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ABSTRACT 

Despite years of research and development in aviation, nearly all aircraft’s wings are designed 

according to the same model of a rigid structure equipped with few discrete control surfaces. This 

design performs well at a single flight regime and suffers degradation in its aerodynamic properties 

at other regimes. For that reason, and with the advancements that have been witnessed in the field 

of smart material and adaptive structures, a biomimetic concept that challenged this rigid model 

has been revived. This concept is morphing aircraft. Aircraft morphing technology enables a single 

air vehicle to undergo substantial geometric changes in-flight, with the purpose of increasing 

efficiency, versatility, and mission performance.  

One of the most challenging tasks in this research topic is to design, implement and test a morphing 

skin that can compromise between flexibility to ensure low actuation requirements, and high 

stiffness to carry all the aerodynamic loads. While several studies have focused on the mechanical 

designs of morphing skins, studying the aerodynamic effects of these models have been largely 

ignored. Infinitesimal discontinuities resulting from the overlapping panels of sliding skins, and 

small ripples of stretchable skins can affect the stability of the viscous boundary layer which 

dictates the overall aerodynamic performance. 

In this thesis, the aerodynamics of three types of morphing skins are studied. The first two fall 

under the category of sliding morphing skin where several rigid panels overlap and slide against 

each other during morphing. During morphing, the panels can either have backward-facing steps 

between them, gaps, or both. Despite their geometric similarity, the aerodynamics of backward-

facing steps are quite distinguished from panels with gaps between them. 

An aerodynamically less invasive design for morphing skin is the stretchable skin. This design 

consists of two layers, an underlaying supporting structure, and an outer sealant layer. The 

underlaying layer is manufactured from a modified zero-Poisson ratio cellular structure with major 

ribs extending along the chord-wise direction, and minor ribs joining these major ribs. The outer 

layer consists of a highly anisotropic elastomer composite with Silicone rubber used as the matrix 

material and reinforced with carbon fibers along the chord-wise direction. During morphing, the 

flexible skin forms wrinkles along the main direction of morphing which significantly affect the 

aerodynamic properties of the morphing wing.  
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The aerodynamics of each one of these three designs is numerically studied using the high fidelity 

commercial computational fluid dynamics (CFD) code FLUENT 15.0. The first design with the 

backward-facing steps distributed along the chordwise direction of the airfoil showed to have a 

degrading effect on the aerodynamics of the wing. Regardless of the step size, the boundary layer 

experiences a transition from laminar to turbulent state at the step edge. At Re = 5.7e6, M = 0.2, 

and α = 2.5°, a drop of 21.1% in value of the lift coefficient and an increase of 120.8% in the drag 

coefficient were observed in case of a step located at 25% of the chord length on the upper surface 

of the airfoil. These effects can be mitigated by either shifting the step location towards the trailing 

edge or decreasing the step depth. For a step located on the lower surface of the airfoil, the lifting 

forces increased by at least 11% due to decreasing the airfoil thickness on the pressure side. The 

drag coefficient also increased by 63.46% for a step located at 25% of the chord length on the 

lower surface of the airfoil. This value decreases to 25.96% when the step is shifted to 75% of the 

chord length. A degraded near stall behavior was observed for a step located at either side of the 

airfoil. The separation of the flow at the step edge promotes early stall of the airfoil. These results 

show that distributing the sliding panels of the morphing skin in a sequential order is not an 

aerodynamically viable solution. 

When the panels are separated with gaps, the aerodynamic performance was found to be different. 

It was observed that in some cases, the boundary layer maintained its laminar state while travelling 

over the cavity, and in other cases, the boundary layer experienced a transition over the cavity 

vicinity. To investigate the cavity parameters that influence the transition of the boundary layer, a 

parametric study is performed over a wide range of flow conditions and cavity dimensions. It is 

found that the boundary layer by-passes the cavity and maintains its laminar state when 𝐿/𝜃 ∗

√𝑅𝑒𝜃~ < 600, where L is the cavity length, 𝜃 is the momentum thickness of the boundary layer, 

and 𝑅𝑒𝜃 is the Reynolds momentum thickness based 𝜃 on at the cavity leading edge. This formula 

is used to design an airfoil with sliding morphing panels that have the same performance as the 

clean airfoil, making this design a favorable design for morphing skins. 

The third design is the flexible morphing skin. With an underlaying supporting structure and a 

highly anisotropic flexible outer layer, the flexible skin fulfilled all the kinematic and structural 

requirements of a successful morphing skin. However, during morphing, wrinkles are formed on 

the upper and lower surfaces of the morphing wing. Regardless of its location, shape or size, the 

introduced wrinkles alter the boundary layer state and behavior which significantly affect the 

overall aerodynamic performance of the morphing wing. The aerodynamic effects of introducing 

a single wrinkle to the upper surface of a morphing wing is numerically studied. At Re = 5.7e6, M 

= 0.2, and α = 0°, results showed that introducing a single wrinkle to the upper surface of a NACA 

2412 airfoil has dropped the lift coefficient by as much as 34.7% of the clean airfoil value, 

increased the drag coefficient by 267.9% and dropped the lift-to-drag ratio by 75.6% when the 
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wrinkle is at the first quarter of the chord length. Shifting the wrinkle towards the trailing edge of 

the airfoil has mitigated these effects but did not eliminate them.  

By comparing the results of the three designs, the sliding morphing skin with its panels arranged 

in a staggered manner has fulfilled the structural and kinematic requirements of a morphing skin 

while maintaining an aerodynamic performance similar to the clean airfoil if designed properly.
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𝑅𝑒𝜃 Reynolds number based on boundary layer momentum thickness 

𝑆𝑡𝑛 Strouhal number of the 𝑛𝑡ℎ mode frequency 

𝑡̂ Unit vector tangent to the airfoil surface 

𝑋𝑈 Location of a step or a cavity on the upper surface of an airfoil 

𝑤𝑖 
Weighting function used to calculate the contribution of each cell to the 

gradient calculation 

 

 

Greek Letters and Mathematical Symbols: 

 

∀ Control volume 

∇ Gradient operator 

𝛼 Flow angle of attack /A real number related to the disturbance wave length 

𝛽 Circular frequency of flow disturbance 

𝜃 Boundary layer momentum thickness 

𝛾 Intermittency function / Specific heat ratio 

𝛿 Boundary layer thickness 

𝜀 
Turbulent kinetic energy dissipation rate / Absolute error of a numerical 

solution 

𝜅 Empirical constant related to the convection speed of the disturbance 
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𝜆 Flow disturbance wave length 

𝜌 Density of the fluid 

𝜓 Instantaneous stream function of the perturbation velocity 

𝜔 Specific dissipation rate 

𝜙 Amplitude function of the perturbation / A scalar quantity 

𝜈 Poisson ratio 

𝛼𝑐𝑟 Critical angle of attack 

𝛽𝑖 Amplification factor of flow disturbance 

𝛿∗ Boundary layer displacement thickness 

𝜆𝑥 Lagrange multipliers a linear function in the x-direction 

𝜆𝑦 Lagrange multipliers a linear function in the y-direction 

𝜏𝑤 Wall shear stresses 

𝜔𝑖 Angular velocity  

𝜙𝑁𝑖
 Nodal value of a scalar quantity at the 𝑖𝑡ℎ node 
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GGCB Green Gauss cell-based gradient reconstruction method 

GGNB  Green Gauss node-based gradient reconstruction method 

LSCB Least squares cell-based gradient reconstruction method 
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1. INTRODUCTION 
 

 Aircraft Morphing Technology: 

It was on December 17, 1903, when Oliver Wright was sitting inside a heavier-than-air power 

manned machine, and his brother, Wilbur Wright, was running beside their flyer, ensuring that the 

wing tips will not tilt and hit the ground. For approximately 12 seconds, Oliver cruised the air at a 

speed of 13.4 m/s, marking the most important event in aviation history. The Wright brothers used 

a system of pulleys and cables to twist the angle of the trailing edges of their wings. Through this 

morphing mechanism, they were able to control the rolling motion of their flying machine.  

Since then, aircraft technology has witnessed giant leaps forward improving different aspects of 

these flying machines; their aerodynamics performance, the materials used in their manufacturing, 

and their flight capabilities and efficiency. To maintain the structural integrity of these magnificent 

machines, aircraft designers preferred to use rigid structure equipped with few discrete control 

surfaces. Such design enables the aircraft to have optimum performance over a small range of 

flight conditions and have a poor performance at other flight regimes. But thanks to the recent 

advancement in smart material and adaptive structures, the biomimetic concept used by the Wright 

brothers has been revived, morphing aircraft.  

‘Morphing’ is derived from the Latin word ‘Metamorphosis’ which means a major change in the 

appearance or character of someone or something [1]. When it comes to morphing while flying, 

nothing can out perform the wing morphing experts, birds. In a fluent and intrinsic manner, birds 

morph their wings, necks and tails to respond to external fluid forces allowing them to achieve 

their best aerodynamic performance for different purposes. Through morphing their bodies, birds 

become capable of migrating long distances by efficient cruising, attacking prey at high speeds, 

performing special maneuvers while escaping their predators, and performing perfect and precise 

landing on twigs and branches. All is done at minimum energy expenditure which is translated in 

aircraft to fuel efficiency, lower operating cost and increasing efficiency and versatility [2, 3]. 

Achievements in morphing aircraft technology have the potential to play vital and essential roles 

in the aviation development because of the exceptional benefits they provide to aircraft. These 

benefits include – but are not limited to – the following: 
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• Improving aircraft performance to expand its flight envelope: 

While a traditional aircraft is designed to perform optimally at a single flight condition (usually 

cruising for commercial aircraft), and compromise its performance at other phases of its flight 

profile, a morphing aircraft can perform near optimum at different flight regimes. One of the 

studies that reflects the superiority of morphing technology over rigid aircraft designs was 

presented by Joshi et al. [4]. A spider plot was used to compare the aerodynamic performance of 

a fixed-geometry Firebee, a morphing airfoil Firebee and a morphing planform Firebee, at different 

flight regimes. Firbee is one of the most widely used jet-propelled target drones. Figure (1.1) shows 

the results of this qualitative comparison. 

 

Figure 1.1. Spider plot comparing the performance of a fixed-geometry Firebee, a morphing 

airfoil Firebee and a morphing planform Firebee. Reproduced from [4]. 

The plot consists of radial lines, each representing the performance of the Firebee at various flight 

phases. The plot is designed such that minimum performance found at the center of the plot, and 

as the performance of the Firebee improves, its relative score along the radial lines increases in the 

outward direction. On the plot, the inner most area shown is the performance of a fixed-wing 

Firebee. Moving radially outward on the plot, the performance of a Firebee with morphing airfoil 

is highlighted in yellow. The morphing airfoil design showed noticeable improvements in most of 

the flight phases over the fixed wing Firebee. The most outward shaded area on the plot represents 

the performance of a Firebee with a morphing planform. This design can change the span of the 

wing, the chord length, and the sweep angle. The aerodynamic performance of the morphing 
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platform Firebee surpassed the other two designs at all flight regimes. This shows how a morphing 

wing aircraft can have a better aerodynamic performance at different flight regimes. 

• Reducing fuel consumption for more affordable flights: 

As fuel cost increases, fuel-saving methods have become a major concern for many airlines and 

companies. Bolonkin et al. [5] estimated that 50% of the airlines operating expenses for wide-

body, long-range transport is related to the fuel consumption. In the same study that was conducted 

at NASA Dryden flight center [5], it was estimated that a 3% reduction in the fuel consumption of 

an aircraft can save up to $300,000 per year. This 3% reduction is quite achievable using morphing 

technology. Lyu and Martins [6] checked the effect of using a morphing trailing-edge on a Boeing 

777-LR, and showed that a 1% drag reduction can be achieved at on-design conditions and a drag 

reduction of 5% resulted at off-design conditions. By using aerodynamics shape optimization on a 

hypothetical regional class aircraft, Curiale and Zingg [7] showed that full morphing of the wing 

can produce 2% improvement in average aircraft performance over a range of cruise conditions. 

While trailing-edge only morphing produced approximately 1% improvement in the overall 

performance. 

 

• Reducing weight for lower manufacturing costs: 

Using a genetic optimization algorithm, Roth et al. [8] examined how a variable geometry wing 

can morph in flight to have optimal performance. Their analyses showed that the variable wing 

aircraft can have 8% lower take-off gross weight and lower engine thrust requirements when 

compared to its fixed-wing rival. This is because approximately half the wing’s mass of transport 

aircraft is a result of the high-lift systems complexity [9]. 

 

• Solving aerodynamic problems: 

For some fighters it is a requirement to make short take-off and landing on aircraft carriers at 

relatively low speeds. This can be better achieved using small sweep angles of wings. At the same 

time, backward-swept wings are among the requirements of transonic fighters due to their proven 

capability of delaying compressibility problems and the onset of shockwaves [10]. For that reason, 

the F-14 Tomcat and the Panavia Tornado are equipped with variable sweep wings which can 

provide good performance at both spectrum ends of speed. 

 

• Solving technical issues: 
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Morphing structures provided solutions to many technical problems in aviation. For example, the 

Concorde’s drooped nose solved a serious problem that was faced by its trained pilots. During 

take-off and landing of a delta wing aircraft like the Concorde, a large angle of attack must be 

achieved, which in combination with the long-pointed nose of the aircraft, resulted in a total 

obstruction of the pilot’s view. For that reason, the Concorde’s engineering designers used a 

morphing mechanism that can change the angle of its nose. This allowed the Concorde to switch 

between being streamlined to reduce drag and achieve optimum aerodynamic efficiency during 

the flight, and not obstructing the pilot's view during taxi, takeoff, and landing operations. 

Another popular morphing motion is the folding-wings design whose importance was revealed in 

the 1910’s when Frederick Handley Page invented the World War I Handley Page O/400 Bomber. 

The wings of the biplane British bomber spanned a distance of 100 ft., preventing it from being 

stored in the popular canvas Bessoneau hangar whose width was limited to 65.5 ft only. With the 

aid of the folding-wing morphing motion, the Handley Page O/400 Bomber fit inside the hangar 

despite its large wing size. Later in 1920, the Grumman’s designing engineers followed the same 

concept and developed foldable wings for the Grumman Wildcat aircraft, known as the STO-wing. 

Their innovative design allowed the U.S. Navy to nearly double the capacity of Grumann aircraft 

on aircraft carriers during World War II [11]. 

 

• Achieve greener and cleaner air transportation: 

With the wide and strong growth of air transportation, more stiff standards are set by the 

International Civil Aviation Organization (ICAO) to ensure lower emissions of CO2 and NOX by 

aircraft engines and lower noise emitted from the interaction of the air with the airframe 

discontinuities. Such standards impose additional motivation to divert from standard designs 

towards morphing technology where significant benefits can be realized. 

 

For all these reasons, aircraft morphing technologies have attracted the attention of researchers, 

designers and manufacturers. Being the most influential parts on the aerodynamic performance of 

aircraft, wings have been the focus of a large portion of morphing developments. Any minor 

changes in the geometry of the wings, such as a couple of dihedral angles, or few sweep angles, a 

small change in the span or the chord length of the wing can dramatically affect the performance 

of the aircraft. Recent advancements in smart materials and structure technologies have allowed, 

not only minor geometric changes, but also large-scale morphing where every aspect of the wing’s 

geometry can be altered. 

Sofla et al. [12] classified wing morphing motions into three major types: planform alternation, 

out-of-plane transformation, and airfoil adjustment as shown in figure (1.2). 



 

5 

The most common forms of wing planform morphing are changing span, changing chord length 

and changing sweep angle. The span is usually changed using a telescopic design of the wing 

where sections of the wing are fitted within each other with minimum clearances, and slide against 

each other resulting in a changing span. This mechanism is limited to designs with wings of unity 

taper ratio. The second form of planform morphing is changing chord length. This is usually 

achieved in conventional aircraft through the deployment of slats and flaps during take-off and 

landing, however, recent studies are focusing on achieving similar geometric alteration but through 

seamless surface. Changing the sweep angles of the wings are usually achieved through pivoting 

mechanisms that are usually complicated and heavy, but reliable. This concept was successfully 

implemented in many military aircraft such as: Bell-X-5, F-111, F-14, and B-1 for its proven 

aerodynamic benefits. 

