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In this thesis we study and analyze the pricing of barrier and barrier crack options

under a Time-Changed Levy process. Oil and gasoline in Canada are our underlying

commodities of interest in this study. To characterize the dynamics of oil and

gasoline prices, Black-Scholes and Time-Changed models based on Levy process are

proposed. To verify the model, real data of the Canada oil and gas market is used.

While the pricing methods based on Monte Carlo are the well-known and dominant

for price calculation, we propose a Fourier Transform (FT) for the pricing, which

provide some important advantages to the Monte Carlo method such as computation

speed without compromising any accuracy. The method is also applied to Crack

spread contracts to reduce the risk.
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Chapter 1

INTRODUCTION

In this chapter we will discuss the energy market and specifically the Oil market.

Basic terminology will be explained for introducing energy market.

1.1 Energy-Crude Oil and Its Derivatives Market

Any commodity market that is dealing with supply and trade of energy is an en-

ergy market. That includes electricity, nuclear energy, renewable energy, coal, crude

oil and its derivatives and natural gas. Energy markets have a key role in global

economy especially crude oil. Consequently, studying and analyzing the crude oil

energy market is vital to global economy’s stability. In fact, crude oil is the most

traded commodity in the world and every energy trader needs to have a solid under-

standing of its market. Accordingly, economists and finance experts, have generated

some financial tools trying to predict, control or mitigate the risk of uncertainty and

volatility in the crude oil and its derivative markets. Any negligence of the risk in-

volved in the crude oil market could cause a great risk to the financial flow of a

lot of companies and countries including Canada. Crude oil price fluctuation and

price shock could put companies in bankruptcy if they have not prepared themself

for risk control by utilizing right financial tools and hedging their funds against the
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risk. Even though a lot of tools have been introduced and new mathematical and

numerical methods have been applied to tame and predict the crude-oil market,

because of large uncertainly involve, it is still the most challenging markets in the

finance.

Figure 1.1: Barrel of Crude Oil Derivatives Per 2009 Report

Figure (1.1) is retrieved from https://www.energy.gov/articles/hows-and-whys-

replacing-whole-barrel.

Financial tools such as forwards, futures and options have been introduced through

appropriate hedging strategies to manage the risk in the very volatile energy market

and generally for all types of market. However, if these tools are misused and the

risk is overestimated or underestimated, they will do more damage than good by

pushing companies to overspending and losing competitiveness or neglecting the risk
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and losing their fund and capital.

1.1.1 Basic Definition in Energy Market

In a Spot Market, commodities are delivered on the day of the transaction. Con-

sumers are usually purchasing small quantities of a commodity immediate use in

spot transactions.(Edvards,2010)

Commodities deliver immediately in spot market at the same day of purchasing.

When commodities are schedule for delivery at some agreed days the future, this is

called Forward Market.

Buyers and sellers allow to agree on transactions ahead of time in the forward trad-

ing market. By real contracts, this gives both sides enough time to prepare for

delivery or receipt of a physical commodity.

Trades in the forward market are generally specified by several factors:

� Underlying Instrument. The commodity being traded, usually with a descrip-

tion of minimum quality standards that must be met.

� Quantity. The amount of the commodity that must be delivered.

�Delivery Price. The price per unit due at delivery.

� Delivery Date. The date at which the underlying instrument will be delivered.

� Delivery Location. The location at which the underlying instrument will be

delivered. (Edvards,2010)

A trade is a transaction and a position is the pure presentation that comes from
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one or more trades. If a buyer makes more than one transaction to buy for example

crude oil, the combination of all of those trades is known as a position.

We have long and short positions in the market by the term of trading. In the long

position, the trader will benefit from a rise in the price of the commodity. When

trader make a benefit from fall in the price of a commodity, it is called short position.

OVER THE COUNTER AND EXCHANGES

Traders can sell or buy energy product in two ways, when it trade directly between

two parties, we call it over the counter (OTC). Another way is exchange, that trades

to be made through an intermediary (Schoutens,2003). In over the counter trades,

a contract for trading involves signing each and every time a trade is made. If

one party goes bankrupt, the other party usually has no option other than going

through bankruptcy proceeding. Accordingly, each party is responsible for checking

the other party reliability.

When trades are made through an exchange, they are called exchange traded trans-

actions. There are some difficulties in associating with direct contract, then just

limited people can enter into OTC trades. Exchange make the market more ac-

cessible to people, where parties instead of transacting with each other, they trade

through exchange. As the result, the exchange trade will be easier and the risk of

the OTC will be eliminated.

Cash trades, futures, and forwards are of the three most common types of energy

trades. Cash trades are an exchange of physical commodity for cash in spot market.
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Crack and Spark Spreads

Spreads are trading strategies that include more than one financial asset. Crack

spread is one of popular trading strategy where various derivatives are combined.

For example refiner who buys crude oil and sells oil product is more interested in

price difference between the crude oil and the products than each of them individu-

ally. Same concept can be applied into future trading when a hedger can buy crude

futures and sell product future. However, in reality it is not practical to account

all the barrel’s product and crack spread will ignore a large share of the barrel.

Typically, 3-2 rule will be applied when 3 barrel of crude future will be traded for

two barrels of gasoline and one barrel of heating oil.(Dahl,2015)

1.2 Financial Derivatives

Financial experts have introduced some techniques and tools to control the risk

of the market fluctuations called financial derivatives. Forward, future and option

contracts are among useful tools to mitigate the risk and alleviate the market fluc-

tuation.

Forward Contracts is an agreement to buy/sell a fixed amount of an asset at a

given price at a certain time in the future (Hull,2015). Forward contract delivery

is mandatory and is traded in the OTC market between two financial institutions

(Hull,2015).
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Future Contracts like a forward contracts is an agreement to buy/sell a commodi-

ties at a future time for a certain price. Futures contract is traded on an exchange

while forward contracts will be traded in the OTC market (Hull,2015).

Besides where they are traded Margin is the most important difference between

futures and forwards market. It is a deposit used in the futures trades that required

by the exchange to ensure that traders meet their obligations. There is no margin

in forward market.

Option Contracts

Another alternative financial derivative to forward and future contracts are options

by which its owner or holder has the right, not the obligation, to buy or sell an asset

at a specified price within a specified time (Zhang,1998). The exercise price of the

option contract is called strike or exercise price and the date in the contract is called

maturity or expiration time. The option can be traded either at exchange or OTC

markets.

Among financial derivatives, option contracts are the most popular one. While,

based on data from Chicago Board Option Exchange (CBOE), it looks like that

only 10% of the option contracts are exercised and 90% of them are useless. There

is an argument that option contract are useless. However, in reality around 55−60%

of these option contracts will be closed before the expiry. It means that more than

65− 70% of option contract will be used to balance the market and only 30− 35%

of them expired worthless.
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1.2.1 Different Types of Option

If the owner can only exercise their right to buy/sell their at maturity time, the

option is called a European option. An American option, is the option that the

owner can exercise their right to buy/sell at any time before or at expiration or

maturity time, unlike European option which cannot be exercised before maturity

time. The holder of the option needs to pay a non-refundable premium money to

the seller when they buy the option (Zhang,1998). The option that gives the right

to holder to buy an underlying asset is called call option and the option that gives

the holder the right to sell the option is called put option (Zhang,1998). In call

option contracts, the holder makes a profit if the asset price rises above the strike

price. In put option contracts, the holder gains if the strike price is higher than the

asset price.

One of the European and American options drawback is that they do not provide

any information about the price trajectory, specially European option as it is very

important factor to settle the option price at the time of exercise. Therefore, different

types of path-dependent option such as Asian option, barrier option, look back

option have been introduced(Zhang,1998). Among them the barrier options which

are the focus of this thesis also is one of the most demanded derivative because of

the flexibility and better price it offers to users.
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1.2.2 Barrier Options Definition and Pricing

Barrier Options are options in which the right of the holder to buy or sell the stock

by the end of the contract is conditional on the stock crossing( or not crossing) a

certain barrier before the expiry date. (Cont & Tankov,2004)

The barrier option can be divided in two main categories Knock-in and Knock-out.

A Knock-in barrier option becomes effective only if the underlying asset first reaches

a certain barrier level.

Oppositely, a Knock-out barrier option immediately terminates if the underlying

asset reaches a certain barrier level. (Marie,2014)

Depending on how to reach the barrier price from above or below, you can categorize

the barrier options to up-and-knock-in, up-and-knock-out, down-and-knock-in and

down-and-knock-out options for both call and put options (Zhang,1998).
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Types Option Price

Call
Knock-In

Down

Up

Knock-Out
Down

Up

Put
Knock-In

Down

Up

Knock-Out
Down

Up

Table 1.1: Different Types of Barrier Option

In knock-in and knock-out options, the seller has the opportunity to cancel it

before it expiry or termination time. This helps the seller to reduce their risk.

Therefore, to attract the buyer, they offer more appealing price on these types of

options. We denote MS
t , mS

t as

MS
t = sup{St; 0 ≤ t ≤ T} mS

t = inf{St; 0 ≤ t ≤ T}, 0 ≤ t ≤ T

Where M is barrier, K is strike price, r is interest rate, T is maturity time and

1{msT>M} is indicator function.

For single-barrier options, the price of different types of barrier options will be
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defined as below.

Down-and-out barrier call is worthless unless its minimum remains above some

low barrier M, in which case it will be treated as a nominal call option. Its at time

T = 0 price is given by

DOBC = exp(−rT )EQ[(ST −K)+1{msT>M}].

Down-and-in barrier call is a standard call with strike K if its minimum goes below

M. If M is never reached during the lifetime of the option, the option is worthless.

Its initial price is given by

DIBC = exp(−rT )EQ[(ST −K)+1{msT≤M}].

Up-and-in barrier call is worthless unless its maximum hits some high barrier M,

in which case it retains the structure of a standard call with strike K. Its price is

given by

UIBC = exp(−rT )EQ[(ST −K)+1{Ms
T≥M}].

Up-and-out barrier call is worthless unless its maximum is still below the barrier

M. Its price is given by

UOBC = exp(−rT )EQ[(ST −K)+1{Ms
T<M}].

Down-and-out barrier put option, it is worthless in the same condition as down-

and-in barrier call option and its price is given by

DOBP = exp(−rT )EQ[(K − ST )+1{msT>M}].
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Down-and-in barrier put option, the price can be found from

DIBP = exp(−rT )EQ[(K − ST )+1{msT≤M}].

Up-and-in barrier Put option, its price comes from

UIBP = exp(−rT )EQ[(K − ST )+1{Ms
T≥M}].

Up-and-out barrier Put is worthless if the asset falls to the barrier M, otherwise

its price can be calculated by

UOBP = exp(−rT )EQ[(K − ST )+1{Ms
T<M}].

Up-and-out call (put) is a common example of barrier options and usually purchased

by an energy producer to hedge their natural long position in the energy markets.

Up-and-out call (put), while it is less expensive, provide the same price protection

if the price goes down from current level. However, if the price goes up, the risk

protection for price drop will be reduced due to the increase in the underlying com-

modity’s price. If the price moves up to pass the barrier price, then the option will

be terminated.

In that case the owner may hedge another call option at a higher strike price to

have better protection than the lower strike price that was already canceled.
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1.3 Classic Black-Scholes Model

Determining the fair and reasonable price for an option is the main objective and

at the same time most the challenging issue of the option market. The model

introduced by Fisher Black and Myron Scholes in 1973 was a major breakthrough

for option pricing. In the same year Robert Merton presented a similar model by

different approach (Merton,1973). The impact of Black-Scholes-Merton (or Black-

Scholes) model on the option and other financial derivate was so huge that brought

Morton and Scholes a Nobel prize for economics in 1997. Black was passed away at

1995, otherwise he definitely would be one of the prize recipient.

Skipping all mathematical details of the model, if we have S as underlying asset price,

K as strike price, T as time to expiration or maturity time, r as risk free interest

rate and σ as volatility of underlying price we can extract two separate formulas

to price of call and put options. Black-Scholes model assumes the underlying asset

price develops according to geometric Brownian motion (named after R. Brown)also

known as Gaussian Wiener process as presented below(Schoutens,2003)

dSt = St(µdt+ σdBt), S0 > 0.

where Bt is a standard Gauss-Wiener process (Brownian motion), µ is the mean

and σ is standard deviation or as often called volatility of the underlying asset

price(Zhang,1998). Brownian motion is in fact the dynamic counterpart of its static

Normal distribution equivalent. Solving the equation above by Ito formula will lead
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to following formula

St = S0exp((µ−
1

2
σ2)t+ σBt) (1.1)

or

log(
St
S0

) = (µ− 1

2
σ2)t+ σBt (1.2)

From (1.2), it shows the returns in a Black-Scholes model is log-normally distributed

as Bt has normal distribution wither zero mean and variance σ(Zhang,1998).

To reach to the (1.2) formula the Black and Scholes model assumes:

1. Interest rate is constant through the time.

2. Volatility of the price remains constant over the time.

3. Price follow the geometric Brownian motion (Wiener process).

4. The price changes are log-normally distributed.

Among these assumption, considering the volatility of the price constant is far from

reality, as by analyzing a real price data we can easily see that, this assumption is

not accurate.

1.4 Statistics Analysis of Underlying Assets

For financial engineers and experts, statistical analysis of stocks or option of the

underlying assets is critical where parameters such as mean, variance, skewness and

kurtosis have always been utilized. For any X random data, mean or average will
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be defined as follow

µ = E[X]

Variance which shows the deviation of the data from the average is defined as below

σ2 = E[(X − µ)2]

Square root of variance or σ is called deviation.

Skewness measures the degree to which a distribution is asymmetric:

Skewness =
E[(X − µ)3]

σ3

For a normal distribution, the skewness is zero, while in real world, the stock or op-

tion prices are not zero sometimes far from zero skewness mostly negative showing

has longer tail to the left (Schouten) .

Kurtosis or fat tail, is a parameter that shows if any the large movement has hap-

pened in the data like jumping that we can see happen more often in finance deriva-

tive markets.

