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Abstract

During the normal operation of a Cloud solution, no one pays attention to the logs

except the technical department, which may periodically check them to ensure that

the performance of the platform conforms to the Service Level Agreements. However,

the moment the status of a component changes from acceptable to unacceptable, or a

customer complains about accessibility or performance of a platform, the importance

of logs increases significantly. Depending on the scope of the issue, all departments,

including management, customer support, and even the actual customer, may turn to

logs to find out what has happened, how it has happened, and who is responsible for the

issue. The party at fault may be motivated to tamper the logs to hide their fault. Given

the number of logs that are generated by the Cloud solutions, there are many tampering
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opportunities. While tamper detection solution can be used to detect any changes in

the logs, we argue that the critical nature of logs calls for immutability. In this thesis,

we propose a blockchain-based log system, called Logchain, that collects the logs from

different providers and avoids log tampering by sealing the logs cryptographically and

adding them to a hierarchical ledger, hence, providing an immutable platform for log

storage.
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Chapter 1

Introduction

In the majority of Cloud offerings, there are two parties involved. The Cloud Service

Provider (CSP) owns a shared pool of configurable computing resources and offers com-

puting and storage services, at a predefined price, via Internet, to a Cloud Service Con-

sumer (CSC).

During the normal operation of a Cloud platform, although many logs are being

collected and stored, no one pays attention to collected logs except the technical operation

department, which may check these logs periodically. The continuous monitoring of all

resources on the Cloud is an effort by the CSP to ensure that the current performance

of the Cloud platform and the Quality of Service (QoS) that is provided to CSC match

the ones that are promised to them in the signed Service Level Agreement (SLA). When

a technical issue arises, or a Cloud service delivery is interrupted, the collected logs

become the most important source of the troubleshooting and tracing efforts by the

technical operations department. Depending on the scope of the technical issue, some or

many of the departments of the CSP will get involved to analyse the logs and to draw

conclusions on important matters such as what has happened, how it has happened, and

who is responsible for the incident. Cloud service delivery interruptions or outages can

directly impact a CSC; in many cases, the CSC will be one the of parties that becomes

interested in reviewing and assessing the logs.

Logs contain very sensitive information and details about offered services. For ex-

ample, operational logs indicate how and at what capacity a system has been operating,

and network logs include all incoming and outgoing packets of a deployed solution on the
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Chapter 1. Introduction

Cloud platform. These logs hold the truth about the delivered QoS and can be used as

legal evidence in the court of law [102].

Logs are generated and collected by various monitoring solutions that a CSP has

deployed on the Cloud infrastructure. In fact, full access to all resources (e.g., bare-metal

servers, networking components, cloud management platforms, virtualisation tools, etc.)

is required to deploy holistic monitoring solutions [84], and such access is only available

to the CSP. While the full control over monitoring systems and generated logs allow

a CSP to monitor and maintain Cloud services efficiently, it gives them a controversial

power over evidential resources that are significantly important to CSCs. That is, logs

are generated and stored on a platform that is built,managed, and owned by the CSP.

Hence, CSPs have read, write, and modify permissions on all collected logs.

The majority of CSPs provide a monitoring dashboard to their CSCs. These dash-

boards are used by CSCs to view, analyse, and export logs that may seem useful for

generating reports or other technical tasks. While using these tools, the CSCs have to

trust that the information provided to CSP is genuine and has full integrity, in other

words, has not been tampered. Ironically, almost in all cases, the CSCs have no option

to test and verify the integrity of the logs that are provided to them. Without an option

to verify the integrity of the provided logs, CSCs are in a very weak position at the times

of QoS disputes. Such disadvantage causes many trust related issues.

Acknowledging this issue, some researchers [120, 86, 65, 104] have suggested the use of

a Trusted Third-Party (TTP) as a mediator between the CSPs and CSCs. This external

trusted entity [99] solves the trust issue and can be used as an effective solution. However,

this solution adds an additional layer that is a constraint. Additionally, trusting a TTP

requires taking the risk of assuming that it will always act as an honest mediator [93].

Hence, finding and deploying a solution that can guarantee the integrity of the logs

that are provided to the CSC, without relying on a TTP, is of paramount importance.

Such a solution provides peace of mind to both parties and establishes a trustworthy

relationship between them.

In this work, we propose a blockchain-based log storage system, called Logchain, that

collects logs generated on a CSP platform and stores them in cryptographically sealed

and immutable blocks that are linked together by a hash binding relationship, resulting in

a blockchain. Logchain stores blocks in a hierarchical ledger to provide the capacity and

performance that is needed for a storage system that deals with hundreds of transactions

2



Chapter 1. Introduction 1.1. Terminology

per second. To make the proposed solution more accessible and to increase its usability,

we propose an Application Programming Interface (API) that converts Logchain to an

“as a service” delivery method and can be referred to as Logchain as a Service (LCaaS).

1.1 Terminology

Throughout the study the following terminology is used.

1.1.1 Cloud Computing

As defined by NIST [30], “cloud computing is a model for enabling ubiquitous, convenient,

on-demand network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction.”.

1.1.2 Infrastructure as a Service (IaaS)

This is the most advanced level of offering. In this model, the CSP shares all its raw

resources to the CSC and the CSC is responsible for deploying Virtual Machine (VM),

network and security settings for the created VMs. Obviously, this model requires the

CSC to be tech-savvy and aware of all Cloud offerings.

1.1.3 Platform as a Service (PaaS)

In this service model, the CSP provides their customers with a computation platform

(usually in the form of a VM) and a set of pre-installed software, application and develop-

ment packages. The CSC can choose to develop, test, and deploy any type of application

they wish and enjoy Cloud features such as scalability and elasticity.

1.1.4 Software as a Service (SaaS)

In this service model, the entire infrastructure, platform, and running environment are

managed by the CSP. In this model, the CSCs are using thin clients (mainly web

browsers) to interact with the provided software or application.

3



Chapter 1. Introduction 1.1. Terminology

1.1.5 CSP

An organisation that creates a shared pool of configurable computing resources and

provides it to Cloud consumer in a service model that is governed by a mutually agreed

Service Level Agreement. Based on the required service, a Cloud provider can choose

any of IaaS,PaaS, and SaaS offerings [67].

1.1.6 CSC

Any person, organisation or business entity that uses one or more of the offerings (in forms

of IaaS, PaaS, SaaS) by a CSP. In addition to their financial obligation, paying monthly

bills, CSCs are responsible for their usage of resources and the content they upload or

generate on the Cloud platform. Figure 1.1 depicts the CSP and CSC responsibilities

related to each service offering.

1.1.7 Cloud Operational Log (COL)

Logs are among the most important pieces of analytical data in Cloud-based services [76].

COL is generated during the operation of a Cloud platform and is stored for future

analysis. COLs consist of hardware, infrastructure, network and application logs.

1.1.8 Log Tampering

Introduction of errors, losses, modifications or removal of one or all part of logs. Log

tampering can happen at any time including before and after the storage of logs [52].

1.1.9 SLA

CSPs offer their service to CSCs at a predefined rate and with a predefined set of QoS

characteristics. All these characteristics and their acceptable values will be defined in

an SLA that legally binds the two parties. Any deviation from the SLA considered a

breach of agreement and is subject to a legal action. The complex nature of the Cloud

landscape calls for exhaustive and comprehensive SLAs [86].
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Figure 1.1: The CSP and CSC Responsibilities Related to each Service Offering
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1.1.10 Chain of Accountability

To build a Cloud infrastructure, the CSPs need to combine the services and products

of many providers. Hardware providers, network providers, operating system providers,

and application providers are among vendors that CSPs use to create their offerings to

the CSCs. Here are the key players that a CSP needs to interact with [98].

1.1.10.1 Infrastructure Supplier

Provides all required items for the cloud infrastructure such as Hardware, Software,

Storage, Servers, network, and Hypervisors. Examples of major suppliers are IBM, Dell,

HP, and Microsoft.

1.1.10.2 Internet Protocol (IP) Network Provider

Provides the required internet backbone for the cloud resources so that Cloud services

can be served to the CSCs. Examples of major IP network providers are AT&T, Verizon,

Bell, and BT.

While CSCs have a signed SLAs with CSPs, CSPs have many signed SLAs with

their vendors. If a CSC escalates an issue to a CSP, the CSP may find out that it

needs to escalate the reported issue to one of its vendors. Figure 1.2 shows the chain of

accountability and escalation path for the SLAs.

1.1.11 Blockchain

Blockchains offer immutability by replying on a distributed digital ledger structure. With

no central authority, blockchain stores data in blocks, and each block is linked to another

block by a hash binding relationship. In other words, the hash of the current block,

includes the hash of the previous block and so on. In a blockchain, any changes in the

previous blocks will change their hashes, hence, breaking the chain.
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Figure 1.2: The Chain of Accountability and Escalation Path for SLAs

1.2 Cloud Computing and Cloud Monitoring

Cloud Computing, as an enabling model, is the most evolved form of deployment infras-

tructure. The term “Cloud”, in its current sense, was first used by the CEO of Google (in

2006), Eric Schmidt. He described Cloud as a business model that allows companies to

provide a wide range of services to their clients through the Internet [118]. Concurrent to

this acknowledgement, advancements in virtualisation, the key technology behind Cloud

computing, provided a higher utilisation ratio for hardware by breaking the physical lim-

itation of allocating a hardware unit to a single user. In a virtualised environment, the

same hardware is shared among multiple users, making it more utilised, resulting in a

more appealing financial feasibility. On-premises deployment, as an alternative to Cloud

computing, requires massive upfront capital investment and has massive operational cost.
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The pay-as-you-go model of Cloud computing has made it an unbeatable alternative to

on-premises deployments. As the most evolved form of deployment platform, Cloud Com-

puting has tremendously changed the deployment options for the companies around the

world. Elasticity, rapid deployment, and high scalability have made service and product

delivery more feasible than before.

1.3 Cloud Monitoring and its Challenges

With many organisations choosing to move from their traditional infrastructure to Cloud,

the reliability of services offered by the CSP becomes an important topic. A CSP needs

to implement and maintain complex hardware,software, and network infrastructure. The

CSPs design and implement this complex platform in several data centres full of ho-

mogeneous bare-metal servers equipped with hypervisors that take control of hardware

resources, virtualise them, and share them in a configurable pool of resources. These

servers and their virtual machines are connected via physical and Software Defined Net-

work (SDN). To achieve high-availability, for every element, several redundant pairs are

considered (e.g., UPSs, routers, switches, firewalls, storage components, and bare-metal

servers). Needless to say, the CSPs require advanced monitoring tools that capture sev-

eral metrics for every deployed component on the Cloud infrastructure. These monitoring

tools have to be able to keep up with the number of generated logs in a Cloud platform.

To provide an example of the scale of generated logs, a Cloud-based application such as

Netflix generates more than 10 billion records a day [43].

Furthermore, unique characteristics and features of Cloud computing environments,

such as elasticity and auto-scaling cause major challenges for the traditional monitor-

ing tools. The number and nature of deployed resources in a pre-Cloud environment

were mainly static, however, the elasticity of the Cloud results in a dynamic environ-

ment, in which, additional resources are dynamically added or removed. Hence, causing

significant challenges for the traditional monitoring tools that are designed for static en-

vironments [111]. Another important challenge for Cloud monitoring is that a complete

monitoring system requires complete access to the entire Cloud infrastructure and only

CSPs have such level of access. As a result, almost all Cloud monitoring solutions are

implemented by the CSPs. While this is beneficial to the CSPs, it leaves the CSCs with
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no options to validate the accuracy of provided monitoring details and logs.

Cloud computing offers different types of delivery options. Infrastructure as a Service

(IaaS) is the most comprehensive form of delivery whereCSCs are provided with full

control over the entire lifecycle of provided resources. Therefore, IaaS requires the most

advanced monitoring systems that can cover all the deployed components of an IaaS

offering. As for the PaaS, the CSCs have control over one or more VMs and only require

access to operating system logs. In contrast, in SaaS, the CSCs only use the software that

are provided to them as a service and therefore need very limited monitoring resources.

Another challenge for Cloud monitoring tools is to offer different monitoring options to

CSCs, based on different delivery types [57].

In spite of above-indicated monitoring challenges, Cloud monitoring tools are mainly

implemented by the CSPs which makes the trustworthiness of the monitoring data ques-

tionable [84]. Amazon CloudWatch [3], Google Stackdriver Monitoring [35] are examples

of such monitoring systems. The CSPs use Cloud monitoring tools for two important

reasons. Firstly, to monitor the status of all deployed components; and secondly, to feed

the required details for Cloud charge-back system that converts resource usages into bil-

lable items. While the former is often used internally and within the jurisdiction of the

Cloud provider, the latter has a significant impact on the customer. Hence, it is critical

that the CSCs are aware of the collected metrics, their values, and how they are used to

construct their payable invoices.

1.4 Trust Among Cloud Participants

As was indicated at the beginning of this chapter, while building in-house monitoring

platforms provide full control over the monitoring systems to the CSPs, it puts them

in a very powerful and autocratic position compared to the CSCs. This is because the

accuracy of the provided data cannot be assessed by the CSCs as the full control is in

the hands of the CSP [104]. The issue becomes more critical when generated metrics

and their values are used as the basis for invoice generation. Similarly, if the CSC is

complaining about a breach of the SLA, the issue of genuineness of logs become a critical

matter and can damage the trust between these two parties.

In a Cloud computing environment, many different types of suppliers and users exist.
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The CSPs (such as Amazon, IBM, Microsoft, and Google) are conglomerates which

provide the actual Cloud environment. In the Business to Business (B2B) model, the

CSCs (such as Netflix [29] and Dropbox [12]) use the services provided by the CSPs

to re-package or offer on-demand services to their clients. At the same time, the CSP

offers a Business to Consumer (B2C) model as well and sells Cloud services directly to

end-users. While such diversity of business models has significantly contributed to the

financial success of Cloud computing, it has also increased the importance of trust among

Cloud participants.

1.5 Logs and Their Importance

Monitoring solutions are responsible for monitoring various resources in a deployed plat-

form and generate useful insights based on generated values for all definable metrics.

While the majority of monitoring systems are capable of generating graphical reports

and sending alerts and notifications, the fundamental components of any monitoring sys-

tem are the ones that collect and store logs. Here we are referring to raw data (generated

by each Cloud hardware and software component) and stored for troubleshooting activ-

ities. In case of any technical issue, it does not matter which monitoring solution or

approach has been used to collect the logs; the actual logs play the most significant role.

Logs are evidential documents [40]. They contain all the details and QoS metrics

related to the operation of software, network components, servers, and Cloud platforms.

As a key element in computer forensic investigations, logs are presentable in the court

of law [95] only if they satisfy the legal requirement. These legal requirements are as

follows:

1. Authentic,

2. Reliable,

3. Believable, and

4. Admissible.

As can be seen from the above, log’s authenticity and reliability are among the key legal

requirements, yielding to the importance of a tamper-proof log system.
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1.6 Tamper-motivation and Log Tampering

In here, tamper-motivation is defined as the desire of one or more of the parties involved

in a platform, infrastructure, or Cloud solution to access critical logs and to tamper the

logs by adding, removing, or manipulating a part or the entire log. Given the number

of logs that are generated by the Cloud monitoring solutions, there are many tampering

possibilities. While tamper detection solutions can be used to detect any changes in the

logs [100, 107], we argue that due to the critical nature of logs, tamper detection is not

good enough; one should consider a storage option that offers immutability for all critical

logs.

In the following paragraphs, we explore a few tamper-motivation situations that relate

to private, community, and public Cloud.

A private Cloud is implemented, managed, and used by the same organisation. In a

private Cloud, the customer of the Cloud services is the same organisation that manages

the entire Cloud operation and, therefore, all stakeholders (more or less) have the same

interests. In private Clouds, a special type of tamper-motivation may exist. Imagine a

financial company that has established a private Cloud. The senior management team,

based on the industry’s common rules and regulations, have set extensive backup policies.

One of such policies requires a real-time backup from all financial transactions. This

requirement translates to a huge second-by-second backup for the IT department. The

IT department configures their backup systems and ensures that the backup operation has

started and there is enough space for continuous backup of transactions. A few months

after the initial setup, the company’s primary storage is affected by a hardware failure and

the customer-facing agents of the company report that they have no access to any recent

transaction. The IT department gets involved and starts a complete investigation. Given

the importance of this matter, now all departments, including the senior management

team are aware of the storage outage, and the IT department is under constant pressure.

After a complete investigation, the IT department finds out that the real-time backup

system has stopped working a few days ago and had sent several alerts to the members

of the IT department, but no one in the IT department has checked these alerts as they

have been busy with other issues. The IT department is the only department that has

access to all the logs, including the alert logs. Hence, the department may be motivated
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to take advantage of this access, remove or tamper the alert messages, and blame the

issue on a hardware problem by showing the senior management the tampered version

of logs, hence saving their jobs. In the above situation, the senior management team has

almost no way to validate the authenticity of the logs.

A community Cloud [79] is a unique Cloud model in which all the components are

provisioned for exclusive use by members of several organisations that construct a com-

munity due to the similarity of their goals. It falls between private and public Cloud [63]

and offers a more feasible alternative for organisations as they will share the deployment

and implementation cost among all the partners. To survive, a community Cloud requires

a clear definition of responsibilities, maintenance tasks, operational tasks, and control.

Each partner is responsible for a subset of Cloud elements and together, all partners,

ensure that the community Cloud remains operational and available. In a community

Cloud, there are additional tamper-motivations. In case of an unfortunate incident, the

party at fault may be motivated to tamper the logs that identifies them as the party

responsible for the issue or even worse, try to tamper the logs and fabricate a scenario in

which another party becomes the main reason behind failure and, therefore, responsible

for the caused damage. Having access to the logs for one or more of the parties in a

community Cloud may cause trust issues that call for immutability of logs.

In contrast to private and community Cloud, a public Cloud is available for all users

and resources are offered as a service, usually based on a pay-per-use charge-back system

[63]. In any public Cloud offering, there is a very distinct line between the CSP and

the CSC. The CSPs rent their computational resources to CSCs through various Cloud

offering models. The most well-known of such models are IaaS, PaaS, and SaaS. As

a result, many different types of business relationships can be constructed on a public

Cloud. While the public Cloud is the most feasible form of Cloud offerings for the

CSCs, it requires the complete trust to the CSP, almost in all aspects. Namely, the

operational health of the platform, its performance, its generated metrics, and even

charge-back reports that are consolidated in the form of monthly invoices to the CSCs.

Without having access to the actual logs or the actual infrastructure, CSCs of the public

Clouds are in a very unfair, dependent position. Consider a scenario in which a CSC

deploys an application on an elastic Cloud environment. The CSC enables auto-scaling

feature provided by the Cloud provider and defines a rule that when the memory usage

exceeds 80%, the CSP should allocate 20% extra memory space to the deployed application.
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Imagine that the CSC receives complaints related to the application performance from its

users. The CSC suspects inadequate performance of the auto-scaling function as a root

cause of the problem and asks the CSP to send a detailed report of the elastic memory

allocation. The IT team of the Cloud provider checks their logs and finds out that the

auto-scaling feature has worked intermittently, hence the performance issue. If the CSC

finds out the truth, there may be a potential lawsuit on the horizon. Thus, the IT team

may be motivated to tamper the log before sending it to the CSC.

1.7 Motivation

As mentioned in Section 1.2, for any Cloud platform that generates logs, there are parties

which may be motivated to tamper them. If the party succeeds, the incident that they

are trying to hide, most likely, will forever remain a cold case. Thus, the importance

of a tamper-proof log system for Cloud solutions is significant. In other words, a trace-

able, verifiable, and immutable log system is required to establish trust among Cloud

participants in any of the private, community, or public Cloud.

