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Abstract

Manual quantum programming is generally difficult for humans, due to the often

hard-to-grasp properties of quantum mechanics and quantum computers. By outlining

the target (or desired) behaviour of a particular quantum program, the task of program-

ming can be turned into a search and optimization problem. A flexible evolutionary

technique known as genetic programming may then be used as an aid in the search for

quantum programs. In this work a genetic programming approach uses an estimation of

distribution algorithm (EDA) to learn the probability distribution of optimal solution(s),

given some target behaviour of a quantum program.
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Chapter 1

Introduction

Can we automatically program quantum computers using machine learning ?

1.1 Thesis statement

Quantum computer programming involves the manipulation of information on a ma-

chine called a quantum computer, whose foundation is quantum mechanical. The bit is

replaced by the qubit as the smallest unit of information. A qubit’s capabilities and limi-

tations are closely related to its physical realization, which is directly subject to the laws

of physics; thus, the role physics has in computation cannot be abstracted for quantum

computation as is usually done for classical computation.

Strange behaviours arise in the context of quantum mechanics. A qubit may exist in a

superposition of two mutually exclusive states, which equips the qubit with an inherent

ability for parallelization. This could lead to a computational advantage for certain

problems. Two or more qubits may become entangled, which means that mutually-

dependent relationships are forged among the qubits, such that the information they

convey as a system can no longer be broken up and attributed to individual qubits.

Entanglement can be turned into a computational resource. Quantum physics grants us

new abilities; however, it also takes away some powers we take for granted in classical

computing, such as the freedom to observe a qubit without loss of information and the

ability to copy an arbitrary qubit.

Due to superposition and entanglement a quantum system can only be classically

simulated with exponential costs in terms of time and memory. A true quantum computer

would render the study of quantum systems possible. Such a computer would require

effective quantum software.

Programming can refer to something as trivial as a NOT gate, whose sole purpose is

1



1.1. THESIS STATEMENT CHAPTER 1. INTRODUCTION

to flip a bit. When we have various inputs and multiple gates acting on the inputs, we

can form full circuits, such as a half-adder for arithmetic, or a flip-flop, which gives us

memory. Given our more complex circuits we can arrange them in ways which produce

actual programs. If we come up with rules for the expected behaviour of a program,

independent of the size of the input and the available hardware, then we have defined

an algorithm.

Quantum programming differs from classical programming in that we must take into

account and understand quantum phenomena, ideally learn to use these to some sort of

an advantage and beware of easily abounding errors that might disturb our computations.

Experience over the last three decades shows that quantum programming is not trivial

for someone who is conditioned to the logic of classical physics, which is something most

of us humans will have trouble disclaiming. The purpose of this work is to explore the

possibility of quantum programming for quantum computers with the aid of classical

computers and classical machine learning.

Automatic generation of programs is the specialty of a metaheuristic known as genetic

programming (GP). A genetic program starts off by initializing (usually randomly) a set

of potential solutions to a given problem. Problem solutions are usually described by

a collection of features, which can be represented by a tree, a linear linked-list, an

acyclic graph, or some other useful data-structure. A GP then attempts to improve the

solution set in an iterative process in which it identifies the better solutions in the set

and encourages the propagation of features that make up these solutions by preferentially

applying transformations (or search operators) to the current set. To compare solutions,

a fitness function is used, which maps each candidate to a fitness value, indicating how

closely the candidate approximates an ideal solution.

GP has successfully generated quantum programs in the past, but previous work

clearly suggests that the task is difficult. Estimation of distribution algorithms (EDA)

allow a GP to model the probability distribution of a set of potential solutions and

using machine learning gradually approach the ideal distribution, from which a solution

might be sampled. An EDA-based GP differs from normal GP in that it does not use

explicit search operators. Programs often exhibit patterns and repetition in their code.

Through an EDA-based GP, patterns might be identified and exploited to improve the

search for quantum programs. The work of this thesis uses EDA-based GP to learn

quantum programs, starting with simple quantum circuits and building up to more

complex programs. Our hypothesis for this thesis is thus made of two parts:

1. Quantum programs exhibit sequential patterns and relationships between their

functions and inputs which can be learned by an EDA-based GP to help automat-

ically generate programs.

2. A stochastically-driven GP engine with an underlying learner to guide perturbation

of features could have an advantage over one without the learner.

2
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1.2 Contributions

For the purpose of this thesis a quantum program is represented as a linked-list of function

nodes, where a function is a quantum gate and each node encodes the information of

where and how it should be applied. As opposed to previous work, we decided to use

EDA-based GP to help automate the search for quantum programs. The contributions

of this thesis are as follows:

• We have designed a framework for studying and generating quantum programs

using a learner.

• Three EDA-based GP variants were developed and employed to learn the optimal

solutions to a variety of problems:

1. EDA-QP (EDA quantum program evolver) tries to find relationships between

the function nodes and their inputs.

2. ngram-QP (N-gram quantum program evolver) looks at sequences of quan-

tum gates and tries to generate programs through 2 and 3-tuple combinations

of gates.

3. HQP (Hybrid-EDA quantum program evolver) uses a guided stochastic search

operator enhanced by an underlying EDA for a greater capacity to explore.

• We have developed a quantum computer simulator named smallqc useful for evolv-

ing, testing and running quantum programs.

• We have incorporated an additional fitness component which attempts to promote

function sequences that could potentially result in entanglement.

• Our experimental results support the following two ideas.

1. Structures in (quantum) programming are difficult to capture in circuits at

the low-level.

2. Fully-automatic quantum programming is difficult for GP in general and more

so for EDA-QP than for ngram-QP and HQP.

1.3 Roadmap

Chapter 2 presents background information on the fields of quantum computation and

evolutionary computation. Chapter 3 is a survey of related work. Chapter 4 introduces

the methodology and algorithm employed and breaks down the implementation of our

approach. Chapter 5 consists of experiments, results, an analysis of the results and an

evaluation of the approach used. Conclusions and suggestions for future work are given

in Chapter 6, which then ends with a short summary of the entire work completed.

3





Chapter 2

Background

This chapter provides all the necessary background material relevant to the rest of this

thesis. It begins with an introduction to quantum computation, from a computer scien-

tist’s point of view. This should be accessible to someone without a physics background.

Section 2 gives an introduction to evolutionary computation, with an emphasis on genetic

programming.

2.1 Quantum computing

Quantum computing is an eclectic field at the intersection of quantum physics, computer

science and information theory. Quantum computing is based on quantum mechanics,

which is the branch of physics describing the world at the atomic level. It is an alternative

to classical computing, where the underlying models of computation are enhanced to

support quantum phenomena and the theoretical and practical aspects have a much

closer relationship. Quantum computing encompasses all aspects of theoretical quantum

computer science, quantum information processing and quantum technology.

2.1.1 History

Quantum mechanics arose from a struggle to explain certain peculiar behaviours in

nature (especially those of light), which failed to make sense in the context of classical

physics. At the beginning of the 20th century a number of experiments1 baffled physicists,

as unexpected results suggested that a revision of classical Newtonian dynamics was in

order. Empirical evidence led to the realization that light exhibits both wave-like and

particle-like behaviours[26]. Thus, light can be infinitely spread out, but it can also be

deterministically localized. This is in fact true of any matter. This paradox is what

1 The interested reader may consult a physics textbook, such as Principles of Physics by Serway and
Jewett [61] and find out more about the Open-Slit Experiment and the Compton Experiment, which
revealed light in the act of behaving both as a wave and a particle (called a photon).

5



2.1. QUANTUM COMPUTING CHAPTER 2. BACKGROUND

gives quantum computation its quirk and its power. Quantum mechanics, though non-

intuitive, has nonetheless been experimentally verified and (at least) at the time of this

thesis forms our best approximation to the dynamics of the universe [45]. Quantum

computing was initiated with the goal of building a machine capable of using quantum

mechanics rather than have to simulate it, as simulations of quantum systems turned

out to be prohibitive, in terms of time and space.2

2.1.2 The quantum computer

A quantum computer is much like a classical computer, except that its foundation is

quantum mechanical and it is able to use and exploit quantum phenomena directly, in

order to compute [45]. In all other respects a quantum computer is just like a classical

computer; there is nothing that a quantum computer can or cannot do which a classical

computer cannot or can do, but a quantum computer is theoretically believed to be

superior in space and time efficiency [45, 74].

2.1.3 Quantum computation

Quantum computation is a branch of quantum computing that studies both the practical

and theoretical computational capabilities of a quantum computer [54].

Quantum notation

Quantum mechanics and quantum computation use a special notation called bra-ket

notation or Dirac notation3, which is worth an introductory discussion. In quantum

mechanics, a ket is a column vector of complex numbers4 in a Hilbert space5 and is

usually denoted by |x〉, where x is simply a label for the column vector. A ket has a

corresponding dual vector called a bra, denoted by 〈x|, which is simply the transpose of

the complex conjugate of the ket6.

For example, a ket of dimension n can be written as:

|x〉 =


z0

z1
...

zn−1

 , (2.1)

2 Richard Feynmann first suggested the quantum machine in 1982 [45, 12].
3 The terminology and notation for the mathematics of quantum mechanics is due to Paul Dirac.

[45]
4For a review of complex numbers and some important related results that will be used throughout

this thesis, consult Appendix A.
5 A Hilbert space [41, 45] is an infinite complex vector space, in which quantum mechanics roams,

but for the purposes of quantum computation we can always regard it as a finite dimensional vector
space.

6 Thus, since a ket is a column vector, its corresponding bra will always be a row vector.
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where all zi ∈ C. The bra of this ket is:

〈x| = |x〉† =
(
z̄0 z̄1 . . . z̄n−1

)
, (2.2)

where z̄i denotes the complex conjugate of zi and (·)† denotes the conjugate transpose.

The terms ket and vector will be used interchangeably, throughout this thesis.

A normalized ket is a unit vector, or a vector whose norm or modulus is equal to unity.

The modulus is induced by an inner product on the vector space. An inner product in

the quantum case is a transformation or a many-to-one function that takes two kets of

the same dimension and maps them to a complex number:

〈·|·〉 : {|ψ〉, |φ〉} 7→ 〈φ|ψ〉 ∈ C. (2.3)

The inner product on kets is also called the braket, since it is the product of a bra and

its ket. The modulus of a ket is analogous to the modulus of a complex number. For

example, the modulus of a ket |x〉 of dimension n is:

‖x‖ =
√
〈x|x〉

=

√√√√√√√√√√
(
z̄0 z̄1 . . . z̄n−1

)


z0

z1
...

zn−1


=
√
z̄0z0 + z̄1z1 + · · ·+ z̄n−1zn−1

=
√
‖z0‖2 + ‖z1‖2 + · · ·+ ‖zn−1‖2 (2.4)

If the inner product of two kets, 〈x|y〉, is 0, then we say that |x〉 and |y〉 are orthogonal.

If the inner product of a ket with itself, 〈x|x〉, is 1, then we say that |x〉 is normal. A set

of kets |x1〉, |x2〉, ...|xn〉 is orthonormal iff:

〈xi|xj 6=i〉 = 0

and

〈xi|xi〉 = 1

for all 1 ≤ i, j ≤ n.

7
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Composition

Given two arbitrary kets |x〉 =


x0
...

xn−1

 and |y〉 =


y0
...

ym−1

 of arbitrary lengths

n and m, respectively, a composite ket |xy〉 of length n ×m may be formed through a

tensor product of the two kets, denoted by ⊗:

|xy〉 = |x〉 ⊗ |y〉 =


x0
...

xn−1

⊗


y0
...

ym−1



=


x0
...

xn−1

⊗ |y〉 =


x0|y〉
x1|y〉

...

xn−1|y〉

 =



x0y0

x0y1
...

x0ym−1

x1y0
...

xn−1ym−2

xn−1ym−1


(2.5)

|xy〉 is thus a ket that contains every possible product of an element of |x〉 and an element

of |y〉. As there are n ×m ways to pair an element of |x〉 with an element of |y〉, the

length of |xy〉 is thus the product of the lengths of |x〉 and |y〉. The tensor product may

be written as |xy〉, |x〉|y〉 or |x〉 ⊗ |y〉. We will often prefer the common notation |xy〉,
due to the reduced clutter.

2.1.4 Information and qubits

Quantum computation is done on information stored in quantum bits (or qubits for

short) [45, 54, 74]. As the quantum analogue to the classical bit, the qubit is the smallest

unit of information (or memory) in a quantum computer. A qubit has two mutually

exclusive computational basis states, often labelled |0〉 and |1〉, just as a classical bit has

the mutually exclusive states 0 and 1 (or off and on), but a qubit is endowed with an

additional power, which is unknown to a classical bit; a qubit has the ability to exist in

a superposition of its basis states [45, 54, 74]:

|ψ〉 = α|0〉+ β|1〉, (2.6)

8
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where α, β ∈ C.

Since a single qubit is a combination of bipolar states, any two orthogonal vectors in

two dimensions can form a computational basis and any qubit can be written as a linear

expansion of such a basis. The labels |0〉 and |1〉 are a useful allusion to binary states 0

and 1, but any other labels can be used and any (necessarily orthogonal) computational

basis can be used, as long as the use is consistent. The standard computational basis7 is:

|0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
. (2.7)

which can easily be verified to be orthonormal:

〈0|0〉 =
(

1 0
)( 1

0

)
= 1 · 1 + 0 · 0 = 1, (2.8)

〈1|1〉 =
(

0 1
)( 0

1

)
= 0 · 0 + 1 · 1 = 1, (2.9)

〈0|1〉 =
(

1 0
)( 0

1

)
= 1 · 0 + 0 · 1 = 0, (2.10)

〈1|0〉 =
(

0 1
)( 1

0

)
= 0 · 1 + 1 · 0 = 0. (2.11)

Our qubit |ψ〉 = α|0〉+ β|1〉 from above can thus be equivalently rewritten in vector

form in the standard computational basis as:

|ψ〉 = α

(
1

0

)
+ β

(
0

1

)
=

(
α

β

)
. (2.12)

The complex numbers α and β are called the probability amplitudes of the qubit and

the squares of their moduli, ‖α‖2 and ‖β‖2, represent the chance of finding the qubit

in state |0〉 and the chance of finding the qubit in state |1〉, respectively, upon measure-

ment8. A qubit superposition is thus loosely defined by a probability distribution over

the computational basis states, which means that a qubit is valid only when normalized,

7 For the rest of this thesis, unless specifically mentioned otherwise, all operators and vectors will be
defined with respect to the standard computational basis.

8 For a simple qubit a computer scientist might envision measurement as simply an attempt to read
out the value of the qubit. When this happens, the superposed quantum state is projected onto one
of its computational basis states. Measurement in quantum mechanics is a complex topic. For more
information, see Chapter 2 of Quantum Computation and Quantum Information [45] by Nielsen and
Chuang.

9
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which is equivalent to the sum of the squares of the moduli of the probability amplitudes

being equal to 1, since
√
〈x|x〉 = 1 implies 〈x|x〉 = 1.

Measurement

While a qubit sits in a superposition it does not have a definite state, just as light,

while acting as a wave, does not have a definite position. Upon measurement of the

qubit, the qubit probabilistically chooses one of its computational basis states and the

qubit’s superposition collapses to this particular definite state. This is analogous to

light observed as a particle, which collapses its wavelike form to a definite position.

Since measurement of a qubit will force it to one of its orthogonal states, a subsequent

measurement will yield the same result with 100% probability, which makes it impossible

to determine the probability amplitudes of an unknown qubit [45, 41]. For example,

suppose we have a qubit |ψ〉 = α|0〉 + β|1〉 and a measurement reveals that the qubit

is in state |1〉. All this means is that the post-measurement state is |1〉, but we do not

know whether the state before was a superposition which collapsed to |1〉 or whether it

was simply the computational basis state |1〉. An estimate of the true quantum state

can be determined by preparing a large number of qubits identically (an ensemble [41]),

performing the same measurement on all qubits, and using the actual frequencies of

each resulting state to approximate the true probability amplitudes9. As an example,

suppose we have some way of preparing a large ensemble of identical |ψ〉 = α|0〉+ β|1〉.
Additionally, suppose α = 1

2 and β =
√
3
2 , but this information is not known to us.

After measuring 10 of the qubits in our ensemble we might have observed |0〉 as a result

2 times and |1〉 8 times, suggesting that the amplitude of |0〉 might be such that its

modulus squared is equal to 0.20 and that of |1〉 such that its modulus squared is equal

to 0.80. After measuring 32 qubits we might have observed |0〉 9 times and |1〉 23 times,

and we would update our estimates of the probabilities to 0.28 and 0.72. The more

qubits we measure the more precise our estimates become and the closer we are able to

approximate the true probabilities of 0.25 ( 1
4 ) and 0.75 (3

4 ), for |0〉 and |1〉, respectively.

2.1.5 Quantum operations and operator properties

To effect changes in a quantum state, a quantum operation (or quantum gate) is applied

to the quantum state [45]. A transformation which takes a vector |x〉 of a vectorspace

V and maps it to a vector |x′〉 of the same vectorspace V is called an operator 10. In

order to apply individually to each element of a superposition, a quantum operation

9 It is important to note, however, that even though we might approximate the probabilities to
some high precision, information on the actual probability amplitudes can not be discovered through
measurements, since the amplitudes are complex numbers and we are using real numbers to approximate
the probabilities of measuring |0〉 and |1〉. The modulus of a complex number is a many-to-one function,
which means we cannot recover a 2-dimensional complex number from its 1-dimensional modulus.

10 It follows that an arbitrary matrix representation of an operator must be square.

10
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must necessarily be a linear operator11 and can thus be represented by a transformation

matrix. A vector (or ket) may then be transformed into another vector by application

of such an operator, through matrix multiplication.

Hermitian adjoint of an operator

An operator A has a Hermitian adjoint (or conjugate transpose) A†, just as a ket has

a bra. Such an adjoint must satisfy the following for two vectors |x〉 and |y〉 in the

vectorspace V :

〈x|A|y〉 = 〈y|A†|x〉

This means that the inner product of |x〉 and A|y〉 must be the same as the inner

product of |y〉 and A†|x〉.

To construct the Hermitian adjoint of an operator [45, 41]:

1. Take the transpose of the operator (matrix)

2. Take the complex conjugate of each entry in the transpose

An operator H is called Hermitian if it satisfies H = H†. An operator U is called

unitary if it satisfies UU† = U†U = In. Here In denotes the identity operator for the

vectorspace of dimension n. This means that the adjoint of a unitary operator is its

inverse, since XX−1 = X−1X = In is necessary and sufficient for an inverse and a

unitary operator satisfies this relation. This means UU† = UU−1 = U−1U = U†U = In.

Unitary operators are essential to quantum computation, since a valid operator must

preserve the unitarity of a state vector.

Pauli operators and their matrices

Quantum mechanics has four basic operators which are known together as the Pauli

operators [75] and are denoted by I = σ0, X = σ1 = σx, Y = σ2 = σy and Z = σ3 = σz.

All these operators are unitary and Hermitian and defined on a Hilbert space of dimension

2, but may be used to form more complex operators on higher-dimensional Hilbert spaces.

In fact, any single-qubit operator may be used to build multi-qubit operators.

11 An operator O is linear if it satisfies the following two conditions:

O(|x〉+ |y〉) = O(|x〉) +O(|y〉), ∀|x〉, |y〉 ∈ V (2.13)

O(c|x〉) = cO(|x〉), ∀|x〉 ∈ V, ∀c ∈ C (2.14)

11
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The Pauli I : The first Pauli operator is simply the identity operator on vectorspace

of dimension 2. In the standard basis this is:

I =

(
1 0

0 1

)
(2.15)

The Pauli X : The second Pauli operator (also known as the quantum NOT gate) in

standard basis is:

X =

(
0 1

1 0

)
(2.16)

The Pauli Y : The third Pauli operator in standard basis is:

Y =

(
0 −i
i 0

)
(2.17)

The Pauli Z : Finally, the Pauli Z operator (also known as the phase flip operator) in

standard basis is:

Z =

(
1 0

0 −1

)
(2.18)

Action of Pauli operators on standard basis

From the above matrix representations of the Pauli operators, the following actions on

the standard basis vectors |0〉 =

(
1

0

)
and |1〉 =

(
0

1

)
can be computed:

σ0|0〉 =

(
1 0

0 1

)(
1

0

)
=

(
1

0

)
= |0〉 (2.19)

σ0|1〉 =

(
1 0

0 1

)(
0

1

)
=

(
0

1

)
= |1〉 (2.20)

σx|0〉 =

(
0 1

1 0

)(
1

0

)
=

(
0

1

)
= |1〉 (2.21)

σx|1〉 =

(
0 1

1 0

)(
0

1

)
=

(
1

0

)
= |0〉 (2.22)

12
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σy|0〉 =

(
0 −i
i 0

)(
1

0

)
=

(
0

i

)
= i|1〉 (2.23)

σy|1〉 =

(
0 −i
i 0

)(
0

1

)
=

(
−i
0

)
= −i|0〉 (2.24)

σz|0〉 =

(
1 0

0 −1

)(
1

0

)
=

(
1

0

)
= |0〉 (2.25)

σz|1〉 =

(
1 0

0 −1

)(
0

1

)
=

(
0

−1

)
= −|1〉 (2.26)

To recapitulate, the following mappings occur:

σ0|0〉 7→ |0〉 ; σ0|1〉 7→ |1〉 (2.27)

σx|0〉 7→ |1〉 ; σx|1〉 7→ |0〉 (2.28)

σy|0〉 7→ i|1〉 ; σy|1〉 7→ −i|0〉 (2.29)

σz|0〉 7→ |0〉 ; σz|1〉 7→ −|1〉 (2.30)

Hadamard gate

The Hadamard gate is an operator which takes a qubit sitting in either of its two com-

putational basis states and puts it in a superposition of those two states:

H =
1√
2

(
1 1

1 −1

)
(2.31)

H|0〉 =
1√
2

(|0〉+ |1〉) (2.32)

H|1〉 =
1√
2

(|0〉 − |1〉) (2.33)

The Hadamard gate is both unitary and Hermitian. An implication of this is that two

consecutive applications of a Hadamard cancel each other out. The Hadamard gate is

essential to quantum computation for creating superpositions.

13
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2.1.6 Qubit registers

In classical computing 8 bits can be stringed together to form one byte and multiple bytes

can form words. Qubits can also be combined to form quantum registers of memory.

Due to the potential for superposition, the way in which a quantum register is composed

is very different from the way in which a classical register might be formed.

Imagine a classical system of n bits. Each bit can be either on or off. Thus, if we

combine n bits into an array, we will get n different slots with each slot either in on or

off state (2 states), which means we simply need to know what each individual bit is, in

order to know the full state of the n-bit system. There are 2× 2× ...× 2 = 2n possible

states. Thus the composite system (or n-bit array) can be in exactly one of 2n states:

0 : 0n−10n−2...020100

or

1 : 0n−10n−2...020110

or
...

or

2n − 2 : 1n−11n−2...121100

or

2n − 1 : 1n−11n−2...121110,

where the subscripts denote the indices of the bits in the register. This means we need

to keep track of n values (which may each be on or off ). We can thus describe the full

system (array) in terms of the individual small systems (bits).

Qubits combine through tensor products to produce (normalized) quantum registers.

For example, we can tensor the two qubits |+〉 = 1√
2
(|0〉+ |1〉) and |−〉 = 1√

2
(|0〉 − |1〉)

to produce a necessarily normalized 2-qubit quantum register12:

|+−〉 = 1
2 (|00〉 − |01〉+ |10〉 − |11〉). (2.34)

For a system of n qubits, each qubit can be in a superposition of its computational basis

states, and it follows that when combined into a composite quantum system13, again the

qubits will be in a superposition of all possible states. In our example above, there are

12 Here |+〉 and |−〉 are simply labels that are commonly used to denote the Hadamard basis states
given by the qubits in our example.

13 In this thesis, in the context of quantum computation, when we say quantum system we usually
refer to a register made up of 1 or more qubits.
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now 2× 2 = 4 computational basis states14. Thus, for our system of n qubits we need to

keep track of 2n values (or coefficients given by the probability amplitudes) for each of

the possible computational states of the new system. The composite qubit system will

be in a superposition that includes all of the 2n states:15

0 : |0n−10n−2...020100〉

and

1 : |0n−10n−2...020110〉

and
...

and

2n − 2 : |1n−11n−2...121100〉

and

2n − 1 : |1n−11n−2...121110〉

The amazing thing about quantum mechanics is that when a quantum operation is

applied to a quantum system, the operation is applied to all the individual components

of the superposition at the same time, which is referred to as quantum parallelism [45,

74, 54]. Quantum parallelism can be a great computational resource, if an algorithm is

designed to handle it effectively [45]. Unfortunately, quantum parallelism does not imply

an ability to extract exponential amounts of data from the system, since, as mentioned

earlier, a quantum system always collapses to one of its basis states upon measurement.

This means that even if we apply an operation to all the states, we are only able to

retrieve the result of that operation on one of the states [45].

Controlled operations

Given a single-qubit operator U, a controlled version of the operator can be built, which

acts on two qubits and applies the operator U to one of the qubits, which is designated

the target , if and only if the control (the other qubit) is 1. If the control qubit is 0,

nothing happens. A very important two-qubit gate is the controlled-NOT or CNOT

gate, in which the target is inverted (the NOT gate is applied to the target) when the

control is 1.

14 Recall that since computational basis states are not themselves superpositions, they can simply be
ordered and related to the binary representation of their respective indices. As such, it is common to
use the binary index of a computational basis state as the label for the state. For example, |000〉 simply
refers to binary value 000, or the 0th state in a 0-indexed ordering.