 

Figure 1.2. Classification of common morphing motions of wings as classified by Sofla et al. 

[12]. 

 

The second category of morphing wing motion is airfoil profile alternation. This concept has 

recently attracted a lot of numerical and experimental efforts due to its relatively simple and proven 

concepts that showed significant improvements in the airfoil performance. 

The third concept of morphing technology is the out-of-plane motion which is divided into three 

categories; Twist angle, dihedral angle and chord-wise bending. The chord-wise bending, or in 

other words, changing camber is the most studied morphing motion. When the camber change 

along the span-wise direction is constant, the motion is known as chord-wise bending. While when 

the camber change is non-uniform along the span-wise direction, the motion is known as twist 

morphing motion. The third out-of-plane motion is the dihedral angle, which imposes a challenge 

in its implementation because this motion is usually along the axis of the major aerodynamic force; 

the lifting force. Recent studies in wings morphing technology is trying to mix between some of 

the aforementioned morphing motions.  
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 Morphing Winglet Project: 

At the Department of Aerospace Engineering at Ryerson University, the morphing wing research 

team is studying the development of a modular morphing wing. The wing consists of several 

morphing modules, each possesses four different degrees of freedom. These motions are changing 

the span of the wing, changing the sweep angle, the twist angle and the cant (dihedral) angle of the 

module. This is achieved through a variable geometry truss mechanism (VGTM) that is fitted 

within the wing envelope.  

This design can withstand all the aerodynamic and mechanical loads such as shear, torsion, 

bending, tension, compression, etc. through its self-locking mechanism. Figure (1.3) shows the 

morphing structure achieving its four aforementioned motions. 

  

(a) Span 
(b) Sweep 

  

(c) Twist 
(d) Cant 

Figure 1.3. A four degrees-of-freedom morphing wing using variable geometry truss 

mechanism to achieve (a) span, (b) sweep, (c) twist and (d) cant motions. Reprinted from [13]. 

The morphing wing module shown in figure (1.3) uses the under-actuation theory where the 

number of actuators are less than the achieved degrees of freedom. Each one of the modules 
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consists of a base and a platform linked with four active linear actuators, and four passive linear 

links with a self-locking mechanism. Several modules have been designed tested and assembled 

together to form the morphing wing.  

As a subset of the morphing wing project, our research team current focus is developing a 2 module 

VGTM winglet for a Bombardier Inc. regional jet aircraft. The exact model of the aircraft was not 

provided by Bombardier Inc., the only information provided was the chord length of wing tip 

which is ~1m. A draft geometry of the wing was provided by Bombardier Inc. as shown in figure 

(1.4). The root chord length was back engineered and measured to be 3.5m. This makes the mean 

chord length of the wing approximately 1.75m. For an average Reynolds number of 10 million for 

regional jets calculated at the mean chord length, the Reynolds number at the root of the wing will 

be approximately 5.7 million. For that reason, most of the investigations in this thesis are done at 

a Reynolds number of 5.7 million. 

The morphing winglet will be fixed at end of a fixed wing as shown in figure (1.4). The required 

morphing motion is achieved thorough 2 modules of VGTM that are installed between the fixed 

wing and the morphing winglet. This morphing winglet emulates many of the features of the 

desired morphing wing, including improved aerodynamics and reduced fuel consumptions. If this 

design fulfilled its objectives, the development of a VGTM fully morphing wings will be pursued. 
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Figure 1.4. Proposed design for a 2 module VGTM morphing winglet. 

This morphing technology is still facing major challenges that hinder its level of maturity. 

However, the most demanding of them all is developing a reliable morphing skin that can 

accommodate all the required morphing motions, at the same time be stiff enough to carry and 

transfer the gravitational and aerodynamic loads. Kikuta [14] outlined the requirements of a 

morphing skin well; elastic/flexible in the direction of morphing to allow low force actuation, stiff 

enough to withstand aerodynamic and inertial loads, abrasion and chemical resistant, resistant to 

different weather conditions, high strain capability, high strain recovery rate and environmental 

longevity and fatigue resistance. With all these diverse requirements of a morphing skin, very few 

designs can be considered for the task. Thill et al. [15] presented a comprehensive review of several 

contemporary morphing skin technologies. Among all designs, two groups of skins seemed to be 

promising and fulfilled most of the aforementioned requirements. These two categories are the 

segmented sliding skin and the flexible (stretchable) skin. 

At the department of Aerospace Engineering at Ryerson, the morphing wing research team has 

pursued the sliding panels design. Segmented sliding skin consists of several rigid panels that 

constitute the outer shell of the wing surface and change their orientations during morphing based 
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on the kinematics of the morphing wing. Each module is covered with a telescopic sliding panel 

laterally interlayered with adjacent panels. The kinematics of these panels were solved in [16 – 18] 

to show that this design is kinematically a viable solution. Depending on the required 

configurations, the panels can either have backward-facing steps between them, rectangular gaps, 

or both as shown in figure (1.5).  

 

Figure 1.5. Sliding panels having backward-facing steps and gaps between them to 

accommodate the morphing motion of a two-modules morphed winglet. Reproduced from [18]. 

 

When the panels are overlapping, they are regarded from the aerodynamics perspective, as a 

cascade of backward-facing steps employed over the surface of the morphing wing. A simplified 

case of these backward-facing steps is shown in figure (1.6 a). When the panels are separated with 

small gaps, the segmented skin is treated as a wing with several trenches employed along the 

chord-wise direction of the wing as shown in figure (1.6 b). Despite the large similarity between 
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the two designs, their aerodynamic performance is quite different in terms of their pressure 

distribution, wall shear stress distribution, and their influence on the boundary layer characteristics. 

 

(a) 

 

(b) 

 

Figure 1.6. Segmented sliding skin of a NACA 2412 with chord-wise distributed (a) backward-

facing steps, and (b) trenches. 

In the case of backward-facing steps, the steps extend along the span of the wing and are distributed 

at specific intervals along the chord-wise direction of the wing. Starting from the leading edge of 

the wing, the boundary layer develops gradually as the flow travels over the wing, when suddenly 

the flow is interrupted with the leading sharp edge of the step and separates from the surface. 

Figure (1.7) shows the streamlines of the velocity field for a backward-facing step installed on the 

upper surface of a NACA 2412 airfoil at the mid-chord location. 

The separation of the flow at the upper edge of the step creates a low-pressure recirculation zone 

at the step vicinity that attracts the boundary layer back to the wing’s surface. This alters the 

aerodynamic properties of the flow over the step. A more serious problem associated with 

backward-facing steps is that they introduce a recirculation zone with inflected velocity profiles. 
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These inflectional velocity profiles are intrinsically unstable and will result in the transition of the 

boundary layer, no matter how small this step is. 

 

Figure 1.7. Streamlines of the velocity field at the vicinity of a backward-facing installed on the 

upper surface of a NACA 2412 (Re = 5.7e6, M = 0.17, and α = 2.5°). 

The intrinsic instability of inflectional velocity profiles can be derived using the Orr-Sommerfeld 

linear stability analysis developed by William McFadden Orr [19, 20] and Arnold Sommerfeld 

[21] at the beginning of the 20th century. The analysis proved that the inflected velocity profile that 

develops over backward-facing step is intrinsically unstable and is an enough condition for 

instability.  

Another important aerodynamic aspect that is altered by introducing discontinuities to the wing’s 

surface is the near stall behavior. Most airfoils are designed such that they have a near optimum 

performance at the onset of separation [23]. Near this critical angle of attack, the flow starts to 

experience a strong viscid-inviscid interaction that dictates the performance of the airfoil. 

Introducing a backward-facing step on an airfoil, and specially on the upper surface will 

significantly affect the near stall behavior promoting a smaller critical angle of attack and early 

flow separation that will be shown later in chapter 4.  

These adverse aerodynamic effects can be avoided if gaps are found between the panels as shown 

in figure (1.6 b). The discontinuities between each two panels are regarded as trenches or 

rectangular cavities that are distributed along the chord-wise direction and extend along the span 

of each segment of the morphing wing. Unlike the backward-facing step where the boundary layer 

instability is unconditional at the step vicinity, trenches are conditionally stable. As the flow travels 

over the leading edge of the trench, the flow separates and a recirculation zone is generated at the 

cavity. The recirculation zone creates an inflected velocity profile which is a source of instability 

and may trigger the transition of the boundary layer. However, if the trailing edge of the cavity is 
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‘close enough’, the inflected velocity profile is trimmed and the flow reattaches to the airfoil 

surface. By running a number of numerical test cases, it was observed that at small trenches widths, 

the laminar boundary layer bypasses the trench without experiencing any transition.  

Designing a trench that preserves the laminar state of the boundary layer is a challenging task that 

requires a careful study of the primary and secondary flow features over the cavity. Despite its 

very simple geometry, flow over cavities is very complex to model. It consists of rich flow 

phenomena involving shear layers, shock waves, expansion waves and acoustic resonance, 

secondary flows, and entrapped vortices. Even the shear layer itself was found from experimental 

and direct numerical simulation (DNS) results to behave in one of three different modes. 

Depending on the geometry of the cavity and the flow properties, the shear layer can either be in 

the no oscillations mode, the shear layer mode, aka Rossiter mode, or the wake mode. Each mode 

has to be studied and modeled with high fidelity to derive a scaling law that can predict the critical 

width of the trench that will trigger the boundary layer transition. 

In order to avoid dealing with discontinuities in whole, the author will propose a design of a 

stretchable/flexible skin in chapter 5. Several studies [24 – 26] mentioned elastomers as a good 

candidate for a stretchable morphing skin. Due to their very low tensile modulus, elastomers can 

elastically stretch up to 1000% of their original length and return back to their shape upon 

unloading without any plastic deformation. However, elastomers on their own are unsuitable to 

carry and transfer large aerodynamic loads. For that reason, an underlaying structure must be used 

to support flexible elastomer. A proposed design for an underlaying structure is auxetic materials. 

Auxetic materials have negative Poisson’s ratio which become wider when stretched and narrower 

when compressed. This is achieved by their unique multiple cells structure with re-entrant edges 

that unfold upon the application of any stretching force. Such auxetic materials are characterized 

by their high out-of-plane stiffness and high in-plane flexibility, which make them suitable to be 

used as an underlying supporting structure for morphing skins. Olympio et al. [27] used a zero-

Poisson ratio cellular structures as an underlying support for the morphing skin, and a similar 

design was tested in [26] where a high strain-to-failure silicone skin was supported by an 

underlying flexible honeycomb core on the morphing wing of an unmanned combat air vehicle 

(UCAV). In chapter 5, the author will combine these efforts in one new design a flexible morphing 

skin. The design consists of a compliant reinforced cellular structure covered with an elastomer 

composite. During morphing, stretchable skins developed small anisotropic ripples parallel to the 

dominant morphing degree of freedom. The presence of such ripples and wrinkles can have a 

noticeable impact on the aerodynamic performance of the morphing wing. The aerodynamics of 

such wrinkles will be studied. 
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 Thesis Structure: 

The goal of this project is to numerically study the aerodynamic effects accompanied with sliding 

and stretchable morphing skins and reach design guidelines that can ensure an optimum 

aerodynamic performance. 

In Chapter 2, the numerical tool used to carry out the flow simulations in the thesis will be 

presented. This tool is the high fidelity CFD code FLUENT V15, which is a finite volume method 

that solves the fluid mechanics governing equations (Navier-Stokes equations) with any additional 

transport equations for turbulence modeling. The turbulence model used is this thesis is the 

transition SST turbulence model [28 - 30]. The turbulence model will be briefly introduced with 

references to validation test cases that shows its reliability in modeling turbulence flow and 

transition of attached and shear flows. Due to a lack of resources about the accuracy of gradient 

operators, large portion of chapter 2 is dedicated to studying commonly used gradient 

reconstruction methods and their effect on the accuracy and efficiency of the CFD solution when 

used with different grid types. A final section in chapter 2 is dedicated to present a general 

validation test case for the flow over a NACA 2412, the airfoil used through out this thesis. The 

numerical results are compared to the experimental ones provide the reader with the required 

confidence in the CFD tool used and its settings. After having the CFD tool set and validated, 

examination of different types of morphing skins will be presented. Figure (1.8) shows a visual 

representation of this thesis structure. 

Chapter 3 will present a detailed study on the aerodynamic performance of airfoils with sliding 

panels separated with gaps and rectangular cavities. As the flow travels over the cavity, it 

experiences a sequence of complex stages; flow separation, reattachment, acoustic radiations, 

hydrodynamic resonance, and amplified instabilities. To add to the complexity of these types of 

flows, it was observed that based on the flow geometry and flow properties, the flow over the 

cavity vicinity can behave in one of three different modes; no-oscillations mode, shear-layer mode, 

and wake mode. In chapter 3, the three modes will be studied and modeled numerically. Results 

from the numerical simulations will be validated against experimental, and semi-empirical results.  
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Figure 1.8. The structure of this thesis and its six chapters. 
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It was observed from the numerical results that there are cases where the laminar boundary layer 

by-passes the trench, and other cases experience a boundary layer transition from laminar to 

turbulent. A separate study of the factors that trigger the transition of the boundary layer will be 

presented in chapter 3, and a scaling law that can predict the critical width of the trench that triggers 

the boundary layer transition will be established. 

Chapter 4 will focus on the aerodynamics of morphing sliding skins with backward-facing steps. 

In this design, the sliding panels are ordered sequentially where each panel is laying on top of the 

preceding panel. This creates a cascade of backward-facing steps on the upper and lower surfaces 

of the morphing wing. Chapter 4 will focus on studying the aerodynamic performance of airfoils 

with backward-facing steps employed on either side. A comprehensive numerical study will 

investigate the effect of the step location, depth and angle on the aerodynamic properties of the 

airfoil, namely, the lift coefficient 𝑐𝑙, the drag coefficient 𝑐𝑑, the lift-to-drag ratio 𝐿/𝐷, and the 

critical angle of attack 𝛼𝑐𝑟.  

In chapter 5, a proposed structural design for stretchable morphing skins will be studied, 

optimized and tested. The design consists of an underlaying flexible structure used for the 

reinforcement of the structure and to carry the aerodynamic loads. This structure is covered with 

a highly anisotropic composite material that has been tailored to be flexible in certain degrees of 

freedom, and very strong in other directions. This design will be studied, optimized, and a 

prototype will be manufactured and experimentally tested to show its capability of carrying out-

of-plane loads. In the same chapter, the aerodynamics of wrinkled airfoils will be studied to 

examine the adverse effect that a flexible morphing skin can have on the performance of the 

morphing wing. 

Chapter 6 is a summary of all significant results presented in chapters 2 through 5. Main 

contributions of this research and future work will be presented in chapter 6 as well. 
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2. COMPUTATIONAL FLUID 

DYNAMICS AND NUMERICAL 

MODELING 
 

 Introduction: 

In the field of fluid dynamics, Computational Fluid Dynamics (CFD) is considered to be a new 

“third approach” in the philosophical study and development of this field. First, in the seventeenth 

century, the foundation of the experimental approach was established in England and France. The 

eighteenth and nineteenth centuries witnessed the formulations of many fluid dynamics theories 

that constitutes the second approach in studying fluid dynamics [31]. The advent of computational 

power and the level of accuracy reached by the numerical algorithms have promoted the usage of 

this third approach CFD when dealing with any new fluid dynamics problem. CFD can resolve the 

physical aspects of fluid flow to a level that cannot be reached by the experimental approach, and 

may require exhaustive efforts to be done analytically, if ever possible. For these reasons, and 

many others, the current research efforts mainly depend on the numerical results obtained from 

CFD and are backed up with experimental and analytical results when applicable. 

