained and was exposed to sinusoidal perturbations of fuel 

concentration as a boundary condition. Although the effects of curvature were not considered, it 

showed many valuable insights including the quasi-steady response at low frequencies (lower than 

a cut-off frequency) and a significantly attenuated response with a phase lag at high frequencies. 

In their study, due to the fact that chemical time scales are shorter than flow time scales, no 

accumulation of mass was observed, which is different from when the flame is exposed to velocity 

or stretch rate change. Huang et al. [38] theoretically studied the response of a premixed flame in 

the counter-flow geometry with a fluctuating strain rate. The range of oscillation frequency was 

below 100 Hz and the strain rate amplitude range was from 10% to 40% of the mean value. 

Important results were obtained from this study; first, strained flames do not respond 

instantaneously to temporal variations in the flow field, as shown in [34] and [7]; second, flamelet 

models that use a quasi-steady assumption in predicting turbulent flame properties had to be 

modified to include unsteady effects. For small amplitudes of perturbation, the flame displacement 

response was linear. However, by increasing the amplitudes of perturbations, nonlinear effects 

dominate the flame behaviour such that the response remains periodic, but the output could not be 

expressed as one sinusoidal function. The phase lag in the flame’s response was seen to increase 

monotonically with frequency and approached 90° at very high frequencies. 
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The above investigations were concerned with the transient response of strained flames, 

while fewer studies have been concerned with the effects of curvature. Giannakopoulos et al. [39] 

numerically studied the effect of flame curvature by using spherically outwardly propagating 

flames. This geometry has also been used extensively to study the influence of flow rate on 

stabilized [40] and flame-stretch interactions in premixed flames (e.g. [41]). In this geometry, due 

to the alignment of flow and scalar fields, the tangential strain rate (the second term in Eq. (1.2)) 

is null, but the flame is stretched because of the motion of the curved flame. In this condition, 

flame stretch varies with time as the flame propagates outward and has a positive value at all times. 

Therefore, in the present study, the transient response of a laminar flame in a cylindrical geometry 

(one-dimensional outward radial flow) could unravel unique aspects of reacting flows dynamics 

by considering both positive and negative stretch rate. 

 

1.2.2.1 The Effect of Flow Oscillation on Turbulent Combustion 

As mentioned before, the dynamics of laminar flamelets are of importance in defining 

turbulent combustion modeling using the flamelet libraries approach. In one of the first studies on 

the influence of large scale wrinkling on turbulent burning velocity, Berestycki and Sivashinsky 

[42] showed that with an increase in amplitude of flow fluctuations the average burning rate 

increases. The importance of the aforementioned study was in the relationship between oscillation 

of burning velocity and local flame front curvature. Aldredge [43, 44], considered a more general 

flow field under the condition of weak flame stretch to analyze the dependency of turbulent 

premixed burning velocity on flow intensity, which agreed with the results in [42]. It was 

concluded that at least a part of the “bending effect,” which is normally seen in combustion 

occurring in high-intensity turbulence [45], results from the weak local flame stretch that modifies 



12 

 

 

the local normal flame speed. In premixed turbulent combustion, burning velocity is enhanced 

linearly by low-intensity turbulence. For a better understanding of the relationship between flame 

surface advection and the intensity of the excitation flow, Aldredge [46] studied the advection of 

a flame front in a transient periodic flow (spatially and temporally) wherein different levels of 

turbulent intensity (low, moderate and large) of flow perturbations were considered analytically 

and numerically. The results were consistent with those obtained in the earlier investigations [44]. 

In recent research, Aldredge [47] studied the flame surface and burning rate increase due to 

wrinkling, by analyzing the effect of multiscale periodic transient flow on isothermal-flame 

propagation. It has been concluded that flame behaves differently in low, intermediate and high 

intensities. In Aldredge’s work, due to the restriction of transient flame surface growth, the local 

normal propagation speed is kept constant and equal to the adiabatic planar flame (laminar flame 

speed). However, in the present thesis, the periodic transient flow is applied to a curved flame 

front, which experiences no strain. All of these studies have shown the important effects of 

turbulent intensity on local burning velocity and from a flamelet modeling point of view, they 

confirm that the unsteady stretch rate effects and transient response of laminar flames should be 

considered in flamelet libraries. However, none of the above studies indicated the individual effect 

of motion of a curved flame on local burning velocity and flamelet dynamics. Therefore, in the 

current thesis, after analyzing the significance of time dependent motion of laminar flame fronts 

on flame behaviour as a potential modification to the flamelet libraries, frequency response 

analysis is presented as a mathematical tool to capture the flame response. 
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1.2.3 Frequency Response Analysis  

With regard to the fact that defining a comprehensive library based on unsteady flamelet 

information is not efficient, it is more rational to link the transient response of laminar flames to 

existing steady flamelet libraries. One of the applicable and efficient techniques that can be applied 

is capturing transient effects of laminar premixed flames in a simple mathematical relation such 

as transfer functions. Frequency response analysis is often used in order to generate these 

functions. 

Laminar premixed flames are described by a system of partial differential equations and 

algebraic constraints that represent the conservation of total mass, momentum, energy, and the 

evolution of individual species mass under the mechanisms of convection, diffusion, and chemical 

reaction. The equations are highly nonlinear and strongly coupled across length and time scales. It 

should be noted that in cases of using reduced chemistry and simple transport properties, the 

transient response of a stretched flame cannot be captured accurately due to the change in the flame 

structure [48]. Therefore, solving a set of governing equations to include the effects of transient 

response of laminar flames in forming flamelet libraries is time consuming, inefficient, and often 

impractical in many turbulent applications. It has been suggested that in order to implement the 

effect of transient response of the stretched flames in turbulent combustion modeling, the overall 

Markstein number could be modified with the frequency and flame transit time [36]. Another 

approach to this problem for a more practical application is to represent the frequency response 

analysis of flames in the form of flame transfer functions. This concept has been used in 

combustion [49] in order to study flame instabilities. Linear [50] and non-linear [51] frequency 

response analyses of laminar [52] and turbulent [53] premixed flames have been considered. The 

motivation is to describe the flame response to flow velocity perturbations as a flame transfer 
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function in order to study and model flame instabilities due to acoustic waves. In some studies, 

such as [54], the transfer function is defined by the ratio of the normalized flame area to velocity 

fluctuations. 

The theoretical studies in [55] used a G-equation and characterized the flame front by its 

mean and perturbation components. Then, solving by Laplace transforms, the frequency response 

can be obtained. However, in this study, the frequency response analysis was obtained based on 

several numerical simulations of a laminar premixed flame.  

Thermo-acoustic instabilities have been studied using a nonlinear describing function 

(instead of a linear flame transfer function), which was determined experimentally [51]. The flame 

response was estimated as a function of frequency and amplitude of perturbation acting on the 

combustion region. It was concluded that nonlinear mechanisms dominate the dynamics of real 

systems and give a better understanding of the flame dynamics.  

In order to test the capability of the transfer functions, some random-looking input 

perturbations that include discrete low, intermediate, and high frequency oscillations are applied 

to the system and are compared to the numerical simulation with complex chemistry results. Low 

and high frequency perturbations show excellent accuracy. Thus, transfer functions show a 

promising methodology to predict the flamelet response to a change in upstream flow field. 

 

1.3 Objectives 

The main objective of this thesis is to investigate the effects of the motion of a curved flame 

(unsteady stretch rate due to flame curvature) on flame dynamics and its importance in modifying 

steady flamelet libraries in order to model turbulent combustion. The following secondary 

objectives will serve as milestones to achieve this main objective: 
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 Developing and validating a transient code to simulate a laminar flame in 

cylindrically-symmetric radial flow geometry (Chapter 2).  

 Proposing an approach to revisit the steady state approach in laminar flamelet 

models by analyzing transient response of laminar premixed flames when exposed 

to an oscillating flow field (Chapter 3). 

 Generating transfer functions (flame describing functions) based on transient 

response datasets in order to predict the flame behavior and capture the flame 

response when exposed to a change in upstream flow field. This comprises 

studying first order linear, higher order linear, and nonlinear systems to propose 

the best accuracy (Chapter 4).  
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Chapter 2: A Numerical Algorithm for Modeling Laminar Premixed Flames 

Exposed to an Oscillating Flow Field in Cylindrically-Symmetric Geometry 

 

This chapter is based on the following paper: 

 

Meysam Sahafzadeh, Larry W. Kostiuk, Seth B. Dworkin, “A Numerical Algorithm for Modeling 

Laminar Premixed Flames Exposed to an Oscillating Flow Field in Cylindrically-Symmetric 

Geometry,” Submitted to Computer Physics Communications (under review), October 2017. 

 

 2.1 Introduction  

Adding more accuracy to simulation algorithms and making them more applicable is an 

ongoing goal of combustion modeling. One of the most significant opportunities to improve these 

algorithms is adding time dependence to detailed laminar flame simulations with detailed 

chemistry models, so the structure of the flame can be analyzed when it is subjected to a transient 

process, such as ignition or fluctuation in inlet mass flow rate of reactants [56, 14]. It is vital to 

include major and minor species in addition to detailed chemistry in order to capture all 

thermochemical and hydrodynamic aspects of the flame structure. These algorithms have been 

developed to simulate flames in various geometries such as one- or multi-dimensional planar 

flames which are stabilized in the counter-flow domain or propagating spherical geometry. 

However, flames in all of these shapes experience a positive stretch rate, which results from either 

strain in the counter-flow planar geometry or propagating spherical flame front (which can be 

observed in zero gravity combustion experiments). It is worth mentioning that positive stretch rate 

is a fluid element defined by its normal pointing from reactants to products will always be 

increasing its area in the perpendicular direction as it passes through the flame. In this regard, this 

thesis initially studies the development of such a mathematical model and numerical methods for 
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unsteady laminar premixed flame problems. The particular emphasis of this model is on 

computational algorithms that enable their fully coupled solution, including all species with their 

transport and thermodynamics properties and detailed chemistry. With this algorithm, one can 

estimate the flame structure and trace the flame dynamics in fast transient conditions. Another 

novelty of the presented algorithm is the modeling of the laminar flame in cylindrical coordinates, 

which allows the study of unstretched, positively stretched, and negatively stretched properties of 

a laminar premixed flame in one geometry. All of these forms of stretch are observed in a turbulent 

premixed flame [5], thereby providing relevance to high Damkӧhler Number flame that occur in 

practical combustion devices.  In the following chapter of this thesis, the governing equations, 

boundary conditions, transport fluxes, thermodynamic properties and kinetic modeling are 

explained in detail. Then, the numerical technique and solution methods are presented. In the end 

of this chapter, some of the main applications of the algorithm including flame structure and 

burning rate calculation in steady-state conditions, and transient responses to sinusoidal variations 

in inlet mass flow rate, are discussed. 

 

2.2 Model Description 

It is desired to create one-dimensional (radially) outward flow of a pre-mixture of CH4 and 

air (O2 and N2) of specifiable composition and temperature, in cylindrical geometry, as depicted 

in Fig. 2.1. The mass flow rate of reactants (𝑚̇) was imagined to occur along the axial coordinate 

(Fig. 2.1-a) and then be distributed radially outward through a porous cylinder with characteristics 

to create a uniform diverging flow. It is at the exit plane of the porous cylinder that the 

computational domain begins. The computational domain ends at the surface of a larger cylinder 

where the identical mass flow is extracted. The system is assumed to be of sufficient axial length 
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(i.e., the height of the cylinder) and neglecting gravity, a one-dimensional flow in the radial 

direction is obtained, which is independent of the axial or azimuthal coordinates. 

 

 
 

Fig. 2.1 (a) The cylindrically-symmetric geometry (side view), (b) Stabilized stationary flame 

around burner (top view) 

 

When the computational domain (grey area in Fig. 2.1-b) is initially filled with pure 

nitrogen at high temperature (e.g., 1800 K), the incoming reactant gas mixture is ignited and a 

cylindrical flame (dotted lines in Fig. 2.1-b) forms between the inlet and outlet boundaries. The 

result is an inwardly propagating flame, and this flame will reach steady state (i.e., becoming 

stationary in space) if there is a convection velocity within the computational domain that balances 

the diffusive transport of heat and mass associated with the flame. Although this flame has not 

been studied experimentally due to difficulties in buoyant stability, it represents unique features 

for theoretical and numerical studies of laminar premixed flames for two main reasons. First, 

similar to a stationary spherical flame [57], the flow field in the domain is radially diverging. In 
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such a condition, the strain of the flow is balanced by the curvature of the flame, and thus the total 

stretch rate equals zero, which is essential to analyze the separate effects of curvature and strain 

rate. Second, oscillating the flow at the inlet boundary enables the study of flame creation 

(expanding) and destruction (contracting). 

The structure of the code is illustrated in Fig. 2.2 for a better understanding of the procedure 

taken in laminar flame computation. The code includes three main sections; namely, transport, gas 

phase chemistry, and the flame solver. As will be explained in detail in the following sections, 

‘transport’ links to a properties’ library required to estimate transport physics, while  ‘gas phase 

chemistry’ includes all elements, species, reactions, and thermodynamic properties. The centre of 

the code is called “flame solver” which includes all governing equations, boundary conditions and 

the solution method. The output of the flame code is written to solution DAT files, which can be 

modified to plot the results at specifiable time steps. In the default mode of the code, the solutions 

are written every 100 time steps. 
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Fig. 2.2 The structure of the code including the Transport and Gas Phase Chemistry packages 

and the Flame Code 

 

2.2.1 Governing Equations 

Laminar premixed flames are governed by a complicated system of partial differential 

equations and algebraic constraints that describe the conservation of total mass and energy, and 

the balance of momentum and the creation and destruction of individual species mass under the 
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mechanisms of convection, diffusion, and chemical reaction. The equations are highly nonlinear 

and strongly coupled across length and time scales. In addition, in a combustion system, detailed 

chemistry models and reactions should be employed which makes the system of equations more 

nonlinear and complex. 

This model is usually formulated in terms of the “primitive variables”— pressure, velocity, 

temperature, and the species mass fractions.  For this specific geometry: 

Conservation of total mass: 

 

𝜕𝜌

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝜌𝒖𝑟) = 0 (2.1) 

 

where 𝒖 is the fluid velocity vector, 𝜌 the density, 𝑟 the radius, and 𝑡 the time. 

Balance of momentum: 
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𝜕

𝜕𝑟
(𝑟𝒖) = 0 (2.2) 

 

In Eq. (2.2), 𝑃 is the total pressure including static and dynamic pressures; and is 𝜇, the 

dynamic viscosity of the mixture. As is common in the study of low speed flows of dilute gases, 

the bulk viscosity is assumed to be negligible [58]. According to [59], for a laminar methane air 

flame in the range of equivalence ratios considered in this study, acoustic wave starts to affect the 

flame in frequencies over 10 kHz. Therefore, for the application here, it is reasonable to neglect 

the acoustic wave effects even at frequencies as high as 2000 Hz. Accordingly, the term associated 

with bulk viscosity in the viscous tensor can be neglected as well. The bulk viscosity should be 



22 

 

 

considered for different compressible flow applications, such as shock/flame interactions, 

supersonic flames, or hypersonic flows [60]. 

Conservation of energy: [48] 

 

𝜌𝐶𝑝 (
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(2.3) 

 

In this equation, 𝑘 is the species index which ranges over the 𝑁𝑠𝑝 species; 𝑇, temperature; 

𝑌𝑘, mass fraction of species 𝑘; 𝐶𝑝 and 𝐶𝑝,𝑘 are the specific heats at constant pressure of the mixture 

and species 𝑘, respectively; 𝜆 the mixture coefficient of thermal conductivity; ℎ𝑘 the specific 

enthalpy of species 𝑘; 𝑊𝑘 the molecular weight of species 𝑘; 𝜔̇𝑘 the molar production rate of 

species 𝑘; and 𝑣̅𝑘 diffusion velocity of species 𝑘. Viscous work and the material derivative of 

pressure were neglected [61]. Radiation properties of non-premixed turbulent flames have been 

widely recognized as a significant component of heat transfer in combustion systems [62]. Non-

premixed flames radiate between 10% and 60% of their chemical energy release depending on fuel 

type. The radiation predominantly involves emission from soot, CO2, and H2O [62]. Conversely, 

in simulating turbulent premixed flames, the effects of radiation only become important when 

nitrogen reactions are a subject of study (due to the high-temperature sensitivity of NO kinetics), 

and when modeling laminar premixed flames near-limits (such as extinction) [63]. Some examples 

of including radiation effects in flame models are reduced cooling airflows in lean premixed 

combustors, miniaturization of combustors, and the possible use of radiation sensors in combustion 
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control schemes. Therefore, in the application presented in this research, radiation was ignored 

without losing any significant effects on the results. 

Balance of individual species mass: 

 

𝜌
𝜕𝑌𝑘

𝜕𝑡
+ 𝜌𝒖

𝜕𝑌𝑘

𝜕𝑟
+

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜌𝑌𝑘𝑣̅𝑘) − 𝑹𝒌 = 𝟎 (2.4) 

 

where 𝑹𝑘 is the volumetric mass production rate of species 𝑘 due to potentially many chemical 

reactions. 

The ideal gas equation of state completes the system: 

 

𝜌 = (𝑃𝑊̅ 𝑅𝑇⁄ ) (2.5) 

 

where 𝑊̅ is the mean molecular weight of the mixture, and 𝑅 is the universal gas constant. 

The low Mach number (𝑀𝑎) assumption has been applied in this model which is valid for 

all applications in laminar flame modeling. This assumption asserts that the flow Mach number 

(the ratio of the fluid speed to the speed of sound in that fluid) is much less than unity. The pressure 

field 𝑃 in a gaseous flow consists of the static pressure field 𝑝𝑠 (the pressure of the fluid at rest 

which is the atmospheric pressure in this case) plus an additional pressure component associated 

with the velocity of the fluid 𝑝𝑑 (dynamic pressure). The ratio of dynamic and static pressure scales 

by the square of the Mach number (i.e.,
𝑝𝑑

𝑝𝑠
∝ 𝑀𝑎2), and therefore in the low Mach number flows 

studied here 𝑝𝑠 ≫ 𝑝𝑑 or 𝑀𝑎 ≪ 1. Thus, the total pressure can be approximated by the static 
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pressure alone, as the dynamic pressure can be neglected, thus 𝑃 ≈ 𝑝𝑠. The static pressure or the 

total pressure, can be calculated using the ideal gas law. 