Kurtosis =
E[(X − µ)4]

σ4

For example the Normal distribution is the kurtosis is 3. In the following table,

mean, variance, skewness and kurtosis are presented for Brent and WTI Oil and On-

tario Gasoline from empirical data. It shows that a empirical data has bigger kurtosis

than 3, suggesting that in real word market is keen to have price jumping in contrast

to Normal distribution and Balck-Scholes model presumptions. (Schoutens).
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Series Mean Standard Deviation Skewness Kurtosis

BRE Oil 0 0.0202 0.3937 2.9560

WTI Oill 0 0.0223 0.1990 3.0553

Ontario Gasoline 0.0131 0.0185 -1.1683 21.0090

Table 1.2: Statistics of Empirical Data

Unlike Black-Scholes assumption explained in previous section asset prices jump,

leading to non-normal return distribution and also return volatility varies scholasti-

cally over time which Black-Scholes cannot predict very accurately. Time-Changed

models based on Levy processes have been introduced to make the model more con-

sistent and robust with observed prices in the market (Carr and Liuren,2003).
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Figure 1.2: Empirical Spot Price, Returns and Log Returns for Brent Oil

The graphs above show the data for Brent oil prices the 5 years empirical data

April 2014 -March 2019. The graph at the top shows the spot price for Brent oil. The

second graph shows the returns for same commodity. The third graph illustrates

the Brent oil’s log-returns. A gradual decrease in combination with jumps and

steadiness is observed from graphs.
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Figure 1.3: Cumulative Distribution Function from Empirical Data for Brent Oil

Price

The graph show the CDF for daily empirical data for Brent Oil. Comparing

CDF Brent Oil with CDF of Normal distribution shows the WTI Oil does not have

a Normal Distribution.
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Figure 1.4: Empirical Spot Price, Returns and Log Returns for WTI Oil

The graphs above show the data for WTI oil prices the 5 years empirical data

April 2014 -March 2019. The graph at the top shows the spot price for WTI oil. The

second graph shows the returns for same commodity. The third graph illustrates the

WTI oil’s log-returns. A gradual decrease in combination with jumps and steadiness

is observed from graphs.
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Figure 1.5: Cumulative Distribution Function from Empirical Data for WTI Oil

Price

The graph show the CDF for daily empirical data for WTI Oil. Comparing

CDF Brent Oil with CDF of Normal distribution shows the WTI Oil does not have

a Normal Distribution.
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Figure 1.6: Empirical Spot Price, Returns and Log Returns for Ontario Gasoline

The graphs above show the weekly pricing data for the Ontario gasoline from

the 5 years empirical data. The first graph demonstrates the spot price for Ontario

gasoline. The second graph shows the returns for same commodity. The third graph

illustrates the Ontario gasoline’s log-returns. The price increase with high jumps in

the first year. After 2014, the price reduce gradually with jumps.
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Figure 1.7: Cumulative Distribution Function from Empirical Data for Ontario

Gasoline Price

The graph show the CDF for weekly empirical data for Ontario Gasoline. Com-

paring CDF Ontario Gasoline with CDF of Normal distribution shows the Ontario

Gasoline does not have a Normal Distribution.

1.5 Levy Process and Time-Changed Models

Looking at (1.1) of the Black-Scholes model and its Brownian motion, we would

like to have a similar yet independent and stationary increments process,with a
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more general than the Normal distribution. However, in order to define such a

stochastic process the distribution has to be infinitely divisible. Such processes are

called Levy processes, in honor of Paul Levy, the pioneer of the theory (Schoutens).

Examples of such distribution which can take skewness and excess kurtosis into

account are the Variance Gamma (VG), the Normal Inverse Gaussian (NIG), the

CGMY, the (Generalized) Hyperbolic Model and the Meixner distributions. All

of these techniques are based on Levy process and have their own advantages and

disadvantages. In this thesis our focus will be on NIG Levy process which was first

proposed by Barndorff-Nielsen at 1995 (Schoutens.W, 2003).

1.5.1 Normal Inverse Gaussian (NIG) Levy Process

NIG distribution as a member of Levy process family provides a good flexibility

to calibrate its mean, variance, skewness and kurtosis according to empirical data

making it very appealing for modeling financial derivatives like option.

The NIG distribution has the characteristic function as follow

ϕNIG(u;α, β, δ) = exp(−δ(
√
α2 − (β + iu)2 −

√
α2 − β2))

where α > 0,−α < β < α and δ > 0. The mean, variance, skewness and kurtosis of

this model will be as follow:
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Mean αβ√
α2−β2

Variance α2δ√
(α2−β2)3

Skewness 3β

α
√
δ 4
√
α2−β2

Kurtosis 3(1 + α2+4β2

α2δ
√

(α2−β2)
)

Table 1.3: Mean, Variance, Skewness, Kurtosis for NIG

Inverse Gaussian (IG(a, b)) will be defined as a sub-category of NIG by defining

a = 1 and b = δ
√
α2 − β2.

1.6 Monte-Carlo Simulation

Along introducing new methods to address Black-Scholes model shortcoming like

time-changing volatility, numerical techniques are also developed simultaneously to

provide solutions for these new techniques mostly two or higher order partial dif-

ferential equations (PDE) which are not easy to solve mathematically. Two most

well-known numerical techniques are Monte-Carlo and binomial option pricing tech-

niques. Numerical methods can provide very accurate response by increasing the

steps of simulation even when there more than one uncertainty in the model like

time-varying average, time-varying volatility or two underlying assets of course with

expense of the processing time. However, with new powerful processor these tech-

niques are becoming more and more appealing.
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Among these techniques, Monte-Carlo technique is the most popular one. IT basi-

cally follows with these steps:

1. Generate random number for possible price path based on probability distribu-

tion using simulation.

2. Use parameters like volatility and expiry time values to calculate the stock price.

3. Use the stock price at the time of expiry to calculate the option.

4. Repeat steps 1-3 for numerous times and average the results to find the final

option price.

1.7 Option Pricing Using Advanced Transformer Techniques

The new advanced techniques have been proposed based on convolution and Fast

Fourier Transform (FFT) (Carr and Madan,1999). The key idea is to recognize that

the usual risk-neutral valuation formula can be calculated as a convolution. This

feature, is highly useful, since convolutions in the time domain can be translated

easily to the Fourier domain, enabling one to apply the FFT and benefit from its

computational power. This recent pricing method, proposed by Lord et al. (2008),

was dubbed the convolution method, and is applicable to a wide variety of payoffs

requiring only the knowledge of the characteristic function of the model. As such, the

method is applicable within many regular affine models, among which is the class of

exponential Levy models. Assuming that the characteristic function of the log-stock
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price is known analytically, the price of plain vanilla options can be determined using

the Fast Fourier Transform (FFT) method first presented in (Carr,1999). Using this

approach, the call price is expressed in terms of an inverse Fourier transform of the

characteristic function of the log-stock price under the assumed stochastic process.

The resulting formula can then be re-formulated to enable computation using the

FFT algorithm that significantly decreases computation time compared to standard

numerical methods such as the discrete Fourier transform.

Fourier transform methods are shown to be an effective approach to pricing an

option whose underlying asset price process is a Levy process. Instead of applying

the direct discounted expectation approach of computing the expectation integral

that involves the product of the terminal payoff and the density function of the

Levy process, it may be easier to compute the integral of their Fourier transform

since the characteristic function (Fourier transform of the density function) of the

Levy process is easier to be handled than the density function itself. Actually, one

may choose a Levy process by specifying the characteristic function since the Levy-

Khinchine formula allows a Levy process to be fully described by the characteristic

function (Kienitz, Wetterau,2012).

1.8 Thesis Objective and Results

In this thesis, we investigate the barrier option pricing for single asset and two highly

correlated assets scenario. The analysis started with Black-Scholes model where its
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short coming make it impossible to offer accurate pricing in a very volatile energy

market.

Accordingly, the novel single/two asset(s) Time-Changed model was proposed under

Levy Process, where we were able to capture essential aspects of the price dynamic

including time-changing mean and volatility and seasonal sensitivity, jumps and

diffusion. While the proposed models proved to have more realistic estimation the

price that should be paid to is computing complexity and time especially where the

accuracy of Monte-Carlo algorithm used for these new models directly depends on

the number of repetition(here we use one million times).Which my take couple of

days for one simulation run using MATLAB.

Accordingly, simultaneous data logging was implemented in software to log the

results as soon as simulation data is available.

1.9 Outline

In the next chapter, a background of the models utilized in this thesis are provided.

Concepts and models like Brownian motion, Black-Scholes model and Levy process

are provided in more mathematically depth elaboration. In chapter three, Black-

Scholes model is presented for both single asset (univariate) and two asset (bivariate)

schemes where for bivariate schemes the effect of correlation between two assets

price modeling is explained for focusing on crude Oil and Ontario Gasoline as two

objective assets. In the chapter four, the real data of the crude oil and gas prices
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are analyzed and it is shown that assuming the constant volatility for these assets

is not very realistic, the main assumption that Black-Scholes model is based on.

Normal Inverse Gaussian model based on Levy process, one of the most well-known

Time-Changing is described in more details. Both univariate and bivariate analysis

on crude Oil and Gas along simulation data is provided. The results are compared

with results from conventional Black-Scholes model from chapter three. In the

last section, Fourier expansions is proposed as solution to overcome the long time

consumption issue of the time-Changed model. At the end we will have conclusion.

All simulation are supported with MATLAB codes.
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Chapter 2

MATHEMATICAL BASIS OF OPTION PRICING

To calculate the price barrier option accurately, having a comprehensive mathemat-

ically well developed model that support all types of assets with fix or varying mean

and low or high volatility is necessary. Generally models can be divided in to two

main categories time-fixed model better known as Black-Scholes model and more

realistic Time-Changed model where all parameters of the model can be function of

time.

In this chapter, the mathematical background of Black-Scholes model is provided.

The Levy process mathematical theory as foundation of Time-Changed models is

introduced. The Brownian motion process and the Poisson process ( two subclasses

of Levy process) are introduced. At the end of this chapter Levy process subordi-

nator is also described with definition of Inverse Gaussian Random process which

will be the Time-Changed technique used in this thesis.

2.1 Black-Scholes Approach

Definition 2.1. Let (Ω,F, P ) be a probability space, an increasing family of σ-

algebra (F)t∈[0,T ] called filtration on this space such that

Fs ⊆ Ft ⊆ F for 0 ≤ s ≤ t ≤ T
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The Brownian motion is the dynamic counterpart of the Normal distribution.

Both arise from the Central Limit theorem. Intuitively, it tells us that the suit-

ably normalized sum of many small independent random variables is approximately

normally distributed. These results explain the ubiquity of the Normal distribution

in a static context. If we work in a dynamic setting, i.e with stochastic processes,

Brownian motion appears in a similar way.(Bachelier)

Definition 2.2. A stochastic process B = {Bt, t ≥ 0} is a standard Brownian mo-

tion on some stochastic basis (Ω,F, P ) if:

(i) B0 = 0

(ii) B has independent increments,

(iii)B has stationary increments,

(iv) Bt+s −Bt is Normally distributed with mean 0 and σ > 0,i.e.

Bt+s −Bt ' N(0, σ).

Some of important properties of Brownian motion are listed below

1. Martingale Property:

Brownian motion is one of the simplest examples of a martingale.

We have, for all 0 ≤ s ≤ t ,

E[Bt|Fs] = E[Bt|Bs] = Bs.
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The property follows from the instructure of the increments and we have

E[Bt|Bs] = min{t, s}.

2. Path Properties:

It can be proved that Brownian motion has continuous paths, i.e. for any w ∈ Ω,

Bt(w) is a continuous function of t ∈ R+ . However, the paths of Brownian motion

are very erratic and for example nowhere differentiable.

3.Oscillation Property: Another property is that for a Brownian motion B =

{Bt, t ≥ 0}, we have that

P (supt≥0Bt = +∞ and inft≥0Bt = −∞) = 1.

Which means that the Brownian path will keep oscillating between positive and

negative values.(Shoutens)

Now by definition Brownian motion we can introduce one of the most important

stochastic process in finance, that is relative to Brownian motion: geometric Brow-

nian motion.(Black and Scholes)

To model the time evolution of stock prices in the Black–Scholes model consider the

change the price ∆St = St+∆t − St in small time interval from present time t to a

near future time t+ ∆t, where the return interval on the [t,∆t ≥ 0], ∆St/St.

Economically, we can divide this return into a systematic and random parts. In the

systematic or deterministic part of stock return, we assume that the expected return

over a period of the time is proportional to the length of that period. Accordingly,
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for a µ ∈ R the expected increasing of the price,∆St, can be peresented by µSt∆t.

To model the random part of the stock return, we assume the price fluctuates

stochastically where the variance of the returns is proportional of the interval of the

time. Modeled by σ∆Bt where ∆Bt represents the noise term (with variance ∆t)

driving the stock-price dynamics, and σ > 0 is the parameter that describes the

stock price fluctuation or the effect of noise. Empirically it has been established

that the variance of the return equals to σ2∆t where σ expresses the volatility of

the stock. Combining these two parts of stock return, we will have

∆St = St(µ∆t+ σ∆Bt), S0 > 0.

informally, by taking ∆t→ 0, we have following stochastic differential equation:

dSt = St(µdt+ σdBt), S0 > 0. (2.1)

Equation (2.1) has the unique solution from Ito’s formula and called Geometric

Brownian motion

St = S0exp((µ−
1

2
σ2)t+ σBt). (2.2)

Note that for any t > 0 the log-returns

log(
St
S0

) = (µ− 1

2
σ2)t+ σBt (2.3)

have a N((µ− 1
2σ

2)t, σ2t) distribution. Equation (2.3) has the lognormal distribution

which it entails form the basis for the Black–Scholes model of stock-price dynamics

in continuous time.
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2.1.1 The Black–Scholes Model Solution

We show how the Black–Scholes model for valuing European call and put options

on a stock works to trade continuously up to some fixed finite planning horizon

.(Shoutens,2003)

We assume two assets. One without risk like bank account and one risky like stock.

For no risk scenario, the price is given by W = {Wt = exp(rt), 0 ≤ t ≤ T}.

For the risky scenario the price is modeled by

St = S0exp((µ−
1

2
σ2)t+ σBt)

where B = {Bt, t ≥ 0} is the Geometric Brownian motion, µ is drift and σ is

standard constant volatility over the time. By assuming the natural filtration F =

{Ft, t ≥ 0} generated by B, the stock price process S = {St, 0 ≤ t ≤ T} is a strictly

positive adapted process. We call this market model the Black–Scholes model.

The Black-Scholes formula for the European call and Put option is as

C := C(K,T ) = S0N(d1)−Kexp− r(T − t)N(d2)

P := P (K,T ) = Kexp(−rT )N(−d2)− SN(−d1)

where

d1 =
log(S0/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t

S0: Stock price.

K: Strike price.
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r: Interest rate.

σ: Volatility of underlying.

t: Current date.

T: Maturity date.

T − t: Time to maturity.