Log tampering may affect CSCs financially and technically. If a CSP tampers the

logs related to resource usage and charge the customer with a higher amount or if a CSP

hides the breach of one or more criteria of an SLA, the CSC is in immediate need of

finding a method or a tool to verify the integrity of provided data by the CSP.

Given the existence of many tamper-motivations on the Cloud platforms, the cost

of log tampering for the CSCs, and the inadequacy of existing monitoring solutions, we

come to the conclusion that an immutable log system that is capable of storing the logs

and verifying their integrity can be genuinely beneficial for the CSCs and can be used to

establish trust among Cloud participants.

1.8 Objective

The primary objective of this study is to address the inadequacy of current log system

by alleviating the required trust to the cloud providers or a third-party. We achieve

this goal by developing and deploying a prototype of a tamper-proof log system, called

Logchain, that can store and verify logs and their integrity. The proposed solution
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employs immutability characteristic of blockchain technology and guarantees the integrity

of the stored logs. Usage of the solution leads to establishing trust among all cloud

participants.

The secondary objective is to reduce the computational complexity of blockchains,

specifically, in the area of verification. We achieve this objective by introducing a hier-

archical ledger structure, in which logs are stored in blocks, and a unique set of blocks

reside in a circled blockchain. Information about circled blockchains is stored in a higher

level blockchain. Verification of a higher level block, confirms the integrity of all the

blocks in a lower-level blockchain. We show how this hierarchical structure reduces the

computational complexity that is required to verify the integrity of a series of blocks in

a blockchain.

The tertiary objective is to address the accessibility challenges related to the pro-

posed prototype by designing and implementing an API that can be used to interact with

Logchain. Users can use the API to send data (logs) and verify the stored data (logs).

Last but not least, we show that Logchain can be configured on top of Ethereum [15]

as one of the most popular blockchains solutions.

1.9 Proposed Solution

To address the trust issue of the current Cloud log storage solutions, we propose1 the use

of immutable storage to preserve logs. We chose blockchain as our data storage model

because it has all the required features such as immutability, and support for storing any

type of data. The proposed solution collects logs from various platforms and stores them

in blocks of blockchains.

Cloud platforms consist of a large number of hardware and software components [47,

80], generating a large volume of logs and metrics data. It is important that the proposed

solution is scalable and can verify stored logs efficiently and with minimal computational

power. Data verification in current blockchain platforms is a CPU and Memory intensive

task as one has to generate a hash and nonce for each block to confirm the integrity of

the stored data in that block. To make data verification more feasible, we propose a

hierarchical ledger. Logs are stored in blocks and blocks are stored in the blockchain.

1The proposal has been presented at the IEEE CLOUD 2018 conference [90].
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We then take critical information of blockchain and store it in a higher level blockchain.

Therefore, each block of a higher level blockchain contains a “fingerprint” of the lower-

level blockchain. Thus, verifying one block of a higher level block verifies the integrity of

all the logs that are stored in the lower-level blockchain that the block under verification

represents.

To make the Logchain more accessible and make it easier to use, we designed and

implemented an API that can be used to interact with Logchain. The API offers an

interface for users to send their logs and verifies their integrity.

To assess the compatibility of the proposed solution, we implemented a hierarchical

ledger on top of Ethereum platform.

Our prototype constructs a LCaaS and receives logs and stores them in an immutable

hierarchical ledger; clients can use its API to interact with the solution and send, verify,

and retrieve data from this immutable storage. The complete source code of the prototype

can be accessed via [89].

1.10 Novelty and Contribution

To the best of our knowledge, there is no other work that uses blockchain as a storage

system for logs that are generated by Cloud platforms. Although blockchains are used

as an immutable storage option for many transaction-related data, their usage in the

non-financial area is still in infancy. We employ blockchain and use blocks to store logs.

To implement our prototype successfully, we had to provide a solution for the main

scalability limitation of the blockchain, namely, the number of computational resources

that are needed to verify the integrity of each block.

In addition to using essential characteristics of blockchain technology, we have intro-

duced the following new additional features that will increase functionality, scalability,

and usability of blockchain technologies for tamper-proof log storage: (i) Absolute Genesis

Block (AGB), (ii) Relative Genesis Block (RGB), (iii) Terminal Block (TB) (iv) Circled

Blockchain (CB), (v) Super Block (SB), and (vi) Super Blockchain (SBC).

We design the proposed solution as a service so many customers can use it concur-

rently. Moreover, given that CSCs are already using many “X-as-a-Service” solutions,

they are accustomed to such service offering model. To ensure that the proposed solution
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can be used in conjunction with the existing blockchain solutions, we implemented the

proposed hierarchical ledger on top of Ethereum.

The significant contributions of this work can be summarised as enhancing the under-

lying blockchain structure and extending its capabilities by adding additional elements,

listed above. Furthermore, we implement a hierarchical blockchain ledger to achieve

faster verification process without altering the structure of a standard blockchain and its

key components. We also introduce an API as an interface for the platform so that CSPs

and CSCs can interact with it programmatically.

1.11 Outline

The rest of the thesis is structured as follows. In Chapter 2, we provide related works

and a brief literature review on both Cloud computing and blockchain. In Chapter 3,

we introduce the methodologies that we use to build Logchain, our prototype, and the

approaches for enhancing blockchain and its capability, followed by the implementation

of hierarchical ledger. Furthermore, we introduce API, its signatures, and its responses.

In Chapter 4 we present the analysis and the results of application of LCaaS model on

existing blockchain platforms. Finally, in Chapter 5, we provide a summary of this study,

as well as a conclusion and a direction towards future work.
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Chapter 2

Literature Review

In this chapter, in Section 2.1 we review the related research and work that highlights

the importance of Cloud monitoring and challenges specific to Cloud monitoring, such as

log collection and storage on the Cloud environment. In Section 2.2, we review the re-

search and work related to the digital forensic investigation and its associated challenges.

Section 2.3 provides a review of literature about the authenticity and reliability of dig-

ital evidence. In Section 2.4, we review logs and their importance as digital evidence.

Solutions that are commonly used for tamper prevention or detection are discussed in

Section 2.5. We provide an overview of blockchain and its characteristics in Section 2.6

and assess the solutions for building a trustable log management system in Section 2.7. In

Section 2.8, we conclude this chapter by providing a review of the literature that identifies

blockchain capacity limitations and offers solutions to overcome such limitations.

2.1 Cloud Logs and Related Challenges

The CSPs and CSCs leveraging Cloud offerings should continuously monitor the perfor-

mance of their products to ensure the health and efficiency of their services. Quality

dimensions, such as availability, reliability, and performance, are critical components of

SLAs. Thus, monitoring is an essential component of a Cloud platform, and the gener-

ated data by monitoring platforms play a vital role and have to be stored with absolute

care. Companies that offer their services to a large customer base, , like Netflix, deploy

large and scalable solutions on the Cloud. The metrics that need to be monitored can
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quickly produce more than 10 billion records a day [43] making the data set large enough

to be classified as Big Data [81, 80]. The high volume of generated logs, and monitoring

data cause various challenges. The storage of such large amount of data requires exten-

sive storage capacity. Furthermore, processing the collected data is also computationally

expensive [112, 80]. Hence, monitoring large scale deployed platforms is one of the major

challenges of Cloud monitoring [112].

In addition to the scale of generated logs, unique characteristics of Cloud platforms

cause various monitoring challenges. The CSPs use Cloud orchestration tools to auto-

mate the allocation of resources and their placement, fault management, and storage

management [74]. Many monitoring tools need to be aware of the existence of a resource

before they can provide a monitoring service for it. Hence, conventional monitoring tools

cannot be used in an environment that offers dynamic resource allocation [112] empow-

ered by Cloud orchestration tools. These challenges are not limited to hardware resources

such as CPU and RAM, and the dynamic nature of Cloud networks also causes difficulties

for the network monitoring tools [88].

Cloud platforms consist of several hierarchical layers [109]. The layer at the bottom is

the hardware level and consists of data centre components. Many software-defined layers

are implemented on top of this layer [66]. These layers are the infrastructure for the

application layer which is the closest one to the CSCs. While there are clear boundaries

among these layers, an issue in a lower layer can easily affect upper layers. A common

challenge for CSPs is to trace an issue and find out the layer (and a component specific to

that layer) that is the root cause of a given problem. Addressing this challenge requires

extensive traceability and a holistic view of how layers are interrelated. Interestingly,

this layered architecture opens the door for many log tampering opportunities as the

logs at each layer are only accessible to the technical team responsible for that layer. As

for CSCs, the layered structure imposes traceability issues, as CSCs cannot trace issues

beyond the application layer, and they are often left wondering whether the outage is

caused by their settings or is caused by the CSP.

Above-indicated issues affect both the CSPs and CSCs. It is important to mention

that the issues related to establishing trust among Cloud participants are specifically

related to the secure collection, storage, and transfer of COLs.
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2.2 Digital Forensic and its Principles

The legal system relies on a range of forensic investigation and identification. Tradition-

ally, all such analysis were carried out against physical evidence, such as DNA or finger-

prints. However, in the digital era, digital evidence such as operational logs, transaction 
logs, and usage logs replace physical evidence. These new type of evidence, require new 
forensic investigation methods [60]. Digital forensics is the collection of methodologies 
that encompasses the forensic analysis of all types of digital crimes.

Digital Forensic Science is defined by Palmer [85] as “The use of scientifically de-rived 
and proven methods toward the preservation, collection, validation, identification, 
analysis, interpretation, documentation and presentation of digital evidence derived from 
digital sources for the purpose of facilitating or furthering the reconstruction of events 
found to be criminal, or helping to anticipate unauthorised actions shown to be disruptive 
to planned operations.”.

As a new branch of science, digital forensics is dealing with some issues, such as lack 
of standardisation, different practices among different involved parties, and the lack of 
interconnection between academia and law enforcement [96]. Caloyannides, in his book 
“Privacy Protection and Computer Forensics” [51], reviews the challenges of digital foren-

sics and digital evidence. In an attempt to regulate and standardise digital forensics prac-

tices, the Digital Forensics Research Workshop (DFRWS) [11] has developed a forensic 
framework. The framework focuses on the interrelated steps of identification, preserva-

tion, collection, examination, analysis, presentation, and decision [115]. The framework 
identifies preservation as a crucial step and indicates that it must be a guarded princi-

ple across “forensic” categories. Figure 2.1 depicts the investigative process for digital 
forensic science created by the participants of the DFRWS [11].

2.3 Digital Evidence and its Reliability

Digital evidence is defined as any type of data that is stored or transferred using a com-

puter that support a theory of how an offence has occurred [53]. Here, data can be a 
combination of text, images, audio, video, and logs. As a complex form of evidence, 
digital evidence is often overlooked, collected inaccurately, or analysed ineffectively. As
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Figure 2.1: The Investigative Process for Digital Forensic as per [11]

indicated by Caloyannides, preservation and traceability of digital evidence are critical

components of digital forensics [50]. In regards to the use of digital evidence in court,

a common question is whether recovered digital evidence is authentic and with no al-

teration. Any reasonable doubt regarding the reliability of digital evidence significantly

reduces the weight assigned to the evidence. In some cases, if the evidence is tampered,

it makes it inadmissible. Almost in all cases, the only people who have access to the

digital evidence and are familiar with its content can tamper it. This requirement causes

many computer crimes by employees and internal members of organisations [53].

Another major challenge related to authenticity and reliability of digital evidence is
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that digital data are much more easily tampered compared to physical evidence. Many

software tools allow users to change the content and all associated characteristics of digital

evidence. For example, not only the content of a file can be changed, but also the user

has control over changing its metadata, such as author, creation date, modification data,

and its last accessed time. Furthermore, just transferring or viewing digital evidence

requires translation and transformation through many software and network layers. As

a result, a significant trust issue exists for any digital evidence that is captured from a

digital source.

In regards to the above challenge and its importance, we argue that in respect to the

lifecycle of the digital evidence, the earlier a tamper-resistant storage option is introduced,

the lower is the chance of digital data tampering. In fact, the best possible option would

be to store the data in tamper-resistant storage right after that data are generated.

2.4 Logs as Digital Evidence

Almost all components involved in a Cloud computing infrastructure generate logs. It is

essential to understand that logs record the dynamics of a system, rather than a static

snapshot. A timestamped log can allow one to reconstruct the entire system interaction

with all complex chain of events that occur during the operation of Cloud-based solutions.

Because of this characteristic, logs can be easily used as the primary source to shed light

on many legal disputes. To be admissible as digital evidence, logs have to fulfill several

legal requirements. Both, the security architecture of the log collection and the methods

that are used to protect logs against tampering, play important roles. Lack of either of

them can cause logs to become inadmissible [40].

Logs are among the most critical pieces of information for practices, such as debugging

forensics and security and incident detection. While many of these practices heavily rely

on log analysis, there are, in general, some common challenges related to collection and

analysis of logs. Logs are collected in various forms and with different time intervals.

Logs are usually collected in a decentralised fashion and each component stores logs in

a predefined location and format which may or may not be accessible to the rest of the

Cloud [77]. The existence of various log formats impose another challenge as carrying

out a forensic investigation may involve analysing and cross-referencing several files, each
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of which may be in a particular format. In some cases, there may be no log to begin

with, or logs are collected at a log-level that do not capture critical information that is

required for the investigation.

To effectively use logs as digital evidence, one has to address these issues. To overcome

these issues, many have recommended the use of a Log Management System (LMS)

[77, 94, 69, 54]. The majority of LMSs promise a set of desirable features, such as

accuracy, tamper-resistant, verifiability, confidentiality, and privacy [94].

2.5 Log Tampering Prevention/Detection Solutions

Digital forgery and tampering of digital artefacts and files long existed. Many solutions

have been proposed to detect or prevent such undesired activities. Since the majority

of logs are stored in files, it is vital to explore solutions that are offered for file tamper

detection or prevention. Various file verification techniques exist to ensure that the file

at hand is not tampered.

More than five decades ago, Peterson et al. described the use of cyclic codes to

verify that a given array of bits is original or a change has happened [87]. Based on

similar principles of cyclic codes, checksum has been widely known and used [55, 106].

In particular, checksums are used by many file systems to validate the integrity of files

and their related operations, such as copy and move. Checksums are generated by using

a checksum function that takes a block of digital data of arbitrary size and in return

generates a fixed-size value. The primary issue related to checksumming data is that

generating and verifying checksum values will slow down the I/O process [106], a process

that is already known to be the slowest among all other processes in a computer [105].

One of the modern favourite hashing techniques is a family of Secure Hash Algorithm

(SHA) [61] which is used as a means to verify content, authorship, or a property of a

digital artefact. As an example, the source code management system git [20] generates a

SHA-1 [61] signature for a commit and uses it to trace the commit throughout the entire

lifecycle of the source code [48]. In this solution, SHA-1 is mainly used for traceability

and points out to the person who committed the code and is not used as a means for

tamper detection.

In recent years, many verification-as-a-service platforms offer integrity control for the
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data that is uploaded by the user. Verification-or-integrity-as-a-service solutions, such

as arXiv [7], provide a repository of electronic documents and ensure their integrity.

Similarly, Data Integrity as a Service (DIaaS) uses the service-oriented architecture to

release the burdens of data integrity management from users. In the suggested solution,

an independent Integrity Management Service (IMS) is in charge of collecting and storing

data with a minimal impact on the performance of data storage [83].

As for Cloud solutions, theoretically, many of the mentioned solutions are applicable.

However, the complexity of Cloud environment (in particular, auto-scaling, redundant

systems, and load balancers) and the scale of generated logs bring more challenges for

the storage, access, and verification of the logs. Sharma [103] points out the complexity

of mega-scale Cloud environment and suggests incorporation of various cryptographic

algorithms and digital signature to achieve high integrity for storing critical information

in the Cloud. Liu et al. [73] focus on the data storage integrity verification for Big Data

in the areas of Cloud and Internet of Things (IoT), stating that data integrity is critical

for any computation-related system.

Bharath and Rajashree [46] suggest the use of a mediator, known as a Third-Party

Auditor (TPA), which verifies the integrity of the data and sends the integrity report to

the users. However, this solution still requires trust in a third-party or central authority.

The main drawback of these services is that one must trust the central authority

that is offering the service. The problem of trusting a third-party can be alleviated by

a self-contained solution that does not rely on a TTP integrity verification service. We

argue that blockchain is among the most promising solutions that can be used to replace

the requirement for a TTP. It was initially designed to support a cryptocurrency known

as Bitcoin that does not require a TTP (such as banks or other financial institutes) for

verification or maintenance of financial transactions. A correctly implemented distributed

blockchain is an adequate alternative to address the TTP issue [110, 75, 121].

2.6 Blockchain

Blockchain in the simplest form is a distributed database of records. Records are stored

in each copy of the database, known as public ledger1 [56]. One of they key characteristics

1Note that there exist other methods to create public ledgers.
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of this database is that it does not provide support for normal Create, Read, Update,

Delete (CRUD) operations. Instead, it only provides all its participants a write-only

privilege. In contrast to a Database Management System (DBMS), this limitation is

not a role-based setting. That is, all users, including the root (or admin), are faced

with the same constraint. While this feature removes the support of update and delete

operations for any inserted data, it results in desirable immutability. The most famous

application of blockchain is providing the infrastructure of the most controversial currency

in the world. While Bitcoin, as a realisation of a cryptocurrency, is tightly coupled

with the blockchain, it is important to mention that Bitcoin is only one of the possible

applications of blockchain technologies and the use of blockchain technologies is not

limited to cryptocurrency or financial applications.

In 2008, an individual or a group of the researcher(s) under the alias of Satoshi

Nakamoto published a paper titled “Bitcoin: A peer-to-peer electronic cash system” [82].

In this paper, the author(s) describe a system in which financial transactions can be sent

from a sender to a recipient without relying on a trusted financial institute such as a

bank. Nakamoto argue(s) that a purely peer-to-peer version of electronic cash transaction

eliminates the needs of relying on a financial institution. A Payer needs to digitally sign

a transaction to prove the authenticity of the transaction, and the receiver has to verify

the transaction to prevent the double-spending problem. A significant component that

allows transactions to be immutable is the use of a timestamp method to mark each

transaction with a timestamp. A timestamp server takes a hash of a block of items to be

timestamped and widely publishes the hash and its timestamp so that every participant

get to know that the items must have existed at the time of the announcement [82].

Another critical component of blockchain is the use of Proof-of-Work (PoW). Similar

to Hashcash [45], PoW involves running iterations for finding a particular value that

when hashed in conjunction with other elements of a block, the calculated hash begins

with a certain number of zero bits. The number of zeros is proportional to the time that

is required to complete a PoW. The higher the number of zeros, the longer it will take

to complete the PoW. Once the computational effort is dedicated and the hash value is

found, all items along with the found value, known as nonce, are kept in a block. The

content of a block cannot be changed unless the whole PoW process is repeated again.

Chaining blocks together using hash binding or hash chaining [64, 101, 68] significantly

increases the amount of computational effort that is needed for changing the content of
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an earlier block. In a hash binding relationship, the current hash of the previous block is

used as the previous hash of the current block. This chain makes any attempt to change

the blockchain computationally unfeasible as one needs to re-process PoW for all the

blocks of a blockchain in order to tamper with any of the earlier blocks [78].

Current blockchain implementations of the distributed ledgers already have notary

proof-of-existence services [110]. For example, Poex.io [32], launched in 2013, verifies the

existence of a computer file at a specific time, by storing a timestamp and the SHA-

256 [61] of the respective file in a block that will be eventually added to a blockchain.

The service is anonymous as the files are not stored or transferred to the provider’s

servers. Since the digital signature of the file is permanently stored in a decentralised

blockchain, the provider can verify the integrity and existence of such a file (at a point

of submission to the blockchain) anytime in the future. Characteristics of cryptographic

hash function [97] allow a provider to claim, with high certainty, that if the document had

not existed at the time when its hash was added to the blockchain, it would have been

very difficult to embed its hash in the blockchain after the fact. Additionally, embedding

a particular hash and then adopting a future document to match the embedded hash is

also almost impossible [97].