15 Of course, if a particular probability amplitude is 0, not all of the basis states might be present

in a given superposition. For example, given the kets |x〉 = |1〉 and |y〉 =
√

3
4
|0〉 +

√
1
4
|1〉, the tensor

product of the two kets gives |x〉 ⊗ |y〉 =
√

3
4
|10〉+

√
1
4
|11〉 and so the two states |00〉 and |01〉 are not

present in the composite, as their probability amplitudes are 0.
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CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (2.35)

Since CNOT is a 2-qubit gate, it takes as input kets which are linear combinations

of four computational basis states: {|00〉, |01〉, |10〉, |11〉}. The action of the CNOT gate

on the individual states is:

CNOT |00〉 = |00〉 ← control: 0; target: 0; no action (2.36)

CNOT |01〉 = |01〉 ← control: 0, target: 1; no action (2.37)

CNOT |10〉 = |11〉 ← control: 1, target: 0; flip target (2.38)

CNOT |11〉 = |10〉 ← control: 1, target: 1; flip target (2.39)

Operators on multi-qubit systems

As mentioned previously, a single-qubit operator can be used to create larger multi-

qubit operators. To create such operators, we use an analogue of the tensor product for

matrices, called a Kronecker product. As an example, suppose we have the following:

Z2×2 =

(
1 0

0 −1

)
and CX4×4 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , (2.40)

where the subscripts show the sizes of the operators and implicitly, of the Hilbert
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spaces on which these operate. The Kronecker product of Z and CX is:

Z ⊗ CX =

(
1 0

0 −1

)
⊗


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 =

(
1 0

0 −1

)
⊗ CX =

 1 · CX 0 · CX

0 · CX −1 · CX



=



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

0 · CX

0 · CX −1 · CX


=



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 −1 0


(2.41)

Z ⊗CX is a 3-qubit operator of size 8× 8, which applies the CX operator to qubits

0 and 1 and the Z operator to qubit 2.

Recall that I = σ0 is the identity operator for one qubit. Given that I leaves the

qubit unchanged, this operator can be used to compose operators that act on only certain

qubits of a multi-qubit system, while leaving other qubits undisturbed. For example,

imagine we have a qubit register of arbitrary size n and we want to create an operator

that performs a certain action given by O on the ith qubit only. To do this we can create

composite operator M as follows:

M = In−1 ⊗ In−2 ⊗ · · · ⊗ Ii+1 ⊗Oi ⊗ Ii−1 ⊗ · · · ⊗ I0 (2.42)

where the subscripts specify the qubits.

2.1.7 Spooky action at a distance

Probability and uncertainty are at the core of quantum mechanics and by extension,

quantum computation. A state in a superposition has certain probabilities of ending up

in each of its computational basis states and these probabilities evolve in time according

to unitary transformations, but there is no way to predict with accuracy the result of a

measurement, so long as a state remains in a superposition.

In quantum systems of more than one qubit it becomes possible to witness quantum

entanglement , which can be explained [45, 51] as a phenomenon that binds together

quantum systems such that we cannot describe the full system by its individual parts.

A good example of quantum entanglement is seen in the first of four states known as the

17
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Bell states16:

|β00〉 =
1√
2

(|00〉+ |11〉) (2.43)

It can easily be shown17 that there are no two kets that combine through the tensor

product to create this state, such that we could describe the composite state |β00〉 by

individual descriptions of these separate states. Two qubits that are entangled retain

their entanglement even when physically separated and moved far apart. Because of

their interrelationship, measurements on one qubit will affect the system as a whole and

so the full result will be seen even at the distant partner qubit, despite its being inca-

pable of directly communicating or interacting with the first qubit. Einstein referred

to this occurrence as “spooky action at a distance” and such strange behaviour came

to be known as the EPR paradox [45, 54], which Einstein, Rosen and Podolsky (for

whom it is named) tried to explain classically in terms of what they called hidden vari-

ables. Einstein, Rosen and Podolsky believed these hidden variables were present in the

system and predetermined the outcomes; however, real experiments contradicted their

hypothesis [45, 54].

Quantum teleportation

A perfect example of the power of entanglement can be seen in the quantum teleporta-

tion protocol , in which the goal is to send an unknown quantum state |ψ〉 between two

physically separated endpoints, with a traversal of the space between only by classical

information18 [45]. Quantum teleportation allows for this to happen by entangling |ψ〉
with a qubit at one endpoint, call it |A〉, which had already been pre-entangled with

another qubit, call it |B〉. At the time of their entanglement |A〉 and |B〉 were close to-

gether; however, at present, even while the two retain their entanglement, |B〉 is far away

from |A〉, at the opposite endpoint. To make the teleportation example more dramatic,

the distance between the two endpoints can be thought to be on the order of several

light years. Measurements are made on the two qubits |ψ〉|A〉, which are physically to-

gether (and entangled) and the measurement results (two classical bits) are then sent

16 To create |β00〉 start with the state |00〉 = |0〉|0〉, apply the Hadamard gate to the first qubit from
the left, transforming the state to a superposition in the first qubit, 1√

2
(|0〉+ |1〉)|0〉 = 1√

2
(|00〉+ |10〉)

and then apply a CNOT gate targeting the rightmost qubit, with the qubit on the left as the control
qubit. This yields the final state is 1√

2
(|00〉+ |11〉).

17 Suppose there exist |v〉 = v1|0〉+ v2|1〉 and |w〉 = w1|0〉+ w2|1〉 such that |v〉 ⊗ |w〉 = |β00〉. Then
it would have to be that |v〉 ⊗ |w〉 = v1w1|00〉 + v1w2|01〉 + v2w1|10〉 + v2w2|11〉 = 1√

2
(|00〉 + |11〉).

Equating like states gives v1w1 = 1√
2

; v1w2 = v2w1 = 0; v2w2 = 1√
2

. Since v1w2 = 0→ (1) v1 = 0 or

(2) w2 = 0. If (1) is true, then it would follow that v1 = 0→ v1w1 = 0 6= 1√
2

and so (1) cannot be true.

Then it must be that (2) is true; however, this similarly implies a contradiction and so |β00〉 cannot be
decomposed into two factor kets.

18 Binary information can be represented by bits. Since a qubit upon measurement assumes one of its
two computational basis states, the result from such a measurement can be contained by a normal bit.
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to the other end (through a telephone wire, communicated by a physical messenger, in

a letter on a spaceship, or through some other means), where |B〉 exists. Based on the

measurements, simple corrective transformations may be applied to the lone qubit |B〉
which effectively reconstructs the state of |ψ〉 at |B〉. The no-cloning theorem [45, 54]

states that it is impossible to perfectly copy an arbitrary, unknown quantum state, which

means that the original qubit |ψ〉 will not retain its state (this will have been destroyed

in the transition to |B〉; otherwise, there are now two copies of the original |ψ〉, which

contradicts the no-cloning theorem). Additionally due to the non-unitary property of

quantum measurement, the state of |B〉 cannot be determined, but the objective of quan-

tum teleportation is met by this protocol, as the unknown quantum state |ψ〉 is passed

to |B〉, with only two classical bits travelling the physical space from |A〉 to |B〉.

2.1.8 Quantum programs

A quantum program is simply a sequence of quantum operations (quantum gates) and

possible measurements, applied to some input quantum register. A striking difference

between classical and quantum programming is that quantum operations must all be

reversible [75]. This is a direct implication of the unitarity requirement of a quantum

state. An operator is reversible if the original state can be uniquely determined from

the post-operator state. For example, the Z gate is unitary, because a result of |0〉 tells

us with certainty that the input was |0〉 and a result of −|1〉 tells us with certainty that

the input was |1〉. Measurements are non-unitary operators which collapse a quantum

register’s state to a classical equivalent (one of the computational basis states) [45].

There is an infinity of valid single-qubit gates, as the only requirement is that the gate

be unitary. It has been shown that all single-qubit gates together with the CNOT gate

form a universal set19 for quantum computation; while in practice, a properly chosen

finite set could approximate any computation sufficiently well [45].

2.1.9 Quantum algorithms

There are few significant distinctly-quantum algorithms which have been discovered [62],

but the ones that have been developed are impressive in their elegance and use of non-

classical logic. The first and the most famous algorithm was discovered by Peter Shor

in 1994 [63] and is known as Shor’s quantum factoring algorithm. The most important

part of this algorithm is the use of the quantum Fourier transform (QFT) to find the

period of a function20, which allows the algorithm to determine the prime factorization of

any composite number with an exponential speedup over the best (as currently known)

classical algorithm for the same problem. Running on a real quantum computer, Shor’s

19 A set of gates forms a universal set if the gates are sufficient to construct any possible program.
20 The period of a function f(x) is a number k such that f(x+ k) = f(x).
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algorithm would render obsolete21 certain security and cryptographic protocols (such as

RSA22), which rely on our current inability to efficiently factor large numbers. Shor’s

factoring algorithm is also important, as, due to its intriguing implications, it spurred a

lot of research into quantum computation for the very first time.

The ability of quantum states to exist in superpositions allows for interference of

probability amplitudes [45, 54], in which probability amplitudes of like signs add up

and probability amplitudes of opposite signs cancel each other out. This is once again

analogous to the interference effects in waves, where deconstructive interference leads to

two out-of-phase waves cancelling each other out and constructive interference reinforces

two waves that are in phase [61]. Amplitude amplification is a technique [45] used in

quantum programming by which the probability amplitudes of desired states are sought

to be increased, whilst reducing the rest of the amplitudes, such that the desired state

stands out and its likelihood of being measured is increased. An important group of

algorithms is based on Lov Grover’s quantum search algorithm, which makes use of

amplitude amplification to efficiently find the index of a marked item in an unstructured

database [54]. This group of inspirational algorithms does not offer as great a speedup as

the group based on the QFT, but is likely to become of more practical use once quantum

computers come to be, as our data needs and thus, database application requirements

are always becoming more significant [45].

2.1.10 Why quantum computation ?

Quantum computers are not currently on the market and will most likely not make their

debut for many years to come23. There are many problems that quantum engineers face.

The greatest problem is that of decoherence, which limits the time a quantum state can

spend in a superposition. In a theoretical, perfectly-closed system, decoherence would not

pose an issue, but in the real world, there is no perfectly-closed system and every system

interacts with its environment. This interaction causes loss of information in a quantum

state, which collapses the superposition of the state, or aggregates a non-negligible error

in time. Thus, there is a limit to the number and duration of computations that may

be done on a particular quantum state, before decoherence causes erroneous results.

Without the quantum effect of superposition, a quantum computer has no advantage

21 Post-quantum cryptography [5] is an area of quantum computation that focuses on cryptographic
methods that will be suitable once quantum computers have been built. Another (and at the time of
this thesis, more expansive) area is that of quantum cryptography [46, 7], which deals mostly with secure
cryptographic key distributions, based on quantum physics, but for which a real quantum computer is
not required.

22 RSA, named after its developers Rivest, Shamir and Adleman is a very popular public-key cryp-
tosystem [73], in which very large prime numbers are used to establish a public-private key pair, such
that the private key cannot tractably be discovered from possession of only the public key.

23 At the time of writing, the surprising D-Wave[55] quantum computer is causing some excitement
as a possible real quantum computer capable of handling 512 qubits (a huge number by quantum
standards), but it has not yet been validated as a true quantum computer and many researchers retain
their reservations.
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over a classical computer; thus, decoherence is a real problem blocking progress on

quantum technology.

Quantum simulations on a classical machine suffer from different problems, such

as enormous memory need. To simulate a quantum computer, memory need would

rise exponentially with a linear increase in quantum memory. A quantum register of

only 64 qubits would require unprecedented amounts of memory24, which is completely

unattainable at present and possibly in the future too. One thing a quantum simulator

cannot simulate is true randomness [73]. True randomness is easily achieved in a quantum

system25, but is impossible to simulate on a classical computer alone26.

Given the problems in constructing quantum computers, one might question the need

for such machines. Engineers, computer scientists and physicists have different answers

to such a question [45, 54, 51, 75, 41]. An engineer might point out that Moore’s Law

[75, 45] is predicting a stasis point in computer technology in the early 21st century,

when we will reach a physical limit in miniaturizing electrical components. Physicists

are more concerned with the potential of simulating quantum systems [51, 45] on a

quantum computer, to enable study of quantum mechanics and the physical properties

of our universe. Such a simulation is difficult to do efficiently on a classical computer, as

mentioned earlier. From a computer science point of view, we might simply be interested

in the theoretical limits of computation and curious about whether quantum computers

would allow us to tackle new problems [45], which are in complexity classes out of reach

for classical computers. While a quantum computer cannot do more than a classical

computer, it most likely can do some things more efficiently, which might even render

feasible some useful NP problems.

2.1.11 Summary

Quantum computing is an alternative to classical computing. The main concept behind

quantum computing is that information is physical [30]; thus, manipulating informa-

tion, which is the essence of a computation, is bound by the physical laws describing

our world. These strange laws allow data to exist in a superposition of values. On a

quantum computer, real quantum programming would have to make ingenious use of

quantum properties, such as superposition and entanglement in an effort to compete

with corresponding classical solutions.

24 A quantum register 64 qubits in length has 264 ≈ 20 million trillion amplitudes. Recall that due to
the possibility of entanglement each amplitude needs to be kept track of, as an entangled system may
not be decomposed into smaller subsystems that may be individually tracked.

25 For example, placing a state |ψ〉 in a perfect superposition |ψ〉 = 1√
2

(|0〉+ |1〉) and then measuring

this state in the standard basis would return 0 with 50% probability and 1 with 50% probability.
26 Although it would be possible to perhaps hook up a classical computer to some outside source of

true randomness [73].
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2.2 Evolutionary computation

Inspiration from nature and the evolutionary process in particular have engendered a

class of metaheuristics27 collectively known as evolutionary algorithms. The methods

are multifarious, yet all methods have in common their reliance on the concept of nat-

ural selection [9], in which the fittest candidate is more likely to survive. To this end,

a fitness (quality) measure is used to differentiate one candidate solution from another

and the better solution will generally have an advantage to persist [21, 49, 2]. Evolu-

tionary computation was first outlined by Alan Turing in his seminal paper on artificial

intelligence, Computing Machinery and Intelligence [76], first published as early as 1950.

Evolutionary algorithms can tackle diverse tasks, but they really excel at problems

which require only approximate solutions, or for which a solution is not known to exist

in advance, or for which the conditions for a solution are difficult to nail down with the

allowable representations of traditional search and optimization techniques.

At a high-level, machine learning [42] concerns the construction of computer systems

which use experience and seek patterns in their inputs in order to adapt (i.e. learn) and

improve themselves with respect to some objective [57, 6, 80]. A machine learning method

can thus be described by its combination of a solution representation, an evaluation

method to determine the quality of a solution and an optimization procedure which

decides how to move through the space of solutions [15].

Due to the learning component of evolutionary computation, it can be related to

the broad field of machine learning [2], but its methods have a much more empirical ap-

proach than most machine learning techniques, which rely more heavily on mathematical

bounds, guarantees and theory. Randomization plays a crucial role in most evolutionary

search methods and the algorithms are characterized by their search through a pool of

candidate solutions, which is in contrast to other methods which tend to a solution by

continuous improvements of a single candidate [2, 57]. By favouring the better candi-

dates, a solution pool28 is expected to inherit improved features over time and in the

best-case scenario, eventually converge upon an acceptable solution. The general process

of an evolutionary method is shown in Algorithm 1.

The most popular of the evolutionary methods is the genetic algorithm [21], which

has enjoyed a relatively long history. Another form of evolutionary method is a ge-

netic program [2], which is normally used to evolve programs. Various other methods,

including cellular automata and particle swarm optimization [49] fall under evolution-

ary computation as well, but are more heavily influenced by metaphors inspired from

biological processes.

27 Sorensen defines a metaheuristic [65] as a framework which guides the development of heuristic
optimization algorithms.

28 In fact, evolutionary computation methods can be viewed as part of a set of stochastic beam
search[57] methods, which make use of multiple candidate solutions and attempt to test random moves
in the search space and proceed to keep those which yield an improvement over the current situation.
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find solution( problem specifics, N, G, stopping criteria ):
begin

create fitness function based on problem specifics and stopping criteria
randomly initialize population of N candidate solutions
set generation = 0
repeat

calculate fitness of each candidate solution
apply genetic (search) operators to candidate pool to create new pool
generation = generation + 1

until generation has exceeded G or stopping criteria have been met ;
return the candidate solution with best fitness value

end
Algorithm 1: Evolutionary algorithm

Evolutionary methods have a panoply of applications [49, 2] in fields such as data

mining, computer vision, robotics, engineering, art, astronomy and others. In many in-

stances these methods are very competitive with other well-established machine learning

methods. Additionally, there are cases where evolutionary methods are the best or only

way to approach a problem; for example, when a problem cannot be adequately defined

in mathematical terms, or not all aspects of the problem are known or defined. In other

words, evolutionary methods are very helpful when the idea of what constitutes a target

solution is rather vague. If one more or less knows what they are looking for, evolu-

tionary methods are just alternative search methods, but if exploration is necessary, an

evolutionary method allows for great search capacity.

2.2.1 Genetic programming

As a machine learning metaheuristic, the genetic algorithm, which is limited by a set

solution size, gives rise to a closely-related extension, known as the genetic program,

which allows for variable-sized solutions and thus aims to model a solution, rather than

optimize a solution for which the structure is already known [71]. While a genetic

program can be applied to any problem a genetic algorithm might be applied to, the

usual solutions of a genetic program are executable programs. The conventional genetic

algorithm uses a binary string representation, called a chromosome [21]. In contrast, a

genetic program can define its solution more flexibly and adopt the use of more complex

data structures [49] whose properties could potentially optimize a search.

Genetic programming ingredients

Genetic programs allow for high flexibility and customization for the various problems

they can solve. The following components together make up a genetic program.

• Solution Representation (Genotype)

The representation of a solution is very important to a genetic program. The
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problem and solution must be formulated in such a way so as to allow for easy ma-

nipulation, adjustment and querying of all details that make up a possible solution.

Important features of a potential candidate solution are called genes and the entire

representation is called the genotype. Often the result of a genetic program can be

directly executed. Depending on the problem, it is possible to have a second-order

encoding, which first decodes the final genotype into an executable program. In

such a case, the genotype is distinct from the phenotype, which is the final output,

after decoding.

• Primitive set

A solution candidate of a genetic program can be expressed as a structure of re-

lationships between elements of a primitive set. This set comprises two distinct

sets:

1. Terminal set: elements (often integers, real numbers, or characters) called

terminals, which can be manipulated as the alleles (or options) for the different

genes (attributes or features) of the genotype.

2. Function set: functions or behaviours which are mostly used to manipulate

the elements of the terminal set, but can also just have side-effects on a

solution.

• Fitness evaluation

Paralleling Darwin’s theory of natural selection29 [9], the evolutionary process of a

genetic program is a competition in which potential solutions compete against one

another to have their features propagated to later generations. A solution which is

a better approximation to the ideal (or exact) solution is a better candidate and is

favoured to win in the competition. A fitness function is defined in some suitable

way to correctly identify the better candidates in a set. While it might not be able

to tell us exactly what a solution looks like, the fitness function must be able to

recognize a solution. Upon evaluation, an individual is associated with a fitness

value which defines its relative quality in the set. Somewhat counterintuitively, a

standardized fitness function [2, 49] defines 0 as corresponding to the highest fitness

and increasing fitness values correspond to decreasing quality.

• Stopping criteria

A genetic program cannot run forever. It thus requires a set of stopping criteria,

which can either limit the evolution to a preset number of iterations, or ensure

29 Darwin introduced the concept of natural selection in 1859 [9]. His idea was that evolution is
a competition for survival. The term competition implies a population and this population naturally
has variations which render certain individuals more fit for survival, giving them a greater chance to
reproduce. Whatever good traits these individuals possess are inherited by their offspring, so that in a
way these individuals are preserved through their traits.

24



CHAPTER 2. BACKGROUND 2.2. EVOLUTIONARY COMPUTATION

that evolution stops when the solution pool has converged upon a good enough

solution, or some other criteria have been met.

• Search (genetic) operators

A genetic operator is little more than a search operator. Genetic operators are

functions applied to the candidate solution pool to navigate through the search

space and identify new candidate solutions. The most common genetic operators

used are:

1. Crossover: usually applied to 2 (but possibly more) candidate solutions

called the parents, crossover [49] borrows features from both (all) parents

to create a new candidate solution. The ways in which the parents can be

combined are endless, but one popular way is to define a random crossover

point in each of two parents to split the parents in two parts, and create the

offspring by recombining the split parts of opposite parents.

2. Mutation: some feature of a candidate solution is randomly changed. This

could be a terminal in a leaf node of a tree, or perhaps a function node.

3. Reproduction: reproduction is a direct copy of an individual to the next

generation. This is not always used, but could ensure that the best candidates

at any generation are not lost before the next.

• Selection

At every generation, the genetic operators are applied to a selected percentage

of the candidate pool. Selection methods must try to balance the trade-offs [49]

between greedy exploitation of the best solutions and exploration of the seemingly

weaker solutions, which might in time lead to improved discoveries. A popular

selection method is called tournament selection and it works by running a set

of tournaments, in each of which a number (often 2 or 3) of randomly chosen

candidates are compared against each other based on fitness and the candidate

with best fitness is designated the winner of the tournament and is thus selected.

Another selection method might simply rank all candidates by fitness and select

some percentage of the top-ranked.

• Parameters

A genetic program will use a number of adjustable parameters which determine

things such as: the rates of application for each genetic operator employed, the

maximum number of generations, and how biased the selection routine is towards

the better solutions (selection pressure).
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2.2.2 EDA-GP variant

In the traditional genetic program a population of candidate solutions is improved at each

iteration with the aim of approximating the ideal solution. Estimation of distribution

algorithms (EDA) instead use probability distributions to model the solutions [25, 48, 35].

Attributes are each associated with a random variable30, where the random variable can

take on any of the appropriate alleles for that feature. EDAs attempt to gradually learn

the probability distribution of the ideal solution. At each iteration a candidate set is

sampled from the probability distribution model and each candidate in that set is tested

for fitness. A percentage of the best part of the set is selected and the distribution is

updated from this subset. The next generation of candidates is sampled from the new

(and hopefully improved) model and the process is repeated until convergence of the

distribution, or until a maximum number of iterations have been run.

A genetic program employing an EDA gives up its explicit use of search operators,

but it still attempts to improve the new candidate solution sets through inheritance of

good features, by implicitly incorporating the more successful features in its probability

distribution model.

EDAs benefit from the vast availability of machine learning techniques which can be

used to properly learn a probability distribution. In the simplest case an assumption of

independence can be made for all the attributes of a candidate solution. The Bayesian

optimization algorithm (BOA) [47, 34] uses Bayesian networks to infer relationships, such

as conditional dependence among different attributes of the solutions.

While EDAs can be very successful, they can also be very expensive to use in genetic

programming, where the data structure and primitive set used for representing a solution

might spawn an enormous number of dimensions and random variables [50].

Just as with other evolutionary methods, an EDA must be cautious when exploiting

the better solutions, as a high selection pressure might lead to premature convergence

to a local optimum.

2.2.3 Summary

This chapter served as an introduction to quantum computation and genetic program-

ming. We covered the basics of quantum computation and its mathematics and pointed

out a few reasons why quantum computation is a significant field. We also saw that

genetic programming is a highly-customizable metaheuristic, which generally does not

discriminate against its problems.

30 A random variable is a variable that may take on different values with various probabilities, which
must sum up to 1.0.
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Chapter 3

Literature review

The work of this thesis falls on a boundary connecting two distinct areas of computer

science: quantum computation and evolutionary computation. This intersection is made

up of two1 main categories:

• Evolutionary quantum computation

• Quantum evolutionary computation

While these names are confusingly similar, they embrace very different ideas and ap-

proaches to combining quantum computation and evolutionary computation2 . The first

topic involves the use of evolutionary methods, including, but not limited to genetic

algorithms and genetic programming, to gain insight into quantum computation and

quantum information, by aiding the development of quantum programs, algorithms and

protocols and discovering intricacies of quantum effects. In other words, the subarea

concerns the use of evolutionary methods for the advancement of quantum computation.

The goal of quantum evolutionary computation is to use real quantum hardware,

or more feasibly at the moment, the theoretical model of a quantum computer as the

basis to devise new evolutionary methods which can directly make use of the underlying

quantum effects to boost search and optimization. These methods are expected to run

1 It should be noted that there exists another branch of evolutionary computation, namely, quantum-
inspired evolutionary computation, which comprises evolutionary algorithms that run on classical com-
puters and which only take inspiration from quantum mechanics or quantum computation for repre-
sentation of a candidate solution, or for development of new search operators. Often the quantum
connection is merely superficial (or even faulty) and for this reason, the view in this thesis is that the
body of quantum-inspired search methods does not have a direct connection to quantum computation
and thus should not be a separate category in this intersection, but should be considered instead under
evolutionary computation. Donald Sofge also suggests [64] that quantum-inspired work should fall un-
der the emerging field of quantum interaction [1], which uses ideas from quantum theory in computer
science, in general.

2 Yet these areas are not mutually exclusive, as one would hope that with the advent of quantum
computers the broader fields would become mutually beneficial.
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on real quantum computers, if and when such machines will exist.3

This thesis itself falls into the first category in the intersection; that is, it concerns the

use of genetic programming for the advancement of quantum computation and quantum

information. Evolutionary quantum computation is thus the sole category whose works

are elaborated upon in what follows.

3.1 Evolutionary QC

Peter Shor’s quantum factoring algorithm in 1994 generated a lot of interest in quantum

algorithms, but no associated productivity in this area followed and so, at the time of

this writing, twenty years from the QFA, there are still very few significant quantum

algorithms. Spector suggests [66] that design of quantum algorithms at present is no

better suited for humans than for machines, since our grasp of quantum concepts is still

fragile and it is not trivial to decouple our programming from our classical thinking.