2.2 Levy Processes

Looking at the definition of Brownian motion, we would like to have more gen-

eral distribution than the Normal with independent and stationary increments pro-

cess.However, in order to define such a stochastic process with independent and

stationary increments, the distribution has to be infinitely divisible, such processes

are called Levy processes, in honor of Paul Levy, the pioneer of the theory.

Definition 2.3. Let (Xt)t≥0 be a stochastic process on the stochastic basis (Ω,F, (Ft), P ),

(Xt) is a real-valued random variable on Ω.

The process X = (Xt)t≥0 is said to be a Levy process if and only if:

(1) It has independent increments:

i.e. for any n ∈ N, 0 ≤ t1 < t2 < ... < tn <∞

Xtk −Xtk−1
(k = 1, 2, ..., n)

are independent random variables.

(2) It has stationary increments:

i.e. for any s < t, Xt −Xs is equal in distribution to Xt−s.
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(3) It is Continuous

i.e. for s ≥ 0, Xt+s −Xs → 0 as t→ 0 almost surely.

Brownian motion and the Poisson process are two well known examples of Levy

processes. Inverse Gamma and Time-Changed processes are two other examples of

Levy process and will be discussed in this chapter later (Schoutens,2003). Each pro-

cess has a characteristic function which determines the distribution of the process.

The characteristic function is always uniformly continuous and vailable.It is defined

below. (Papapantoleon,2000)

Definition 2.4. Defined on a stochastic basis, for a real - valued process (Xt)t≥0,

φXt (θ) is the characteristic function of the process. If equals to Xt:

φXt (u) = E
(
eiuXt

)
, u ∈ R

The characteristic exponent of a Levy process is defined as (Sandri,1996)

ΨXt(u) =
1

t
log φXt (u)

The Levy-Khintchine Formula gives the characteristic function, which charac-

terizes the distribution of a Levy process.

Theorem 2.5. Levy-Khinchine Formula

If X = (Xt)t≥0 is a Levy process, then its characteristic function φXt (u) is given by

φXt (u) = exp([(iµu− 1

2
σ2u2 +

∫
R−0

(eiux − 1− iuxI|x|<1)Π(dx))t])

where µ ∈ R, σ ≥ 0 , I is the indicator function and Π is the measure the jumps of

X and satisfying
∫
R\{0} inf{1, x

2}Π(dx) <∞ .
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A Levy process has three independent components: a linear drift, a Brown-

ian motion and a compound Poisson process. The measure Π (dx) represents the

intensity and the length of the jumps. These three components,as well as Levy-

Khintchine representation, are fully determined by the Levy triplet
(
µ, σ2,Π

)
.A

Brownian motion with drift is the only non-deterministic continuous Levy process.

Xt = µt+ σBt + Zt

where Zt is a Poisson process. The Levy-Ito Decomposition states that any Levy

process (Xt)t≥0 can be constructed as a sum of three independent processes.

2.2.1 Examples of Levy Processes

Example 1. Poisson Process

Let (Xt)t≥0 be a random process with finite independent stationary increments.

The Poisson analysis counts how many jumps in increments occur during the interval

[0, t]. See (Rama&Tankov).The increments are independent of the past, for example,

if there is an average of five jumps within an interval, not observing a jump would

not change the probability of happening a jump in the future.

Definition 2.6. (Nt)t≥0 is a Poisson process if and only if:

(1)N0 = 0.

(2) (Nt)t≥0 has stationary and independent increments.

(3)P (Nt = n) = e−λt
(λt)n

n! , n = 0, 1, 2, ...

See (Boxma,Yechiali) for a proof.
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Example 2. Brownian Motion

Modeling the price process using geometric Brownian motion leads to calculating

the expected value dependent on the spot price. Brownian Motion is described by

the Wiener process, which is defined below.

The probability density function of(Bt) is defined by:

fBt (x) =
1√
2πt

e−
x2

2t

2.3 Time-Changed Subordinator

Definition 2.7. A SubordinatorAt is a nonnegative and nondecreasing Levy process.

Definition 2.8. Let (At)t≥0 be a subordinator and (Bt) is a Brownian motion then

(BAt)t≥0is Time-Changed process.

The characteristic fuction φBAt of Time-Changed model is given by below

φBAt (u) = E
(
eiuBAt

)
, u ∈ R

We have more details in chapter three regarding to Time-Changed model.

2.3.1 Inverse Gaussian Subordinator

The Inverse Gaussian distribution is a two parameter (a,b) family of continuous

probability distributions with support on (0,∞).

Its probability density function is given by

f (x; a, b) =

(
b

2πx3

) 1
2

exp
−b (x− a)2

2a2x
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for x > 0, where a > 0 is the mean and b > 0 is the shape parameter.

As b→∞ this distribution tends to a normal distribution.

To indicate that a random variable X is Inverse Gaussian distributed with mean a

and shape parameter b we write X ∼ IG(a, b).

Definition 2.9. (At) is an IG-Subordinator if

At+s −As ∼ IG(at, b) s, t ≥ 0.

An IG-subordinator has characteristic exponent:

ΨIG
A(t)

(u) = −at
(√
−2iu+ b2 − b

)
a, b > 0
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Chapter 3

BARRIER PRICING BASED ON CONVENTIONAL

BLACK-SCHOLES MODEL

Since introduced it in the market, barrier option have become the most popular

class of exotic options. They have been traded on stocks, oil, gas, currency and the

other commodities.

In this chapter, we provide the details on barrier option pricing based on Black-

Scholes model. Both univariate and bivariate models for single asset and two assets

pricing formulas are introduced with focus on Brent oil, WTI oil and Ontario gaso-

line as univariate assets and oil/gasoline as bivariate assets. The objective is to use

the already existing oil and gasoline data to predicts the option price for future by

using Black-Scholes model. Of course, the models will be offer from the same short

coming of Black-Scholes model for vanilla option. Which will be presented in the

next chapters with compared with advance Time-Changed models.

3.1 Barrier Option for Black-Scholes Model

Oil market’s barrier options have been traded in the OTC since 1967. The Chicago

Board Option Exchange and the American Option Exchange now list up-and-out
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barrier call (UOBC)options and down-and-out put (DOBP) options on stock in-

dexes.(Hauge)

3.1.1 Univariate Black-Scholes Model

Merton (1973) and Reiner and Rubinstein (1991) have developed formulas for pricing

standard barrier options using Black-Scholes model. Their formulas are different but

they use a common set of factors.

We started with Down-and-In-barrier call option (DIBC) where we can have two

scenarios. First when the barrier price (M) is smaller than the strike price (K) and

the second scenario is when the barrier price is larger than the strike price.

To be able to extract the option price for these two scenarios based on Black-Scholes

model we need to define the density of the risk neutral return of a asset as normal

distribution as follow

f(u) ≡ (
1

σ
√

2πt
)e−

1
2v2

with

v ≡ (u− µt)
σ
√
t

µ ≡ log(
r

d
)− 1

2σ2

This the normal density where r is the interest, d is the payout of the underlying

asset, sigma is the volatility of the underlying asset, and t is the time to expiration.

We will need another density where the price passes the barrier.

g(u) ≡ e
2ηα

σ2 (
1

σ
√

2πt
)e−

1
2v2
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with

v ≡ (u− 2ηα− ηµt)
σ
√
t

α ≡ log(
M

S0
)

Accordingly for DIBC and scenario one whenK > M we may have

(1) ST > K providing S(t) ≥M for some 0 ≤ t < T (Figure 3.1 a)

In that case, pay − off = ST −K.

(2) ST ≤ K providing S(t) ≥ M for some 0 ≤ t < T (Figure 3.1 b). In that case,

pay − off = 0.

(3) There is a case where the price will never hit the barrier S(t) > M for all

t and the option will not be activated at all (Figure 3.1 c). In that case, the

Pay − off = rebate.
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Figure 3.1: Differnet types of DIBC when K > M

(a) ST > K, S(t) ≥M for some

0 ≤ t < T

(b) ST ≥ K, S(t) ≤M for some

0 ≤ t < T

(c) S(t) > M for all t
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For DIBC we can have another scenario where K < M .

(1) For this scenario, we can have a case where ST > M providing S(t) ≥ M for

some 0 ≤ t < T (Figure 3.2 a). In that case Pay-off = ST –K.

(2)We may have a case where S(T ) ≥M and S(T ) > K (Figure 3.2 b) which leads

to Pay − off = ST –K.

(3) For the same scenario we may have S(T ) ≥ K as depicted in Figure (3.3 c). In

that case Pay − off = 0.

(4) For the final case we have a case where S(t) never pass the barrier for all t as

presented in Figure (3.4 d) which end up for Pay − off = rebate.
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Figure 3.2: Differnet types of DIBC when K < M

(a) S(T ) > M for all t (b) S(T ) > K S(T ) ≥M for all t

(c) S(T ) ≥ K for all t (d) K < M for all t
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Consequently,

A ≡ r−T
∫
φ(S0e

u −K)f(u)du = φS0N(φx1)− φKe−rTN(φx1 − φσ
√
T )

B ≡ r−T
∫
φ(S0e

u −K)f(u)du = φS0N(φx2)− φKe−rTN(φx2 − φσ
√
T )

C ≡ r−T
∫
φ(S0e

u−K)g(u)du = φS0(
M

S0
)2(µ+1)N(ηy1)−φKe−rT (

M

S0
)2µN(ηy1−ησ

√
T )

D ≡ r−T
∫
φ(S0e

u−K)g(u)du = φS0(
M

S0
)2(µ+1)N(ηy2)−φKe−rT (

M

S0
)2µN(ηy2−ησ

√
T )

E ≡ Rr−T
∫

(f(u)−g(u))d(u)du = Re−rT [N(ηx2−ησ
√
T )−(

M

S0
)2µN(ηy2−ησ

√
T )]

F ≡= R[(
M

S0
)(µ+λ)N(ηz) + (

M

S0
)(µ−λ)N(ηz − 2ηλσ

√
T )]

Where

x1 =
ln(S0

K )

σ
√
T

+ (1 + µ)σ
√
T ;

x2 =
ln(S0

M )

σ
√
T

+ (1 + µ)σ
√
T ;

y1 =
ln( M

2

S0K
)

σ
√
T

+ (1 + µ)σ
√
T ;

y2 =
ln(MS0

)

σ
√
T

+ (1 + µ)σ
√
T ;

z =
ln(MS0

)

σ
√
T

+ λσ
√
T ;

µ =
r − σ2

2

σ2
;

λ =

√
µ2 +

2r

σ2
;

η =


1 if Down

−1 if Up
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φ =


1 if Call

−1 if Put

The Price for all barrier option cases is provided in following table (3.1) and (3.2).

”In” Barrier Options

As explained before, In options are paid for today but first come into existence if

the asset price S0 hits the barrier M before maturity time.

Type K < M K > M

Down-and-in Call S0 > M A−B +D + E C + E

Up-and-in Call S0 < M B − C +D + E A+ E

Down-and-in Put S0 > M A+ E B − C +D + E

Up-and-in Put S0 < M C + E A−B +D + E

Table 3.1: Prices of In Univariate Barrier Option

”Out” Barrier Options

As explained before, Out options are same as the standard options except that the

option becomes worthless if the asset price S0 hits the barrier M before T.
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Type K < M K > M

Down-and-out Call S0 > M B −D + F A− C + F

Up-and-out Call S0 < M A−B + C −D + F F

Down-and-out Put S0 > M F A−B + C −D + F

Up-and-out Put S0 < M A− C + F B −D + F

Table 3.2: Prices of Out Univariate Barrier Option.

3.1.2 Empirical Data

The empirical data is composed of historic daily prices for the commodities, Brent

oil, WTI oil, and weekly average price for gasoline in Ontario, Canada, obtained

from for a five year period. As presented table (1.2) and calculated from the log-

return empirical pricing data of each commodities.

Since we need drift(µ) and volatility(σ) for each commodities in MATLAB, and

by (2.3) log- return price in Black-Scholes model have a normal distribution N((µ−

1
2σ

2)t, σ2t), then we can find the drift and volatility for any asset by using

Mean = (µ− 1

2
σ2)t,

V ariance = σ2t

where the t = 1 for Brent and WTI oil, because we have daily price and for Ontario
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gasoline weekly price is 5.

Series µdaily σdaily µweekly σweekly

BRE Oil 0 0.02 0.006 0.002

WTI Oill 0 0.02 0.005 0.013

Ontario Gasoline - - 0.031 0.014

Table 3.3: µ and σ for all three assets

3.2 Pricing Under Univariate Black-Scholes Model

To describe the dynamics of the prices for the barrier option contracts under Black-

Scholes model, three dimensional graphs have been created. Figures (3.3), (3.4)

and (3.5) describe the price for Down-and-Out call barrier option for Brent, WTI

oil and Ontario gasoline versus the maturity time (T) and strike price (K). As we

expected based on payoff formula, the option price decreases, when the strike price

increases. As the maturity increases, there is a slight decrease in the option prices.

The maturity time range taken for these graphs was 0.08, 0.16, 0.25, 0.5, 0.6, 0.75

and 1 year.

Figures (3.6), (3.7) and (3.8) demonstrate interaction between Down-and-Out call

barrier option for our three assets, strike price (K) and the volatility of assets (σ).

In all graphs, the option price has a highest price in the lowest K and σ and the

price slight decrease when K and σ increasing.
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Figure 3.3: Simulation of option price for Brent Oil in Black-Scholes Model

Prices for Brent oil: The 3-D graph shows the barrier option prices change versus

T( maturity of the barrier option) per year, K(Strike price of the barrier option)

based on univariate Black-Scholes model simulation. The K is [80:5:110] and T is

[ 1
12 : 1

12 :1].
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Figure 3.4: Simulation of option price for WTI Oil in Black-Scholes Model

Prices for WTI oil: The 3-D graph shows the interaction between T( maturity of

the barrier option), K(Strike price of the barrier option) and the price of the option

using univariate Black-Scholes model simulation. The rang for K is 70, 75, ...,100.
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Figure 3.5: Simulation of option price for Ontario Gasoline in Black-Scholes Model

Prices for Ontario gasoline: The 3-D graph shows the interaction between T(

maturity of the barrier option), K(Strike price of the barrier option) and the price

of the option using univariate Black-Scholes model simulation. The range for K is

60, 65, ..., 90.
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Figure 3.6: Simulation of option price for Brent Oil in Black-Scholes Model

Prices for Brent oil: The 3-D graph shows the interaction between σBrentOil,

K(Strike price of the barrier option) and the price of the option using univariate

Black-Scholes model simulation. σBrentOil is [0.01:0.001:0.02].
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Figure 3.7: Simulation of option price for WTI Oil in Black-Scholes Model

Prices for WTI oil: The 3-D graph shows the interaction between σWTIOil,

K(Strike price of the barrier option) and the price of the option using univariate

Black-Scholes model simulation. σWTIOil is [0.01:0.001:0.02].
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Figure 3.8: Simulation of option price for Ontario Gasoline in Black-Scholes Model

Prices for Ontario gasoline: The 3-D graph shows the interaction between

σOntarioGasoline, K(Strike price of the barrier option) and the price of the option

using uni-variate Black-Scholes model simulation. σOntarioGasoline is

[0.01:0.001:0.014].
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3.2.1 Bivariate Black-Scholes Model

In this section, we explain the payoff formula for barrier option for two assets,

that assets are based on Black-Scholes model and they follow geometric Brownian

motions

dS1
t = S1

t (µ1dt+ σ1dzt)

dS2
t = S2

t (µ2dt+ σ2dwt)

where µ1 and µ2 are the expected increasing rate of return of the two assets, and

σ1 and σ2 are the volatility of assets. dz and dw are two Brownian Processes.