2.7 Trustable Log Management Systems

Proof-of-existence solutions cannot be used as scalable LMSs, as they consider files indi-

vidually, with no search function to locate the appropriate file or block. Moreover, Cloud

solutions consist of thousands of hardware and software components, each of which gen-

erates a large volume of logs [91]. The current solutions are not designed to handle the

scale that is required to store Cloud-generated logs. Furthermore, the current public

blockchains can handle a limited number of concurrent transactions [110].

At its very core, blockchain requires a lot of computational resources to operate. For

the creation of every block, on average, many iterations of hash generation are repeated

until the desired outcome matches the required difficulty target. This requirement makes

blockchain an expensive solution for storage of high volume data such as logs. Hence,

using blockchain as a log management system, at least without modifications, is neither

financially nor technically feasible.
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To secure the collected logs, specifically audit logs, Waters et al. [113] build a plat-

form that uses hash encryption to protect the content of audit logs from unauthorised

parties by encrypting the content of them. Furthermore, the authors indicate that while

encryption is required to preserve the logs and to make them immutable, it will cause

many search issues. For instance, relying on traditional search techniques would require

complete decryption for all the records at the time of the search. Such a requirement

by itself creates room for potential unauthorised access. The authors present a design

for a log encryption system that allows a designated trusted party, known as audit es-

crow agent to construct search capabilities and allow an investigator to decrypt entries

matching a keyword.

Ko and Will [71] indicate that data are, arguably, the most important asset on the

Cloud. The authors mention that the current data collection tools have four primary

problems, namely, (i) the inability to provide a tamper-resistant environment, (ii) accu-

rate timestamp synchronisation among all data collection servers, (iii) log space require-

ments, and (iv) efficient logging of root usage of the system. Ko and Will [71] offer a

solution referred to as Logger and claim that Logger addresses all four issues. In regards

to preventing log tampering, the authors acknowledge the complexity and difficulty of

this requirement and address it by only allowing an internal process to access the file

and forcing such limitation in all internal system calls. The authors explore additional

options, such as the use of signatures, hash creation for records, or hash chaining, but at

the end argue that such methods can cause significant performance issues.

Accorsi [41] presents a digital black box solution, named BBox, that provides authen-

tic archiving in distributed systems. BBox exhibits characteristics that are required for

a trustable log storage component. Namely, it offers a source validation technique and

only allows authorised devices to insert records in the log files. Further, to ensure the

immutability of the stored log, BBox uses hash chains. The solution encrypts all data,

and there are no clear-text stored logs. Last but not least, BBox offers a keyword-based

retrieval of records. Although records are encrypted, BBox supports simple keyword

searches for log entries, by generating the so-called “log views”. Therefore, the retrieval

only requires the decryption of logs that match the entered keyword and in return, reduces

the cost of log view generation.

As was indicated in Section 2.6, use of blockchain technology is not limited to financial

industry. Azaria et al. [44] denote that heavy regulations and bureaucratic inefficiency
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have severely slowed the innovation for Electronic Medical Record (EMR). The authors

propose a blockchain-based solution, known as MedRec, that offers each patient with

an immutable and comprehensive log and easy access to their medical records. Rely-

ing on key features of the blockchain, MedRec manages all crucial considerations that

are required when dealing with sensitive data sets such as healthcare records. MedRec

overcomes many inefficiencies that current EMRs have by employing advance blockchain

techniques such as smart contracts. The smart contract was invented by Szabo [108] to

to allow the decentralised nodes to run self-executing autonomous pieces of code.

2.8 Blockchain Scalability Solutions

Current blockchain consensus protocols require every node of the network to process every

block of the blockchain, hence a significant scalability limitation. Although blockchain

technology has great potential and can be used in many disciplines, it is dealing with a

number of challenges. The scalability remains the most critical challenge [119]. Blockchain

heavily relies on consensus algorithms, like PoW, and such algorithms are computation-

ally expensive. To overcome the scalability issues, a novel cryptocurrency scheme is sug-

gested by [49] where old transactions are removed from the blockchain, and a database

holds the values of removed transactions. Although this solution reduces the size of the

blockchain, it introduces the same trust issue that traditional DBMSs are suffering from.

In [59], Eyal et al. suggest redesigning the current structure of a blockchain. In

the redesigned model, known as Bitcoin-NG (next generation), conventional blocks are

decoupled into two parts, the key block, and microblocks. The key block is used for

leader election, and the leader is responsible for microblock generation until a new leader

appears. Once a node generates a key block, it becomes a leader and is allowed to

generated microblocks. A microblock contains ledger entries and also a header that

includes the reference to the previous block. Peculiarly, microblocks do not require PoW

and only key blocks contribute to the length of the chain. While this approach is very

different from current practices of the blockchain, the authors claim that Bitcoin-NG

maintains all security features of the blockchain.

As indicated in 2.6, PoW plays an important role in blockchain. However, PoW

requires a great deal of computing resources and higher cost for creating each block. To
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address the cost associated with PoW, King and Nadal provide an alternative approach

to PoW [70] and name it Proof-of-Stake (PoS). King and Nadal argue that the security

of peer-to-peer cryptocurrency solutions such as Bitcoin does not have to depend on cost

of energy consumption and one can mine or validate block transactions according to how

many coins he or she holds. Compared to PoW, the proposed alternative works faster and

cheaper. Confirming the ownership of a coin (or any digital asset) is fast and east and

requires a digital signature. Given the higher efficiency of PoS, Ethereum has decided to

migrate from PoW to PoS. At the time of writing this thesis, the migration is in process;

currently, Ethereum runs on a hybrid PoW / PoS structure [9].

The PoS schemas are actively evolving. For example, Micali et al. [62] created fast,

scalable, and secure PoS algorithm, called Algorand. The authors prove optimality of

their solution and are currently working on the production implementation of the algo-

rithm [2].
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Chapter 3

Methodology

In this chapter, we introduce the methodologies that we use to build Logchain and explore

the implementation of hierarchical ledger. Furthermore, we introduce Logchain API, its

signatures, and its responses.

In Section 3.1, we present a brief overview of components that are common among

all blockchain platforms and describe what each component does. We also provide an

overview of mining and immutability of blocks in a blockchain and review blockchain

characteristics. In Section 3.2, we provide a general overview of Logchain as a service, its

details, and the additional settings that are added to the blockchain to enhance LCaaS’

scalability. Moreover, we give details on the privacy options that we provide for log

storage in LCaaS. Section 3.3 focuses on the additional components that are introduced

to blockchain to make the implementation of Logchain possible. We review the details

of each added component and describe what it does. Section 3.4 highlights details on

the implementation of LCaaS, such as its modules, configurations, and process flow.

Additionally, we review the way logs are converted to data blocks and stored permanently.

In Section 3.5 we review the design and implementation of the LCaaS API and introduce

API methods and their return values. We conclude this chapter by providing an overview

of the applicability of LCaaS and its hierarchical ledger to other blockchain platforms in

Section 3.6.
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3.1 Common Key Components of Blockchains

Here we introduce the components that are common among all implementations of the

blockchain. These components are native to the blockchain, and, without them, no

blockchain can operate. Thus, they can be seen in any implementation of the blockchain,

such as Bitcoin [82] and Ethereum [15].

3.1.1 Genesis Block (GB)

Genesis block is the first block of any blockchain. Genesis block has predefined character-

istics. Its index and previous hash are set to zero as there are no prior blocks. Its data

element is set to null. The primary purpose of a genesis block is to indicate the start of

a new blockchain and to act as an ancestor for all the following data blocks [58]. In our

implementation of genesis blocks, we have extended the genesis block definition by creat-

ing two different types of genesis blocks (which we will explain in details in Section 3.3).

Figure 3.1 shows the elements of the original GB.

Figure 3.1: Original Genesis Block and its Elements

3.1.2 Data Block (DB)

Blocks are atomic units of storage. A data block, more commonly known as a block, con-

tains the following variables: index, timestamp, data, current hash, and previous hash.

The first element, index, is a unique sequential ID for each block; it uniquely identifies

each block. The timestamp indicates the time at which the block is created and is usually
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stored in the Coordinated Universal Time (UTC) format. The data is the most important

element of a data block. It contains valuable information that blockchain has promised

to keep immutable. The nonce is an arbitrary random number that is used to generate

a specific current hash. To achieve hash binding, each block includes a previous hash

element. The previous hash is the exact duplicate of the current hash of the previous

block. In other words, the current hash of the i-th block becomes the previous hash of

block i+ 1. Figure 3.2 illustrates a data block and its elements. Our implementation of

blocks is similar to the existing blockchain solutions.

Figure 3.2: Data Block and its Elements

3.1.3 Blockchain (BC)

Blocks that are linked together via hash binding will result in a blockchain. If data in an

earlier block (say, block m) are tampered, the link among all the subsequent blocks, from

m+1 to the most recent block i will be broken. Then one has to recompute current hash

and nonce values of each block from block m to block i of the Blockchain (BC).

3.1.4 Mining and Hash Binding

Relying on key characteristics of cryptographic hash function [97], blocks are crypto-

graphically sealed by using a method known as PoW. Comparable to Hashcash [45],

PoW involves a computationally expensive process referred to as mining. Mining is the

process running through all possible values of an integer variable1, known as nonce, to

1Typically implemented as unsigned integer.
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find a value for nonce, such that if the value is added to the rest of elements of a block

and then hashed, the hash matches the imposed difficulty target. Once the desired

value for nonce is found, it resides in the nonce element of the block and the calculated

hash resides in the current hash element of a block. At this stage, the block is mined.

The difficulty target is often defined as the number of required zeros at the beginning

of the desired hash. The more zeros, the more computational power is needed to generate

a hash that matches the difficulty target. In practice, the probability of getting a prefix

of zeros of length n bits, denoted by P (λn), is calculated as

P (λn) =

(
1

2

)n

. (3.1)

Figure 3.3 shows how additional number of zeros in the desired difficulty target sig-

nificantly reduces the probability of the desired outcome at each trial, hence, yielding

(on average) to more trials and more computational power.

Figure 3.3: Probability of Desired Outcome at Each Trial as Number of Zeros Grows
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One has to iterate through several values of nonce, to generate the current hash for

a given block that matches the defined difficulty target. The target can be set during

the initialisation of the LCaaS and may be adjusted later if needed.

Blocks are linked together based on a hash binding relationship. Our implementa-

tion of blockchains and mining operations have the same characteristics as any other

blockchain. Figure 3.4 shows the hash binding relationship between block i and block

i+ 1. Furthermore, we show the creation of the current hash and nonce in Algorithm 1.

Figure 3.4: Hash Relationship Between Data Block i and Data Block i+ 1

Input : block index, timestamp, data, previous hash
Output: current hash, nonce

1 content = concatenate(index, timestamp, data, previous hash);
2 content = Hasher(content); // to speed up computing
3 nonce = 0;
4 repeat
5 nonce = nonce + 1;
6 current hash = Hasher( concatenate(nonce, content) );

7 until prefix of current hash = difficulty target;
8 return current hash, nonce;
Algorithm 1: Generation of hash and nonce for a block. Our implementation instan-
tiates Hasher using SHA-256.

Once a block is mined, its content can no longer change unless the whole PoW process

is repeated for every block in the blockchain.

Let us examine the computational complexity of Algorithm 1 line by line.

33



Chapter 3. Methodology 3.1. Common Key Components of Blockchains

On line 1, we concatenate all elements of a block. The complexity of this operation

will be proportional to the length of the variables. The variables index, timestamp,

current hash and previous hash are of fixed length. The length of the data, denoted

by d would vary. Therefore, we can say that the time needed to concatenate the elements

is O(d). From the log storage perspective (as will be discussed in details in Section 3.5)

one can either store the raw log, in which case d can be large or one can store a “digest”

of the log records (e.g., its hash value), in which case d will be of a small fixed length. In

the latter case the O(d) simplifies to O(1).

Line 2 complexity, typically2, will be proportional to the length of content. As

discussed above, if we are storing raw logs then complexity of the operation would be

O(d), otherwise it would be O(1).

Lines 3, 5, and 8 complexity is O(1).

The number of iteration of the loop residing between lines 4 and 7 is a stochastic

value. It would depend on satisfying the “prefix of current hash = difficulty target”

constraint3 on line 7. However, we do not know in advance how long this will take. In the

best case scenario, we will need a single iteration to satisfy the constraint. In the worst

case scenario, there exists no value of nonce satisfying the constraint, in which case we

will need to iterate over all4 possible values of nonce and fail.

On average, the number of iterations will be driven by the length of the prefix, as

discussed at the beginning of this section. Assuming that the hash function outputs

are uniformly distributed, we need to compute the mean (expected value) of the uniform

distribution on the interval [1, 2n]. Thus, as per the definition of the uniform distribution,

the expected number of iterations E will be given by

E =
2n + 1

2
. (3.2)

Line 5 complexity would be proportional to the length of nonce and hashed content.

Given that the lengths of nonce and hashed content are constants, we can say that the

complexity of this line is O(1).

Therefore, the cost of operations in the loop between lines 4 and 7 is constant and the

2As it depends on the actual hashing function.
3The complexity of computing the expression on Line 7 is O(1).
4Given 64-bit unsigned integer, this would amount to 264 − 1 iterations.
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cost of the loop itself will be driven only by the number of iterations. Therefore, based

on Equation 3.2, the complexity of code between lines 4 and 7 is O(2n−1).

Hence the time complexity of PoW for each block, denoted by T (BlockPoW ) is calcu-

lated (if we are storing the raw log) as

T (BlockPoW ) = O(d)︸︷︷︸
Line 1

+O(d)︸︷︷︸
Line 2

+O(1)︸︷︷︸
Line 3

+O(2n−1)︸ ︷︷ ︸
Lines 4-7

+O(1)︸︷︷︸
Line 8

= O(d) +O(2n−1). (3.3)

If we are storing a digest of the log, then the above equation simplifies to

T (BlockPoW ) = O(1) +O(1) +O(1) +O(2n−1) +O(1) = O(2n−1). (3.4)

The average number of operations grows linearly with the number of blocks. There-

fore, assuming that we have m blocks, the complexity of computations for the chain,

denoted by BlockchainPoW would be

T (BlockchainPoW ) = O(md) +O(m2n−1) (3.5)

for the case of raw logs and

T (BlockchainPoW ) = O(m2n−1) (3.6)

for digests of logs.

3.1.5 Blockchain Immutability Features

In addition to hash binding, blockchains take advantage of the hash function properties.

Most cryptographic hash functions are designed to take an input of any size and produce

a fixed-length hash value. Menezes et al. [42] indicate the following three basic properties

of a hash function h with inputs x or x′ and outputs y or y′.

1. “Preimage Resistance: for all predefined outputs, it is computationally infeasible

to find any input which hashes to that output, i.e., to find any preimage x′ such

that h(x′) = y for any y for which a corresponding input is not known. In other

words, for a given hash, it would be computationally unfeasible to reverse the hash

function and find the value that was hashed.” [42]
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2. “Second preimage resistance: it is computationally infeasible to find any second

input which has the same output as any specified input, i.e, given x, to find a

second preimage x′ 6= x such that h(x) = h(x′).” [42]

3. “Collision resistance: it is computationally infeasible to find any two distinct inputs

x and x′ which hash to the same output, i.e., such that h(x) = h(x′). Collision

resistance implies second preimage resistance but does not guarantee preimage re-

sistance.” [42]

3.1.6 Blockchain Characteristics

In addition to hash function features, blockchain has other unique characteristics that

resulted in its widespread use and has made it one of the most promising technologies

of cybersecurity [92]. The blockchain is a decentralised database. Each participating

node holds a copy of digital ledger and ledgers are synced every time an item is added

to a ledger. Storing several copies of the shared ledger eliminates the chances of data

loss caused by a single point of failure. Unlike other databases, blockchain enforces

append-only constraints. All data items are chronologically timestamped; thus, there

is a concept of order, based on the time that each item is added to the ledger. Blocks

cannot be removed and can be audited by anyone, as their details are publicly available

in the shared ledger. Figure 3.5 depicts the key characteristics of the blockchain.

Figure 3.5: Key Characteristics of Blockchain
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3.2 Logchain as a Service (LCaaS)

Current blockchain consensus protocols require every node of the network to process every

block of the blockchain, hence a major scalability limitation. We overcome this limitation

by segmenting a portion of a blockchain and locking-it-down in a block of a higher level

blockchain, i.e., we create a two-level hierarchy of blockchains. Validating the integrity

of a high-level block confirms the integrity of all the blocks of the lower-level blockchain

and leads to a reduction of the number of operations needed to validate the chain. The

LCaaS is a hierarchical blockchain framework, graphically shown in Figure 3.6. The

figure depicts a two-level hierarchy, but the number of levels can be increased if a use

case requires it.

Figure 3.6: Two-level Hierarchy as Implemented by LCaaS
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As mentioned in the legend of Figure 3.6, ni refers to the number of data blocks in

the i-th circled blockchain and αj is the index of the terminal block of the j-th circled

blockchain. βj is the index for the absolute or relative genesis block of the j-th circled

blockchain. The value of αj will be calculated by

αj =

n0 + 1, if j = 0

n0 + 1 +
∑j

i=1 (ni + 2) = n0 + 1 + 2j +
∑j

i=1 ni, if j ≥ 1
(3.7)

and the value of βj will be calculated by

βj =

0, if j = 0

αj−1 + 1, if j ≥ 1
. (3.8)

Logchain resides on top of a basic blockchain and converts it to a hierarchical ledger.

Our primary goal is to bring scalability to blockchain for the situations in which the

number of data items that need to be stored in a blockchain is large (e.g., operational logs

of a Cloud platform). Figure 3.7 depicts the high-level architecture of the implemented

platform.

Figure 3.7: Architectural Components of LCaaS
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At its current state, the prototype includes an entirely independent blockchain frame-

work and receives data via APIs and stores them in blocks of the blockchain. Finally,

the prototype can convert the blockchain to circled blockchains and forms a hierarchical

ledger. The prototype supports the following features:

• Absolute genesis block;

• Relative genesis block;

• Data block;

• Terminal block;

• Circled blockchain;

• Super block;

• Super blockchain;

• Hierarchical ledger;

• API to receive raw data, or hash data from CSP or CSC;

• API to verify raw data, hash data, or TB;

• Control the number of blocks in a circled blockchain;

• Configurable difficulty target; and

• Configurable number of blocks in a circled blockchain.

As the name implies, the LCaaS offers the hierarchical ledger as a service. Cloud

participants can create an account and receive a unique API key for all corresponding

API calls. Clients also need to configure two main settings on their instance before they

can use it.

The first key configuration is the difficulty target which is defined as the number

of required zeros at the beginning of an acceptable hash. The LCaaS will continue to

generate new hashes and new nonces until a hash is generated that matches the difficulty

target.
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The second key configuration is defining a limit for the number of blocks in a circled

blockchain. This constraint acts as size-limit and controls how many blocks are accepted

in each circled blockchain. Once the limit is reached, the LCaaS takes the blockchain

and pushes it to the hierarchical ledger. Let us now look at the key components of the

LCaaS.

3.3 Key Components of LCaaS

While common key components of blockchains are necessary to implement a functional

blockchain framework, our prototype requires additional components. Here we provide

details of the components that the LCaaS has added to the blockchain framework. We

have expanded the basic genesis block concept and introduced absolute genesis block and

relative genesis blocks. Moreover, we have introduced new components, such as terminal

block, super block, and super blockchains. These advancements allow the LCaaS to

provide the hierarchical structure that improves the scalability of blockchains.

3.3.1 Absolute Genesis Block (AGB)

Absolute genesis block is placed as the first block of the first circled blockchain. An AGB

is the first block that is created in the LCaaS and has the same characteristics as GB,

with index and previous hash set to zero and the data element set to null. Here is the

summary of AGB’s predefined settings:

• AGB’s current hash = SHA of all other elements of this block;

• AGB’s previous hash = 0;

• AGB’s index = 0;

• AGB’s data = null.