 

𝑃 ≈ 𝑝𝑠 =
𝜌𝑅𝑇

𝑊̅
 (2.6) 

 

The flow with 𝑀𝑎2 ≪ 1 can be analyzed by standard perturbation methods which provide 

useful information on the solutions of hydrodynamically incompressible flows. In such flows, the 

density changes occur mainly by temperature changes, and pressure changes do not affect the 

density. This independency of pressure and density is usually what happens in typical laminar 

flames [14]. 

However, under fast transient conditions (high frequency oscillations or ignition), 

information that is communicated to downstream of the flow through acoustic pressure waves is 

faster than convective and diffusive transport [56]. When the governing equations are formulated 

based on an incompressible assumption, it states that the whole flow field responds to pressure 

waves instantly. In order to eliminate this assumption and allow the system to have a slower, and 

more physical response to a disturbance, the pressure distribution is required to be considered in 

the dynamics of the flow. Keeping the pressure as a dependent variable in the momentum equation 

is an appropriate way to eliminate the aforementioned assumption. The excess or dynamic 

pressure, 𝑝𝑑 = 𝑃 − 𝑝𝑠 is now included in the total pressure in the dependent variables which, in 

general, is a function of both time and radial location in an open burner configuration such as that 

of the current model. 

This code has been developed for modeling premixed flames in the laminar regime, where 

the oscillations in mass flow rate (inlet velocity) are smaller than the flame burning rate at steady 
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state, and also the flow time scale is greater than the chemistry time scale. As explained previously, 

the low Ma number assumption is a reasonable approximation in modeling laminar flames. 

However, when the frequency of oscillation becomes on the order of 10 kHz, the low Ma number 

assumption fails and the flame should be modeled as compressible flow. In that condition, the 

acoustic wave effects should be considered. 

 

2.2.2 Diffusion Model 

2.2.2.1 The Mixture-Averaged Diffusion Approximation 

It has been shown that using the mixture averaged diffusion approximation can result in 

less computational difficulties in calculating diffusion velocities among other available methods 

in the literature [8]. This approximation neglects pressure-gradient-driven diffusion, thermal 

diffusion, and binary species diffusion (the sum of the diffusive effects on the 𝑘𝑡ℎspecies caused 

by concentration gradients in all other species). In order to calculate the diffusion velocities, a 

Fickian description of diffusion with a mixture-averaged diffusion coefficient for the 𝑘𝑡ℎ species, 

𝐷𝑘𝑚 is considered in this method. By implementing this model, the diffusion velocities can be 

estimated as: 

 

𝑣̅𝑘 = −𝐷𝑘𝑚

∇𝑌𝑘

𝑌𝑘
+ ∑ 𝐷𝑘𝑚∇Y𝑘

𝑁𝑆𝑃

𝑘=1

                                                 𝑘 = 1, … , 𝑁𝑆𝑃 (2.7) 

  

2.2.3 Mass Conservation Constraints 

In this section, three mass conservation constraints that should be considered in modeling 

a laminar flame are explained. From the definitions of the mixture density and mass-averaged 
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velocity in terms of the (partial) densities and flow velocities of the individual species, the 

following constraints can be concluded: 

 

∑ 𝑌𝑘

𝑁𝑆𝑃

𝑘=1

= 1,     ∑ 𝑌𝑘

𝑁𝑆𝑃

𝑘=1

𝑣̅𝑘 = 0 (2.8) 

 

The other mass conservation constraint is derived from the chemical source terms and is 

defined as follows: 

 

∑ 𝑅𝑘

𝑁𝑆𝑃

𝑘=1

= ∑ 𝑊𝑘

𝑁𝑆𝑃

𝑘=1

𝝎̇𝑘 = 0 (2.9) 

 

These constraints ensure that a net creation of mass or a net diffusion of mass relative to 

the mass-averaged bulk flow will not occur in the simulation. With these constraints, it is possible 

to indicate that the total mass conservation equation results from summing up all the species 

equations. When computing highly diluted flames with approximate transport coefficients, a 

common and accepted approach is to “lump” all the diffusion velocity variations into that of 

nitrogen as follows: 

 

𝑣̅𝑁2
= −

1

𝑌𝑁2

∑ 𝑌𝑘

𝑁𝑆𝑃

𝑘=1

𝑣̅𝑘 (2.10) 
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This method will certainly satisfy the constraint. However, this approach cannot be applied 

to flames where nitrogen is not present in excess. A more general way of ensuring this constraint 

is satisfied is to add a correction velocity to the diffusion velocity of each species at each point in 

the flow field. The correction velocity is defined as: 

 

𝑣̅𝑐 = − ∑ 𝑌𝑘

𝑁𝑆𝑃

𝑘=1

𝑣̅𝑘 (2.11) 

 

Note that in the case of using an appropriate known model to calculate these velocities, 

they would automatically satisfy the constraint and the correction velocity would disappear. In 

other words, this solution results from the mutual incompatibility of the diffusion velocities as 

calculated from common approximate formulas. It should be noted that in this simulation both 

approaches have been studied for a methane-air stoichiometric flame. Since both methods led to 

promising results and the second approach is more general and practical, the correction velocity 

method was implemented in the code. 

 

2.2.4 Thermodynamic Properties and Transport Coefficients 

In the detailed numerical simulation of combustion systems, the estimation of 

thermodynamic properties and transport coefficients is essential. The species and mixture specific 

heats and the species enthalpies are two thermodynamic properties in the aforementioned 

governing equations. In addition to thermodynamic properties, there are three required transport 

coefficients comprising the dynamic viscosity, the thermal conductivity, and the mixture-averaged 

diffusion coefficients. Transport coefficients are estimated based on an averaging process using 
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the relevant parameters for each component in the mixture. This mixture-averaged approach has 

been the standard in combustion modeling due to its accuracy and efficiency in the CHEMKIN 

library. The original CHEMKIN library code was written at Sandia and published in two separate 

packages in the early 1980s, one dealing with chemical kinetics and thermodynamics and the other 

with the calculation of transport properties [64, 65]. In this thesis, the first package is referred as 

“CHEMKIN” and the second as “TRANSPORT”. 

Finding the solution variables from the governing equations (e.g., the temperature profile 

from the solution of the energy equation), requires the aforementioned mixture thermodynamic 

properties, and the mixture density, which is recovered from the ideal gas law1. One of these 

thermodynamic properties is the specific heat capacity at constant pressure for the 𝑘th species 

which depends only on temperature. The mixture specific heat at constant pressure is then taken 

as the mass average of the species specific heats. The specific enthalpies are given mathematically 

by a definite integral of the species specific heats over a prescribed temperature range; in 

CHEMKIN, however, these quantities are computed more efficiently as simple polynomial fits of 

the published data. 

 

2.2.5 Chemistry Models 

One of the major frontiers of combustion science is the generation of reliable detailed 

kinetic models for fuels, and expanding the application of such models to study challenging 

burning regimes in technologically complex systems. As mentioned before, the development of 

numerical codes that are able to incorporate these detailed chemistry models is essential. 

                                                 
1 This has been done through the density subroutine in CHEMKIN library 
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The problem includes the size of the models and the amount of computation required, and 

the wide difference of time scales supported by them, which leads to the problem of stiffness. The 

reaction set of an arbitrarily complex, detailed chemistry model can be written in symbolic form 

as: 

∑ 𝜈̇𝑘𝑖𝜒𝑘

𝑁𝑠𝑝

𝑘=1

⇌ ∑ 𝜈̈𝑘𝑖𝜒𝑘

𝑁𝑠𝑝

𝑘=1

,      𝑖 ∈ ℛ (2.12) 

 

where 𝑘 and 𝑖 are the species and reaction indices, respectively; 𝜈̇𝑘𝑖 and 𝜈̈𝑘𝑖, the stoichiometric 

coefficients of reactant 𝑘 in both forward and reverse reaction 𝑖; 𝜒𝑘, the chemical symbol of species 

𝑘; and ℛ, the set of 𝑁𝑟𝑒𝑎𝑐 reactions. A rate of progress 𝑄𝑖 may be defined for each elementary 

reaction 𝑖 according to the law of mass action, and the sum of the rates of progress for all reactions 

involving species 𝑘, multiplied by the appropriate net stoichiometric coefficient, gives the molar 

production rate for that species: 

 

𝑄𝑖 = 𝑘𝑖
𝑓(𝑇)∏(

𝜌𝑌𝑘

𝑊𝑘
)
𝜈̇𝑘𝑖

𝑁𝑠𝑝

𝑘=1

− 𝑘𝑖
𝑟(𝑇)∏(

𝜌𝑌𝑘

𝑊𝑘
)
𝜈̈𝑘𝑖

𝑁𝑠𝑝

𝑘=1

 (2.13) 

 

𝜔̇𝑘 = ∑(𝜈̈𝑘𝑖 − 𝜈̇𝑘𝑖)𝑄𝑖

𝑖∈𝑅

 (2.14) 

 

𝑘𝑖
𝑓
and 𝑘𝑖

𝑟 are the forward and reverse rate constants for reaction 𝑖, respectively. These constants 

strongly depend on temperature. The relationship for the forward coefficient is modeled by a 

modified Arrhenius expression: 
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𝑘𝑖
𝑓(𝑇) = 𝐴𝑖𝑇

𝛽𝑖𝑒𝑥𝑝(−𝐸𝑖 𝑅𝑇⁄ ) (2.15) 

 

In Eq. (2.15), the coefficient 𝐴𝑖, the temperature exponent 𝛽𝑖, and the activation energy 𝐸𝑖, 

are usually quantified by the kinetic mechanism experimentally. Then the results are tuned as 

needed to achieve the correct prediction of premixed laminar flame speeds or ignition and 

extinction criteria. Although it is possible to specify Arrhenius parameters separately for the 

reverse reactions, the CHEMKIN2 [64] default is to back out the reverse rate constant from the 

forward rate constant and the equilibrium constant: 

 

𝑘𝑖
𝑟 =

𝑘𝑖
𝑓

𝐾𝑐𝑖
 (2.16) 

 

The equilibrium constant is determined from a thermodynamic calculation. Although 𝐾𝑐𝑖 

is given in concentration units, the equilibrium constants are more easily determined from the 

thermodynamic properties in pressure units; they are related by: 

 

𝐾𝑐𝑖 = 𝐾𝑝𝑖 (
𝑃𝑎𝑡𝑚

𝑅𝑇
)
∑ 𝜈𝑘𝑖

𝐾
𝑘=1

 (2.17) 

 

The equilibrium constants 𝐾𝑝𝑖 are obtained with the relationship: 

  

                                                 
2 CHEMKIN is a software package and its purpose is to facilitate the formation, solution, and 

interpretation of problems involving elementary gas-phase chemical kinetics. 
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𝐾𝑝𝑖 = 𝑒𝑥𝑝 (
Δ𝑆𝑖

0

𝑅
−

Δ𝐻𝑖
0

𝑅𝑇
) (2.18) 

 

The Δ refers to the change that occurs in passing completely from reactants to products in 

the 𝑖𝑡ℎ reaction. The reason for this reliance on the equilibrium constant is due to the fact that the 

Arrhenius model is naturally empirical, the formula for which is well founded from a theoretical 

point of view [8]. The mechanism used in all the simulations in this thesis, includes 36 species and 

219 reactions. 

 

2.3 Numerical Model 

A standard solution approach for such flow problems is to use staggered grids in the context 

of finite-volume methods [66]. Therefore, a finite volume formulation was derived for the one-

dimensional total mass, momentum, energy, and species equations. The boundary conditions were 

based on the underlying physical characteristics of the model. For the inlet boundary (burner 

surface): 

𝑚̇ = 𝑚̇0 + 𝐵sin(𝜔𝑡), specified mass flow (for steady state B = 0) 

𝑑𝑝 𝑑𝑟⁄ = 0, zero gradient for pressure 

𝑇 =  𝑇𝑢 (unburned mixture temperature) 

𝑌𝑘  =  𝑌𝑘,𝑢 (unburned mixture conditions) 

and for the outlet boundary conditions: 

𝑑𝑚̇ 𝑑𝑟⁄ = 0, zero gradient for mass flow rate (𝑑(𝜌𝑢𝐴) 𝑑𝑟⁄ = 0) 

𝑝 = 𝑃𝑎𝑡𝑚, atmospheric pressure 

𝑑𝑇 𝑑𝑟⁄ = 0, zero gradient for temperature 
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𝑑𝑌𝑘 𝑑𝑟⁄ = 0, zero gradient for species mass fractions were applied, assuming that the boundary 

was far enough from the flame that the flow composition is no longer appreciably changing. 

 

2.3.1 Discretization Techniques 

The grid stencil and boundary conditions for individual dependent variables are explained 

in this section. All dependent variables are represented at the control-volume center nodes, except 

the radial velocity which is represented at the control-volume faces. The spatial discretization uses 

the finite-volume method for the uniform grid system. For the momentum, energy, and species 

equations, the diffusive terms were discretized using a second-order central difference scheme 

while the convective terms were discretized using the exact exponential solution to approximate 

the values between the centers of two control volumes [67]. 

In order to discretize the governing equations based on the finite volume method, the vector 

and the integral form of these equations were used. 

 Conservation of total mass: 

 

𝜕𝜌

𝜕𝑡
+ ∇. 𝜌𝒖 = 0 (2.19) 

 

Conservation of momentum: 

 

𝜕𝜌𝒖

𝜕𝑡
+ ∇. 𝜌𝒖𝒖 = ∇. 𝑺 + 𝒇 (2.20) 
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Conservation of energy: 

 

𝜕𝜌𝑒

𝜕𝑡
+ ∇. 𝜌𝒖𝑒 = ∇. (𝒖. 𝑺) − ∇. 𝒒 + 𝒖. 𝒇 + 𝑸 (2.21) 

 

Balance of individual species mass: 

 

𝜕𝜌𝑌𝑘

𝜕𝑡
+ ∇. 𝜌𝑌𝑘𝒖 = −∇. 𝒋𝒌 + 𝑹𝒌 (2.22) 

 

In these governing equations; 𝑆 is stress tensor; 𝒇 = ∑ 𝑓𝑘
𝑁𝑠𝑝

𝑘=1 , body force vector, where the 

force can in theory vary depending on the chemical species (e.g., due to electromagnetic fields in 

a plasma), or it will simply be a constant force due to gravity (g); however, in this work, this term 

is neglected; 𝑒, specific total energy (chemical, sensible, and kinetic); 𝒒, diffusive energy flux 

vector; 𝑸, volumetric energy source (e.g., due to an ignition source or a laser), to be ignored in this 

work; 𝒋𝑘, diffusive mass flux of species 𝑘; 𝑹𝑘, volumetric mass production rate of species 𝑘 due 

to chemical reaction; 𝑊̅, mean molecular weight of the mixture; and 𝑅, universal gas constant. 

The symbol ∇ is the vector derivative operator. 

Since the fluids used in this research and many similar studies are known to be Newtonian, 

the stress–strain relation is considered approximately linear. For such fluids, the components of 

the vector momentum conservation equation are known as the Navier–Stokes equations [8] and 

the stress tensor has the following familiar form: 
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𝑺 = −𝑝𝑰 + 𝑻 (2.23) 

 

𝑻 = 𝜇((∇𝒖) + (∇𝒖)𝑇) −
2

3
𝜇∇. 𝒖𝑰 (2.24) 

 

which is the sum of the isotropic pressure tensor and the viscous stress tensor (𝑻). 𝜇 is the dynamic 

viscosity of the mixture which, like the other transport coefficients, is a function of the 

thermodynamic state of the mixture, and 𝑰 is the unit tensor. The diffusive fluxes of energy and 

mass are given as follows: 

 

𝑞 = −𝜆∇𝑇 + ∑ ℎ𝑘𝒋𝑘

𝑁𝑆𝑃

𝑘=1

+ 𝑞𝑟𝑎𝑑 (2.25) 

 

𝑗𝑘 = 𝜌𝑌𝑘𝑣̅𝑘 (2.26) 

 

The radiative flux (𝑞𝑟𝑎𝑑) is neglected in this work. The Dufour effect, whereby an energy 

flux arises from concentration gradients, is typically negligible in high-heat-release combustion 

processes, and hence is omitted above. The energy equation is transformed into an equation for 

temperature using various thermodynamic relationships for energy and enthalpy in laminar flames. 

The result is presented in Eq. (2.27). 

 

𝜌𝐶𝑝

𝐷𝑇

𝐷𝑡
= 𝜔́𝑇 +

𝐷𝑝

𝐷𝑡
+ ∇. (𝜆∇𝑇) − (𝜌 ∑ 𝐶𝑝,𝑘𝑌𝑘𝒖𝑘

𝑁𝑆𝑃

𝑘=1

) . ∇𝑇 − ∇. 𝑞𝑟𝑎𝑑 + 𝑇: ∇𝒖 (2.27) 
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In Eq. (2.27), 𝜔́𝑇 = −∑ ℎ𝑘𝑊𝑘𝜔̇𝑘
𝑁𝑠𝑝

𝑘=1  the heat source due to chemical reaction; and 𝐷/𝐷𝑡 

denotes the material derivative. In this equation, the terms involving the heat due to viscous effects 

in the fluid (friction) and the material derivative of pressure, related to mechanical work, are 

negligible for low speed unconfined flows [61]. 