In a two-asset barrier option, one of the underlying assets, S1, determines how much

the option is in- or out-of-the-money, and the other asset, S2, is linked to barrier

hits. Heynen and Kat (1994) have developed the following pricing formula(Hauge):

P = ηS1
0{M(ηd1, φe1;−ηφρ)

− exp[
2(µ2+ρσ1σ2)ln( M

S20
)

σ2
2

]M(ηd3, φe3;−ηφρ)}

− ηKe−rT {M(ηd2, φe2;−ηφρ)

− exp[
2µ2ln

M

S20

σ2
2

]M(ηd4, φe4;−ηφρ)}

Where

d1 =
ln(

S1
0
K ) + (µ1 + σ2

1)T

σ1

√
T

d2 = d1 − σ1

√
T

d3 = d1 +
2ρln(M

S2
0
)

σ2

√
T
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d4 = d2 +
2ρln(M

S2
0
)

σ2

√
T

e1 =
ln(M

S2
0
) + (µ2 + ρσ1σ2)T

σ2

√
T

e2 = e1 + ρσ1

√
T

e3 = e1 −
2ln(MS2

)

σ2

√
T

d4 = d2 −
2ln(MS2

)

σ2

√
T

µ1 = −σ2
1

µ1 = −σ2
2

and M(a, b; ρ) is bivariate cumulative normal distribution function.

Two-Asset Out Barriers Option

Down-and-out call(cdo), η = 1, φ = −1

P =


max(S1 −K; 0) if S2 > M

0 else

Up-and-out call (Cuo), η = 1, φ = 1

P =


max(S1 −K; 0) if S2 < M

0 else

Down-and-out put (pdo), η = −1, φ = −1

P =


max(K − S1; 0) if S2 > M

0 else
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Up-and-out put (puo), η = −1, φ = 1

P =


max(K − S1; 0) if S2 < M

0 else

Two-Asset In Barriers Option

Down-and-in call, cdi = Call − cdo

P =


max(S1 −K; 0) if S2 > M

0 else

Up-and-in call, cui = call − cuo

P =


max(S1 −K; 0) if S2 < M

0 else

Down-and-in put, pdi = put− pdo

P =


max(K − S2; 0) if S2 > M

0 else

Up-and-in put, pui = put− puo

P =


max(K − S2; 0) if S2 < M

0 else
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3.3 Pricing Under Bivariate Black-Scholes Model

To describe the dynamics of prices for the barrier option contracts under bivariate

Black-Scholes model, three dimensional graphs have been created. We apply bivari-

ate Black-Scholes model for three sets: Brent oil and Ontario gasoline, WTI oil and

Ontario gasoline, and Brent and WTI oil.

Figures (3.9), (3.10) and (3.11) demonstrate the price of bivariate Down-and-Out

call barrier option versus the maturity time (T) and strike price (K). As we ex-

pected by increasing strike price for Brent oil for two first sets and increasing WTI

strike price for last set the barrier option price decreases. Figures (3.12), (3.13)

and (3.14) show that for bivariate barrier option changing volatilities of all assets

does not change the price to much. Changing bivariate barrier option price versus

the correlation between underlying assets and the strike price (same as strike price

for first three graphs in this section) have been presented in figures (3.15), (3.16)

and (3.17). Bivariate barrier option price decreases by increasing strike price and

changing correlation (ρ) does not have an effect on the option price.
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Figure 3.9: Barrier Option Prices for Two Assets(Brent Oil and Onatrio Gasoline)by

using Bivariate Black-Scholes Model

Barrier Prices Option: The 3-D graph shows the interaction between T( maturity

time of the barrier option), K(strike price of the barrier option) and the price of

the option for two assets using bivariate Black-Scholes model simulation. The K is

[80:5:110], T is [ 1
12 : 1

12 :1] and and M is 68.

59



Figure 3.10: Barrier Option Prices for Two Assets(WTI Oil and Onatrio Gasoline)by

using Bivariate Black-Scholes Model

Barrier Prices Option: The 3-D graph shows the interaction between T(

maturitytime of the barrier option), K(strike price of the barrier option) and the

price of the option for two assets using bivariate Black-Scholes model simulation.

The K is [70:5:100], T is [ 1
12 : 1

12 :1] and M is 68.
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Figure 3.11: Barrier Option Prices for Two Assets(Brent and WTI oil)by using

Bivariate Black-Scholes Model

Barrier Prices Option: The 3-D graph shows the interaction between T( maturity

time of the barrier option), K(strike price of the barrier option) and the price of

the option for two assets using bivariate Black-Scholes model simulation. The K is

[80:5:110], T is [ 1
12 : 1

12 :1] and M is 83.
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Figure 3.12: Barrier Option Prices for Two Assets(Brent Oil and Onatrio Gaso-

line)by using Bivariate Black-Scholes Model

Barrier Prices Option: The 3-D graph shows the interaction between σBrent−Oil,

σOntrio−Gasoline and the price of the option for two assets using bivariate

Black-Scholes model simulation. The σBrent−Oil is [0.001:0.001:0.002] and

σOntrio−Gasoline is [0.001:0.001:0.014].
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Figure 3.13: Barrier Option Prices for Two Assets(WTI Oil and Onatrio Gasoline)by

using Bivariate Black-Scholes Model

Barrier Prices Option: The 3-D graph shows the interaction between σBrent−Oil,

σOntrio−Gasoline and the price of the option for two assets using bivariate

Black-Scholes model simulation.The σWTI−Oil is [0.001:0.001:0.002] and

σOntrio−Gasoline is [0.001:0.001:0.014].
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Figure 3.14: Barrier Option Prices for Two Assets(Brent and WTI Oil)by using

Bivariate Black-Scholes Model

Barrier Prices Option: The 3-D graph shows the interaction between σBrent−Oil,

σWTI−Oil and the price of the option for two assets using bivariate Black-Scholes

model simulation.The σBrent−Oil is [0.01:0.001:0.02] and σWTI−Oil is

[0.01:0.01:0.02].
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Figure 3.15: Barrier Option Prices for Two Assets(Brent Oil and Ontario Gaso-

linel)by using Bivariate Black-Scholes Model

Barrier Prices Option: The 3-D graph shows the interaction between

ρBrent−Oil&Ontario−Gasoline and the price of the option for two assets using

bivariate Black-Scholes model simulation.The ρBrent−Oil&Ontario−Gasoline is

[0.01:0.01:0.045]and K is [80:5:110].
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Figure 3.16: Barrier Option Prices for Two Assets(WTI Oil and Ontario Gaso-

linel)by using Bivariate Black-Scholes Model

Barrier Prices Option: The 3-D graph shows the interaction between

ρWTI−Oil&Ontario−Gasoline and the price of the option for two assets using bivariate

Black-Scholes model simulation.The ρWTI−Oil&Ontario−Gasoline is [0.01:0.01:0.048]

K is [70:5:100].
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Figure 3.17: Barrier Option Prices for Two Assets(Brent and WTI Oil)by using

Bivariate Black-Scholes Model

Barrier Prices Option: The 3-D graph shows the interaction between ρWTI−Oil,

ρBrent−Oil and the price of the option for two assets using bivariate Black-Scholes

model simulation.The ρBrent−Oil−Oil&WTI−Oil is [0.1:0.1:0.89] K is [80:5:110].
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Chapter 4

PRICING BARRIER OPTION BASED ON TIME-CHANGED

MODEL BY USING MONTE CARLO METHOD

In this chapter, algorithms of more advanced and comprehensive univariate and

bivariate Time-Changed model based on Inverse Gaussian are introduced to price

the barrier option for same assets of chapter three.

To implement the introduced algorithms the Monte Carlo method is applied in

simulation. The model verifiedd in simulation by implementing two main blocks

Brownian motion and Inverse Gaussian process.

4.1 Time-Changed Model

4.1.1 Univariate Time-Changed Model

In order to price barrier option on oil and gas contracts, we assume a dynamic for

the underlying commodities based on the spot price. The initial task is to define a

model for the underlying commodities of spot price. Accordingly, we can define

St = S0 exp(Yt)
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where St, t ≥ 0 is the price for asset at time t, and Yt is the log-price. Moreover, we

assume the log-price process (Yt)t≥0 verifies by

Yt = σBAt + µAt

where At is a subordinator with IG distribution. The process (Bt)t≥0 is a Brownian

motion.

An Normal Inverse Gaussian (NIG) Yt has characteristic exponent that is given by

φYt(u) = −at
√
−2iv + b2 − b (4.1)

where v = uµ+ 1
2σ

2u2i.

Notice that subordinators are positive processes which jumps the random times.

We analyze Down-and-Out barrier options whose payoff at maturity T, for a strike

price K, and Barrier M is given by:

hB(St) = (ST −K)+1{msT>M} 0 ≤ t ≤ T

Finally the fair price of the contracts at time T with strike price K will be given by

the following equation, which take the expectation of the payoff, and discount the

payoff.

Pt = e−rTEQ[hB(St)0≤t≤T ];

where Q is an equivalent martingale measure and EQ is the expectation with respect

to the Q.
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4.1.2 Bivariate Time-Changed Model

Along with univariate Time-Changed model, we need two-dimensional Time-Changed

model to find the price for two assets in order to price the crack spread contracts and

accordingly payoff of each commodity based on the spot price.Similar to univariate

Time-Changed model begging with reproducing the spot prices for any assets, using

the following equation

Sjt = Sj0 exp(Y j
t ) j = 1, 2

where (Y j
t ) is the log-price of asset j

Y j
t = Bj

Ajt
+ µjA

j
t j = 1, 2

where

Ajt = X0
t + CjX

j
t j = 1, 2

and (Xt)t≥0 = (X0
t , X

1
t , X

2
t )t≥0 is a bivariate Levy process with independent compo-

nents. Similar to univariate Time-Changed model, we have studied in down-and-out

barrier options whose payoff at maturity T, for a strike price K, and barrier M is

given by:

hB(St) = (S
(1)
T − S

(2)
T −K)+1

{m
S(1)−S(2)
T >M}

0 ≤ t ≤ T

where

mS(1)−S(2)

T = inf{S(1)
t − S

(2)
t }, 0 ≤ t ≤ T.
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We compute the price of contracts at maturity time, T, with strike price, K, by

using the following equation at the end of simulation.

P̂t = e−r(T−t)EQ[hB(St)0≤t≤T ]

where r is interest rate.

4.2 The Monte Carlo Method and Pricing Applications

In this section we introduce Monte Carlo method for finding Pt. Since we take m is

a very large number of paths of the stocks price process in this method then we are

able to compute the payoff by using

~ =
1

m

m∑
i=1

hiB(St) ' EQ[hB(St)0≤t≤T ] (4.2)

The Monte Carlo Method is based on two foundations; the Law of Large Numbers

(LLN), and the algorithm to generate positive random numbers. The LLN generally

states that the average of the results from performing the same experiment a large

number of times m should be close to its expected value, and usually becomes closer

as m increases. See (Hazewinkel,2001). The Strong Law of Large Numbers(SLLN),

and the Weak Law of Large Numbers(WLLN) are two versions of LLN which the

Monte Carlo Method is convergent in both of them,therefore the SLLN is proposed

below.

Proposition 4.1. The Strong Law of Large Numbers.

Let X1, X2, ..., Xn be an independent and identically distributed sequence of random
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variables where E[X1] <∞ Then,

1

n

∞∑
n=1

Xn → E[X1]

as n→∞. See(Prokhorov,)

The randomness comes from generating suitable random numbers using different

generating techniques. In this method, we must generate a random number. Nor-

mal random numbers from Inverse Gaussian distribution will be created in Time-

Changed model and will be used to determine the asset price and then the option

price.

Both Univariate and bivariate Time-Changed model after generating Inverse Gaus-

sian distribution, Brownian Motion will be generated for pricing asset(s) and then

we applied Monte Carlo method for barrier option price.

The algorithms for each component of Time-Changed model to price option are

given in next section. Figure(4.1) shows how the processes combine to have good

output,price option. Uni and bi variate Inverse Gaussian and Brownian motion are

initial simulation required. Then the Time-Changed model is used to simulate a

trajectory the spot price for asset(s). At the end, the Monte Carlo is used to simu-

late the option price. For beginning, the algorithms for input Time-Changed model

are discussed. Then followed by the algorithm of the Monte Carlo method.
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Figure 4.1: Flowchart Depicting the functions created to obtain the Price Option.

4.3 Algorithm of Monte Carlo Output Functions

Each process or function used in the methodology has its own respective algorithm

which operates as the foundation to the software implementation.The algorithms for

Brownian motion, Inverse Gaussian process and Monte Carlo method are explained

for both univariate and bivariate in this section.

4.3.1 Algorithm of Monte Carlo Under Univariate Time-Changed Model

We begin with one dimensional Monte Carlo method by generating univariate In-

verse Gaussian subordinator and Brownian Motion model.
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1. Univariate Inverse Gaussian Subordinator

Simulating subordinator At is the first step of the Monte Carlo method simula-

tion for time-changed model. The time-changed model proposed, uses an Inverse

Gaussian subordinator (IG(a,b)). We use the following algorithm known as the IG

generator of Schucany and Haas.(Schucany& Hass) .

Algorithm(generating IG numbers with IG distribution):

(1) Inputs a > 0, b > 0.

(2) Generate a standard Normal random number v.

(3) y = v2.

(4) Set x = a
b + y

2b2
−
√

4aby+y2

2b2

(5) Generate a uniform random number u.

(6) If u ≤ a
a+xb , then return the number x as the IG(a, b) random number, else

return a2

b2x
as the IG(a, b) random number At.
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Numbers we generate the subordinator (At)t≥0 by using the univariate Inverse

Gaussian algorithm.