With this view it is natural to seek help from stochastic optimization methods, such as

evolutionary computation, to attempt discovery of new quantum algorithms. Such work

has already been attempted, as reviewed in the following sections.

3.1.1 Decomposition of quantum targets

In the late 1990s researchers began using genetic algorithms and genetic programming

for evolving quantum circuits. The founding work [79] in this area came from Williams

and Gray, who used genetic programming to find a gate decomposition for a known

quantum circuit, namely, the quantum teleportation circuit.4 The authors were inter-

ested in how one could efficiently decompose an end result (in this case, a target unitary

transformation) into a sequence of gates drawn from some specified quantum gate set

(not necessarily universal). An efficient decomposition uses as few gates as possible,

while an efficient search considers as few solutions as possible. The results of the work

by Williams and Gray demonstrated that a deterministic circuit as efficient as the most

efficient hand-crafted circuit could be found about 10 times faster than by exhaustive

enumeration.

3 An obvious obstacle for work in this subarea is the current lack of quantum hardware. An excellent
critique and evaluation of the relevant efforts towards better and scalable search methods is provided by
Sofge [64]. There are two main ideas for creating quantum evolutionary algorithms: quantum parallelism
is either used to access a greater portion of the search space than is possible with a classical algorithm
[58], or quantum parallelism is used to distribute fitness evaluations in such a way so as to speed
up the evolutionary process. All the algorithms semi-proposed so far leave out important (essential)
implementation details on how one would circumvent the no-cloning theorem (see Chapter 2) and the
collapse of the quantum wave function (superposition) when observations (which are necessary for fitness
evaluation and crossover) are made.

4 Quantum teleportation is a communication circuit which makes use of quantum entanglement and
classical communication to allow a qubit whose quantum state is not known, to be teleported across an
arbitrary distance (say, from an endpoint Alice to an endpoint represented by her friend Bob), without
ever physically crossing the space.
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3.1.2 Scalable quantum programs

Without a working quantum computer, some form of a quantum simulator must be used

for evaluation of the evolved quantum programs. Quantum simulators limit the resources

(memory and speed) available for evolutionary methods. Given simulators that work on

few qubits (perhaps between 1 and 5), Spector et al. were quick to notice and emphasize

[67] the need for evolution of scalable quantum programs. In 1998 Spector et al. [67]

used traditional tree-based GP with a second-order encoding to evolve scalable solutions

for oracle5 problems, including the majority-on problem6, the Deutsch-Jozsa problem7

and Grover’s database search8. The function set incorporated a control structure for

looping a body of code (which is essential for scaling). With the second-order encoding,

a result of the genetic programming run was a program itself, which upon execution

could generate quantum gate arrays (or circuits) for different sizes of a given problem.

The goal of scalability permeates the work in the field, as reiterated most strongly

by Massey et al. [38, 40], who also made use of second-order encodings and control

structures, in order to produce a parameterizable program for the quantum Fourier

transform.

3.1.3 Probabilistic vs. deterministic quantum circuits

Quantum circuits can either be deterministic, in which case they give the right result for

all inputs (or the wrong result for all inputs9), or they can be probabilistic, in which case

the only guarantee is that they are more reliable than random chance, or a pre-specified

threshold (e.g. 30%). Since quantum computation is naturally probabilistic and some

of the most famous hand-crafted quantum algorithms are themselves probabilistic (e.g.

QFA), it is perhaps not surprising that Spector et al., in a great portion of their work

[67, 69, 68, 3, 4], thought to use a fitness function which guided the genetic program to

probabilistic solutions. Massey [40] et al. [37] also adopted a probabilistic approach to

evolve, among others, a probabilistic quantum-half adder, which used only the Hadamard

gate and a ZERO gate10. Massey et al. remark [37] that it is not yet clear whether (and

5 A blackbox function, or oracle function is a function which can be queried, but whose internals are
not known.

6 Given a blackbox which computes an unknown function f(x), the objective is to determine with as
few calls to the blackbox as possible, whether f(x) returns mostly 1s (majority on) or not.

7 Given a blackbox which implements an unknown binary function f(x), the goal is to determine
with as few as possible calls to the blackbox, whether f(x) is uniform, that is, it returns the same value
for all inputs, or it is balanced, that is, it returns 0 half the time and 1 the other half. The blackbox is
guaranteed to have one of these two properties, but nothing else is known about it.

8 Given a database and a function f(x), which takes an address x (or an index into the database)
and returns true if f(x) contains a particular desired item, the goal is to find x with as few calls to f(x)
as possible.

9For the rest of this thesis a deterministic quantum circuit will mean a quantum circuit that is correct;
that is, it gives the correct result for all possible inputs.

10The ZERO gate forces a quantum bit to the computational state |0〉. Massey defines it as a gate by
noting that a swap of an arbitrary qubit with an ancilla (or work) qubit, which is known to be in the
|0〉 state, satisfies the unitarity condition of a quantum gate.
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how) probabilistic quantum circuits might be entirely useful.

3.1.4 Solution representations

One of the strong points of evolutionary methods is the flexibility for designing solution

representations. As evolutionary quantum programming is a young field, research is still

needed to determine what genotype/chromosome encoding is suitable or even optimal,

for a given problem. Spector et al. [69] have reasoned that a linear encoding, rather

than the traditional tree encoding which is widely used in genetic programming, is better-

suited for evolving quantum circuits, since the result of a quantum circuit is made up

of a linear sequence of gate applications and the gates’ side effects on a given quantum

state are more important than some immediate return value, due to the entanglement

capabilities of quantum bits. Their experimental results also supported the use of the

linear genotype. In the same paper [69], Spector et al. noted that a tree representation

offers better scalability, which might suggest that the linear representation is at odds

with the goal of scalability.

In 2000, Yabuki and Iba tackled the evolution of a quantum teleportation circuit

[81]. Pointing out that the work done previously by Williams and Gray [79] allowed

the evolution of circuits which might violate the quantum teleportation protocol,11 the

authors split up the quantum teleportation circuit into three parts: 1) entanglement

production, 2) Alice’s part (in which she interacts the unknown qubit with her own and

performs a measurement) and 3) Bob’s part (in which he performs transformations on

his own qubit). They developed a genetic algorithm which used codes (made up of 3

letters) translating to specific functions, depending on which stage of the circuit they

were found in. Special codes were used to delimit the stages. The remaining codes

mapped to one of three different translation tables, one for each stage of the protocol,

such that known restrictions (for example, Bob being allowed to apply transformations

only to the qubit he owned) could be enforced. In this way, the circuits which evolved

did not break the protocol. The method required specific knowledge about the problem

and might be useful for similar protocols, but could be difficult to generalize to other

problems.

Most of the work in automated quantum programming has either used a tree repre-

sentation [37, 67], or a linear representation as either a chromosome in a genetic algorithm

[81], or some sort of a list in genetic programming [69, 79, 56]. Leier and Banzhaf [31]

have opted to use a linear-tree encoding12, alluding to the closed-system evolution of a

11 Specifically, the method might evolve a quantum circuit in which Alice is able to perform quantum
transformations on Bob’s qubit, which of course is impossible, because Bob’s qubit is assumed to be a
great distance away from Alice. For more information, see Chapter 2.

12 A linear-tree in GP is essentially a linked-list nesting functions, where functions of arity greater
than 1 cause the data structure to branch off, as would an internal node of a normal tree.[29]
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quantum system, in which the system evolves in a linear fashion, until a measurement

causes a probabilistic branching.

No study has been done to compare the different representations for quantum circuit

evolution, so at present it is not known whether one might truly be better than another.

This remains an open research question.

3.1.5 Fitness function and evaluation

A variety of fitness functions have been used in this field. Williams and Gray used a

simple sum of absolute differences which compared every single element of the known

target matrix to the corresponding element in the matrix representation of the evolved

decomposition [79]. Given that this work made the unique assumption that the target

unitary would be given, this choice of fitness function did its intended job. Williams

and Gray suggested that approximate circuits could also be evolved with this method,

although they did not experiment with such.

For the more common case, in which a target unitary matrix was not known in

advance, a number of fitness cases were defined, such as randomly generated qubits [81],

or vectors spanning the entire quantum space [37] and a target vector was computed for

each fitness case. The target vectors were then compared to the vector that resulted

from applying the evolved program to the target’s respective input. This comparison

was usually done as a sum of absolute differences of the probability amplitudes [37].

Rubinstein was able to use a single fitness case [56] to evolve his circuits, since he sought

an exact circuit for producing a maximally entangled quantum state13, which he knew in

advance.

The most significant fitness function contribution can be attributed to Spector et

al. [67] who introduced a fitness function made up of 3 components, prioritized in

lexicographical order:

• MISSES14 : the total number of fitness cases for which the solution produced an

incorrect result according to some threshold

• CORRECTNESS : the average error for all fitness cases which missed the threshold

• EFFICIENCY : Total number of gates in program
100000

This fitness function was used for probabilistic circuits and the idea was to use the

components in the order given and only use the EFFICIENCY component as a way to

compare quantum circuits that already gave the correct results (scored 0 on MISSES

and CORRECTNESS), to look for most efficient (in terms of number of gates) program

13 A multi-partite quantum state is maximally entangled if any measurement results in a completely
random outcome [51].

14 Originally this component was named HITS [67], but given its definition it was appropriate to
rename it, which indeed they did [69].
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solutions. It should be noted that MISSES (and thus CORRECTNESS) only considered

misses for which the probability of error was 48% or more. This was so for two reasons:

1) to ensure that round-off error did not contribute to success and 2) to focus the search

towards circuits that had 0 misses, instead of towards circuits that had high probability

of success, but lots of misses. In later work by Spector et al. [69, 68], some components

were altered, exchanged, or added. For example, in a paper which studied the evolution of

quantum circuits for solving the AND-OR problem15, a component titled EXPECTED-

QUERIES was added as a way to gauge the circuit complexity [68] in terms of the number

of calls made to a blackbox function. Massey et al. similarly used a lexicographic fitness

function in their work on probabilistic circuits [37, 39]. Following suit, Stadelhofer et

al. made use of a similar lexicographic fitness function in their studies [72] of quantum

circuits for determining properties of blackbox functions.

3.1.6 Search operators and selection

Crossover and mutation have been employed as search operators in most of the work

reviewed. Mutation has been applied to the parameters of gates, or to the gates them-

selves, with various mutation rates, ranging from the very small, 0.001 as used in a paper

by Rubinstein which studied circuits for entanglement production [56], to exclusive use

as in a work by Leier and Banzhaf [33], which compared selection strategies. Leier and

Banzhaf studied the evolution of a quantum circuit for the Deutsch-Jozsa problem in

terms of the fitness landscape16 induced by a mutation operator [32]. They looked at

100 different random walks for 100000 time steps and calculated the auto-correlation17

of the series, as well as the information content and partial information content of a

transformation of the same time series18. Their results showed almost no correlation

beyond the second time step, which came as a disappointing confirmation that quantum

program search spaces are highly irregular and difficult to search. In their follow-up work

[33] Leier and Banzhaf stated that a study of the fitness landscape induced by crossover

suggested crossover was an even weaker operator for the Deutsch-Jozsa problem than

was mutation; hence, they dropped the crossover operator from later work.

15 A binary function f(x) is given. An AND/OR tree of size n is a full binary tree with a Boolean
AND at the root and n alternating layers of Boolean OR and AND nodes. Each leaf holds the result of
function f(x), where x is the index of the respective leaf and the leaves are numbered from 0 to 2n − 1.
The goal is to determine whether the AND/OR tree evaluates to true for the given function f(x).

16 The fitness landscape is a graph showing how the fitness changes in the neighbourhood of a candidate
solution, where the neighbourhood is made up of solutions transformed from the candidate through a
particular search operator. For this reason, we say the fitness landscape is induced by a search operator.

17 The auto-correlation function shows how points on the landscape separated by a number of time
steps (iterations or transformations) correlate.

18 The measures of information indicate how random the fitness transitions are, as induced by the
search operator.
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3.1.7 Interesting findings

As mentioned at the beginning of the chapter, work in evolutionary quantum program-

ming does not involve just evolution of quantum circuits and quantum programs, but also

any other searches or optimizations that might advance the field of quantum computation

and quantum information. Spector and Bernstein studied the communication capacities

of 2-qubit gates which are used for entanglement production [70]. For a 2-qubit system,

where Alice has access to one qubit and Bob has access to the other, communication of

one classical bit is achieved if there is a sequence of operations Alice can make on her

qubit, a sequence of operations Bob can make on his qubit, and a 2-qubit gate is applied

at some point in the process, to both qubits (thus, not by Alice or Bob, but perhaps by

an intermediary), such that when Bob measures his qubit it will reveal a bit value (0 or

1), consistent with what Alice wished to communicate. In other words, if a circuit made

up of single-qubit gates and a lone 2-qubit gate transforms the state such that upon

measurement Bob’s qubit reveals the original state of Alice’s qubit with some non-zero

probability, then the 2-qubit gate is said to have a communication capacity. Similarly,

if the circuit ends up entangling the qubits which did not start out entangled, then the

2-qubit gate is said to have entanglement production capability. Bennett conjectured

that a 2-qubit gate could both entangle to produce an e-bit19, and communicate one

c-bit (or classical bit) from one end to another (though not at the same time). Smolin,

through private communication with Spector and Bernstein [70] suggested a 2-qubit gate

known as the Smolin gate, as a counterexample to Bennett’s conjecture. Spector and

Bernstein used genetic programming to discover that the Smolin gate was in fact not

a valid counterexample, as it did have the power to both entangle and communicate.

Spector and Bernstein further discovered a 2-qubit gate which could entangle, but had no

power to communicate; thus, they discovered a counterexample to Bennett’s conjecture!

3.1.8 Summary

So far no novel quantum algorithm has been evolved, but some of the most famous

quantum algorithms have been reproduced by GP [66, 40, 20], for small sets of qubits.

Despite these successes, automatically programming a quantum computer is extremely

difficult to do when the hardware has to be simulated with an exponential slowdown and

when little is known about what makes quantum programming effective. If crossover and

mutation are both equally weak search operators, perhaps there are better and more

efficient ways to navigate a quantum program search space. Many research questions

remain open, concerning the better-suited solution representation, search operators and

fitness functions. Although in recent years work in this field has slowed down, the

numerous works reviewed in this chapter show that the evolutionary framework is capable

19 An e-bit [54] is basically a quantum resource which is made up of 2 entangled qubits.

33



3.1. EVOLUTIONARY QC CHAPTER 3. LITERATURE REVIEW

of generating quantum circuits, programs, algorithms [40] and in one case [70] has even

managed to produce an artifact that invalidated a conjecture. These results are hopefully

all previews of more good results to follow.
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Chapter 4

Methodology

The objective of this thesis was to test our hypotheses from Chapter 1:

1. Quantum programs exhibit sequential patterns and relationships between their func-

tions and inputs which can be learned by an EDA-based GP to help automatically

generate programs.

2. A stochastically-driven GP engine with an underlying learner to guide perturbation

of features could have an advantage over one without the learner.

To this end we have developed various software:

1. smallqc: a quantum computer simulator for testing and executing quantum cir-

cuits and programs

2. GP quantum program evolver: a GP suite comprising four GP variants to learn

and generate quantum circuits and programs

The chapter begins with an overview of the quantum simulator smallqc and then de-

scribes in detail each instance of the GP quantum program evolver suite.

4.1 Quantum simulations

In the absence of real quantum hardware on which to test quantum programs, we have

to make do with simulations of quantum programs on classical machines. As previously

mentioned in Chapter 2, this is no easy feat: when simulating a quantum system or a

quantum computer, memory requirements grow exponentially with a linear growth in

quantum memory. Moreover, calculations that can be done directly on superpositions

in one single step on a real quantum computer need to be performed separately in

a classical simulation of a quantum execution. These computations could potentially
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be programmatically parallelized in certain cases; however, we will not be concerned

with such things in this thesis. This section describes the quantum simulator we have

implemented for testing our programs.

4.1.1 smallqc: Quantum simulator

smallqc is a simple quantum computer simulator. It can create single-qubit and multi-

qubit (directly or through tensor product composition) quantum states as qubit registers

of various sizes, manipulate them through unitary operators, perform measurements on

the states, read in and run programs written in simple smallqc syntax and output

results.

Quantum operations

Most of the quantum operations used by smallqc are 1-qubit and 2-qubit gates. The

CCNOT1 (controlled-controlled-NOT)2 gate and CSWAP (controlled-swap) gate are the

only 3-qubit gates that are also explicitly implemented. The simulator allows for easy

(though, programmatical) introduction of any 2-qubit gate and controlled 2-qubit gate,

as well as for the introduction of controlled gates with more than 2 control qubits;

however, no versions of the latter have been used throughout the experiments. See Table

4.1 for a full listing of the currently (explicitly) implemented gates.

Quantum system representation

A quantum system is represented as an array of complex numbers in smallqc. Each slot

in the array holds the amplitude of the computational basis state associated with the

corresponding index. The standard computational basis in standard ordering is assumed.

For example, a random 3-qubit unit vector might look as follows:

0.45

|000〉

0.31i

|001〉

0.32i

|010〉

-0.43

|011〉

0.29

|100〉

-0.01i

|101〉

0.47

|110〉

0.33

|111〉

The ordering of the qubits goes from the right to the left and is 0-indexed3, such that

in the 6th basis state of a 3-qubit system (|101〉) only the 0th and 2nd qubits are set and

the 1st qubit is 0.

Quantum gate representation

An explicit matrix representation is not used for the quantum gates in smallqc; instead,

smallqc defines a gate by a set of input-output action pairs, where each input is a com-

1 The CCNOT gate is also known as the Toffoli gate.
2 Given a single-qubit unitary operator U, a doubly-controlled gate takes two qubits as controls and

a third as a target to which it applies U if and only if the controls are both 1.
3The basis states are 1-indexed, however.
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Gate Arity Description Example

NOT 1 inverts the qubit specified by the argument NOT(2)

CNOT 2 controlled-NOT applies NOT to the qubit spec-
ified by the second argument (target), if and
only if the qubit specified by the first (control)
is 1

CNOT(2,1)

has target 1
and control 2

CCNOT 3 applies NOT to the qubit specified by the third
argument (target), if and only if both qubits
specified by the first and the second arguments
(controls) are 1

CCNOT(2,1,0)

has target 0
and controls 2
and 1

Y 1 applies the Pauli Y operation to the qubit
specified by the argument

Y(3)

Z 1 applies the Pauli Z operation to the qubit spec-
ified by the argument

Z(2)

Hadamard 1 applies the Hadamard operation to the qubit
specified by the argument, which puts the sys-
tem in a superposition of said qubit

H(0)

WHT 0 applies the Walsh-Hadamard operation to all
qubits in the system

WH()

Rx(/y/z) 2 applies the X(/Y/Z) rotation operation to the
qubit specified by the first argument, where
the second argument is an index into a re-
stricted table containing valid rotation anglesa

Ry(0,5)

PS 2 applies a phase shift gate to the qubit spec-
ified, where the second argument is an index
into a restricted table containing valid phase
angles

PS(2,0)

SWAP 2 swaps the amplitudes of the two qubits speci-
fied by the first and second arguments

SWAP(0,2)

CSWAP 3 the controlled-swap applies SWAP to the qubits
specified by the second and third arguments
iff the qubit specified by the first argument is
1

CSWAP(1,0,2)

Oracle 0 queries an oracleb ORACLE()

T 0 applies a special phase shift gate called the pi
over 8 gate, with angle equal to π

4

T(0)

W 0 applies a special phase shift gate with angle
equal to 3π

4

W(1)

S 0 applies a special phase shift gate with angle
equal to π

2

S(2)

CZ 2 controlled-Z CZ(0,1)

CH 2 controlled-Hadamard CH(1,0)

CT 2 controlled-T CT(3,5)

CS 2 controlled-S CS(1,3)

CW 2 controlled-W CW(2,6)

Table 4.1: smallqc quantum operations

a smallqc also supports arbitrary angles for Rx, Ry, Rz and the PS gates; however, only discrete and
prespecified angles are used by the GP evolvers.

b The implementation of the oracle gate depends on the context of the problem being solved.
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putational basis state and the output is a state (perhaps a superposition) that would

result from an application of the given gate to the input state. These actions are derived

from the matrix representation of the gates, however. For example, the Hadamard gate

is defined as follows:

|0〉

|1〉

1√
2

1√
2

1√
2

− 1√
2

|0〉

|1〉

|0〉

|1〉

In this way, smallqc makes direct use of the intended effects of some gate to compute

an application of the gate to an arbitrary system. When applying an arbitrary gate to

an arbitrary qubit register, each basis state in the register is examined in order, the cor-

responding action is retrieved for the given gate and basis state, a result is computed and

temporarily saved4 and the previous amplitude is discarded. Once all basis states have

been taken care of, all the results that were saved are merged into the register. The use of

vectors as opposed to matrices allows smallqc to handle larger quantum systems, of up

to 16 qubits, although experiments have not been done on quantum systems exceeding

9 qubits and even at 8 qubits the computational time was uncomfortably slow. There

were a few reasons for opting for a non-matrix representation. The main issue was that

of applying 2-qubit gates to qubits that were not adjacent. If matrices were employed

this would be difficult to do for any two non-adjacent qubits and the only efficient way

to have done so would have been to apply a sequence of SWAP operations to one of the

qubits, in order to bring it close to the first qubit, apply the 2-qubit gate to the two

qubits and finally apply SWAP operations again to move the qubit back to its original

position. To illustrate the problem, imagine we have a three qubit system in a perfect

superposition as follows:

|x〉 =
1√
8

(|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉+ |111〉)

and we wish to apply the CNOT gate to qubits 2 and 0, where the control is qubit 2

and the target is qubit 0. A CNOT gate is a matrix of size 4× 4. If the two qubits were

adjacent (for example, if we used qubits 2 and 1) the CNOT gate could be tensored with

the identity gate to create a large 8×8 matrix CNOT⊗I to operate on the entire system.

In our case, however, the qubits are non-adjacent, which would require the creation of a

8× 8 CNOT gate in order to link the two non-adjacent qubits across the middle qubit.

This would be extremely cumbersome to do each time, so instead a solution would be

4 A temporary working quantum system is used for intermediary storage and transfer of components
for gates such as the 2-qubit ones.
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to swap qubits 0 and 1, perform the normal CNOT ⊗ I and then swap qubits 1 and 0

again. This, however requires additional complications as well.

smallqc instead makes use of the binary form of each basis state to index into the

vector of amplitudes and directly access those elements which require a change. In this

example it picks out the amplitudes associated with the highlighted indices

|x〉 =
1√
8

(|000〉+ |001〉+ |010〉+ |011〉+ |100〉 + |101〉 + |110〉 + |111〉 ),

calculates the binary form of the new indices (i.e. 100 7→ 101, 101 7→ 100, 110 7→ 111

and 111 7→ 110) and then re-associates the amplitudes with their respective new indices.

In this case it is trivial, since all amplitudes are equal and the final state is the same as

the original.

Modes of operation

smallqc has two modes of operation: interactive and automatic. In interactive mode it

allows a user to create different quantum states and apply all sorts of operations to them.

The user may also delete some states and print states. This mode is currently useful for

quickly testing parts of algorithms, but is not extensively used for the experiments in

this thesis. In automatic mode the quantum simulator may read in a text-file containing

a quantum program written in the language of smallqc. The programs are designated

by a .qcx extension. The .qcx programs have two parts:

• init: multiple quantum registers can be created and tensored, input is pre-processed

and prepared and eventually one resulting quantum system of a particular size is

designated as the single input system on which the rest of the program runs

• code: a number of operations are listed, which by default are to be run on the

input resulting from the init part

Not all programs require a customized input, in which case the init section can be left

blank and the input will be a ZEROed quantum system of default system size (3 qubits).

Example program for quantum teleportation

For an example of a .qcx file see Program 1, which is an implementation of quantum

teleportation [45] for smallqc. The code section of the .qcx file translates to the linked-

list representation of a program as shown in Program 2.
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# quantumTeleportation.qcx:

# teleports an unknown qubit from Alice to Bob

# init phase:

# all code in here will be used to set up the system.

# we can tensor, we can define variables and do all sorts of

# preprocessing. eventually the last thing we do is set up the qsystem

# code phase:

# all this code works on the qsystem tensor product

# there are no more variable names

# no use of the memory table

begin_init

new_system( psi, 1 ) ;

# initialize a random psi -- this is our unknown state

set_amp( psi, 0, 0.132960386522622, 0.492926311010698 ) ;

set_amp( psi, 1, 0.852892235498773, 0.109178853973861 ) ;

# initialize alice and bob’s EPR pair

new_system( ab, 2 ) ;

op_ZERO( ab ) ;

# entangle alice and bob

# hadamard on 1 (alice)

op_H( ab, 1 ) ;

# cnot with control: alice (1) and target: bob (0)

op_CNOT( ab, 1, 0 ) ;

# entangle alice’s qubit with psi

op_COMPOSE( psi, ab, phi ) ;

rem( psi ) ;

rem( ab ) ;

# this final one, phi will become the qsystem (input to code phase)

set_prog_input( phi ) ;

print ;

# this concludes the init phase of the program

end_init

# what follows is the code phase of the program

# the code part can be read in as an individual program to be run on

# variable input. it can be executed directly, or stored as a linked-list.

# notice that all operations by default operate on the input qsystem

# which was set at the end of the previous phase

# (hence NULL as the first argument)

begin_code

# entangle control: psi (2), target: alice (1)

op_CNOT( NULL, 2, 1 ) ;

# hadamard on psi (2)

op_H( NULL, 2 ) ;

# measure alice’s qubit (1) and then psi (2)

measure( NULL, 1 ) ;

measure( NULL, 2 ) ;

# finally, correct the qubit that bob is left with

# apply X to bob’s qubit if alice’s measured qubit was 1

op_CNOT( NULL, 1, 0 ) ;

# apply Z to bob’s qubit if psi’s measured qubit was 1

op_CZ( NULL, 2, 0 ) ;

# end of program

end_code

Program 1: smallqc program implementing quantum teleportation
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#
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#
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#
"
 
!