3.3.2 Relative Genesis Blocks (RGB)

Relative genesis block is placed at the beginning of every subsequent circled blockchain af-

ter the first circled blockchain. The previous hash of an RGB is set to the current hash
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of the terminal block of the previous circled blockchain. Here is the summary of RGB’s

predefined settings:

• RGB’s current hash = SHA of all other elements of this block;

• RGB’s previous hash = current hash of the previous TB;

• RGB’s index = index of the previous terminal block + 1;

• RGB’s data = null.

Figure 3.8 illustrates the connection between the AGB and its subsequent RGB.

Figure 3.8: AGB and RGB in Circled Blockchain(0) and Circled Blockchain(1)

3.3.3 Terminal Blocks (TB)

Terminal Blocks are similar to genesis blocks, but they are added at the end of a

blockchain to “close” it and produce a circled blockchain. The terminal block’s index
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and current hash are calculated similarly to any other block. The part that differen-

tiates a terminal block from a genesis block or a data block is its data element. The

terminal block’s data element stores a JavaScript Object Notation (JSON) object that

contains details about the circled blockchain that it has terminated. The details are as

follows. The aggr hash is created by collecting and hashing current hash values of all

blocks in that circled blockchain, from the AGB or RGB to the block before the termi-

nal block. The data element also store four additional values, namely timestamp from,

timestamp to, block index from, and block index to. Here is the summary of TB’s

settings:

• TB’s current hash = SHA of all other elements of this block;

• TB’s previous hash = current hash of the previous DB;

• TB’s index = index of the previous data block + 1;

• TB’s data = JSON object.

Figure 3.9 shows the JSON object that is stored in the data element of a terminal block.

1 {
2 "aggr_hash": "",

3 "timestamp_from": "",

4 "timestamp_to": "",

5 "block_index_from": "",

6 "block_index_to": ""

7 }

Figure 3.9: JSON Object in the Data Element of a Terminal Block

In the above JSON, aggr hash is constructed by collecting and hashing current hash

values of all the blocks in the circled blockchain that the terminal block is terminat-

ing. Storing the current hash values of the blocks in the current circled blockchain

forms a hash tree and can be used to efficiently verify the integrity of all the blocks of

the circled blockchain by verifying the integrity of the terminal block for that circled
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blockchain. The other components of JSON object stored in the data element of the ter-

minal block are used for verification proposes. The timestamp from and timestamp to

show the time span that circled blockchain has covered and the block index from and

and block index to can be used to find if a block with a particular ID resides in a given

circled blockchain.

Figure 3.10 shows the relationship between a terminal block and all other blocks in

a circled blockchain. All elements of a super block are identical to the ones of a data

block. Thus, it can be implemented by any other blockchain framework.

Figure 3.10: The Relation Between Terminal Block and All other Blocks in a Circled
Blockchain
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3.3.4 Circled Blockchains (CB)

Circled blockchains are blockchains that are capped. In other words, there is a limit on

the number of blocks that they can include before a terminal block “caps” the blocks.

Once a circled blockchain is terminated by a terminal block, it can no longer accept any

new block.

3.3.5 Super Blocks (SB)

Super blocks exhibit the features of regular data blocks and have nonce, index, timestamp,

data, previous hash, and current hash. The only difference between a super block and

data block is that super block’s data element stores all of the field of a terminal block of a

circled blockchain. In order to accept terminal block elements, the data element consists

of a JSON object. The elements of this JSON object are as follows: index, timestamp,

data, current hash, previous hash, and nonce. Here is the summary of SB’s settings:

• SB’s current hash = SHA of all other elements of this block;

• SB’s previous hash = current hash of the previous SB;

• SB’s index = index of the previous data block + 1;

• SB’s data = JSON object.

Figure 3.11 shows the JSON object that is stored in the data element of a super block.

Figure 3.12 depicts the relationship between a terminal block and the data element of a

super block.
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1 {
2 "index": "",

3 "timestamp": "",

4 "Data": {
5 "aggr_hash": "",

6 "timestamp_from": "",

7 "timestamp_to": "",

8 "block_index_from": "",

9 "block_index_to": ""

10 },
11 "current_hash": "",

12 "previous_hash": "",

13 "nonce": ""

14 }

Figure 3.11: JSON Object in the Data Element of a Super Block

Figure 3.12: The Relationship Between Terminal Block and Super Block
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3.3.6 Super Blockchain (SBC)

Super blockchain is a blockchain where each of its blocks is a super block. The super

blocks are “chained” together by hash binding. In other words, super blocks that are

linked together will result in a super blockchain. An i-th super block in a super blockchain

relies on current hash of its previous super block. If data in an earlier super block, say,

super block m is tampered, the link among all the subsequent super blocks, from m+ 1

to the most recent super block, denoted by super block i, will be broken. Then one has

to recompute current hash and nonce values of each super block from super block m to

super block i.

Considering that a super block’s data element includes all the elements of a terminal

block, changing any block in a circled blockchain, not only breaks the circled blockchain

but also breaks the super blockchain. The above structure provides a hash tree structure

and enhances the immutability of data stored in blocks of circled blockchains, while

decreasing the computational resources required to verify blocks in a circled blockchain.

These novel enhancements (introduced in Section 3.3) allow the LCaaS to provide the

hierarchical structure that is needed to overcome scalability limitations of the blockchains.

In the following section, we dive into the implementation details of the LCaaS, its logic,

and flow.

3.4 LCaaS Implementation

Here we describe the flow of LCaaS and how it interacts with the user-provided data.

The source code for the prototype is available on the LCaaS GitHub repository [89] as

well as in the appendices of this thesis.The LCaaS is equipped with an API that can be

used to send data to LCaaS or to verify the integrity of data at hand by comparing it

with the version of data that is stored in blocks of the LCaaS. The details of the LCaaS

API are presented in Section 3.5.

3.4.1 Programming Language, Libraries, Code Repository

We have implemented the LCaaS based on the Object Oriented (OO) model. The pro-

totype is implemented in Python 3.6. Table 3.1 shows libraries that we have used to
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deliver LCaaS and describe their usage.

Python Library Name Usage

datetime
To implement timestamp feature in blocks, terminal

blocks, and super blocks

hashlib
To calculate the hash of a given input and return its

hexdigest value

json
To work with JSON objects (e.g., parse, read and write

in JSON format)

Flask
To implement the RESTful API that allows LCaaS cus-

tomers to interact with it

pyrebase To implement interaction with Google Firebase

Table 3.1: Python Libraries Used in LCaaS

3.4.2 LCaaS Modules

It is important to mention that we have not used any library, SDK, or third-party code

to handle the logic for blockchain and blocks. Instead, all required functionality of the

blockchain is developed from scratch. The reason is that we wanted to ensure that our

proposed solution applies to a basic blockchain framework without relying on advanced

features. Furthermore, keeping the framework simple makes it easier for one to under-

stand the logic introduced by the LCaaS.

We have created three separate modules. Advanced care is carried out to achieve

a fine balance of cohesion and coupling in class designs. That is, classes are designed

as independent as possible, but whenever possible, we have used the OO generalisation

techniques (Superclass and Subclass) to prevent redundant logic and code.

The customer-facing module is known as “index”, its logic is implemented in “in-

dex.py”, and its code is available in Appendix A. It uses Python Flask [19] and creates

a Flask-based RESTful API interface that listens on the TCP port 5000 and interacts

with the user using HTTP protocol. It uses Flask internal web server and bounds its web

service to the available local interface. For heavier deployments and production environ-

ments, we recommend the internal Flask web server to be replaced by a more scalable
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and heavy-duty web server such as Apache Web Server [6].

Upon running, the LCaaS platform instantiates an object from the class “Logchain”

and associates it with a customer by a unique customer ID. Moreover, it constructs a

connection to the persistent data storage component that uses Google Firebase real-time

database [18]. The Firebase database is a Cloud-based database that stores data in JSON

format and synchronises them in real-time to all clients that are connected to the same

schema. The real-time synchronisation can be used in the future to create a distributed

ledger in which all nodes are connected to the same schema and automatically receive

updates with the newest items in the LCaaS. Once the database connection is established,

the component waits for a request from the user. Upon receiving the request, the index

module will look at the configurations to find the actions that are needed to construct the

next data block. Based on the number of allowed blocks in a circled blockchain and the

state of the latest added block, the new data block will be added to the current circled

blockchain or a new circled blockchain will be created and then the data block is added

to it. In the latter case, a new RGB is needed before the data block can be added to

the new circled blockchain. In any case, the index module will rely on the functionalities

that are provided by the second module.

The second module is known as “Logchain” and is delivered in “lc.py”; its code is

available in Appendix B. This module implements the logic of converting the incoming

data (via “index” module) to data blocks and puts data blocks in circled blockchains and

generate a terminal block for each circled blockchain. The module also contains the logic

for Logchain class. The Logchain class connects circled blockchains and their terminal

blocks to a super block and eventually to a super blockchain. Moreover, this module im-

plements the logic of creating super block and super blockchains. This module contains all

additional components that we have added on top of regular blockchain features, namely,

extension to the genesis block, terminal block, circled blockchain, super block, and super

blockchains. The final part of this module introduces the composite data type for the

terminal block’s data element. As it was indicated in Section 3.3.3, the terminal block’s

data element consists of aggregated hashes of all the blocks in the circled blockchain that

is terminating. Additionally, the data element includes timestamp from, timestamp to,

block index from, and block index to. Figure 3.13 shows the interconnection among

classes in Logchain module.
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Figure 3.13: Interconnection Among Classes in Logchain Module

The third module referred to as “Blockchain” is delivered in “blockchain.py” and its

code is available in Appendix C. It handles the internal affairs of a blockchain and acts

as a blockchain framework. The module includes the Block class and all its methods that

can be called to create genesis blocks, data blocks, and terminal blocks. It also takes care

of hash generation and mining of blocks by generating a nonce and current hash that

match the configured difficulty target. While this module provides the framework

for blockchain, it contains no logic for converting data to data block and assigning data

blocks to the circled blockchains. This design is intentional, as we wanted to ensure

that our blockchain framework is as basic as possible and can be replaced by another

similar blockchain platform. Figure 3.14 shows the interconnection among classes in the

blockchain module.
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Figure 3.14: Interconnection Among Classes in Blockchain Module

3.4.3 Configuration

The LCaaS is designed as a configurable software. It loads various configuration from a

JSON configuration file. Table 3.2 provides a list of configurable items in “config.json”

file.
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Configuration Parameter Usage

DIFFICULTY TARGET

Set the acceptable difficulty target for the

generated current hash. By default it is set

to 000, where a represents a character rather

than bit.

GENESIS HASH
This is the default value of previous hash for

AGB.

MAX NUMBER OF BLOCKS

IN CIRCLED BLOCKCHAIN

Defines the capacity of a circled blockchain.

In other words, it defines the number of

blocks in each circled blockchain before a

terminal block is needed for that circled

blockchain.

Table 3.2: Configuration Items for LCaaS

3.4.4 Process Flow

In this section, we define the process flow of the LCaaS from the time that a customer

sends a request to store data in the blockchain all the way to the processes that put the

data in blockchain and return the confirmation to the customer using HTTP response

calls.

Upon running the LCaaS, the application instantiates a new instance of Logchain

class. This object has four indexes, each of which is instantiated from the Index class.

Table 3.3 lists the indexes of Logchain class. These indexes keep track of the position

of the most current block and its type, its current hash, and its index. Such details

are needed to create the next block and to implement hash binding between a block and

its consecutive block. Moreover, these indexes are used to decide whether the next data

block has to be added to the current circled blockchain or a to new one.
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Configuration Parameter Usage

block index

This is used as the main index counter for blocks

in the lifecycle of instances of the Logchain class.

This index is associated with number of blocks in

a blockchain. It starts from 0 and can go to m for

a blockchain with m blocks.

cb index

This is used as the main index counter for cir-

cled blockchains in the lifecycle of instances of

Logchain class. It represents the number of circled

blockchain in a LCaaS instance. It starts from 0

and can go to k for a LCaaS that has k circled

blockchains.

internal block counter

This counter keeps track of the number of blocks

inside of each circled blockchain and it gets reset

to 0 when a new circled blockchain is created.

sbc index

This counter keeps track of the index of the most

recent super block that is added to the super

blockchain.

Table 3.3: Indexes Used in Logchain Class to Keep Track of the Most Recent Added
Block and its Details

In addition to the above indexes, the LCaaS class includes an array cb array. This

array of objects stores circled blockchain objects. Each circled blockchain object has a set

of attributes that can be accessed by a set of defined “setters” and “getters” methods.

Once the LCaaS object is instantiated all of the above indexes are set to 0 and the

cb array is set to an empty array. Upon receiving a request from a user, the LCaaS uses

the following logic to determine the steps that are needed to convert the received data

to blocks in the blockchain. It is important to mention that the procedure is heavily

dependent on the position of the latest added block. A new block can be the first block

of the LCaaS and, therefore, requires an AGB before it can be stored in the blockchain.

Another scenario could be that the new block requires a new circled blockchain and a

new RGB. These scenarios are handled by the blockify method. Figure 3.15 presents
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the internal logic of this method.

Figure 3.15: The Internal Logic of create new block Method
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3.4.5 Blocks and Their Types

The blockchain module is responsible for all types of blocks that are created. The

Logchain module calls the create new block method of this module and passes the

block type parameter into this method. Based on the passed value, the method uses its

internal logic to create an appropriate block. Figure 3.16 presents the internal logic of

this method.

Figure 3.16: The Internal Logic of create new block Method
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3.4.6 Block Presentation

Once LCaaS generates a new block, a copy of the block object is stored in memory of the

Python environment. Saving blocks as objects, allow the LCaaS application to access

their values at any time using object.attribute commands. Furthermore, proper logs

are added to the Python console for each operation of the LCaaS. This internal log allows

the operators of the LCaaS to ensure that Logchain is operating normally and all blocks

are added correctly. Part of these logs are trimmed, annotated, and used as the HTTP

responses. The HTTP responses will be sent to the client who has sent the request

via API to inform them about the result of their request. It is important to mention

that to increase the readability of blocks in logs, in the HTTP responses, as well as at

the persistent storage, we convert objects to their string representation. The following

example depicts the reason behind this conversion.

Figure 3.17 presents a terminal block in raw format with data element as a composite

data type that is instantiated from TB Data class. The first element in the figure is the

index and the second element is the timestamp. The third element is the object reference

as opposed to its content. Hence, if it is saved in the persistent storage, it does not include

the details that are needed for future verification.

1 (4, ’2018-06-27T02:36:07.458670’,

2 <LC.TB_data object at 0x0000022F0B7EDF28>,

3 ’0002fe60d37f40c1ae39202c999fdae7dfc5cdaced301484ae40d4c7c87ab3d1’,

4 ’0002dc6e4a47737a0f81340f423e126414f13eb0faf6dbaf0cd250f89feadf69’,

5 801, ’TB’)

Figure 3.17: A Terminal Block data Element Shown as an Object

To overcome this issue, a stringify method is defined that converts the object to

its attributes and their values. The stringified version of the same terminal block is

presented below. As it can be seen in Figure 3.18, the object is no longer presented with

its reference, and the terminal block includes all the detailed of the circled blockchain

that it has terminated in the string format.
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1 (4, ’2018-06-27T02:36:07.458670’,

2 ’aggr_hash:

3 dea3fffccea81f685fed03d0fa6b5c73714ec20b633adabd17928b52a9efc7b5’,

4 ’timestamp_from: 2018-06-27T02:36:05.282661’,

5 ’timestamp_to: 2018-06-27T02:36:06.886907’,

6 ’index_from: 0’, ’index_to: 3’,

7 ’0002fe60d37f40c1ae39202c999fdae7dfc5cdaced301484ae40d4c7c87ab3d1’,

8 ’0002dc6e4a47737a0f81340f423e126414f13eb0faf6dbaf0cd250f89feadf69’,

9 801, ’TB’)

Figure 3.18: The Stringified data Element of a Terminal Block

3.4.7 Persistent Storage of Blocks

Once blocks are generated, the LCaaS will push them to the persistent storage. We use

Google Firebase Real-time Database to store all types of blocks.

Figure 3.19 shows a sample of JSON objects stored in the Firebase database. The

first object is shown in lines 1 to 6. The Index and Type elements of each object are just

for enhanced visibility for user and search. The main content of the block is stored in

the content element. Within the content element, the first item is the index of a block.

The second item is the timestamp. The third item is the current hash and the forth

item is the previous hash. The next item is nonce and the last item is the block type.

The hash binding relationship can be seen between the AGB at index:0 and the

first data block with index:1. The previous hash of the block with index:1 is equal

to the current hash of the block with index:0. Furthermore, as the capacity of circled

blockchain in this example is set to 5, the block with index:4 is a terminal block and

terminates the circled blockchain. At this stage, The LCaaS has to create a new circled

blockchain and generate a new RGB for it. The block with index:5 shows the newly

created RGB block. As it can be seen in line 33, the previous hash of the RGB is equal

to the codecurrent hash of the terminal block (shown in line 27).
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1 "{"Index": 0, "Type": "AGB", "Content": [0,"2018-06-26T20:24:55.803085",

2 "Absolute Genesis Block",

3 "000e5e2237f21b5c35a9c7368166cf7daf692d95a1fafaba69424f5d438ce715",

4 "0000000000000000000000000000000000000000000000000000000000000000",

5 3070, "AGB"]}",
6 "{"Index": 1, "Type": "DB", "Content": [1,"2018-06-26T20:24:55.995085",

7 {"Log": "User William formatted C Drive at 7:35 AM ,June 10th, 2018"},
8 "00073c9719c1468b5f8129b7df24e2a7af5087a71ba372f083122f8b116e462b",

9 "000e5e2237f21b5c35a9c7368166cf7daf692d95a1fafaba69424f5d438ce715",

10 4976, "DB"]}",
11 "{"Index": 2, "Type": "DB", "Content": [2,"2018-06-26T20:25:11.540994",

12 {"Log": "User Sara formatted C Drive at 10:35 AM ,June 11th, 2018"},
13 "00091859ca8ffdc2c07a76dd13f1f8842ac3d44e2582f178643e72befcaeed20",

14 "00073c9719c1468b5f8129b7df24e2a7af5087a71ba372f083122f8b116e462b",

15 4810, "DB"]}",
16 "{"Index": 3, "Type": "DB", "Content": [3,"2018-06-26T20:25:25.436190",

17 {"Log": "User Mamoosh formatted C Drive at 10:55 AM ,June 12th, 2018"},
18 "000fc7c8deaeadf7de19f22bb56b010ab18a2148a49a07a023b079ad2f90eb56",

19 "00091859ca8ffdc2c07a76dd13f1f8842ac3d44e2582f178643e72befcaeed20",

20 13267, "DB"]}",
21 "{"Index": 4, "Type": "TB", "Content": [4,"2018-06-26T20:25:37.282460",

22 "aggr_hash:

23 2aaeeac4349dce2a02c4146d9b7c88a23d7dd3702fd5440d7253245f4759753c",

24 "timestamp_from: 2018-06-26T20:24:55.803085",

25 "timestamp_to: 2018-06-26T20:25:25.436190",

26 "index_from: 0", "index_to: 3",

27 "0001141607c9c07e473e955b2ac97cfc83225f380bb00e3bc11d874928921c31",

28 "000fc7c8deaeadf7de19f22bb56b010ab18a2148a49a07a023b079ad2f90eb56",

29 2116, "TB"]}",
30 "{"Index": 5, "Type": "RGB", "Content": [5,"2018-06-26T20:25:51.977921",

31 "Relative Genesis Block",

32 "000adabfc998d9ac3ba68ce62a2de6d68b4b96520b341e0942b4bbb556336bed",

33 "0001141607c9c07e473e955b2ac97cfc83225f380bb00e3bc11d874928921c31",

34 8718, "RGB"]}",

Figure 3.19: JSON Objects Stored on the Firebase Database
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To make data more readable for CSPs and CSCs, we have provided different buckets

for each circled blockchain. Furthermore, we have introduced a bucket strictly for the

storage of super blocks. Figure 3.20 presents the dashboard of Firebase and shows how

blocks are stored in various circled blockchains. As it can be seen, a dedicated bucket for

each circled blockchain is used. Moreover, a dedicated bucket for super blocks is created.