Inverse Gaussian Subordinator Simulation Result

Figure 4.2: Inverse Gaussian Subordinator Simulation Result

Figure 4.2 depicts an Inverse Gaussian process simulation fort = [0, T ], with

a = 1 and b = 20. The parameters a and b represent the mean and standard de-

viation of the process, respectively. Evidently, the slope of the trajectory is varied.

A steeper slope observed throughout the interval results in a greater change in the

spot price.
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2. Univariate Brownian Motion

Simuating Brownian motion is the second step in the Monte Carlo simulation for

univariate Time-Changed model. The goal is to simulate a Brownian motion on the

interval [0, T ]. For this simulation, we divided the interval into n equal subintervals.

Using the following algorithm:

Algorithm

(1) Input T and ∆T .

(2) The subintervals, n, is calculated for the maturity period of T, and increment of

∆T as n = [ T
∆T ] and n is an integer.

(3) Using a univariate random number for generating univariate Brownian with

mean of zero and the variance σ,

Bt ∼ N(0, σAt)
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Geometric Brownian Motion Bt Simulation

Figure 4.3: Brownian Motion Simulation

Figure 4.3 demonstrates the simulation of a trajectory Brownian motion, where T

is one year, t ∈ [0, T ], n = 260 mean zero, and σ = 0.2.
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3. Price Simulation

Simulating the asset price is the last step before applying Monte Carlo method for

Time-Changed model. IG subordinator and Brownian motion will be recall in asset

price simulation.

Algorithm

(1) Input At, BAt , T, S0, drift (µ) and volatility (σ) of the asset.

(2) simulating Yt by using At and BAt

Yt = σBAt + µAt 0 ≤ t ≤ T.

(3) Finding the spot price( St) by

St = S0exp(Yt) 0 ≤ t ≤ T.
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Figure 4.4: Spot Price for an Asset

In the figure 4.4 spot price for an asset with S0 = 50 over a period of T = 1 year

with 260 business day using Time-Changed model is simulated.
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4. Univariate Monte Carlo Pricing

The algorithm steps for pricing spark spread options using the Monte Carlo

method is as below:

Algorithm

(1)Input strike price (K), barrier (M), repetition (m) and Maturity time (T).

(2) Divide the interval (0, T ) into n intervals with length of ∆t, then simulate the

sequence of prices:

S∆t, S2∆t, S3∆t, ..., Sn∆t = ST .

(3) Compute hB(St)

hB(St) = (ST −K)+1{mst>M} 0 ≤ t ≤ T.

(4) Repeat 1 and 2 for m times.

(5) Calculate ~

~ =
1

m

m∑
m=1

hB(St)

(6) Compute price optionP̂

p̂ = exp(−rT )~
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4.3.2 Algorithm of Monte Carlo for Bivariate Time-Changed Model

In this subsection, bivariate Inverse Gaussian subordinator, Brownian Motion and

Time-Changed model algorithms will be demonstrated and the algorithm for pricing

the option price will be explain by Monte Carlo method at the end.

1. Multivariate Inverse Gaussian Subordinator For generating multivariate

IG subordinator, we have the same 5 steps algorithm as a univariate IG subordina-

tor. we have simulate two IG subordinator from step (6) as following:

Algorithm:

(1) Generate a standard Normal random number v.

(2) y = v2.

(3) Set x = a
b + y

2b2
−
√

4aby+y2

2b2

(4) Generate a uniform random numberu.

(5) If u ≤ a
a+x∗b , then return the number x as the IG(a, b) random number, else

return a2

b2∗x as the IG(a, b) random number.

(6) Next, it is easy to simulate a sample path of an IG processXj
∆t, where It

follows anIG(at, b) law. We simulate the value of this process at time points

{n∆t, n = 0, 1, ...} as follows. First generate independentIG(a∆t, b) random

numbers {in, n ≥ 1}, then

Xj
0 = 0, Xj

n∆t = Xj
n−1∆t + in n ≥ 1, j = 1, 2 (4.3)

Where in are IG(a∆t, b) and ∆t = T
n .

(7) finally we generate subordinator Ajt
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Figure 4.5: Bivariate Inverse Gaussian Subordinator

Ajt = X0
∆t + CjX

j
∆t (4.4)

Where Cj are constant number.

Figure 4.5: Inverse Gaussian subordinator simulated using a = 1, b = 20, maturity

T = 1 year and ∆t = 1day.
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2. Brownian Motion Algorithm Algorithm

(1) The subintervals, n, is calculated using the maturity period T, and increment

∆T as n = [ T
∆T ]such that n is an integer

(2) The correlation matrix is created as

∑
B

=

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2


We take ρ = 0 that means, there is no correlation between B1

t , B2
t .

(3) The zero mean is given by

µ = (0, 0)T

(4) Using a multivariate random number generator the two dimensional Brownian

motion is simulated with zero mean and correlation
∑

B

Bj
At
' N(0, Ajt

∑
B

)
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Figure 4.6: Bivariate Brownian Motion Simulation
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3. Multivariate Monte Carlo Pricing Algorithm The algorithm for pricing

spark spread options using the Monte Carlo Simulation Method consists of the

following steps:

(1) Divide the interval (0, T ) into n intervals of length ∆t repeating the 2 simulations

to obtain the j-th simulation of the sequence of prices:

S
(j)
∆t , S

(j)
2∆t, S

(j)
3∆t, ..., S

(j)
n∆t = S

(j)
T

for j = 1, 2

(2) Computing hB(St)

hB(St) = (S
(1)
T − S

(2)
T −K)+1{S(1)

T −S
(2)
T >M} 0 ≤ t ≤ T

3. Repeat all these steps for m times.

4. Calculating ~

~ =
1

m

m∑
p=1

hp

5. Computing p̂(t)

p̂(t) = exp(−rT )~

4.4 Monte Carlo Pricing Computation

This section presents the result procured from the methodology proposed to price

barrier option. Three dimensional graphs have been used to present the impact the

various parameters present in Time-Changed model. The Monte Carlo method for

both univariate and bivariate Time-Changed model is used with n = 1000000 runs
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for each graphs.

We need a drift (µ) and the volatility (σ) for each commodities, same as the Black-

Scholes model. By using characteristic exponent function (4.1) for Time-Changed

model and

Mean = E(Yt) = −iφ′(0) =
atµ

b

E(Y 2
t ) = (−i)2φ”(0) =

at(σ2b2 − µ2)

b3

V ar(Yt) = E(Y 2
t )− (E(Yt))

2 =
at(σ2b2 − µ2)

b3
− a2t2µ2

b2

we can find the drift and volatility for each asset from the empirical data that

presented in table (1.2).

Series µ− daily σdaily µ− weekly σweekly

BRE Oil 0 0.09 0.12 0.06

WTI Oill 0 0.1 0.09 0.07

Ontario Gasoline - - 0.052 0.07

Table 4.1: µ and σ for all three assets in Time-Changed Model

4.4.1 Monte Carlo Pricing under Univariate Time-Changed Model

To observe the dynamics of the prices for the barrier option contracts under uni-

variate Time-Changed model, Three dimensional graphs have been created. Figure

(4.7), (4.8) and (4.9) describe the price of the barrier option for Brent oil, WTI
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oil and Ontario gasoline versus the Maturity time and strike price. As the strike

price increase the option price reduce as we expected based on the payoff formula.

The same happen when the maturity time increase, as seen in univariate Black-

Scholes model. All three graphs demonstrate sharp decrease in the option price

when K = $100 for Brent oil, K = $90 for WTI oil and K = $70 for Ontario gaso-

line. The time range taken for these graphs was T = 0.08, 0.16, 0.25, 0.5, 0.6, 0.75

and 1 year.

Figures (4.10), (4.11) and (4.12) show the interaction between tha barrier option

price, strike price and the volatility (σ) for all three commodities. Each of them

σBrentOil, σWTIOil and σOntarioGasoline is characterized as the coefficient volatility of

Brownian motion process in Time-Changed model. In all commodities, very little

alteration in the price option is happened with changing the commodities’ volatility.

The barrier option price is zero after initial strike price for each asset. This price is

clarified by the payoff formula.

Figures (4.13), (4.14) and (4.15) show the interaction between the price for Down-

and-Out call barrier option and the Inverse Gaussian process parameters (a,b).

Based on graphs, the payoff is zero most of the times and highest price is observed

at lowest value for b=10 and largest value for a=1. When b increases the price

option declines very sharply to zero.
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Figure 4.7: Simulation of option price for Brent Oil in Univariate Time-Changed

Model

Prices for Brent oil: The 3-D graph shows the interaction between T( maturity of

the barrier option), K(Strike price of the barrier option) and the price of the

option using univariate Time-Changed model simulation. The K is [80:5:110] and

T is [ 1
12 : 1

12 :1].
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Figure 4.8: Simulation of Option Price for WTI Oil in Univariate Time-Changed

Model

Prices for WTI oil: The 3-D graph shows the interaction between T( maturity of

the barrier option), K(Strike price of the barrier option) and the price of the

option using univariate Time-Changed model simulation. The K is [70:5:100] and

T is [ 1
12 : 1

12 :1].
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Figure 4.9: Simulation of Option Price for Ontario Gasoline in Univariate Time-

Changed Model

Prices for Ontario gasoline: The 3-D graph shows the interaction between T(

maturity of the barrier option), K(Strike price of the barrier option) and the price

of the option using univariate Time-Changed model simulation. .The K is [60:5:90]

and T is [ 1
12 : 1

12 :1]
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Figure 4.10: Simulation of Option Price for Brent Oil in Univariate Time-Changed

Model

Prices for Brent oil: The 3-D graph shows the interaction between σBrent−oil,

K(Strike price of the barrier option) and the price of the option using uni-variate

Time-Changed model simulation.σBrent−oil is [0.01:0.02:0.09].
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Figure 4.11: Simulation of Option Price for Brent Oil in Univariate Time-Changed

Model

Prices for WTI oil: The 3-D graph shows the interaction between σWTI−oil,

K(Strike price of the barrier option) and the price of the option using uni-variate

Time-Changed model simulation. σWTI−oil is [0.01:0.02:0.1].
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Figure 4.12: Simulation of Option Price for Ontario Gasoline in Univariate Time-

Changed Model

Prices for Ontario gasoline: The 3-D graph shows the interaction between

σWTI−oil, K(Strike price of the barrier option) and the price of the option using

univariate Time-Changed model simulation. σOntario−Gasoline is [0.01:0.02:0.07].
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Figure 4.13: Simulation of Option Price for Brent Oil in Univariate Time-Changed

Model

Prices for Brent oil: The 3-D graph shows the interaction between a, b and the

price of the option using univariate Time-Changed model simulation.a was

[0.01:0.01:1] and b was [11:2:20].
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Figure 4.14: Simulation of Option Price for WTI Oil in Univariate Time-Changed

Model

Prices for WTI oil: The 3-D graph shows the interaction between a, b and the

price of the option using univariate Time-Changed model simulation. a was

[0.01:0.01:1] and b was [11:2:20].
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Figure 4.15: Simulation of Option Price for Ontario Gasoline in Univariate Time-

Changed Model

Prices for Ontario gasoline oil: The 3-D graph shows the interaction between a, b

and the price of the option using univariate Time-Changed model simulation. a

was [0.01:0.01:1] and b was [11:2:20].
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4.4.2 Monte Carlo Pricing under Bivariate Time-Changed Model

To observe the dynamics of the prices for the barrier option contracts under bivari-

ate Time-Changed model, Three dimensional graphs have been created. Figures

(4.16), (4.17) and (4.18) display the difference in barrier option price between On-

tario gasoline and Brent oil using Bivariate Time-Changed model. Figure (4.16)

shows that by increasing Ts , the option price increase drastically at first for small

Ts and then increases very slowly like going to saturation for larger Ts between 0.5

to 1 year. It also shows that changing K from 1 to 5 does not affect that much

on option price. Figure (4.17) shows that increasing σOntarioGasoline and decreasing

σBrentoil increases bivariate barrier option Price. Figure (4.18) shows that increasing

a0 and decreasing b0 will increase price where the maximum price of around 32.2 is

reached at a0 = 0.1 and b0 = 20.

Figures (4.19), (4.20) and (4.21) demonstrate the difference in barrier option price

between Ontario gasoline and WTIl using Bivariate Time-Changed model. Figure

(4.19) proves that the bivariate barrier option price decreases by increasing Time

and strike price where the lowest price happens at maximum K of 5 and T equal

to one year. Figure (4.20) shows that for bivariate barrier option changing σ1 and

σ2of both assets does not change the price that much.Figure (4.21) the price is less

sensitive to Inverse Gaussian parameters a0 and b0. Where the price variation is

small around 18.2-18.5 and the minimum price is reached when we have a0 = 0.1

and b0 = 20.
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Figures (4.22), (4.23) and (4.24) show the difference in barrier option price between

Brent and WTI oil using Bivariate Time-Changed model. Similar to figure (4.19)

,figure (4.22) also shows that barrier option price increases linearly by decreasing

K while the maturity time does not affect that much on price. Figures (4.23) sim-

ulation results show that both Inverse Gaussian parameters a0 andb0 have impact

on price, where increasing both of them decreases the price and decreasing them

increased the price and maximum price of around 5.5 is reached at a0 = 0.1 and

b0 = 20.
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Figure 4.16: Bivariate Simulation of Barrier Option Price for Ontario Gasoline and

Brent Oil in Bivariate Time-Changed Model

The graph shows bivariate barrier option prices change versus T( maturity time of

the barrier option per year), K(Strike price of the barrier option) and the price of

the option based on bivariate Time-Changed model simulation. The K is [1:1:5]

and T is [ 1
12 : 1

12 : 1].
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Figure 4.17: Simulation of Option Price for Ontario Gasoline and Brent Oil in

Bivariate Time-Changed Model

The graph depicts the effect of σOntarioGasoline and σBrentoil and variations on the

price of the option using bivariate Time-Changed model simulation.σBrentOil is

[0.01 : 0.02 : 0.06] and σOntarioGasoline is [0.01 : 0.02 : 0.07].
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Figure 4.18: Simulation of Option Price for Ontario Gasoline and Brent Oil in

Bivariate Time-Changed Model

The 3-D graph displays the barrier option price variation with respect to the

parameters of IG(a0, b0 using bivariate Time-Changed model simulation.a0 and b0

are [0.1 : 0.2 : 1] and [20 : 2 : 40] respectably.
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Figure 4.19: Bivariate Simulation of Barrier Option Price for Ontario Gasoline and