The commercial CFD code ANSYS FLUENT V.15 is used in this project to numerically simulate 

the flow. This code uses the unstructured finite volume approach to discretize the computational 

domain and solve the governing continuity, momentum, energy and turbulence equations on a 

discretized domain. An implicit density-based solver is used with finite volume second order 

schemes to discretize the convection and diffusive fluxes of the transport equations. For proper 

resolution of the viscous boundary layer and its transition from laminar to turbulent, the turbulence 

of the flow was modeled using the four equation Langtry-Menter transitional shear stress transport 

turbulence model (Transition-SST model) [28 - 30]. Menter and Langtry [28] tested this model on 

several aerodynamic applications such as a flat plate, a Zierke and Deutsch compressor, an NREL 

wind turbine, an Aerospatiale A and the McDonald Douglas 30P-30N airfoils. Results showed that 

the wall shear stresses were well resolved and matched well the experimental data; an agreement 

that was not observed when a laminar model or fully turbulent models such as the k-ε or the k- ω 
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models were used. It should be noted here that one of the current limitations of the transition-SST 

model is that it does not account for crossflow instabilities and roughness [30].  

Chapter 3 depends heavily on the Transition-SST model to predict the transition of the boundary 

layer from laminar to turbulent when traveling over cavities. It is claimed that this turbulence 

model is calibrated for an attached flow, and cannot be used with shear flows, as it is the case when 

flow travels over cavity. This claim can be disputed by the clear statement of Langtry and Menter 

in [30] when they mentioned that ‘The present transition model accounts for transition due to 

freestream turbulence intensity, pressure gradients and separation’, and flow separation is the 

reason of the transition in case of flows over cavities.  

Among the validation test cases that the authors ran in [30] is the flow over the Pratt and Whitney 

PAK-B low pressure turbine blade. This profile encounters a laminar separation bubble on the 

suction side of the airfoil followed by a subsequent reattachment due to the transition of the 

boundary layer over the laminar separation bubble. The transition of the boundary layer occurs at 

the free shear layer due to the inflected velocity profile of the laminar separation bubble. This is 

the exact same transition mechanism that is experienced in case of flows over rectangular cavities. 

Even the main mode of instability in both cases is the same, namely, the Kelvin-Helmholtz 

instability. The RANS transition SST model managed to reach a very good agreement between the 

experimental and numerical data as shown in the figure (2.1). 
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Figure 2.1. Predicted blade loading for the Pak-B Low-Pressure turbine at a Reynolds number of 

75,000 and a freestream turbulent intensity of 2.35%. Reprinted from [30]. 

Another example presented in [30] is the flow over the S809 airfoil. This airfoil is a 21% thick, 

laminar-flow airfoil that experiences laminar separation bubbles on both sides of the airfoil, and 

subsequent transition of the boundary layer at the bubbles locations (~ 0.5 of the chord length). 

The transition SST model precisely captured the locations of the bubbles, the shear layer transition, 

and reattachment of the flow. For all these reasons, the transition SST model was chosen to 

numerically model the turbulence of the flow and its transition when traveling over the airfoil and 

cavities. The author still has to mention here that the turbulence modeling in general, and the 

transition SST turbulence model is a major limitation in CFD.  

Another critical procedure that must be followed in any CFD simulation practice is the choice of 

the optimal density of the grid. The grid must be fine enough to capture all the important flow 

features, but at the same time, it has to be fine enough to minimize the spatial discretization error 

of the simulation and capture all the rich physical features of the flow. To do that, the procedure 

proposed by Timothy Baker [32] is being followed for every case presented in this thesis. This 

approach provides an estimation of the order of convergence 𝑝 of the solution by tracking an 

aerodynamic property  ℱ  on a family of three or more consecutively refined meshes. An 

aerodynamic property ℱ is evaluated on the coarse, medium and fine meshes to obtain ℱ𝑐,  ℱ𝑚 and 
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 ℱ𝑓  respectively. These values are extrapolated using Richardson’s extrapolation method to 

calculate the continuum value  ℱℎ=0  which represents the expected numerical value when the 

spacing between the nodes of the mesh tends to zero. The continuum value ℱℎ=0 is calculated from 

the three values ℱ𝑐,  ℱ𝑚 and  ℱ𝑓 as:  

 

 
ℱh=0 ≅  ℱf +

 ℱf −  ℱm 

rp − 1
 

(2.1) 

 

where 𝑟 is the refinement ratio from one mesh level to the other, and in our case it is constant and 

equals to 2. 𝑝 is the observed order of accuracy of the solution and is calculated as: 

 

 

𝑝 =  
ln (

 ℱc −  ℱm
 ℱm −  ℱf

)

ln (r)
 

(2.2) 

 

This order of accuracy can be also calculated from the logarithmic slope of the errors of the three 

meshes 𝜀𝑐,  𝜀𝑚 and  𝜀𝑓. In this case, the error of ℱ in each mesh is calculated as: 

 

  εc = |ℱh=0 −  ℱc|,   εm = |ℱh=0 −  ℱm|  and   εf = |ℱh=0 −  ℱf| (2.3) 

 

Even when using CFD algorithms with theoretical 2nd order discretization schemes, the boundary 

conditions, the numerical models and the grid quality will reduce this order so that the observed 

order of convergence will likely be lower than 2. 

Through out the thesis there are several test cases that are 2D in nature, and other that are 3D. 

Some cases were solved using RANS and other were solved using URANS. The computational 

time of each case to reach convergence varied greatly. Table (2.1) lists the approximate wall clock 

time consumed by each case. 

Table 2.1. Approximate wall clock time of different computational cases. 

Case # Cells # Cores Wall Clock Time 

2D NACA 2412 - Steady 210,000 16 ~ 3 hours 

2D NACA 2412 - Transient 210,000 16 ~ 8 hours 

3D NACA 2412 - Steady 15,000,000 16 ~3 days 
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Another important decision that each CFD researcher has to make is the method used to reconstruct 

the gradient of scalar quantities over the control volumes. Despite years of research and 

developments in CFD codes and algorithms, very little is published on the effect of the gradient 

reconstruction method on the unstructured flow solvers. Even in literature, very little can be found 

about the compatibility of the gradient reconstruction method with the type of the mesh used. For 

that reason, an extra effort was done to thoroughly study three commonly used gradient methods, 

namely, the Green-Gauss cell based (GGCB) method, the Green-Gauss node based (GGNB) 

method, and the Least Squares cell based (LSCB) method. The study investigates the effect of the 

aforementioned gradient reconstruction methods on the flow solver when used with different grid 

types. The reader can refer to the following references [33 – 35] for more details. 

The rest of this chapter will present a conclusion on which gradient reconstruction method is the 

most accurate in resolving the flow over morphing wings, taking into consideration the type of the 

mesh used. First, the numerical formulation of the three methods is presented, followed by a 

derivation of their formal order of accuracy on a 2D quadrilateral mesh. For more irregular meshes, 

formal derivations are exhaustively challenging, if even possible, so a numerical tool will be used 

to estimate the observed order of accuracy of each method on a wide range of mesh types. The 

practical implications of these results are tested on a full Navier-Stokes equations solver, and a 

comparison between the efficiency and accuracy of each method is presented. 
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 Verification of the Gradient Reconstruction Method 

2.2.1 Numerical Formulation of the Gradient Reconstruction Methods: 

The Green-Gauss cell based (GGCB) and the Green-Gauss node based (GGNB) methods are based 

on the discretized divergence theorem (a.k.a. the Green-Gauss theorem). The discretized form of 

the divergence theorem is given by:  

 ∇𝜙 =
1

∀
∑ 𝜙𝑓  𝑨𝒇 

𝑁𝑓𝑎𝑐𝑒𝑠

𝑓

 (2.4) 

Equation (2.4) states that the gradient of a certain scalar quantity 𝜙, over a control volume ∀ is 

estimated as the sum of the surface fluxes. The surface fluxes are calculated as the product of the 

surface value 𝜙𝑓 and the surface vector 𝐴𝑓. Both the GGCB and the GGNB methods use equation 

(2.4) to reconstruct the gradient ∇𝜙 at the center of each cell, but the way in which the face value 

𝜙𝑓 is defined makes the difference between both methods. 

The Green-Gauss Cell Based Method 

The simple Green-Gauss cell based (GGCB) method calculates the face value 𝜙𝑓 as the simple 

average of the center values of two neighboring cells, thus the name ‘Simple’. 

 𝜙𝑓 = 
𝜙𝑃 + 𝜙𝑄

2
 (2.5) 

Equation (2.5) shows the simple averaging process between two neighbouring cells ‘P’ and ‘Q’ 

having center values of 𝜙𝑃 and 𝜙𝑄. This simple averaging assumes equal contribution from each 

cell regardless of their geometric properties (aspect ratios, skewness, curvature, … etc). Where 𝜙𝑃 

and 𝜙𝑄 are the scalar values at the centers of the two cells sharing a common face. 

The Green-Gauss Node Based Method 

The Green-Gauss node based (GGNB) method approximates the face value of the 𝜙𝑓 of the cells 

as an average of all the nodes enclosing the cell face as: 

 𝜙𝑓 =
1

𝑁𝑓𝑣
 ∑𝜙𝑁𝑖

𝑁𝑓𝑣

𝑖=1

 (2.6) 

Where 𝑁𝑓𝑣 is the number of nodes defining the face, and 𝜙𝑁𝑖
 is the nodal value at the 𝑖𝑡ℎ node. 

The nodal value 𝜙𝑁  is calculated using a highly robust approach that was first introduced by 
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Holmes and Connell [36] in 1989, and represented by Rauch et al. [37] in 1991. In this approach, 

the nodal values 𝜙𝑁 is calculated as the weighted average of all center values of cells in direct 

contact with this node. This is achieved through an exact linear solution of the surrounding cells, 

thus the Laplacian of this linear function is exactly equal to zero in the x- and y-directions. The 

weight 𝑤𝑖 of each cell’s contribution is calculated by optimizing a cost function tending to reach 

unity for each weight. This optimization results in: 

 𝑤𝑖 = 1 + 𝜆𝑥(𝑥𝑖 − 𝑥0) + 𝜆𝑦(𝑦𝑖 − 𝑦0) (2.7) 

where 𝜆𝑥  and 𝜆𝑦  are the Lagrange multipliers. (𝑥0, 𝑦0) and (𝑥𝑖 , 𝑦𝑖) are the components of the 

position vector of the node under consideration, and the center of the 𝑖𝑡ℎ cell surrounding the node, 

respectively. 

The Least Squares Cell Based Method 

Unlike the GGCB and the GGNB methods which are based on the Green-Gauss theorem, the Least 

Squares cell based (LSCB) method approximates the gradient at the center of each cell using the 

least squares approximation. The gradient of each cell is assumed to change linearly along the 

separating distances from the center of the cell under consideration to the centers of all the 

neighbouring cells. In this case, the gradient could be written in a matrix form as: 

[
 
 
 
𝛥𝑟1𝑥 𝛥𝑟1𝑦 𝛥𝑟1𝑧
𝛥𝑟2𝑥 𝛥𝑟2𝑦 𝛥𝑟2𝑦
⋮ ⋮ ⋮

𝛥𝑟𝑁𝑥 𝛥𝑟𝑁𝑦 𝛥𝑟𝑁𝑧]
 
 
 

𝑁×3

[

𝛻𝜙0𝑥

𝛻𝜙0𝑦

𝛻𝜙0𝑧

]

3×1

= [

𝜙1 − 𝜙0

𝜙2 − 𝜙0

⋮
𝜙𝑁 − 𝜙0

]

𝑁×1

 (2.8) 

Equation (2.8) represents an over determinant system of equations, with a singular 𝑁 × 3 

coefficient matrix on the left-hand side. The coefficient matrix is decomposed using the Gram-

Schmidt process yielding a matrix of weights. Each of the neighbouring cells will have three 

weighting factors 𝑤𝑖
𝑥, 𝑤𝑖

𝑦
 and 𝑤𝑖

𝑧. The gradients in the x and y directions are calculated using: 

 𝛻𝜙0𝑥 =  ∑𝑤𝑖
𝑥(𝜙𝑖 − 𝜙0)

𝑁

𝑖=1

 (2.9 a) 

and 

 𝛻𝜙0𝑦 =  ∑𝑤𝑖
𝑦
(𝜙𝑖 − 𝜙0)

𝑁

𝑖=1

 (2.9 b) 

The LSCB method ensures a monotonic solution over the computational domain, with an exact 

linear solution at the center of each cell.  
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2.2.2 Formal Order of Accuracy 

In this subsection, the formal order of accuracy of the three aforementioned gradient reconstruction 

methods are derived using a 2D quadrilateral mesh. This analysis will give an overview of the 

gradient operator’s sensitivity to the geometric properties of the cells. A Taylor series is expanded 

around the neighbouring quadrilateral cells, with its center of expansion at (𝑖, 𝑗). Figure (2.2) is 

used to introduce the cells’ terminologies used in the derivations. 

 

Figure 2.2. A quadrilateral cell at 𝒊𝒕𝒉 and 𝒋𝒕𝒉 position with all its neighbouring cells and mesh 

spacing. 

This portion of the computational domain represents a number of quadrilateral cells with a constant 

growth rate 𝑅 along the X direction. Thus ∆𝑥𝑖+1/∆𝑥𝑖 = ∆𝑥𝑖/∆𝑥𝑖−1 = 𝑅. This is usually the case 

at the boundary layer of high Reynolds number simulations. The focus of the coming analysis will 

be on the x-component of the gradient, thus the mesh is assumed to be equally spaced along the y-

axis. 

For the GGCB method, the gradient in the x-direction of the cell (𝑖, 𝑗) is the summation of the 

surface fluxes at the surfaces 𝑖 +
1

2
  and 𝑖 −

1

2
, divided by the volume of the cell. 

 

 𝛻𝜙 =
1

∆𝑥𝑖∆𝑦𝑖
 [ 𝜙

𝑖+
1
2

 − 𝜙
𝑖−

1
2
]  ∆𝑦𝑖 (2.10) 

 

𝑖, 𝑗 + 1

𝑖, 𝑗 − 1

𝑖 − 1, 𝑗 𝑖 + 1, 𝑗𝑖, 𝑗

𝑖 + 1, 𝑗 − 1𝑖 − 1, 𝑗 − 1

𝑖 − 1, 𝑗 + 1 𝑖 + 1, 𝑗 + 1

∆𝑥𝑖 ∆𝑥𝑖+1∆𝑥𝑖−1

∆𝑦 −1

∆𝑦 

∆𝑦 +1
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Where the face values 𝜙
𝑖+

1

2

 and 𝜙
𝑖−

1

2

 are calculated as a simple averaging of the neighbouring cells 

as shown in: 

 

 𝜙
𝑖+

1
2
=

𝜙𝑖 + 𝜙𝑖+1

2
 (2.11 a) 

 𝜙
𝑖−

1
2
=

𝜙𝑖 − 𝜙𝑖+1

2
 (2.11 b) 

 

The center values of the neighbouring cells 𝜑𝑖+1 and 𝜑𝑖−1 can be approximated using a Taylor 

series expansion about the cell at (𝑖, 𝑗) as: 

 

𝜙𝑖+1 = 𝜙𝑖 +  𝛻𝜙𝑖 
∆𝑥𝑖 + ∆𝑥𝑖+1

2
+ 𝛻2𝜙𝑖 

(∆𝑥𝑖 + ∆𝑥𝑖+1)
2

8
+ 𝑂(∆𝑥3) (2.12 a) 

𝜙𝑖−1 = 𝜙𝑖 −  𝛻𝜙𝑖 
∆𝑥𝑖 + ∆𝑥𝑖−1

2
+ 𝛻2𝜙𝑖 

(∆𝑥𝑖 + ∆𝑥𝑖−1)
2

8
+ 𝑂(∆𝑥3) (2.12 b) 

 

By substituting equations (2.12 a) and (2.12 b) into equations (2.11 a) and (2.11 b), then back in 

equation (2.10), the x – component of the gradient at the center of the cell in figure (2.2) is given 

as: 

 

𝛻𝜙𝑥 = 𝛻𝜙𝑖  + 𝛻𝜙𝑖  (−
1

2
+

∆𝑥𝑖+1+∆𝑥𝑖−1

4∆𝑥𝑖
) + 𝛻2𝜙𝑖 (

∆𝑥𝑖+1−∆𝑥𝑖−1

8
+

∆𝑥𝑖+1
2−∆𝑥𝑖−1

2

16∆𝑥𝑖
 ) +

𝑂(∆𝑥2)  
(2.13) 

 

It could be directly deduced that the GGCB method will yield a 0th order gradient on arbitrary 

mesh spacing. This is because the leading error in equation (2.13) directly contributes to the exact 

solution, and further refinements of the mesh will not diminish this error term. This means that the 

GGCB method is intrinsically inconsistent and its error is mesh dependent. Only a uniformly 

spaced mesh (𝛥𝑥𝑖−1 = 𝛥𝑥𝑖 = 𝛥𝑥𝑖+1) will nullify the second and third terms on the right-hand side 

of equation (2.13), and a 2nd order accuracy is attained. Additional calculations showed that this 

observation applies on triangular elements as well. The same observation and interpretation of the 

0th order accuracy was documented by Sozer et al. [38]. 