In this example, the maximum number of blocks in each circled blockchain is set to 5

and that is why each circled blockchain consists of 5 blocks including the AGB or RGB,

data blocks, and a terminal block at the end of each circled blockchain. The last part

of this figure, shows a Superblock bucket and the genesis block of the super blockchain

and the two super blocks that are created based on the terminal blocks of the two circled

blockchain above it.

Figure 3.20: The Dashboard of the Firebase Showing Buckets for Circled Blockchains
and Super Blocks

58



Chapter 3. Methodology 3.5. LCaaS API

3.5 LCaaS API

To simplify the interaction with the Logchain platform, we have introduced a RESTful

API that converts the Logchain to the LCaaS. The CSPs can efficiently use this API and

interconnect the LCaaS with their monitoring systems and store all their logs, or the

hash of their logs, in the Logchain. Similarly, CSCs can search and verify provided logs

against the data in the Logchain and, therefore, be assured that the logs provided by the

CSPs are not tampered. In the current implementation, the application receives logs or

their hashes, adds them to the data blocks and mines the blocks by finding a nonce Like

all other blockchains, our implementation links the blocks to their previous blocks by

inserting the current hash of the previous block into the previous hash of the current

block. The following section provides more details on the implementation of the LCaaS

API. The LCaaS RESTful API has the following three characteristics:

1. Client-Server: There is a clear business logic separation between the tasks carried

out by the API server and the responsibilities of the client

2. Stateless: Each request from a client contains all the information required by the

LCaaS API to handle the request. In other words, the LCaaS API treats each

request separately.

3. Layered Structure: Communication between a client and the LCaaS API is

handled by the “index” module and no other modules are exposed to the clients.

The API is designed and implemented using Flask [19], a micro-framework for Python.

The API methods are described below.

3.5.1 Submission Methods

There are two data submission methods: submit raw and submit digest. The former

allows the client to submit the actual logs while the latter – just the file’s digest (e.g.,

SHA-based digest computed using OpenSSL dgst [31]), thus, preserving the privacy of

the log and reducing the amount of transmitted data. Both methods return, on success,

timestamp, block index and other details of the created block and, on failure, details of

the error.
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3.5.1.1 Submit raw Method

This method is used by a CSPs or CSCs to submit their logs, in actual format, to the

LCaaS. Here is an example for submitting a log snippet to the LCaaS using submit raw

submission method. Figure 3.21 shows the submission of raw log data through submit raw

method and the LCaaS response.

1 # Submission
2

3 curl -X POST \
4 http://127.0.0.1:5000/submit_raw \
5 -H ’cache-control: no-cache’ \
6 -H ’content-type: application/json’ \
7 -H ’postman-token: ef8c9f1b-84ba-f43d-1503-f27ee1a58e9b’ \
8 -d ’{"Log": "William formatted C Drive at 7:35 AM,June 10th,2018" }’
9

10 # HTTP Response from LCaaS
11

12 content-length:627
13 content-type:text/html; charset=utf-8
14 date:Fri, 13 Jul 2018 12:14:14 GMT
15 server:Werkzeug/0.14.1 Python/3.6.5
16 An AGB was created for the new circled block. AGB details are as follows:
17 (0, ’2018-07-13T12:14:13.442103’, ’Absolute Genesis Block’,
18 ’0005bdfed91ad4c04eccfbce9518e2218d44c59186b8fe73d1a0c6167c1c99bb’,
19 ’0000000000000000000000000000000000000000000000000000000000000000’,
20 1869, ’AGB’)
21 The new record has been successfully received and added to Logchain
22 with following details:
23 (1, ’2018-07-13T12:14:13.944758’,
24 {’Log’: ’William formatted C Drive at 2:35 AM ,June 29th,2018’},
25 ’000f9c99c25771b6940d1607de506a0357278d3f0608bea5d7cc0af22bb1903f’,
26 ’0005bdfed91ad4c04eccfbce9518e2218d44c59186b8fe73d1a0c6167c1c99bb’,
27 6598, ’DB’)

Figure 3.21: An Example of submit raw Method and the LCaaS HTTP Response
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3.5.1.2 Submit digest Method

For privacy reasons the CSPs or CSCs may decide to generate a digest locally and submit

it to LCaaS by using the submit digest method. Here is an example for submitting

digest of a log to LCaaS using submit digest submission method. Figure 3.22 shows the

submission of digest log data through submit digest method and the LCaaS response.

1 # Submission
2

3 curl -X POST \
4 http://127.0.0.1:5000/submit_digest \
5 -H ’cache-control: no-cache’ \
6 -H ’content-type: application/json’ \
7 -H ’postman-token: 2b76fd3a-bebc-54a2-5a7b-ac76d491ceb4’ \
8 -d ’{"digest":
9 "50E721E49C013F00C62CF59F2163542A9D8DF02464EFEB615D31051B0FDDC326"}’

10

11 # HTTP Response from LCaaS
12

13 content-length:419
14 content-type:text/html; charset=utf-8
15 date:Fri, 13 Jul 2018 12:17:39 GMT
16 server:Werkzeug/0.14.1 Python/3.6.5
17 The new record has been successfully received and added to
18 Logchain with following details:
19 (1, ’2018-06-27T14:53:37.881769’, {’digest’:
20 ’50E721E49C013F00C62CF59F2163542A9D8DF02464EFEB615D31051B0FDDC326’},
21 ’00073273f7957c99d666d0b63ad5db123e6238209c16ae38aa6da0087e6f14ed’,
22 ’0000bc96289a710506f00a8c99ca9822274b371d0586aa9ff14b9e2e45639646’,
23 9765, ’DB’)

Figure 3.22: An Example of submit digest Method and the LCaaS HTTP Response

3.5.2 Verification Methods

There are three verification methods: verify raw,verify digest, and verify tb. The

first one allows the client to verify the existence of actual logs in the Logchain, while

the second allows the client to verify the digest of the logs. The last method allows user
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to verify the existence of a terminal block with a specified hash in the Logchain, hence,

proving the integrity of all the blocks in the circled blockchain of the submitted terminal

block with on verification operation. All methods return, on success, the details of the

found values in the Logchain and, on failure, details of the error.

3.5.2.1 Verify raw Method

For the verification of the actual log content, one should use method verify raw. The

method would return the status of submission and number of blocks that match the

submitted data; if no block is found, the API will return a message informing the user

that no match has been found. In case of an error, the API will return the failed

status along with the error’s description. Figure 3.23 shows an example for log content

verification request and response in LCaaS by using verify raw verification method.

1 # Submission
2

3 curl -X POST \
4 http://127.0.0.1:5000/verify_raw \
5 -H ’cache-control: no-cache’ \
6 -H ’content-type: application/json’ \
7 -H ’postman-token: bfbe3bfb-88e0-fbbe-2721-570712537d81’ \
8 -d ’{"Log": "William formatted C Drive at 2:35 AM ,June 29th,2018" }’
9

10 # HTTP Response from LCaaS
11

12 content-length:439
13 content-type:text/html; charset=utf-8
14 date:Fri, 13 Jul 2018 12:18:31 GMT
15 server:Werkzeug/0.14.1 Python/3.6.5
16 An exact match for the submitted value has been found
17 (1, ’2018-06-29T16:04:09.692996’,
18 {’Log’: ’William formatted C Drive at 2:35 AM ,June 29th,2018’},
19 ’0008164d4115ae60c50ab8e0904bb29ff7cfdfeb852ede8d50e1c08cee972c8c’,
20 ’0005c7ea1a3dec05a6113b19a8648254e34604f0423386e878585c717f829fc2’,
21 4312, ’DB’)

Figure 3.23: An Example of verify raw Method and the LCaaS HTTP Response
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3.5.2.2 Verify digest Method

For the verification of the digest of logs, one should use verify digest method. The

method would return the status of submission and number of blocks that match the

submitted data; if no block is found, the API will return a message informing the user

that no match has been found. In case of an error, the API will return the failed status

along with the error’s description. Figure 3.24 shows an example for digest verification

request and the LCaaS response using verify digest verification method:

1 # Submission
2

3 curl -X POST \
4 http://127.0.0.1:5000/verify_digest \
5 -H ’cache-control: no-cache’ \
6 -H ’content-type: application/json’ \
7 -H ’postman-token: a8782a24-cdf9-3437-b4a3-cb6346007feb’ \
8 -d ’{"digest":
9 "57F9EE875542D6A64B48FC482B07DE146EA54685FB3F63DAC68D71DC1329FF82" }’

10

11 # HTTP Response from LCaaS
12

13 content-length:481
14 content-type:text/html; charset=utf-8
15 date:Fri, 13 Jul 2018 12:28:35 GMT
16 server:Werkzeug/0.14.1 Python/3.6.5
17 An exact match for the submitted value has been found
18 (2, ’2018-06-29T16:07:41.996813’, {’digest’:
19 ’57F9EE875542D6A64B48FC482B07DE146EA54685FB3F63DAC68D71DC1329FF82’},
20 ’000f1d3d10d39edad059bddb2e8c7497a69730e6b8d000eb7159ae88e9c77cca’,
21 ’0008164d4115ae60c50ab8e0904bb29ff7cfdfeb852ede8d50e1c08cee972c8c’,
22 494, ’DB’)

Figure 3.24: An Example of verify digest Method and the LCaaS HTTP Response
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The internal logic for the the verification methods of LCaaS, namely,verify raw and

verify digest methods are very close to each other. Figure 3.25 presents this logic.

Figure 3.25: The Internal Logic of the verify raw and verify digest Methods
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3.5.2.3 Verify tb Method

To improve the scalability of our solution, we introduced the verify tb method. It

provides an assurance (in the cryptographic sense [97]) that the sequence of blocks, from

index from to index to are not tampered. As it can be seen by generating a hash of

all the current hash values of all the blocks of a circled blockchain and compare it with

the aggr hash value of the data element of a TB, one can verify the integrity of all the

blocks in the circled blockchain. Figure 3.26 is an example of hash verification for LCaaS

terminal blocks by using verify tb verification method. Figure 3.27 presents the internal

logic of the verify tb method.

1 # Submission
2 curl -X POST \
3 http://127.0.0.1:5000/verify_tb \
4 -H ’cache-control: no-cache’ \
5 -H ’content-type: application/json’ \
6 -H ’postman-token: c8381daf-25d4-a7d9-531d-c0efc4664e9a’ \
7 -d ’{"tb_hash":
8 "cb15f40cecc5db4541befe805133d700dd5d46c4bcab498251f8139d75972d02" }’
9

10 # HTTP Response from LCaaS
11 content-length:607
12 content-type:text/html; charset=utf-8
13 date:Fri, 13 Jul 2018 12:50:11 GMT
14 server:Werkzeug/0.14.1 Python/3.6.5
15 An exact match for the submitted value has been found
16 (9, ’2018-06-29T16:39:58.666829’,
17 ’aggr_hash:
18 cb15f40cecc5db4541befe805133d700dd5d46c4bcab498251f8139d75972d02’,
19 ’timestamp_from: 2018-06-29T16:07:53.683950’,
20 ’timestamp_to: 2018-06-29T16:39:57.843766’,
21 ’index_from: 5’, ’index_to: 8’,
22 ’000276b9b3bc41f5517ea2b66ba951704cfd052f433a72e10b71bbca5a7d740a’,
23 ’000cf54ca70db4f9944712ebb928b215c118c19772080198cef7c8f5bf78e041’,
24 2344, ’TB’)

Figure 3.26: An Example of verify tb Method and the LCaaS HTTP Response
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Figure 3.27: The Internal Logic of the verify tb Method
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3.6 Applicability to other Blockchain Platforms

As mentioned in Section 3.3, the following components were added on top of the existing

blockchain components to make LCaaS possible:

• Absolute genesis block

• Relative genesis block

• Terminal block

• Circled blockchain

• Super block

• Super blockchain

It is important to mention that while we have introduced these additional components,

we have tried not to alter the key element of the actual blocks. That is, our blocks, like

any other blockchain’s block, have the following key elements:

• index

• timestamp

• data

• current hash

• previous hash

• nonce

Avoiding any alteration on block’s structure is intentional, because any modification in

the blocks format (e.g., adding new elements) will result in a proprietary implementation

of blocks and blockchains and will reduce the applicability of the proposed hierarchical

structure to other existing blockchain platforms. In the next chapter, we will assess the

applicability of the proposed solution to Ethereum blockchain platform.
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In this chapter, we assess the applicability of the proposed solution to other blockchain

platforms. In other words, we will examine whether LCaaS can be implemented on

top of the existing blockchains. We review the current existing blockchain platforms

in Section 4.1 and then provide an overview of the Blockchain as a Service (BaaS) in

Section 4.2. In Section 4.3, we review the rationale behind choosing Ethereum [15] as

the selected blockchain platform to implement the LCaaS. In Section 4.4, we define in-

tegration points between the LCaaS and Ethereum, set the boundaries of each platform,

and specify interfaces. Section 4.5 provides details of Ethereum blockchain and existing

test networks that can be used to test the Ethereum blockchain without using the live

blockchain. Section 4.6 provides implementation details. Section 4.7 concludes the chap-

ter by reviewing and analysing the results of successful integration of the LCaaS and

Ethereum blockchain.

4.1 Current Blockchain Platforms

In recent years, the concept of blockchain, its role, and use cases have become increas-

ingly popular. Bitcoin, the oldest and the most famous application of blockchain, has

reached the capital market of over 250 billion dollars in 2018 [36]. While the majority of

blockchains have the same structure, they are generally categorised based on permission

model [117] which defines how access to blockchain is configured and who can access it.

The most common permission categories are public blockchains and private blockchains.

68



Chapter 4. Evaluation 4.1. Current Blockchain Platforms

4.1.1 Public Blockchains

Public blockchains offer a shared and public ledger in which all records are visible to

the public and everyone could take part in the consensus process. The first generation

of blockchains and their applications, like Bitcoin, provided a public ledger to store

cryptographically-signed transactions [116]. Public blockchains are often implemented

over decentralised networks and offer permission-less read and write. That is, all public

members can be a part of the distributed network and participate in mining process and,

therefore, are allowed to add new blocks without permission from authorities. Public

blockchains are also the oldest type of blockchains: they were introduced in 2009 by

publishing the first transaction on the Bitcoin blockchain.

While a number of platforms (such as Bitcoin and Litecoin [24]) have focused on

financial transactions, many companies have decided to offer non-financial services on

top of existing public blockchains. The most well-known example, Ethereum, is the

provider of the decentralised platform which allows developers to publish distributed

applications. Ethereum has become increasingly famous as they have developed and

released Solidity [34], a contract-oriented, high-level language for implementing smart

contracts.

An example of a non-financial service over public blockchain is Factom [17]. As

a provider of record management solutions, Factom stores the world’s data on public

blockchain platforms.

4.1.2 Private Blockchains

A private blockchain is regarded as a centralised network, because it is fully controlled by

one or a group of organisations. Participants of a private blockchain have to be approved

before they can act as a node in the blockchain. Moreover, nodes have to request read

and write permissions. Participants have known identities, and the overall performance

of the blockchain is higher than public blockchains due to a smaller number of nodes

and smaller size of blockchains. In contrast to public blockchains, a central authority

has the power to change the rules, smart contracts, and accept or reject participants.

Private blockchains are the most flexible type of blockchains, as an organisation that

owns the blockchain has full control over the configuration and implementation of the
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blockchain. Multichain [27] is among the most well-known private blockchain platforms

and allows the organisation to implement and set up a private blockchain. To standardise

private blockchain offerings, Linux Foundation in 2016 started Hyperledger project [22]

which contains a number of reference open source implementations of distributed ledgers

created using blockchain technology.

It is important to mention that in recent years, a combination of public and private

blockchain has been created. Known as the hybrid or consortium blockchain, where

the control is extended to a certain number of people or nodes and can be beneficial

in situations when a group of organisation/firms need to achieve a goal by collaborating

with each other. Figure 4.1 depicts the difference between public and private blockchains.

Figure 4.1: The Difference between Public and Private Blockchains
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4.2 Blockchain as a Service

Blockchains are complicated platforms and require an extensive set of hardware and

software components. Hence, deploying a reliable and scalable blockchain need both the

capital and the human resources. However, many companies may need to implement a

few prototypes and assess the pros and cons of blockchain solutions for the use cases they

have in mind. To reduce the barriers to entry, many big players in the Cloud industry,

have started to offer blockchain as part of their service offering. Public cloud providers,

such as IBM and Microsoft, have all the required ingredients and therefore, have begun

providing various level of BaaS to their CSCs.

To offer such services, CSPs had to partner with existing blockchain providers. For

example, Microsoft has partnered with ConsenSys [10] to offer Ethereum Blockchain as

a Service (EBaaS) on Microsoft Azure, and IBM has partnered with Hyperledger [21] to

offer BaaS to its customers on IBM Cloud. Amazon has also started offering BaaS to

its clients [8]. At the time of writing this thesis, Google has not officially launched any

BaaS offering.

4.3 Ethereum

As mentioned above, while the focus of public blockchains (such as Bitcoin and Litecoin)

is on financial transactions, platforms such as Ethereum try to provide a generalised

platform for many different applications and use cases. Moreover, Ethereum provides the

developer with an end-to-end system for building various distributed applications [114].

Another major focus of Ethereum is the smart contracts. The smart contracts are

autonomous pieces of code [108]. They are deployed over the blockchain and are stored in

blocks. Upon being called, like a function, smart contracts can interact with the user or

data stored in the blockchain. Ethereum has developed Solidity [34], a high-level language

for developers who want to build and deploy smart contracts on Ethereum blockchain.

Additionally, to make the programming of smart contracts simpler, Ethereum team has

provided Remix [33]: an online/offline Integrated Development Environment (IDE) for

coding and compiling Solidity code.

Ethereum works based on the Ether currency. Ether is a necessary element for op-
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erating Ethereum and is a form of payment made by the clients of the platform to the

machines executing the requested operations (mainly smart contracts). All financial

transactions, such as incentives and the transaction fees, are paid in Ether. Ether also

allows Ethereum to remain a healthy network as it ensures that developers write quality

applications as the inefficient code will cost more to run [13].

Given the popularity of Ethereum, its wide range of use cases, and its widely available

development tools, we have selected Ethereum as the blockchain platform for integration

with the LCaaS. In the following section, we provide details of this integration.

4.4 LCaaS and Ethereum Integration

As it was indicated in Section 3.4, we developed an internal blockchain to store logs

that are sent to the LCaaS. Needless to say, this blockchain is a private blockchain

and in order to replace it with a public blockchain (e.g., Ethereum) integration points

have to be designed. We propose a composite structure in which receiving logs and

converting them to blocks happens at the LCaaS side and storing the hashes and digitally

signing them happens over the Ethereum blockchain. Using blockchain terminology,

data collection and blockification of logs happen off-chain, and the block storage on the

Ethereum blockchain is handled by Ethereum smart contract and will be on-chain.

Within the Ethereum blockchain, the economics are controlled by execution fee called

gas. The gas is paid by Ether, the Ethereum intrinsic currency [114]. Gas measures, in

computation resource terms, the effort that is needed to process the transaction. A smart

contract consists of one or more operations and each operation has an associated gas cost

which is defined by the Ethereum protocol [1]. For instance, a SHA3 operation costs 30

units of gas. The gas price is the amount paid per unit of gas and is defined by the initiator

of the transaction. The gas limit is the maximum amount of units of gas expenditure

per block [114]. The higher the gas price, the more appealing the transaction would

become for the miners. Hence, if a transaction needs be executed faster, the higher gas

cost will motivate a miner to consider the transaction and mine it in the upcoming block.