WTI Oil using Time-Changed Model

The graph shows the interaction between T( maturity of the barrier option),

K(Strike price of the barrier option) and the price of the option using bivariate

Time-Changed model simulation. The K is [1:1:5] and T is [ 1
12 : 1

12 : 1].
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Figure 4.20: Simulation of Option Price for Ontario Gasoline and WTI Oil in Bi-

variate Time-Changed Model

The 3-D graph shows the effect of changing σOntarioGasoline and σWTIOil on the

price of the barrier option using bivariate Time-Changed model simulation.σWTIoil

is [0.01 : 0.02 : 0.07] and σOntarioGasoline is [0.01 : 0.02 : 0.07].
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Figure 4.21: Simulation of Option Price for Ontario Gasoline and WTI Oil in Bi-

variate Time-Changed Model

The 3-D graph displays the barrier option price variation with respect to the

parameters of IG(a0, b0 using bivariate Time-Changed model simulation.a0 and b0

are [0.1 : 0.2 : 1] and [20 : 2 : 40] respectably.
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Figure 4.22: Simulation of Option Price for Brent and WTI Oil in Bivariate Time-

Changed Model

The graph depicts the barrier option price variation with respect to the T(

maturity of the barrier option), K(Strike price of the barrier option) using

bivariate Time-Changed model simulation. The K is [1:1:5] and T is [ 1
12 : 1

12 : 1].
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Figure 4.23: Simulation of Option Price for Brent and WTI Oil in Bivariate Time-

Changed Model

The 3-D graph displays the interplay between σBrentoil and σWTIoil and the price

of the option using bivariate Time-Changed model simulation.σBrentoil is

[0.01 : 0.02 : 0.09] and σWTIoil is [0.01 : 0.02 : 0.1].
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Figure 4.24: Simulation of Option Price for Brent oil and WTI Oil in Bivariate

Time-Changed Model

The graph shows barrier option prices change versus te a0 and b0 that are Inverse

Gaussian parameters based on bivariate Time-Changed model.a0 and b0 are

[0.1 : 0.2 : 1] and [20 : 2 : 40] respectably.
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4.5 Cosine Fast Fourier Transform Method

Fourier Transform methods provide an efficient and widely-used alternative to Monte-

Carlo and other numerical methods when the characteristic func- tion of the under-

lying market model is known. Carr and Madan (Carr and Madan,1999)first used the

Fourier transform to price European call options, while both Dempster and Hong

(Dempster and Hong, 2000), and Hurd and Zhou. derived Fourier Transform meth-

ods to price spread options.

In this section, we used COS Fast Fourier Transform method for barrier option in

Time-Changed model.

4.5.1 COS Fast Fourier Transform Method

The COS method is imerged from the idea that the Fourier-cosine series coefficients

of a density function f (y|x) are closely related to its characteristic function.

Since the density function, f (y|x), decays to zero rapidly as y → ±∞, we can

truncate the infinite integration range in the risk-neutral valuation formula without

loosing significant accuracy. Suppose for [a, b] ⊂ R, we have

∫
R\[a,b]

f (y|x) dy < TOL

for some given tolerance, TOL, then we can approximate c (x, tm−1) with replacing

the density function by its Fourier-cosine series expansion on [a, b],

f (y|x) =
∑
′∞k=1Ak (x) cos

(
kπ
y − a
b− a

)
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where
∑
′ indicates that the first term in the summation is multiplied by 1

2 . The

series coefficients {Ak (x)}∞k=1 are defined by

Ax (x) :=
2

b− a

∫ b

a
f (y|x) cos

(
kπ
y − a
b− a

)
dy

Interchanging the summation and integration operators yields

c (x, tm−1) =
1

2
(b− a) e−r∆t

∞∑
k=0

Ak (x)Vk (tm)

with Vk (tm) are the Fourier-cosine series coefficients of v (y, tm) on [a, b],

Vk (tm) :=
2

b− a

∫ b

a
v (y, tm) cos

(
kπ
y − a
b− a

)
dy

cutting infinite series gives to N

c′ (x, tm−1) =
1

2
(b− a) e−r∆t

N−1∑
k=0

Ak (x)Vk (tm)

conditional characteristic function, φ (ω;x) and Ak (x) are related together and can

be defined

φ (ω;x) :=

∫
R
f (y|x) eiωydy.

Consequently, we can write coefficient Ak (x) as below

Ak (x) =
2

b− a
Re{e−ikπ

a
b−a

∫ b

a
ei

kπ
b−ayf (y|x) dy}

where Re{.} is real part of input argument. Finite integration can be approximated

by following equation

∫ b

a
ei

kπ
b−ayf (y|x) dy ≈

∫
R
ei

kπ
b−ayf (y|x) dy =: φ

(
kπ

b− a
;x

)
.
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Accordingly by Ak (x) by Fk (x), we have

Fk (x) :=
2

b− a
Re{φ

(
kπ

b− a
;x

)
e−ikπ

a
b−a }.

after replacing Ak (x) in c′ by Fk (x) gives COS formula for exponential Levy pro-

cesses will be

ĉ (x, tq−1) := e−r∆t
N−1∑
k=0

Re{ϕlevy
(

kπ

b− a

)
eikπ

x−a
b−a }Vk (tq)

where ϕlevy (ω) := φlevy (ω; 0).

Using ϕlevy (ω) := φlevy (ω; 0) we can calculate v(x, t0)

v̂ (x, tq−1) := e−r∆t
N−1∑
k=0

Re{ϕlevy
(

kπ

b− a

)
eikπ

x−a
b−a }Vk (t1) (4.5)

The Vj(tm) , j = 0, 1, ...N − 1 can be recovered from Vj(tm+1) , j = 0, 1, ...N − 1

(Fang and Oosterless).

4.5.2 Cosine Method in Barrier Option Time Changed

We consider an exponential univariate Time-Changed Levy model with subordina-

tor, given by a univariate Inverse Gaussian process. The dependence between both

underlying assets is given through the Brownian components as well as the Time-

Changed subordinator. We also consider a drift given by mean reverting component.

As we see in previous section in COS method, we need a characteristic function for

the Levy Process. If asset price hits a certain barrier level M at one of observation

dates, we call discretely ”out” barrier option. This out option be called down-and-

out option if M < S0. In this section we explain COS Method for down-and-out
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option.

The pay off option for down-and-out option reads

h(ST ) = (max((ST −K), 0))1{ST>M}

The price of down-and-out option that monitored R times, the set of observation

dates, {t1, ..., tQ}, t1 < ... < tQ−1 < tQ = T

ĉ
(
Stq−1

)
= e−r(tq−tq−1)

∫
R
h
(
Stq
)
f (y|x) dy,

h
(
Stq−1

)
=


0 m ≥ 0;

c
(
Stq−1

)
x < m.

Where m := ln M
K and q = Q,Q− 1, ..., 2.

Lemma 4.2. (Backward Induction for Discrete Barrier Option). By backward re-

cursion we find the following numerical approximation for discretely monitored bar-

rier options: For q = Q− 1, Q− 2, ..., 1

V̂k (tq) = Ĉk (a,m, tq)

If m < 0 we have

Vk(StQ) = Gk(a,m) (4.6)

For m ≥ 0,

Vk(x, tQ) = Gk(a, 0) (4.7)
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Where

Gk(x1, x2) :=
2

b− a

∫ x2

x1

g(x, tq) cos(kπ
x− a
x− b

)dx.

g(x, tq) = ±K(1− ex)

If x2 ≤ 0 then g(x, tq) = K(1− ex), if x1 ≥ 0 then g(x, tq) = K(ex − 1) and

Ck(x1, x2, tq) :=
2

b− a

∫ x2

x1

c(x, tq) cos(kπ
x− a
x− b

)dx.

Then we can find the v̂(x, tq−1) by using (4.9) formula

4.5.3 COS Method Algorithm

In this section, we will explain the COS method algorithm for barrier option.We

have three parts, initialization, main loop to recover V̂(tq−1) and finalization in this

algorithm.

Initialization:

1. In first step we find Vk(tQ) using (4.10) or (4.11).

2. For down-and-out: x1 = m and x2 = b and c = aand d = m.

3. In next step, we construct ms(x1, x2) and mc(x1, x2) by suing following formulas

mj :=


(x1−x2)π
b−a i if j = 0;

exp
(
ij

(x2−a)π
b−a

)
−exp

(
ij

(x1−a)π
b−a

)
j if j 6= 0.

and

ms = [m0,m−1,m−2, ...,m1−N , 0,mN−1,mN−2, ...,m1]T
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and

mc = [m2N−1,m2N−2, ...,m2,m1,m0]T .

4. Take d1 = D{msx1, x2)}, d2 = sgn.D{mc(x1, x2)}. Where sgn = [1,−1, 1,−1, ...]T .

Main Loop to Recover V̂ (tq−1): For q = Q to 2

1. Computing u (tm) that giving by formula:

u := {uj}N−1
j=0 , uj = ϕlevy

(
jπ

b− a

)
V j (tm+1) , u0 =

1

2
ϕlevy (0)V0 (tm+1) .

2. constructing us by adding N zeros to u(tm).

3. Put Msu= the first 2 N elements of D−1{d1.D (us)}.

4. Take Mcu = reverse{thefirstNelemntsofD−1{d2.D (us)}}.

5.

Ĉ (tq−1) =
e−r∆t

π
Im{Msu + Mcu}

6. In the last step of this part of algorithm is enough to take V̂ (tm−1) = Ĉ (tm−1).

Finalization:

Computing v̂(x, tq−1) by using (4.9).
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Chapter 5

CONCLUSION

In this thesis we have studied barrier option pricing using the conventional well-

known but irrealistic Black-Scholes model and its counterpart advanced Time-Changed

model. Two scenarios; single asset or univariate and two assets or bivariate option

price with utilizing real price of Oil and Gas are analyzed. As expected, the ad-

vanced Time-Changed model could provide much different estimation for barrier

option price than the Black-Scholes model over the same data.

In univariate barrier option pricing scenario, we could use Brent and WTI oil and

Ontario Gasoline real data and prove that Time-Changed model barrier option

price give much closer estimation (higher price) than univariate Black-Scholes model

(lower price).

In two asset barrier option, one underlying asset, S1, determined how much the

option is out of money and the other asset, S2, is linked to barrier hit in Black-

Scholes model.(Haug)Because of the barrier has not been taken on the difference

price for two underlying assets, therefore, the bivariate barrier option price is not

very genuine. On the other hand, the barrier and strike price are came both from

the difference price for underlying assets in Time-Changed model that makes the

model more realistic than the bivariate Black-Scholes model.For future works, find-
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ing the formula for bivariate Black-Scholes model when the barrier and strike price

are based on the difference price of underlying assets, is a good idea.

To obtain the volatilities and drifts for all underlying assets, the data should be

matched by same date for both underlying assets,as daily price was available for

Brent and WTI oil and weekly price was available for Ontario Gasoline. Manual

alignment of data was performed to obtain accurate empirical volatilities and drift

value for Brent and WTI to use them in bivariate Time-Changed model.

The Monte-Carlo method is used for simulating the barrier price of both univariate

and bivariate Time-Changed model with one million times repetition. consequently,

each simulation could take couple of days to completed which can be very challeng-

ing and expensive in fast changing real markets. Accordingly, new promising Fast

Fourier Cosine technique was introduced where its implementation was presented

in the last section of the thesis for further studies. This Fast Fourier Transform

technique could be much faster than Monte-Carlo method.
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.1 MATLAB Codes

Appendix

MATLAB Codes

Pricing Barrier Option

A. Black-Scholes Model

A.1 Univariate Black-Scholes Model

Vanilla Barrier Option

1 function Price = BL_Vanila_Barrier_Option(S, K, H, T, r,

sigma , reb , type)

2 % Price (1):Call price option , Price (2): Put price option

, K = Strike Price , T = Maturity Time , r= Interest ,

sigma = Volatility , Type = 'Put ' or 'Call '

3 q = 0; % q is dividend

4 b = r - q; % Cost of carry rate

5 mu = (r - (sigma ^ 2) / 2) / (sigma ^ 2);

6 lambda = sqrt(mu ^ 2 + 2 * r / (sigma ^ 2));

7

8 switch type

9 case 'DI'

10 eta (1) = 1; phi(1) = 1; % call price

11 eta (2) = 1; phi(2) = -1; % put price
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12 case 'UI'

13 eta (1) = -1; phi(1) = 1; % call price

14 eta (2) = -1; phi(2) = -1; % put price

15 case 'DO'

16 eta (1) = 1; phi(1) = 1; % call price

17 eta (2) = 1; phi(2) = -1; % put price

18 case 'UO'

19 eta (1) = -1; phi(1) = 1; % call price

20 eta (2) = -1; phi(2) = -1; % put price

21 end

22

23 x1 = log(S / K) / (sigma * sqrt(T)) + (1 + mu) * (sigma *

sqrt(T));

24 x2 = log(S / H) / (sigma * sqrt(T)) + (1 + mu) * (sigma *

sqrt(T));

25 y1 = log(H ^ 2 / (S * K)) / (sigma * sqrt(T)) + (1 + mu)

* (sigma * sqrt(T));

26 y2 = log(H / S) / (sigma * sqrt(T)) + (1 + mu) * (sigma *

sqrt(T));

27 z = log(H / S) / (sigma * sqrt(T)) + lambda * (sigma *

sqrt(T));
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28

29 A = phi .* S .* exp((b - r) * T) .* normcdf(phi .* x1) -

phi .* K .* exp(-r * T) .* normcdf(phi .* (x1 - sigma

* sqrt(T)));

30

31 B = phi .* S .* exp((b - r) * T) .* normcdf(phi .* x2) -

phi .* K .* exp(-r * T) .* normcdf(phi .* (x2 - sigma

* sqrt(T)));

32

33 C = phi .* S .* exp((b - r) * T) .* (H / S) ^ (2 * (mu +

1)) .* normcdf(eta .* y1) - phi .* K .* exp(-r * T) .*

(H / S) ^ (2 * mu) .* normcdf(eta .* (y1 - sigma *

sqrt(T)));

34

35 D = phi .* S .* exp((b - r) * T) .* (H / S) ^ (2 * (mu +

1)) .* normcdf(eta .* y2) - phi .* K .* exp(-r * T) .*

(H / S) ^ (2 * mu) .* normcdf(eta .* (y2 - sigma *

sqrt(T)));

36

37 E = reb * exp(-r * T) * (normcdf(eta .* (x2 - sigma *

sqrt(T))) - (H / S) ^ (2 * mu)) .* normcdf(eta .* (y2
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- sigma * sqrt(T)));