A similar, but sizable procedure was followed to derive the formal order of accuracy of the GGNB 

method. The final formula is:  
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𝛻𝜙𝑥 = 𝛻𝜙𝑖  + 𝛻2𝜙𝑖 (
∆𝑥𝑖+1 − ∆𝑥𝑖−1

8
 ) + 𝑂(∆𝑥2) (2.12) 

 

Similarly, the formal order of accuracy of the LSCB method was derived as: 

 

𝛻𝜙𝑥 = 𝛻𝜙𝑖 + 𝛻2𝜙𝑖  × (𝛥𝑥𝑖+1 − 𝛥𝑥𝑖−1) × 𝛽 + 𝑂(∆𝑥2) (2.13) 

 

Where 𝛽 is a combination of coefficient and given by: 

𝛽 = (𝛥𝑥𝑖−1
2 + 3𝛥𝑥𝑖

2 + 3𝛥𝑥𝑖  𝛥𝑥𝑖+1 + 𝛥𝑥𝑖+1
2 +  𝛥𝑥𝑖−1 (3𝛥𝑥𝑖 + 𝛥𝑥𝑖+1))/

 4 (𝛥𝑥𝑖−1
2 +  2 𝛥𝑥𝑖−1𝛥𝑥𝑖 +  2𝛥𝑥𝑖

2 +  2 𝛥𝑥𝑖 𝛥𝑥𝑖+1 + 𝛥𝑥𝑖+1
2)  

(2.14) 

 

Equations (2.12) and (2.13) show that the GGNB and the LSCB methods will achieve at least a 1st 

order accurate solution on any type of meshes because of the 1st order error terms. While on 

uniformly spaced meshes, the 1st order errors are perfectly cancelled, and only 2nd order errors are 

maintained. For that reason, the GGNB and the LSCB methods are considered to be linear exact 

gradient methods that will calculate the exact gradient of a linear function on any type of meshes. 

It should be noted here that for a 2nd order convergence of the convection discretization error, at 

least a 1st order gradient should be used [38, 39]. This implies that the GGCB method can 

jeopardize the numerical solution in cases of non-uniform meshes. 
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2.2.3 Observed Order of accuracy 

As it has been shown in the previous section that deriving the formal order of accuracy of gradient 

reconstruction methods is an exhaustive task, even for regularly spaced 2D quadrilateral grids. So 

an alternative procedure will be shown in this section to estimate the observed order of accuracy 

of the gradient reconstruction methods using a numerical tool. A very effective and accurate 

method that showed to be successful in previous studies [38 – 42] is the isotropic scaling down 

method. When calculating the gradient at the center of any cell, all the nodes, cells’ centers, and 

faces that form the stencil of the gradient of this cell are scaled down around a focal point located 

at the center of this cell. All the distances are scaled down by multiplying all distances of this cell’s 

stencil by 1/2𝑛 , where 𝑛 represents the level of refinement. For 𝑛 =  0, the original mesh is 

retrieved, for 𝑛 =  1, all the distances are halved, while for 𝑛 =  20, all distances in the mesh are 

scaled down by 220 = 1,048,576 times.  

As the mesh is refined, the spatial discretization error will asymptotically reach zero, and the 

numerical solution will approach the continuum exact solution, and the logarithmic slope of the 

error will represent the order of accuracy of this gradient operator. Figure (2.3) shows an example 

of a cell isotropically scaled down by 2 refinement levels. The red dot represents the center of the 

cell at which the gradient is calculated, as well as the scaling down focal point. When n = 0, the 

original grid is shown in black, when n = 1, all distances inside this grid are halved and shown by 

the blue lines. For n = 2, all distances inside this grid are divided by 4 and shown by green lines. 

Conventionally, structured grids are refined by introducing a midpoint node between each two 

existing nodes, then connectivity between newly introduced nodes is established. This global 

refinement can be consistent for structured grids, however, for unstructured meshes, the process is 

much more complicated. It will result in non-uniform refinement on the local scale of each cell, 

and globally in terms of the number of cells. The isotropic scaling method mitigates these problems 

by reproducing consistent refinements on all types of meshes, which is unattainable using 

conventional refinement methods. In addition, this method can produce extensively refined meshes 

using a single generated mesh. The most important feature of this method is that the computational 

time is not altered from one refinement level to the other. This makes the isotropic scaling down 

method a very attractive and efficient testing tool. 

The order of accuracy of each method is evaluated using the method of manufactured solution.  

This means that the exact solution at each cell is known. The error of the reconstructed gradient at 

the 𝑖𝑡ℎ cell and the 𝑛𝑡ℎ refinement level is calculated as: 

 

𝜖𝑖
𝑛 = |∇𝜑𝑖,𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙𝑙𝑦

𝑛 − ∇𝜑𝑖,𝑒𝑥𝑎𝑐𝑡| = 𝐶 ℎ𝑂𝑂𝐴𝑖 + 𝐻.𝑂. 𝑇. (2.15) 
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Figure 2.3. The isotropic scaling down method with the origin of scaling at the cell's center. 

 

Where 𝐶 is a constant, ℎ is a measure of the mesh spacing, and 𝑂𝑂𝐴𝑖  is the order of accuracy at 

the 𝑖𝑡ℎ cell. By neglecting the higher order terms (H.O.T.), and taking the logarithm of both sides, 

the result is: 

 

 log (𝜖𝑖
𝑛) = log(𝐶) +  𝑂𝑂𝐴𝑖 log (ℎ) (2.16) 

 

The order of accuracy of the solution at the 𝑖𝑡ℎ cell is then calculated as the logarithmic slope of 

the errors between two successive refinement levels as: 

 

 𝑂𝑂𝐴𝑖 =
log (𝜖𝑖

𝑛/𝜖𝑖
𝑛+1)

log (2)
 (2.17) 

 

The denominator in equation (2.17) is log (2) because the mesh is scaled down by a factor of 2 

from one refinement level to the other (ℎ𝑖
𝑛/ℎ𝑖

𝑛+1 = 2). 

To conveniently test a wide range of mesh types, several types of meshes are assembled on a single 

computational domain. The mesh consists of quadrilateral elements, right angled triangular 

elements and equilateral triangles that range from equally spaced to totally perturbed elements. 

Figure (2.4) shows the computational domain used to test the gradient operators. 

Level 0

Level 1

Level 2

Origin of Scaling
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Figure 2.4. Different types of meshes that will be used to assess the order of accuracy of the 

three gradient operators. 
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The hybrid computational domain in figure (2.4) consists of commonly used mesh elements in 

CFD applications. Quadrilaterals and curved quadrilaterals with their stretched variations are 

widely used to resolve the viscous boundary layers at high Reynolds numbers. The right angled 

triangular elements are also used at the viscous boundary layers to increase the CFD solver 

accuracy and convergence rate [43]. While equilateral triangles and their perturbed version usually 

represents the core elements of the computational domain in unstructured grids. 

The testing function used was Ackley’s function shown in figure (2.5). This function: 

  

𝑓(𝑥, 𝑦) =  − 20𝑒𝑥𝑝 (−0.2 √0.5 (𝑥2 + 𝑦2)) − 𝑒𝑥𝑝(0.5(𝑐𝑜𝑠(2𝜋𝑥) + 𝑐𝑜𝑠(2𝜋𝑦))) + 𝑒 + 20 (2.18) 

is a benchmark equation widely used to test optimization and numerical algorithms in applied 

mathematics. It consists of a large funneled shape structure with its absolute minimum at the origin 

and the surface of the funnel has a rough texture with many local minima.  

 

Figure 2.5. 3D representation of Ackley’s testing function. 

The gradient of the testing function was calculated at each cell in the computational domain using 

the three gradient reconstruction methods. The mesh was refined for 20 refinement levels, and at 

each level the gradient was calculated. Figure (2.6) shows an example of the L1 norm convergence 

of the x and y gradients on four variations of the curved quadrilateral elements colored by shades 

of green in figure (2.4). 
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(a) X gradient of the GGCB method (b) Y gradient of the GGCB method 

  

(c) X gradient of the GGNB method (d) Y gradient of the GGNB method 

  

(e) X gradient of the LSCB method (f) Y gradient of the LSCB method 

Figure 2.6. L1 norm convergence of solution on curved quadrilateral mesh using the three 

gradient reconstruction methods. 
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The zero slopes of the lines in figures (2.6 a) and (2.6 b) show that the GGCB method achieved a 

0th order accuracy on the curved quadrilaterals. On the other hand, the first order slopes in figures 

(2.6 c – f) show that the GGNB and the LSCB methods obtained a 1st order accuracy over all 

refinement levels. A more convenient and compact way of representing the results on all types of 

meshes is shown in figure (2.7). The results of the 12th and 13th refinement levels are used to 

calculate the order of accuracy of each cell using equation (2.17). Each element in the hybrid mesh 

is color coded with a color representing the achieved order of accuracy (0th, 1st or 2nd order).  

Figures (2.7 a) and (2.7 b) show that the GGCB method achieved 2nd order accurate solutions only 

on quadrilateral elements that are equally spaced along the direction of the gradient component.  

This accuracy dropped to 1st order on equally spaced triangular elements, and dropped again to a 

0th order accuracy when used on any other type of meshes. This is because the leading error of the 

gradient directly contributes to the exact solution, and further refinements of the mesh will not 

diminish this error term. This means that the GGCB method is intrinsically inconsistent and its 

error is mesh dependent. Only a uniformly spaced mesh will nullify the 1st order error terms and a 

2nd order accuracy will be attained. In figures (2.7 c - f), the GGNB and the LSCB methods 

maintained a 2nd order accurate solution on equally spaced quadrilaterals. This is due to the perfect 

cancellation of the 1st order errors. While on all other types of meshes, the GGNB and the LSCB 

methods achieved a 1st order accuracy. This means that they are capable of exactly reproducing 

the gradient of a linear function on any type of meshes.  

Although the GGNB and the LSCB methods achieved similar orders of accuracy, the numerical 

formulation of the LSCB method is much simpler than the GGNB method, thus computationally 

less expensive as it will be shown in the next sections. 
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(a) X - gradient using the GGCB method (b) Y - gradient using the GGCB method 

  

(c) X - gradient using GGNB method (d) Y - gradient using GGNB method 

  

(e) X - gradient using LSCB method (f) Y - gradient using LSCB method 

Figure 2.7. Observed order of accuracy of the reconstructed gradients, calculated using the 

three gradient reconstruction methods. 
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2.2.4 Practical Implications 

Spatial derivatives obtained by the gradient operators are used in several equations in CFD codes; 

starting from the diffusion and convection terms of the momentum equations, to the energy 

equation, to any additional transport equations. This makes tracing the effect of the gradient 

operators on the final solution an exhausting process. Despite the numerous studies that are 

conducted on CFD algorithms, the effect of the gradient reconstruction method on the final flow 

solution is still far from clear. In this section, a numerical methodology is adopted to investigate 

the effect of the three aforementioned gradient operators on the solution of high aspect ratio CFD 

solutions.  

Four Aerodynamics applications will be tested in this study. In the first case, the Euler flow 

equations are solved on a NACA 0012 airfoil. The second case focuses on the viscous forces at 

the boundary shear layer of a flat plate. In the third and fourth cases, the flow between an outer 

stationary cylinder and an inner rotating one is induced to create a rotating Couette flow. The four 

cases represent four different types of meshes, and each is solved on a family of consecutively 

refined grids as shown in figure (2.8). 

In each case, the flow is solved three times using the CFD commercial code FLUENT V15, each 

time a different gradient reconstruction method is used. The Richardson’s extrapolation method is  

used to estimate the order of convergences of each gradient method when used with each case. 

While keeping in mind the importance of the numerical efficiency, the computational time 

consumed by the solver to reach convergence is used as a comparator measure for the efficiency 

of each gradient operator.  

The computational time is calculated as the time consumed by a single Intel Xeon 2.6 GHz 

processor to reach convergence. Convergence of the solution is considered to be reached when the 

value of ℱ is changing at a rate less than 0.001% of its value from one iteration to the other. This 

criterion aims at comparing the efficiency of each gradient operator when used with the full set of 

flow equations. The description of the geometry, boundary conditions and flow features of each 

case are presented below. 
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(a) (b) 

  

(c) (d) 

Figure 2.8. Three consecutively refined meshes used with (a) the NACA0012, (b) the flat 

plate, (c) rotating Couette flow on equilateral triangular mesh and (d) rotating Couette flow 

with perturbed mesh. 

 

Case 1: Euler solution over NACA0012 airfoil 

In this test case, the flow around a NACA 0012 airfoil is simulated using Euler’s equations. The 

flow is assumed to be inviscid, and this assumption will significantly reduce the computational 

time by eliminating the refined mesh used to resolve the viscous boundary layer. The fast 

converging Euler equations increase the feasibility of using finer refinements for the grids, and 

thus a more accurate estimation of the solution’s order of accuracy. 

The airfoil used is a standard NACA 0012 airfoil with a sharp trailing edge. The chord length of 

the airfoil was set to 1 m. An O-mesh topology was created around the airfoil with an extended 

far-field boundary that is 150 chords away from the airfoil. A family of consecutively refined grids 
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was created with a constant refinement factor of 2. The coarse mesh consisted of 64 nodes around 

the airfoil and extends to the far-field through 64 levels, thus the course mesh is 64 x 128 cells. 

The medium and fine meshes were created from the coarse mesh by constant uniform refinements 

of 2. Figure (2.8 a) shows the grids created for testing the NACA 0012 airfoil. 

The flow around the airfoil was set to a subcritical flow condition with a Mach number of 0.5. An 

angle of attack of 𝛼 = 1.25°  was used to create a non-zero lifting force on the airfoil, and 

consequently a pressure drag.  The drag coefficient 𝐶𝑑 was chosen to be the scalar property ℱ for 

the Richardson’s extrapolation analysis and will be used to estimate the numerical order of 

accuracy 𝑝. 

 

Case 2: Laminar flow over a flat plate 

With the focus on the first case was on the inviscid flow, the second case will focus on the viscous 

forces in the boundary layer of a flat plate. This restores the diffusion term back to the momentum 

equation. The geometry of the plate and the computational domain are shown in figure (2.9). 

 

Figure 2.9. Geometry and computational domain of the flat plate test case. 

The flat plate extends for 1 meter and the height of the computational domain is chosen to be 

approximately ten times the boundary layer thickness which could be approximated using Blasius 

equation (𝛿99 ≈
4.91 𝑥

√𝑅𝑒𝑥
). The three consecutively refined meshes that are used in this test case 

consist of right angled triangular elements as shown in figure (2.8 b). This type of mesh introduces 

a sort of computational complexity in reconstructing the gradient near the flat plate. This is due to 

the inclined surfaces of the triangular elements and the high aspect ratios near the boundary layer.  