MS

(2)
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#
"
 
!

CNOT

(1,0)
-

#
"
 
!

CZ

(2,0)

Program 2: Quantum teleportation as a smallqc program

4.2 Genetic programming variants

Four slightly distinct GP variants were implemented and used for this study: NQP (Nor-

mal quantum program evolver), EDA-QP (EDA quantum program evolver), ngram-QP

(N-gram quantum program evolver) and HQP (Hybrid-EDA quantum program evolver).

They all have an evolutionary procedure in common and follow the algorithm shown in

Algorithm 1 of Chapter 2 and illustrated in Figure 4.1. The common aspects of the

implementations are described below. Common aspects include the solution represen-

tation, the function and terminal sets, the quality assessment (or fitness evaluation),

as well as most of the parameters guiding the evolutionary process. A brief discussion

follows, highlighting the distinctive search features of each GP variant.

4.2.1 Pseudo-random number generator

Random numbers play an important role in our GP runs. Random numbers are used

in the random initialization of the candidate solution set, as well as in the mutation

functions and all sampling functions for the EDA-based approaches. To create random5

numbers we access the operating system’s pseudo-random number generator. To ensure

that no two consecutive runs of a GP are similar, we initialize the pseudo-random number

generator using a seed based on the system time (in milliseconds) at the moment a GP

run is begun.

4.2.2 Solution representation

A solution is implemented as a doubly-linked list of nodes, each of which encodes a

certain function.6 The order of the nodes determines a time-order of execution. See

Program 2 for a rough7 example of a program that implements quantum teleportation.

Each node contains an index into a function table, as well as values for any parameters

it might take. For example, the first function node in Program 2 encodes the CNOT

function on control qubit 2 and target qubit 1.

5 In truth, these are just pseudo-random.
6 When talking about a node in the solution, a function refers to an actual quantum gate, or quantum

operator. The terms operator and function will be used interchangeably in this and the following chapter.
7 Program 2 is depicted as a singly-linked list to emphasize the time order from left to right. Instead

of indices, the corresponding functions are shown directly.
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setup (process
input, set

prng, initiate
logging, etc.)

user-specified
parameters

detect problem

setup testsuite

choose GP
instance

create initial
solution-set

set up prior
models

NQP

EDA-based

evaluate set
run smallqc

simulations

found
solution or
matched
max iter?

return best
solution yes select

no

is GP
EDA-based?

update models

yes

create next
solution-set no

Figure 4.1: Flow of main program
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The smallest program is made up of a single node. The GP evolver does not allow

for empty programs. The linked-list representation encourages programs of variable size

to be generated, up to and including a maximum size, which can be user-specified at the

beginning of a run. This is significant, since a solution to a given problem is not always

known in advance. This may not be true for some of the small test problems explored in

this thesis, which have been previously explored in similar work, but for future problems

this will most likely always be the case, so a GP needs the flexibility of variable-sized

solutions to explore and discover for itself what works best.

Solutions are identified by two integers: GID, the iteration (or generation) into which

the solution was introduced and UID, a unique identifier assigned upon creation. The

GID is useful to track a solution as it persists and adapts through the iterations.8

4.2.3 Function set

As alluded to throughout this thesis, there is an infinity of potential single-qubit opera-

tors. With no regard to resources such as time and memory, in order to ensure that the

GP scheme is capable of generating a solution to an arbitrary problem, the function set

should be universal; however, as this is impossible due to the infinite size of the quantum

operator set, a function set that approximates any quantum operator to some precision

that is deemed to be good enough, is sufficient. As such, instead of allowing arbitrary

angles for the rotation gates (which are the only gates that can produce infinite versions),

the angles are restricted to integer multiples of π
4 and π

3 .

Any function that is implemented in smallqc is also a valid function in the genetic

program variants of this section. See Table 4.1 for a list of the available functions. In

general, the function set may vary from run to run, as knowledge about an existing

solution or the desire to experiment might influence the inclusion or exclusion of cer-

tain functions. In Chapter 5 we will see the specific function sets employed for each

experiment.

4.2.4 Terminal set

The terminal set for all GP runs is made up of positive integral numbers and 0, which are

either indices into the qubit register, or indices into the function set, or the pre-defined

array of rotation angles.

4.2.5 GP general parameters

There are various parameters that guide the GP run. Some of these are dependent on

the search operators used, which differentiate the four variants and will be described

8 This is only useful for NQP and HQP, as the other two implementations fully replace their popu-
lations each iteration, so no solution will ever make it to the following iteration.
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Parameter Default Description
lgp max solution size 30 Sets the maximum solution size

max iter 100 Determines the maximum number of itera-
tions the evolutionary loop can run for before
the best-so-far solution is returned

solution set size 50 Determines the number of solutions in the
pool of candidates at each iteration. The pool
size is maintained throughout the iterations.

top best 0.25 Determines the percentage of the fitness-
ranked candidate solution pool that is either
used as training (for the EDA-based variants),
or preferred for direct reproduction (in the
normal implementation).

Table 4.2: GP general parameters

separately, later. Table 4.2 contains descriptions of the general parameters, which are

common to all implementations.

4.2.6 Fitness evaluation and training

At each iteration of the program, the solutions are evaluated and a fitness value is

associated with each solution, indicating its quality, relative to an ideal target solution.

Fitness function

The choice of fitness function determines the type of quantum algorithm generated:

exact or probabilistic. The former will always return the correct result corresponding to

a given input, while the latter will only return the correct result with high probability,

where the probability can be adjusted. Spector et al. [67] and later Massey et al.

[38] experimented with probabilistic algorithms, claiming that in some cases these were

good enough solutions and their generation seemed to be much more amenable to GP

techniques. The fitness function used in this study is based on that introduced by Spector

et al. [67] in which three components, in order of importance, make up the overall fitness

of an individual. The fitness for an individual solution is calculated as follows:

fitness = numFailedTests+ avgErr + eff. (4.1)

numFailedTests represents the number of testcases for which the program fails to give

the correct (expected) result with a probability of 0.48 or more; avgErr is the average

error over the numFailedTests mentioned above (if the probability of success is 0.52

or more for a given testcase, its error and the testcase itself do not count towards the

average); eff for efficiency is calculated as the size of the solution (number of function

nodes, which is equivalent to the number of operations, since each function node encodes
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exactly one operation) over a large constant (100,000) and it is only used as a component

of the fitness when the first two components are 0 (the solution gets all testcases correct

with certainty). In this way the GP focuses on finding correct solutions first and then

attempts to optimize them in terms of size. Spector and Massey explain that avgErr

is not going to be larger than numFailedTests, so that a GP will always give priority

to finding solutions that pass all testcases, even if this is done with slightly over 0.52

chance, rather than solutions that pass only a number of the testcases, but pass those

with high likelihood.

Entanglement promotion The fitness function in Equation 4.1 has been slightly

adapted with the inclusion of a fourth component called entanglementPromotion which

is a very primitive attempt at identifying solutions which might have the potential for

entanglement, by looking at sequences of nodes and noting whether a Hadamard gate

is followed by a CNOT or a CZ gate, where the control qubit of the latter is equal to

the target qubit of the Hadamard. When no promising sequence is found a solution

incurs a tiny penalty, which is related to the size of the solution, similar to the eff

component. It is important to note that although a sequence of such operations when

applied to a zeroed state will produce entanglement, none of the nodes before or after

such a sequence are checked and there is no way to know for sure that entanglement took

place.9 Furthermore, there are of course other sequences that could lead to entanglement

and we do not attempt to find those. For these reasons we need to stress the fact that

this component is very simple and does not measure entanglement, or even identify it.

Entanglement is a complex topic and an improved component will be discussed for future

work, in Chapter 6. Together with this component the fitness function used in all our

GP implementations is:

fitness = numFailedTests+ avgErr + eff + entanglementPromotion (4.2)

Furthermore, any component may be turned off by a user option (see -noeff, -noerr,

-nomisses, -noent in the help screen of the program) and the threshold of success

determining the numFailedTests can be adjusted as well.10 If -nomisses is used, then a

threshold is not used and the average error is calculated over all the testcases.

Fitness testcase

A testcase is a pair of input and output structures. The input structure contains a

qubit register (complex vector), but depending on the problem (see Chapter 5) might

9 For example, while CNOT (0, 1)H(0)|00〉 will create entanglement, CNOT (0, 1)H(0)H(0)|00〉 will
not, since the two Hadamard gates will cancel each other out and there will be no superposition and so
the CNOT gate will not have any effect; thus, no entanglement will be produced.

10 Of course some combinations, such as -nomisses -noerr do not make sense and no evolution will
take place. The program will complain if all components are turned off.
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additionally contain an identifier for an oracle function.

The output structure also contains a qubit register and a number num result bits

which determines how many qubits are either ancilla qubits11 or qubits whose values we

do not care to know and indicates that a register should be measured starting just past

these qubits, so at index num result bits. Measurement always goes from right to left

(from smallest qubit to largest), so, for example, if num result bits were equal to 0, we

would measure all qubits starting from the 0th and if num result bits were 2 we would

start measuring to the left starting at the 2nd qubit.

To evaluate a candidate solution it is simulated on the input of each testcase and its

output is then compared to the target output of the same testcase. In general a testcase

set is formed by preparing all computational basis states as input and pre-computing

the true (or pre-setting the desired) respective outputs; thus, a testcase set is dependent

on the problem we are trying to solve.

4.2.7 Normal quantum program evolver (NQP)

The simplest quantum program evolver is the NQP which makes use of traditional mu-

tation functions to navigate the search-space of programs12. There are six different

mutation functions, employed with varying mutation rates. The mutation functions are

described below. For default rates of application for each operator see Table 4.3.

• MUT TYPE 0 FUNC : given a node, randomly alters its function and adjusts

the parameters if the function arity has changed or expected parameter type has

changed; otherwise, the parameters are left intact.

• MUT TYPE 1 TRANSPOSITION : picks two random nodes in the linked list and

swaps their positions.

• MUT TYPE 2 PHASE PAR : for a function node with a non-zero arity, one of the

parameters is randomly chosen and incremented mod upper-range-bound.

• MUT TYPE 3 PAR SWAP : if the function is a controlled (or doubly-controlled)

function, the (or a) control qubit is swapped with the target qubit.

• MUT TYPE 4 RANDOM INSERT : a new node is generated (randomly for the

traditional NQP, or sampled from the underlying EDA for HQP) and inserted in

a randomly chosen location in the solution.

• MUT TYPE 5 RANDOM DELETE : a randomly chosen node is deleted from the

solution.

11 An ancilla qubit is usually just a work qubit that is used in the computational work in a problem
[45], but is not considered as part of the result register. It may also be presupposed to be in some
specific state, such as for example, |0〉.

12 A very simple 1-point crossover function was at first implemented, but showed no real advantage
or difference and so it was left out entirely, similar to previous work by Leier and Banzhaf [33].
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Operator type Frequency
0 0.30
1 0.05
2 0.30
3 0.05
4 0.15
5 0.15

Table 4.3: Default rates of application for each search operator

There are two different mutation rates. One, m top is used to mutate solutions that

are in the top percentage, as determined by the general parameter top best (see Table

4.2) and the second, m rest is usually much larger and is used to mutate the rest of the

solutions. Among the top candidates, tournament selection with a tournament size of 2

(by default) is used to select a winning candidate, who is replicated and together with

the replica is then mutated into the next generation, while the loser is removed from the

pool of solutions.

4.2.8 EDA data structures and sampling

The various EDA-based GP approaches all attempt to model different probability distri-

butions. A probability distribution in our evolver is defined as an array (of dimensions

1 to 4, inclusive) of real numbers. Each distribution is associated with an independent

variable, such as length for our 1-dimensional length model, or node index for a number

of our function models. In the 1-dimensional case each value of the independent variable

has a particular probability mass. The rest of the models attempt to relate the indepen-

dent variable to one or more dependent variables, where each possible combination of

values is associated with a probability mass. The sum of these masses must equal 1.0 for

each model. We describe each distribution below as modelling an independent variable

versus one or more dependent variables.

EDA sampling

In order to sample a function, a length, an input or a full node, a random number

x ∈ [0, 1] is first generated. A sum is calculated by traversing the respective probability

distribution array, in order, and summing its entries until the sum has either met or

exceeded x, at which point the current index of the array is returned. This index cor-

responds to a particular value (or in the multi-dimensional case, a set of values) for the

dependent variable(s). An example is shown in Figure 4.2.

47



4.2. GENETIC PROGRAMMING VARIANTS CHAPTER 4. METHODOLOGY

?

Create empty node

(at index i in solution)

x = prng()

x = 0.37

0.0

0.5

Function distribution at i

X

C
N

O
T Y H Z

C
Z

Y

(1) (2) (3) (4)

Figure 4.2: Sampling a function for a new node at some index i. (1) A new empty node is
created. (2) A random number x in the range [0, 1] is generated. (3) Given x, a function
is sampled from the probability distribution of node i. The shaded regions in the bars
for X, CNOT and Y represent a total probability mass equal to x and thus, we reach our
sum in the region of Y. (4) Y is returned as the function for our new node.

4.2.9 EDA quantum program evolver (EDA-QP)

An EDA-GP attempts to improve at each iteration the probability distribution model

describing the optimal solution(s). It does so by learning from the better solutions that

were evolved up to that iteration. This means that at each iteration a part of the

current solution set becomes the training set for the next round. There are no more

explicit search operators. The length of the solution is also learned, similarly to the

work done by Poli and McPhee [50]. For the EDA-QP, two different learning options are

used:

• EDA-QP-I (separate) learns three separate distribution models:

1. nodes vs. functions

2. nodes vs. inputs (by arity)

3. program length

• EDA-QP-II (mixed) learns two distribution models:

1. nodes vs. functions vs. inputs

2. program length

In the case of EDA-QP-I the models are smaller, but there is no dependency between

the first two distribution models; essentially, this causes relationships between functions

and inputs to be completely missed (in so far as arity is not concerned).13

13 An early attempt of EDA-QP-I modelled inputs as versus functions, instead of versus nodes, but
this was abandoned quickly, as it would be useless when a function was repeated but with different
inputs each time. For example, a function that comes up very often is the Hadamard. To put a system
of 2 qubits in a perfect superposition, Hadamard is applied to both qubits 0 and 1, with these initially
in state |00〉.
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(a) H H CZ H X H

(b) H H CZ H X H

(c) H H CZ H X H

Figure 4.3: Markov chains showing dependencies among events. (a) In the uni-gram
model, or 0th-order Markov chain the occurrence of a particular event (presence of func-
tion H, for instance) is independent of all other events. (b) In the bi-gram model, or
1st-order Markov chain, the occurrence of a particular event is dependent on the previ-
ous event. (c) In the tri-gram model, or 2nd-order Markov chain, the occurrence of a
particular event is dependent on the two most recent events.

Parameter Value
Unigram component 0.3
Bigram component 0.3
Trigram component 0.4
Learning rate (for all) 0.01

Table 4.4: N-gram

In the case of EDA-QP-II there is a greater dependency between the inputs and

functions, but the EDA model is much larger and heavier, making it more difficult to

scale up to larger problems.

4.2.10 N-gram quantum program evolver (ngram-QP)

The N-gram model is inspired by previous work done by Poli and McPhee [50]. In this

work a full EDA is not employed and an assumption is made that the target solutions

exhibit repetitive patterns in the function sequence. At each iteration the GP attempts

to learn the unigram, bigram and trigram distributions of functions and creates a new

population of solutions by sampling the function sequences from these distributions, with

default proportions given in Table 4.4. The unigram is equivalent to a simple probability

distribution over the functions, independent of everything else. The bigram is a first-

order Markov chain [6, 14], where the next function is predicted by the previous function.

The trigram, a second-order Markov chain uses the two previous functions to predict the
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next one. For an illustration of the dependencies in the various N-gram models, see

Figure 4.3. Like EDA-QP, ngram-QP also has two different learning options:

• NGRAM-QP-I (separate) learns three separate distribution models:

1. trigram for functions

2. nodes vs. inputs (same as in EDA-QP-I)

3. program length

• NGRAM-QP-II (mixed) learns three separate models:

1. bigram for {function, target}

2. target qubits vs. rest of inputs (by arity)

3. program length

NGRAM-QP-I uses separate models for the inputs and functions, where the inputs are

location-dependent as with EDA-QP-I and are once again independent of the functions.

To sample a new solution with NGRAM-QP-I, a size is randomly generated, after which

the first node in the sequence is picked using the unigram, the second node using the

bigram (depending on the first node) and starting with the third node a Markov process is

generated using the trigram, bigram and unigram models, with the different probabilities

given in Table 4.4. The inputs to the functions are then sampled separately of this

process, although, the arity of the function dictates how many inputs are sampled.

NGRAM-QP-II is the favoured learning model. Out of all the probability models,

the ones learnt by NGRAM-QP-II are the only ones to both not be location-dependent

and to attempt to link the functions to their target inputs.

4.2.11 Hybrid-EDA quantum program evolver (HQP)

HQP aims to combine the best of both the traditional GP and the EDA-GP. A distribu-

tion model is learnt and updated at each iteration, just as in a usual EDA-GP. HQP uses

an explicit solution set at each iteration and navigates the search space much like the

NQP, with the same six operators. The difference is that a function mutation14 is applied

14 Currently inputs are mutated as in NQP, without the use of the probability distribution models,
except when:

1. The arity of the mutated function is different from the previous function, or the type (rota-
tion, non-rotation) function is different from the previous function, in which case inputs are also
sampled

2. MUT TYPE 4 RANDOM INSERT is used, in which case the entire node, including inputs, is
sampled from the probability distribution model

The reason inputs are generally not sampled in HQP is because we felt inputs are difficult to model
probabilistically, as they are either node (location) -dependent, which we wanted to avoid in HQP, or
they are function-dependent, which limits the usefulness of a model, since a function will most likely
appear multiple times with different inputs.
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more intelligently, as instead of a random change, the EDA is used to predict a more

suitable transformation. Additionally, when a solution candidate loses a tournament to

another solution candidate, HQP has the choice (with some user-defined probability)

to sample an entire solution completely from the models instead of copying the winner

directly into the next iteration, as NQP does. HQP may choose any of the previously-

discussed EDA-based learning models as its underlying learner. We expected the HQP

to perform best out of the EDA-based instances as well as better than the NQP, because

it combines the ability to do high rate mutations, that is, it can jump across the rugged

fitness landscape, but it still allows us to garner knowledge from previous solutions in

order to help determine exactly which jumps might be better.

4.2.12 On the learning of models

All probability distribution models are initialized uniformly, such that sampling a solu-

tion results in a completely random product. At each iteration a sample set of candidate

solutions is created from the models and each individual is evaluated and ranked. The

top ranked candidate solutions (see Table 4.2) are used to update the probability distri-

bution models for the next iteration. Although the models vary somewhat by the GP

variant in use, the update rule is similar. Based on the original PIPE (Probabilistic

incremental program evolution) algorithm [60, 59], the update rule works to gradually

increase the probabilities of events that are observed more frequently, relative to those

that appear less often. The idea is that events observed in a top candidate solution are

quite probably contributing positively to the overall fitness of that candidate and are

thus good features to incorporate in the probability model and keep around by promot-

ing them through the model which is gradually becoming partial to them. An update

increment is very small (and can be adjusted by the user) and is calculated as:

Prob[eventObserved] = Prob[eventObserved] + λ ∗ µ (4.3)

Here µ is the update unit, which is a small probability mass calculated as 1.0
TE , where TE

represents the total number of possible distinct and valid 15 events associated with the

distribution. The learning rate λ is usually set somewhere between 0.05 and 0.1. What

constitutes an event being observed depends on the distribution in question; an event

might be a specific function type for a distribution modelling functions, or it might be

an input for a distribution modelling inputs. An event might also be a pair of a function

and an input or something more complex, as we saw in the case of ngram-QP.

The batch of top solutions are all examined in turn and each observed event’s prob-

ability is raised. Once all solutions have been examined, all models who have seen an

15 We say valid events instead of total events, as some events are invalid and completely ignored from
the model; for example seeing a CNOT gate with inputs 0 and 0 for control and target, respectively,
would have a probability of 0.0 to start out with and would never have a chance of seeing an increase.
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update are re-normalized. The general EDA-based evolutionary learning process follows

an algorithm as seen in Algorithm 2.

set iteration = 0
set solutionFound = false
set solutionSet = NULL
repeat

solutionSet = sample set of candidate solutions from probability models
foreach candidate in solutionSet do

evaluate candidate and save fitness
end
sort candidates according to fitness
if solution in solutionSet then

solutionFound = true
end
learningSet = select top eda top of best candidates from solutionSet
foreach candidate in learningSet do

foreach event from model seen in candidate do
update probability of event

end

end
re-normalize model
iteration = iteration + 1

until while iteration has not exceeded max iter and solutionFound != true;
return top candidate in solutionSet

Algorithm 2: Evolutionary loop and learning in the EDA-based GP variants

Sub-optimal convergence

Even though the update increment is slight, there is a chance a distribution model will

face premature and sub-optimal convergence. In order to ensure that the GP does not

lose its ability to explore, the user can set an option to force a learner to use a randomly-

generated set of solutions every N number of iterations (where N is also user-specified),

to perturb its distribution models.

4.3 An EDA example

For an example, we run through one iteration of NGRAM-QP-II, where we have set the

learning rate λ fairly high for effect.

Recall from Section 4.2.8 that NGRAM-QP-II learns three separate models:

1. bigram for {function, target}

2. target qubits vs. rest of inputs (by arity)
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Length Probability
1 0.33
2 0.33
3 0.33

(a) Length model (in number of nodes)

Function Target Probability
X 0 0.25
X 1 0.25
CNOT 0 0.25
CNOT 1 0.25

(b) Prior model (functions vs. target qubits)

Function1 Target1 Function2 Target2 Probability
X 0 X 0 0.0625
X 0 X 1 0.0625
X 0 CNOT 0 0.0625
X 0 CNOT 1 0.0625
X 1 X 0 0.0625
X 1 X 1 0.0625
X 1 CNOT 0 0.0625
X 1 CNOT 1 0.0625
CNOT 0 X 0 0.0625
CNOT 0 X 1 0.0625
CNOT 0 CNOT 0 0.0625
CNOT 0 CNOT 1 0.0625
CNOT 1 X 0 0.0625
CNOT 1 X 1 0.0625
CNOT 1 CNOT 0 0.0625
CNOT 1 CNOT 1 0.0625

(c) Transition model ({function, target} pairs)

Target Control Probability
0 0 0.0
0 1 0.5
1 0 0.5
1 1 0.0

(d) Input model (target vs. others)

Table 4.5: Distribution models at iteration 0

3. program length

Assume the evolver is run with the following parameters:

• GPType : NGRAM-QP-II

• functionSet : {CNOT, X}

• systemSize : 2

• λ : 0.1

• solutionSetSize : 3
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• maxSolutionLength : 3

At iteration 0, we thus have the (uniform) distributions seen in Table 4.5. The four dif-

ferent update units for each model are as follows: 0.33 (Length), 0.25 (Unigram), 0.0625

(Bigram), 0.5 (Input). Hence, the update increments for each, calculated as (λ ∗ µ) are:

0.033 (Length), 0.025 (Unigram), 0.00625 (Bigram), 0.05 (Input).

Next, 3 random solutions are sampled from these models:

1. X(0) - CNOT(0,1) - X(0)

2. CNOT(0,1) - CNOT(0,1)

3. X(1) - CNOT(0,1)

For the Length model, 3 events are observed: 3, 2, 2. Thus, the probabilities for 3 and

2 are increased.

For the Prior model, 3 events are observed: {X, 0}, {CNOT, 1} and {X, 1}.

For the Transition model, 4 events are observed: {X, 0, CNOT, 1}, {CNOT, 1, X, 0},
{CNOT, 1, CNOT, 1}, {X, 1, CNOT, 1}.

For the Input model, 4 events are observed (where we have two inputs, as the rest are

single input functions): {1, 0}, {1, 0}, {1, 0}.

The models are updated to reflect these observations. Finally, the new models at iteration

1 can be seen in Table 4.6.

54



CHAPTER 4. METHODOLOGY 4.3. AN EDA EXAMPLE

Length Probability
1 0.30

2 0.36
3 0.33

(a) Length model (in number of nodes)

Function Target Probability

X 0 0.26

X 1 0.26
CNOT 0 0.23

CNOT 1 0.26

(b) Prior model (functions vs. target qubits)

Function1 Target1 Function2 Target2 Probability
X 0 X 0 0.061
X 0 X 1 0.061
X 0 CNOT 0 0.061

X 0 CNOT 1 0.067
X 1 X 0 0.061
X 1 X 1 0.061
X 1 CNOT 0 0.061

X 1 CNOT 1 0.067
CNOT 0 X 0 0.061
CNOT 0 X 1 0.061
CNOT 0 CNOT 0 0.061
CNOT 0 CNOT 1 0.061

CNOT 1 X 0 0.067
CNOT 1 X 1 0.061
CNOT 1 CNOT 0 0.061

CNOT 1 CNOT 1 0.067

(c) Transition model ({function, target} pairs)

Target Control Probability
0 0 0.0
0 1 0.43

1 0 0.57
1 1 0.0

(d) Input model (target vs. others)

Table 4.6: Distribution models at iteration 1
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Chapter 5

Experiments and results

Quantum algorithms are evaluated based on their time and space complexity relative to

their most-effective classical counterparts. This motivates the search for super quantum

algorithms, but we think it is not entirely fair to dismiss the search for quantum algo-

rithms that are as good as their classical counterparts. However, perhaps the motivation

is required since quantum technology and hardware are not easy to come by and some

may feel that there need to be clear benefits before resources are expended in the creation

of quantum computers. We take the view that quantum computation is interesting in its

own right for what it might potentially teach us about nature, information and limits on

computation [10] and for this reason lesser quantum algorithms should also be explored.