The current implementation of LCaaS does not use a lot of computational resources for

each block that is pushed to the blockchain, hence, the only real bottleneck is at the

blockchain provider side. As indicated above, one can increase the performance of the
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blockchain by increasing the gas price for the desired transaction.

In the light of the above economics, and the fact that each transaction incurs cost,

we limited the submissions to the Ethereum blockchain to super blocks. Super blocks

include complete elements of a terminal block of a circled blockchain and can be used to

verify the integrity of all the blocks in that circled blockchain. Based on the “Preimage”

Resistance property of hash functions described in Section 3.1.5, it would be computa-

tionally infeasible to construct an entire circled blockchain such that its hash matches

the current hash of a super block. However, if one desires, minor changes to the current

implementation of the “ethereum” module can be made to allow the LCaaS to push data

blocks to the Ethereum blockchain as well.

Figure 4.2 depicts the relationship between LCaaS and Ethereum.

Figure 4.2: LCaaS and Ethereum Integration
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4.5 Ethereum Blockchain and Test Blockchain Envi-

ronments

As it was shown in Figure 4.2, blocks are created in the LCaaS and stored on the

Ethereum blockchain. Since the main Ethereum blockchain is used for production and

real transactions, pushing data and smart contracts to this network requires actual pay-

ment. To allow developers to test and interact with Ethereum blockchain, Ethereum

has provided a real, live, and decentralised test blockchain that can be used throughout

the entire development lifecycle and can be easily replaced by the real blockchain net-

work when the developer decides to do so. There are two options to take advantage of

Ethereum test network [38]. The first alternative, known as local, allows one to setup a

node locally on a personal computer or a hosted server and run an isolated node that

simulates nodes that are on the public Ethereum blockchain. The second alternative,

known as the public, uses a decentralised test network that all developers around the

world are constantly using. This live test network is more similar to the real Ethereum

blockchain as it is a publicly available decentralised blockchain. Since, we need to use a

test network that resembles all characteristics of the real Ethereum blockchain, we chose

the second alternative to test drive the integration of the LCaaS and Ethereum.

4.6 Implementation

4.6.1 Additional Python Libraries

To interact with the Ethereum test networks, we use “web3.py” library [39]. This python

library is inspired by the famous “web3” JavaScript library, and it allows Python ap-

plications to interact with the Ethereum blockchain. The “web3.py” supports all the

features that we require to integrate the LCaaS and Ethereum blockchain. Namely, it

supports sending Ether to Ethereum blockchain and allows one to publish a smart con-

tract on the blockchain and interact with the functions of the published contract. We

chose “web3.py” as it has a vibrant development community and is used extensively in

multiple production-level projects. That is, it keeps current with latest features of the

Ethereum blockchain.
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4.6.2 Test Networks

As it was indicated in Section 4.3, we selected Ethereum as our public blockchain platform

to assess the applicability of the LCaaS. At the time of writing this thesis, there are three

Ethereum test networks [16]: Ropsten, Kovan,and Rinkeby. While all of them can be used

for integration with the LCaaS, we chose Ropsten because it is the only Ethereum test

network that works based on the PoW and, therefore, is more similar to the commonly

used blockchains in the market.

4.6.3 Test Ether and Secure Vault

Considering the cost of mining and adding a transaction to a block, public blockchain

platforms offer their services at a price. Customers, who are willing to interact with the

public blockchain, should pay the required fee for every transaction. Interestingly, the

Ethereum test networks follow the same logic. In fact, any interaction other than sub-

mitting a query against the test network requires a payment in Ether currency. However,

a special type of Ether is designed for transactions on Ethereum test network. Known as

test ether, the currency does not have any real monetary value, yet, it resembles the real

Ether on the live Ethereum blockchain. To obtain test Ether, we use MetaMask Ether

Faucet [37] and obtain 1.0 test Ether. Figure 4.3 depicts the purchase of a test Ether.

Figure 4.3: Test Ether Purchase via MetaMask Faucet

75



Chapter 4. Evaluation 4.6. Implementation

We use MetaMask [25] Chrome web browser extension to keep our test Ether in a

secure vault. The MetaMask also allows users to choose the network they want to to

connect to. We chose the Ropsten. Figure 4.4 shows MetaMask settings.

Figure 4.4: Logchain Balance

4.6.4 Publishing a Smart Contract Using Solidity

Smart contracts on the Ethereum blockchain allow users to interact with the blockchain

and send data to blockchain. In other words, any interaction with the blockchain has to

be managed by published smart contracts. The storage of super blocks in the blockchain

requires a smart contract. It is important to mention that a super block’s data element

contains the terminal block of a circled blockchain. Hence, super blocks are the most

efficient candidate to be stored in a public blockchain, as one can easily verify the integrity

of a super block and conclude the integrity of all the blocks in the circled blockchain that

the terminal block stored in that super block has terminated.

To publish our smart contract, we use Solidity [34], as it is the recommended language

for developers to build and deploy smart contracts on Ethereum blockchain. Furthermore,

we use Remix [33] as an IDE for coding and compiling solidity code. The smart contract

implements the logic of receiving super blocks and pushing them into the Ethereum

blockchain. We name this smart contract Superblock.sol1. The source code of the

1The .sol extension indicates that this file is a solidity file and can be compiled as a smart contract.
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smart contract is available in Appendix F. Once the smart contract is developed using

solidity IDE, it has to be published on the Ethereum blockchain. We use the Remix to

publish the smart contract. It is important to mention that publishing a smart contract

on the blockchain is considered a transaction and is a chargeable service. Thus, we use the

test Ether that we have stored in MetaMask vault to pay the transaction fee. Figure 4.5

depicts the smart contract publish transaction.

Figure 4.5: Transaction for Publishing a Smart Contract

By clicking on the Submit button, the contract developer agrees to pay the required

fees for publishing the smart contract. Upon paying the fees, Remix provides a confir-

mation that the contract has been successfully compiled and published on the Ethereum

blockchain. The published smart contract has a unique address that can be used to ref-

erence the contract and call its functions. Figure 4.6 shows the confirmation of successful

deployment of the smart contract on Ethereum blockchain.
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Figure 4.6: Superblock Smart Contract Successfully Added on Ethereum Blockchain

4.6.5 Interaction with Ethereum Ropsten and the Deployed

Smart Contract

We introduce a new Python module and dedicate this module to interaction with the

Ethereum blockchain. The new module is referred to as “ethereum”, and its code is

available in the “ethereum.py” file (available in Appendix D). In this module, interaction

with Ropsten and smart contract is implemented.

For this module, to be able to communicate with the published smart contract, we

need an interface. The most common interface for Ethereum is Application Binary In-

terface (ABI). An Ethereum smart contract is a bytecode deployed on the Ethereum

blockchain. There could be several functions in a contract, and an ABI is needed to de-

fine which function in the contract can be called and what kind of signatures are needed

to be sent to the functions of a contract. Furthermore, the ABI guarantees that the

function will return data in the format expected by the application. We store the ABI

of the deployed smart contract as a Python file and import it to newly added module. A

copy of the “contract-abi.py” can be found in Appendix E. Smart contracts deployed on

Ethereum blockchain are protected with immutability feature of blockchain and can no

longer be changed. If any modification is required, the entire process has to be repeated,
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and a new smart contract has to be published.

At this stage, we have the secure wallet and the required test Ether. The next step

of the implementation is to connect the “ethereum” module to Ropsten. As indicated in

Section 4.5, we do not use an a local node for Ethereum test network. Hence, we need

a provider that provides the required connection to Ropsten. We use Infura [23] as an

access provider and obtain a URL that can be used to interact with Ropsten.

Furthermore, to make Ethereum integration configurable, we introduce a new config-

uration item in addition to items described in Section 3.4.3. Table 4.1 provides details

for this configuration parameter.

Configuration Parameter Usage

PUSH TO ETHEREUM

If set to “Yes”, a copy of every generated

super block will be stored on the Ethereum

blockchain.

If set to “No”, the feature is disabled.

Table 4.1: Additional Configuration Item Introduced to LCaaS

To interact with Ropsten, we instantiate an object from the Web3 class provided by

the “Web3.py” library and link it to the unique URL provided by Infura. The instantiated

object allows interaction with Ropsten and the deployed smart contract. The LCaaS

platform is a pay-as-you-go platform with a flat membership fee. Hence, the premium

features such as integration with Ethereum are only available to users who pay the

premium membership fee. Therefore, we introduce additional logic in the smart contract

to only accept transactions from users who have paid their membership fee. Once a user

pays the membership fee, their address is added to the allowed list of senders and can

push super block to the smart contract. Figure 4.7 presents the logic of checking the

validity of a user to push super blocks to Ethereum.
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Figure 4.7: Sender Address Verification
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4.7 Results Verification

Once the user’s address is added to the allowed list, they can push super blocks into the

published smart contract. The smart contract, stores the super block on the Ethereum

blockchain and, upon successful submission, returns a receipt back to the “ethereum”

module. The receipt includes details of the transaction such as the sender address, the

content, the transaction hash, and the block number. Figure 4.8 depicts an example of

the receipt sent back from the smart contract to the “ethereum” module.

1 {’status’: ’added’, ’processed_receipt’: (AttributeDict({’args’:
2 AttributeDict({’_sender’: ’0x3F4f9bb697F84A26fBc85883F2ff4d31a36ed83c’,

3 ’_superblock’: "(0, ’2018-07-10T11:31:53.938607’,

4 ’A Genesis Block for Super blockchain’,

5 ’000042d5f7c68c5223ac16d2ebb77f5008ad8acec56e88cd949ae6814938d6e9’,

6 ’0000000000000000000000000000000000000000000000000000000000000000’,

7 4959, ’SBC-GB’)"}),
8 ’event’: ’SuperblockSubmission’,

9 ’logIndex’: 0, ’transactionIndex’: 0, ’transactionHash’: HexBytes

10 (’0x03c8d2c6698e1a7296a08ffa42eea4b2d9d2b43ab948f75fee8ed327f507835e’),

11 ’address’: ’0x6C6bF111B5D9D9060e53C5d967E0A7389D15634B’,

12 ’blockHash’: HexBytes

13 (’0xfcba2346909db2ace2e6c7cadf918624186ec4f088d4c5c03ad0ceb8c77b2e1a’),

14 ’blockNumber’: 3609334}),)}

Figure 4.8: Ethereum Smart Contract Receipt

All interactions with the Ethereum blockchain can be traced using Etherscan [14], a

web dashboard connected to Ethereum blockchain. Known as Ethereum block explorer,

Etherscan allows anyone to look up transactions details by using the sender or recipient

address, transaction hash, or block number.

Using the Ethereum blockNumber field as well as the sender address one can easily

look up a transaction on Etherscan and verify the transaction. If transaction is found

and the submitted super block chain matches with the one at hand, the integrity of the

81



Chapter 4. Evaluation 4.7. Results Verification

terminal block in the data element of the super block is confirmed, hence the integrity

of all blocks in the circled blockchain that the terminal block has terminated. Figure 4.9

depicts the search result for the above transaction on Etherscan.

Figure 4.9: Super Block Submission To Ethereum Blockchain

Successful submission of a super block to Ethereum blockchain confirms that LCaaS’

hierarchical ledger can be applied to other blockchain platforms such as Ethereum. More-

over, we conclude that the hierarchical ledger can be applied to all other Ethereum-based

blockchains such as AWS Blockchain. If the logic of creating TBs, CBs, and SBs are mi-

grated to smart contracts, one can drop the LCaaS entirely and instead, use its suggested

hierarchical ledger on top of any blockchain platform.
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Conclusion and Future Work

5.1 Conclusion

In this thesis, we focused on building a tamper-proof log storage system.

The primary objective of this study was set to address the inadequacy of modern

log systems by alleviating the required trust in a Cloud provider or a third-party. We

addressed this objective by introducing LCaaS framework, called Logchain, that allows

the storage of logs in tamper-resistant blockchains. We also showed that LCaaS can be

implemented as a smart contract using existing blockchain platforms (namely, Ethereum).

The secondary objective was set to reduce the computational complexity of the

Logchain. We addressed this objective by introducing a hierarchical ledger structure,

where circled blockchains limit the number of blocks in each blockchain.

The tertiary objective was set to make stored logs accessible. We addressed this

objective by designing and implementing an API that can be used to interact with the

Logchain.

The Logchain exhibits the following characteristics.

Immutability: hash of each block is created as per pseudo code shown in Algorithm 1.

It incorporates the hash of a previous block; thus, any changes to the previous blocks

would “break” the blockchain1.

1It is important to mention that blockchains are not immune to security challenges. Namely, secu-
rity threats (such as majority attack and fork attack [72]) have been known and acknowledged in the
blockchain community. We indicate that the intention of the proposed solution is not to address any of
such security issues.
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Cryptographically sealed: nonce-based proof-of-work method is used to ensure that

generated hashes meet the configured difficulty target.

Scalability: relying on super blocks, many super blocks can be generated at the same

time and then added to a super blockchain at the same time. This will bring parallel

processing feature for situations where multiple sources of data are generating data that

need to be put in the blockchain. For example, a platform may consist of twenty servers

and each server can be associated with one super blockchain.

Accessibility: API-based verification is added to the hierarchical ledger so that users

can submit raw data or digest values to check the consistency of their data.

Privacy: to improve privacy, an entire super blockchain is reserved for a client to

ensure that blockchains from different clients are not mingled. Furthermore, a user will

need to send only the terminal block to the LCaaS to verify the integrity of the entire

circled blockchain. Moreover, the option to store the hash (digest) value of log data (as

opposed to the actual data) would bring additional confidentially to the clients.

If LCaaS is implemented on a public blockchain, all transaction records are publicly

available. This becomes a major privacy concern if the users of LCaaS decide to push

their raw logs into the blockchain. Privacy can be improved if the users of LCaaS send

the digest of their logs. If higher level of privacy is needed, one can implement LCaaS

on a private blockchain.

The proposed LCaaS acts as a hierarchical ledger and repository for all logs generated

by the Cloud providers and can be accessed by all the Cloud participants to establish

trust among them. Using the provided API, a client can verify the logs provided by the

Cloud provider against the records in the LCaaS and find out if the logs were tampered

with or remained intact.

5.2 Future Work

To evolve LCaaS, we will adopt the two-pronged approach: improving the LCaaS itself

and porting LCaaS to other blockchain platforms. The details of this approach are given

below.
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5.2.1 LCaaS Improvement

The current version of the LCaaS is the minimum viable product2. The following re-

quirements will be considered for the next version of the LCaaS.

Database Improvement : The implemented version of the LCaaS only supports Google

Firebase. We plan to introduce support for additional NoSQL databases (such as Mon-

goDB [26], CouchDB [5], and DynamoDB [4]) and relational databases (such as MySQL [28]).

Search Improvement : The current search method of LCaaS is limited to objects stored

in memory of the Python environment. We plan to expand our search method to support

queries against the persistent storage.

Configuration Improvement : The current configuration setting of LCaaS are stored

in a JSON configuration file. We plan to expand current configuration settings to include

additional configuration points and allow users to choose the domain of applicability of

each setting.

Performance Improvement : The current implementation of LCaaS uses serial pro-

cessing for pushing terminal blocks to super blocks. By introducing concurrency in the

LCaaS, users can plug several log streams into the platform to create a centralised im-

mutable log storage system.

Reliability Improvement : The implemented version of LCaaS does not have any grace-

ful restart feature. For instance, if LCaaS crashes during a transaction, the data and the

state for all the live transactions are lost. We plan to implement fault-tolerance features

for each module of the LCaaS in order to overcome this reliability issue.

Encryption Improvement : The current implementation of the LCaaS does not al-

low users to choose their desired encryption algorithm. We plan to make encryption

algorithms configurable so that users can select their preferred encryption method.

API Improvement The search API of the LCaaS is currently limited to the five meth-

ods (described in Section 3.5). We plan to expand the LCaaS API to allow users to

interact with all internal components, such as super blocks and super blockchains. As

for the search API, we plan to expand the API functionality to include submitted data

to the Ethereum network as well.

2I.e, the product has enough features that would satisfy initial clients. These clients would generate
feedback that will guide future development of the product.
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5.2.2 Hierarchical Ledger Implementation on other Blockchains

In the future, we plan to test LCaaS with other Blockchain as a Service solutions and

find integration points that can be used to implement LCaaS on top of such solutions.

Last but not least, we plan to convert the internal logic of LCaaS to smart contracts.

Using smart contracts to handle the business logic of LCaaS makes the framework com-

pletely independent of the implemented solution and make it portable to any blockchain

framework that supports smart contracts.
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Index Module (index.py)

1

2

3

# This is the Main file for the LCaaS project4

# Designed and implemented by William Pourmajidi - 2018 - Canada Ontario5

6

7

from LC import *8

from flask import Flask, jsonify, request9

import pyrebase10

from ethereum import *11

12

### Firebase Settings ####13

# Link: https://bcaas-2018.firebaseio.com/Blocks.json14

# Link: https://console.firebase.google.com/u/0/project/bcaas-2018/database15

/bcaas-2018/data16

# Link: https://passwordsgenerator.net/sha256-hash-generator/17

# You will need to change the following settings to your own Firebase18

instance19

20

config = {21

"apiKey": "AIzaSyAmXGisFxk0xJmAT_KpFDvCmfqH-YBP_04",22
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"authDomain": "bcaas-2018.firebaseapp.com",23

"databaseURL": "https://bcaas-2018.firebaseio.com",24

"storageBucket": "",25

"messagingSenderId": "568088402855",26

"serviceAccount": "serviceAccountCredentials.json"27

}28

29

firebase = pyrebase.initialize_app(config)30

auth = firebase.auth()31

# # authenticate a user32

user = auth.sign_in_with_email_and_password("william.pourmajidi@gmail.com",33

"bcaas2018Pass")34

35

# user[’idToken’]36

db = firebase.database()37

38

app = Flask(__name__)39

40

with open(’config.json’, ’r’) as f:41

config = json.load(f)42

data_storage_option = config[’BLOCK’][43

’DATA_STORAGE_OPTION’] # option to store actual data in the block or44

store hash of data(more privacy)45

max_number_of_blocks_in_circledblockchain = config[’BLOCKCHAIN’][46

’MAX_NUMBER_OF_BLOCKS_IN_CIRCLED_BLOCKCHAIN’] # Capacity of a47

Blockchain48

push_to_ethereum = config[’BLOCK’][’PUSH_TO_ETHEREUM’]49

50

# Instantiate a new object from LogChain51

LCaaS = LogChain(500747320)52

53

54

@app.route(’/’)55
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def displayStatus():56

return ’<h2>Logchain-as-a-Service (LCaaS)has been succesfully initiated57

! Use our RESTful API to interact with it!</h2>’58

59

60

@app.route(’/submit_raw’, methods=[’POST’]) # handles submit_raw method61

def submit_raw():62

# print("We received: ", request.get_json())63

received_data = (request.get_json())64

65

blockify(LCaaS.block_index.get_current_index(), LCaaS.cb_index.66

get_current_index(), received_data)67

# return_string = str(" new record has been successfully received and68

added to LogChain" + "\ncurrent CB_Index: " + str(LCaaS.cb_index.69

get_current_index())+ "\ncurrent Block_Index: " + str(LCaaS.70

block_index.get_current_index()))71

return LCaaS.return_string, 20272

73

74

@app.route(’/submit_digest’, methods=[’POST’]) # handles submit_digest75

method76

def submit_digest():77

# print("We received: ", request.get_json())78

79

received_data = request.get_json()80

print(received_data)81

passed_digest_value = received_data[’digest’]82

print(passed_digest_value)83

if (len(passed_digest_value) == 64):84

blockify(LCaaS.block_index.get_current_index(), LCaaS.cb_index.85

get_current_index(), received_data)86

return LCaaS.return_string, 20287

else:88
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LCaaS.return_string = "Received data is not in correct SHA256 format89