Reynolds number due to length 𝑅𝑒𝑥 of the flat plate is chosen to be 10,000. The flat plate is treated 

as an adiabatic wall, and the upper far field of the computational domain is a symmetric axis, thus 

no refinement is needed at this boundary. The skin friction coefficient at x = 0.85 𝑚 (𝐶𝑓@𝑥=0.85
) 

was chosen as the scalar property ℱ  for Richardson’s extrapolation, and for estimating the 

numerical order of accuracy 𝑝. 

 

Cases 3 and 4: Rotating Couette flow 

In the third and fourth cases, the famous rotating Couette flow is solved numerically on an 

equilateral triangular and a perturbed triangular mesh respectively. This type of flows consists of 
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a fluid that is entrapped between an inner rotating cylinder and an outer stationary drum. The 

rotation of the inner cylinder drags the next-to-the-wall layers along with it. This induces the flow 

between the cylinders as shown in figure (2.10). 

 

Figure 2.10. Geometry and computational domain of outer and inner cylinder of the rotating 

Couette flow. 

 

In our case, the inner radius 𝑟𝑖 and the outer radius 𝑟𝑜 of the cylinders are set to 17.8 𝑚𝑚 and 

46.8 𝑚𝑚 respectively. The inner cylinder is rotating at an angular velocity of 𝜔𝑖 = 1 𝑟𝑎𝑑/𝑠. This 

rotation induces the flow between the cylinders whose viscosity is equal to 0.0002 𝑘𝑔/ 𝑚 𝑠. The 

value under consideration ℱ is the tangential velocity at radius 𝑟 = 35 𝑚𝑚. 

 𝒊

  
 

 𝒊
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2.2.5 Results and Discussion 

Each of the four cases was solved on three different levels of refined meshes, each with the three 

aforementioned gradient operators. The first style that will be compared is the observed order of 

accuracy of the solution. Equations (2.1 – 2.3) were used to estimate the error of the aerodynamic 

property ℱ on each mesh of the four cases. The convergence of the spatial truncation error of ℱ is 

plotted in figures (2.11 a – d). 

The slopes of the straight lines in the figures represent the order of accuracy of the solution. Figure 

(2.11 a) shows the deviation of the calculated drag coefficient in each of the nine runs when 

compared to its corresponding continuum value 𝐶𝑑ℎ=0
.  Both the GGNB and the GGCB methods 

yielded solutions with slopes close to each other, with values of 1.6913 and 1.6537, respectively. 

While the LSCB method achieved a value of 1.8712 which is close to the theoretical value of 2 for 

2nd order discretization schemes. 

 

 

  

(a) Case 1 (b) Case 2 

  

(c) Case 3 (d) Case 4 

Figure 2.11. Convergence of the spatial truncation error in the four cases. 
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In case 2, the GGCB method achieved the least accuracy with a slope of 1.3428, then the GGNB 

resulted in an observed order of accuracy of 1.5466, and the LSCB method achieved the highest 

accuracy of 1.7347. These results are plotted in figure (2.11 b).  

The equilateral triangular elements in case 3 resulted in orders of accuracies that are close to each 

other in cases of the three gradient operators. The calculated slopes of the lines in figure (2.11 c) 

are found to be 1.88, 1.708 and 1.86 for the GGCB, the GGNB and the LSCB methods 

respectively. These results were expected from figure (2.7), where on meshes with equidistant 

spacing, the three gradient operators obtain the same 1st order accuracy.  

The perturbed meshes in case 4 revealed the disability of the GGCB method to handle the viscous 

and inviscid fluxes on highly skewed triangular (or quadrilateral) elements. The GGCB method 

fell below the 1st order accuracy with a value of 0.80781 despite using 2nd order discretization 

schemes with the flow solver. In the second place came the GGNB method and the LSCB method 

was the most accurate. The calculated order of accuracy of the former two methods slightly 

exceeded the 2nd order accuracy. This is due to the inconsistent refinement of the perturbed 

triangular mesh that results in non-uniform mesh density over the computational domain. 

The second test of the gradient reconstruction methods assessment compares the efficiency of each 

gradient operator. The computational running time consumed by the solver to reach convergence 

on the finest mesh is used as a measure to compare the gradient operator’s efficiency.  

The intent of this study is to compare the performance of each gradient operator when used on 

different types of meshes, and not to calculate the CPU time of the solution. For that reason, the 

measured computational time in each case is normalized by the minimum time required to reach 

convergence with each of the three operators. In the four cases, the GGCB method was the first to 

reach convergence, thus its non-dimensional time is equal to 1 in all cases as shown in figure 

(2.12). 

 

Figure 2.12. Comparison of the computational expenses of the gradient operators for the four 

cases. 
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The GGCB method was always the first to reach convergence because of its simple formulation 

that calculates the face value 𝜙𝑓 as the average of the neighbouring cells. On the other hand, the 

GGNB method consumed about 9 - 34% additional time when compared to the GGCB. This is due 

to the complexity of the GGNB method that involves in the calculations the nodal value at each 

vertex of each cell. While the relative simplicity of the LSCB method resulted in an efficient 

algorithm with computational expenses that are well comparable to the GGCB method. The LSCB 

method consumed a maximum of 6% additional time when compared to the GGCB method.  

These analyses have shown that the LSCB gradient reconstruction method offers a reasonable 

trade-off between accuracy and efficiency. For that reason, all the numerical test cases in the next 

chapters will use the LSCB gradient reconstruction method to resolve the flow over morphing 

wings and morphing skins. 
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 Validation of the NACA 2412 CFD Results 

After reaching a conclusion that the least squares cell-based method is the most accurate and 

efficient method, the CFD solver options are now set. It is of a great convenience for the author to 

present here a validation test case that will give confidence to the readers in the CFD tool used in 

this entire thesis. Despite presenting quantitative and qualitative validation cases in chapter 3 for 

flows over cavities, a general validation case for flow over an airfoil is essential.  

As mentioned earlier in section 1.2, the exact model of the aircraft was not provided by Bombardier 

Inc., but the averaged Reynolds number at the wing tip was calculated to be approximately 5.7 

million. For that reason, most of the investigations in this thesis are done at a Reynolds number of 

5.7 million, and a Mach number of 0.17 to match the experimental conditions reported by Abbott 

and Von Doenhoff [44]. This Reynolds number is in accordance with the average of Reynolds 

numbers of UAV’s which is the prime customer of the morphing wing technology. 

In this section, flow over a NACA 2412 will be simulated using CFD at difference angle of attacks, 

and the numerical results will be compared to the experimental values presented by Abbott and 

Von Doenhoff in [44]. The NACA 2412 is used as the baseline airfoil for flow simulations in this 

thesis because it is commonly used for airplanes designed to operate at both subsonic and 

supersonic speeds. This is in addition to their applications in helicopter rotor blades and high-

performance propeller blades [44, 45]. 

Abbott and Von Doenhoff [44] tested the airfoil at three Reynolds numbers, namely 3.1, 5.7 and 

8.9 million. The Mach number reported by them was not exact, but they mentioned that it is slightly 

lower than 0.17. The wind tunnel used has a test section that is 3 feet wide and 7 feet high. The 

wing model has a chord length of 2 feet and a span of 3 feet. The lift of the wing is measured by 

integrating the pressure reactions on the floor and ceiling of the wind tunnel. The drag on the airfoil 

is obtained using the wake survey method presented in [46]. 

The CFD tool was set for a Reynolds number of 5.7 million and a Mach number of 0.17. The 

computational domain extents for 32 chords, and a C-topology mesh was used where the blocks 

are wrapped around the sharp trailing edge airfoil. A mesh independent study was carried-out on 

a family of three consecutively refined meshes as described in section 2.1. Richardson’s 

extrapolation method showed that the finest mesh is the most adequate mesh to resolve the flow 

where the error between the extrapolated asymptotic value of the lift coefficient and the value of 

the finest mesh is 0.87% at an angle of attack of 8°. Since the turbulent intensity was not reported 

in [44], the transition-SST turbulence model was manually tuned to a turbulent intensity of 1.75% 

and a surface roughness of 5e-5 m. 

The angle of attack was swept over the range of 0° to 20°, and in each case the lift coefficient and 

drag coefficient were calculated. Figure (2.13) shows a comparison between the results obtained 
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experimentally by Abbott and Von Doenhoff [44], and the results obtained from the CFD 

simulations at a Reynolds number of 5.7 million. Figure (2.13 a) shows the obtained lift coefficient 

Cl at different angle of attacks, and figure (2.13 b) shows the obtained drag coefficient at different 

lift coefficient values.  

As it can be observed from figure (2.13 a) that a very good agreement is achieved at high angles 

of attack, and a perfect agreement is observed over the linear range at low angles of attack.  

  
(a) α Vs Cl (b) Cl Vs Cd 

Figure 2.13. Comparison between the CFD and the experimental values [44] of (a) the lift coefficient 

Cl at different angle of attacks α and (b) the drag coefficient Cd at different lift coefficient Cl values. 

 

A more sensitive aerodynamic parameter is the drag coefficient at different lift coefficient values. 

This property is very sensitive to the surface roughness and the free stream turbulent intensity. 

Tuning of the airfoil surface roughness and main stream turbulent intensity was essential to achieve 

the agreement shown in figure (2.13 b).  

This validation test case provided the needed confidence to proceed with this CFD tool to study 

the aerodynamics of different morphing skins. 
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3. FLOW OVER TRENCHES OF 

SLIDING PANELS 
 

 Introduction 

The research topic of viscous flow over rectangular cavities has recently attracted the interest of 

many researchers studying fluid dynamics, aeronautics, and airframe noise control. The geometry 

of a rectangular cavity over which viscous flow is travelling has practical implications in modeling 

flows over airframe discontinuities such as slotted flaps and slats, engines gaps, landing gear and 

weapon bays, and skin discontinuities. The high-speed flows interact with the structure of these 

discontinuities creating highly unsteady flow dynamics. Such flows are usually accompanied with 

acoustic radiations, and hydrodynamic resonance that threatens the stability and integrity of the 

aircraft structure and devices [47 – 49]. 

Despite having a very simple geometry, flow over cavities is considered one of the rich and 

complex flow dynamic problems. Based on the boundary conditions, the flow may include shear 

layer separation, shock waves, entrapped vortices, secondary flows, boundary layer transition and 

flow-acoustic resonance. The latter phenomenon of hydrodynamic resonance has intrigued the 

interest of researchers to explore the interaction between the separated shear layer and the cavity 

edges in all the three common methods, namely, experimentally, analytically and numerically. 

Roshko [50] and Karamcheti [51] in 1955 were among the pioneers who studied this flow 

phenomenon. Roshko showed through his wind-tunnel experimental results [50] that sound waves 

are emitted from the pressure stagnation point located at the cavity trailing edge. The upstream 

directivity of these acoustic waves at moderate to supersonic Mach numbers was confirmed 

visually by Karamcheti [51] through the shadowgraph images captured from his wind-tunnel 

experiments. The details of this phenomenon were first revealed by Rossiter [52] who managed to 

relate the frequency of the acoustic radiations to the aspect ratio of the cavity and Mach number 

of the flow through a semi-empirical formula. The mode of instability explored by Rossiter is 

sometimes referred to in literature as Rossiter mode or shear layer mode. In this mode, the Kelvin-

Helmholtz instability amplifies the small disturbances found in the shear layer over the cavity and 

rolling up of the vortices that travel downstream and hit the trailing edge of the cavity. The 

impingement of the vortices at the trailing edge of the cavity causes acoustic radiations to be 

emitted from the cavity trailing edge and travels upstream to close the feedback process that further 
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amplifies the shear layer instability. The acoustic radiation frequency resonates with the vortex 

shedding frequency in a state known as the self-sustained oscillations. Sarohia [53] recorded that 

the onset of oscillations is observed when √𝑅𝑒𝜃 𝐿/𝜃0 > 800, where 𝑅𝑒𝜃  is Reynolds number 

based on the momentum thickness, 𝐿 is the length of the cavity and 𝜃0 is the momentum thickness 

of the boundary layer at the leading edge of the cavity. Gharib and Roshko [54] confirmed this 

finding where they observed the onset of oscillations at √𝑅𝑒𝜃 𝐿/𝜃0 ≈ 720, a value that is close 

enough to the value obtained by Sarohia [53]. Below this value, the flow was observed to be steady 

in nature. A more substantial result documented by Gharib and Roshko [54] was a new instability 

mode know as the wake mode. In the wake mode, the vortex entrapped in the cavity starts to 

emerge out of the cavity resulting in amplified off-wall oscillations in the velocity field 

surrounding the cavity. The oscillations observed in the wake mode resembles the wake oscillating 

flow behind bluff bodies, and hence the name. 

With the recent advancements of computational power, and the high fidelity achieved by CFD 

codes and numerical algorithms, researchers started to use this new approach to explore different 

modes of oscillations, investigate the physical details of this flow while avoiding the external 

effects of intrusive experimental tools. 

Colonius et al. [55, 56] and Rowley et al. [57] captured the three modes of oscillations, namely, 

no-oscillations mode, shear layer mode, and wake mode using two-dimensional direct numerical 

simulation (DNS). Rizzetta and Visbal [58], Larchevêque et al. [59 – 61], and Chang et al. [62] 

reached an agreement between results of the three-dimensional large-eddy simulations (LES) and 

the experimental values of Rossiter’s frequencies. Since flow over cavities is characterized by 

large coherent turbulent structures, some researchers studied the flow phenomena using the 

unsteady RANS simulations at different flow regimes; from subsonic [47, 63 – 65], to supersonic 

regimes [64, 66 – 72]. Over years, the complexity of the turbulence model used in the RANS 

method has developed from a single algebraic equation, to two equations 𝑘 − 𝜀  and 𝑘 −  𝜔 

turbulence models with their main objective being to reproduce the frequencies of oscillation 

obtained from experiments and Rossiter’s formula. 

As shown in chapter 2, the transitional SST turbulence model has proven to be an accurate enough 

to model the boundary layer transition. In this chapter, the URANS equations will be used with 

the four-equation transitional SST turbulence model to find an approximate scaling law that can 

predict the transition of the boundary layer over cavities. This scaling law can then be used in 

designing the rectangular cavity between adjacent sliding panels of a sliding morphing skin. This 

approach can result in a morphing airfoil that preserves the aerodynamic properties of a clean 

airfoil. Section 3.2 presents a numerical verification of the numerical results obtained, and a 

numerical validation of the results by comparing them qualitatively and quantitatively to 

experimental and semi-empirical results. The good accuracy achieved by the numerical results has 
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encouraged a more detailed parametric study in section 3.3. In this section, the correlation between 

different non-dimensional numbers and the state of the boundary layer is studied. The result of this 

analysis will be a scaling law that can predict the transition of the boundary layer. Section 3.4 

presents the practical implications of this finding with a focus on morphing skin applications. The 

scaling law can be used to optimize the skin design and ensure optimal aerodynamic performance 

that is comparable to the clean airfoil. It should be noted here that the cavity depth was not 

accounted for in this study because the cavity is assumed to be infinitely deep compared to the 

shear layer thickness [57]. 
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 Numerical Model Validation 

3.2.1 Flow Configuration 

To investigate the geometric parameters that influence the behavior of the flow over 2D cavities, 

several geometric dimensions are being varied in the following study. Figure (3.1) shows the 

computational domain with its geometric nomenclature that will be used in the rest of this chapter. 

To cover a wide spectrum of flow conditions over the cavity, the flow parameters as well as the 

geometric properties vary over a wide range. The leading edge of the plate changed over the range 

of X/D = 5 to X/D = 25, and the width of the cavity itself changed from L/D = 0.5 to L/D = 4, 

where D is the depth of the cavity, X is the leading-edge length of the flat plate before the cavity, 

and L is the width of the cavity. The freestream Mach number changed over the range of 0.2 to 

0.8. This combination of parameters has resulted in a non-dimensional boundary layer momentum 

thickness at the leading edge of the cavity ranging from 𝐿/𝜃0  = 10 to 200, and a Reynolds 

momentum thickness at the leading edge of the cavity that is ranging between 𝑅𝑒𝜃0= 95 and 1500. 