The code solves for 𝑝, 𝑢, 𝑇, 𝑌𝑘 as dependent variables and density 𝜌 which is determined 

by Eq. (2.5) when necessary. The transient term in the continuity Eq. (2.1) is rewritten in terms of 

the actual solution variables as in [25] because density is not one of the dependent variables: 

 

𝜕𝜌

𝜕𝑡
=

𝜌

𝑃

𝜕𝑃

𝜕𝑡
−

𝜌

𝑇

𝜕𝑇

𝜕𝑡
− 𝜌𝑊̅ ∑ (

1

𝑊𝑘

𝜕𝑌𝑘

𝜕𝑡
)

𝑁𝑆𝑃

𝑘=1

 (2.28) 

 

The continuity equation is spatially first order and only neutrally stable; therefore, an 

artificial damping term of the form 𝜎
Δ𝑟

𝑢0
(
𝜕2𝑝

𝜕𝑟2) is introduced to maintain numerical stability. In this 

additional term, 𝑢0 is a reference velocity and 𝜎 is a coefficient which should be chosen 

appropriately. In order to guarantee that the solution is not affected by this diffusive term, 𝜎 =

10−3 was found acceptable without affecting the solution accuracy [56]. Consequently, the final 

form of the mass conservation equation is given by: 

 

𝜌 (
1

𝑃

𝜕𝑝

𝜕𝑡
−

1

𝑇

𝜕𝑇

𝜕𝑡
− 𝑊̅ ∑ (

1

𝑊𝑘

𝜕𝑌𝑘

𝜕𝑡
)

𝑁𝑆𝑃

𝑘=1

) +
1

𝑟

𝜕

𝜕𝑟
(𝜌𝒖𝑟) −

𝜎Δ𝑟

2𝑢0

𝜕2𝑝

𝜕𝑟2
= 0 (2.29) 

 

All of the above governing equations can be presented in integral form: 
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𝑑

𝑑𝑡
∭𝜌∅𝑑∀

𝑑∀

+ ∬(𝜌∅𝑉.⃑⃑  ⃑ 𝑛̂ − ∇. Γ∇∅)𝑑𝑠

𝑑𝑠

= ∭ℵ𝑑∀

𝑑∀

 (2.30) 

 

where ∅ is the conserved variable, ℵ is the source term, Γ is the diffusion parameter, 𝑠 is the surface 

area of the control volume, and ∀ is the control volume. All finite volume methods require 

derivation of the discretization equations directly from the integral form, applied to an arbitrary 

control volume. The control volume considered in this model is shown in Fig. (2.3), where P is 

the centre of the control volume. 

 

 

Fig. 2.3. Computational domain starting from the burner surface (inner cylinder, 𝑟 = 0) to outer 

boundary (outer cylinder 𝑟 = 𝑅) 

 

For instance, discretizing the temporal terms can be illustrated as follows: 
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𝜕𝜌

𝜕𝑡
→ ∫ ∫

𝜕𝜌

𝜕𝑡

𝑡+Δ𝑡

𝑡

𝑑𝑡𝑑𝐴 → [𝜌𝑷
𝑛+1 − 𝜌𝑷

𝑛]𝑣𝑜𝑙𝑷

𝑒

𝑤

 (2.31) 

 

𝜕𝜌𝑢

𝜕𝑡
→ ∫ ∫

𝜕𝜌𝑢

𝜕𝑡

𝑡+Δ𝑡

𝑡

𝑑𝑡𝑑𝐴 → [𝜌𝑒
𝑛+1𝑢𝑒

𝑛+1 − 𝜌𝑒
𝑛𝑢𝑒

𝑛]𝑣𝑜𝑙𝑒

𝐸

𝑷

 (2.32) 

 

𝜕𝜌𝑇

𝜕𝑡
→ ∫ ∫

𝜕𝜌𝑇

𝜕𝑡

𝑡+Δ𝑡

𝑡

𝑑𝑡𝑑𝐴 → [𝜌𝑷
𝑛+1𝑇𝑷

𝑛+1 − 𝜌𝑷
𝑛𝑇𝑷

𝑛]𝑣𝑜𝑙𝑷

𝑒

𝑤

 (2.33) 

 

𝜕𝜌𝑌𝑘

𝜕𝑡
→ ∫ ∫

𝜕𝜌𝑌𝑘

𝜕𝑡

𝑡+Δ𝑡

𝑡

𝑑𝑡𝑑𝐴 → [𝜌𝑷
𝑛+1𝑌𝑘𝑷

𝑛+1 − 𝜌𝑷
𝑛𝑌𝑘𝑷

𝑛]𝑣𝑜𝑙𝑷

𝑒

𝑤

 (2.34) 

 

And the diffusion terms can be discretized (second order discretization) from the integral 

form: 

 

∇. 𝜎∇𝑃 → ∫ ∫∇. 𝜎∇𝑃

𝑒

𝑤

𝑑𝑟𝑑𝑡 → [𝜎𝑒𝐴𝑒

𝑃𝐸 − 𝑃𝑷

Δ𝑟
− 𝜎𝑤𝐴𝑤

𝑃𝑷 − 𝑃𝑊

Δ𝑟
]
𝑛+1

Δ𝑡

𝑡+Δ𝑡

𝑡

 (2.35) 
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−
4

3
𝜇 [∇. (∇𝑢) +

2

𝑟
∇𝑢 −

2𝑢

𝑟2
)]

→ ∫ ∫ (−
4

3
𝜇 [∇. (∇𝑢) +

2

𝑟
∇𝑢 −

2𝑢

𝑟2
)])

𝐸

𝑃

𝑑𝑟𝑑𝑡

𝑡+Δ𝑡

𝑡

→ −
4

3
𝜇 ([𝐴𝐸

𝑢𝑒𝑒 − 𝑢𝑒

Δ𝑟
− 𝐴𝑃

𝑢𝑒 − 𝑢𝑤

Δ𝑟
]
𝑛+1

+ [
2

𝑟

𝑢𝐸 − 𝑢𝑷

Δ𝑟
]
𝑛+1

− [
2𝑢𝑒

𝑟2
]
𝑛+1

)Δ𝑡 

(2.36) 

 

∇. 𝜆∇𝑇 → ∫ ∫∇. 𝜆∇𝑇

𝑒

𝑤

𝑑𝑟𝑑𝑡 → [𝜆𝑒𝐴𝑒

𝑇𝐸 − 𝑇𝑷

Δ𝑟
− 𝜆𝑤𝐴𝑤

𝑇𝑷 − 𝑇𝑊

Δ𝑟
]
𝑛+1

Δ𝑡

𝑡+Δ𝑡

𝑡

 (2.37) 

 

∇. (𝜌𝑌𝑘𝑣̅𝑘) → ∫ ∫∇. (𝜌𝑌𝑘𝑣̅𝑘)

𝑒

𝑤

𝑑𝑟𝑑𝑡 → [𝐴𝑒(𝜌𝑌𝑘𝑣̅𝑘)𝑒 − 𝐴𝑤(𝜌𝑌𝑘𝑣̅𝑘)𝑤]𝑛+1Δ𝑡

𝑡+Δ𝑡

𝑡

 (2.38) 

 

And the convective terms can be discretized (second order discretization) from the integral 

form: 

 

∇. 𝜌𝑢 → ∫ ∫∇. 𝜌𝑢

𝑒

𝑤

𝑑𝑟𝑑𝑡 → [(𝜌𝑢𝐴)𝑒 − (𝜌𝑢𝐴)𝑤]𝑛+1Δ𝑡

𝑡+Δ𝑡

𝑡

 (2.39) 

 

∇. 𝜌𝑢𝑢 → ∫ ∫ ∇. 𝜌𝑢𝑢

𝐸

𝑷

𝑑𝑟𝑑𝑡 → [(𝜌𝑢𝑢𝐴)𝐸 − (𝜌𝑢𝑢𝐴)𝑷]𝑛+1Δ𝑡

𝑡+Δ𝑡

𝑡

 (2.40) 
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∇. 𝜌𝑢𝑇 → ∫ ∫∇. 𝜌𝑢𝑇

𝑒

𝑤

𝑑𝑟𝑑𝑡 → [(𝜌𝑢𝑇𝐴)𝑒 − (𝜌𝑢𝑇𝐴)𝑤]𝑛+1Δ𝑡

𝑡+Δ𝑡

𝑡

 (2.41) 

 

∇. 𝜌𝑢𝑌𝑘 → ∫ ∫∇. 𝜌𝑢𝑌𝑘

𝑒

𝑤

𝑑𝑟𝑑𝑡 → [(𝜌𝑢𝑌𝑘𝐴)𝑒 − (𝜌𝑢𝑌𝑘𝐴)𝑤]𝑛+1Δ𝑡

𝑡+Δ𝑡

𝑡

 (2.42) 

 

All of the source terms are calculated on the centre of the control volume (P). 

 

2.3.2 Solution Algorithm 

2.3.2.1 Modified Newton’s Method 

Once the coupled, nonlinear system of equations, shown in the previous sections, has been 

discretized based on finite volume methods, a solution should be implemented on the one-

dimension grid for all of the dependent variables. The problem contains a total of Ndep dependent 

variables at each grid point. In this method, X⃑⃑ ii=0,1,2,..
n=0,1,2,..

 is the array of all unknowns (dependent 

variables) at time step 𝑛 and Newton’s iteration 𝑖𝑖 at all the control volumes 𝑗𝑗, which is equal to 

Ncv × Ndep. The complete vector of X⃑⃑  is shown below: 

 

X⃑⃑ = [P1, u1, T1, Y1,1, … , Yk,1, … , Pj, … , uj, … , Tj, … , Y1,j, … , Yk,j]
T
 (2.43) 

 

The discretized equations (continuity, momentum, energy and mass species conservation 

equations) are presented in residual form as follows: 
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ℱ⃑ (X⃑⃑ )  =  0 (2.44) 

 

The system is solved iteratively using Newton's method at each time step using the initial 

guess X⃑⃑ 0, in which the 𝑖𝑡ℎ iteration takes the form: 

 

X⃑⃑ i+1 = X⃑⃑ i + ΔX⃑⃑  (2.45) 

 

where ΔX⃑⃑  is calculated as follows: 

 

[J ][ΔX⃑⃑ ] = −ℱ⃑  (2.46) 

  

Here, J  is the Jacobian matrix with entries defined as: 

 

Ji,j ≈
ℱi(Xj + δ) − ℱi(Xj)

δ
 (2.47) 

 

where 

 

δ = r × X⃑⃑ j + a (2.48) 

 

and where the relative and absolute perturbations, r and a are chosen to be the square root of the 

computer’s unit round off (8.4 × 10−8). The Newton iteration continues until the maximum norm 

of ΔX⃑⃑  is reduced to within a user-specified tolerance. Newton's method is considered to have 
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converged when the scaled 2-norm of the 𝐾𝑡ℎ update vector is below a specified tolerance (Eq. 

(2.49)). In the convergence criterion for Newton's method, 𝑆𝐹𝑗 is the scale factor of the variable 

associated with the 𝑗𝑡ℎ value of X⃑⃑ . The convergence criteria was selected as 10-3 to 10-4, which will 

serve to provide 3 to 4 significant digits in each computed value [68]. In this study, the relative 

tolerance is kept at 10-4. If the solution is converging within a few Newton’s iterations, as 

determined by theoretical estimates [69], then the Jacobian can be reused for the next iteration 

without substantially degrading progress towards a converged solution. This enhancement is 

known as 'modified' Newton's method [17]. Since the most time-consuming part of this 

computation is Jacobian matrix formation, reducing the number of Jacobian evaluations makes the 

simulation much faster. 

 

√∑ (
𝑋𝑗

𝐾+1 − 𝑋𝑗
𝐾

𝑆𝐹𝑗
)

2
𝑁𝑑𝑒𝑝×𝑁𝑐𝑣

𝑗=1

𝑁𝑑𝑒𝑝 × 𝑁𝑐𝑣
≤ 𝑇𝑜𝑙 

(2.49) 

 

2.3.2.2 Linear System Solution 

The linear system in Eq. (2.46) should be solved in every Newton's method iteration. In 

this model, an iterative technique, the bi-conjugate gradient stabilized method (Bi-CGSTAB) 

linear solver [70] with a block Gauss–Seidel pre-conditioner is applied [71]. Bi-CGSTAB, which 

is developed for the numerical solution of non-symmetric linear systems, is a variant of the bi-

conjugate gradient method (Bi-CG) and has faster and smoother convergence than the original Bi-

CG as well as other variants such as the conjugate gradient-squared method (CG-S). Therefore, 
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Bi-CGSTAB produces more accurate residual vectors compared to the CG-S and it is very 

competitive with other non-symmetric linear systems solvers such as GMRES [72]. 

Since the problem was solved with dimensional variables, as opposed to their non-

dimensional counterparts, it is necessary to discuss the actual physical size of the computational 

domain. The naturally occurring length scale of this problem is the thickness of the flame, which 

is expected to be of the order of 3 mm. Consequently, the calculated results could be expected to 

depend on the radius of curvature of the flame if it were of the same order of magnitude as the 

flame thickness. To avoid these size dependencies, the inflow boundary was set to be 10 mm 

(burner surface) such that the radius of curvature of the flame (35 mm) was at least 10 times that 

of its thickness (3 mm). 

 

2.4 Computational Results and Performance 

2.4.1 Ignition 

The first step to start the simulation is to ignite the reactants. To reach a steady state 

solution, the lean reactant mixture with equivalence ratio of 0.8 at 300 K was introduced into pure 

nitrogen at 1800 K (nitrogen is inert in this model), which has initially filled the computational 

domain. The mass flow rate in this simulation is 0.0725 kg/s.m. The temperature and species fields 

evolve until they reach steady state. It is worth pointing out that this stationary flame was solved 

by time stepping the transient model with steady boundary conditions stated in section 2.3. In the 

beginning of the simulation, the time step was kept small enough (e.g. 10−6s) to avoid convergence 

difficulties and also to maintain accuracy. Once the flame is formed, the time step is increased by 

the factor of 0.1 at each time iteration until it gets to 10−5s. Figure 2.3 illustrates how the 

temperature field and reactants mass fractions form initially upon ignition and move towards 
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steady state for the specific case of an equivalence ratio equal to 0.8. (Equivalence ratio is a non-

dimensional measure of the relative amounts of fuel and air such that a value of 1.0 is a 

stoichiometric mixture, and values less that one have excess air in the reactants.) As separated by 

different line colours, the first three lines (blue) in all plots show that the temperature and the 

concentration of the reactants (methane and oxygen) are increasing without any reactions 

occurring. In the next 4 time steps (shown by red lines), the reactions take place and the 

temperature rises while the concentrations of the reactants drop. In the final stage of this process, 

as depicted by the green lines, the profiles are formed and they are only moving away from the 

burner with minor changes to reach the steady state condition (black line). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 

 

 

 

 
 

Fig. 2.4 Evolution of temperature field and reactants mass fractions from ignition to steady state 

at different times 

 

As can be observed in Fig. 2.4, during the first three time steps in Fig. 2.3, when the 

reactions have not taken place yet, no products are formed. Starting from the next time step, major 

products can be seen in the domain. After the first molecule of the reactants is cracked, radicals 

(minor species) are formed in the domain (Fig. 2.5), and the intermediate reactions occur. 
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Fig. 2.5 Evolution of products mass fractions from ignition to steady state condition at different 

times 

 

In Fig. 2.5, among 31 minor species, 6 of them are illustrated due to their importance in 

reaction mechanism and analyzing a flame structure. Also, in experimental studies, the 

concentration of these species are usually measured and reported. As can be seen in Fig. 2.5, due 

to the fast production and consumption, the concentration of these species is significantly lower 

than the other major species in the reaction layer. 

 

 

Time Evolution 

S
tead

y
 S

tate 

Time Evolution 

S
tead

y
 S

tate 



46 

 

 

 

 

 
 

Fig. 2.6 Evolution of minor species mass fractions from ignition to steady state condition in 6 

different times 
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2.4.2 Steady State Conditions 

Once the difference between the last two time steps reaches a proper value, the last solution 

was saved as the steady state result. The important variables are also saved separately to be plotted 

if needed. In order to ensure the validity of the solution, two different methods can be used. In the 

first method, the experimental burning velocity of a laminar premixed flame from the literature is 

compared to the burning rate of the simulated flame. In the second method, the equilibrium 

concentration of the final species on the product side can be compared to the values reported in 

the literature. These methods are explained in more detail in the next chapter (chapter 3). It should 

be noted that comparison to experimental results in an identical geometrical configuration is not 

possible due to a lack of information in literature. Setting up such a burner and running an 

experiment in this geometry is prohibitively challenging due to the buoyancy effects. 

 

2.4.3 Transient Boundary Condition 

Once the steady state solution is obtained, it can be used as an initial condition for a 

transient boundary case. As mentioned earlier in the introduction, different transient boundary 

conditions such as sinusoidal variation of mass flowrate (inlet velocity), pulse, ramp, or step 

functions could be applied to this code. The transient response of laminar flames to these functions 

are important due to their similarities to flow perturbations upstream of a turbulent flame front. 

The example of using a sinusoidal function as an inlet boundary condition of mass flow rate is 

presented in the next chapter. 

 

2.5 Summary 

In this chapter, a numerical algorithm has been developed in order to simulate a one-

dimensional time dependent laminar premixed flame in radial coordinates. The importance of 
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developing this code in combustion research is to seek further understanding of the effect of stretch 

(transient effects of a curved flame front) on premixed flames by considering laminar flame 

dynamics in a cylindrically-symmetric outward radial flow geometry (i.e., inwardly propagating 

flame). This numerical model was designed to study the flame response when the flow and scalar 

fields align (i.e., no tangential strain on the flame) while the flame either expands (positive stretch) 

or contracts (negative stretch, which is a case that has been seldom explored) radially. First, for a 

specific equivalence ratio, a steady state solution was obtained using time stepping and steady 

boundary conditions. In the next step, by changing the boundary conditions to transient, the steady 

flame can be introduced as the initial condition in order to study the flame behaviour in an 

oscillating flow. The transient results are presented in the next chapter, where a comparison has 

been made between an unstretched stationary flame and stretched expanding and contracting 

flames. The unique aspect of this code is that the flame is subjected to both positive and negative 

stretch while the effect of strain rate is minimized.  

With regard to an inwardly-propagating premixed cylindrical flame that is forced to 

radially expand and contract, this numerical study has been applied to revisit the quasi-steady 

assumptions for laminar flamelet models when the flame is subjected to both positive and negative 

stretch. Therefore, this code can be used to study the effects of different parameters such as mean 

curvature, frequency, amplitude, etc. on local burning rate of laminar premixed flames. The results 

can be used in order to capture each specific flame behaviour in a simple mathematical relation 

using a transfer function, as will be demonstrated in the coming chapters. 
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Chapter 3: A Transient Response of a Laminar Premixed Flame to a Radially 

Diverging/Converging Flow 

 

This chapter is based on the following published paper: 

 

Meysam Sahafzadeh, Larry W. Kostiuk, Seth B. Dworkin, “Transient response of a laminar 

premixed flame to a radially diverging/converging flow,” Combustion and Flame, vol. 179, pp. 