In an effort to determine whether the EDA-based GPs presented in the previous

chapter are indeed capable of detecting useful patterns in quantum programs and helping

with the automatic programming of quantum computers, we tested all GP variants on

six different problems. We begin this chapter by outlining each problem and discussing

each problem’s individual experimental setup. The rest of the chapter demonstrates and

analyzes the results obtained for each problem. We also discuss difficulties encountered

and summarize all experiments.

5.1 Experimental set-up

To evaluate a quantum program as produced by one of our GP variants, with the goal

of solving a particular problem, it is necessary to set up a suite of testcases which only

a good solution would pass completely.

Each of the six problems we tackled requires a unique set-up and distinct set of

testcases. We introduce each problem in the following sections and give a detailed account

of the problem set-up.
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5.1.1 On blackbox functions

A large proportion of extant quantum algorithms can be categorized as blackbox opti-

mization algorithms [27]. To remind the reader, a blackbox function is a function which

can be queried, but whose internals are not known.

Calls to blackbox functions are always expensive to make and for this reason all

blackbox optimization problems aim to reduce the number of necessary calls to the

given blackbox function.

5.1.2 Problem descriptions

We chose six problems, some of which were expected to be more suitable to the EDA-

based genetic programming instances. We felt the need to have a decent balance of

problems and so we have introduced a pair of arithmetic problems into our repertoire,

as well as a stranger sort of problem: the imperfect copy machine. We have categorized

two problems as quantum arithmetic problems, two as blackbox optimization problems

and two as miscellaneous, since they are neither blackbox-based nor quantum arithmetic

problems. Short descriptions of all problems follow here for easy later reference.

Problem #1: Deutsch-Jozsa

The problem [12, 45, 54] is given in terms of a binary blackbox function f(x) which takes

as input a quantum register x and outputs either 1 or 0. Nothing is known about the

function except that it must either be balanced, in which case it will return 0 for half of

its domain and 1 for the other half of the domain, or uniform, in which case it will either

always return 0 or always return 1 for all values of its domain. Calling this blackbox

function is said to be expensive. As such, the objective is to determine the property of

the blackbox (i.e. balanced or uniform) with as few calls to it as possible. Deutsch-Jozsa

is a famous problem and has been solved with GP previously [66].

Category: blackbox optimization

Cases: 1-qubit, 2-qubit

Required system sizes: 2 qubits, 3 qubits

Problem #2: Imperfect copy machine

Due to the no-cloning theorem we know that it is impossible to perfectly copy an arbitrary

and unknown quantum state. This follows directly from the linearity of quantum me-
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chanics.1 The theorem does not preclude a copy circuit for computational basis states.2

Thus, it should be possible to copy a state, as long as that state is not in a superposi-

tion. We have come up with the problem of the imperfect copy machine, whose goal is

to devise a quantum algorithm that produces a copy of a computational basis state.

Category: miscellaneous

Cases: 1-qubit, 2-qubit

Required system sizes: 3 qubits, 6 qubits

Problem #3: Quantum addition

This is the first of two quantum arithmetic problems we expected to be quite suitable for

the N-gram approach. Given two input quantum registers of identical size, the problem

is to find the binary addition of the two computational basis states.

Category: quantum arithmetic

Cases: 1-qubit

Required system size: 3 qubits, 4 qubits

Problem #4: Quantum multiplication

Given two input quantum registers of identical size, the problem is to find the binary

multiplication of the two computational basis states. Quantum multiplication is the

1A simple proof of the no-cloning theorem, as given by Nielsen and Chuang [45] is as follows:
Let U : |x〉|z〉 7→ |x〉|x〉 be a unitary operator capable of copying an unknown arbitrary state |x〉. Let
|x〉 and |y〉 be two non-orthogonal states. Then

U(|x〉 ⊗ |z〉) = |x〉 ⊗ |x〉 (5.1)

U(|y〉 ⊗ |z〉) = |y〉 ⊗ |y〉 (5.2)

Taking the inner product of (5.1) and (5.2) gives the following on the left side:

(〈x| ⊗ 〈z|)U†U(|y〉 ⊗ |z〉) = (〈x| ⊗ 〈z|)U†U(|y〉 ⊗ |z〉)
= (〈x| ⊗ 〈z|)(|y〉 ⊗ |z〉)← by the unitarity of U

= 〈x|y〉〈z|z〉 ← by linearity of a tensor product

= 〈x|y〉 · 1← by unitary requirement of ket z

= 〈x|y〉 (5.3)

Similarly, on the right side we have:

(〈x| ⊗ 〈x|)(|y〉 ⊗ |y〉) = 〈x|y〉〈x|y〉

= (〈x|y〉)2 (5.4)

Equating the left side (5.3) with the right side (5.4)

〈x|y〉 = (〈x|y〉)2 (5.5)

forces either (1) x or y to be 0 or (2) x and y to be orthogonal. The second option contradicts our
original assumption that x and y are non-orthogonal and the first option contradicts our assumption
that x and y are arbitrary.

2 Recall that a computational basis state is not in a superposition, and can be likened to a normal
binary register.
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basis for quantum exponentiation, which is extremely important, especially as part of

the quantum Fourier transform [77].

Category: quantum arithmetic

Cases: 1-qubit, 2-qubit

Required system sizes: 3 qubits, 8 qubits

Problem #5: Finding the minimum

Given a bijective function f(x) : [0, N ] → [0, N ], the goal is to find the value for x

such that f(x) returns the minimum value of its range (i.e. 0). This problem is similar

to Massey’s PFMAX problem [40], in which he finds the maximum of the function

instead. Since the functions are all one-to-one, we can view them as permutations. For

example, the identity function for N = 5 would simply be f(x) = {0, 1, 2, 3, 4, 5}. That

is, f(0) = 0; f(1) = 1; f(2) = 2; f(3) = 3; f(4) = 4; f(5) = 5.

Category: miscellaneous

Cases: 1-qubit, 2-qubit

Required system sizes: 2 qubits, 4 qubits

Problem #6: 2-element quantum sorting

For the general sorting problem, a list of numbers (not necessarily distinct) is given and

the goal is to find a new listing of the numbers in non-decreasing order. The idea is to

first find a quantum sort program for a particular pre-specified list of numbers, while

the ultimate goal is to find a quantum sort algorithm for an arbitrary list of numbers.

This general problem is more difficult to solve, as it would involve large qubit registers

(to hold the list of numbers) and it would necessitate conditional logic and processing

(such as swaps) of numbers. The plan was to start off with a simpler sorting problem,

where only two numbers are considered and their positions are switched whenever the

first is larger than the second. In solving this simpler problem it is hoped that an actual

algorithm will easily be generalized to larger problems.

Category: blackbox optimization

Cases: 1-qubit, 2-qubit

Required system sizes: 3 qubits, 5 qubits

5.1.3 Implementation and test environment

All the code was written in C, on a Linux computer running Debian Wheezy (kernel

3.2.0-2-amd64). Code was compiled with the GNU compiler gcc (version Debian 4.7.2-

5). All experiments were run on the same system.
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The computer’s specifications are:

Model name : Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz

CPU MHz : 2501.000

Cores : 4

Cache (level 3) size : 3072 KB

Architecture : x86 64

5.1.4 Parameter settings

Before we describe each experiment’s individual set-up we start by explaining the differ-

ent parameters available, together with their settings. As there are three GP variants we

are testing, plus the non-EDA GP variant (NQP) there are many different combinations

of parameters.

Name Default Parameter

GP type EDA-QP-I -g [012345]

GP sub-type EDA-QP-I -sub [0123]

System size 3 NAa

Solution set size 100 -n <size>

Max iterations 100 -i <max>

Max sol. length 10 -len <length>

Selection % 0.20 -top <per>

Fitness all components -noerr, noeff, -noent,

-nomisses

Function set all gates NA
Mut. rate top 0.05 -mrt <prob>

Mut. rate rest 0.25 -mrr <prob>

Mut. weights 0.3/0.05/0.3/0.05/0.15/0.15 -mut <mt0> ... <mt5>

EDA learning rate 0.05 -lre <lambda>

N-gram learning rate 0.01 -lrg <lambda>

Length learning rate 0.01 -lrl <lambda>

1/2 -gram 0.05/0.95 -n2 <uni> <bi>

1/2/3 -gram 0.03/0.12/0.85 -n3 <uni> <bi> <tri>

Perturb. freq. 50 -pfreq <iters>

Perturb. set size 50 -pfrac <frac>

Learn len. model Yes -nolen

Table 5.1: GP parameters and their default values

a The system size, function set and rotation angle set are all adjusted programmatically. Thus,
recompilation of the program is required for any changes and there are currently no available arguments
to manipulate these at runtime.

The most important parameters are the solution set size, the maximum number of

iterations, the maximum solution length and the various learning rates. Table 5.1 lists all

the different parameters, together with their default values and, where applicable, their

corresponding arguments recognized by our main GP evolver program. The top of the
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table contains parameters common to all GP variants, as well as the different mutation

rates for the six mutation functions (employed by HQP and NQP) discussed in Chapter

4. The bottom part of the table contains EDA-specific learning rates and weights for

the n-gram models. Perturb. freq determines how often (if at all) the EDA-based GPs

introduce random samples to perturb their models and the size of the set of these random

samples is controlled as a fraction of the solution set size by the parameter perturb. set

size.

Unless explicitly stated, the mutation rates for the search operators described in

Section 4.2.7 for a particular run of NQP or HQP are just the defaults given in Table

4.3.

5.1.5 Problem #1: Deutsch-Jozsa

The Deutsch-Jozsa problem was a good starting point for our experiments, as it has

been solved through GP in the past [33, 66], rendering it a good choice for validating

our code.

It is also one of the well-known quantum problems which has an established algorithm.

This algorithm is remarkable, as it makes use of quantum superposition and parallelism

to solve the problem with as little as one oracle call! Classically this is impossible to do3,

as in the worst case we would have to go through at least N/2 + 1 calls to the oracle

(where N is the total number of distinct inputs) before we could conclude with certainty

that the function is balanced or uniform.4 The Deutsch-Jozsa algorithm assumes an

input of |01〉. While the Deutsch-Jozsa algorithm is short and elegant, in an effort

to not restrict the evolution to algorithms mimicking Deutsch-Jozsa, the more general

input state of |00〉 is assumed, same as in previous work by Spector et al.[67], which

naturally leads to an inescapable increase in the length of potential solutions, in order

to compensate for the less specific input.

Problem setup for the 1-qubit case

For the 1-qubit problem there are only 4 possible functions f(x) : [0, 1]→ [0, 1]:

3 It is impossible to do deterministically.
4The Deutsch-Jozsa algorithm generalizes to multiple qubits. The simplest case, for the 1-qubit

problem (also known as the Early Promise Problem[45] is illustrated by the following circuit:

|0〉 H
Oracle

H out

|1〉 H

where H represents the Hadamard gate, the upper wire represents the 1st qubit, the lower wire

represents the 0th qubit (from the right, in ket notation), represents a measurement (in this

case on qubit 1) and time flows from left to right. The oracle is a multi-qubit gate that acts on the
entire system (of two qubits), whose input is given by the qubits |1〉 (zeroth) and |0〉 (first), equivalent
to the composite state |01〉.
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1. f0(x) : f0(0) = 0; f0(1) = 0 (uniform)

2. f1(x) : f1(0) = 1; f1(1) = 1 (uniform)

3. f2(x) : f2(0) = 0; f2(1) = 1 (balanced)

4. f3(x) : f3(0) = 1; f3(1) = 0 (balanced)

To make use of function fi(x) it has to be wrapped in a unitary transformation, Ufi ,

such that a call to the oracle is reversible. The action of Ufi on an input register |xy〉 is

Ufi |x〉|y〉 → |x〉|fi(x)⊕ y〉.
Each oracle function Ufi is considered a separate testcase; thus, there are only four

distinct fitness testcases for this instance of the Deutsch-Jozsa problem. A program

which is a potential solution is simulated on an input of |00〉 for each different oracle and

in the end the leftmost qubit is measured to produce the result. If the result is 0, then

the function should be uniform (constant); else, the function should be balanced. The

result is then verified against the expected output.

Penalty functions

As mentioned previously, oracle calls are deemed expensive, so as in any blackbox opti-

mization problem, the goal is to reduce the overall number of oracle calls. A potential

solution which is found to have more than one oracle call is given a small fitness increase5

proportional to the number of extra oracle calls. Similarly, a potential solution which

is found to have no oracle calls is given an extremely large fitness increase, as it cannot

gain access to the results of the oracle and thus to the implicit definition of fi(x).

Problem setup for the 2-qubit case

For the 2-qubit problem there are now 8 possible functions, of which again 2 are uniform

and the last 6 are balanced: f(x) : [0, 1]→ [0, 1]:

1. f0(x) : f0(00) = 0; f0(01) = 0; f0(10) = 0; f0(11) = 0 (uniform)

2. f1(x) : f1(00) = 1; f1(01) = 1; f1(10) = 1; f1(11) = 1 (uniform)

3. f2(x) : f2(00) = 0; f2(01) = 0; f2(10) = 1; f2(11) = 1 (balanced)

4. f3(x) : f3(00) = 0; f3(01) = 1; f3(10) = 0; f3(11) = 1 (balanced)

5. f4(x) : f4(00) = 0; f4(01) = 1; f4(10) = 1; f4(11) = 0 (balanced)

6. f5(x) : f5(00) = 1; f5(01) = 0; f5(10) = 0; f5(11) = 1 (balanced)

7. f6(x) : f6(00) = 1; f6(01) = 0; f6(10) = 1; f6(11) = 0 (balanced)

5 A standardized fitness measure is used (for all experiments), in which a fitness value of 0 is best,
while a fitness value becomes worse as it increases from 0.
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8. f7(x) : f7(00) = 1; f7(01) = 1; f7(10) = 0; f7(11) = 0 (balanced)

To verify a solution, it is simulated on the input state of |000〉 and the leftmost 2

qubits of the final state are measured. If this measurement yields 00 with 100% certainty,

then the function is said to be constant. If the measurement has no chance (probability

amplitude is zero) of yielding 00, then the function is balanced6. Again, the actual result

is then compared against the known result (uniform or balanced) for each testcase.

5.1.6 Problem #2: Imperfect copy machine

The imperfect copy machine problem is interesting for two reasons. First of all, as

mentioned earlier, due to the no-cloning theorem we know it is impossible to copy an

unknown arbitrary quantum state, but we are interested in how we could copy a compu-

tational basis state. Second, with a little thought we could come up with a very simple

algorithm for copying a computational basis state and this algorithm would have a lot of

repetition, so we hoped our GP could replicate our algorithm or come up with something

more interesting, both of which it did.

Problem setup for the 1-qubit imperfect copier

For the 1-qubit problem we need to have 3 qubits in total. The leftmost qubit (qubit

2) is the input we wish to copy, the middle qubit (qubit 1) is the output qubit, where

we wish to replicate qubit 2 and the rightmost qubit (qubit 0) is simply an ancilla bit,

or work bit. We do not measure the work bit and we assume it is always set to 0 upon

input. This means that there are only 4 unique combinations of our inputs and thus, for

the 1-qubit problem there are only 4 possible fitness testcases:

1. in: 000 ; out: 00*

2. in: 010 ; out: 00*

3. in: 100 ; out: 11*

4. in: 110 ; out: 11*

The ‘*’ is a wildcard, as we do not care about the final value of the ancilla bit.

Problem setup for the 2-qubit imperfect copier

For the 2-qubit case we use two ancilla bits, but this time our copy register is 2 qubits long

and so the result register must also be 2 qubits long, which brings the total to 6 qubits.

Since we only measure the leftmost 4 qubits there are now 16 possible combinations of

inputs for our tests:

6 To distinguish a balanced function, the amplitude must be zero for 00, otherwise we could at best
achieve a probabilistic solution.
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1. in: 000000 ; out: 0000*

2. in: 000100 ; out: 0000*

3. in: 001000 ; out: 0000*

4. in: 001100 ; out: 0000*

5. in: 010000 ; out: 0101*

6. in: 010100 ; out: 0101*

7. in: 011000 ; out: 0101*

8. in: 011100 ; out: 0101*

9. in: 100000 ; out: 1010*

10. in: 100100 ; out: 1010*

11. in: 101000 ; out: 1010*

12. in: 101100 ; out: 1010*

13. in: 110000 ; out: 1111*

14. in: 110100 ; out: 1111*

15. in: 111000 ; out: 1111*

16. in: 111100 ; out: 1111*

5.1.7 Problem #3: Adder

Addition is an essential operation in classical computing and it is no less important in

quantum computing. For this experiment we attempted to generate a 1-qubit half-adder

and a 1-qubit full-adder.

Problem setup for the 1-qubit half-adder

Given two qubits |x〉 and |y〉 in basis states, a quantum half-adder returns their sum in

two output registers, where one holds the XOR of x and y and the other holds a possible

carry-bit.

We used a format as given in the work by Gossett [22] to define the input-output

pairings. For the 1-qubit half-adder we are using 3 qubits and define addition as a unitary

operator

Uadd|x〉|y〉|z〉 7→ |x〉|x⊕ y〉|(x ∧ y)⊕ z〉.

Since we do not clear the output register |z〉 beforehand and do not pre-specify its value,

we have 8 different inputs spanning the 3-qubit space and hence 8 testcases:
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1. in: 000 ; out: 000 (0 + 0 = 0)

2. in: 001 ; out: 001

3. in: 010 ; out: 010 (0 + 1 = 1)

4. in: 011 ; out: 011

5. in: 100 ; out: 110 (1 + 0 = 1)

6. in: 101 ; out: 111

7. in: 110 ; out: 1017 (1 + 1 = 2)

8. in: 111 ; out: 100

Problem setup for the 1-qubit full-adder

The full-adder is just a little more complicated, as it takes three inputs, where in addition

to x and y, it accepts a carry-in bit, c. The full-adder then computes the sum of x, y

and c.

The 1-qubit full-adder is very similar to the half-adder, except it uses 4 qubits, where

the 1st (from the right) holds a carry-in bit c. The output now keeps both x and y, but

overwrites c and the arbitrary output register z and so the unitary addition operator we

are looking for should act as follows:

Uadd|x〉|y〉|c〉|z〉 7→ |x〉|y〉|x⊕ y ⊕ c〉|(x ∧ y) ∨ (x ∧ c) ∨ (y ∧ c)〉.

There are now 16 testcases spanning the 4-qubit space and again the output should be

read in reverse, since the significant bit (carry-out bit) is always the rightmost of the

system:

1. in: 0000 ; out: 0000 (0 + 0 + 0 = 0)

2. in: 0001 ; out: 0001

3. in: 0010 ; out: 0010 (0 + 0 + 1 = 1)

4. in: 0011 ; out: 0011

5. in: 0100 ; out: 0110 (0 + 1 + 0 = 1)

6. in: 0101 ; out: 0111

7. in: 0110 ; out: 0101 (0 + 1 + 1 = 2)

7 Remember that the 0th qubit here holds the carry-bit, which means that the output is reversed;
that is, 01 should read 2.
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8. in: 0111 ; out: 0100

9. in: 1000 ; out: 1010 (1 + 0 + 0 = 1)

10. in: 1001 ; out: 1011

11. in: 1010 ; out: 1001 (1 + 0 + 1 = 2)

12. in: 1011 ; out: 1000

13. in: 1100 ; out: 1101 (1 + 1 + 0 = 2)

14. in: 1101 ; out: 1100

15. in: 1110 ; out: 1111 (1 + 1 + 1 = 3)

16. in: 1111 ; out: 1110

5.1.8 Problem #4: Multiplier

The multiplier problem was chosen for its importance in mathematical operations as

well as the suspicion that it might be a good problem to mine for patterns and repetitive

sequences. In the general multiplication problem we are given two registers x and y (of

equal size) and an output register z, whose contents we make no assumptions about and

the goal is to output the multiplication of x and y in z. For z to hold all possible results

of the multiplication of two registers of equal size, z must (in general) be twice the size

of the input registers. Of course, we need a unitary operator and so we are looking for

a quantum circuit that implements the following unitary operator for multiplication:

Umult|x〉|y〉|z〉 7→ |x〉|y〉|mult(x, y)⊕ z〉.

For our purposes here we do make an assumption about the output register z; that is,

we expect it to start out in a cleared state, 0.

Problem setup for the 1-qubit multiplier

In order to make the problem reversible, even for the 1-qubit operand case we need to

have 3 qubits in total: 1 qubit for each operand and 1 qubit to hold the answer. Since

the maximum digit a single qubit can hold is 1, the greatest product we can produce

with two qubits is 1, so only one qubit is needed for the answer. We cannot overwrite the

second operand’s register with the answer, since unlike in addition, we cannot always

use a single operand together with the product to determine the other operand. For

example, if the result is 0 and we know one of the factors is 0, then at best we can only

guess what the other factor is (1 or also 0). Again, our last qubit is the answer qubit

and we assume that it starts off as a 0 (or that a zeroing operation can easily be applied
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to it before the multiplication). When measuring the answer we must measure all the

qubits to ensure that the answer is reversible (we can determine both operands from the

result). The product of the multiplication is the rightmost qubit.

1. in: 000 ; out: 000 (0 ∗ 0 = 0)

2. in: 010 ; out: 010 (0 ∗ 1 = 0)

3. in: 100 ; out: 100 (1 ∗ 0 = 0)

4. in: 110 ; out: 111 (1 ∗ 1 = 1)

Problem setup for the 2-qubit multiplier

The more interesting problem is a 2-qubit operand multiplier. A 2-qubit register can

hold a range of values: [0, 3]. That means that the maximum product we can form

from two 2-qubit registers is 3 ∗ 3 = 9, which in binary form is 1001 and requires a

4-qubit register. Requiring that the problem be reversible, we need two 2-qubit registers

for the two factors and a 4-qubit register for the answer, for a total of 8 qubits. We

make the problem a little easier by assuming that the answer register always starts off in

state |0000〉, which could be achieved by swapping the respective qubits with specially-

prepared |0〉 qubits before the multiplication. Since we have only 2 registers to multiply

and each 2-qubit register can hold 4 distinct values, there are 4 ∗ 4 = 16 combinations

and so there are 16 testcases:

1. in: 00|00|0000 ; out: 00|00|0000 (0 ∗ 0 = 0)

2. in: 00|01|0000 ; out: 00|01|0000 (0 ∗ 1 = 0)

3. in: 00|10|0000 ; out: 00|10|0000 (0 ∗ 2 = 0)

4. in: 00|11|0000 ; out: 00|11|0000 (0 ∗ 3 = 0)

5. in: 01|00|0000 ; out: 01|00|0000 (1 ∗ 0 = 0)

6. in: 01|01|0000 ; out: 01|01|0001 (1 ∗ 1 = 1)

7. in: 01|10|0000 ; out: 01|10|0010 (1 ∗ 2 = 2)

8. in: 01|11|0000 ; out: 01|11|0011 (1 ∗ 3 = 3)

9. in: 10|00|0000 ; out: 10|00|0000 (2 ∗ 0 = 0)

10. in: 10|01|0000 ; out: 10|01|0010 (2 ∗ 1 = 2)

11. in: 10|10|0000 ; out: 10|10|0100 (2 ∗ 2 = 4)

12. in: 10|11|0000 ; out: 10|11|0110 (2 ∗ 3 = 6)
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13. in: 11|00|0000 ; out: 11|00|0000 (3 ∗ 0 = 0)

14. in: 11|01|0000 ; out: 11|01|0011 (3 ∗ 1 = 3)

15. in: 11|10|0000 ; out: 11|10|0110 (3 ∗ 2 = 6)

16. in: 11|11|0000 ; out: 11|11|1001 (3 ∗ 3 = 9)

5.1.9 Problem #5: Minimum finder

The problem can make use of an oracle on three registers, which is capable of comparing

two of the registers and returning a value of 0 or 1 in the third register, indicating

whether or not the value in the first register is smaller than the value held by the second.

In another way, one can simply encode an entire permutation function in the input as

Massey has done for his PFMAX problem [40], in which he finds the maximum instead.

For this study we have opted for Massey’s encoding.

Problem setup for the 1-qubit minimum-finder

We are only interested in bijective functions in this case, so functions that are one-to-one,

or in our case here, permutations.