"90

91

return LCaaS.return_string, 20292

93

94

@app.route(’/verify_raw’, methods=[’POST’]) # handles verify_raw method95

def verify_raw():96

# print("We received: ", request.get_json())97

received_data = (request.get_json())98

search_b(received_data)99

return LCaaS.return_string, 202100

101

102

@app.route(’/verify_digest’, methods=[’POST’]) # handles verify_digest103

method104

def verify_digest():105

received_data = (request.get_json())106

search_b(received_data)107

return LCaaS.return_string, 202108

109

110

@app.route(’/verify_tb’, methods=[’POST’]) # handles verify_tb method111

def verify_tb():112

received_data = (request.get_json())113

passed_tb_hash_value = received_data[’tb_hash’]114

search_tb(passed_tb_hash_value)115

116

return LCaaS.return_string, 202117

118

119

def blockify(current_block_index_value, current_cb_index_value, data): #120

Helper function121
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122

if (LCaaS.sbc_index.get_current_index()<1):123

blockname = "Circled blockchain-" + str(LCaaS.sbc_index.124

get_current_index())125

else:126

blockname = "Circled blockchain-" + str(LCaaS.sbc_index.127

get_current_index()-1)128

if ((current_block_index_value == 0) and (129

current_cb_index_value == 0)): # we need to generate an absolute130

genesis block first131

print("Log: A new CircledBlockchain and a an Absolute Genesis Block132

(AGB) is needed")133

LCaaS.create_new_CircledBlockchain(LCaaS.cb_index.get_current_index134

())135

# create a circled blockchain using index of cb136

absolute_genesis_block = create_new_block(type="AGB")137

LCaaS.cb_array[LCaaS.cb_index.get_current_index()].add_block_to_CB(138

absolute_genesis_block) # add absolute genesis block to the139

current CB140

141

# db.child("Circled blockchain-0").push(json.dumps({’Index’: LCaaS.142

block_index.get_current_index(), ’Type’: "AGB",143

144

db.child(blockname).push(json.dumps({’Index’: LCaaS.block_index.145

get_current_index(), ’Type’: "AGB",146

’Content’: LCaaS.cb_array[LCaaS.147

cb_index.get_current_index()].148

chain[149

LCaaS.internal_block_counter.150

get_current_index()].151

stringify_block()}),152

user[’idToken’]) # push data to Firebase153

154
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print("Log: The current CB index is : ", LCaaS.cb_index.155

get_current_index())156

print("Log: The current block index is : ", LCaaS.block_index.157

get_current_index())158

print("Log: The current internal block counter index is : ", LCaaS.159

internal_block_counter.get_current_index())160

print(LCaaS.cb_array[LCaaS.cb_index.get_current_index()].chain[161

LCaaS.internal_block_counter.get_current_index()].162

stringify_block())163

164

LCaaS.block_index.increase_index()165

LCaaS.internal_block_counter.increase_index()166

167

previous_block = absolute_genesis_block168

169

new_block_data_element = data170

new_block = create_new_block("DB", previous_block,171

new_block_data_element)172

LCaaS.cb_array[LCaaS.cb_index.get_current_index()].add_block_to_CB(173

new_block) # add the first data block to the current CB174

# db.child("Circled blockchain-0").push(json.dumps({’Index’: LCaaS.175

block_index.get_current_index(), ’Type’: "DB",176

177

db.child(blockname).push(json.dumps({’Index’: LCaaS.block_index.178

get_current_index(), ’Type’: "DB",179

’Content’: LCaaS.cb_array[LCaaS.180

cb_index.get_current_index()].181

chain[182

LCaaS.internal_block_counter.183

get_current_index()].184

stringify_block()}),185

user[’idToken’]) # push data to firebase186

187
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LCaaS.return_string = str(188

"An AGB was created for the new circle block. AGB details are as189

follows:\n" + str(190

absolute_genesis_block.stringify_block()) + "\nThe new191

record has been successfully received and added to192

LogChain with following details:\n" + str(193

new_block.stringify_block()))194

195

print("Log: The current CB index is : ", LCaaS.cb_index.196

get_current_index())197

print("Log: The current block index is : ", LCaaS.block_index.198

get_current_index())199

print("Log: The current internal block counter index is : ", LCaaS.200

internal_block_counter.get_current_index())201

print(LCaaS.cb_array[LCaaS.cb_index.get_current_index()].chain[202

LCaaS.internal_block_counter.get_current_index()].203

stringify_block())204

LCaaS.block_index.increase_index()205

LCaaS.internal_block_counter.increase_index()206

207

208

elif ((current_block_index_value != 0) and (len(LCaaS.cb_array[209

LCaaS.cb_index.get_current_index()].chain) < (210

max_number_of_blocks_in_circledblockchain - 2))): # we just need211

to generate data block for the current Circled Blockchain212

213

print("Log: A new data block is needed in the same CircledBlockchain214

")215

previous_block = LCaaS.cb_array[LCaaS.cb_index.get_current_index()].216

chain[217

LCaaS.internal_block_counter.get_current_index() - 1]218

new_block_data_element = data219
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new_block = create_new_block("DB", previous_block,220

new_block_data_element)221

LCaaS.cb_array[LCaaS.cb_index.get_current_index()].add_block_to_CB(222

new_block) # add data block to the current CB223

224

db.child(blockname).push(json.dumps({’Index’: LCaaS.block_index.225

get_current_index(), ’Type’: "DB",226

’Content’: LCaaS.cb_array[LCaaS.227

cb_index.get_current_index()].228

chain[229

LCaaS.internal_block_counter.230

get_current_index()].231

stringify_block()}),232

233

user[’idToken’]) # push data to Firebase234

LCaaS.return_string = str(235

"The new record has been successfully received and added to236

LogChain with following details:\n" + str(237

new_block.stringify_block()))238

239

print("Log: The current CB index is : ", LCaaS.cb_index.240

get_current_index())241

print("Log: The current block index is : ", LCaaS.block_index.242

get_current_index())243

print("Log: The current internal block counter index is : ", LCaaS.244

internal_block_counter.get_current_index())245

print(LCaaS.cb_array[LCaaS.cb_index.get_current_index()].chain[246

LCaaS.internal_block_counter.get_current_index()].247

stringify_block())248

LCaaS.block_index.increase_index()249

LCaaS.internal_block_counter.increase_index()250

251

252
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elif ((current_block_index_value != 0) and (len(LCaaS.cb_array[253

LCaaS.cb_index.get_current_index()].chain)254

< (255

256

max_number_of_blocks_in_circledblockchain -257

1))):258

# we need to generate the last data block259

and a TB260

print("Log: Last block of this CB needs to be created and added")261

print("Log: A new Terminal block is needed")262

# create the last data block for this CB263

264

previous_block = LCaaS.cb_array[LCaaS.cb_index.get_current_index()].265

chain[266

LCaaS.internal_block_counter.get_current_index() - 1]267

268

new_block_data_element = data269

new_block = create_new_block("DB", previous_block,270

new_block_data_element)271

LCaaS.cb_array[LCaaS.cb_index.get_current_index()].add_block_to_CB(272

new_block) # add the last data block to the current CB273

274

db.child(blockname).push(json.dumps({’Index’: LCaaS.block_index.275

get_current_index(), ’Type’: "DB",276

’Content’: LCaaS.cb_array[LCaaS.277

cb_index.get_current_index()].278

chain[279

LCaaS.internal_block_counter.280

get_current_index()].281

stringify_block()}),282

user[’idToken’]) # push data to firebase283

284

LCaaS.block_index.increase_index()285
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LCaaS.internal_block_counter.increase_index()286

287

# create a terminal block as the last block of this CB288

289

concatenated_hashes = ""290

count = 0291

292

while (count <= len(LCaaS.cb_array[LCaaS.cb_index.get_current_index293

()].chain) - 1):294

if (count <= len(LCaaS.cb_array[LCaaS.cb_index.get_current_index295

()].chain) - 2):296

concatenated_hashes = concatenated_hashes + LCaaS.cb_array[297

LCaaS.cb_index.get_current_index()].chain[298

count].get_current_hash() + ","299

count += 1300

else:301

concatenated_hashes = concatenated_hashes + LCaaS.cb_array[302

LCaaS.cb_index.get_current_index()].chain[303

count].get_current_hash()304

count += 1305

306

print("Log: Aggregated_hash for all blocks of this CB is ",307

concatenated_hashes)308

309

timestamp_from = LCaaS.cb_array[LCaaS.cb_index.get_current_index()].310

chain[311

0].get_timestamp()312

313

timestamp_to = LCaaS.cb_array[LCaaS.cb_index.get_current_index()].314

chain[315

-1].get_timestamp()316

317
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block_index_from = LCaaS.cb_array[LCaaS.cb_index.get_current_index()318

].chain[319

0].get_index()320

321

block_index_to = LCaaS.cb_array[LCaaS.cb_index.get_current_index()].322

chain[323

-1].get_index()324

325

# Here we make a hash of all hashes in the current CB326

327

hash_of_hashes = (hashlib.sha256(str(concatenated_hashes).encode(’328

utf-8’))).hexdigest()329

330

previous_block = LCaaS.cb_array[LCaaS.cb_index.get_current_index()].331

chain[-1]332

new_TB_data = TB_data(hash_of_hashes, timestamp_from, timestamp_to,333

block_index_from, block_index_to)334

new_TerminalBlock = create_new_block("TB", previous_block,335

new_TB_data)336

337

# let’s add the TB to the CB338

print("Log: Terminal block is : ", stringify_terminalblock(339

new_TerminalBlock))340

341

LCaaS.cb_array[LCaaS.cb_index.get_current_index()].add_block_to_CB(342

343

new_TerminalBlock) # add terminal block to CB344

345

db.child(blockname).push(json.dumps({’Index’: LCaaS.block_index.346

get_current_index(), ’Type’: "TB",347

’Content’: stringify_terminalblock348

(new_TerminalBlock)}),349

user[350
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’idToken’]) # push terminal block to351

Firebase (it is stringied so it can be352

viewed properly)353

354

LCaaS.block_index.increase_index()355

LCaaS.internal_block_counter.increase_index()356

357

# add terminal block content to the data element of a SB and add the358

SB to the SBC359

360

if (len(LCaaS.SBC.superchain) == 0):361

SBC_gensis = create_new_block("SBC-GB") # create a genesis block362

for the SBC363

LCaaS.SBC.add_block_to_SBC(SBC_gensis) # ad the SBC-GB to SBC364

SB_GB_submission = ""365

SB_submission = ""366

367

db.child("SuperBlocks").push(368

json.dumps(369

{’Index’: LCaaS.SBC.superchain[LCaaS.sbc_index.370

get_current_index()].get_index(), ’Type’: "SBC-GB",371

’Content’: LCaaS.SBC.superchain[LCaaS.sbc_index.372

get_current_index()].stringify_block()}),373

user[’idToken’]) # push super block to Firebase374

375

LCaaS.sbc_index.increase_index()376

377

previous_super_block = SBC_gensis378

new_super_block_data_element = stringify_terminalblock(379

new_TerminalBlock) # adding the entire terminal block as380

data element for superblock381

new_super_block = create_new_block("SB", previous_super_block,382

new_super_block_data_element)383
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LCaaS.SBC.add_block_to_SBC(new_super_block) # add the super384

block to the SBC385

386

print("Log: a new SB is created: " + str(387

LCaaS.SBC.superchain[LCaaS.sbc_index.get_current_index()].388

stringify_block()))389

db.child("SuperBlocks").push(390

json.dumps(391

{’Index’: LCaaS.SBC.superchain[LCaaS.sbc_index.392

get_current_index()].get_index(), ’Type’: "SB",393

’Content’: LCaaS.SBC.superchain[LCaaS.sbc_index.394

get_current_index()].stringify_block()}),395

user[’idToken’]) # push super block to Firebase396

397

## Code for Ethereum integration ##398

399

if (push_to_ethereum == ’Yes’):400

401

LCE = LC_Ethereum402

403

if (LCE.check_whether_address_is_approved(0404

x3f4f9bb697f84a26fbc85883f2ff4d31a36ed83c)):405

print(406

"Log: The client has already paid the membership fee407

and is authorized to use LogChain and Ethereum408

connection")409

SB_GB_submission = "\nThe Gensis Superblock is added to410

the Ethereum network " + str(411

LCE.submit_a_superblock(str(SBC_gensis.412

stringify_block()), 0.1))413

print(SB_GB_submission)414

SB_submission = "\nThe Superblock is added to the415

Ethereum network " + str(416
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LCE.submit_a_superblock(str(new_super_block.417

stringify_block()), 0.1))418

print(SB_submission)419

420

else:421

LCE.send_ether_to_contract(0.03) ## membership fee422

print(423

"Log: The membership fee is now paid and the client424

is authorized to use LogChain and Ethereum425

connection")426

SB_GB_submission = "\nThe Gensis Superblock is added to427

the Ethereum network " + str(428

LCE.submit_a_superblock(str(SBC_gensis.429

stringify_block()), 0.1))430

print(SB_GB_submission)431

SB_submission = "\nThe Superblock is added to the432

Ethereum network " + str(433

LCE.submit_a_superblock(str(new_super_block.434

stringify_block()), 0.1))435

print(SB_submission)436

437

438

439

LCaaS.return_string = str(440

"The last data block for this CB is generated:\n" + str(441

new_block.stringify_block()) + "\nA Terminal Block have442

been successfully created and added to LogChain with443

following details\n" + str(444

stringify_terminalblock(new_TerminalBlock)) + "\n A new445

Super block has been created\n" + str(446

LCaaS.SBC.superchain[LCaaS.sbc_index.get_current_index()447

].stringify_block()) + str(448

SB_GB_submission) + str(SB_submission))449
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450

LCaaS.sbc_index.increase_index()451

452

453

else:454

455

previous_super_block = LCaaS.SBC.superchain[456

LCaaS.sbc_index.get_current_index() - 1] # this is the457

previous superblock in the superblockchain for this458

instance of Logchain459

new_super_block_data_element = stringify_terminalblock(460

new_TerminalBlock) # adding the entire terminal block as461

data element for superblock462

463

new_super_block = create_new_block("SB", previous_super_block,464

new_super_block_data_element)465

LCaaS.SBC.add_block_to_SBC(new_super_block) # add the super466

block to the SBC467

468

## Code for Ethereum integration ##469

SB_submission = ""470

471

if (push_to_ethereum == ’Yes’):472

473

LCE = LC_Ethereum474

# LTest.send_ether_to_contract(0.03)475

476

if (LCE.check_whether_address_is_approved(0477

x3f4f9bb697f84a26fbc85883f2ff4d31a36ed83c)):478

print(479

"Log: The client has already paid the membership fee480

and is authorized to use LogChain and Ethereum481

connection")482
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SB_submission = "\nThe Superblock is added to the483

Ethereum network " + str(484

LCE.submit_a_superblock(str(new_super_block.485

stringify_block()), 0.1))486

print(SB_submission)487

488

else:489

LCE.send_ether_to_contract(0.03) ## membership fee490

print(491

"Log: The membership fee is now paid and the client492

is authorized to use LogChain and Ethereum493

connection")494

SB_submission = "\nThe Superblock is added to the495

Ethereum network " + str(496

LCE.submit_a_superblock(str(new_super_block.497

stringify_block()), 0.1))498

print(SB_submission)499

500

501

502

print("Log: " + str(LCaaS.SBC.superchain[LCaaS.cb_index.503

get_current_index()].stringify_block()))504

db.child("SuperBlocks").push(505

json.dumps(506

{’Index’: LCaaS.SBC.superchain[LCaaS.sbc_index.507

get_current_index()].get_index(), ’Type’: "SB",508

’Content’: LCaaS.SBC.superchain[LCaaS.sbc_index.509

get_current_index()].stringify_block()}),510

user[’idToken’]) # push super block to Firebase511

512

LCaaS.return_string = str(513

"The last data block for this CB is generated:\n" + str(514
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new_block.stringify_block()) + "\nA Terminal Block have515

been successfully created and added to LogChain with516

following details\n" + str(517

stringify_terminalblock(new_TerminalBlock)) + "\n A new518

Super block has been created\n" + str(519

LCaaS.SBC.superchain[LCaaS.sbc_index.get_current_index()520

].stringify_block()) + str(SB_submission))521

522

LCaaS.sbc_index.increase_index()523

524

525

elif ((current_block_index_value != 0) and (len(LCaaS.cb_array[526

LCaaS.cb_index.get_current_index()].chain) ==527

max_number_of_blocks_in_circledblockchain)):528

529

print("Log: A new CircledBlockchain and a Relative Genesis Block (530

RGB) is needed")531

print("Log: The previous CB index is : ", LCaaS.cb_index.532

get_current_index())533

print("Log: The previous CB length is : ", len(LCaaS.cb_array[LCaaS.534

cb_index.get_current_index()].chain))535

print("Log: The current block index is : ", LCaaS.block_index.536

get_current_index())537

print("Log: The internal block counter index is : ", LCaaS.538

internal_block_counter.get_current_index())539

540

LCaaS.cb_index.increase_index() # increase the index for CB541

LCaaS.internal_block_counter.reset_current_index() # reset the542

internal counter to 0 as new CB needs index to be 0543

544

print("Log: The new CB index is : ", LCaaS.cb_index.545

get_current_index())546
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print("Log: The current block index is : ", LCaaS.block_index.547

get_current_index())548

print("Log: The current internal block counter is : ",549

LCaaS.internal_block_counter.get_current_index())550

551

LCaaS.create_new_CircledBlockchain(LCaaS.cb_index.get_current_index552

())553

554

print("Log: The current CB length is : ", len(LCaaS.cb_array[555

LCaaS.cb_index.556

get_current_index()557

].chain))558

previous_block = LCaaS.cb_array[LCaaS.cb_index.get_current_index() -559

1].chain[-1]560

print("Log: The CB index is : ", LCaaS.cb_index.get_current_index())561

print("Log: The block index is : ", LCaaS.block_index.562

get_current_index())563

relative_genesis_block = create_new_block("RGB", previous_block)564

565

LCaaS.cb_array[LCaaS.cb_index.get_current_index()].add_block_to_CB(566

relative_genesis_block) # add relative genesis block to the567

current CB568

db.child(blockname).push(json.dumps({’Index’: LCaaS.block_index.569

get_current_index(), ’Type’: "RGB",570

’Content’: LCaaS.cb_array[LCaaS.571

cb_index.get_current_index()].572

chain[573

LCaaS.internal_block_counter.574

get_current_index()].575

stringify_block()}),576

user[’idToken’]) # push data to Firebase577

578

print(LCaaS.cb_array[LCaaS.cb_index.get_current_index()].chain[579
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LCaaS.internal_block_counter.get_current_index()].580

stringify_block())581

582

print("Now the length of CB is", len(LCaaS.cb_array[583

LCaaS.cb_index.584

get_current_index()].chain)585

)586

587

LCaaS.block_index.increase_index()588

LCaaS.internal_block_counter.increase_index()589

590

# LCaaS.cb_array[LCaaS.cb_index].internal_index.increase_index()591

592

print("Log: The CB index is : ", LCaaS.cb_index.get_current_index())593

print("Log: The block index is : ", LCaaS.block_index.594

get_current_index())595

print("*After*Log: Length of CB ", len(LCaaS.cb_array[LCaaS.cb_index596

.get_current_index()].chain))597

previous_block = relative_genesis_block598

new_block_data_element = data599

new_block = create_new_block("DB", previous_block,600

new_block_data_element)601

LCaaS.cb_array[LCaaS.cb_index.get_current_index()].add_block_to_CB(602

new_block) # add data block to the current CB603

604

db.child(blockname).push(json.dumps({’Index’: LCaaS.block_index.605

get_current_index(), ’Type’: "DB",606

’Content’: LCaaS.cb_array[LCaaS.607

cb_index.get_current_index()].608

chain[609

LCaaS.internal_block_counter.610

get_current_index()].611

stringify_block()}),612
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user[’idToken’]) # push data to Firebase613