The combination of all these parameters has resulted in more than 75 numerical cases. In all cases 

the depth of the cavity D is set to 1 mm. The height Y and the width W of the computational 

domain are determined after examining the effect of the computational domain size on the flow 

features and the acoustic radiations. 

 

Figure 3.1. A schematic diagram of the cavity computational domain and the used nomenclature. 
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3.2.2 Boundary Conditions and Computational Domain 

The type of the boundary condition and the size of the computational domain can significantly 

influence the results of CFD analysis, so it is of a great importance in such CFD cases to ensure 

the independence of the solution from the computational domain size, and to choose the proper 

non-reflecting boundary conditions. For that reason, a pressure far-field boundary condition is used 

for the three non-wall boundaries, namely, the upper, left and right boundaries. By applying the 

Riemann invariants for the 1D flow normal to the boundary at the pressure far-field conditions, 

acoustic and pressure waves are not reflected over these boundaries. All wall conditions at the 

leading and trailing flat plates, and the walls of the cavity are treated as no-slip adiabatic walls. 

The size of the computational domain was determined after varying the computational domain size 

and monitored the y-velocity fluctuations at x = 3D and y = 0 measured from the leading edge 

upper corner of the cavity. The height Y and width W of the computational domain were both set 

to 12.5D for the first case, 25D for the second case and 50D for the last case. The cavity length to 

depth ratio L/D is set to 4 and the length of the leading edge of the flat plate is set to X/D = 5.  The 

freestream Mach number is 0.6. Such a combination has resulted in a boundary layer momentum 

thickness ratio 𝐿/𝜃0 of 194 and Reynolds momentum thickness at the leading edge of the cavity 

of 𝑅𝑒𝜃0= 282.4. Figure (3.2) shows the measured y-velocity fluctuations on the y-axis, and on the 

x-axis the time is presented after being normalized by the freestream velocity and the cavity depth. 

 

Figure 3.2. Y-component of the velocity fluctuations measured in three computational domains 

with different sizes. 
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As shown in figure (3.2), results of the three domains are nearly coinciding with minor 

discrepancies observed in the first case at the first 100 time-units. This discrepancy is observed as 

slightly higher amplitudes at the peaks that quickly attenuates after the first 100 time-units. For 

that reason, the second size of the computational domain has been chosen to be used for the rest 

of this chapter with the height and width of the computational domain being YxW = 25D x 25D. 

3.2.3 Meshing and Spatial Convergence 

Creating a mesh that resolves the complex flow phenomena using URANS equations is a 

challenging task. The grid has to properly resolve the viscous boundary layer attached to the 

leading and trailing plates, at the same time it has to have as much regular elements over the cavity 

vicinity as possible. It was found from numerical simulations that if the mesh cells over the cavity 

have high aspect ratio, they produce an unphysical pressure field, and fail to capture the interaction 

of the acoustic radiations with the vortex shedding. For these reasons, the computational domain 

has been divided into 14 different blocks as shown in figure (3.3). 

 

 

Figure 3.3. The blocking and mesh configurations used to resolve the flow over cavities. 

 

The off-wall nodes have been clustered near the walls of blocks 7, 8, 11 and 12 to properly resolve 

the velocity gradient of the viscous boundary layer at the flat plate. Blocks 8 and 11 blend gradually 

with blocks 9, 10, 13 and 14 to expand the closely clustered nodes near the walls and reach a 

uniform distribution at the common edges between blocks 9 and 10, and blocks 13 and 14. This 

ensures that the aspect ratios of cells over the cavity have values closer to unity. The nodes in 

blocks 1, 2, 3, 4, 5, 6, 7, and 12 expand gradually along the x and y directions towards the pressure 
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far-field boundaries with a growth rate of 1.1. The maximum dimension in the whole mesh has 

been limited to 0.1 in case of the fine mesh and 0.22 in case of the moderately dense mesh. At all 

flow conditions, the Y+ value is far below 1. 

The second challenge faced in the mesh generation process is choosing the optimal mesh density 

that compromises between capturing all the important flow feature and keeping the computational 

requirement to minimum. To achieve this optimal mesh density, the procedure explained in section 

2.1 will be used here where the flow will be solved on a family of three consecutively refined 

meshes; coarse, medium and fine. A refinement factor of 2 was chosen, which means that the 

number of nodes are doubled in each direction, and quadrupled from one mesh to the other. The 

coarse, medium and fine meshes have approximately 38,750, 155,000 and 620,000 nodes 

respectively. The flow feature that is being tracked for the Richardson’s extrapolation method is 

the non-dimensional Strouhal number 𝑆𝑡𝐷 of the vortex shedding based on cavity depth and free-

stream velocity. The non-dimensional Strouhal number 𝑆𝑡𝐷  is calculated from the y-velocity 

fluctuations at x = 3D and y = 0 measured from the upper left corner of the cavity. This value has 

been chosen due to the essential role it is playing in the validation process of the numerical results 

versus the experimental and the semi-empirical equations. 

For this numerical verification case, the cavity aspect ratio was set to L/D = 4, a freestream Mach 

number of 0.8 and a leading edge of the flat plate of 5D. This configuration is known from literature 

to result in ‘wake mode’ fluctuations. This mode of oscillations is characterized by its vortex 

shedding frequency that is independent of the freestream Mach number, and that the velocity 

fluctuations over the cavity have a double peak spectrum. Further description of this oscillation 

mode will be presented in section 3.3. 

The continuum value ℱℎ→0 of the fundamental frequency was calculated using equations (2.1) and 

(2.2) to be 0.048367 as shown in figure (3.4). 

The values ℱ𝐶, ℱ𝑀 and ℱ𝐹 were calculated to be equal to 0.1983, 0.0562 and 0.0487, respectively. 

The percentage difference between the values ℱ𝐶, ℱ𝑀 and ℱ𝐹 compared to the continuum value 

ℱℎ→0 are 310%, 16.3% and 0.86%, respectively. The fine mesh is closer to the continuum value, 

however, it consumed a significant amount of computational power that will limit the diversity of 

this study. For that reason, the medium mesh has been chosen to be used in the rest of this chapter. 
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Figure 3.4. Spatial convergence of the fundamental frequency towards the asymptotic 

extrapolated value as the number of elements in the mesh increases. 

It should be noted here that the coarse mesh in this study failed to capture the double peak 

oscillations that characterize the ‘wake mode’ oscillations. This shows that there is a threshold 

value in the spatial discretization that has to be met in order to capture the correct physics of this 

mode. Figure (3.5) shows a comparison between the y-velocity fluctuations obtained from the three 

meshes. 

 

Figure 3.5. Comparison between the y-velocity oscillations in a wake mode flow on three 

consecutively refined meshes. 
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As shown in figure (3.5), the coarse mesh failed to capture the double peak oscillations that have 

been correctly captured by the medium and fine meshes. In addition, it can be observed from figure 

(3.5) that the magnitude of the oscillations is suppressed in the case of the coarse mesh at a 

magnitude of 0.22. This is compared to 0.74 and 0.78 in cases of the medium and fine meshes, 

respectively. This shows that there is a minimum resolution for the meshes that can correctly 

capture the interaction of the acoustic radiations with the other flow features. 

 

3.2.4 Temporal Convergence Accuracy 

A second-order temporal discretization scheme is used to capture the highly unsteady nature of 

flows over cavities whose vortex shedding and acoustic radiations are characterized by their high 

frequency interactions. This means that the time step ∆𝑡 has to be small enough to ensure a time-

step independent solution. To find the largest time step that guarantees a time-step independent 

solution, a single cavity flow case was solved using four significantly different time-steps of 

∆𝑡 𝑈/𝐷 = 5.2, 0.52, 0.052, 0.0052. The y-velocity at x = 3D, and y = 0, measured from the upper 

left corner of the cavity has been monitored in each case and plotted in figure (3.6). 

.  

Figure 3.6. Y-velocity fluctuations over a cavity obtained using four different time-steps of 

∆𝑡 𝑈/𝐷 = 5.2, 0.52, 0.052, 0.0052. 

As shown in figure (3.6), the results of the two cases with the finest time-steps ∆𝑡 𝑈/𝐷 = 0.052 

and 0.0052 have obtained almost identical results. While the case with a time-step of ∆𝑡 𝑈/𝐷 = 

0.52 has resulted in fluctuations that are much higher in magnitude, and the largest time-step did 

not manage to capture any fluctuations. For that reason, the time-step of ∆𝑡 𝑈/𝐷 = 0.052 is used 

as the marching time-step in this chapter. 
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 Validation of the Computational Model 

This section focuses on validating the numerical results by comparing them to the experimental 

and semi-empirical correlations, and the numerical model accuracy in resolving the three modes 

of oscillations will be examined. As mentioned earlier, it is documented in literature that there are 

three modes of oscillations, namely, no oscillations, shear-layer mode, and wake mode. 

The first mode of oscillations is the ‘no-oscillations’ mode where the boundary layer by-passes the 

cavity without any oscillatory motions at small freestream velocities and/or small cavity 

dimensions. Woolley et al. [73] and Rowley et al. [55 - 57] observed that there is a certain threshold 

of shear layer disturbances that will trigger these flow oscillations. Sarohia [53] mentioned that for 

deep cavities, the onset of oscillations takes place when √𝑅𝑒𝜃𝐿/𝜃0 ≈ 800. Similarly, Gharib and 

Roshko [54] observed that the onset of oscillations took place at √𝑅𝑒𝜃𝐿/𝜃0 ≈780. The y-velocity 

fluctuations can easily distinguish between the three modes of oscillations. In all cases, the y-

velocity fluctuations were measured at nine different locations over the cavity vicinity; at x = L/4, 

L/2 and 3*L/4 and at three different elevations at y = -D/2, 0 and D/2 measured from the upper 

right corner of the cavity. The nine monitoring points obtained the same fluctuation patterns with 

the same frequencies, but with phase shifts. Figure (3.7) shows three different signals representing 

the no-oscillations, the shear layer mode and the wake mode respectively. The signals shown in 

figure (3.7) are the y-velocity fluctuations measured at (3D, 0) from the upper right corner of the 

cavity for three cases, no oscillation case, shear mode case, and wake mode case. 

 

Figure 3.7. Comparison between the y-velocity oscillations in the three cavity flow regimes; no-

oscillations, shear layer mode, and wake mode. 
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The signals are artificially shifted along the y-axis with each major tick representing 0.5*𝑣/𝑈∞, 

while each major tick on the x-axis represents 50*t U / D. The ‘no oscillations’ mode represented 

by the upper curve reflects a steady nature that does not oscillate. The flow is stratified and parallel 

to the flat plate surface. However, it was observed from the numerical simulations that a ‘no 

oscillations’ mode does not guarantee a stable state of the boundary layer. In some cases, the 

laminar boundary layer experienced a state transition from laminar to turbulent. While in others, 

the circulation of the flow inside the cavity reaches a certain limit that elevates the disturbances in 

the shear layer and triggers the transition of the boundary layer. 

Figure (3.8) shows the intermittency contour plot of two cases, both are ‘no oscillation’ mode. 

Figure (3.8 a) shows a case with trench parameters of 𝐿/𝐷 is 0.5, 𝐿/𝜃0 of 19, 𝑅𝑒𝜃 of 480 and Mach 

number of 0.8, while figure (3.8 b) shows a similar case of a cavity with of 𝐿/𝐷 is 1, 𝐿/𝜃0 of 64, 

𝑅𝑒𝜃 of 141 and Mach number of 0.4. It can be observed from the intermittency contour plot that 

despite having a lower Mach number of 0.4, the boundary layer in figure (3.8 b) experienced a 

transition from laminar to turbulent. Further investigations of the factors that affect the transition 

of the boundary layer will be discussed in section 3.4. 

  

 
(a) (b) 

Figure 3.8. Intermittency contour plot of two cases in a cavity ‘no-oscillations’ mode. (a) 

shows no signs of boundary layer transition, while the cavity in (b) triggered the transition of 

the boundary layer. 

 

The other, and more interesting mode of oscillations, is the shear layer mode, also known as, 

Rossiter mode. This mode is named after Rossiter [52] who was the first to study this mode of 

oscillations. The shear layer is characterized by a four-step feedback process shown in figure (3.9). 
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Figure 3.9. Schematic diagram of the four steps feedback process that results in the development 

of the shear layer mode. 

 

As the boundary layer separates from the cavity leading edge, and due to the velocity gradient 

between the free shear layer and the stationary fluid inside the cavity, the Kelvin-Helmholtz 

instability is amplified leading to rolling up of small vortices (step 1). The vortices travel 

downstream and hit the trailing edge of the cavity, and this impingement results in acoustic 

radiations that travels upstream (step 2). The acoustic waves further amplify the Kelvin-Helmholtz 

instability leading to rolling up of more vortices (steps 3 and 4). This receptivity closes the loop in 

what is known as the self-sustained oscillations where the frequency of the acoustics resonates 

with the shedding frequency of the vortices. 

Using the data collected from his subsonic and transonic experiments, Rossiter [52] managed to 

obtain a semi-empirical model that can predict the frequencies of the self-sustained oscillations at 

different Mach numbers as: 

 𝒇𝒏 = 
𝑼

𝑳
 

(𝒏 − 𝜶)

(𝑴 + 𝟏/𝜿)
 (3.1) 

             

Another non-dimensional representation of this Rossiter formula is: 

 𝑺𝒕𝒏 = 
𝒇𝒏 𝑳

𝑼
=

(𝒏 − 𝜶)

(𝑴 + 𝟏/𝜿)
 (3.2) 

  

Where 𝑆𝑡𝑛 is the Strouhal number of the 𝑛𝑡ℎ mode frequency 𝑓𝑛, 𝐿 is the cavity length, U is the 

freestream velocity, M is the freestream Mach number, 𝜅 is an empirical constant related to the 

convection speed of the disturbance and 𝛼 in another emperical constant representing a phase 

delay. Matching the values mentioned by Rossiter, 𝜅 and 𝛼 are used as 1.75 and 0.25 respectively. 
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Heller and Bliss [74] modified equation (3.2) by accounting for the sound speed in the cavity based 

on the fluid temperature. This modified formula is: 

 
𝑺𝒕𝒏 = 

𝒇𝒏 𝑳

𝑼
=

(𝒏 − 𝜶)

(𝑴 /√𝟏 + 
(𝜸 − 𝟏)

𝟐  𝑴𝟐)  + 𝟏/𝜿

 
(3.3) 

Where 𝛾 is the specific heat ratio. The results obtained from the CFD simulations showed very 

good agreement with the first three fundamental frequencies calculated using equation (3.3). 

According to equation (3.3), the non-dimensional Strouhal number of the first three modes for a 

Mach number of 0.8 are 𝑆𝑡1 = 0.2996, 𝑆𝑡2 = 0.6991 and 𝑆𝑡3 =1.0986. Figure (3.10) shows the 

frequency spectrum obtained numerically for a shear layer mode with a cavity width of L/D = 4, a 

leading-edge plate of X/D of 15, a Reynolds momentum thickness 𝑅𝑒𝜃0 of 3556.22 and 𝐿/𝜃0 of 

5.13. The x-axis is the non-dimensional Strouhal number, and the y-axis is the power spectrum 

density (PSD) of the y-velocity component. The frequency spectrum represents the discrete Fourier 

transformation of the y-velocity fluctuations measured at (3D, 0) from the upper right corner of 

the cavity. The semi-empirical values obtained from equation (3.3) is overlaying the numerical 

frequency spectrum.       

 

Figure 3.10. Comparison between the numerical fast Fourier transformation spectrum and the 

fundamental frequencies predicted by Rossiter [52] and Heller & Bliss [74] semi-empirical 

equations. 

As shown in figure (3.10), very good agreement can be observed between the first three 

fundamental frequencies calculated using equation (3.3), and the first three peaks in the DFT 
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obtained numerically. Another qualitative comparison is shown in figure (3.11) where the pressure 

waves obtained numerically are plotted using a gray scale and compared to the Schlieren 

photographs experimentally captured by Krishnamurty [51] in 1956 at the same boundary 

conditions. 