In the 1-qubit case, there are only two possible permutation functions:

1. f0(x) = {0, 1} → {0, 1}

2. f1(x) = {0, 1} → {1, 0}

Using Massey’s encoding we have 2 qubits, where the first qubit specifies a value for

x and the last qubit specifies a value for f(x). Using an even superposition we are able

to encode an entire permutation function as a 2-qubit state. The idea is to compute on

this state such that in the end when we measure the first two qubits, we get the index of

x for which f(x) returns the minimum element of its range; that is, 0. Each permutation

function serves as a testcase; thus, we have two testcases for the 1-qubit instance of this

problem:

1. in: 1√
2
(|00〉+ |11〉) ; out: 0

2. in: 1√
2
(|01〉+ |10〉) ; out: 1

Again, let us explain the encoding. For the first testcase this corresponds to the identity

function f0 from above, in which case f(0) = 0, which is the expected output. The first

qubit represents x, while the second qubit represents f(x). All the valid transformations

are encoded in the input state, such that for the first testcase we can see only f(0)→ 0

and f(1)→ 1 appear, which is consistent with the identity transformations, while in the

second testcase (for f1 above) the only valid transformations are f(0)→ 1 and f(1)→ 0.
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Problem setup for the 2-qubit minimum-finder

For the 2-qubit case we have 24 different permutations, since there are now 4 possible

values in the domain and range of f(x):

1. f0(x) = {0, 1, 2, 3} → {0, 1, 2, 3}

2. f1(x) = {0, 1, 2, 3} → {0, 1, 3, 2}

3. f2(x) = {0, 1, 2, 3} → {0, 2, 1, 3}

4. f3(x) = {0, 1, 2, 3} → {0, 2, 3, 1}

5. f4(x) = {0, 1, 2, 3} → {0, 3, 1, 2}

6. f5(x) = {0, 1, 2, 3} → {0, 3, 2, 1}

7. f6(x) = {0, 1, 2, 3} → {1, 0, 2, 3}

8. f7(x) = {0, 1, 2, 3} → {1, 0, 3, 2}

9. f8(x) = {0, 1, 2, 3} → {1, 2, 0, 3}

10. f9(x) = {0, 1, 2, 3} → {1, 2, 3, 0}

11. f10(x) = {0, 1, 2, 3} → {1, 3, 0, 2}

12. f11(x) = {0, 1, 2, 3} → {1, 3, 2, 0}

13. f12(x) = {0, 1, 2, 3} → {2, 0, 1, 3}

14. f13(x) = {0, 1, 2, 3} → {2, 0, 3, 1}

15. f14(x) = {0, 1, 2, 3} → {2, 1, 0, 3}

16. f15(x) = {0, 1, 2, 3} → {2, 1, 3, 0}

17. f16(x) = {0, 1, 2, 3} → {2, 3, 0, 1}

18. f17(x) = {0, 1, 2, 3} → {2, 3, 1, 0}

19. f18(x) = {0, 1, 2, 3} → {3, 0, 1, 2}

20. f19(x) = {0, 1, 2, 3} → {3, 0, 2, 1}

21. f20(x) = {0, 1, 2, 3} → {3, 1, 0, 2}

22. f21(x) = {0, 1, 2, 3} → {3, 1, 2, 0}

23. f22(x) = {0, 1, 2, 3} → {3, 2, 0, 1}

24. f23(x) = {0, 1, 2, 3} → {3, 2, 1, 0}
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This gives us 24 testcases:

1. in: 1
2 (|0000〉+ |0101〉+ |1010〉+ |1111〉) ; out: 0

2. in: 1
2 (|0000〉+ |0101〉+ |1011〉+ |1110〉) ; out: 0

3. in: 1
2 (|0000〉+ |0110〉+ |1001〉+ |1111〉) ; out: 0

4. in: 1
2 (|0000〉+ |0110〉+ |1011〉+ |1101〉) ; out: 0

5. in: 1
2 (|0000〉+ |0111〉+ |1001〉+ |1110〉) ; out: 0

6. in: 1
2 (|0000〉+ |0111〉+ |1010〉+ |1101〉) ; out: 0

7. in: 1
2 (|0001〉+ |0100〉+ |1010〉+ |1111〉) ; out: 1

8. in: 1
2 (|0001〉+ |0100〉+ |1011〉+ |1110〉) ; out: 1

9. in: 1
2 (|0001〉+ |0110〉+ |1000〉+ |1111〉) ; out: 2

10. in: 1
2 (|0001〉+ |0110〉+ |1011〉+ |1100〉) ; out: 3

11. in: 1
2 (|0001〉+ |0111〉+ |1000〉+ |1110〉) ; out: 2

12. in: 1
2 (|0001〉+ |0111〉+ |1010〉+ |1100〉) ; out: 3

13. in: 1
2 (|0010〉+ |0100〉+ |1001〉+ |1111〉) ; out: 1

14. in: 1
2 (|0010〉+ |0100〉+ |1011〉+ |1101〉) ; out: 1

15. in: 1
2 (|0010〉+ |0101〉+ |1000〉+ |1111〉) ; out: 2

16. in: 1
2 (|0010〉+ |0101〉+ |1011〉+ |1100〉) ; out: 3

17. in: 1
2 (|0010〉+ |0111〉+ |1000〉+ |1101〉) ; out: 2

18. in: 1
2 (|0010〉+ |0111〉+ |1001〉+ |1100〉) ; out: 3

19. in: 1
2 (|0011〉+ |0100〉+ |1001〉+ |1110〉) ; out: 1

20. in: 1
2 (|0011〉+ |0100〉+ |1010〉+ |1101〉) ; out: 1

21. in: 1
2 (|0011〉+ |0101〉+ |1000〉+ |1110〉) ; out: 2

22. in: 1
2 (|0011〉+ |0101〉+ |1010〉+ |1100〉) ; out: 3

23. in: 1
2 (|0011〉+ |0110〉+ |1000〉+ |1101〉) ; out: 2

24. in: 1
2 (|0011〉+ |0110〉+ |1001〉+ |1100〉) ; out: 3
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5.1.10 Problem #6: 2-element (ascending-order) sorter

Finally we have the 2-element quantum sorter problem, in which we are given two reg-

isters containing (not necessarily distinct) integers in a range bound by the size of the

problem and the idea is to re-order these registers if and only if the first is larger than the

second, such that the final ordering is non-decreasing. This problem, like the minimum-

finder problem could also be posed and encoded in several ways. We experimented with

two such ways.

Sorter as an oracle problem

We assumed an oracle existed which upon input consisting of 2 registers would place the

value 1 in an output register if and only if the first register contained a value larger than

the second. Then we let a GP find a solution in which an oracle could be consulted.

A really simple (though, classical in its logic) algorithm could be created given such an

oracle. First an oracle is called for the two registers. If the oracle returns 1 then we

swap all corresponding qubits of the two registers. To encourage the creation of similar

programs, which could easily be generalized to size-independent algorithms, we included

the controlled-SWAP gate (CSWAP) into our function set, for the first time.

Oracle for 2-element sorter for arbitrary element size An oracle for the 2-

element sorter problem would have to of course be reversible. Its underlying (non-

reversible) function would need to do the mappings:

f(x, y) 7→ 0, if x ≤ y

f(x, y) 7→ 1, if x > y

An oracle for the 2-element sorter problem might thus operate as follows:

O|x〉|y〉|0〉 7→ |x〉|y〉|f(x, y)⊕ 0〉

Basically this oracle flips the 0th qubit iff the value x is greater than the value y. A

program calling this oracle can read the 0th qubit to determine whether the two registers

x and y are out of order.

Sorter as a state-encoding

A non-oracle version would simply encode the list of numbers (in this case the pair of

numbers) into a qubit register, which is then tensored with some work qubits, perform

computations onto that composite state and then finally read out the final state as the

(hopefully) ordered list of numbers.
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Problem setup for the 1-qubit 2-element sorter

In order to create a reversible solution we require an extra work bit, so that we might

recreate the original state from the output state. As usual, we suppose this work bit

starts out as 0. The 1-qubit case is not overly difficult, as there are only 4 testcases:

1. in: 000 ; out: 000

2. in: 010 ; out: 010

3. in: 100 ; out: 011

4. in: 110 ; out: 110

For the 1-qubit 2-element sorter we used the oracle encoding. An oracle in this

case was easily implemented as a reversible function. For the 2-qubit problem an oracle

cannot easily be implemented using our function set, which essentially makes it a real

oracle, as we implement it manually simply by the actions Uf |x〉|y〉 7→ |x〉|f(x)⊕ y〉 and

do not worry about how its internals would work in practice.

Problem setup for the 2-qubit 2-element sorter

The 2-qubit problem requires a total of 5 qubits: 2 qubits each for the registers and 1

work qubit, whose final value is not measured.

1. in: 00000 ; out: 0000*

2. in: 00010 ; out: 0001*

3. in: 00100 ; out: 0010*

4. in: 00110 ; out: 0011*

5. in: 01000 ; out: 0001*

6. in: 01010 ; out: 0101*

7. in: 01100 ; out: 0110*

8. in: 01110 ; out: 0111*

9. in: 10000 ; out: 0010*

10. in: 10010 ; out: 0110*

11. in: 10100 ; out: 1010*

12. in: 10110 ; out: 1011*

13. in: 11000 ; out: 0011*
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14. in: 11010 ; out: 0111*

15. in: 11100 ; out: 1011*

16. in: 11110 ; out: 1111*

5.1.11 Summary

We have introduced six different problems which were used to test our methodology and

have thoroughly described how we have set up each experiment. We are now ready to

discuss the results of the tests.

5.2 Results and discussion

Some of our problems were easily solved by the GPs introduced in the previous chapter,

while others were fairly difficult. For the more difficult problems we were not always

able to find exact (deterministic) solutions, but were often able to still find probabilistic

solutions. This section discusses each of the experiments, and shows the more interesting

results obtained for each problem.

5.2.1 Problem #1: Deutsch-Jozsa

Expectations

The Deutsch-Jozsa problem has a very quantum solution as given by the Deutsch-Jozsa

algorithm and we expected the evolver to come up with something very similar to the

famous algorithm. Since we are only dealing with at most 3 qubits for this problem we

did not expect to see a particular GP perform better than any other. We hoped each

GP would find a solution.

Deutsch-Jozsa 1-qubit problem

A result was first found when the controlled- phase flip (CZ) gate was added to the

function set. The program is shown in Program 3 in smallqc syntax and in Figure 5.1

as a quantum circuit.8 Its run details are also shown in Table 5.2.

|0〉 Z H • Z
Oracle

H out

|0〉 H • • H • H H •

Figure 5.1: Solution #1 for 1-qubit Deutsch-Jozsa

8 A CNOT gate is denoted by the bullet connected vertically to the crossed-circle. The bullet is
the control qubit, while the circle is the target qubit. The bullet as a control qubit generalizes to other
controlled gates as well.
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# id: sol[387:23349]

# fitness: -0.000000

# solution size: 12

begin_init

end_init

begin_code

op_H( NULL, 0 )

op_CNOT( NULL, 0, 1 )

op_CZ( NULL, 0, 1 )

op_H( NULL, 1 )

op_H( NULL, 0 )

op_CNOT( NULL, 1, 0 )

op_CZ( NULL, 0, 1 )

op_H( NULL, 0 )

oracle( NULL )

op_H( NULL, 0 )

op_H( NULL, 1 )

op_CNOT( NULL, 0, 1 )

end_code

Program 3: Solution #1 for 1-qubit Deutsch-Jozsa

|0〉 H
Oracle

H out

|0〉 X H X

Figure 5.2: Solution #2 for 1-qubit Deutsch-Jozsa

Significance of result

This result was pleasantly surprising for two reasons. First, the system is entangled at

multiple points. Second, there are clear patterns in the sequence of functions used. For

example, there are two (2) occurrences of H,CNOT,CZ, two (2) occurrences of H,H

and three (3) occurrences of H,CNOT .

This result, however, is not the most efficient. In later runs the efficiency component

of the fitness function9 was activated and HQP running with EDA-QP-I found a shorter

solution which closely resembles the Deutsch-Jozsa algorithm. Details for this solution

can be found in Table 5.3 and the actual program is shown in Program 4 and Figure 5.2.

The last X gate on qubit 0 in Program 4 can be ignored, as we no longer use qubit 0

past the point of this gate. The first X however serves to change the input |0〉|0〉 to |0〉|1〉,
which, as mentioned previously, is the input for the normal Deutsch-Jozsa algorithm for

the problem of size 1. From there on (and given the removal of the last X gate) the

program is an exact implementation of the Deutsch-Jozsa algorithm.

9 Recall from Chapter 4 that the fitness function uses four different components: 1) average error
(avgerr), 2) misses, 3) eff (efficiency) and 4) ent (entanglement).
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Parameter Setting

GP type NQP
Solution set size 150
Max iterations 1000
Max sol. length 12
Selection % 0.20
Mut. rate top 0.05
Mut. rate rest 0.10
Fitness avgerr
Function set ORACLE, CNOT, H,

CZ

(a) Run settings

Found solution Yes
Solution type Deterministic
Found in iteration 387
Solution size 12

(b) Solution details

Table 5.2: Details for 1-qubit Deutsch-Jozsa solution #1

Parameter Setting

GP type HQP
Sub EDA type EDA-QP-I
Solution set size 1500
Max iterations 5000
Max sol. length 15
Selection % 0.20
Learning rate 0.05
Perturb. freq. 50
Perturb. set size 750
Learn len. model No
Fitness avgerr, misses, eff
Function set ORACLE, CNOT, X,

H

(a) Run settings

Found solution Yes
Solution type Deterministic
Found in iteration 27
Solution size 6

(b) Solution details

Table 5.3: Details for 1-qubit Deutsch-Jozsa solution #2

Deutsch-Jozsa 2-qubit problem

For the 2-qubit instance of the Deutsch-Jozsa problem we have an input register of 3

qubits, where the leftmost 2 qubits make up the input query register for an oracle call

and the rightmost qubit makes up the answer register for the oracle call. In the end

we measure only the 2 qubits on the left. If these result in |00〉 with 100% probability,

then the function should be constant; else the function should be balanced. Again, we

compare the result with the expected result.

We found multiple solutions for the 2-qubit problem and show two of them here,

which were both found by HQP with sub-EDA option EDA-QP-I. The details of each

run are in Tables 5.4 and 5.5 and the solutions themselves are shown in Programs 5 and

6 and as quantum circuits in Figures 5.3 and 5.4.
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# id: sol[9:6541]

# fitness: 0.000600

# solution size: 6

begin_init

end_init

begin_code

op_X( NULL, 0 )

op_H( NULL, 0 )

op_H( NULL, 1 )

oracle( NULL )

op_X( NULL, 0 )

op_H( NULL, 1 )

end_code

Program 4: Solution #2 for 1-qubit Deutsch-Jozsa

|0〉

WHT Oracle WHT|0〉

|0〉 X

Figure 5.3: Solution #1 for 2-qubit Deutsch-Jozsa

Recall that the Deutsch-Jozsa algorithm begins by initializing an input query register

as |00〉 and an input answer register of one qubit as |1〉. Then it applies a Walsh-

Hadamard transform to the composite of these two kets. These steps have the effect of

creating the following superposition before a call is made to the oracle:

|ψ〉 = WHT |001〉

= H|0〉 ⊗H|0〉 ⊗H|1〉

= 1√
2
(|0〉+ |1〉) 1√

2
(|0〉+ |1〉) 1√

2
(|0〉 − |1〉)

= 1√
8
(|000〉 − |001〉+ |010〉 − |011〉+ |100〉 − |101〉+ |110〉 − |111〉) (5.6)

It is very easy to see that the first two actions in solution #2 (Figure 5.4) take the

|0〉

WHT Oracle WHT|0〉

|0〉 Z

Figure 5.4: Solution #2 for 2-qubit Deutsch-Jozsa
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# id: sol[79:48397]

# fitness: 0.000400

# solution size: 4

begin_init

end_init

begin_code

op_X( NULL, 0 )

op_WHT( NULL )

oracle( NULL )

op_WHT( NULL )

end_code

Program 5: Solution #1 for 2-qubit Deutsch-Jozsa

# id: sol[64:39577]

# fitness: 0.000400

# solution size: 4

begin_init

end_init

begin_code

op_WHT( NULL )

op_Z( NULL, 0 )

oracle( NULL )

op_WHT( NULL )

end_code

Program 6: Solution #2 for 2-qubit Deutsch-Jozsa
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Parameter Setting

GP type HQP
Sub EDA type EDA-QP-I
Solution set size 1500
Max iterations 5000
Max sol. length 15
Selection % 0.20
Learning rate 0.05
Perturb. freq. 50
Perturb. set size 750
Learn len. model No
Fitness avgerr, misses, eff
Function set ORACLE, WHT,

CNOT, CCNOT, X,
H, Z, S, W, T

(a) Run settings

Found solution Yes
Solution type Deterministic
Found in iteration 83
Solution size 4

(b) Solution details

Table 5.4: Details for 2-qubit Deutsch-Jozsa solution #1

state |000〉 to the same superposition. First WHT creates an even superposition:

|φ1〉 = WHT |000〉

= 1√
8
(|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉+ |111〉) (5.7)

And then the Z gate on qubit 0 flips the sign of the probability amplitude wherever

qubit 0 is 1:

Z0|φ1〉 = I ⊗ I ⊗ Z|φ1〉

= 1√
8
(|000〉 − |001〉+ |010〉 − |011〉+ |100〉 − |101〉+ |110〉 − |111〉) (5.8)

Since Equation (5.8) is the same as Equation (5.6), it is clear that our second solution

to the Deutsch-Jozsa 2-qubit problem is also just an implementation of the Deutsch-Jozsa

algorithm.

One reason these solutions are so compact is obviously the use of WHT as an oper-

ator in our function set. Given that the Hadamard gate and the more general Walsh-

Hadamard10 transform are essential for quantum phenomena to manifest11 we thought

it would be a good idea to include the Walsh-Hadamard transform in our function set

and the GP system seems to have made good use of it.

10 Recall that the Walsh-Hadamard transform applies Hadamard gates to multiple qubits. In our case
we define the WHT as a gate that applies Hadamard to all qubits in the system.

11 That is, in the absence of the general rotation gates, which we have not always included in our
runs.
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Parameter Setting

GP type HQP
Sub EDA type EDA-QP-I
Solution set size 1500
Max iterations 5000
Max sol. length 15
Selection % 0.20
Learning rate 0.05
Perturb. freq. 50
Perturb. set size 750
Learn len. model No
Fitness avgerr, misses, eff
Function set ORACLE, WHT,

CNOT, CCNOT, X,
H, Z, S, W, T

(a) Run settings

Found solution Yes
Solution type Deterministic
Found in iteration 65
Solution size 4

(b) Solution details

Table 5.5: Details for 2-qubit Deutsch-Jozsa solution #2

Conclusions

As we had hypothesized, every GP variant was able to handle this problem and we were

happy to see that the pure learners were able to keep up with NQP and HQP. The

inclusion of the WHT gate in our function set definitely helped keep solutions short and

lead the evolver to a quicker find.

5.2.2 Problem #2: Imperfect copy machine

Expectations

The imperfect copier was one of the first problems we thought might be easier to handle

by the learners, as we expected there to be a lot of controlled operations anchoring on

the ancilla qubits and hoped that good sequences might be discerned by ngram-QP or

EDA-QP.

Imperfect copier 1-qubit problem

The 1-qubit copier is a fairly straightforward problem for the program evolver, so it is

not too surprising that it quickly came up with a solution in multiple runs and using all

the different GP variants. Here we discuss three of them.

The first solution, shown in Program 7 and as a quantum circuit in Figure 5.512 was

found by NQP. The second was found by EDA-QP-I and is shown in Program 8, with

its corresponding circuit Figure 5.6. Finally, the third solution shown in Program 9 and

12 A SWAP gate is represented by the two connected × symbols.
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Figure 5.7 was found by EDA-QP-II. Details for all the runs are shown in Tables 5.6, 5.7

and 5.8.

Parameter Setting

GP type NQP
Solution set size 1500
Max iterations 10000
Max sol. length 10
Mut. rate top 0.25
Mut. rate rest 1.0
Selection % 0.10
Fitness avgerr, misses
Function set H, CNOT, X, CZ,

CCNOT, SWAP

(a) Run settings

Found solution Yes
Solution type Deterministic
Found in iteration 0
Solution size 3

(b) Solution details

Table 5.6: Details for 1-qubit imperfect copier solution #1

Parameter Setting

GP type EDA-QP-I
Solution set size 1500
Max iterations 10000
Max sol. length 10
Selection % 0.10
Learning rate 0.05
Perturb. freq. 50
Perturb. set size 750
Learn len. model Yes
Fitness avgerr, misses, eff, ent
Function set H, CNOT, X, CZ,

CCNOT

(a) Run settings

Found solution Yes
Solution type Deterministic
Found in iteration 14
Solution size 5

(b) Solution details

Table 5.7: Details for 1-qubit imperfect copier solution #2

While all solutions are exact, the second one is interesting because it makes use of a

superposition and controlled-Z gate to compute its result. The first and third solutions

are more efficient as they only use 3 gates, however, they are strictly reversible logic

circuits, while the second actually exhibits quantum properties. Without the sequence

of H(0), CZ(0,2), H(0) the last two testcases would fail. The first H(0) puts the 0th qubit

in a superposition, while the second H(0) contracts the state to a computational basis

state; were it not for the CZ(0,2) gate in the middle, the two Hadamards would simply

cancel each other out. As it is, though, the CZ(0,2) sandwiched between two Hadamard

gates has the effect of flipping the 0th qubit.
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|x〉 • • out2

|y〉 × out1

|0〉 • ×

Figure 5.5: Solution #1 for 1-qubit imperfect copier

|x〉 Z out2

|y〉 • out1

|0〉 H • H •

Figure 5.6: Solution #2 for 1-qubit imperfect copier

|x〉 • out2

|y〉 • out1

|0〉 •

Figure 5.7: Solution #3 for 1-qubit imperfect copier

# id: sol[0:14]

# fitness: 0.000000

# solution size: 3

begin_init

end_init

begin_code

op_CNOT( NULL, 2, 0 )

op_CCNOT( NULL, 2, 0, 1 )

op_SWAP( NULL, 1, 0 )

end_code

Program 7: Solution #1 for 1-qubit imperfect copier

# id: sol[14:21273]

# fitness: 0.000500

# solution size: 5

begin_init

end_init

begin_code

op_CNOT( NULL, 1, 0 )

op_H( NULL, 0 )

op_CZ( NULL, 0, 2 )

op_H( NULL, 0 )

op_CNOT( NULL, 0, 1 )

end_code

Program 8: Solution #2 for 1-qubit imperfect copier
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Parameter Setting

GP type EDA-QP-II
Solution set size 1500
Max iterations 2000
Max sol. length 10
Selection % 0.20
Learning rate 0.05
Perturb. freq. 50
Perturb. set size 750
Learn len. model No
Fitness avgerr, misses, eff
Function set CNOT, X, H, CC-

NOT, CZ, Z

(a) Run settings

Found solution Yes
Solution type Deterministic
Found in iteration 98
Solution size 3

(b) Solution details

Table 5.8: Details for 1-qubit imperfect copier solution #3

# id: sol[98:148487]

# fitness: 0.000300

# solution size: 3

begin_init

end_init

begin_code

op_CNOT( NULL, 1, 0 )

op_CNOT( NULL, 2, 0 )

op_CNOT( NULL, 0, 1 )

end_code

Program 9: Solution #3 for 1-qubit imperfect copier

Imperfect copier 2-qubit problem

Parameter Setting

GP type NGRAM-QP-II

Solution set size 2500

Max iterations 2500

Max sol. length 25

Selection % 0.20

Learning rate 0.01

1/2 -gram 0.05/0.95

Perturb. freq. 50

Perturb. set size 1250

Learn len. model No

Fitness misses

Threshold 0.50

Function set CNOT, CCNOT, X,

CSWAP, SWAP, H

(a) Run settings

Found solution Yes

Solution type Deterministic

Found in iteration 50

Solution size 11

Optimized size 4

(b) Solution details

Table 5.9: Details for 2-qubit imperfect copier solution #1
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The 2-qubit problem was definitely more difficult, but we managed to find a number

of solutions. Two solutions are shown here in their original forms and in their hand-

optimized forms. The first exact solution was found by NGRAM-QP-II and consisted of

11 gates. The original is shown in Program 10.

Parameter Setting

GP type NGRAM-QP-II
Solution set size 2500
Max iterations 2500
Max sol. length 25
Selection % 0.20
Learning rate 0.01
1/2 -gram 0.05/0.95
Perturb. freq. 50
Perturb. set size 1250
Learn len. model No
Fitness misses
Threshold 0.75
Function set CNOT, CCNOT, X,

CSWAP, SWAP, H

(a) Run settings

Found solution Yes
Solution type Deterministic
Found in iteration 2402
Solution size 14
Optimized size 4

(b) Solution details

Table 5.10: Details for 2-qubit imperfect copier solution #2

After some inspection it is easy to see that several of the gates can be removed:

• CCNOT(1,5,3) has no effect, because work qubit 1 is always going to start out as

0

• X(3) becomes lost, since right after this, qubits 1 and 3 are swapped and we never

again see the original 3

• CNOT(3,1) (the 5th gate) never gets activated because prior to this, qubit 3 is

swapped with qubit 1, which means that the control qubit for this gate is always

going to be 0 (since qubit 1 starts as 0)

• H(1) is useless because it puts qubit 1 in a superposition, but qubit 1 is not used

after this gate and since it is a work qubit it is not measured either

• CCNOT(2,1,5) is never activated, because the two controls will never both be 1;

qubit 2 cannot be 1 because the very early swap gate swaps qubits 0 and 2 and

qubit 0, a work qubit, is initially 0, which is now the value at qubit 2. No other

actions on qubit 2 change it before the CCNOT gate, so it never has a chance to

acquire a value other than 0.
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# id: sol[50:125856]

# fitness: 0.000000

# solution size: 11

begin_init

end_init

begin_code

op_CCNOT( NULL, 1, 5, 3 )

op_SWAP( NULL, 0, 2 )

op_X( NULL, 3 )

op_SWAP( NULL, 1, 3 )

op_CNOT( NULL, 3, 1 )

op_CNOT( NULL, 5, 3 )

op_H( NULL, 1 )

op_CCNOT( NULL, 2, 1, 5 )

op_CNOT( NULL, 4, 2 )

op_CNOT( NULL, 3, 1 )

op_CCNOT( NULL, 0, 5, 1 )

end_code

Program 10: Solution #1 for 2-qubit imperfect copier

|x1〉 • x1

|x2〉 • x2

|y1〉 × x1

|y2〉 × x2

|0〉 ×
|0〉 ×

Figure 5.8: Optimized solution #1 for 2-qubit imperfect copier

• CNOT(3,1) and CCNOT(0,5,1) at the very end do not matter, because they both

target qubit 1, which is a work qubit that is not used after these two gates, and

whose final value is not measured

After removing all the gates which have no effect on the solution we are left with a

very short solution as shown in Program 11 and as a quantum circuit in Figure 5.8. This

solution is very intuitive, as it can be generalized to an actual algorithm. It basically

says to throw away the second register (with the first two SWAP operations), which is

made up of qubits 1 and 2 and then just copy the second register over the first (with the

CNOT operations).