38

39 F = reb * (((H / S) ^ (mu + lambda)) .* normcdf(eta .* z)

+ ((H / S) ^ (mu - lambda)) .* normcdf(eta .* (z - 2

* lambda * sigma * sqrt(T))));

40

41

42 switch type

43 case 'DI'

44 if K >= H

45 Price (1) = C(1) + E(1); % call price

46 Price (2) = B(2) - C(2) + D(2) + E(2); % put

price

47 elseif K < H

48 Price (1) = A(1) - B(1) + D(1) + E(1); % call

price

49 Price (2) = A(2) + E(2); % put price

50 end

51 case 'UI'

52 if K >= H

53 Price (1) = A(1) + E(1); % call price

123



54 Price (2) = A(2) - B(2) + D(2) + E(2); % put

price

55 elseif K < H

56 Price (1) = B(1) - C(1) + D(1) + E(1); % call

price

57 Price (2) = C(2) + E(2); % put price

58 end

59 case 'DO'

60 if K >= H

61 Price (1) = A(1) - C(1) + F(1); % call price

62 Price (2) = A(2) - B(2) + C(2) - D(2) + F(2);

% put price

63 elseif K < H

64 Price (1) = B(1) - D(1) + F(1); % call price

65 Price (2) = F(2); % put price

66 end

67 case 'UO'

68 if K >= H

69 Price (1) = F(1); % call price

70 Price (2) = B(2) - D(2) + F(2); % put price

71 elseif K < H
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72 Price (1) = A(1) - B(1) + C(1) - D(1) + F(1);

% call price

73 Price (2) = A(2) - C(2) + F(2); % put price

74 end

75 end

76

77 end

Mainscript Univariate Black-Scholes Model

1 close all;

2 clear variables;

3 clc;

4 %Nb = 260; % number of bussiness day per year

5 T = 1; % maturity time equal to one year

6 r = 0.03; % annual interest rate

7 %dT = T/Nb; % delta T is equal to maturity time divided

by number of days

8 %t = dT: dT: T;

9 K = 100; % strike price

10 H = 95; % barrier price

11 sigma = 0.6;

12 S = 88.73; % initial price
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13 reb = 0;

14 %**********************************************

15 T = [1/12:1/12:1];

16 for j = 1: length(T)

17 Pr = BL_Vanila_Barrier_Option(S, K, H, T(j), r

, sigma , reb , 'DO');

18 %Pr_BL(j, i) = Pr(1);

19 end

20

21 figure; plot(Pr); grid; title('Pr'); xlabel('T'); ylabel

('Pr');

22

23 %****************************************

24

25 T = [1/12:1/12:1];

26 K = [80:2:110];

27 for j = 1: length(T)

28 for i = 1: length(K)

29 Pr = BL_Vanila_Barrier_Option(S, K(i), H, T(j),

r, sigma , reb , 'DO');

30 Pr_BL(j, i) = Pr(1);
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31

32 end

33 end

34

35 [X, Y] = meshgrid(K, T);

36 size([X, Y])

37 % C = X.*Y;

38 figure; surf(X,Y,Pr_BL); colorbar;

39 title('$$\ hat{P}$$ ','Interpreter ','Latex '); xlabel('K');

ylabel('T');

40 %

*********************************************************************

41 %******************** Sweeping Strike Price and Sigma

42 T = 1; % One bussines year

43 sigma= [0.1 : 0.05 : 0.6];

44 K=[80:2:110];

45 Pr_BL =[];

46 for j = 1: length(sigma)

47 for i = 1: length(K)

48 Pr = BL_Vanila_Barrier_Option(S, K(i), H, T, r,
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sigma(j), reb , 'DO');

49 Pr_BL(j, i) = Pr(1);

50

51 end

52 end

53 [X, Y] = meshgrid(K, sigma);

54 size([X, Y])

55 % C = X.*Y;

56 figure; surf(X,Y,Pr_BL); colorbar;

57 title('$$\ hat{P}$$ ','Interpreter ','Latex '); xlabel('K');

ylabel('sigma ');

58

59

A.2 Bivariate Black-Scholes Model Arcsin

1 function as = ArcSin(x)

2 if abs(x) == 1

3 as = sign(x)* Pi/2;

4 else

5 as = atan(x / sqrt (1 - x^2));

6 end
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Cbnd

1 function p = cbnd(a, b, rho)

2 % Multivariate normal cumulative distribution function

3 for i=1: length(a)

4 X = [a(i) ,b(i)];

5 mu = [0, 0];

6 cor = [1, rho(i); rho(i), 1];

7 p(i) = mvncdf(X, mu , cor);

8 end

9 end

10

Bivariate Vanilla Barrier Option

1 function price = BL_BiVariate_Vanila_Barrier_Option(S1,

S2, K, H, T, r, sigma1 , sigma2 , b1, b2, rho , type)

2 % Price (1):Call price option , Price (2): Put price option

, K = Strike Price , T = Maturity Time , r= Interest ,

sigma = Volatility , Type = 'Put ' or 'Call '

3 q = 0; % q is dividend

4 % b = r - q; % Cost of carry rate

5 % mu1 = (r - (sigma ^ 2) / 2) / (sigma ^ 2);

6 % lambda = sqrt(mu ^ 2 + 2 * r / (sigma ^ 2));
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7

8 switch type

9 case 'DI'

10 eta (1) = 1; phi(1) = -1; % call price

11 eta (2) = -1; phi(2) = -1; % put price

12 case 'UI'

13 eta (1) = 1; phi(1) = 1; % call price

14 eta (2) = -1; phi(2) = 1; % put price

15 case 'DO'

16 eta (1) = 1; phi(1) = -1; % call price

17 eta (2) = -1; phi(2) = -1; % put price

18 case 'UO'

19 eta (1) = 1; phi(1) = 1; % call price

20 eta (2) = -1; phi(2) = 1; % put price

21 end

22

23 mu1 = b1 - 0.5 * sigma1 ^2;

24 mu2 = b2 - 0.5 * sigma2 ^2;

25 d1 = (log(S1 / K) + (mu1 + sigma1 ^2) * T) / (sigma1 *

sqrt(T));

26 d2 = d1 - sigma1 * sqrt(T);
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27 d3 = d1 + (2 * rho * log(H/S2)) / (sigma2 * sqrt(T));

28 d4 = d2 + (2 * rho * log(H/S2)) / (sigma2 * sqrt(T));

29 e1 = (log(H / S2) - (mu2 + rho * sigma1 * sigma2) * T) /

(sigma2 * sqrt(T));

30 e2 = e1 + rho * sigma1 * sqrt(T);

31 e3 = e1 - 2 * log(H / S2) / (sigma2 * sqrt(T));

32 e4 = e2 - 2 * log(H / S2) / (sigma2 * sqrt(T));

33

34 price = eta .* S1 .* exp((b1 - r) * T) .* (cbnd(eta .* d1

, phi .* e1, -eta .* phi .* rho) ...

35 - exp ((2 * (mu2 + rho * sigma1 * sigma2) * log(H /

S2))/( sigma2 ^2)) .* cbnd(eta .* d3 , phi .* e3 , -

eta .* phi .* rho)) ...

36 - eta .* K * exp(- r * T) .* (cbnd(eta .* d2 , phi .*

e2 , -eta .* phi .* rho) ...

37 - exp ((2 * mu2 * log(H / S2))/( sigma2 ^2)) .* cbnd(

eta .* d4 , phi .* e4 , -eta .* phi .* rho));

38

39 %

40 % switch type

41 % case 'DI '
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42 % if K >= H

43 % Price (1) = C(1) + E(1); % call price

44 % Price (2) = B(2) - C(2) + D(2) + E(2); % put

price

45 % elseif K < H

46 % Price (1) = A(1) - B(1) + D(1) + E(1); %

call price

47 % Price (2) = A(2) + E(2); % put price

48 % end

49 % case 'UI '

50 % if K >= H

51 % Price (1) = A(1) + E(1); % call price

52 % Price (2) = A(2) - B(2) + D(2) + E(2); % put

price

53 % elseif K < H

54 % Price (1) = B(1) - C(1) + D(1) + E(1); %

call price

55 % Price (2) = C(2) + E(2); % put price

56 % end

57 % case 'DO '

58 % if K >= H
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59 % Price (1) = A(1) - C(1) + F(1); % call price

60 % Price (2) = A(2) - B(2) + C(2) - D(2) + F(2)

; % put price

61 % elseif K < H

62 % Price (1) = B(1) - D(1) + F(1); % call price

63 % Price (2) = F(2); % put price

64 % end

65 % case 'UO '

66 % if K >= H

67 % Price (1) = F(1); % call price

68 % Price (2) = B(2) - D(2) + F(2); % put price

69 % elseif K < H

70 % Price (1) = A(1) - B(1) + C(1) - D(1) + F(1)

; % call price

71 % Price (2) = A(2) - C(2) + F(2); % put price

72 % end

73 % end

74

75 end

Mainscript Bivariate Black-Scholes Model

1 close all;
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2 clear variables;

3 clc;

4 %Nb = 260; % number of bussiness day per year

5 T = 1; % maturity time equal to one year

6 r = 0.03; % annual interest rate

7 %dT = T/Nb; % delta T is equal to maturity time divided

by number of days

8 %t = dT: dT: T;

9 K = 100; % strike price

10 H = 68; % barrier price

11 sigma1 = 0.06;

12 sigma2 = 0.07;

13 S1 = 97.88;% initial price

14 S2 = 71.3;

15 b1 = 0;

16 b2 = 0;

17 rho = 0.06;

18 reb = 0;

19 %**********************************************

20 T = [1/12:1/12:1];

21 for j = 1: length(T)
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22 Pr = BL_BiVariate_Vanila_Barrier_Option(S1 , S2 , K

, H, T(j), r, sigma1 , sigma2 , b1, b2, rho , 'DO

')

23 %Pr_BL(j, i) = Pr(1);

24 end

25

26 figure; plot(Pr); grid; title('Pr'); xlabel('T'); ylabel

('Pr');

27

28 %****************************************

29

30 T = [1/12:1/12:1];

31 K = [80:1:110];

32 for j = 1: length(T)

33 for i = 1: length(K)

34 Pr = BL_BiVariate_Vanila_Barrier_Option(S1 , S2 ,

K(i), H, T(j), r, sigma1 , sigma2 , b1, b2, rho ,

'DO')

35 Pr_BL(j, i) = Pr(1);

36

37 end
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38

39 end

40

41 %plot3(kk ,tt , Pr_BL)

42 [X, Y] = meshgrid(K, T);

43 % C = X.*Y;

44 figure; surf(X,Y,Pr_BL); colorbar;

45 title('$$\ hat{P}$$ ','Interpreter ','Latex '); xlabel('K');

ylabel('T');

46 %*****************************************************

47 %*************************** Sweeping Sigma1 and Sigma2

48 K = 100;

49 T = 1; % One bussines year

50 sigma1= [0.01 : 0.01 : 0.06];

51 sigma2= [0.01 : 0.01 : 0.07];

52 Pr_BL =[];

53 for j = 1: length(sigma1)

54 for i = 1: length(sigma2)

55 Pr = BL_BiVariate_Vanila_Barrier_Option(S1 , S2 ,

K, H, T, r, sigma1(j), sigma2(i), b1 , b2 , rho ,

'DO')
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56 Pr_BL(j, i) = Pr(1);

57

58 end

59 end

60 [X, Y] = meshgrid(sigma2 , sigma1);

61 size([X, Y])

62 % C = X.*Y;

63 figure; surf(X,Y,Pr_BL); colorbar;

64 title('$$\ hat{P}$$ ','Interpreter ','Latex '); xlabel('

Sigma1 '); ylabel('sigma2 ');

65 %

************************************************************

66 %************************** Sweeping Strike Price and rho

67 T = 1; % One bussines year

68 sigma1 =0.06;

69 sigma2 =0.07;

70 rho= [0.01 : 0.01 : 0.06];

71 K=[80:5:110];

72 Pr_BL =[];

73 for j = 1: length(rho)
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74 for i = 1: length(K)

75 Pr = BL_BiVariate_Vanila_Barrier_Option(S1 , S2 ,

K(i), H, T, r, sigma1 , sigma2 , b1, b2, rho(j),

'DO')

76 Pr_BL(j, i) = Pr(1);

77

78 end

79 end

80 [X, Y] = meshgrid(K, rho);

81 size([X, Y])

82 % C = X.*Y;

83 figure; surf(X,Y,Pr_BL); colorbar;

84 title('$$\ hat{P}$$ ','Interpreter ','Latex '); xlabel('K');

ylabel('rho');

B. Time-Changed Model B.1 Univariate Time-Changed Model Inverse

Gaussian Subordinator

1 function [varout] = IG(a, b)

2 v = normrnd(0, 1);

3 y = v^2;

4 x = (a/b) + y/(2*(b^2)) - (sqrt (4*a*b*y + y^2))/(2*b^2);

5 u = rand;
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6 if u <= (a/(a + x*b))

7 varout = x;

8 else

9 varout = (a^2) / (( b ^ 2 ) * x);

10 end

11 end

Barrier Price Option

1 function [h_B , X_dT , St, At, Bt, Yt] =

BarrierPayoff_uniVar(n, T, a, b, K, M, sigma1 , S0 , mu)

;

2 % n = 1273; % number of bussiness day per year

3 % T = 5; % maturity time equal to one year

4 % r = 0.03; % annual interest rate

5 % dT = T/n; % delta T is equal to maturity time divided

by number of days

6 % t = 1/260: 1/260: 1;

7 % a = 0.01;

8 % b = 1;

9 % m = 3;

10 % K = 5; % strike price

11 % M = 20; % barrier price
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12 dT = T/n; % delta T is equal to maturity time divided by

number of days

13 t = dT: dT: T;

14 % sigma1 = 0.2;

15 % sigma2 = 0.4;

16 % mu = 0;

17 % rho = 0; % Correlation between stocks (for time being

they are considered independent)

18 % S0 = 50; % initial price

19 % t = 0: 1/260: 1 -1/260;

20 X_dT = zeros(1, n); % initial value for Oil

21 % X_dT(2, 1) = 0; % initial value for Gas

22

23 % for j =1:1 % j=1 for Oil , j=2 for Gas

24 % for p = 2:n % for day

25 % X_dT(j, p) = X_dT(j, p-1)+ IG(a*dT, b);

26 % end;

27 % end;