51–62, May 2017. 

 

3.1 Introduction 

In premixed turbulent combustion, the local flame experiences both positive and negative 

stretch. Kostiuk and Bray [5] studied the distribution of stretch rates on the flamelet surface; it was 

shown that in an outwardly propagating spherical flame, 30% to 50% of the flame is under 

compression (i.e., negative stretch rates) at any time. Therefore, modeling the region of negative 

stretch rates in terms of consumption velocity and analyzing the mean effects of stretch rate on 

conversion from reactants to products is of importance. However, as mentioned previously, the 

geometry considered in the literature to analyze flamelets, namely, counter-flow flame 

configurations, only involves positive stretch.  

In this chapter, through the consideration of an inwardly-propagating premixed cylindrical 

flame that is forced to radially expand and contract, a numerical investigation has been made to 

revisit the quasi-steady assumptions for laminar flamelet models when the flame is subjected to 

both positive and negative stretch. Furthermore, since the flame stretch in this work is due to the 

motion of a curved flame, the second term in Eq. (1.2) is zero and the effects of tangential strain 

are eliminated. Finally, in order to study the effect of equivalence ratio on transient response of a 
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laminar flame to a periodic flow, two fuel lean flames are compared with the stoichiometric 

condition. 

In premixed turbulent combustion, the time-varying vortices stretch the flamelets and cause 

small curvature on flame fronts; therefore, generating libraries to describe the flamelets based on 

steady laminar stagnation point flames (planar strained flames) has been challenged in some ways 

[73]. One of these challenges is related to the instantaneous structure of a turbulent flame wherein 

the flame front includes positive stretch and negative stretch at certain locations. The planar 

strained flames, which are only positively stretched, are not capable of describing the concave 

curved flame fronts towards the fresh gases. As has been mentioned earlier, most premixed 

turbulent flames involve negative stretch and highly curved flame fronts, therefore, to generate a 

more rigorous flamelet library to model a premixed turbulent flame, in addition to a counter-flow 

configuration, the time-dependent motion of a curved flame should be included. The model that 

has been proposed and developed in the previous chapter enables the study of this aspect of 

flamelets and the inclusion of the negative stretch in the computations of a laminar premixed flame. 

  

3.2 Flame Geometry and Numerical Model Specification  

The model developed in the previous chapter was used to create a one-dimensional radially 

(cylindrical) outward flow of a pre-mixture of methane and air (comprising oxygen and nitrogen) 

in stoichiometric composition and ambient temperature (Fig. 2.1).  The radius of the burner is 5 

cm and the mass flowrate for the stoichiometric condition is considered to be 0.2 kg/s.m.  
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 3.2.1 Numerical Simulation 

The governing equations comprise a set of coupled, nonlinear partial differential equations 

and algebraic constraints to impose conservation of mass, momentum, energy and the evolution of 

individual species mass. For the application presented here, the low Mach number approximation 

is applied. This problem was formulated in terms of primitive variables – pressure, velocity, 

temperature, and species mass fractions. The details of these equations are presented in the 

previous chapter. 

In this work, GRI-Mech 3.0 [74] is used within CHEMKIN [64] subroutines to model 

combustion without nitrogen chemistry. This mechanism includes 36 species and 219 reactions.  

Since a uniform grid was applied in developing this model, in order to have a grid 

independent solution, the whole domain (6 cm) was first divided into 300 control volumes (Δ𝑟 =

0.02 𝑐𝑚). In the second simulation, the number of control volumes was doubled to 600 (Δ𝑟 =

0.01 𝑐𝑚) and eventually increased to 1200 (Δ𝑟 = 0.005 𝑐𝑚). These three simulations were used 

to compare the solutions’ differences by calculating GCI (Grid Convergence Index) [75]. In order 

to calculate GCI, the following Eq. (3.1) was used: 

 

 

where 𝑟21 is the ratio of the control volume size in the first and second simulations (𝑟21 = 2), 𝑝 

and 𝑒𝑎
21 are defined in Eq. (3.2) and Eq. (3.3), respectively. 

𝐺𝐶𝐼𝑓𝑖𝑛𝑒
21 =

1.25𝑒𝑎
21

𝑟21
𝑝 − 1

 (3.1) 
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where 𝜀32 = 𝜖3 − 𝜖2, 𝜀21 = 𝜖2 − 𝜖1, 𝜖 is the solution on the corresponding grid, and 𝑞(𝑝) = 0 for 

constant 𝑟. 

 

 

The value of GCI calculated for the fine grid was an order of magnitude less than 1% 

(typical acceptable range in CFD is 1%-5%). In order to ensure that minor species, such as H, OH, 

and CH (which have sharp gradients compared to other species in the flame), are resolved in the 

grids used in the simulation, their differences in one control volume on various grids were studied. 

Minor species concentrations changed by less than 5% between neighbouring control volumes 

with the fine grid (600 control volumes). 

In terms of time steps used in transient computations, according to [37], the choice of Δ𝑡 =

𝜃/200 where 𝜃 is the period of oscillations, was found to be generally sufficient. Therefore, 

selecting constant Δ𝑡 = 10−06 s is reasonable for the simulations up to 2000 Hz. A simple analysis 

of reaction time scales shows that the typical evolution time for the species is of the order of 

1.1 × 10−05 s, which is several orders of magnitude smaller than the smallest oscillation flow time 

scale (𝜏𝑓𝑙𝑜𝑤 = 0.0005 s) for the perturbations that travels through the preheat and reaction layers. 

Therefore, selecting a constant time step of 10−06 s is adequate for capturing all the chemical and 

flow computations. 

𝑝 =
1

ln (𝑟21)
|𝑙𝑛 |

𝜀32

𝜀21
| + 𝑞(𝑝)| (3.2) 

𝑒𝑎
21 = |

𝜖1 − 𝜖2

𝜖1
| (3.3) 
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3.2.2 Solution Methodology 

A standard solution approach for such flow problems is to use staggered grids in the context 

of finite-volume methods [66]. Therefore, a finite volume formulation was derived for the one-

dimensional total mass, momentum, energy, and species equations. The diffusive terms were 

discretized using a second-order central difference scheme while the convective terms were 

discretized using the exact exponential solution to approximate the values between the centers of 

two control volumes [67]. The boundary conditions were based on the underlying physical 

characteristics of the model. For the inlet boundary (burner surface): 𝑚̇ = 𝑚̇0 + 𝐵sin(𝜔𝑡), 

specified mass flow (for steady state B = 0), 𝑑𝑝 𝑑𝑟⁄ = 0, zero gradient for pressure, 𝑇 =  𝑇𝑢 

(unburned mixture temperature), 𝑌𝑘  =  𝑌𝑘,𝑢 (unburned mixture conditions) and for the outlet 

boundary conditions: 𝑑𝑚̇ 𝑑𝑟⁄ = 0, zero gradient for mass flow rate (𝑑(𝜌𝑢𝐴) 𝑑𝑟⁄ = 0), 𝑝 = 𝑝𝑎𝑡𝑚, 

atmospheric pressure, 𝑑𝑇 𝑑𝑟⁄ = 0, zero gradient for temperature, 𝑑𝑌𝑘 𝑑𝑟⁄ = 0, zero gradient for 

species mass fractions were applied, assuming that the boundary was far enough from the flame 

that the flow composition is no longer appreciably changing.  

Once the coupled, nonlinear system of equations had been discretized, the system was 

solved iteratively using Newton's method at each time step and continues until the maximum norm 

of the solution vector was reduced to within a specified tolerance. Since the convergence of 

Newton’s method requires a sufficiently good initial guess and many convergence problems with 

this method can be eliminated by applying time-stepping, a time-dependent approach is used to 

solve this one-dimensional flame problem instead of solving a steady-state boundary value 

problem directly. This method has been chosen mainly because it is robust and it converges for 

sufficiently small time steps. Newton’s method has been used to solve the system of nonlinear 

governing equations for each time step. Typically, the relative (scaled) tolerance should be in the 
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range of 10-3 to 10-4 [8]. The linear system formed in Newton iteration was solved using a Bi-

CGSTAB linear solver [70]. In general, the Bi-CGSTAB convergence criteria (10−07) should be 

a few order of magnitudes smaller than Newton’s method convergence tolerance (10−04). 

Since the problem was solved with dimensional variables, as opposed to their non-

dimensional counterparts, it is necessary to discuss the actual physical size of the computational 

domain. Consequently, the calculated results could be expected to depend on the radius of 

curvature of the flame if it were of the same order of magnitude as the flame thickness. To avoid 

these size dependencies, the inflow boundary was set to be 50 mm such that the radius of curvature 

of the flame (80 mm) was at least 20 times that of its thickness (3 mm).  

 

3.3 Results and Discussion 

3.3.1 Steady State Condition 

For ignition, the reactant mixture at 300 K was introduced into pure nitrogen at 1800 K, 

which initially filled the computational domain. The temperature and species fields evolve until 

they reach steady state. It is worth pointing out that this stationary flame was solved by time 

stepping of the transient model with steady boundary conditions. Figure 3.1 depicts the species 

mass fractions and temperature profile of the stationary flame at the stoichiometric condition. To 

ensure the final product condition was met, the solution was tested for domain length independence 

by doubling its size and verifying solution consistency. In order to achieve a mesh independent 

solution and also ensure that the resolution is sufficient to capture the thin reaction layers of minor 

species, a non-uniform grid was used with spacings varying from 0.02 cm to 0.005 cm. This 

stationary flame was used as the initial condition of the time-dependent boundary condition flame 
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and also to compare some of its characteristics with expanding and contracting flames at various 

frequencies.  

 

 

 

 
 

 
 

Fig. 3.1 (a) Temperature and mass fractions of major species, (b) and (c) Species mass fractions 

of minor adiabatic product species 

 

Prior to presenting the periodic results, steady computational results were verified against 

appropriate conditions in the literature. Currently, there are no experimental results for this exact 
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geometry, so the results were compared to those of others in terms of the flame velocity, 

temperature, and species mass fractions. The unstretched structure of steady flame in this geometry 

and the small ratio the flame radius to its thickness make this comparison valid. The first test was 

a comparison with the equilibrium state temperature and composition. The Chemical Equilibrium 

Calculation Spreadsheet [76] which invokes JANAF thermodynamical tables [77] was used to 

estimate the equilibrium state. In Table 3.1, the equilibrium results are compared to the burned gas 

composition calculated herein at the end of the computational domain where all gradients were 

zero, and showed very good agreement. 

 

Table 3. 1: Comparison of the equilibrium state and burned gas of major species and some minor 

species 

 Equilibrium State Burned Gas 

Temperature (K) 2213.3 2213.6 

Major Species Mass Fractions 

CH4 0.00000 0.00000 

O2 0.00616 0.00615 

N2 0.72500 0.72500 

H2 0.00002 0.00002 

H 0.000001 0.000001 

O 0.00001 0.00001 

OH 0.00182 0.00175 

H2O 0.12043 0.12042 

CO 0.00855 0.00801 

CO2 0.13838 0.13829 

 

As discussed previously, even though this stationary flame has a finite curvature, it is not 

stretched. To compare to planar unstretched flames it is important to avoid the potential impact of 
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this curvature. The flame radius of curvature was ~80 mm, while the flame thickness was ~3.2 mm 

so this flame can be considered sufficiently flat to warrant comparison to a planar premixed flame. 

Therefore, similar to a one-dimensional planar laminar premixed flame with stoichiometric 

methane-air reactants, the flame speed should be close to 36.6 cm/s in the stoichiometric flame 

(𝜑 = 1.0) and 28.6 cm/s in the fuel lean flame (𝜑 = 0.8) [78]. The flow velocity in the domain 

near the flame is shown in Fig. 3.2, where a decrease in unburned gas mixture velocity can be 

observed in the vicinity of 𝑟 =  0.08 m due to the outward flow around the cylinder. Once the 

flow enters the flame region, the velocity reaches a minimum of 36.6 cm/s for the stoichiometric 

flame, 28.6 cm/s for the fuel lean flame (𝜑 = 0.8) and 17.5 cm/s for 𝜑 = 0.7. Also shown in Fig. 

3.2 as horizontal dashed lines, are the estimated planar unstretched laminar burning velocities of a 

stoichiometric and a fuel lean methane-air flame at atmospheric pressure reported in [78] which 

has been selected here for comparison as it is among the more classical studies in flame velocity 

measurements. There is excellent agreement between the experiments and the current simulation, 

demonstrating that the steady state solution computed here captures the basic physical processes 

of a methane-air flame. 
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Fig. 3.2 The velocity profile of a stationary flame for comparison with flame speeds for the 

planar flame geometry given in [78] 

 

As mentioned previously, the steady state solution was obtained based on the transient code 

with steady boundary conditions. Therefore, another technique to validate the transient time 

stepping of the code is to compare the ignition delay time obtained by the code to the values 

reported in the literature based on experimental results. According to [79], ignition delay time of 

a methane-air flame can be calculated using the following equation: 

 

 

where 𝜏 is ignition delay time in 𝜇𝑠, 𝑝 is pressure in atm, 𝜑 is equivalence ratio, 𝑅 = 1.986 ×

10−03 kcal/(mol K) is the universal gas constant, and 𝑇 is temperature in K. This equation was 

used to calculate the ignition delay time for three different flames as follows: 

𝑝 = 1 𝑎𝑡𝑚,  T = 1800 K,  𝜑 = 1.0, 0.8, and 0.7 

𝜏 = 1.09 × 10−3𝑝−0.68𝜑−0.04 exp (
40.98

𝑅𝑇
) (3.4) 

𝜑 = 1.0 

𝜑 = 0.8 

0.366 m/s 
0.286 m/s 
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The calculated ignition delay times based on Eq. (3.4) and the values obtained by the 

simulations were in the order of 100 𝜇𝑠 with only a few micro seconds difference. For instance, 

for equivalence ratio of 0.8, the calculated ignition delay time is equal to 104 𝜇𝑠 and the simulated 

value is 110 𝜇𝑠. Therefore, in order to validate the transient code; first, the time stepping of the 

transient governing equations were used to reach the steady state solution. In the next step, the 

steady state solution was compared in terms of flame burning rate and the equilibrium state of all 

the dependent variables. To ensure that the time stepping to reach the steady flame was sufficiently 

accurate, the ignition delay time of the flame was compared against the experimental results. With 

regard to the fact that the flame ignition delay time was captured by the computational model, the 

code has obtained the steady solution through an accurate time dependent path.   

 

3.3.2 Transient Periodic Flow 

For transient flow cases, the inlet boundary condition of mass flow per unit axial length 

changes sinusoidally, given by: 

 

 

In this equation, 𝐵 was set equal to 10% of 𝑚′̇ 0 (𝑚′̇ 0 = 0.2 ) kg/m.s and represents the 

amplitude of the oscillation and 𝜔 is the frequency, which is varied between 5 Hz and 2000 Hz. 

This lower limit was needed because the effects of unsteadiness for low equivalence ratio mixtures 

were observed even at these conditions. The reason to increase the frequency up to 2000 Hz is for 

the relevance to turbulent flows. For example, in the middle of a premixed turbulent duct flame 

stabilized by a backward facing step, mean frequency of the flame motion across a fixed point was 

𝑚′̇ = 𝑚̇′0 + 𝐵sin(𝜔𝑡) (3.5) 
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observed to be in this range [80]. Experiments show that the wrinkling process of flamelets 

depends on the geometry of turbulent flame [81]. Therefore, it has been suggested to study 

premixed turbulent flames in different geometries (i.e., envelope flames, oblique flames, 

unattached flat flames, and spherical flames) separately. In order to study all aspects of flamelets, 

a wide range of amplitude, frequency and curvature should be analyzed. However, as the first step, 

in this chapter, the amplitude and curvature have been kept constant and frequency and equivalence 

ratio have been considered the manipulating variables. As mentioned previously, in general, 

turbulent flames can freely move away from high values of stretch rate, which is an absent 

component in restrained flames in the counter-flow configuration. It is worth noting that this model 

is capable of analyzing a wide range of stretch rate by increasing the amplitude of modulation and 

decreasing the radius of curvature.  

The dynamics of premixed flames have been frequently studied by monitoring the flame 

displacement speed, which suffers from having arbitrarily defined a datum within the scalar 

structure of the flame [82]. Similarly, to quantify the stretch rate experienced by a flame of finite 

thickness, a datum (i.e., 𝐹 = 0 in Eq. (1.2)) needs to be specified. This same problem exists here 

as the mass flux varies with radial position across the flame. Selecting an iso-surface as the flame 

surface is arbitrary and results presented become dependent on that choice. To overcome this 

challenge for now, an integral quantity calculated over the whole domain, independent of the 

domain size, will be used to compare the stationary flame with the dynamics of a curved flame at 

different frequencies. This quantity is the chemical energy source term integrated for all species 

and in all control volumes in the domain, and defined as: 
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where 𝐸𝐼′ is referred to here as the energy index (per unit axial length), and 𝕍′(𝑖) represents the 

volume of cell 𝑖 (per unit axial length). Also, by comparing this quantity at the same point in 

consecutive cycles, it was used to determine if the solution had reached the fully-periodic state 

from its initial conditions. 

In order to have a better comparison between different equivalence ratios, the flame speeds 

(𝑣𝑓) and the steady values of 𝐸𝐼′ at the mean mass flow rate (steady state case which has been used 

as the reference conditions) are summarized in Table 3.2: 

 

Table 3.2: The flame speed and steady state 𝐸𝐼′ at the mean mass flow rate 

 𝝋 = 𝟏. 𝟎 𝝋 = 𝟎. 𝟖 𝝋 = 𝟎. 𝟕 

𝒗𝒇 (cm/s) 36.6 28.6 17.5 

𝑬𝑰′ (J/s) 5264325 3215720 1955668 

 

After reaching steady state for each equivalence ratio, the solution was used as the initial 

condition for the transient cases. With regard to this exact steady solution, the transient code solves 

the time-dependent governing equations using Newton’s method at each time step. After a number 

of initial cycles, a fully developed solution was obtained for each frequency. To reach a fully-

periodic state, the code runs for multiple cycles and the variations in successive cycles were plotted 

to determine if the results were fully periodic and suitable for analysis. It was expected that as the 

number of cycles increases, the flow approaches a fully periodic and repeating state. To track the 

𝐸𝐼′ = ∑∑ ℎ𝑘

𝑁𝑠𝑝

𝑘=1

𝜔̇𝑘 𝕍′(𝑖)

𝑁𝑐𝑣

𝑖=1

 (3.6) 
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convergence to the fully-periodic state, a normalized correlation function (CF) [15] was used to 

calculate the variations in the sum of 𝐸𝐼′ at two successive cycles (𝑗): 

 

 

where 𝑓 is the frequency. As illustrated in Fig. 3.3, each data set decays to negligible variation 

after 9-12 cycles. Based upon these results, the comparisons have been made using the 

computational data in the tenth cycle. 