614

LCaaS.return_string = str(615

"An RGB was created for the new circle block. RGB details are as616

follows:\n" + str(617

relative_genesis_block.stringify_block()) + "\nThe new618

record has been successfully received and added to619

LogChain with following details:\n" + str(620

new_block.stringify_block()))621

622

print(LCaaS.cb_array[LCaaS.cb_index.get_current_index()].chain[623

LCaaS.internal_block_counter.get_current_index()].624

stringify_block())625

626

LCaaS.block_index.increase_index()627

LCaaS.internal_block_counter.increase_index()628

629

630

def search_b(passed_data):631

cb_counter = 0632

b_counter = 0633

search_result = ""634

635

while (cb_counter < len(LCaaS.cb_array)):636

while (b_counter < len(LCaaS.cb_array[cb_counter].chain)):637

if (LCaaS.cb_array[cb_counter].chain[b_counter].get_data() ==638

passed_data):639

print("An exact match for submitted raw data has been found:640

")641

print(LCaaS.cb_array[cb_counter].chain[b_counter].642

stringify_block())643

search_result += "\nAn exact match for the submitted value644

has been found\n" + str(645
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LCaaS.cb_array[cb_counter].chain[b_counter].646

stringify_block())647

648

b_counter += 1649

650

else:651

print("No match was found for the received data!!!\n")652

b_counter += 1653

continue654

# search_result = "No match was found for the received data!!!"655

656

b_counter = 0657

cb_counter += 1658

659

if (len(search_result) == 0):660

LCaaS.return_string = "No match was found for the received data!!!"661

else:662

LCaaS.return_string = search_result663

664

665

def search_tb(passed_data):666

cb_counter = 0667

b_counter = 0668

search_result = ""669

670

# LCaaS.cb_array[cb_counter].chain[b_counter].get_data().aggr_hash ==671

passed_data and672

673

while (cb_counter < len(LCaaS.cb_array)):674

while (b_counter < len(LCaaS.cb_array[cb_counter].chain)):675

if (LCaaS.cb_array[cb_counter].chain[b_counter].get_block_type()676

== "TB" and677
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LCaaS.cb_array[cb_counter].chain[b_counter].get_data().678

aggr_hash == passed_data):679

print("An exact TB for the submitted hash data has been680

found:")681

682

# print(LCaaS.cb_array[cb_counter].chain[b_counter].683

stringify_block())684

# search_result += "\nA matching Terminal Block for the685

submitted hash has been fou" \686

# "nd\n" + str(687

# LCaaS.cb_array[cb_counter].chain[b_counter].688

stringify_block())689

690

search_result += "\nAn exact match for the submitted value691

has been found\n" + str(692

stringify_terminalblock(LCaaS.cb_array[cb_counter].chain[693

b_counter]))694

b_counter += 1695

else:696

print("No match was found for the received data!!!\n")697

b_counter += 1698

continue699

search_result = "No match was found for the received data!!!700

"701

702

b_counter = 0703

cb_counter += 1704

705

if (len(search_result) == 0):706

LCaaS.return_string = "No match was found for the received data!!!"707

else:708

LCaaS.return_string = search_result709

710
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711

# data element of TB is the hash of all CB block current_hashes712

if __name__ == ’__main__’:713

app.run()714
715
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Logchain Module (LC.py)

1

2

from blockchain import *3

import datetime as date4

5

6

class Index:7

def __init__(self):8

self.index = 09

10

def increase_index(self):11

self.index += 112

13

def get_current_index(self):14

return self.index15

16

def reset_current_index(self):17

self.index = 018

return self.index19

20

21

class LogChain:22
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block_index = Index() # This will be used as main index counter for23

blocks in the lifecycle of instances of this class24

cb_index = Index() # This will be used as main index counter for25

Circled blockchains in the lifecycle of instances of this class26

sbc_index = Index() # TBD27

internal_block_counter = Index() # This will hold the internal counter28

for the count of existing blocks in a CB29

cb_array = [] # This array holds the indexes for all circled30

blockchains in this class31

return_string = ""32

33

def __init__(self, cid):34

"""35

36

:rtype: object37

"""38

self.customer_id = cid39

self.SBC = SuperBlockchain(index=0)40

# SBC_gensis = create_new_block("SBC-GB")41

# self.SBC.add_block_to_SBC(SBC_gensis)42

43

def create_new_CircledBlockchain(self, index):44

self.index = index45

self.CB = CircledBlockchain(index)46

self.cb_array.append(self.CB)47

48

49

class CircledBlockchain:50

51

def __init__(self, index):52

self.index = index53

self.chain = []54

55
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def add_block_to_CB(self, passed_block):56

self.chain.append(passed_block)57

58

59

class SuperBlockchain:60

61

def __init__(self, index):62

self.index = index63

self.superchain = []64

65

def add_block_to_SBC(self, passed_superblock):66

self.superchain.append(passed_superblock)67

68

69

class TB_data():70

71

def __init__(self, aggr_hash, timestamp_from, timestamp_to, index_from,72

index_to):73

self.aggr_hash = aggr_hash74

self.timestamp_from = timestamp_from75

self.timestamp_to = timestamp_to76

self.index_from = index_from77

self.index_to = index_to78

79

def get_tb_data_aggr_hash(self):80

return self.aggr_hash81

82

83

def stringify_terminalblock(passed_block):84

terminalblock_string = (85

passed_block.get_index(), passed_block.get_timestamp().isoformat(),86

"aggr_hash: " + passed_block.get_data().aggr_hash,87

"timestamp_from: " +88
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passed_block.get_data().timestamp_from.isoformat(),89

"timestamp_to: " + passed_block.get_data().timestamp_to.isoformat(),90

"index_from: " + str(passed_block.get_data().index_from),91

"index_to: " + str(passed_block.get_data().index_to),92

passed_block.get_current_hash(), passed_block.get_previous_hash(),93

passed_block.get_nonce(),94

passed_block.get_block_type())95

return terminalblock_string96

97

# class TerminalBlock(Block): # Main class for defining Terminal Blocks (TB98

) and all their attributes and methods99

# def __init__(self, index, data, previous_hash, block_type, aggr_hash,100

timestamp_from, timestamp_to,101

# block_index_from, block_index_to):102

# self.nonce = int103

# self.index = index104

# self.timestamp = date.datetime.utcnow()105

# self.data = TB_data()106

# self.previous_hash = previous_hash107

# self.current_hash = str108

# self.aggr_hash = aggr_hash109

# self.timestamp_from = timestamp_from110

# self.timestamp_to = timestamp_to111

# self.block_index_from = block_index_from112

# self.block_index_to = block_index_to113

# self.block_type = block_type # Not included in the content for hash114

generation115

# self.content = str(self.index).encode(’utf-8’) + str(self.timestamp).116

encode(’utf-8’) + \117

# str(self.data).encode(’utf-8’) + str(self.previous_hash).encode(’utf-8’)118

+ str(119

# self.aggr_hash).encode(’utf-8’) + \120
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# str(self.timestamp_from).encode(’utf-8’) + str(self.timestamp_to).encode121

(’utf-8’) + \122

# str(self.block_index_from).encode(’utf-8’) + str(self.block_index_to).123

encode(’utf-8’)124

#125

#126
127

115



Appendix C

Blockchain Module (blockchain.py)

1

2

# This file contains all the Business Logic for Block and Implements Block3

Class4

import datetime as date5

import hashlib6

import json7

8

# Loading configuration9

with open(’config.json’, ’r’) as f:10

config = json.load(f)11

12

difficulty_target = config[’BLOCK’][’DIFFICULTY_TARGET’] # Difficulty13

target for blocks14

genesis_hash = config[’BLOCK’][’GENESIS_HASH’] # Genesis block value for15

blocks16

max_number_of_data_blocks_in_circledblockchain = config[’BLOCKCHAIN’][17

’MAX_NUMBER_OF_BLOCKS_IN_CIRCLED_BLOCKCHAIN’] # Capacity of a18

Blockchain19

20

21
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class Block: # Main class for defining Blocks and all their attributes and22

methods23

result = str24

25

def __init__(self, index, data, previous_hash, block_type):26

self.nonce = int27

self.index = index28

self.timestamp = date.datetime.utcnow()29

self.data = data30

self.previous_hash = previous_hash31

self.current_hash = str32

self.block_type = block_type # Not included in the content for hash33

generation34

self.content = str(self.index).encode(’utf-8’) + str(self.timestamp)35

.encode(’utf-8’) + \36

str(self.data).encode(’utf-8’) + str(self.37

previous_hash).encode(’utf-8’)38

39

# Setters40

def set_hash(self, hash):41

self.current_hash = hash42

43

def set_nonce(self, nonce):44

self.nonce = nonce45

46

# Getters47

48

def get_nonce(self):49

return self.nonce50

51

def get_index(self):52

return self.index53

54
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def get_timestamp(self):55

return self.timestamp56

57

def get_previous_hash(self):58

return self.previous_hash59

60

def get_current_hash(self):61

return self.current_hash62

63

def get_data(self):64

return self.data65

66

def get_block_type(self):67

return self.block_type68

69

def stringify_block(self):70

block_string = (71

self.index, self.timestamp.isoformat(), self.data, self.72

current_hash, self.previous_hash, self.nonce,73

self.block_type)74

return block_string75

76

def hasher(self, passed_nonce):77

self.nonce = passed_nonce78

Hash_object = hashlib.sha256(self.content + str(self.nonce).encode(’79

utf-8’))80

return Hash_object.hexdigest()81

82

def mine(self):83

potential_nonce = 084

result = self.hasher(potential_nonce)85

# print(result)86

while (str(result).startswith(difficulty_target) != True):87
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potential_nonce = potential_nonce + 188

result = self.hasher(potential_nonce)89

# print(result)90

self.current_hash = result91

self.nonce = potential_nonce92

93

94

def create_new_block(type, lastblock=None, passed_data=None):95

block_type = type96

97

if block_type == "DB": # creates a data block98

new_index = lastblock.index + 199

new_data = passed_data100

new_previous_hash = lastblock.current_hash101

newBlock = Block(new_index, new_data, new_previous_hash, block_type)102

newBlock.mine()103

return newBlock104

105

elif block_type == "AGB": # creates an Absolute Genesis Block (AGB)106

new_index = 0107

new_data = str("Absolute Genesis Block")108

new_previous_hash = genesis_hash109

newBlock = Block(new_index, new_data, new_previous_hash, block_type)110

newBlock.mine()111

return newBlock112

113

elif block_type == "SBC-GB": # creates a Genesis Block (GB) for a114

Superblolchain115

new_index = 0116

new_data = str("A Genesis Block for Superblockchain")117

new_previous_hash = genesis_hash118

newBlock = Block(new_index, new_data, new_previous_hash, block_type)119

newBlock.mine()120
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return newBlock121

122

elif block_type == "RGB": # creates a Relative Genesis Block (RGB)123

124

new_index = lastblock.index + 1125

new_data = str("Relative Genesis Block")126

new_previous_hash = lastblock.current_hash127

newBlock = Block(new_index, new_data, new_previous_hash, block_type)128

newBlock.mine()129

return newBlock130

131

elif block_type == "TB": # creates a terminal block132

new_index = lastblock.index + 1133

new_data = passed_data134

new_previous_hash = lastblock.current_hash135

newBlock = Block(new_index, new_data, new_previous_hash, block_type)136

newBlock.mine()137

return newBlock138

139

elif block_type == "SB": # creates a supoer block140

new_index = lastblock.index + 1141

new_data = passed_data142

new_previous_hash = lastblock.current_hash143

newBlock = Block(new_index, new_data, new_previous_hash, block_type)144

newBlock.mine()145

return newBlock146
147
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Ethereum Module (ethereum.py)

1

import time2

3

from web3 import Web3, HTTPProvider4

import contract_abi5

6

7

##### details that will be used to send a transaction to ethereum test8

blockchain9

10

class LC_Ethereum:11

12

def send_ether_to_contract(amount_in_ether):13

# The address for the published contract on ethereum test blockchain14

(Ropsten test network)15

contract_address = "0x6c6bf111b5d9d9060e53c5d967e0a7389d15634b"16

17

# sender private key (can be18

obtained from MetaMask plug-ins and connected19

wallet_private_key = "4f5ae03e520e54a18ff4d7d50b2e85d70520

eeb2e2cc154e4318fd9cb65d354cc3"21

wallet_address = "0x3f4f9bb697f84a26fbc85883f2ff4d31a36ed83c"22
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23

# the w3 object24

25

w3 = Web3(HTTPProvider("https://ropsten.infura.io/26

GoumPwW0PttpedP5fdnG"))27

28

contract_address = w3.toChecksumAddress(contract_address)29

wallet_address = w3.toChecksumAddress(wallet_address)30

31

w3.eth.enable_unaudited_features()32

33

contract = w3.eth.contract(address=contract_address, abi=34

contract_abi.abi)35

amount_in_wei = w3.toWei(amount_in_ether, ’ether’);36

37

nonce = w3.eth.getTransactionCount(wallet_address)38

39

txn_dict = {40

’to’: contract_address,41

’value’: amount_in_wei,42

’gas’: 2000000,43

’gasPrice’: w3.toWei(’40’, ’gwei’),44

’nonce’: nonce,45

’chainId’: 346

}47

48

signed_txn = w3.eth.account.signTransaction(txn_dict,49

wallet_private_key)50

51

txn_hash = w3.eth.sendRawTransaction(signed_txn.rawTransaction)52

53

txn_receipt = None54

55
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count = 056

while txn_receipt is None and (count < 30):57

txn_receipt = w3.eth.getTransactionReceipt(txn_hash)58

print(txn_receipt)59

60

time.sleep(10)61

62

if txn_receipt is None:63

return {’status’: ’failed’, ’error’: ’timeout’}64

65

return {’status’: ’added’, ’txn_receipt’: txn_receipt}66

67

def check_whether_address_is_approved(sender_address):68

w3 = Web3(HTTPProvider("https://ropsten.infura.io/69

GoumPwW0PttpedP5fdnG"))70

contract_address = "0x6c6bf111b5d9d9060e53c5d967e0a7389d15634b"71

contract_address = w3.toChecksumAddress(contract_address)72

contract = w3.eth.contract(address=contract_address, abi=73

contract_abi.abi)74

wallet_address = w3.toChecksumAddress(sender_address)75

return contract.functions.isApproved(wallet_address).call()76

77

def submit_a_superblock(submission, amount_in_ether):78

contract_address = "0x6c6bf111b5d9d9060e53c5d967e0a7389d15634b"79

80

# sender private key (can be obtained from MetaMask plug-ins and81

connected82

wallet_private_key = "4f5ae03e520e54a18ff4d7d50b2e85d70583

eeb2e2cc154e4318fd9cb65d354cc3"84

wallet_address = "0x3f4f9bb697f84a26fbc85883f2ff4d31a36ed83c"85

86

# the w3 object87

88
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w3 = Web3(HTTPProvider("https://ropsten.infura.io/89

GoumPwW0PttpedP5fdnG"))90

91

contract_address = w3.toChecksumAddress(contract_address)92

wallet_address = w3.toChecksumAddress(wallet_address)93

94

w3.eth.enable_unaudited_features()95

96

contract = w3.eth.contract(address=contract_address, abi=97

contract_abi.abi)98

amount_in_wei = w3.toWei(amount_in_ether, ’ether’);99

100

nonce = w3.eth.getTransactionCount(wallet_address)101

102

txn_dict = contract.functions.sendSuperblock(submission).103

buildTransaction({104

’chainId’: 3,105

# ’value’: amount_in_wei,106

’gas’: 2000000,107

’gasPrice’: w3.toWei(’40’, ’gwei’),108

’nonce’: nonce,109

})110

111

signed_txn = w3.eth.account.signTransaction(txn_dict, private_key=112

wallet_private_key)113

114

result = w3.eth.sendRawTransaction(signed_txn.rawTransaction)115

116

tx_receipt = w3.eth.getTransactionReceipt(result)117

118

count = 0119

while tx_receipt is None and (count < 30):120

time.sleep(10)121
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122

tx_receipt = w3.eth.getTransactionReceipt(result)123

124

print(tx_receipt)125

126

if tx_receipt is None:127

return {’status’: ’failed’, ’error’: ’timeout’}128

129

processed_receipt = contract.events.SuperblockSubmission().130

processReceipt(tx_receipt)131

132

print(processed_receipt)133

134

output = "Address {} Submitted a Superblock to ethereum : {}" \135

.format(processed_receipt[0].args._sender, processed_receipt[0].136

args._superblock)137

print(output)138

139

return {’status’: ’added’, ’processed_receipt’: processed_receipt}140
141
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Contract ABI (contract-abi.py)

1

abi = """2

[3

{4

"constant": false,5

"inputs": [6

{7

"name": "_superblock",8

"type": "string"9

}10

],11

"name": "sendSuperblock",12

"outputs": [13

{14

"name": "success",15

"type": "bool"16

}17

],18

"payable": false,19

"stateMutability": "nonpayable",20

"type": "function"21

},22
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{23

"anonymous": false,24

"inputs": [25

{26

"indexed": false,27

"name": "_sender",28

"type": "address"29

},30

{31

"indexed": false,32

"name": "_superblock",33

"type": "string"34

}35

],36

"name": "SuperblockSubmission",37

"type": "event"38

},39

{40

"payable": true,41

"stateMutability": "payable",42

"type": "fallback"43

},44

{45

"inputs": [],46

"payable": false,47

"stateMutability": "nonpayable",48

"type": "constructor"49

},50

{51

"constant": true,52

"inputs": [],53

"name": "getSuperblock",54

"outputs": [55
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{56

"name": "",57

"type": "string"58

}59

],60

"payable": false,61

"stateMutability": "view",62

"type": "function"63

},64

{65

"constant": true,66

"inputs": [67

{68

"name": "_sender",69

"type": "address"70

}71

],72

"name": "isApproved",73

"outputs": [74

{75

"name": "approved",76

"type": "bool"77

}78

],79

"payable": false,80

"stateMutability": "view",81

"type": "function"82

}83

]84

85

"""86
87
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Appendix F

Superblock Smart Contract

(Superblock.sol)

1

pragma solidity ˆ0.4.0;2

contract Superblock {3

// The ’dict’ of addresses that are approved to submit SBs4

mapping (address => bool) approvedSender;5

string SB;6

7

// The event to announce a SB on the blockchain8

event SuperblockSubmission(address _sender, string _superblock);9

function Superblock() public {10

}11

// The ’payable’ and it will be called whenever ether is sent to the12

contract address.13

function() public payable{14

// Contains information about the transaction15

if (msg.value > 20000000000000000) {16

//if the value sent greater than 0.02 ether (in Wei)17

// then add the sender’s address to approvedSender list and now18

the can submit SBs19

approvedSender[msg.sender] = true;20
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}21

}22

23

// The function to check whether a specified address is approved to24

post SBs.25

function isApproved(address _sender) public view returns (bool approved26

) {27

return approvedSender[_sender];28

}29

30

// Read-only function that returns the current SB31

function getSuperblock() public view returns(string) {32

return SB;33

}34

//The function that submit the SB to the blockchain35

function sendSuperblock(string _superblock) public returns (bool36

success) {37

// Check if the sender is verified38

if (approvedSender[msg.sender]) {39

40

SB = _superblock;41

emit SuperblockSubmission(msg.sender, SB);42

return true;43

44

} else {45

return false;46

}47

48

}49

}50
51
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