 

  

(a) (b) 

Figure 3.11. Comparison between (a) Schlieren photographs obtained experimentally by 

Krishnamurty [51], and (b) the results obtained from the numerical model for a Mach number 

of 0.8, and a cavity with L/D =2. 

 

Very good qualitative agreement can be observed from figure (3.11) where the experimental and 

numerical pressure waves are shown at the same locations and with the frequencies. 

The third and last mode of oscillations is the ‘wake’ mode that was first documented by Gharib & 

Roshko [54] in 1987. They observed that at certain flow conditions and/or cavity dimensions, the 

flow behavior diverts significantly from ‘shear layer’ mode and starts to shed large scale vortices 

that are comparable in size to the cavity length. They called this mode of oscillations the ‘Wake 

Mode’ because the shed vortices resemble the wakes behind bluff bodies [50]. The vortex starts 

its shedding from the leading edge of the cavity and travels downstream where an irrotational 

backflow enters the cavity from the trailing edge and travels upstream inside the cavity below the 

first top vortex. The first vortex is then displaced upwards by the action of the reversed flow vortex, 

and ejected violently from the trailing edge of the cavity. The lower reversed vortex moves up and 

substitutes the upper vortex, and the cycle continues. Four time-instances of the wake mode vortex 

shedding formation are shown in figure (3.12). 
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(a) (b) 

  

(c) (d) 

Figure 3.12. Four instantaneous contour plots of the non-dimensional vorticity magnitude 

showing the steps of the vortex shedding and ejection in the case of a wake mode flow at 

approximately (a) t = T/4, (b) t = T/2, (c) t = 3*T/4, and (d) t = T, where T is the periodic time 

of a single vortex shedding cycle. 

 

The four snapshots shown in figure (3.12) represent a full cycle of the wake mode vortex shedding 

with approximately one quarter intervals of the periodic cycle of the wake formation. It is shown 

from figure (3.12) that the scale of the vortex shedding is the same dimension as the cavity depth. 

Figures (3.12 a) and (3.12 b) show that the initial vortex formation extends along the length of the 

cavity with a smaller vortex entrapped at the leading-edge corner of the cavity. Figure (3.12 c) 

shows that the major vortex emerges abruptly out of the cavity, while the smaller vortex starts 

moving upwards substituting the larger vortex. In figure (3.12 d), the flow inside the cavity is 

energized by the flow jet separated at the leading edge of the cavity and grows to become the 

primary scale vortex, and the cycle starts over again. 

The frequency spectrum of the wake mode oscillations is quite different from the frequency 

spectrum of the shear layer mode. Even the velocity oscillations can be easily distinguished from 
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the other two modes as shown in figure (3.7). The fundamental frequency is found from the 

numerical simulations to be independent of the Mach number. The same observation was 

documented by Rowley et al. [57]. In their research, they mentioned that the Strouhal frequency 

based on the cavity depth 𝑆𝑡𝐷 is 0.064 in most cases. In a few cases where the cavity length to 

momentum thickness ratio increased, the independent Strouhal number was calculated as 0.054. 

In this research, the independent Strouhal number based on the cavity depth 𝑆𝑡𝐷 was found to be 

0.0571 regardless of the Mach number, cavity length, or cavity length to momentum thickness 

ratio. 
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 Numerical Prediction of Boundary Layer Transition 

The high fidelity achieved by the URANS equations in modeling the flow details at different 

oscillation modes has encouraged the analysis to be upgraded to a more detailed level. In this 

section, the analysis will pursue a scaling law that can predict the transition of the boundary layer 

from a laminar to turbulent state while traveling over the cavity. Over more than 75 numerical 

cases, it was observed that under some conditions, the boundary layer experiences transition from 

laminar to turbulent, while in other cases, the boundary layer maintains its laminar state while 

travelling over the cavity and bypasses it as if it were a flat plate. 

Several numerical cases were simulated covering a wide combination of cavity aspect ratios (L/D), 

leading edge momentum thickness 𝜃0, and Reynolds momentum thickness 𝑅𝑒𝜃0 as described in 

section 3.2. Different flow parameters were calculated in each case such as the boundary layer 

thickness 𝛿, boundary layer displacement thickness 𝛿∗, boundary layer momentum thickness 𝜃, 

shape factor of the boundary layer S, and Reynolds momentum thickness 𝑅𝑒𝜃. This is in addition 

to the fundamental non-dimensional frequencies 𝑆𝑡𝑛. To study the sensitivity of the boundary layer 

state to different flow parameters, the following steps were followed: 

a) Assess the state of the boundary layer, whether it is laminar or turbulent at the cavity 

leading and trailing edges. The state of the boundary layer was assessed, qualitatively and 

quantitatively. The quantitative assessment is based on the shape factor S of the boundary 

layer measured at the leading and trailing edges of the cavity. As mentioned by Schlichting 

[22], a value of 2.59 is a typical value for a laminar boundary layer, while the turbulent 

boundary layer shape factor ranges between 1.3 and 1.4. Since this study focuses on flow 

over cavities with a laminar upstream boundary layer, it was ensured that in all cases, the 

shape factor at the leading edge of the cavity ranged between 2.351 and 2.4666. While in 

the case of a boundary layer that experienced transition while traveling over the cavity, the 

shape factor ranged between 1.349 and 1.742. The contour plot of the intermittency 

function was used as a confirming qualitative assessment of the boundary layer state. 

b) A matrix was created with each case listed in a separate row, and each one of the flow 

parameters in a separate column. The last column in the matrix is the state of the boundary 

layer. A value of ‘0’ means that the boundary layer is laminar, while a value of ‘1’ means 

that the boundary layer is in a turbulent state. A sample of the created matrix is shown in 

table 3.1. 
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Table 3.1. Sample of the matrix created to predict the factors that triggers the transition of the 

boundary layer over cavities. 

 

c) Different non-dimensional quantities were generated from the matrix shown in table 3.1. 

These quantities combine the flow parameters with the cavity dimensions such as as 

𝜃
𝐿

𝐷
∗
𝐿

𝜃
∗𝑅𝑒𝜃∗𝑀

, 
𝜃

𝐿

𝐷

2
∗
𝐿

𝜃
∗𝑅𝑒𝜃∗√𝑀

, 
𝜃

𝐿

𝜃
∗𝑅𝑒𝜃∗𝑀

, and 
𝐿

𝜃
∗ √𝑅𝑒𝜃. 

d) The non-dimensional quantities obtained from step (c) were plotted on a graph with these 

parameters on the X-axis, and the Y-axis is the state of the boundary layer (‘0’ or ‘1’) at 

the trailing edge of the cavity. Among all the tested non-dimensional quantities, only one 

value showed a clear and sharp transition from ‘0’ to’1’ at a value of approximately 600. 

This non-dimensional parameter is 
𝐿

𝜃
∗ √𝑅𝑒𝜃. 

Figure (3.13) shows the strong correlation between the state of the boundary layer, and the non-

dimensional number 
𝐿

𝜃
∗ √𝑅𝑒𝜃. In this figure, the state of the boundary layer is plotted on the Y-

axis, and the non-dimensional number 
𝐿

𝜃
∗ √𝑅𝑒𝜃 is plotted on the X-axis. The figure shows that for 

all cases with 
𝐿

𝜃
∗ √𝑅𝑒𝜃 less than 600, the state value of the boundary layer at the trailing edge of 

the cavity is ‘0’ which means a laminar state. While for all cases with 
𝐿

𝜃
∗ √𝑅𝑒𝜃 larger than 600, 

the state of the boundary layer is turbulent and represented with values of ‘1’s in figure (3.13). 

This means that the non-dimensional number 
𝐿

𝜃
∗ √𝑅𝑒𝜃 can be used to predict the boundary layer 

transition when travelling over a cavity with certain dimensions and flow properties. 

D 

[mm] 

L/D X/D M 

Mach 

Number 

Location θ [m] 

BL Momentum 

thickness 

𝜹 [m] 

BL  

thickness 

𝛅∗ [m] 

BL 

displacement 

thickness 

S 

BL  

Shape factor 

L/ θ 𝑹𝒆𝜽 

Reynolds 

number based 

on BL 

momentum 

thickness 

State 

State of the 

boundary layer 

0 = Laminar 

1 = Turbulent 

1 0.5 5 0.2 

Leading edge 2.105e-5 1.561e-4 5.089e-5 2.417 23.747 96.111 0 

Trailing edge 2.324e-5 1.659e-4 4.981e-5 2.142 21.506 106.125 0 

1 0.5 5 0.4 

Leading edge 1.531e-5 1.171e-4 3.637e-5 2.374 32.642 139.841 0 

Trailing edge 1.748e-5 1.317e-4 3.767e-5 2.142 28.601 159.604 0 

1 0.5 5 0.6 

Leading edge 1.285e-5 1.025e-4 3.035e-5 2.361 38.898 176.026 0 

Trailing edge 1.521e-5 1.171e-4 3.021e-5 1.985 32.856 208.402 0 

1 0.5 5 0.8 

Leading edge 1.145e-5 8.791e-5 2.694e-5 2.351 43.634 209.231 0 

Trailing edge 1.405e-5 1.025e-4 2.671e-5 1.900 35.572 256.651 1 
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Figure 3.13. The state of the boundary layer (Laminar or Turbulent) over cavities plotted versus 

the non-dimensional quantity 
𝐿

𝜃
∗ √𝑅𝑒𝜃. 

To confirm this important observation, a 3D numerical case has been created of a NACA 2412 

wing. The wing has a unity chord length, a unity taper ratio and no sweep angle. A trench is 

installed on the upper surface of the wing at X/C = 0.25 and extends along the whole span of the 

wing which is 5C. The depth of the trench is kept constant at 0.001C and its length varied along 

the span of the wing, starting from 0.001C at one end of the wing, and ends with a length of 0.005C 

at the other end of the wing. The Mach number of the mainstream flow is set to 0.2, at atmospheric 

pressure and a temperature of 300 K. The trench is small compared to wing scale and it has no 

sweep, no twist, no taper, therefore very little cross stream flow is expected. 

The idea behind this test is to create a single case with variable 
𝐿

𝜃
∗ √𝑅𝑒𝜃 values, instead of testing 

several discrete cases, each with a different 
𝐿

𝜃
∗ √𝑅𝑒𝜃 value. As the trench length L varied from 

one side of the wing to the other, the whole non-dimensional number 
𝐿

𝜃
∗ √𝑅𝑒𝜃  changed 

accordingly. By monitoring the state of the boundary layer, the sensitivity of the boundary layer 

to this non-dimensional number can be assessed. The state of the boundary layer was assessed by 
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plotting the intermittency function at a surface that is at a very close proximity to the wing’s 

surface. Figure (3.14) shows the results of this analysis. 

 

 

Figure 3.14. A 3D case of a wing with a trench having a variable length along the span. The 

transition of the boundary layer was shifted to the trench location at an 
𝐿

𝜃
∗ √𝑅𝑒𝜃 value of 596.86. 

Figure (3.14) shows that the transition of the boundary layer occurs naturally at approximately 

mid-chord length. At approximately a span position of Z/C = 2.9, the transition of the boundary 

layer was shifted abruptly to the location of the trench which is at 0.25C. A plane was cut at that 

location, and the non-dimensional number 
𝐿

𝜃
∗ √𝑅𝑒𝜃 was calculated to confirm the observation 

shown in figure (3.13) with a value of 596.86. A plane was cut at Z/C = 3, and 
𝐿

𝜃
∗ √𝑅𝑒𝜃 was found 

equals to 582.81, and at that location the boundary layer stayed laminar over the trench. A third 

plane was cut at Z/C = 2.8 to find a value of  
𝐿

𝜃
∗ √𝑅𝑒𝜃 of 611.13, and at that location, the boundary 

layer is totally turbulent over the cavity. These results confirm the strong correlation and 

dependency of the state of the boundary layer on the non-dimensional number 
𝐿

𝜃
∗ √𝑅𝑒𝜃, and that 

Z/C 
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the threshold value of this number is 600. For a flow over cavity with 
𝐿

𝜃
∗ √𝑅𝑒𝜃 less than 600, the 

boundary layer will maintain its laminar state as it travels over the cavity. While in cases where 
𝐿

𝜃
∗ √𝑅𝑒𝜃  is higher than 600, the boundary layer will experience a transition from laminar to 

turbulent as it travels over the cavity.   
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 Practical Applications for Morphing Skins 

The knowledge of the factors that affect the transition of the boundary layer as the flow travels 

over a rectangular discontinuity can have a significant effect on the design process of many aircraft 

parts and aerodynamic structures. For example, the gaps between the leading-edge slats and the 

wing can be optimized in a way that ensures an extended portion of laminar flow over the wing. 

Having an extended portion of the laminar boundary layer can significantly reduce the viscous 

drag and substantially improve the aerodynamics of the airframe. The concept is applicable on 

gaps found on the nacelles and on the outer skin of aircraft. As reported by Mack and McMasters 

[75], a 1% deduction in the drag of an aircraft can save millions of dollars per year for a typical 

fleet aircraft. 

The recent concept of morphing wings and morphing skins can also benefit a lot from these 

observations. A very successful candidate of morphing skin designs is the skin of sliding panels. 

As it will be shown in chapter 4 and documented by Mishriky et al. [76 – 78], having a backward-

facing step on wing will significantly jeopardize its aerodynamic performance, not to mention the 

need of several steps to allow morphing. For that reason, the mechanical design team of morphing 

skins at the aerospace department at Ryerson University is trying to avoid having backward-facing 

steps, and instead have gaps between the panels as shown in figure (3.15). While morphing, the 

panels slide against each other while maintaining a certain gap distance between them. Optimizing 

the gap length based on the non-dimensional number 
𝐿

𝜃
∗ √𝑅𝑒𝜃  can result in an aerodynamic 

performance that is similar to a clean airfoil. An example of this design is shown in figure (3.15). 

 

 

Figure 3.15. A 3D section of a morphing wing covered with sliding morphing panels. A 

greyscale image of figure (1.6 b). 
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Ramrakhyani et al. [79] tested a similar design with six-segment panels using high frequency shape 

memory alloys (SMA). The testing was conducted in air and water tunnels to show that this design 

accommodated all high frequency morphing motions. Instead of randomly, or equally divided the 

wing into segments, Xijuan et al. [80] and Yu et al. [16 – 18] developed a more systematic way of 

calculating the minimum number of panels needed and the size of each panel based on the airfoil 

curvature while maintaining a smooth profile. Yu et al. proved mathematically that a wide range 

of dihedral and twist motions can be accommodated with this sliding panel design. 

However, introducing a randomly designed cavity into a wing’s surface can degrade the 

aerodynamic performance significantly, and all the potential benefits of the morphing wing 

concept can be lost. To emphasize this idea, a numerical test case was conducted on a unity chord 

length NACA 2412 airfoil with a rectangular gap installed on the upper surface of a wing at 25% 

of the chord length to be approximately mid-way the laminar region of the boundary layer. Ten 

cases were tested, each with a different length of the gap which varied from L/C of 0.001 to 0.0075 

while the depth remained constant at D/C of 0.01. Figure (3.16) shows the schematic diagram of 

the airfoil with a zoom on the gaps. 

 

 

Figure 3.16. A trench introduced on the upper surface of a NACA 2412 airfoil at X/C = 0.25 

with different widths ranging from 0.001 to 0.0075 of the chord length. 

 

The flow is set to atmospheric pressure with a temperature 300 K and a Reynolds number of 5.7e6 

and an angle of attack of 2.5°. The same boundary conditions were used to resolve the flow over 

a clean airfoil. In each of the eleven cases, the drag coefficient cd, the lift coefficient cl, and the 

lift-to-drag ratio L/D has been calculated. Figure (3.17) shows the results of this analysis. 
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The results in figure (3.17) show that while the gap length is small, the drag coefficient cd, the lift 

coefficient cl, and the lift-to-drag ratio L/D are very close to the values of the clean airfoil. This is 

because at small cavity lengths, the boundary layer bypasses the cavity and is treated as a solid 

surface similar to a clean airfoil. When the gap length increases beyond a certain threshold value, 

the turbulent energy inside the cavity increases and propagates to the boundary layer. This triggers 

the transition of the boundary layer from laminar to turbulent and degrades the aerodynamic 

performance of the wings. Figure (3.17) shows that compared to the clean airfoil, the lifting force 

decreased by 2.64%, the drag force increased by 17.26%, and the lift-to-drag ratio dropped by 

16.84%. 