 

 
 

Fig. 3.3 Normalized correlation function (𝐶𝐹(𝑗)) versus cycle number (𝑗) for stoichiometric 

condition 

 

𝐶𝐹(𝑗) =
∑ 𝐸𝐼′(𝑗, 𝑡)

𝑡=(𝑗 𝑓)⁄

𝑡=(𝑗−1) 𝑓⁄ − ∑ 𝐸𝐼′(𝑗 − 1, 𝑡)
𝑡=(𝑗−1) 𝑓⁄
𝑡=(𝑗−2) 𝑓⁄

∑ 𝐸𝐼′(2, 𝑡)
𝑡=(2 𝑓)⁄

𝑡=(1 𝑓⁄ )
− ∑ 𝐸𝐼′(1, 𝑡)

𝑡=(1 𝑓)⁄

𝑡=0

 (3.7) 
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In Table 3.3, 𝐸𝐼′ has been calculated and compared for different conditions; namely, steady 

state, expanding, and contracting flames, when the value of instantaneous mass flow rate was equal 

to that of the steady state (𝐸𝐼′ has the units J s⁄  per unit axial length, but has been normalized here 

by the steady state value). Since 𝐸𝐼′ is an integral value of heat release due to chemical reaction 

over the whole domain, it is related to the amount of mass entering the flame area. It has been 

discussed previously that due to the difficulty and ambiguity of defining a leading flame surface 

to relate 𝐸𝐼′ to flame radius, the frequency response of the flame has been plotted versus the mass 

flow rate, and comparisons have been made using these integral values at the same mass flow rate, 

rather than at the same flame radius. 

 

Table 3.3: Comparison of the normalized energy index 〈𝐸𝐼〉 of expanding and contracting flames 

at different frequencies 

Frequency 

𝝓 = 𝟏. 𝟎 𝝓 = 𝟎. 𝟖 

Expanding 

Flame 

Contracting 

Flame 

Expanding 

Flame 

Contracting 

Flame 

20 Hz 0.994 1.006 0.990 1.010 

200 Hz 0.975 1.025 0.966 1.034 

2000 Hz 0.980 1.020 0.985 1.015 

 

At each frequency, the contracting flame has a value higher than unity and the expanding 

flame has a value lower than unity. This result is expected since the expanding flame has a positive 

stretch and the contracting flame has a negative stretch. The essential point being that at these 

instants for the two separate equivalence ratios, their imposed inlet upstream hydrodynamic state 

is identical, but extra information is required regarding whether this instant is part of an expanding, 

contracting, or stationary flame in order to accurately estimate the instantaneous rate of energy 
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conversion. While the differences between stationary, expanding, and contracting at this instant 

appear to be modest (+/- 1 to 3% for these frequencies, which is linked to the relatively small 

fluctuations in mass flow rate), it is interesting to note that this characteristic is not monotonic with 

frequency for either equivalence ratio. Therefore, it is worth following the flame response 

throughout a complete cycle. The small variations observed in Table 3.3 are mainly due to two 

causes. First, the methane-air flame with Le~1 (Lewis number (Le) is a dimensionless number 

defined as the ratio of thermal diffusivity to mass diffusivity) is generally stretch insensitive 

suggesting that the transient flame responses should not deviate substantially from the 

instantaneous response. It should be noted that this mixture has been selected to keep consistency 

with similar works in other configurations. Second, in order to stay relatively close to the linear 

response limit, the amplitude change of mass flow rate is kept small at +/-10% throughout this 

study. 

Figure 3.4-a shows how 𝐸𝐼′ changes at different frequencies of mass flow rate oscillation 

as a function of the phase of the mass flow (i.e., the phase is zero when the flow rate is at its mean 

value and increasing) compared to the flame response based on the quasi-steady assumption for 

an equivalence ratio of unity. With the quasi-steady assumption (solid line), changing the mass 

flow rate sinusoidally with time at the inlet affects the value of 𝐸𝐼′ in the flame. Therefore, the 

flame responds to the change in mass flow rate instantaneously with no phase lag or amplitude 

change. In this regard, each point on the solid line corresponds to its own steady radius. As can be 

seen in Fig. 3.4-a, the amplitude of the oscillations of 𝐸𝐼′ diminish and its phase shift increases 

with an increase in frequency to as much as ~π/4 at 2000 Hz. Although the results of premixed 

methane-air flames can be compared qualitatively to those of the counter-flow configuration, the 

significant distinguishing feature of this study compared to previous works is the unstrained nature 
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of the flame in the new geometry. Therefore, the present work helps to fill the knowledge gap of 

transient response considering the effects of changing curvature and strain rate separately. 

Different levels of hydrogen addition could result in more deviations in flame transient response 

due to its smaller Lewis number.  

In Fig. 3.4-b, 𝐸𝐼′ has been plotted with respect to the inlet mass flow rate as it varies 

throughout a cycle for stoichiometric conditions for the quasi-steady and transient response for 

different frequencies (from 20 Hz to 2000 Hz) as indicated. The straight line in the middle of the 

closed pathways indicates the flame response to the periodic variation in mass flow rate based on 

the quasi-steady assumption. In the transient response, as the frequency rises, the straight line 

transforms into an elliptical shape (the path in this phase-space is counter-clockwise) with an 

incline toward horizontal. Figure 3.4-b allows for comparison of the 𝐸𝐼′ at the same mass flow rate 

(along a single vertical line) but when the flame is either expanding (lower portion of the ellipse) 

or contracting (upper portion of the ellipse), and emphasizes the deviation from the quasi-steady 

model. 
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Fig. 3.4 a) Periodic change in 𝐸𝐼′ in one cycle for quasi-steady and transient response to 

frequencies from 20 Hz to 2000 Hz, b) 𝐸𝐼′ versus mass flow rate for quasi-steady and transient 

response to frequencies from 20 Hz to 2000 Hz 
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In Fig. 3.4-b, as the frequency increases, the difference between 𝐸𝐼′ values of expanding 

and contracting flames at the mean mass flow rate first increases and then decreases, represented 

by the initial widening then contracting of the ellipses with increasing frequency. 

Figure 3.5-a, shows how 𝐸𝐼′ amplitude (i.e., difference between maximum and minimum 

values of 𝐸𝐼′ at each frequency) decreases monotonically with an increase in frequency for 

stoichiometric and fuel lean flames. For an equivalence ratio of 0.7 this amplitude is reduced by a 

factor of ~5 at a frequency of 2000 Hz, which essentially decouples burning rate from the changes 

in the stretch rate, while for the stoichiometric flame the reduction is only by a factor of ~2.5. In 

Fig. 3.5-b, a comparison of 𝐸𝐼′ at the instant where the mass flow rate equals the mean has been 

made between the stoichiometric condition (𝜑 = 1.0) and two fuel-lean conditions (𝜑 = 0.8 and 

𝜑 = 0.7). The maximum difference between the expanding and contracting flames’ 𝐸𝐼′ in the 

stoichiometric flame occurs at higher frequency compared to in the fuel lean flames. Taken 

collectively, Fig. 3.5 shows that as the reactant mixture deviates further from stoichiometric 

conditions and towards extinction that the flames’ responses appear to become more sensitive to 

the dynamics of stretch. 
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Fig. 3.5 a) The difference between maximum and minimum values of 𝐸𝐼′ (𝐸𝐼′ amplitude) vs. 

frequency for stoichiometric and fuel lean flames, b) Difference between 𝐸𝐼′ values of expanding 

and contracting flame at the mean mass flow rate vs. frequency for stoichiometric and fuel lean 

flames 

 

For a better understanding of the effect of equivalence ratio on the transient response of 

laminar premixed flames to a periodic variation in mass flow rate over a wide range of frequency, 

〈𝐸𝐼〉 which is defined by the ratio of 𝐸𝐼′ to 𝐸𝐼′𝑠𝑠 (i.e., 𝐸𝐼′ at steady state for the mean mass flow 

rate), has been plotted versus 〈𝑚̇〉 (the mass flow rate normalized the by the mean mass flow rate) 

at each frequency for stoichiometric (𝜑 = 1.0) and two fuel lean (𝜑 = 0.8 and 𝜑 = 0.7) flames in 

Fig. 3.6. In this regard, each point on the transient curves and quasi-steady lines is normalized 

against one single mean value of 𝐸𝐼′𝑠𝑠 for that specific equivalence ratio. 
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Fig. 3.6 The effect of equivalence ratio on transient response of laminar premixed flame to 

various frequencies. Normalized 𝐸𝐼′ (by 𝐸𝐼′ of steady state flames) vs. normalized mass flow 

rate at (a) 100 Hz, (b) 200 Hz, (c) 500 Hz, (d) 1000 Hz, and (e) 2000 Hz for stoichiometric (𝜑 =
1.0) and two fuel lean (𝜑 = 0.8 and 𝜑 = 0.7) flames 
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To ensure that the responses presented in Fig. 3.6 are not affected by any other factors such 

as oscillating about different mean radial locations, the mass flow rates have been adjusted so that 

the flames with three different equivalence ratios stabilize at the same position. Otherwise, with 

the same mean mass flow rate, the leaner flames would be farther away from the inflow and it 

would show a smaller stretch amplitude locally, and consequently the response of 𝐸𝐼 amplitude 

would decrease. The comparison between a stoichiometric flame and fuel lean flame with 

equivalence ratio of 0.8 for various frequencies from 100 Hz to 2000 Hz indicates that the elliptical 

shapes in the fuel lean flame inclined more toward the horizontal line with a smaller major axis at 

all frequencies and larger minor axis at lower frequencies (less than or equal to 500 Hz) and smaller 

minor axis at higher frequencies (greater than or equal to 1000 Hz). Therefore, as the equivalence 

ratio decreases to 0.7, a considerable change can be observed in the transient response of the flame, 

which means that fuel lean flames are more sensitive to changes in frequency compared to 

stoichiometric flames. 

 

3.3.3 Time Scale Analysis of Flame Response 

In order to have a better understanding of the transient responses presented in the previous 

section, the results were studied from the perspective of time scales, because one of the main 

differences attributed to changing equivalence ratio is the flame speed and related quantity of the 

chemical time scale. In this regard, the Damköhler number was selected as the indicator of the 

interaction between the flow field and chemistry. Due to the different responses of the flames to 

periodic flows, there is not a unique time scale for either the flow or chemistry, and therefore there 

could be different definitions of the Damköhler number. One definition of Damköhler number 

could be the ratio of imposed flow time scale to unstretched steady state chemical time scale: 
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In this equation, 𝑓 is the frequency of the mass flow rate at the inlet boundary, 𝛼 is the 

thermal diffusivity and 𝑆𝐿
0 is the unstretched laminar flame velocity. This definition has the 

advantage of being evaluated on quantities that are specified (imposed) on the flow, or known a 

priori, such as the material properties. The Damköhler number could also be defined by 

considering the flame’s response to the changing hydrodynamics. In the previous section, with 

increasing frequency it was observed that 𝐸𝐼′ had a diminishing amplitude and increasing phase 

lag, which aligns with observations of diminishing flame movement and increasing phase lag [3, 

34, 7], meaning that flame response may be important to consider when comparing flames of 

different equivalence ratios. Essentially, variations in the flow were imposed on the flame, but the 

stretch rate experienced by the flames in terms of their changing positions and thermo-chemical 

structures are responding variables. Therefore, a second Damköhler number is also considered for 

which the flow time scale is based on the variation in stretch rate that includes the frequency and 

flame response, though not explicitly altering the chemical time scale due to varying chemical 

structures in the flame. 

 

  

To calculate a characteristic stretch rate (with stretch rate amplitude defined as the 

difference between maximum and minimum stretch rate in a cycle) in each case, Eq. (1.1) was 

𝐷𝑎1 =
(1 𝑓)⁄

𝛼/(𝑆𝐿
0)2

=
(𝑆𝐿

0)2

𝛼𝑓
 (3.8) 

𝐷𝑎2 =
(1 𝜅)⁄

𝛼/(𝑆𝐿
0)2

=
(𝑆𝐿

0)2

𝛼𝜅
 (3.9) 
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used. As mentioned, due to the particular geometry of the flame, the stretch rate equation is 

simplified to 𝜅 = {𝑣𝑓∇. 𝒏}
𝐹=0

. Considering flame stretch rate, the flame displacement speed is 

used to analyze the dynamics of premixed flames. This quantity is generally ambiguous except for 

with a steadily propagating planar flame. The main reason is that the mass flow rate through the 

combustion region varies with distance through the flame. This variation makes it difficult to select 

an iso-surface to represent the flame surface. In the present work, as 𝑣𝑓 represents local flame 

speed, selecting an iso-surface is challenging. Therefore, this quantity is sensitive to iso-surface 

selection. In order to apply the simplified stretch rate equation to a flame, an arbitrary isotherm 

needs to be selected where the velocity and divergent to the normal of the flame front is calculated. 

As suggested in [82], an iso-surface close to the hot side of the flame is less sensitive to the 

magnitude of the calculated stretch rate. Therefore, the selected isotherm is where temperature rise 

reaches 90% of the total temperature increase. Fig. 3.7 illustrates how the radius of this isotherm 

and its corresponding stretch rate change with time in an oscillating flame with equivalence ratio 

of 0.8 and frequency of 20 Hz. Comparing the two plots, there are two locations where flame 

stretch rate becomes zero (where the flame stops moving and changes direction); maximum and 

minimum stretch rates occur when the flame is expanding and contracting while passing through 

the mid-point (mean mass flow rate), respectively. 
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Fig. 3.7 Changes in the radius of the isotherm (top) and stretch rate (bottom) in a cycle for 

equivalence ratio of 0.8 and frequency of 20 Hz 

 

Figure 3.8 depicts the stretch rate amplitudes that characterize the flame responses for the 

different equivalence ratios over the range of frequencies tested, and shows the connection 

between the two time scales. As expected for a constant equivalence ratio, as the frequency rises, 

the stretch rate amplitude increases due to the higher time rate of change of the iso-surface radius, 

though not linearly because of the lagging response of the flames. Also, at the same frequency, 

lower equivalence ratio flames have smaller stretch rate amplitude. The main reason is that the 
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oscillating flame amplitude is smaller in lower equivalence ratios due to the greater phase lag 

discussed earlier. Therefore, the amplitude of the iso-surface becomes smaller with a constant rate 

of change of radius. 

 

 

Fig. 3.8 The changes of stretch rate amplitudes vs. frequency for three different equivalence 

ratios 

 

Fig. 3.9 illustrates the normalized 𝐸𝐼 amplitude at the mean mass flow rate with respect to 

the two different definitions of Damköhler number for an equivalence ratio of 0.8. In this figure, 

the flow time scale is calculated based on frequency (solid line) and stretch rate (dashed line). At 

lower frequencies the Damköhler Number based on the stretch rate is smaller than that based on 

the frequency, while the opposite is true for the higher frequencies when the flame cannot respond 

to such rapid changes. The characteristic stretch rate considered in 𝐷𝑎2 calculations is defined as 

the difference between maximum and minimum stretch rates (stretch rate amplitude). As illustrated 

in Fig. 3.8, the stretch rate amplitude increases with frequency at each equivalence ratio in the 

same order of magnitude. This increase suggests that at the limit of very high frequencies, the 
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stretch rate amplitude is also increased to a range that makes 𝐷𝑎2 very small (close to zero). Due 

to the similarity of the two plots, the characteristic Damköhler Number based on imposed 

frequency was used in the remainder of this chapter. 

 

 
Fig. 3.9 Normalized EI amplitude at mean mass flow rate with respect to the Damköhler number 

calculated based on Eq. (3.8) (solid line) and Damköhler number calculated based on Eq. (3.9) 

(dashed line) for equivalence ratio of 0.8. 

 

Figure 3.10 shows how the normalized 𝐸𝐼 amplitude varies with Damköhler number. For 

each of these equivalence ratios the curves appear S-shaped, approaching unity at high Damköhler 

Numbers (low frequencies). Interestingly, the effects of unsteady stretch on the rate of energy 

conversion can be observed even when the time scale of the flow variations are two orders of 

magnitude lower that the flames’ chemical time scales, especially for the equivalence ratio of 0.7. 

While the stoichiometric case and that with equivalence ratio of 0.8 appear to be well correlated 

by the Damköhler Number, especially at high Damköhler Numbers, the response of the 

equivalence ratio of 0.7 suggests that the Damköhler Number does not alone capture the effects of 
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unsteady stretch. Also, in this figure, the rate of change of 𝐸𝐼 amplitude is more pronounced in 

lower Damköhler numbers and it is less sensitive to frequency in higher Damköhler numbers. This 

sensitivity suggests a change in flame response to periodic flow when the flow time scale 

approaches the chemical time scale. This change in the slopes can be related to the maximum point 

in Fig. 3.11. 

 

 
Fig. 3.10 Normalized EI amplitude with respect to Damköhler number (𝐷𝑎1) for three 

equivalence ratios 

 

Figure 3.11 shows the normalized 𝐸𝐼 amplitude at the mean mass flow rate (i.e., minor axis 

of ellipses in Fig. 3.6), plotted with respect to Damköhler number (Eq. 3.4). As can be observed, 

there is a maximum point in all three plots. As the equivalence ratio decreases, these maxima move 

to higher Damköhler numbers (i.e., lower frequencies). 
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Fig. 3.11 Normalized EI amplitude at mean mass flow rate vs. Damköhler number for three 

equivalence ratios. 