28 C = 1;

29 At = zeros(1, n); % initial value for Oil

30 %At(1) = X_dT (1) + C * X_dT (1);
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31 % Bt(1) = normrnd(0, At(1));% generate a random number

with certain mu and sigma

32

33 for p = 2:n

34 X_dT (p) = IG(a * dT , b);

35 At(p) = At(p-1)+ C * X_dT(p);

36 % At(p) = IG(a * dT , b);

37 % Bt(p) = normrnd(0, At(p));% generate a random

number with certain mu and sigma

38

39 end

40

41 % At(2, :) = X_dT(2, 1) + C (2)* X_dT(2, :);

42

43 % Bt = normrnd(0, sigma1*dT, 1, n);% generate a random

number with certain mu and sigma

44 Bt = normrnd (0.* ones(1, n), sigma1* At);% generate a

random number with certain mu and sigma

45

46

47 Yt = Bt + mu*At; %
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48

49 St = S0*exp(Yt);

50

51 h_B = max(0, St(end) - K) * (min(St - M) > 0); %

univariate

52

53

54 end

Monte Carlo Method

1 close all;

2 clear variables;

3 clc;

4 Nb = 260; % number of bussiness day per year

5 T = 1; % maturity time equal to one year

6 r = 0.03; % annual interest rate

7 dT = T/Nb; % delta T is equal to maturity time divided by

number of days

8 t = dT: dT: T;

9 a = 1;

10 b = 20;

11 m = 1000000; % repetition
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12 K = 75; % strike price

13 M = 65; % barrier price

14 sigma1 = 0.7;

15 S0 = 71.30; % initial price

16 mu = 0.16;

17 %

**********************************************************

18 % ******** Finding price over time for whole bussiness

year

19 [hB , X_dT , St , At , Bt , Yt] = BarrierPayoff_uniVar(Nb, T,

a, b, K, M, sigma1 , S0 , mu);

20

21 %

**********************************************************

22 %******* Finding option price for different maturity

times and different srike prices

23 tt = [1/12, 1/6, 1/4, 1/2, 2/3, 3/4, 1]; % sweeping time

24 kk = 60:5:80; % sweeping strike price

25 h_bar = [];
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26 P_hat = [];

27 for k = 1: length(kk)

28 for j = 1: length(tt)

29 n = floor (tt(j) * Nb);

30 hB = zeros(1, m);

31 for i = 1: m

32 [hB(i), X_dT , St, At, Bt, Yt] =

BarrierPayoff_uniVar(n, tt(j), a, b, kk(k)

, M, sigma1 , S0, mu);

33 end

34 h_bar(j, k) = mean (hB); % average on hB

35 P_hat(j, k) = exp(-r*tt(j))* h_bar(j, k);

36 fprintf('Time = %g\n', tt(j));

37 end

38 fprintf('K = %d\n', kk(k));

39

40 end

41

42 [X, Y] = meshgrid(kk, tt);

43 % C = X.*Y;

44 figure; surf(X, Y, P_hat); colorbar;
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45 title('$$\ hat{P}$$ ','Interpreter ','Latex '); xlabel('K');

ylabel('T');

46

47 ***************************************

48 ******* Finding option price for different repetition of

m

49 h_bar = [];

50 P_hat = [];

51 mm = [10, 100, 1000, 10000, 100000 , 1000000]

52 for j = 1: length(mm)

53 hB = zeros(1, mm(j));

54 for k = 1: mm(j)

55 [hB(k), X_dT , St , At , Bt , Yt] =

BarrierPayoff_uniVar(Nb , T, a, b, K, M, sigma1

, S0 , mu);

56 end

57 h_bar(j) = mean (hB); % average on hB

58 P_hat(j) = exp(-r*T)* h_bar(j);

59 fprintf('P_hat = %g for m = %d\n', P_hat(j), mm(j));

60 end

61
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62

63

64 plot(P_hat)

65

66

67

68 %************************************

69 %******* Changing a and b ***********

70 aa = 0.1: 0.2:1;%sweeping a

71 bb = 11:2:20;%sweeping b

72 h_bar = [];

73 P_hat = [];

74 for k = 1: length(aa)

75 for j = 1: length(bb)

76 %n = floor (tt(j) * Nb);

77 hB = zeros(1, m);

78

79 for i = 1: m

80 [hB(i), X_dT , St, At, Bt, Yt] =

BarrierPayoff_uniVar(Nb , T, aa(k), bb(j),

k, M, sigma1 , S0 , mu);
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81 end

82 h_bar(j, k) = mean (hB); % average on hB

83 P_hat(j, k) = exp(-r*T)* h_bar(j, k);

84 fprintf('b = %g\n', bb(j));

85 end

86 fprintf('a = %d\n', aa(k));

87

88 end

89 [X, Y] = meshgrid(aa, bb);

90 % C = X.*Y;

91 figure; surf(X, Y, P_hat); colorbar;

92 title('$$\ hat{P}$$ ','Interpreter ','Latex '); xlabel('a');

ylabel('b');

93

94 % %************************************

95 % %******* Changing sigma *************

96 a = 1;

97 b = 20;

98 sigma1 = 0.1 : 0.1 : 0.6;

99 KK =60:5:80;

100 % sigma2 = 0.05:0.05:0.4;

147



101 %hB = [];

102 h_bar =[];

103 P_hat =[];

104 for k = 1: length(KK)

105 for j = 1: length(sigma1)

106 for i = m

107 [hB(i), X_dT , St , At , Bt, Yt] =

BarrierPayoff_uniVar(Nb , T, a, b, KK(k), M,

sigma1(j), S0 , mu);

108 end

109 h_bar(j, k) = mean (hB);

110 P_hat(j, k) = exp(-r.*T).* h_bar(j, k);

111 fprintf('sigma1 = %d\n', sigma1(j));

112 end

113 fprintf('K = %d\n', KK(k));

114 end

115

116 [X, Y] = meshgrid(KK , sigma1);

117 %C = X.*Y;

118 figure; surf(X,Y,P_hat); colorbar;

119 title('$$\ hat{P}$$ ','Interpreter ','Latex ');
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120 %

*******************************************************************

121

122

123

124 %

B.2 Bivariate Time-Changed Model Barrier Price Option

1 function [h_B , X_dT , St, At, B_At , Yt] =

BarrierPayoff_biVar(Nb , T, a, b, a0 , b0 , K, M, sigma1 ,

sigma2 , rho , S0 , mu);

2 dT = T/Nb; % delta T is equal to maturity time divided by

number of days

3 t = dT: dT: T;

4 X_dT(1, 1) = 0; % initial value for Oil

5 X_dT(2, 1) = 0; % initial value for Gas

6 At(1, 1) = 0;

7 At(2, 1) = 0;

8 for q = 2:260

9 l_(q)= IG(a0*dT, b0);

10 end
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11 for j =1:2 % j=1 for Oil , j=2 for Gas

12 for p = 2:260

13 i_(j, p) = IG(a*dT , b)+ l_(q);

14 At(j, p) = At(j, p-1)+ i_(j, p);

15 end;

16 end;

17

18 sigmaB = [sigma1^2, rho*sigma1*sigma2; rho*sigma1*sigma2 ,

sigma2 ^2];

19

20 for p =1:260

21 sigmaB_p = [At(1, p)* sigmaB (1,1), 0; 0, At(2, p)*

sigmaB (2,2)];

22 B_At(:, p) = mvnrnd(mu , sigmaB_p);

23 % B_At2(:, p) = mvnrnd(mu, At(2, p)*sigmaB);

24 end

25

26 Yt (1, :) = B_At (1, :) + mu(1)*At(1, :); %

27 Yt (2, :) = B_At (2, :) + mu(2)*At(2, :); %

28

29 St(1, :) = S0(1)*exp(Yt(1, :));
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30 St(2, :) = S0(2)*exp(Yt(2, :));

31

32 h_B = max(0, St(1, end) - St(2, end)- K) * (min(St(1, :)

- St(2, :) - M) > 0);

33

34 end

Monte Carlo Method

1 close all;

2 clear all;

3 clc;

4 Nb = 260; % number of bussiness day per year

5 T = 1; % maturity time equal to one year

6 r = 0.03; % annual interest rate

7 dT = T/Nb; % delta T is equal to maturity time divided by

number of days

8 t = 1/260: 1/260: 1;

9 a = 1;

10 b = 40;

11 a0 = 1;

12 b0 = 40;

13 m = 100000;
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14 M = 3;

15 sigma1 = 0.11;

16 sigma2 = 0.07;

17 rho = 0;

18 mu = [0.032; 0.052];

19 S0 = [88.93; 71.30];

20 K = 3; % strike price

21

22 %

**********************************************************************

23 % ******** Finding price over time for whole bussiness

year

24 [hB, X_dT , St, At, B_At , Yt] = BarrierPayoff_biVar(Nb, T

, a, b, a0 , b0 , K, M, sigma1 , sigma2 , rho , S0, mu);

25 fileName = 'BiVariate_TimeChangedModel_OneYear.xlsx ';

26 data = {hB , X_dT , St , At , B_At , Yt};

27 xlswrite(fileName , data{1}, '1', 'A1');

28 xlswrite(fileName , data{2}, '1', 'A4');

29 xlswrite(fileName , data{3}, '1', 'A7');

30 xlswrite(fileName , data{4}, '1', 'A10');
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31 xlswrite(fileName , data{5}, '1', 'A13');

32 xlswrite(fileName , data{6}, '1', 'A16');

33 % dlmwrite(fileName , [hB; X_dT; St; At; B_At; Yt], '

delimiter ', ',', '-append ');

34

35 %

************************************************************************

36 %******* Finding option price for different maturity time

37

38 tt = [1/12, 1/6, 1/4, 1/2, 2/3, 3/4, 1]; % sweeping time

39 kk = 1:1:5; % sweeping strike price

40 h_bar = [];

41 P_hat = [];

42 for k = 1: length(kk)

43 for j = 1: length(tt)

44 n = floor (tt(j) * Nb);

45 for i = 1: m

46 [h_B(i), X_dT , St, At, B_At , Yt] =

BarrierPayoff_biVar(n, tt(j), a, b, a0 , b0

, kk(k), M, sigma1 , sigma2 , rho , S0, mu);
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47 end

48 h_bar(j, k) = mean (h_B); % average on hB

49 P_hat(j, k) = exp(-r*tt(j))* h_bar(j, k);

50 fprintf('Time = %g\n', tt(j));

51 end

52 fprintf('K = %d\n', kk(k));

53 end

54 [X, Y] = meshgrid(kk, tt);

55 % C = X.*Y;

56 figure; surf(X, Y, P_hat); colorbar;

57 title('$$\ hat{P}$$ ','Interpreter ','Latex '); xlabel('K');

ylabel('T');

58

59 %

**************************************************************************

60 %*************************** Changing Sigma

61 fileName = 'BiVariate_TimeChangedModel_SweepingSigma.xlsx

';

62 sigma11 = 0.01: 0.02:0.06;%sweeping sigma1

63 sigma22 = 0.01:0.02:0.07;%sweeping sigma2
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64 % for k = 1: length(sigma11)

65 % xlswrite(fileName , data{1}, '1', 'A1 ');

66 % for j = 1: length(sigma22)

67 h_bar = zeros(length(sigma22), length(sigma11));

68 P_hat = zeros(length(sigma22), length(sigma11));

69 % xlswrite(fileName , sigma11 , '1', 'B1 ');

70 % xlswrite(fileName , sigma22 ', '1', 'A2 ');

71 % xlswrite(fileName , P_hat , '1', 'B2 ');

72

73 for k = 1: length(sigma11)

74 for j = 1: length(sigma22)

75 %n = floor (tt(j) * Nb);

76 h_B = zeros(1, m);

77 for i = 1: m

78 [h_B(i), X_dT , St, At, B_At , Yt] =

BarrierPayoff_biVar(Nb , T, a, b, a0 , b0 , K

, M, sigma11(k), sigma22(j), rho , S0, mu);

79 end

80 h_bar(j, k) = mean (h_B); % average on hB

81 P_hat(j, k) = exp(-r*T)* h_bar(j, k);

82 fprintf('sigma1 = %d, sigma2 = %d\n', sigma11(k),
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sigma22(j));

83 data = xlsread(fileName , '1', 'B2:E6');

84 data(j, k) = P_hat(j, k);

85 xlswrite(fileName , data , '1', 'B2');

86 end

87

88 % fprintf('sigma1 = %d\n', sigma11(k));

89 fprintf('p_hat = %g\n' , P_hat(j, k))

90 end

91 [X, Y] = meshgrid(sigma11 , sigma22);

92 % C = X.*Y;

93 figure; surf(X, Y, P_hat); colorbar;

94 title('$$\ hat{P}$$ ','Interpreter ','Latex '); xlabel('

sigma1 '); ylabel('sigma2 ');

95

96 %

%**********************************************************

97 %****************************** Sweeping a0,b0

98 fileName = 'BiVariate_TimeChangedModel_SweepingAB.xlsx ';

99 aa = 0.1: 0.2:1;%sweeping a0
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100 bb = 20:2:40;%sweeping b0

101 h_bar = zeros(length(bb), length(aa));

102 P_hat = zeros(length(bb), length(aa));

103 xlswrite(fileName , aa, '1', 'B1');

104 xlswrite(fileName , bb ', '1', 'A2');

105 % xlswrite(fileName , P_hat , '1', 'B2 ');

106 for k = length(aa): length(aa)

107 for j = length(bb): length(bb)

108 %n = floor (tt(j) * Nb);

109 hB = zeros(1, m);

110 for i = 1: m

111 [h_B(i), X_dT , St, At, B_At , Yt] =

BarrierPayoff_biVar(Nb , T, aa(k), bb(j),

a0 , b0 , K, M, sigma1 , sigma2 , rho , S0, mu)

;

112 end

113 h_bar(j, k) = mean (h_B); % average on hB

114 P_hat(j, k) = exp(-r*T)* h_bar(j, k);

115 fprintf('a = %g, b = %g\n', aa(k), bb(j));

116 data = xlsread(fileName , '1', 'B2:F12');

117 data(j, k) = P_hat(j, k);

157



118 xlswrite(fileName , data , '1', 'B2');

119

120 end

121 % fprintf('a0 = %d\n', aa0(k));

122 fprintf('p_hat = %g\n' , P_hat(j, k))

123

124 end

125 P_hat = xlsread(fileName , '1', 'B2:F12');

126 [X, Y] = meshgrid(aa , bb);

127 % C = X.*Y;

128 figure; surf(X, Y, P_hat); colorbar;

129 title('$$\ hat{P}$$ ','Interpreter ','Latex '); xlabel('a');

ylabel('b');

130

131
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