The second exact solution was also found by NGRAM-QP-II and consisted of 14 gates.

The original is shown in Program 12. Again we were able to optimize this solution and

reduce it to 4 gates, similar to the one before, by noting the following:
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# id: EDITED sol[50:125856]

# fitness: 0.000000

# solution size: 4

begin_init

end_init

begin_code

op_SWAP( NULL, 0, 2 )

op_SWAP( NULL, 1, 3 )

op_CNOT( NULL, 5, 3 )

op_CNOT( NULL, 4, 2 )

end_code

Program 11: Optimized solution #1 for 2-qubit imperfect copier

• SWAP(0,1) (two near the beginning) are both useless because both qubits 0 and 1

are work qubits and no operation changes either 0 or 1 between these two SWAP

gates

• CNOT(5,3) CNOT(5,3) (at the beginning) cancel each other out

• CSWAP(0,2,4) has no effect because the control qubit is 0

• SWAP(0,1) (last one) is useless because we use neither work bit after this point

• CNOT(5,3) CNOT(5,3) (at the end) cancel each other out

• SWAP(3,1) (the last two) cancel each other out, because nothing is done with

either qubit 3 or qubit 1 between these two

Having edited the original solution we obtain Program 13 and the quantum circuit in

Figure 5.9. This solution is pretty much the same as the one before, except here we can

think of it as throwing away the first qubit of the destination register (qubit 3), copying

the first qubit of the source (qubit 5) over it, making a copy of the second qubit (qubit

4) of the source register in one of the work bits (which we know started off cleared), and

finally swapping this work bit with the second qubit of the destination register (qubit

2).

Conclusions

Some of these solutions are clearly longer than they have to be, which makes sense since

we did not always use the efficiency component of the fitness function. A reason for this

was that we wanted to allow the evolver more room to encourage interesting patterns.

The 1-qubit case was solved by all GPs equally well. For the 2-qubit case, however,

we did have more success in general with ngram-QP than with the others; however, given

the random aspect of an evolutionary run we do not have enough data to support an

actual claim that ngram-QP is better for this problem.
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# id: sol[2402:6005607]

# fitness: 0.000000

# solution size: 14

begin_init

end_init

begin_code

op_SWAP( NULL, 0, 1 )

op_CNOT( NULL, 5, 3 )

op_SWAP( NULL, 0, 1 )

op_CNOT( NULL, 5, 3 )

op_SWAP( NULL, 3, 1 )

op_CNOT( NULL, 5, 3 )

op_SWAP( NULL, 3, 1 )

op_CSWAP( NULL, 0, 2, 4 )

op_CNOT( NULL, 4, 0 )

op_SWAP( NULL, 0, 2 )

op_SWAP( NULL, 3, 1 )

op_CNOT( NULL, 5, 3 )

op_SWAP( NULL, 0, 1 )

op_CNOT( NULL, 5, 3 )

end_code

Program 12: Solution #2 for 2-qubit imperfect copier

# id: EDITED sol[2402:6005607]

# fitness: 0.000000

# solution size: 4

begin_init

op_SWAP( NULL, 3, 1 )

op_CNOT( NULL, 5, 3 )

op_CNOT( NULL, 4, 0 )

op_SWAP( NULL, 0, 2 )

end_init

begin_code

end_code

Program 13: Optimized solution #2 for 2-qubit imperfect copier

|x1〉 • x1

|x2〉 • x2

|y1〉 × x1

|y2〉 × x2

|0〉 ×
|0〉 ×

Figure 5.9: Optimized solution #2 for 2-qubit imperfect copier
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We also experimented for the first time with the entanglement promotion component

of the fitness function, for the 1-qubit case. This led to the interesting second solution

(Program 8 and Figure 5.6), which as a result actually made use of a superposition to

compute the final answer.

Parameter Setting

GP type NGRAM-QP-I
Solution set size 50
Max iterations 1000
Max sol. length 10
Selection % 0.20
Learning rate 0.075
1/2/3 -gram 0.02/0.13/0.85
Perturb. freq. 50
Perturb. set size 25
Learn len. model No
Fitness misses, avgerr
Function set CNOT, CCNOT, CZ,

H, CH, Z, X

(a) Run settings

Found solution Yes
Solution type Deterministic
Found in iteration 2
Solution size 2

(b) Solution details

Table 5.11: Details for 1-qubit half-adder

Parameter Setting

GP type NGRAM-QP-II
Solution set size 500
Max iterations 2000
Max sol. length 10
Selection % 0.20
Learning rate 0.075
1/2 -gram 0.35/0.65
Perturb. freq. 50
Perturb. set size 250
Learn len. model No
Fitness avgerr, eff
Function set CNOT, CCNOT, CZ,

Z, X

(a) Run settings

Found solution Yes
Solution type Deterministic
Found in iteration 55
Solution size 4

(b) Solution details

Table 5.12: Details for 1-qubit full-adder

5.2.3 Problem #3: Adder

To remind the reader, we have two types of adders: the half-adder and the full-adder.

The former takes two (binary) numbers and computes the sum as the XOR of the two
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|x〉 • •
|y〉 •
|z〉

Figure 5.10: Solution for 1-qubit half-adder

numbers, plus a possible carry-bit. The latter may accept a carry-in bit in addition to

the two numbers and it computes the sum of all three numbers.

Expectations

Given efficient networks for the half-adder and full-adder problem made of CNOT and

CCNOT gates, as shown in multiple works [77, 22], we thought the sequences would easily

be picked up by ngram-QP and that EDA-QP would also be able to learn the circuits.

We expected the EDA-based GPs to have an advantage over NQP here, because NQP

relies on mutation only and might waste more time on functions that contributed nothing

to the fitness, while the learners should be able to pick out CNOT and CCNOT as the

better gates in the function set.

1-qubit half-adder

The 1-qubit half-adder has a very simple solution which was easily found by all the GPs.

It is shown in Program 14, with its circuit in Figure 5.10 and the details of this particular

run in Table 5.11.

1-qubit full-adder

The 1-qubit full-adder is slightly more complicated, but again the GPs were able to find

multiple solutions fairly quickly. We show here one minimal solution which was found

by including the efficiency component of the fitness function. The solution can be seen

in Program 15, with its circuit in Figure 5.11 and all details of the run in Table 5.12.

# id: sol[2:100]

# fitness: 0.000000

# solution size: 2

begin_init

end_init

begin_code

op_CCNOT( NULL, 1, 2, 0 )

op_CNOT( NULL, 2, 1 )

end_code

Program 14: Solution for 1-qubit half-adder

Both the half-adder and the full-adder are optimal circuits as given in literature [22].
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# id: sol[55:27616]

# fitness: 0.000400

# solution size: 4

begin_init

end_init

begin_code

op_CCNOT( NULL, 1, 2, 0 )

op_CNOT( NULL, 2, 1 )

op_CCNOT( NULL, 1, 3, 0 )

op_CNOT( NULL, 3, 1 )

end_code

Program 15: Solution for 1-qubit full-adder

|x〉 • •
|y〉 • •
|c〉 • •
|z〉

Figure 5.11: Solution for 1-qubit full-adder

Experiments with 2-qubit adders

While the 1-qubit adders are simple for all GPs, things get a lot more difficult when we

increase the operand size to 2 qubits. Having had success with the 1-qubit adders, we

attempted to implement a 2-qubit adder, expecting the patterns of CNOT and CCNOT

gates to be easily picked up by the ngram-QP; however, we failed to get an exact solution.

For a 2-qubit full-adder we require 7 qubits in order to make the adder reversible, which

means there are at least 64 testcases. The processing was thus considerably slow (for

max solution size of 100 and population size of 2500 it ran for several hours) and we only

ran a few trials with population sizes up to 2500, which appear to not have been large

enough sizes. The 2-qubit half -adder, however, requires only 32 testcases and 5 qubits

(with an encoding similar to the one we used for the 1-qubit case). After a few runs with

EDA-QP, NQP and ngram-QP we were not able to find a result and so we decided to

introduce the solution from the 1-qubit half-adder as an operator in our function set to

see if this might help things along.

We thus created the new operator:

PROC1(x, y, z) = CCNOT (z, y, x), CNOT (z, y) (5.9)

Basically PROC1 is an operator that takes three qubits as input and applies a CCNOT

gate to the first argument, with arguments two and three as controls, followed by a

CNOT gate to the second argument, with control the third. In this way we turned the
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Parameter Setting

GP type HQP
Sub EDA type EDA-QP-I
Solution set size 2750
Max iterations 2000
Max sol. length 22
Selection % 0.20
Mut. rate top 0.1
Mut. rate rest 1.00
Learning rate 0.05
Perturb. freq. 50
Perturb. set size 1350
Learn len. model No
Fitness misses
Function set PROC1, CNOT, CC-

NOT, H, T, S, W, X,
Z, CZ, SWAP

(a) Run settings

Found solution Yes
Solution type Probabilistic
Correctness 50.00% (all testcases)
Found in iteration 54
Solution size 3 (5 with PROC1 uncompressed)

(b) Solution details

Table 5.13: Details for 2-qubit half-adder

|x1〉 • •
|x2〉 • •
|y1〉 •
|y2〉 •

|z〉 H

Figure 5.12: Probabilistic solution for 2-qubit half-adder

1-qubit half-adder into a procedure which we hoped would become a building block for

the 2-qubit half-adder.

With this new operator, the GPs were able to find multiple probabilistic solutions,

though still no exact solution. The best probabilistic solution (correctness of 50% for

every testcase) was discovered by HQP. This is shown in Program 16 and Figure 5.12

and the details of the run are shown in 5.13. The dashed boxes in the circuit of Figure

5.12 group the operations of PROC1.

Conclusions

The 1-qubit problem was not as difficult as we might have expected and again all GPs

were able to solve this. We were particularly happy to see that efficient solutions were

found by using the efficiency component of the fitness function.

The more interesting problem was definitely the 2-qubit half-adder. Our expectations

were not met, as neither pure learner was able to find a good solution to this problem.

The best, though probabilistic, solution, was found by HQP, which would suggest that
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# id: sol[54:61688]

# fitness: 0.000000

# solution size: 3

begin_init

end_init

begin_code

PROC1( NULL, 0, 2, 4 )

PROC1( NULL, 2, 1, 3 )

op_H( NULL, 0 )

end_code

Program 16: Probabilistic solution for 2-qubit half-adder

|x〉 • x
|y〉 • y

|0〉 x ∗ y

Figure 5.13: Solution #1 for 1-qubit multiplier (just a CCNOT gate)

HQP’s capacity for exploration using the mutation functions which it shares with NQP

gave it an advantage over the pure learners for this particular problem.

As for the Deutsch-Jozsa problem, where we introduced WHT as a building block,

we saw improved performance when we gave the evolver a building block in the form of

a 1-qubit half-adder (PROC1).

5.2.4 Problem #4: Multiplier

Expectations

As with the adder, we thought this particular problem would be better-suited for the

learners, as we again expected a lot of CNOT and CCNOT gates in the solutions and

hoped the learners might pick out some patterns.

1-qubit multiplier

The 1-qubit multiplier is a trivial problem to solve using a GP, as it is implemented by

a single gate, the CCNOT gate, as seen in Figure 5.13.

2-qubit multiplier

NGRAM-QP-II was able to find a solution for the 2-qubit multiplier problem, albeit a

long one. The solution is given in Program 17. This solution is long, but upon inspection

it is clear that it can be drastically reduced:

• CCNOT(5,6,1) and CCNOT(6,5,1) cancel each other out

• CZ(3,2) and CZ(2,3) cancel each other out
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Parameter Setting

GP type NGRAM-QP-II
Solution set size 2500
Max iterations 2500
Max sol. length 25
Selection % 0.20
Learning rate 0.01
1/2 -gram 0.05/0.95
Perturb. freq. 50
Perturb. set size 1250
Learn len. model No
Fitness misses
Threshold 0.40
Function set CNOT, CCNOT, H,

Z, S, T, CZ

(a) Run settings

Found solution Yes
Solution type Deterministic
Found in iteration 216
Solution size 25
Optimized size 6

(b) Solution details

Table 5.14: Details for 2-qubit multiplier

• CCNOT(4,6,0) and CCNOT(6,4,0) cancel each other out

• CCNOT(5,7,2) and CCNOT(5,7,2) also cancel each other out, since in between no

gate operates on qubits 5, 7 or 2

• CCNOT(6,4,0) and CCNOT(4,6,0) (in the middle) cancel each other out

• S(4), CZ(3,7), CZ(3,2), CZ(2,3), Z(3), CZ(3,0), CZ(3,7), T(2), T(5) and Z(6) have

no effect, since all they do is (potentially, in the case of CZ) add a phase to the

state. Amplitude interference cannot occur in this program, since we do not have

any uses of a Hadamard gate and no superpositions.

• CNOT(3,4) is useless, because qubit 3 is never altered prior to this gate’s being

called and since qubit 3 is one of the answer qubits, the assumption is that it starts

out as |0〉.

After making all these changes we are left with a much shorter deterministic solution

as shown in Program 18 and illustrated as a quantum circuit in Figure 5.14.

Conclusions

We had originally hypothesized that this problem would be easier for the learners (ngram-

QP and EDA-QP) than for HQP or NQP; however, given the difficulty we had with

producing a 2-qubit half-adder in the previous experiment, a deterministic 2-qubit mul-

tiplier from NGRAM-QP-II came as a slight (pleasant) surprise. The solution was hand-

optimized and reduced to less than a 1
4 of its original size. This huge difference suggests

that ngram-QP is especially susceptible to bloat. This might also have been caused by a
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# id: sol[216:541355]

# fitness: 0.000000

# solution size: 25

begin_init

end_init

begin_code

op_CCNOT( NULL, 6, 4, 0 )

op_CCNOT( NULL, 6, 5, 1 )

op_S( NULL, 4 )

op_CZ( NULL, 3, 7 )

op_CCNOT( NULL, 5, 7, 2 )

op_CCNOT( NULL, 6, 4, 0 )

op_CCNOT( NULL, 5, 6, 1 )

op_CCNOT( NULL, 5, 7, 2 )

op_CCNOT( NULL, 6, 5, 1 )

op_CZ( NULL, 3, 2 )

op_CZ( NULL, 2, 3 )

op_Z( NULL, 3 )

op_CCNOT( NULL, 4, 6, 0 )

op_CZ( NULL, 3, 0 )

op_CZ( NULL, 3, 7 )

op_CCNOT( NULL, 4, 6, 0 )

op_CCNOT( NULL, 6, 4, 0 )

op_CCNOT( NULL, 4, 7, 1 )

op_CCNOT( NULL, 7, 5, 2 )

op_CNOT( NULL, 3, 4 )

op_T( NULL, 2 )

op_T( NULL, 5 )

op_CCNOT( NULL, 2, 0, 3 )

op_Z( NULL, 6 )

op_CNOT( NULL, 3, 2 )

end_code

Program 17: Solution for 2-qubit multiplier

|x1〉 • • x1
|x2〉 • • x2
|y1〉 • • y1
|y2〉 • • y2

|0〉 • z1

|0〉 • z2

|0〉 z3

|0〉 • z4

Figure 5.14: Optimized solution for 2-qubit multiplier
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# id: EDITED sol[216:541355]

# fitness: 0.000000

# solution size: 6

begin_init

end_init

begin_code

op_CCNOT( NULL, 6, 4, 0 )

op_CCNOT( NULL, 6, 5, 1 )

op_CCNOT( NULL, 7, 4, 1 )

op_CCNOT( NULL, 7, 5, 2 )

op_CCNOT( NULL, 2, 0, 3 )

op_CNOT( NULL, 3, 2 )

end_code

Program 18: Optimized solution for 2-qubit multiplier

very low learning rate, which effectively slows down the learning process and allows for

much greater variety in the solutions, which could lead to long sequences that are useless

(but also to greater exploration). Looking at the original solution in Program 17 it is

obvious that the model this solution was drawn from is not optimal as it produces long

sequences that have no effect. As a result this solution was found on very precarious

grounds, as a replacement of a single one of its many useless gates might easily disturb

the sequence of 6 transformations which make up the real solution.

5.2.5 Problem #5: Minimum finder

The minimum-finder problem is interesting because it tries to determine a global property

of a function. A procedure to find a minimum of a function might also be very useful as

a building-block for more complex programs.

Expectations

This particular problem is the single one of our set where we were expecting a guarantee

of visible quantum effects, given that the input for each testcase is a superposition of

values representing a permutation function and the whole idea was to find some optimal

way to detect a global property of each function, namely, the minimum. We did not

know in advance what a solution might look like; however, we did expect multiple uses of

Hadamard gates and controlled operations. Our hypothesis for this particular experiment

was that HQP would be the best of the EDA-based variants, as it has a greater ability

to explore the search space.
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|x〉 • H

|y〉

Figure 5.15: Solution for 1-qubit minimum-finder

1-qubit minimum-finder

A short deterministic solution was found for this problem as seen in Program 19 and

Figure 5.15. It is interesting to note that the input states are two of the Bell states. Recall

that the Bell states are entangled. The program essentially undoes the entanglement.

Parameter Setting

GP type NGRAM-QP-I
Solution set size 1500
Max iterations 2000
Max sol. length 2
Selection % 0.20
Learning rate 0.01
1/2/3 -gram 0.02/0.13/0.85
Perturb. freq. 50
Perturb. set size 750
Learn len. model Yes
Fitness avgerr, misses
Function set CNOT, CZ, S, T, CS,

H, SWAP, X

(a) Run settings

Found solution Yes
Solution type Deterministic
Found in iteration 0
Solution size 2

(b) Solution details

Table 5.15: Details for 1-qubit minimum-finder

# id: sol[0:444]

# fitness: 0.000000

# solution size: 2

begin_init

end_init

begin_code

op_CNOT( NULL, 1, 0 )

op_H( NULL, 1 )

end_code

Program 19: Solution for 1-qubit minimum-finder

2-qubit minimum-finder

A probabilistic solution for this problem was found by EDA-QP-II as shown in Program

20 and its slightly optimized circuit in Figure 5.16. By hand we found that two of the
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Parameter Setting

GP type EDA-QP-II
Solution set size 1500
Max iterations 2000
Max sol. length 25
Selection % 0.20
Learning rate 0.05
Perturb. freq. 50
Perturb. set size 1875
Learn len. model Yes
Fitness avgerr, misses
Threshold 0.52
Function set CNOT, H, SWAP, X,

CCNOT, Z

(a) Run settings

Found solution Yes
Solution type Probabilistic
Correctness 56.25% (all testcases)
Found in iteration 153
Solution size 10
Optimized size 7

(b) Solution details

Table 5.16: Details for 2-qubit minimum-finder

gates could be removed; namely, the CNOT(1, 3) gates, as they cancelled each other

out, since no operator works on qubits 1 or 3 between these two. The last gate in the

solution, CCNOT(2, 3, 1) turned out to also have no effect on the final result, since qubit

1 is not read out.

# id: sol[153:230778]

# fitness: 0.000000

# solution size: 10

begin_init

end_init

begin_code

op_CCNOT( NULL, 0, 1, 2 )

op_CNOT( NULL, 1, 3 )

op_CNOT( NULL, 1, 2 )

op_CNOT( NULL, 0, 2 )

op_CNOT( NULL, 1, 3 )

op_H( NULL, 1 )

op_CNOT( NULL, 1, 0 )

op_H( NULL, 1 )

op_CCNOT( NULL, 0, 1, 3 )

op_CCNOT( NULL, 2, 3, 1 )

end_code

Program 20: Solution for 2-qubit minimum-finder

While the solution is only probabilistic, it achieves a correctness of 56.25% for every

testcase in the suite.
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|x1〉

|x2〉

|f(x)1〉 • • H • H •

|f(x)2〉 • • •

Figure 5.16: Optimized solution for 2-qubit minimum-finder

Conclusions

Our hypothesis for this experiment was proved wrong, as all solutions we found came

from EDA-QP and not from HQP. We were not able to find a deterministic solution for

the 2-qubit case, but did not spend a lot of time looking for one and believe it might in

fact be possible to improve the performance with longer running times (more iterations)

and larger population sizes.

What we thought was interesting was that the EDA-QP found a solution that only

saw a 30% reduction in size when we optimized it by hand. This was one of the few

runs when we actually activated the length learner as well and it appears that this model

played a big role in focusing the search. By iteration 153 in which our solution was found,

the length model had most of its probability mass in the range [5, 12]. EDA-QP also

exhibits high-location dependence for its functions and inputs, since as was described in

Chapter 4, the models use node index in a solution as the independent variable. This

prompted us to try an experiment with NGRAM-QP-I (where inputs are modelled as

location-dependent) and an activated length model to see if we could do better. We

did in fact not do better, but we were able to find a probabilistic solution of 11 gates.

Further experiments were not attempted; however, we have mentioned previously that

the length model tends to keep sizes to a minimum and we think it might be worthwhile

to use it together with ngram-QP to see whether it could help minimize the bloat.

5.2.6 Problem #6: 2-element (ascending-order) sorter

Expectations

As our final experiment, the 2-element sorter was expected to also be a very good problem

for the learners.

1-qubit case

The 1-qubit problem has a very short solution using the oracle encoding. The 2 most

popular solutions that were found multiple times by the EDA-based GPs are shown in

Programs 21 and 22 with their respective circuits in Figures 5.17 and 5.18. The details

of these runs are found in Tables 5.17 and 5.18.
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|x〉

Oracle|y〉

|0〉 • •

Figure 5.17: Solution #1 for 1-qubit 2-element sorter (oracle-based)

|x〉

Oracle

×

|y〉 ×

|0〉 •

Figure 5.18: Solution #2 for 1-qubit 2-element sorter (oracle-based)

# id: sol[1:2107]

# fitness: 0.000000

# solution size: 3

begin_init

end_init

begin_code

oracle( NULL )

op_CNOT( NULL, 0, 2 )

op_CNOT( NULL, 0, 1 )

end_code

Program 21: Solution #1 for 1-qubit 2-element sorter (oracle-based)

# id: sol[30:307]

# fitness: 0.000000

# solution size: 2

begin_init

end_init

begin_code

oracle( NULL )

op_CSWAP( NULL, 0, 1, 2 )

end_code

Program 22: Solution #2 for 1-qubit 2-element sorter (oracle-based)
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Parameter Setting

GP type NGRAM-QP-II
Solution set size 1500
Max iterations 2000
Max sol. length 3
Selection % 0.20
Learning rate 0.01
Perturb. freq. 50
Perturb. set size 750
Learn len. model Yes
Fitness avgerr, misses
Function set CNOT, H, SWAP, X,

CCNOT, Z, ORA-
CLE, S, CS

(a) Run settings

Found solution Yes
Solution type Deterministic
Found in iteration 1
Solution size 3

(b) Solution details

Table 5.17: Details for 1-qubit 2-element sorter #1 (oracle-based)

|x1〉 • × • × • • ×
|x2〉 × • × × ×
|y1〉 × × ×
|y2〉 × × × ×

|0〉 • • • • • • •

Figure 5.19: Optimized solution for 2-qubit 2-element sorter (non-oracle-based)

2-qubit case (non-oracle)

As mentioned in the experimental set-up we looked at two different ways of encoding the

2-qubit sorter. One used an oracle and the other did not. For our first experiment we

tried to sort without an oracle. A solution was found by NGRAM-QP-II and is shown

in Program 23 and as a circuit in Figure 5.19. An interesting thing to note is that this

solution was found at iteration 1701, shortly after we had perturbed the distribution

models with some random samples. The fitness had hovered around 2 (missed testcases)

for several iterations leading up to that point, when it suddenly found a solution. This

might be an indication that the random perturbation option (see Chapter 4 for more

details) is indeed working to keep the models exploring. Details of this run can be found

in Table 5.19.

Finally, we attempted to find a sorter using the oracle encoding described earlier. We

had a result using NGRAM-QP-II, which is shown in Program 24 in smallqc syntax, as

well as a quantum circuit in Figure 5.20. Details of this run can be found in Table 5.20.