 

In this figure, 𝐸𝐼′ amplitude at the mean mass flow rate is the difference between maximum 

and minimum values of 𝐸𝐼′ at each frequency, which is then normalized by the 𝐸𝐼′ amplitude in 

the quasi-steady condition. The responding behaviour of the different equivalence ratio flames is 

not well captured by the Damköhler Number, with the data for the equivalence ratio of 0.7 being 

dramatically different from that of the other two cases. 

 

3.4 Summary 

A model was developed in order to revisit the quasi-steady assumptions that are used in 

current approaches of premixed laminar flamelet models. This model is based on a cylindrically-

symmetric radial outward flow geometry with an applied sinusoidal variation of mass flow rate 

that was only 10% of the mean flow rate. The flame response was studied when the flow and scalar 

fields align (i.e., no tangential strain), while the flame either expands (positive stretch) or contracts 

(negative stretch). This transient model was validated against the burning velocity, temperature, 
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and species mass fractions of a stationary flame. Since the stationary flame in this geometry is not 

stretched but has a finite curvature, an investigation was made to compare key characteristics of 

steady unstretched flames to the dynamics of a stretched flame due to the motion of the curved 

flame front. The parameter used for this comparison was the total chemical enthalpy to thermal 

enthalpy conversion across the flame, 𝐸𝐼′. 

It has been concluded that similar to planar flames exposed to oscillating strain rates for 

which the flame stretch always has a positive value, the transient response of laminar premixed 

flames results in decreasing amplitudes of motion and burning rates, and increasing phase lag with 

increasing frequency. This changing 𝐸𝐼′ amplitude and phase lag resulted in an elliptical shape 

when it was plotted with respect to the instantaneous mass flow rate, which showed the different 

burning rates between positively and negatively stretched flames with the same imposed 

hydrodynamic state, as well as how that differed from the quasi-steady state. 

A comparison was also made between stoichiometric and two fuel lean flames to study the 

effect of equivalence ratio on the transient response of laminar premixed flames to various 

frequencies. It was concluded that as the equivalence ratio was made leaner, so that the chemical 

time scales became longer, the flame’s burning rate became more susceptible to lower frequency 

variations in the mass flow. To try to correlate this behavior to flow variations the data was 

reanalyzed with two different Damköhler numbers (one based on a flow time associated with the 

imposed frequency, and the other based on a flow time associated with the fluctuations in stretch 

rate). While all the flames examined showed similar characteristics with respect to either 

Damköhler Number, no quantitative correlations in unsteady burning rate quantities were 

observed. An important observation was that the unsteadiness in burning rate was seen at flow 

times that were two orders of magnitude slower than the flame’s chemical time scales. 
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The results presented here have implications for premixed turbulent combustion modeling 

using the laminar flamelet approach. In premixed turbulent combustion, curved flamelets are 

surrounded and convected by time-varying vortices that stretch the flame. Flamelet libraries 

described by steady planar strained flames in the counter-flow configuration can be challenged by 

this instantaneous structure of the turbulent flame, because the local flame front includes positive 

stretch and negative stretch. The model that has been proposed and developed in this thesis 

indicates how expanding (positive stretch), contracting (negative stretch), and steady flames 

(unstretched) can behave differently at various frequencies and equivalence ratios in terms of 

chemical energy release. This phenomenon stresses the fact that in order to generate a more 

rigorous flamelet library to model a premixed turbulent flame, the time-dependent motion of a 

curved flame in both positive and negative stretch rates should be considered. 
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Chapter 4: Using Frequency Response Analysis to Predict Unsteady Burning 

Rate from Unsteady Stretch Rate 

 

This chapter is based on the following published paper: 

 

M. Sahafzadeh, S. B. Dworkin, L. W. Kostiuk, “Using frequency response analysis to predict 

unsteady burning rate from unsteady stretch rate,” Submitted to Combustion and Flame (under 

review), July 2017. 

 

 4.1 Introduction 

 Linear and nonlinear flame transfer functions or flame describing functions have been 

widely used to study the flame instability in turbulent combustion. In these functions, the input is 

considered to be velocity fluctuations and output is usually heat release in chemical reactions. 

Although the mathematical approach is similar to those of instability analysis, in this study, the 

application of these functions is to capture the transient effects of stretch rate due to the motion of 

curved flames. This information can be implemented in turbulent combustion modeling which 

modifies flamelet library to define the properties of turbulent flames more accurately. 

In order to apply flame dynamics to flamelet library, one needs to know the flame response 

to unsteady stretch at each specific condition. However, due to the complexities in laminar flame 

modeling which includes detailed chemistry, simulation of each case is not efficient; therefore, a 

simpler method is required to capture these effects. The scope of the current work comprises an 

investigation of a flame transfer function to predict the transient response of a curved laminar 

premixed flame to inlet oscillations in mass flow rate.  

The frequency response analysis was applied to this study, to map the flame behavior in 

the form of a simple closed mathematical relation. The other advantage of using transfer functions 
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is that they are independent of the input excitations; therefore, the system response can be estimated 

for any arbitrary inputs such as step functions, ramp functions, or unsteadiness of turbulence. 

 

4.2 Frequency Response Analysis 

The transient responses that have been studied in this chapter were generated in the manner 

similar to that in previous work [83], in which a laminar premixed flame was simulated in a 

cylindrically-symmetric geometry (Fig. 2.1). Details of the cylindrically-symmetric flame model 

are omitted here for concision. For a complete model description, the reader is referred to [83]. 

The mass flow rate was changed sinusoidally with time (Eq. 3.5) at the inlet boundary. Eq. 

(3.5) was applied as the inlet boundary condition in the simulations), and could be seen as the input 

to the transfer function.  It should be noted that this changing mass flow rate or inlet flow velocity 

leads to stretch rate variations due to the outward and inward motion of the curved flame. 

Therefore, an alternate and more useful variable to understanding the unsteady response of flames 

is to consider stretch rate as the input. This approach is beneficial in that it can be used in modifying 

the steady flamelet library for unsteady situations. This approach is discussed in the following 

section in more detail.  

In Eq. 3.2, 𝑚̇ the mass flow rate at the inlet boundary, 𝑚̇0 the mean mass flow rate in steady 

state condition, B is equal to 10% of 𝑚̇0 and represents the amplitude of the oscillation, and 𝜔 is 

the angular frequency. The frequency was varied between 20 Hz and 2000 Hz. As mentioned 

previously, lean flames have become the focus of recent research due to their applicability to low-

emission combustion systems. Thus, in this study, the equivalence ratio was varied from 1.0 to 0.7 

in order to compare the stoichiometric condition to lean flames. The reason to increase the 

frequency up to 2000 Hz is for the relevance to turbulent flows. For example, in the middle of a 
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premixed turbulent duct flame stabilized by a backward facing step, mean frequency of the flame 

motion across a fixed point was observed to be in this range [80].  

The geometry in Fig. 2.1 represents unique features of flame dynamics compared to the 

counter-flow configuration, which is usually used to generate flamelet libraries. The steady flame 

is unstretched due to the balance of curvature and normal strain. However, when the flame is 

exposed to a flow field fluctuation, the expanding flame is subjected to positive stretch and the 

contracting flame generates negative stretch, which has been ignored in the literature. The 

magnitude of stretch rate could be changed by varying mean flame curvature, amplitude of 

oscillations, frequency of oscillations, equivalence ratio, and fuel type.  

The dynamics of premixed flames has been frequently characterized by the flame 

displacement speed (FDS), which often suffers from being arbitrarily defined. A similar situation 

exists here that the mass flux varies with radial position. Selecting an iso-surface as the flame 

surface is arbitrary and any results presented become tied to that choice. To overcome this 

challenge, an integral quantity over the whole domain, independent of the domain size, has been 

used to compare the stationary flame with the dynamics of a curved flame at different frequency. 

This quantity is the chemical energy source term integrated for all species and in all control 

volumes in the domain, and is defined by Eq. 3.3. This energy released during the combustion 

process was calculated, and was considered the output of the system. 

In Eq. 3.3, 𝐸𝐼′ is referred to here as the energy index, and 𝕍(𝑖) represents the volume of 

cell 𝑖 and 𝐻𝑘 is the enthalpy of species 𝑘. Two global characteristics of the system (amplitude 

attenuation and phase angle change) can be observed in Fig. 4.1. The solid line in all figures 

illustrates the quasi-steady response of the flame to a change in inlet mass flow rate. In the quasi-

steady condition, the flame responds to the inlet mass flow rate instantaneously regardless of the 
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equivalence ratio and the frequency of the oscillation. However, the transient response depends on 

the equivalence ratio and the frequency of the perturbations. As can be seen at each frequency, the 

flame response is more delayed with decreasing equivalence ratio. In this condition, the amplitude 

of the flame response is also damped at lower equivalence ratios. At constant equivalence ratio, 

increasing the frequency has a similar influence on the flame response. Therefore, the phase lag 

increases and the amplitude decreases with an increase in frequency. 
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Fig. 4.1 Quasi steady and transient responses of flames with equivalence ratios of 𝜑 = 1.0, 𝜑 =
0.8 and 𝜑 = 0.7at a range of frequencies from 80 Hz to 2000 Hz. 

0.85

0.90

0.95

1.00

1.05

1.10

1.15

0.0 0.2 0.4 0.6 0.8 1.0

〈𝐸
𝐼〉

time×frequency

80 Hz Quasi Steady

phi=1.0

phi=0.8

phi=0.7

𝜑 = 1.0

𝜑 = 0.8
𝜑 = 0.7

0.85

0.90

0.95

1.00

1.05

1.10

1.15

0.0 0.2 0.4 0.6 0.8 1.0

〈𝐸
𝐼〉

time×frequency

100 Hz Quasi Steady
phi=1.0
phi=0.8
phi=0.7

𝜑 = 1.0
𝜑 = 0.8
𝜑 = 0.7

0.85

0.90

0.95

1.00

1.05

1.10

1.15

0.0 0.2 0.4 0.6 0.8 1.0

〈𝐸
𝐼〉

time×frequency

200 Hz Quasi Steady

phi=1.0

phi=0.8

phi=0.7

𝜑 = 1.0

𝜑 = 0.8
𝜑 = 0.7

0.85

0.90

0.95

1.00

1.05

1.10

1.15

0.0 0.2 0.4 0.6 0.8 1.0

〈𝐸
𝐼〉

time×frequency

500 Hz Quasi Steady

phi=1.0

phi=0.8

phi=0.7

𝜑 = 1.0

𝜑 = 0.8

𝜑 = 0.7

0.85

0.90

0.95

1.00

1.05

1.10

1.15

0.0 0.2 0.4 0.6 0.8 1.0

〈𝐸
𝐼〉

time×frequency

1000 Hz Quasi Steady
phi=1.0
phi=0.8
phi=0.7

𝜑 = 1.0
𝜑 = 0.8
𝜑 = 0.7

0.85

0.90

0.95

1.00

1.05

1.10

1.15

0.0 0.2 0.4 0.6 0.8 1.0

〈𝐸
𝐼〉

time×frequency

2000 Hz Quasi Steady

phi=1.0

phi=0.8

phi=0.7

𝜑 = 1.0
𝜑 = 0.8
𝜑 = 0.7



85 

 

 

In Fig. 4.2, a similar analysis was performed to study the effect of mean flame curvature. 

The original simulations in Fig. 4.1 were done with mean flame curvature of 8 cm. As can be seen 

in Fig. 4.2, when the mean curvature was halved to 4 cm, the transient results were not changed 

significantly compare to the sensitivities seen in Fig. 4.1. 

 

 

Fig. 4.2 Quasi-steady and transient responses of flames with two mean flame curvatures; left 

side: normalized 𝐸𝐼′ in one cycle, right side: normalized 𝐸𝐼′ vs. normalized mass flow rate 

(equivalence ratio 𝜑 = 0.8 and frequency 1000 Hz). 

 

From this analysis, it is obvious that the flame response to a change in upstream mass flow 

rate depends primarily on parameters such as equivalence ratio and the frequency of oscillations. 

Therefore, it would seem desirable to find a describing function to replace the cumbersome 

complex chemistry computations of transient response of turbulent and laminar premixed flames. 

It should be noted that this analysis is aimed at characterizing the response of the flame to 

perturbations. Due to the complexity of a flame with detailed chemistry and several species 
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involved in the reactions, understanding the physical mechanism that created the response is not 

the focus of this study. 

In this chapter, the capabilities of different models have been studied in order to estimate 

the transient responses in terms of 𝐸𝐼′, and these predicted values were then compared to those of 

full complex chemical numerical results. The models chosen for this analysis include treating the 

system as linear first order, higher order linear, and a specific type of non-linear system.  It is worth 

mentioning that this analysis only includes one relatively small value of amplitude (10% of the 

steady state case) in the reactant mass flow rate. 

As 𝐸𝐼′is an integral value which combines flame speed and flame surface area effects, an 

analysis was required in order to separate these two competing effects. Figure (4.3) shows the 

instantaneous consumption speed as a phase plot with respect to the corresponding instantaneous 

stretch rate. The quasi-steady response is a point (red dot in middle of the figure) located on 𝜅 = 0 

and 𝑆𝐿 = 0.26, which is essentially the steady state value and will be referred to as 𝑆𝐿
𝑂. At very 

low frequencies (20 Hz), the relationship between local flame speed and stretch rate is almost 

linear. By further increasing the frequency, the line becomes an ellipse. The slope of the ellipses 

are negative which has been shown in [81] for a methane-air flame at the same range of 

equivalence ratio. The sensitivity of the local flame speed to the stretch rate first increases in the 

low frequency regime, and then decreases in the high frequency regime.  
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Fig. 4.3. Local flame speed vs. stretch rate for equivalence ratio of 0.8 and frequencies between 

20 Hz and 2000 Hz 

 

4.2.1 Linear First Order System Analysis 

In this section, a first order linear model is used in order to analyze the flame behavior at 

each equivalence ratio. Equation 4.1 indicates the relation between different parameters of a first 

order linear system.  

 

𝑩

𝑨
=

𝒌

√𝝉𝟐𝝎𝟐 + 𝟏
   (4.1) 

 

In this equation, 𝑩 is the amplitude of the output, 𝑨 is the amplitude of the input, 𝒌 is the 

gain of the system, 𝝉 is the time constant, and 𝝎 is the frequency of oscillations. For our purposes 

here 𝑩 is 𝐸𝐼̇, while 𝑨 is 𝑚̇(𝑡) multiplied by the specific enthalpy of reaction to convert the reactants 

to the equilibrium product state to be the flow of chemical enthalpy. In order to illustrate the ratio 
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of amplitudes, 
𝑩

𝑨
 in Eq. 4.1, consider the quasi-steady response of the flame to a periodic change in 

mass flow rate. The ratio of output to input is just 𝒌, and the gain of the system becomes unity. As 

illustrated in Fig. 4.4-(a), a linear first order model has been fitted to the numerical results for an 

equivalence ratio of 1.0 over the whole range of frequencies. Reasonable agreement can be 

observed for the low range of frequencies. As defined in [83], in this context, low-frequency is the 

range that chemistry time scale is smaller than flow time scale (inverse of frequency of oscillation) 

and depending on the equivalence ratio (flame burning velocity). Figure 4.4-(b) indicates that good 

accuracy of predicting the results using a first order linear approximation is due to the flame 

behavior in the low frequency range. The same approach in Fig. 4.4-(d) and 4.4-(e) shows similar 

results for an equivalence ratio of 0.7, though for a significantly smaller frequency range. 

Therefore, with relatively good accuracy, a first order linear system can be used for this flame at 

low frequencies. 

To improve the model, the power in the denominator in Eq. 4.1 has been changed to account 

for a nonlinearity parameter (𝝃). (Eq. 4.2) 

 

𝑩

𝑨
=

𝒌

(𝝉𝟐𝝎𝟐 + 𝟏)𝝃
         (4.2) 

 

Figures 4.4-(c) and 4.4-(f) illustrate the potential of nonlinear models to accurately predict 

transient responses for equivalence ratios of 1.0 and 0.7, respectively. While this curve fit shows 

good agreement over the whole range of frequencies, the nonlinear transfer functions cannot be 

estimated with the current approach because the inverse Laplace transform of a nonlinear function 
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that is needed to get the transfer function is not possible and thus an alternate methodology is used 

in the next section. 

 

 

Fig. 4.4 Linear first order approximation for predicting transient response, (a) for the whole 

range of frequencies (𝜑 = 1.0), (b) for the low range of frequencies (𝜑 = 1.0), and (c) deviation 

from linear first order behavior (𝜑 = 1.0). (d) The whole range of frequencies (𝜑 = 0.7), (e) for 

the low range of frequencies (𝜑 = 0.7), and (f) deviation from linear first order behavior (𝜑 =
0.7). Dots show numerical results and solid lines indicate nonlinear curve fit. 

 

As shown by dashed lines in Fig. 4.4-a and 4.4-d, each plot is divided into two different 

zones, namely, low frequency and high frequency, which are different for each equivalence ratio. 

Linear first order approximation works well for the low frequency zone, but get progressively 

worse for the high frequency zone. The frequency at which this behavior changes is referred to as 

High Frequency 

High Frequency 

Low 

Frequency 
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the cut-off frequency. As can be seen from Table 4.1, the cut-off frequency decreases with 

equivalence ratio. This behavior is mainly because of the lower burning rate in leaner flames. Table 

4.1 compares the behaviour of each system in these two zones for three different equivalence ratios. 

Each equivalence ratio is divided into three domains, including a low frequency zone, high 

frequency zone, and all frequency data. 𝝉 represents the time constant of the first order model, 𝒓𝟐 

shows the accuracy of the first order model compared to time series data sets resulted from the 

numerical simulations, and 𝝃 illustrates the best-fit deviation from the linear model in each case. 

One important result from this table is that first order linear transfer functions can predict transient 

response with over 90% accuracy in the low frequency zone at each equivalence ratio. However, 

in the high frequency zone, the first order linear model fails to estimate the flame response. One 

possible reason could be the modifications of internal flame structure due to the approach of flow 

time scale to chemical time scale. 
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Table 4.1 Comparison of linear model prediction accuracy and deviation from linear first order 

model for three different equivalence ratios of 0.7, 0.8 and 1.0. 