It appears that the GP did what we expected and came up with a very simple algorithm

that swaps the given registers conditional on the green light of the oracle.
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# id: sol[1701:4252811]

# fitness: 0.000000

# solution size: 23

begin_init

end_init

begin_code

op_CSWAP( NULL, 0, 4, 2 )

op_CNOT( NULL, 4, 0 )

op_CSWAP( NULL, 0, 3, 1 )

op_CSWAP( NULL, 0, 4, 2 )

op_CNOT( NULL, 3, 0 )

op_CSWAP( NULL, 0, 2, 4 )

op_CSWAP( NULL, 0, 2, 4 )

op_CSWAP( NULL, 0, 1, 3 )

op_CNOT( NULL, 4, 0 )

op_CNOT( NULL, 4, 0 )

op_CSWAP( NULL, 0, 2, 4 )

op_CSWAP( NULL, 0, 1, 3 )

op_CSWAP( NULL, 0, 1, 3 )

op_CSWAP( NULL, 0, 4, 2 )

op_CNOT( NULL, 4, 0 )

op_CSWAP( NULL, 0, 2, 4 )

op_CNOT( NULL, 4, 0 )

op_CSWAP( NULL, 0, 1, 3 )

op_CNOT( NULL, 4, 0 )

op_CSWAP( NULL, 0, 1, 3 )

op_CNOT( NULL, 4, 0 )

op_CNOT( NULL, 4, 0 )

op_CSWAP( NULL, 0, 4, 2 )

end_code

Program 23: Solution for 2-qubit 2-element sorter (non-oracle-based)

|x1〉

Oracle

×

|x2〉 ×

|y1〉 ×

|y2〉 ×

|0〉 • •

Figure 5.20: Solution for 2-qubit 2-element sorter (oracle-based)
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Parameter Setting

GP type EDA-QP-II
Solution set size 10
Max iterations 2000
Max sol. length 2
Selection % 0.20
Learning rate 0.05
Perturb. freq. 50
Perturb. set size 5
Learn len. model Yes
Fitness avgerr, misses
Function set CNOT, H, SWAP, X,

CCNOT, Z, ORA-
CLE, S, CS, CSWAP

(a) Run settings

Found solution Yes
Solution type Deterministic
Found in iteration 30
Solution size 2

(b) Solution details

Table 5.18: Details for 1-qubit 2-element sorter #2 (oracle-based)

# id: sol[192:481615]

# fitness: 0.000300

# solution size: 3

begin_init

end_init

begin_code

oracle( NULL )

op_CSWAP( NULL, 0, 1, 3 )

op_CSWAP( NULL, 0, 4, 2 )

end_code

Program 24: Solution for 2-qubit 2-element sorter (oracle-based)

Conclusions

We saw most solutions to this problem from the pure learners, EDA-QP and ngram-

QP, but the set-up based on the idea of an oracle was conducive to good performance

by the learners. The more interesting case was the non-oracle 2-qubit sorter. For this

particular case we did not find any other solution than the one returned by ngram-QP

using NGRAM-QP-II. Recall that NGRAM-QP-II models sequences of function-target

pairs, where a relationship is thus established between functions and their target qubits.

It appears as though the solution (Program 24 and Figure 5.20) sees a lot of repetition

of CNOT gates with target qubit 0 and CSWAP gates with target qubits 1, 2, 3 and 4.

NGRAM-QP-II was the only one of our GP variants that was capable of learning the

features of a solution that would lead to this particular one.
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Parameter Setting

GP type NGRAM-QP-II
Solution set size 2500
Max iterations 2500
Max sol. length 25
Selection % 0.20
Learning rate 0.01
1/2 -gram 0.05/0.95
Perturb. freq. 50
Perturb. set size 1250
Learn len. model No
Fitness misses
Function set CNOT, H, SWAP, X,

CCNOT, Z

(a) Run settings

Found solution Yes
Solution type Deterministic
Found in iteration 1701
Solution size 23
Optimized size 12

(b) Solution details

Table 5.19: Details for 2-qubit 2-element sorter (non-oracle-based)

5.2.7 Summary

Clearly not all of our experiments were successful. By examining the EDA models

throughout the runs it is easy to see that even though sometimes the models converge,

the convergence is at times sub-optimal, as with the length model which was often biased

towards shorter sizes. During other runs, the distribution models would stay fairly

uniform, which effectively made the learner GP act similar to NQP. Some problems,

like the 2-qubit non-oracle-based sorter seem to be fair candidates for the learner GPs,

but little can be said about the general performance of the learner GPs on arbitrary

problems.

Numerous experiments point to ngram-QP having a higher probability of generating

a lot of bloat, which makes it more difficult to identify the good functions within a

sequence littered with useless functions. ngram-QP with the NGRAM-QP-II option

was possibly our most successful GP variant throughout all the runs, so even though it

generates a lot of by-products, it might be possible that it uses this to its advantage.

NGRAM-QP-II is the only one of the variants which models neither inputs nor functions

as location-dependent and instead tries to approximate global properties.

The fact that HQP dealt better with one of the harder problems (the 2-qubit half-

adder) than did the pure learner GPs, suggests, as does the literature reviewed in Chapter

3, that quantum programming is a difficult task for a GP and a better ability to mutate

results in more successful jumps across a fitness landscape that is rugged, unwelcoming

and difficult to navigate.

The few problems we have tried are small in size and the circuit-level programming

is extremely low-level, rendering a sequence of operations immensely sensitive to pertur-

bations. For this reason we think that the results in this chapter might not be the best
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Parameter Setting

GP type NGRAM-QP-II
Solution set size 2500
Max iterations 2000
Max sol. length 15
Selection % 0.20
Learning rate 0.075
1/2 -gram 0.05/0.95
Perturb. freq. 50
Perturb. set size 1250
Learn len. model No
Fitness misses, err, eff
Function set CNOT, CCNOT, CZ,

H, WHT, CH, OR-
ACLE, Z, X, SWAP,
CSWAP

(a) Run settings

Found solution Yes
Solution type Deterministic
Found in iteration 192
Solution size 4

(b) Solution details

Table 5.20: Details for 2-qubit 2-element sorter (oracle-based)

indicators of future performance on more complex, but higher-level problems. Unfortu-

nately, at present such experiments are not feasible, due to the difficult task of simulating

quantum hardware and most likely will not be possible before we have working quantum

computers.

The inclusion of WHT for the Deutsch-Jozsa experiments, CSWAP for the sorter and

and the multi-gate PROC1 operator for the adder experiments all improved performance

and helped guide the evolver to better and more efficient solutions. This is to be expected,

as these operators can be thought of as building blocks that give extra power and cohesion

to the evolver. To conclude this chapter on a positive note, perhaps more of these building

blocks can be identified and added to the function set, as more problems are explored,

in the future.

104



Chapter 6

Conclusions and future work

“Problems worthy of attack prove their worth by hitting back”1

The process of this thesis has spawned many new ideas that unfortunately were not

possible to attempt within the time constraints. Several ideas were narrowed down to

the topic presented in this thesis; that is, the evolution of quantum programs through

EDA-based GP. But several more ideas that we believe are more interesting and have

potential for future research are more than just slight extensions of the current topic

and so this chapter begins with conclusions and potential improvements to the current

EDA-based GP framework for evolution of quantum programs and then proceeds into a

lengthier discussion on how we might branch for future research.

6.1 Conclusions

The original hypothesis of this work was that a) quantum programs exhibit sequential

patterns and relationships between their functions and inputs that can be mined to help

automatically generate programs and b) a stochastically-driven GP engine with an addi-

tional learner to intelligently perturb features could have an advantage over one without

the learner.

The results presented in the previous chapter were too ambiguous to either prove or

disprove the hypothesis. The four instances of GP that were tested against each other

seemed to perform equally well on the problems that were able to be solved and equally

poorly on the problems that were not solved. In some cases the EDA-based GPs did

perform better; however, given that each run took a few hours to complete, not enough

experiments were completed to make an actual claim that the these approaches were in

any way better.

1 Anonymous quote, taken from Contemporary Abstract Algebra [19].
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As for the second point, we found no evidence that either NQP which was fully driven

by mutation, or the HQP, which used intelligent mutation performed better. The test

problems were small, however, and we feel it is too early to generalize the results to

larger-scale problems.

6.1.1 Potential flaws

While some of the results we achieved were interesting, we realize the methodology has

a few shortcomings (both at the implementation level and the experimentation level),

which we shall try to address here.

Lack of data

Machine learning requires data [6, 14] on which to operate and from which to learn; hence

the three EDA-based GP instances all require data to learn from. During a GP run this

data comes from candidate solutions which have a better relative fitness; however, the

knowledge an EDA model acquires is recycled at each iteration and fed back into a new

sample population which then proceeds to reinforce or improve the model. It is difficult

to realize great amounts of data from which to learn, as the limitations imposed on a

quantum simulation force us to keep solution set size small. The fewer solutions a model

has to work with at a particular iteration, the less it can learn.

For the N-gram approaches it is also very important to have longer programs to

learn from, such that more sequences may be observed. It is difficult for the N-gram

distributions to be learnt properly, especially when our function set is large and not

enough good solutions appear at each iteration. In many of our solutions which we had

to optimize by hand, introns2 accounted for a large number of the gates; that is, useless

code took up a lot of space (seemingly) unnecessarily. While the GPs all allowed for

variable-sized solutions to be generated, we did use an upper bound on the size, so as to

avoid high computation times and to focus the search on smaller, more efficient solutions.

Despite this and despite the occasional use of the efficiency component (see Chapter 4)

in the fitness evaluation, a lot of introns still made their way into our solutions. If it were

not for the space they take up in the candidate solutions and the misleading (useless)

information they feed to the models, introns in a final solution would not be a big deal,

as we can always edit a solution by hand, as we did multiple times in Chapter 5.

One of our distribution models attempted to learn the length of a solution. We found

early on that this did not always lead to good results. The length model had a tendency

for premature convergence, which in retrospect makes sense when we recognize that there

is even less data at each iteration for the length model to work with. An N-gram, for

2 An intron in GP [2] is a small piece of code which has no effect on the overall fitness of a solution; that
is, the code is useless, for example, such as a no-op function, or a sequence of CNOT(0,1) - CNOT(0,1)
gates, which cancel each other out.
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example is able to split up one solution into multiple segments to learn from, while the

length model only gets a single length value from each solution in the set. We added an

option to turn off the learning of the solution size and found that our results improved

considerably.

6.2 Improvements

Several improvements could be made to the methodology of Chapter 4. Here we discuss

four main ideas: quantification of entanglement, self-adaptive parameters, variable-length

ancilla register and data mining of known algorithms.

6.2.1 Entanglement

There is at least one feature that was intended to be implemented as part of the EDA-

based approaches of Chapter 4. Unfortunately, this feature has been left out for now

and is considered for future work. Entanglement is an essential quantum property which

allows for interesting behaviours, such as the teleportation circuit discussed in Chapter

2. On the convoluted road to understanding entanglement, we thought it would be

especially interesting to see what a GP would do with the ability to measure entanglement

and induce entanglement into its solutions through positive reinforcement from a fitness

function. Quantifying entanglement is not an easy process [24, 78], but for small systems

of 2 and 3 qubits it could be possible to track entanglement and its effects on a quantum

state, throughout the entire solution. We have only introduced a very simple component

to the fitness function in Chapter 4, which favours solutions that might have the potential

for entanglement production, as suggested by specific sequences of gates. As discussed

in Chapter 4, this component does not guarantee that a solution which produces and/or

uses entanglement will be recognized. As such, an interesting improvement to the fitness

function might be a full-fledged entanglement-quantifier.

While our methodology was able to generate reversible circuits made of quantum

gates, a lot of the results were not strictly-quantum circuits, in that they made no

special use of entanglement or superposition. We believe the fitness function would be a

great way to promote quantum properties in our solutions.

6.2.2 Self-adaptive parameters

GP often makes use of self-adaptive parameters [49], such as crossover rates which are

lowered as a solution set starts to converge, or mutation rates which are increased as a

solution set starts to stagnate.

The N-gram GP and HQP with an N-gram learner used different rates to combine the

use of a unigram, a bigram and a trigram. These rates were set by the user before a run
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and never changed throughout a run. It might be instructive to allow self-adaptation of

these parameters, as a run proceeds. For example, at the beginning of the evolutionary

process it makes little sense to heavily rely on the bigram and trigram models, as these

have not had a chance to properly learn anything yet. So at the beginning of a run, the

parameters could perhaps be 0.75 0.10 0.05, to encourage the use of the unigram. As the

models gather more data these parameters could change to reflect the new confidence

in the bigram and trigram models, by increasing their rates and decreasing that of the

unigram.

Other parameters that can be self-adapted are the learning rates for all the models.

We currently use a constant learning rate, which is also set by the user at run-time.

A larger learning rate allows for faster learning, but can lead to overshooting and sub-

optimal convergence. A learning rate that is too low would slow down the process

substantially. Allowing the learning rate to increase or decrease according to the quality

of the current iteration’s candidate set, or some indicator that the evolution is either not

going well, or indeed going well, might help to speed up the process, or avoid sub-optimal

convergence.

6.2.3 Training data and bias

One of the main motivators for an EDA-based approach for generation of quantum

programs was the relative ease with which one could bias the original solution set to

knowledge extracted from previous programs, algorithms and even concepts. As more

quantum algorithms are developed these can be gathered as training data and mined in

order to create the prior models for a GP run. Earlier it was mentioned that a major

reason the N-gram approach might not have done as well as hoped was the lack of data.

Not only more programs, but longer programs would be especially helpful to the N-

gram approach, as longer programs would have more potential for exhibiting sequential

patterns. Observing longer sequences might even allow the modelling of a 4-gram or

greater.3 As we gather more data from known successful programs and algorithms, we

can build much better prior models for an EDA-based approach4 which might lead to

an improved performance of our method.

For a simple example of how biasing the priors might help, we can think back to the

imperfect copy machine of Chapter 5, in which our input contained two registers src and

dst (not in a superposition) and we wished to replicate src’s contents in dst (essentially

copying a computational basis state). We do not suppose that dst is clear (zeroed) and

instead use a number of pre-zeroed work qubits which we can swap with the qubits of

3 Actually, we expect, that as in natural language computing, a tri-gram is probably no worse than
anything larger than that and probably the better choice [36], due to its lesser dimensionality, but even
so it might still be worthwhile to study longer sequences for quantum code, given that, for example, the
amplitude amplification step in Grover’s search is longer than 3 gates.

4 Currently our prior models are uniform.
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dst to ensure that the destination register may become clear. With such knowledge we

could bias the priors to include SWAP operations on the work qubits and qubits of dst.

For EDA-QP-II, where operators and their inputs are modelled versus node locations we

can ensure that for example, the first nodes are such SWAP operations to clear out dst

before we attempt to copy src into it.

As another example for the same problem, we could restrict 2-qubit operations be-

tween qubits of src and qubits of dst to only go one way; that is, control qubits would

always be those of src and target qubits could be those of dst, but not the other way

around.

As a third example, recall the quantum teleportation protocol of Chapter 2, whose

GP evolution in previous work was discussed in Chapter 3. In the protocol two parties

own different qubits and they may not perform operations on each other’s qubits. Such

restrictions could easily be incorporated by the prior models.

As a final example, it would be possible to bias the length model to longer solutions,

if we know for sure that a solution cannot possibly be made up of 1 or 2 nodes, or if we

have some specific idea about how large a solution might be.

6.2.4 Variable-length ancilla registers

Ancilla qubits are really important to a computation, as they are able to hold temporary

values, control operations on other qubits and swap out garbage data from qubits with

unknown starting values. Our experiments all used fixed-length ancilla registers, for

obvious reasons which included the need to keep the overall tensor length down for

feasible simulations and the need to restrict the number of possible combinations of

functions and operands, for smaller search spaces and higher probability of success.

Allowing the GP to use variable-length ancilla registers might lead to more flexible

evolution. Of course this adds a burden to the simulator and to the entire evolutionary

process as a result, but multiple (temporary) work qubits might allow a problem to

complete quicker, or better. This is especially true in the absence of a ZERO gate (as

with our GPs), as the only way to ensure a qubit is 0 is by swapping it with an ancilla

qubit which we assume starts off in a state of 0.

To keep the computational costs down we could use hybrid computations, where

classical and quantum bits combine. For example, we might use classical work bits

instead of qubits, simply to control other operations. Obviously such bits could not exist

in superpositions and would not form a valid part of the quantum tensor, but they might

be useful to control operations. We could limit the actions of and on the classical bits

through the biased priors.

Finally, with variable-length ancilla registers we might also use an additional distri-

bution model to learn the optimal length for the register for a given problem.
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6.3 Future research

The ideas for future research are best introduced as the following two questions:

1. Can we automatically generate coherent quantum programs using GP?

2. Might GP be more successful for a different model of quantum computation?

Let us revisit each question in turn.

6.3.1 Automatic fault-tolerant quantum programming

To the knowledge of the author, all the quantum programs and algorithms studied from

a GP point of view thus far have been generated under the implicit assumption that the

final result (the program) would run in an ideal environment5. In reality, as mentioned

in Chapter 2, a quantum computer will never be able to run in a completely isolated

environment; it will always be susceptible to random changes triggered by its interactions

(even though they may be slight) with the larger system in which it is contained. These

interactions might cause unpredictable decoherence and partial collapse of quantum su-

perpositions. This effectively renders an idealist quantum algorithm unpredictable, in

practice, even though in theory the algorithm might be deterministic.

Quantum error correction [13, 23, 52] deals with correcting decoherence errors in

quantum computations, much like classical error correction attempts to correct bit flip

errors in classical communications. Unlike classical calculations, where the only pos-

sible error is a bit flip, in quantum computing there are multiple types of errors: the

bit flip (think gate X or NOT), the phase flip (think gate Z) and random perturba-

tions to amplitudes – something that cannot be observed in a classical bit. Current

quantum technology is ever so sensitive to decoherence and it is unrealistic to expect fu-

ture technology to handle coupling with the environment with significant improvements

in precision. Thus, quantum error correction will continue to be essential to quantum

computation and we believe that GP might be a very useful tool to learn coherent and

fault-tolerant quantum circuits and programs. Coherence here refers to the ability of

the quantum circuits (and programs) to deal with and correct errors. This is something

that can be built into a circuit itself and thus could also be encouraged or promoted by

a suitably-defined fitness function.

5 This point can be debated, since we have discussed work by Spector and Massey and others [40, 66,
20] which generated probabilistic quantum programs and the simple fact that these were probabilistic
solutions in a sense allowed for unexpected quantum state changes, as long as we view a non-deterministic
choice as a random collapse of the quantum state and assume it can be deffered as a normal measurement
would.
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6.3.2 GP for alternate models of quantum computation

Just as in classical computing the digital circuit model is not the only model of computa-

tion, in quantum computing there are other models of computation besides the quantum

circuit model, although, the quantum circuit model is possibly the easiest model to

comprehend, as it is most alike the standard classical model.

Three main models of quantum computation are 1) the quantum circuit, 2) the quan-

tum Turing machine [11, 18] and 3) the quantum cluster-state [54, 41]. These three are

equivalent, in that either of them can simulate the other two, in polynomial time. The

quantum Turing machine, just like its classical counterpart is very useful as a theoretical

construct, but not very practical. The current standard model of quantum computation

is based on the classical circuit model. As such, the standard model is a quantum circuit

model, in which a state in memory (a register of qubits) evolves through time as a result

of interacting with unitary operations (quantum gates), similar to the way a classical

bit register evolves through time as a result of interactions with classical gates. Another

model for quantum computation is measurement-based quantum computation [28], in

which changes in the quantum system are not effected by unitary transformations, but

instead by measurements on subsets of the qubits in the system [28, 8, 53, 44]. All known

models of quantum computation are equivalent, in that one can be used to efficiently

simulate another; however, studying each model in its own right offers new insights into

quantum algorithms and the quantum effects at the heart of these algorithms.

GP for the cluster-state model

There are a few different approaches to measurement-based quantum computation, such

as the cluster-state model [53], and the teleportation quantum model [28], which is based

on the quantum teleportation protocol (see Chapter 2). In the cluster-state model a

graph (or lattice) of qubits (for real applications this would most likely be a really large

number of qubits) is initially prepared in an entangled state. The graph’s vertices rep-

resent qubits of the system, while any edges in the graph represent an entanglement

between the connected qubits. The qubits can normally be prepared in the superposi-

tion state |+〉 = 1√
2
(|0〉 + |1〉). A CZ gate (controlled-Z gate) can then be applied to

each edge of the graph to entangle qubits which are neighbours. This entanglement is

independent of the problem being solved and is purely a resource used for computation

[53]. Information is processed by measuring certain qubits, in a specific order, where

measurements on subsequent qubits are done in bases which are sometimes dependent

on measurement results of prior qubits. As such, the measurement bases are “adap-

tive” and a cluster-state quantum algorithm is defined by the temporal ordering of the

measurements. The entanglement in the cluster state allows information to flow, which

is somewhat analogous to the information flow in quantum teleportation. It has been

shown that the cluster-state model is equivalent to the quantum circuit model, in that the
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cluster-state model can be used to simulate any algorithm in the quantum circuit model

and vice versa [53]. Raussendorf and Briegel [53] describe the computational model of

cluster-state computing as distinct from the network model, with focus on what they

call the information flow vector, which propagates measurement results throughout the

cluster and in a sense replaces the idea of the qubit as the quantum unit of information.

GP could be useful in a number of ways for evolution of cluster-state quantum pro-

grams and algorithms. Firstly, a unitary transformation in the cluster-state model hap-

pens as the result of a measurement; however, this measurement has to be in a specific

basis (not always the standard basis). A GP could be used to decompose different trans-

formations into a sequence of measurements in various bases, in an efficient manner.

Such a decomposition might be useful in practice when actually building devices that

operate on the cluster-state model.

A GP might also be used to evolve cluster-state programs (and algorithms) by mod-

elling a solution as a list of nodes, where each node encodes a measurement on a partic-

ular qubit in the lattice. The lattice restricts the length of the programs, as each qubit

can be measured exactly once and so an EDA-based approach where measurements are

location-specific might be useful.

Finally, GP might be used to exploit the entanglement resource and find optimal

ways of using entanglement in the lattice, for a particular problem.

As mentioned, the cluster-state model is not the only model of quantum computation

and it is not even the only in the class of measurement-based models, but it is an

interesting model as it emphasizes the importance of entanglement for computation. It

could be that the cluster-state model might be more amenable to a GP and a study of

the fitness landscape of a cluster-state model GP versus a circuit model GP might show

promise.

6.4 Summary

The automatic generation of quantum programs is a difficult task, but there remain many

as yet unexplored paths. Several of the results we have achieved would indicate that it

might be possible to use EDA-based GP as an aid in the generation process of quantum

circuits and programs, while our probabilistic results might encourage further improve-

ments to the subarea of automatic quantum programming. Not all of our experiments

were successful, however, even after multiple attempts and for this reason, we would like

to emphasize once again the difficulty of automatic low-level quantum programming. We

have discussed how it might be possible to improve the current methodology and have

suggested several paths for further research, which we believe could hold promise for the

future of automatic quantum programming.
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Appendix A

Complex math basics

Complex numbers play an important role in quantum mechanics. This section reviews

the essentials, as relevant to this thesis. A complex number z is a 2-dimensional

mathematical entity, of the form:

z = a+ bi;

where a, b ∈ R and i satisfies i2 = −1.

A complex number can thus be described by its real part,

Re(z) = a

and its imaginary part,

Im(z) = b.

The complex conjugate of a complex number z = a+ bi is defined as:

z̄ = a− bi

Given two complex numbers v = a + bi and w = c + di, addition and subtraction are

defined as:

z = v ± w = (a± c) + (b± d)i

multiplication is defined as:

z = vw = ac+ adi+ bci+ bdi2 = ac+ (ad+ bc)i+ bd(−1) = (ac− bd) + (ad+ bc)i
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and division is defined as:

z =
v

w
=
vw̄

ww̄
=

(a+ bi)(c− di)
(c+ di)(c− di)

=
(ac+ bd) + (bc− ad)i

c2 + d2
. (A.1)

The norm or modulus of a complex number z is a scalar defined1 by the inner product

of z and its complex conjugate z̄:

‖z‖ =
√
zz̄

=
√

(a+ bi)(a− bi)

=
√
a2 − abi+ abi− b2i2

=
√
a2 − b2(−1)

=
√
a2 + b2

≥ 0

(with equality only when z = 0).

A complex number z can also be represented by a 2-dimensional vector:(
a

b

)
.

We can now think of a complex number as a point in a plane (for example, the X-Y

plane). This gives a complex number z = a+ bi a non-unique polar representation:

a = ‖z‖ cos θ and b = ‖z‖ sin θ

where θ = tan−1
(
a
b

)
and z = ‖z‖(cos θ + i sin θ).

Euler’s formula

A very important relation is Euler’s formula which relates the exponential function to

complex numbers as follows:

ez = ea+bi = ea(cos b+ i sin b)

1 We say that the modulus is induced by a particular inner product, since it is defined relative to the
given inner product.
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From this we can easily derive two important properties:

‖ez‖ = ‖ea(cos b+ i sin b)‖

=
√
ea(cos b− i sin b)(ea cos b+ i sin b)

=
√
ea+a(cos b cos b+ i cos b sin b− i sin b cos b− i2 sin b sin b)

=

√
e2a(cos2 b+ sin2 b)

=
√
e2a(1)

=
√
ea+a

=
√
eaea

= ea,

and consequently,

‖eit‖ = ea = e0 = 1,∀t ∈ R.
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Appendix B

Quantum gates used in smallqc

The matrix representations in standard computational basis of most of the quantum

gates implemented in smallqc and discussed in Chapter 4 are listed below. Not listed

are some of the controlled versions.

B.1 Quantum gates

NOT = X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
,

H = 1√
2

(
1 1

1 −1

)
, PS(θ) =

(
1 0

0 eiθ

)
, S = PS(π2 )

(
1 0

0 i

)
,

T = PS(π4 )

(
1 0

0 e
iπ
4

)
, W = PS( 3π

2 )

(
1 0

0 −i

)
,

RX(θ) =

(
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

)
, RY (θ) =

(
cos θ2 − sin θ

2

sin θ
2 cos θ2

)
,

RZ(θ) =

e− iθ2 0

0 e
iθ
2

 , CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ,
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CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 , CS =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i

 ,

SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 , CCNOT =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


,

CSWAP =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1
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