 

 
𝝋 = 𝟎. 𝟕 

Lower than 20 Hz 
Higher than 20 

Hz 
All Frequencies 

𝝉 0.0061 0.0032 0.0023 

𝒓𝟐 0.9201 0.7344 0.9090 

𝝃 0.1354 0.2261 0.2005 

 
𝝋 = 𝟎. 𝟖 

Lower than 200 Hz 
Higher than 200 

Hz 
All Frequencies 

𝝉 0.0010 0.00052 0.00047 

𝒓𝟐 0.9901 0.7608 0.9566 

𝝃 0.1626 0.2574 0.2373 

 
𝝋 = 𝟏. 𝟎 

Lower than 750 Hz 
Higher than 750 

Hz 
All Frequencies 

𝝉 0.00058 0.00022 0.00025 

𝒓𝟐 0.9393 0.5389 0.9148 

𝝃 0.0967 0.1887 0.1517 

 

It should be noted that by using 𝜉, the quality of the fit improves significantly such that 𝑟2 

reaches 99%. 

 

4.2.2 Linear Higher Order System Analysis 

In this section, in order to include flame behavior to a flow change in upstream of flame 

front, one needs to simulate each case for a wide range of frequencies and various input functions 

such as step, ramp, pulse, etc. This time-consuming process can be replaced by one or more transfer 

functions and the overall behavior of the flame can be defined using these functions. With regard 

to the application of this study, the input to the transfer functions are converted to stretch rate. The 

calculation of stretch rate is adopted from [83]. In this condition, the relationship between the 

stretch rate and heat release, which has been ignored in the current approach of flamelet modeling, 
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reveals how flamelets respond to the time-dependent motion of a curved flame front. In order to 

have a better prediction of the transfer functions, a Polynomial Discrete-Time ARX Model [84], 

which is a generalized transfer function has been used. Equation (4.3) shows the general form of 

linear (due to the linear relationship between input and output) higher order (more than one term) 

transfer functions.  

 

𝐶(𝑧−1)𝑦(𝑡) = ∑𝐷𝑖(𝑧
−1)𝑢𝑖(𝑡 − 𝑛𝑘𝑖)

𝑛𝑢

𝑖=1

         (4.3) 

 

In this equation, 𝑢(𝑡) is the input (stretch rate), 𝑦(𝑡) is the output (EI), 𝐶 and 𝐷 are 

polynomials expressed in the time-shift operator 𝑧−1, 𝑢𝑖 is the 𝑖𝑡ℎinput, nu, the total number of 

inputs, and 𝑛𝑘𝑖, the 𝑖𝑡ℎinput delay that characterizes the transport delay. In the present study, the 

system is SISO (single input/single output), therefore the transfer function takes a more familiar 

form wherein 𝑖 = 1. A Z-transform (Time-Discrete Fourier Transformation) can be used to convert 

the discrete-time form of the transfer function (Eq. 4.3) into a complex frequency domain 

representation. 

This approach was first used to estimate the transfer function of the flame (with equivalence 

ratio of 0.8) response at 20 Hz fluctuations in mass flow rate. Then, the flame response to higher 

frequencies has been predicted using this transfer function. It has been observed that the accuracy 

of predictions decreases with increasing frequency. Increasing error in prediction of transient 

response in the low frequency zone confirms that nonlinearity of the system increases with 

increasing frequency at each equivalence ratio. However, it could be considered insignificant until 

the oscillation reaches the high frequency zone, where the intrinsic structure of the flame may be 
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changed locally. In the next step, the whole range of low frequencies (frequencies lower than 200 

Hz, which is the cut-off frequency for equivalence ratio of 0.8) have been used to generate the 

transfer function (Eq. 4.4). Figure 4.5 shows that the accuracy of predictions is ~ 88% and higher 

for frequencies up to 200 Hz; however, the flame response experiences a significant drop in 

accuracy after 200 Hz. 

 

𝐶(𝑧) = 1 − 0.2218𝑧−1 − 0.4369𝑧−2 − 0.3106𝑧−3 − 0.03073𝑧−4 

𝐷(𝑧) = −6.712𝑒06𝑧−1 + 2.026𝑒07𝑧−2 − 2.039𝑒07𝑧−3 + 6.843e06𝑧−4 
         (4.4) 

 

 
 

Fig. 4.5 Estimation of transient response of a laminar premixed flame for 𝜑 = 0.8 based on low 

frequency data using a higher order linear model (ARX model) 

 

𝐶(𝑧) and 𝐷(𝑧) are the expressions represented in Eq. 4.3. The fourth order transfer function 

means that a minimum of the first four terms on each side of Eq. 4.3 is required to have the most 
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accurate predictions. It should be noted that 𝐶(𝑧) and 𝐷(𝑧) are usually referred to as the poles and 

zeros of a transfer function in the literature. 

Based on the higher order linear model, a transfer function (Eq. 4.5) is generated for 

predicting the high frequency zone transient response. Figure 4.6 illustrates the accuracy of this 

model for frequencies higher than 200 Hz. 

  

𝐶(𝑧) = 1 − 0.8901𝑧−1 − 0.5892𝑧−2 + 0.1596𝑧−3 + 0.3196𝑧−4 

𝐷(𝑧) = −1161𝑧−1 + 3533𝑧−2 − 3594𝑧−3 + 1226e06𝑧−4 
         (4.5) 

 

 

 

Fig. 4.6 Estimation of transient response of a laminar premixed flame for 𝜑 = 0.8 based on high 

frequency data using higher order linear model (ARX model) 
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In order to study the effect of the amplitude on flame behavior and the transfer function, 

the ratio of the oscillations to the mean value was doubled. The results in Eq. (4.6) depict a similar 

fourth order transfer function, which predicts the high frequencies (70% for 500 Hz, 84% for 1000 

Hz, and 91% for 2000 Hz), with different coefficients. 

 

𝐶(𝑧) = 1 − 0.8968𝑧−1 − 0.5579𝑧−2 + 0.04589𝑧−3 + 0.4088𝑧−4 

𝐷(𝑧) = −228.6𝑧−1 + 727.4𝑧−2 − 766.1𝑧−3 + 270.5e06𝑧−4 
         (4.6) 

 

The fourth order equation also indicated the effective transfer function for various 

equivalence ratios. For example, a stoichiometric flame was tested with a similar geometry, flame 

curvature, and amplitude. As can be seen in Eq. (4.7), the optimum transfer function has the same 

format as the other cases except the coefficients. In other words, in order to predict the output of a 

flame with a different amplitude, a fourth order transfer function can be used; however, the 

coefficients need to be altered. The accuracy for the high range of frequencies is 83% for 500 Hz, 

93% for 1000 Hz, and 94% for 2000 Hz. The higher accuracy in the same frequencies was expected 

due to the faster burning rate at the stoichiometric condition compared to the lean flames. 

 

𝐶(𝑧) = 1 − 0.4891𝑧−1 − 0.3808𝑧−2 − 0.08371𝑧−3 − 0.04643𝑧−4 

𝐷(𝑧) = −6461𝑧−1 + 2.017𝑒4𝑧−2 − 2.111𝑒4𝑧−3 + 270.5e06𝑧−4 
         (4.7) 

 

As can be concluded from the recent results in this section, the whole range of frequencies 

is divided in two sections based on the cut-off frequency obtained from numerical simulations of 

transient response of laminar premixed flames for each equivalence ratio and a separate transfer 
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function is defined for each section. Although the accuracies are in an acceptable range, there may 

be a considerable improvement using nonlinear models to predict the output. Therefore, in order 

to study the capability of nonlinear models to predict the flame response more accurately, different 

nonlinear transfer functions were analyzed in the next section. 

 

4.2.3 Nonlinear System Analysis 

As shown in the previous section, although linear transfer functions can achieve accurate 

prediction in the low frequency range of flame response to changes in stretch rate, they are not able 

to predict the response at some high frequencies. As mentioned in the introduction, in analyzing 

flame instabilities, flow velocity perturbations (as the input to the system) change the heat release 

rate (as the output) by influencing the flame surface area. Therefore, flame transfer functions are 

studied using the flame response to velocity fluctuations. The heat release rate modulations result 

in acoustic pressure perturbations, and could be linked to inlet flow velocity oscillations. Therefore, 

in order to capture the nonlinearities in the thermos-acoustic coupling, the flame transfer function 

has been replaced by the flame describing function [85]. It has been reported that in premixed 

combustion systems, the relationship between velocity and heat release makes the system nonlinear 

whereas gas dynamic processes generally stay in the linear regime [86].  

One difference between linear and nonlinear transfer functions is in the representation of 

the equivalent time-domain. Nonlinear systems are defined based on a sequence of transfer 

functions, as opposed to only one function in the linear case. Although with stronger nonlinearities, 

more transfer functions are required to study the behavior of the system accurately, for a wide 

range of nonlinear systems, it is usually sufficient to capture the dominant effects by considering 

the first, second, and third order transfer functions. The other difference is that even in a single 
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input/single output nonlinear system, a transfer function is multi-variate, which increases the 

difficulty of defining a transfer function to relate the system response to input, interpret the output, 

and obtain complete understanding of its behavior. In this regard, it could be useful to apply 

Nonlinear Frequency Response Analysis (NFRA) on the current transient data.  

Nonlinear frequency response analysis, like a first order linear system, applies a sinusoidal 

function as the input. However, the system cannot be considered linear around the steady state 

condition. In this case, nonlinear perturbations occur, and therefore, similar to the flame analyzed 

in this chapter, the transient response can no longer be expressed with a single sinusoidal function. 

New frequencies such as harmonics and intermodulation frequencies are generated, meaning that 

the sinusoidal functions of the high frequency response data can be best approximated by a sum of 

two or three sinusoidal functions instead of one. The fact that the current time-series data in the 

high frequency zone could be approximated by the sum of two or three sinusoidal functions more 

accurately indicates this aspect of nonlinear systems for laminar premixed flames. These 

perturbations can be studied by higher order frequency response functions, which is a mathematical 

framework, such as a Volterra series [87]. The advantage of using a higher order transfer function 

is that it contains information about the nonlinearities of the system. Equation (4.8) shows the 

general form of nonlinear systems in the time domain. 

 

𝑦(𝑡) = ∑ 𝑦𝑛(𝑡)

∞

𝑛=1

= ∑ ∫ ⋯ ∫ ℎ𝑛(𝜏1, … , 𝜏𝑛)∏𝑢(𝑡 − 𝜏𝑖)𝑑𝜏𝑖

𝑛

𝑖=1

∞

−∞

∞

−∞

∞

𝑛=1

    (4.8) 

 

𝑦(𝑡) is the output in the time domain. Applying Fourier series, the output can be estimated 

using the nonlinear transfer function in the frequency domain (Eq. 4.9). 
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𝑌𝑛(𝑠1, … , 𝑠𝑛) = 𝐻𝑛(𝑠1, … , 𝑠𝑛)𝑈(𝑠1)…𝑈(𝑠𝑛)     (4.9) 

 

With this form of the transfer function, a value of one for n results in a first order system. 

Notice that both the impulse response function and the transfer function are independent of the 

input excitation. This is a highly desirable feature because it enables the determination of the 

system response for arbitrary inputs, as will be shown in the last section of this chapter. 

Although higher order linear systems and nonlinear systems have multidimensional transfer 

functions, their behavior is significantly different. Higher order linear systems have real 

multidimensional input/output that are defined with integer arguments. There are different 

approaches to model nonlinear systems including Volterra series models, block structured models 

(Wiener and Hammerstein [88]), neural network models, and nonlinear auto-regressive exogenous 

(NARX) models, and the nonlinear auto-regressive moving average model with exogenous inputs 

(NARMAX) [89]. 

Among these predictive models, NARX showed better results in estimating the transient 

response of the flame for the whole range of frequencies including low and high frequency zones. 

NARX models (which is an extension of ARX in polynomial transfer functions) are flexible 

nonlinear functions that are able to capture the complex behavior in nonlinear systems such as the 

current data set. Eq. (4.10) illustrates the structure of a linear Single Input/Single Output ARX 

model: 

 

𝑦(𝑡) + 𝑎1𝑦(𝑡 − 1) + 𝑎2𝑦(𝑡 − 2) + ⋯+ 𝑎𝑛𝑎𝑦(𝑡 − 𝑛𝑎)

= 𝑏1𝑢(𝑡) + 𝑏2𝑢(𝑡 − 1) + ⋯+ 𝑏𝑛𝑏𝑢(𝑡 − 𝑛𝑏 + 1) + 𝑒(𝑡) 

        (4.10) 

https://en.wikipedia.org/wiki/Volterra_series
https://en.wikipedia.org/wiki/Neural_network
https://www.mathworks.com/help/ident/ug/what-are-polynomial-models.html
https://www.mathworks.com/help/ident/ug/what-are-polynomial-models.html
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where 𝑢, 𝑦 and 𝑒 are the input (stretch rate), output (EI), and noise (zero in this study), 

respectively. This structure implies that the output 𝑦(𝑡) in current time is predicted as a weighted 

sum of past output values and current and past input values. 𝑛𝑎 is the number of past output terms, 

and 𝑛𝑏 is the number of past input terms used to predict the current output. It has been shown that 

the surface wrinkling in turbulent flames at one location, in addition to the local velocity 

perturbation, depends also on the flame surface fluctuations at previous times upstream of the flame 

front [90]. Therefore, an ARX model could capture this memory effect occurring in turbulent 

flames by modifying the laminar flamelet response to a change in upstream flowrate. Rewriting 

Eq. (4.11) as a product gives: 

 

𝑦𝑝(𝑡) = (−𝑎1, −𝑎2, … , −𝑎𝑛𝑎, 𝑏1, 𝑏2, … , 𝑏𝑛𝑏)(𝑦(𝑡 − 1), 

𝑦(𝑡 − 2),… , 𝑦(𝑡 − 𝑛𝑎), 𝑢(𝑡), 𝑢(𝑡 − 1), … , 𝑢(𝑡 − 𝑛𝑏 − 1)) 

         (4.11) 

 

where 𝑦(𝑡 − 1), 𝑦(𝑡 − 2),… , 𝑦(𝑡 − 𝑛𝑎), 𝑢(𝑡), 𝑢(𝑡 − 1), … , 𝑢(𝑡 − 𝑛𝑏 − 1) are delayed input and 

output variables, called regressors. The coefficients vector (−𝑎1, … , −𝑎𝑛𝑎, 𝑏1, … , 𝑏𝑛𝑏) represents 

the weighting applied to these regressors. The linear ARX model thus predicts the current output 𝑦𝑝 

as a weighted sum of its regressors. The flexibility of the nonlinear ARX model allows for 

replacing the weighted sum of the regressors in a linear model with one of several available 

nonlinear functions, ℳ. 

 

𝑦𝑝(𝑡) = ℳ(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), 𝑦(𝑡 − 3),… , 𝑢(𝑡), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2),… )          (4.12) 
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The nonlinearity estimator (ℳ) for calculating the nonlinear ARX model in this study was 

wavenet, which stores the wavelet network [91] for use in transfer functions. Different parameters 

of this network are automatically estimated in the system identification toolbox of MATLAB. 

In addition to simple delayed input-output variables, a more complex nonlinear expression 

of delayed input and output variables can be used in nonlinear ARX regressors. This type of 

nonlinear transfer function consists of regressors and a nonlinearity estimator. In the nonlinearity 

estimator, linear and nonlinear functions can be applied to the model regressors to predict the 

system output. 

After applying the nonlinear ARX model to predict the flame response, the results need to 

be validated by comparing the estimations with time series data sets obtained from complex 

chemistry numerical simulations. The nonlinear model shows high accuracy for low frequency 

zone (Fig. 4.7), but also predicts the results for higher frequencies reasonably well (Fig. 4.8). The 

frequency has been increased up to 2000 Hz in this study. 
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Fig. 4.7 Estimating of transient response of a laminar premixed flame for 𝜑 = 0.8 in low 

frequency zone using a nonlinear model (NARX) 

 
Fig. 4.8 Estimating of transient response of a laminar premixed flame for 𝜑 = 0.8 in high 

frequency zone using a nonlinear model (NARX) 
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In Fig. 4.8, a few sharp discontinuities can be observed on the top and bottom of the plots. 

Although, it has been shown previously that the time stepping and the grid spacing are essentially 

sufficient to capture all the physical and chemical changes in the flame, a further numerical 

consideration is needed to adapt the correct time step and grid size in those regions. These 

discontinuities are observed in the regions when the flame reaches maximum or minimum 

positions in a cycle and are mainly due to the delay in flame response that change the flame 

structure. 

 

4.3  Prediction of a Random Input Response Using Transfer Functions 

Turbulent flows consist of flow perturbations that are not simple sinusoidal functions. For 

our purposes here these fluctuations were modelled as a sum of different sinusoidal functions with 

different amplitudes, frequencies, and phase lags. The transfer functions developed in the previous 

sections can be used to predict the transient responses to a random-looking input. In order to test 

this capability, three different ranges of frequency were selected including low, intermediate and 

high frequency range. First, four frequencies are used to form the input in the low frequency zone 

by summing them. Frequencies within the low range are selected (20 Hz, 50 Hz, 80 Hz, and 100 

Hz) which results in forming a stretch rate perturbation in Fig. 4.9 (top figure). This input was used 

to compare different responses including the quasi-steady response, and the response resulting 

from detailed numerical calculations (Fig. 4.9 - bottom figure). The solid line curve indicates the 

quasi-steady response in which there is no amplitude change or phase lag in the output of the 

system. The dashed line curve shows the numerical results obtained from the code based on full 

complex chemistry, which was originally used to calculate the transient response at each individual 

case. 
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Fig. 4.9 Comparison of quasi-steady and transient response (complex chemistry) of a laminar 

premixed flame to a random input in low frequency range (𝜑 = 0.8), Top figure: stretch rate 

perturbation as the input, Bottom figure: solid line the quasi-steady response and dashed line the 

transient response (complex chemistry). 

 

A comparison has been made in order to show the similarity of the transfer function output 

to the complex chemistry transient response (Fig. 4.10). In Fig. 4.10, the transient response is 

illustrated by the solid line curve and the transfer function output is shown by dashed line. The 

accuracy of the model (defined by Eq. 4.13) is 90%, which shows the output variations that is 

reproduced by the model while the quasi-steady response shows 75% accuracy compared to the 

time-dependent numerical simulation. 

The accuracy of the fit is defined as follows: 

 

𝐹𝑖𝑡 = (1 −
𝑛𝑜𝑟𝑚(𝐸𝐼 − 𝐸𝐼̅̅ ̅)

𝑛𝑜𝑟𝑚(𝐸𝐼 − 𝑚𝑒𝑎𝑛(𝐸𝐼))
) × 100         (4.13) 
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Fig. 4.10 Comparison of transient response of a laminar premixed flame and nonlinear model 

output in low frequency range for 𝜑 = 0.8 

 

The same approach was taken to predict the response using the transfer function in the 

previous section for high frequency zone (500 Hz, 1000 Hz, and 2000 Hz). As depicted in Fig. 

4.11, in this condition, the deviation of quasi-steady response from the complex chemistry transient 

simulation is more significant compared to low frequency analysis. The accuracy of fit in this case 

is only 25%. As shown in Fig. 4.12, the transfer function that was obtained from the high frequency 

data, is capable of increasing this accuracy to 84%. 
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Fig. 4.11 Comparison of quasi-steady and transient response (complex chemistry) of a laminar 

premixed flame to a random input in high frequency range (𝜑 = 0.8), Top figure: stretch rate 

perturbation as the input, Bottom figure: solid line the quasi-steady response and dashed line the 

transient response (complex chemistry). 

 

 
Fig. 4.12 Comparison of transient response a laminar premixed flame and nonlinear model 

output in high frequency range for 𝜑 = 0.8 
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In the intermediate range, a model was developed based on both low and high frequency 

datasets. In order to test this model, a combination of low and high frequencies (80 Hz, 100 Hz, 

200 Hz, and 500 Hz) were selected. As can be observed from Fig. 4.13 the quasi steady response 

is 30% similar to complex chemistry resulted from transient numerical simulation while transfer 

function is capable of producing the transient results with 74% accuracy (Fig. 4.14). 

 

 
Fig. 4.13 Comparison of quasi-steady and transient response (complex chemistry) of a laminar 

premixed flame to a random input in intermediate range (𝜑 = 0.8), Top figure: stretch rate 

perturbation as the input, Bottom figure: solid line the quasi-steady response and dashed line the 

transient response (complex chemistry). 
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Fig. 4.14 Comparison of transient response of a laminar premixed flame and nonlinear model 

output in intermediate range for 𝜑 = 0.8 

 

Comparing the three cases explained above, one understands that low and high frequency 

zones can be predicted accurately using a transfer function generated for each separate range. 

Although the intermediate frequency range does not show the high accuracy compared to the other 

cases, it shows an acceptable improvement compared to the quasi-steady response.  

In summary, laminar premixed flames are complicated systems containing multiple heat 

and mass transfer and chemical processes. Nonlinearity results from the coupling of these 

processes. Therefore, in this nonlinear system, the transfer function, which shows the relationship 

between the mass flowrate fluctuations and the energy release rate oscillations at different 

frequencies, will not accurately behave as a linear first order transfer function. However, the linear 

first order transfer function provides a helpful tool with a simple visual representation and a clear 

understanding of system behavior for laminar premixed flame response in the low frequency zone. 

Although, the ability to obtain transfer functions for nonlinear practical systems such as laminar 

flame response is limited due to the difficulties in presentation and interpretation of these systems, 

applying the NARX model showed an improvement in estimating the flame response to a change 
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in upstream flow velocity or stretch rate. Therefore, it would be very desirable to have such a 

mathematical framework to estimate the flame response to any change in upstream flow velocity 

or stretch rate instead of time-consuming numerical simulations. 

In order to implement the results in a flamelet model, the idea presented in this research is 

to apply the transfer functions to modify the flame energy release according to the flame 

instantaneous response in a transient condition. The LES framework uses flamelet models based 

on reaction progress variables which can be used as the input to transfer functions [81]. However, 

the definition of the progress variables is not consistent between different models. Therefore, in 

this study, in order to include the transient effects in a more general way, the stretch rate has been 

selected as the input to the system. Furthermore, using stretch rate as the input to the mathematical 

model can be more useful to extract insights from the transient results. Thus, with regard to the 

definition of the scalar quantity that is being used to describe the flame in flamelet libraries, the 

input to the transfer functions can be altered. 

 

4.4  Conclusions 

 In this chapter, the transient response data on the rate of conversion of chemical to sensible 

enthalpy for a laminar premixed flame that was exposed to a periodic flow conditions were 

analyzed in order to estimate a transfer function between these inputs and outputs. The study of 

the transient response analysis of a curved flame could be a potential modification to quasi-steady 

assumption in a laminar flamelet library in order to improve premixed turbulent modeling. The 

transient response dataset was taken from a previous study, which was a complex chemistry 

simulation of an inwardly burning laminar premixed (lean methane / air) flame in a cylindrically-

symmetric geometry for different equivalence ratios (0.7 – 1.0) and cyclic exposure to positive and 
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negative stretch rates at different frequencies (0 – 2000 Hz). In this chapter, the higher order linear 

and nonlinear analysis have been only performed for equivalence ratio of 0.8 to show the capability 

of transfer functions to capture the flame behavior when exposed to a flow perturbation in upstream 

of the flame front. 

A linear first order model was applied to the data and it fit the low frequency results for 

each flame. However, the flame behavior deviates from that of a linear first order system as the 

frequency is increased approached conditions where the chemical and flow time scales were the 

same. Applying higher order linear transfer functions did not significantly improve the comparison 

due to stronger nonlinearities at high frequencies. 

 Nonlinear models, such as the nonlinear ARX model, could correctly predict the transient 

heat release over the whole range of frequencies of changing flow conditions. This transfer function 

could also reconstruct the heat release response for any arbitrary flow input, which enables the 

model to capture the transient effects of a flame in any conditions. Therefore, estimating a flame 

transfer function of laminar premixed flames could yield a better understanding of flame dynamics 

and could be used in order to modify the quasi-steady assumption in laminar flamelet models of 

turbulent combustion. This has been confirmed by applying various random-look functions for 

stretch rate as the input to system for low, intermediate, and high frequency zones. Using the 

generated transfer functions based on the simulation datasets, the transient complex chemistry 

results were predicted with a relatively good accuracy. Thus, the effect of the unsteady stretch rate 

on the heat release due to chemical conversion of the reactants to products can be stored in a series 

of transfer functions. These functions can be recalled in a flamelet library to be applied to the 

steady pre-calculated flames with the same properties such as temperature, fuel type, equivalence 

ratio, and pressure. 
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Chapter 5: Summary and Conclusions 

5.1 Summary 

This dissertation was mainly focused on the transient response of a laminar premixed flame 

to sinusoidal perturbations in mass flow rate in order to study the effects of the motion of a curved 

flame front in producing stretch, separate from the strain rate component. In Chapter 2, a one-

dimensional numerical algorithm was developed in order to simulate an axi-symmetric time-

dependent laminar premixed flame that propagates in the radially inward direction. The transient 

governing equations of continuity, momentum, energy, and species mass fractions were solved 

simultaneously using a modified Newton’s method with a Bi-CGSTAB linear solver. A finite 

volume technique was used to discretize these governing equations. Initially, for a specific flame 

(i.e., specified fuel type, equivalence ratio, mean flame curvature, and mass flow rate), a steady 

state solution was obtained using steady boundary conditions. In order to validate the steady 

solution, the composition of the products were compared to the equilibrium state obtained from 

equilibrium thermodynamics for an adiabatic process, and the flame burning rate was compared 

to the experimental results for an unstretched planar flame. The computational results for three 

different flames (stoichiometric and two lean flames) had good agreement with the aforementioned 

thermodynamics and experimental data. In the next step, by changing the boundary conditions to 

transient mode, the steady flame was introduced as the initial condition in order to study the flame 

behavior in an oscillating flow. 

In chapter 3, the model was used to expand the study to revisit the quasi-steady assumptions 

that are used in current approaches of premixed laminar flamelet models. In this regard, a 

sinusoidal variation of mass flow rate at the inlet boundary with specifiable frequency was applied 

to investigate the transient response of a laminar premixed flame. The amplitude of variation of 
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mass flow rate was 10% of the mean flow rate (though some tests were done at 20%). This transient 

model when the fluctuating amplitude was set to 0% was validated against stationary flame results. 

Since the stationary flame in this geometry is not stretched but has a finite curvature, an 

investigation was made to compare key characteristics of steady unstretched flames to the 

dynamics of a stretched flame due to the motion of the curved flame front. The delayed response 

illustrated the fact that the flame cannot respond to a change in upstream mass flow rate or flow 

fluctuations instantaneously, even when the flow and scalar fields align (i.e., no tangential strain). 

It was observed that while the flame either expands (positive stretch) or contracts (negative 

stretch), the flame indicated distinct behavior. The parameter used for this comparison was the 

total conversion of chemical enthalpy to thermal enthalpy across the flame, 𝐸𝐼′. The flame 

response was investigated for equivalence ratios of 1.0, 0.8, and 0.7 and the frequencies up to 2000 

Hz. The amplitude of oscillations in mass flow and mean flame curvature were kept constant. 

 In Chapter 4, the transient response data on the rate of conversion of chemical to sensible 

enthalpy for a laminar premixed flame that was exposed to periodic flow conditions was analyzed 

in order to estimate a transfer function between these inputs and outputs. The transient response 

dataset that was taken from the previous chapter was completed by adding more data on a different 

amplitude and mean flame curvature. In this chapter, first, a first order linear study was performed 

for equivalence ratios of 1.0, 0.8, and 0.7 which showed relatively good results for low frequencies. 

Then, the higher order linear and nonlinear analysis was performed for the equivalence ratio of 0.8 

to show the capability of higher order transfer functions to capture the flame behavior when 

exposed to a flow perturbation upstream of the flame front. The flame response was divided into 

low and high frequency zones the boundary of which was referred to as the cut-off frequency. It 

was observed that the cut-off frequency is unique for each flame with different equivalence ratio. 
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In the end, transfer functions were tested by three cases with different random flow fluctuations. 

The results indicated significant improvements compared to quasi steady responses.  

 

5.2 Conclusions 

The main conclusions of this dissertation are: 

1. It has been concluded that similar to planar flames exposed to oscillating strain 

rates, where the flame stretch always has a positive value, the transient response of 

laminar premixed flames results in decreasing amplitudes of motion and burning 

rates and increasing phase lag with increasing frequency. This changing 𝐸𝐼′ 

amplitude and phase lag resulted in an elliptical shape when it was plotted with 

respect to the instantaneous mass flow rate, which showed differing burning rates 

between positively and negatively stretched flames with the same imposed 

instantaneous hydrodynamic state, as well as how it differed from the quasi-steady 

state. 

2. The model that was proposed and developed in this thesis indicated how expanding 

(positive stretch), contracting (negative stretch), and steady flames (unstretched) 

can behave differently at various frequencies and equivalence ratios in terms of 

chemical energy release. This phenomenon stresses the fact that in order to generate 

a more rigorous flamelet library to model a premixed turbulent flame, the time-

dependent motion of a curved flame should be considered in both positive and 

negative stretch rates. 

3. A linear first order model was applied to the data and it fit the low frequency 

results for each flame. However, the flame behavior deviated from that of a linear 
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first order system as the frequency was increased and approached conditions 

where the chemical and flow time scales were the same. Applying higher order 

linear transfer functions improved the predictions. Changing variables such as 

frequency, mean flame stretch, equivalence ratio, and amplitude did not affect the 

general format of the transfer functions and only the coefficients were altered in 

different cases.  

4. Nonlinear models could correctly predict the transient heat release over the whole 

range of frequencies of changing flow conditions more accurately. These transfer 

functions could also reconstruct the heat release response for any arbitrary flow 

input, which enables the model to capture the transient effects of a flame in any 

conditions. Therefore, estimating a transfer function of laminar premixed flames 

could yield a better understanding of flame dynamics and could be used in order 

to modify the quasi-steady assumption in laminar flamelet models of turbulent 

combustion. This observation has been confirmed by applying various random 

functions for stretch rate as the input to the system for both low and high frequency 

zones. Using the transfer functions generated based on the simulation datasets, the 

transient complex chemistry results indicated a significant improvement 

compared to quasi-steady response. 

 

5.3 Contributions 

The novel contributions of this dissertation can be summarized as: 

1. A FORTRAN code was developed, based on first principles, and implemented for 

simulating time-dependent laminar premixed flames in a cylindrically symmetric 
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geometry with steady and transient boundary conditions. The configuration generates 

both positive and negative stretch rate while the strain rate effect does not exist. [M. 

Sahafzadeh, L. W. Kostiuk, S. B. Dworkin, “A Numerical Algorithm for Modeling 

Laminar Premixed Flames Exposed to an Oscillating Flow Field in Cylindrically-

Symmetric Geometry,” Submitted to Computer Physics Communications, (under 

review)] 

2. Using a sinusoidal variation of mass flow rate at the inlet boundary of the steady flame, 

a novel approach was introduced which facilitated distinguishing between the two 

components of stretch rate, namely strain rate and motion of a curved flame. This 

approach provided a consistent means to determine the effect of various parameters 

such as equivalence ratio, frequency, amplitude, and mean flame curvature on the flame 

response. [M. Sahafzadeh, L. W. Kostiuk, S. B. Dworkin, “Transient response of a 

laminar premixed flame to a radially diverging/converging flow,” Combustion and 

Flame, vol. 179, pp. 51–62, May 2017] 

3. The laminar premixed flame response was divided into two main regions, namely low 

and high frequency zones. The frequency at which the flame behavior changes is a 

function of fuel type and equivalence ratio. This behavior occurs when flow time scale 

approaches the chemistry time scale. Therefore, a definition of Damkӧhler number 

which is the ratio of these time scales can be used as a universal dimensionless 

parameter for this system.  

4. For the first time, a frequency response analysis was used to capture the transient 

response of a laminar premixed curved flame in a transfer function. With regard to the 

applicability of this research to flamelet modeling, the input to the transfer function 
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was considered to be stretch rate fluctuations and the output was kept the same as 

energy release.  

5. It was shown that a fourth order ARX model could be used to predict the transient 

effects of flow perturbations upstream of the flame front in most cases. However, 

nonlinear models are capable of predicting the output in a wider range of frequencies. 

Among all the examined nonlinear models, the nonlinear ARX model with a wavelet 

network block illustrated more promising results.  

6. In general, the higher order and nonlinear transfer functions, due to their mathematical 

structure which saves the time history of the inputs and outputs, are capable of 

capturing the time dependent effects in laminar premixed flames. [M. Sahafzadeh, S. 

B. Dworkin, L. W. Kostiuk, “Using frequency response analysis to predict unsteady 

burning rate from unsteady stretch rate,” submitted to Combustion and Flame, (under 

review)] 

 

 5.4 Recommendations for Future work 

The research presented in this dissertation has the potential to be extended in the following 

aspects: 

1. The numerical simulation code can be improved by applying a second order temporal 

discretization to enable the user to run the code with larger time steps without losing 

accuracy. Implementing a non-uniform grid in the code can also be beneficial in terms 

of both accuracy and rate of convergence. In laminar flame modeling, due to the high 

gradients of variables in the reacting layers, a large number of control volumes is 
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required to maintain the solution accuracy. In other parts of the domain, a smaller 

number of the control volumes is sufficient in order to maintain the solution accuracy. 

Thus, in applications in which a transient boundary condition is applied, implementing 

the second order temporal discretization and adaptive gridding can be helpful in order 

to have faster convergence, even in higher frequencies. 

2. In this thesis, the stoichiometric condition of a methane/air flame was compared to fuel 

lean cases due to their significance in the literature and applications in industry. A study 

on fuel rich cases of the same flame can be valuable in order to compare to the current 

results and those of similar analyses in the counter-flow geometry. A different fuel type 

such as propane or hydrogen for different Lewis Numbers are also suggested to be 

studied due to the importance of flame burning rate which leads to different behavior.  

3. More physical insights can be investigated by using the proposed model and generating 

the flame structure in the important points on a transient plot of input versus output. 

From the flame structure point of view, this approach requires special cautions to 

accurately capture instants by producing detailed graphs of different points.  
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For instance, the flames corresponding to three points, e, a, and b have the same mass 

flow rate but different amounts of energy released in the domain. Thus, it can be 

concluded that the history of the flame, when exposed to a flow fluctuation, is important 

to capture the correct structure and properties such as heat release and burning rate. 

Another important phenomenon occurs at points d and g, where the plot indicates 

different histories for each path (transient and steady responses). At this point, although 

the flame has the same mass flow rate and heat release, it passes through different paths 

with different histories which may result in different properties depending on the 

direction the flame moves (expanding or contracting). In other words, at point g, the 

path for a quasi-steady response for both expanding and contracting flame is the same. 

However, for the transient flame, point g only shows the expanding path.  
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4. The transient response of laminar flames has a very important application in flame 

extinction limits. Similar works in the counter flow geometry have shown that the 

quasi-steady response of a flame depicts a wider region for extinction limits. However, 

the transient response of a strained flame showed a smaller region due to the attenuated 

amplitude and delayed response of the flame. A potential variation in extinction limits 

of a curved flame can be valuable with regard to the previous works. 

5. Using the complex chemistry instead of simple reduced reactions in simulating a flame 

leads to several time scales. Therefore, in order to find an appropriate filter for applying 

the transient effects to a flamelet library, the transient response of the flame can be 

expressed and studied in terms of various quantities. A premixed laminar flame 

structure is divided into two layers, the fuel cracking zone and the intermediate reaction 

zone. Each of these layers has a separate thickness and time scale and accordingly a 

different transient response. The maximum flame temperature (𝑇𝑚𝑎𝑥) and integrated 

fuel consumption rate (𝑊𝑓) can be candidates due to their frequent use in flamelet 

libraries. 

6. Since the effects of transient response of laminar premixed flames are stored in the 

transfer functions, it would be advantageous to apply this method to flamelet libraries 

in order to include the unsteady stretch rate effects on local burning rate when the 

flamelets are curved. The combination of transient response of a curved flame and 

strained flames can constitute the total stretch rate in turbulent combustion modeling. 

7. Another useful insight from the developed model is to study the actual curvature effects 

on steady state flame burning rate. In other words, how small could the radius of 

curvature be before the flame stop behaving like a planar flame? 
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