 

Figure 3.17. Lift coefficient cl, drag coefficient cd and lift-to-drag ratio cl/cd of a NACA 2412 

airfoil with trenches located at X/C = 0.25 with different widths. 

This degradation in the aerodynamic performance can be mitigated by considering the non-

dimensional number 𝐿/𝜃 ∗ √𝑅𝑒𝜃 in the designing process. If the flight conditions are known, the 

boundary layer momentum thickness and the Reynolds number based on the boundary layer 

momentum thickness can be calculated or estimated numerically at the location of where the gap 

will be inserted. Knowing this information and keeping in mind that the non-dimensional number 
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𝐿/𝜃 ∗ √𝑅𝑒𝜃  must be lower than 600 to maintain the laminar state of the boundary layer, the 

maximum allowable length of the cavity can be estimated. 

 

Table 3.2. Locations of trenches installed over the NACA 2412 airfoil, the momentum thickness 

at these locations, the Reynolds momentum thickness, shape factor, and the maximum allowable 

length of the trench calculated based on the relation 𝐿/𝜃 ∗ √𝑅𝑒𝜃 ≤ 600. 

 

 

 

 

 

Based on this designing criterion, a numerical test case was conducted where five cavities were 

installed on the upper surface of a NACA 2412, and three cavities were installed on the lower 

surface of the airfoil. A clean airfoil numerical case was used to calculate 𝜃 and 𝑅𝑒𝜃 at the leading 

edge of each cavity location. Based on the condition of laminar state 
𝐿

𝜃
∗ √𝑅𝑒𝜃 < 600 , the 

maximum allowable length of the cavity is calculated. Table (3.2) shows the locations of the cavity 

along the chord-wise direction X/C, the momentum thickness θ/C, Reynolds momentum thickness 

𝑅𝑒𝜃, shape factor S, and the maximum allowable gap length that will not trigger the transition of 

the boundary layer calculated based on the condition  
𝐿

𝜃
∗ √𝑅𝑒𝜃 < 600. 

A numerical test case was created for a NACA 2412 with five gaps on the upper surface and 3 

gaps on the lower surface. The dimension of each gap was calculated from the values shown in the 

last column of table (3.2) after applying a factor of safety of 1.35. The flow Reynolds number is 

set to 5.7e6, a Mach number of 0.2 and a zero angle of attack. Under these conditions, the eight 

gaps were located in sections of the airfoil where the boundary layer is still laminar as it can be 

Location of 

the gap 

X/C 

θ/C 𝑹𝒆𝜽 𝑺 =
𝜹∗

θ 
 

Allowable 

L/C *10-3 

Upper Surface 

0.1 6.8405e-5 4.0205e+2 2.3549 2.0469 

0.2 1.0350e-4 6.0834e+2 2.4733 2.5178 

0.3 1.3375e-4 7.8611e+2 2.5496 2.8622 

0.4 1.6558e-4 9.7319e+2 2.7416 3.1846 

0.5 1.9825e-4 1.1652e+3 2.8235 3.4846 

Lower Surface 

0.1 8.0173e-5 4.7121e+2 2.5630 2.2160 

0.2 1.2455e-4 7.3209e+2 2.6621 2.7621 

0.3 1.6186e-4 9.5134e+2 2.8017 3.1486 
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observed from the values of the shape factor S tabulated in table (3.2). Figure (3.18) shows the 

intermittency contour plot of the flow around the airfoil, with a close-up on the cavities. The 

intermittency is usually a measure of the irregular alternation of phases. In the SST-transitional 

turbulence model, the value of intermittency can distinguish between laminar regimes and 

turbulent ones. When the intermittency value is 0, the SST turbulence model is suppressed and the 

flow is treated as a laminar flow, while at a maximum value of 1 the SST model is active and the 

flow is fully turbulent. 

 

 

Figure 3.18. Contour plot of the intermittency function over the trenched airfoil. The zoom-in 

over the cavities show that the boundary layer maintained its laminar state. 

It can be observed from figure (3.18) that the boundary layer bypassed the eight cavities, and that 

the discontinuity did not trigger the transition of the boundary layer. The aerodynamic performance 

of the airfoil even showed very good agreement with the performance of the clean airfoil. The lift 

coefficient of the clean airfoil was calculated as 0.249, and for the trenched airfoil it was found to 

be 0.25. The drag coefficient of the clean airfoil was found to be 0.0048, which is slightly lower 

than that of the trenched airfoil which was found to be 0.005. The lift-to-drag ratio is 51 for the 

clean airfoil, and 49 for the trenched airfoil.  The drag coefficient of the trenched airfoil is slightly 

higher than that of the clean airfoil due to a small upstream shift in the location of the boundary 

layer transition. The natural transition point of the boundary layer on the upper surface of a clean 

airfoil is found to be at 0.52C, while in case of the trenched airfoil, it has been shifted to 0.51C. 
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Similarly on the lower surface, the boundary layer transition has been shifted from 0.45C to 0.42C 

for the clean airfoil, and the trenched airfoil, respectively. 

To emphasize the importance of designing the cavities based on the condition 
𝐿

𝜃
∗ √𝑅𝑒𝜃 < 600, 

another test case was conducted with the same eight gaps on a NACA 2412 airfoil, and the gaps 

are located at the same locations shown in table (3.2), but this time, the gaps’ lengths are fixed at 

0.005C. The same boundary conditions used in the test case shown in figure (3.18) are used in this 

test case. Figure (3.19) shows the intermittency function contour plot over this ill-designed 

trenched airfoil. It can be observed that the boundary layer experienced transition at the first cavity 

it encountered on either side of the airfoil. 

 

Figure 3.19. Contour plot of the intermittency function over the ill-designed trenched airfoil. 

The close-up on the cavities show that the boundary layer experienced transition from the first 

cavity. 

The lift coefficient of this ill-designed trenched airfoil was found to be 0.229, while in case of a 

well-designed trenched airfoil that used the formula 
𝐿

𝜃
∗ √𝑅𝑒𝜃 < 600, the lift coefficient was 0.25. 

This represents an 8.4% drop in the lifting capabilities of the airfoil. The drag coefficient increased 

by 69.2% compared to the well designed trenched airfoil, with the values increasing from 0.005 to 

0.00846. This is equivalent to a 44.7% drop in the lift-to-drag ratio. This second case emphasizes 
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the importance of keeping the non-dimensional number 𝐿/𝜃 ∗ √𝑅𝑒𝜃 blow 600 when introducing 

cavities or trenches on surfaces with laminar upstream boundary layers. 

 

Unfortunately, it is not always the case that the panels are separated by gaps or cavities. Figure 

(1.5) showed that in some morphed configurations, the panels have a combination of gaps and 

backward-facing steps.  For that reason, chapter 4 is dedicated to studying the aerodynamics of 

airfoils when a backward-facing step is installed on either sides.
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4. AERODYNAMICS OF 

OVERLAPPING SLIDING SKIN 

WITH BACKWARD-FACING 

STEPS 
 

 Introduction: 

 

Overlapping sliding skin is one of the potential morphing designs that fulfills the mechanical 

requirements of morphing skins. From the aerodynamic perspective, the overlap between two 

panels is regarded as a backward-facing step employed along the chord length of the airfoil. This 

discontinuity results in a separation of the flow at the step edge and induces a low-pressure 

recirculation zone at the step vicinity which alters the aerodynamics of the whole airfoil. Figure 

(4.1) shows the streamlines of the flow and the recirculation zone aft the backward-facing step. 

 

Figure 4.1. Streamlines and pressure coefficient distribution over an overlapping morphing 

skin (Re = 5.7e6, M = 0.2, and α = 2.5°). 
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The backward-facing step was first introduced to the aviation community in the 1960s when 

Richarde Kline and his colleague Floyd Fogleman designed a paper airplane that can fly longer 

distances despite wind and turbulence. The paper airplane was designed with wings that are flat 

on the upper surface and partially hollowed at the bottom surface. In 1972, the two men filled a 

U.S. patent [80] for their wedged-like airfoil whose lower surface is hollowed. Two years later, 

the National Aeronautics and Space Administration (NASA) sponsored and conducted an 

experimental study [81] to examine the Kline–Fogleman patented designs. The results of these 

experimental tests showed that the new airfoil offered no advantages over conventional airfoils, 

and that the lift-to-drag ratio of the newly patented airfoil is lower than that of a flat plate.  Despite 

these claims, the Kline–Fogleman airfoils were the source of inspiration for Fertis and Smith [82] 

who designed an airfoil with a backward-facing step, unlike the original design of Kline and 

Fogleman, Fertis and Smith introduced the backward-facing step on the suction side of the wing. 

They filled a U.S. patent for their design titled ‘Airfoil’. 

Fertis published the experimental results of their design six years later [82]. The wind tunnel tests 

involved a NACA 23012 airfoil with a backward-facing step on its upper surface over a range of 

Reynolds numbers from 1 × 105 to 5.5 × 105 and different angles of attack. Results showed 

improved stall characteristics at all tested airspeeds, increased lift coefficients and increased lift-

to-drag ratios over a wide range of angles of attack. The enhanced performance observed by Fertis 

[82] was not in perfect agreement with the results obtained by the numerical and experimental 

testing done by Finaish and Witherspoon [83]. In this study [83], they followed a more systematic 

way of examining 15 different configurations of a symmetric NACA 0012 airfoil. Backward-

facing steps were located on either side of the airfoil, and the Reynolds number used in this study 

was 5 × 105. Results showed that installing a backward-facing step on the upper surface of the 

NACA 0012 has decreased the lift-to-drag ratio due to the noticeable increase in the drag, which 

was directly proportional to the step depth. 

In this chapter, a backward-facing step on either side of an airfoil will be numerically studied to 

investigate the effect of the step location, depth and angle on the airfoil’s aerodynamic properties. 

The chord length of the airfoil used in this study was set to unity, its surface is an adiabatic no-slip 

wall. The fluid surrounding the airfoil is modeled as an ideal compressible gas with reference 

temperature of 300 K. The meshing topology used for this analysis is a C-mesh topology that is 

generated around the airfoil with an extended far-field boundary that is 32 chords away from the 

airfoil. The far-field boundary conditions are set to pressure far-field with 0.2 Mach number and a 

Reynolds number of 5.7 × 106. The angle of attack of the flow was set to 2.5°, unless otherwise 

stated.  
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Figure 4.2. A schematic diagram of a clean NACA 2412 (National Advisory Committee for 

Aeronautics) overlaying the stepped NACA 2412 airfoil. 

 

The baseline design of the stepped airfoil is a NACA 2412 airfoil with a vertically oriented step 

installed on either side of the airfoil. After the step, the airfoil curvature follows the original NACA 

2412 profile, but scaled along the Y-direction to create the required descent that matches the step 

depth. Figure (4.2) shows a schematic diagram of a clean NACA 2412 overlaying an airfoil with 

a backward-facing step installed on the upper surface of the airfoil and located at a distance 𝑋𝑈  

from the leading edge. This rest of this chapter is divided into two sections, one for the 

aerodynamic analysis of a step on the upper surface and the other for a step installed on the lower 

surface of the airfoil. It should be noted here that these installed steps are much larger in size 

compared to the  discontinuities observed on the wings of conventional aircraft.
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 Aerodynamics of Backward-Facing Steps on the Upper Surface 

of an Airfoil: 

The first step in any CFD analysis is the challenging task of choosing the optimal density of the 

mesh to discretize the computational domain. The mesh has to be fine enough to resolve all 

essential flow features, and at the same time, be computationally affordable in terms of the 

computational power. To reach this demanding balance, the Richardson’s extrapolation method 

explained in chapter 2 is used on a family of three consecutively refined meshes as shown in figure 

(4.3). 

 

Figure 4.3. Three consecutively refined meshes used to estimate the spatial convergence. 

The number of quadrilateral cells in each mesh is approximately 12,000 for the coarse mesh, 

48,000 for the medium mesh and 192,000 elements for the fine mesh. The aerodynamic property 

ℱ is chosen to be the lift coefficient 𝑐𝑙. The convergence of the solution is judged by the complete 

stability of the lift, drag and moment coefficients. Equations (2.1–2.3) were used to assess the 
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spatial convergence of the grids used. The order of accuracy of the solution was calculated using 

equation (2.2) and is shown as the slope of the red line in figure (4.4 a). 

The computed order of accuracy 𝑝 was found to be 2.03 which is in very good agreement with the 

second order discretization schemes used. Figure (4.4 a) shows that the line joining  𝜀𝑐,  𝜀𝑚 and 

 𝜀𝑓 is perfectly parallel to the second order slope line. Figure (4.4 b) shows that the value of the lift 

coefficient obtained from the fine mesh is 0.244% away from the asymptotic value  ℱℎ=0. 

  

(a) (b) 

Figure 4.4. Assessing the mesh spatial convergence using (a) the Richardson’s extrapolation 

method, and (b) the logarithmic slope of the converged errors. 

This means that the results obtained from the fine mesh is very close to the asymptotic continuum 

value  ℱℎ=0, and can be used to capture the important flow features. Therefore, the fine mesh will 

be used in this study to examine the aerodynamic performance of the stepped NACA 2412 airfoil. 
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4.2.1 Effect of the step location 𝑿𝑼/𝑪: 

 

The step location on the upper surface of the airfoil is changed from 25% to 75% along the unity 

chord length airfoil, with increments of 5% from one configuration to the other. This makes a total 

of 11 configurations that are used to investigate the effect of the step location. Figure (4.5) shows 

the two extreme positions of the step at 𝑋𝑈 = 0.25 𝐶 and  0.75 𝐶, respectively. 

 

Figure 4.5. The two extreme locations of the step on the upper surface of the NACA 2412. 

 

4.2.1.1 Effect of the Step Location on the Lift Coefficient 𝒄𝒍 

The variation of the lift coefficient 𝑐𝑙 with the step locations was calculated and plotted as shown 

in figure (4.6). Two main observations are found in the trend of the curve shown, the first is the 

direct proportionality relationship between the step location  𝑋𝑈 and its corresponding lifting force, 

and the second observation is the sudden change in the slope of the points located before  𝑋𝑈 𝐶⁄ =

0.4 and the points after  𝑋𝑈 𝐶⁄ = 0.5.  

Range 𝑿𝑼



 

76 

 

Figure 4.6. The variation of the lift coefficient at different step locations (Re = 5.7e6, M = 0.2, 

and α = 2.5°). The dashed red lines emphasize the change in the slope of the obtained values. 

The fundamentals of airfoil aerodynamics dictate that the lifting force is mainly influenced by the 

pressure distribution around the airfoil. Therefore, to investigate the direct relation between the 

step location and the lift coefficient 𝑐𝑙 , the distribution of the pressure coefficient 𝐶𝑝 over the 

stepped airfoil is plotted in figure (4.7) for cases with different step locations, as well as the 

pressure distribution over a clean NACA 2412 airfoil. 
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Figure 4.7. The pressure distribution over the upper surface of stepped airfoils with different 

step locations as well as the pressure distribution over the clean NACA 2412 airfoil (Re = 5.7e6, 

M = 0.2, and α = 2.5°). 

With the spatial acceleration of the flow over the airfoil’s leading-edge curvature, the pressure 

field experienced a drop in its value, and gradually starts to recover, when suddenly the flow 

separates from the airfoil surface at the backward-facing step leading edge. The separated flow 

creates a low-pressure recirculation zone at the step vicinity, hence the drop in the pressure 

distribution on the upper surface of the airfoil. However, the sudden reduction in the airfoil 

thickness after the step, relatively decreases the flow velocity which results in a subsequent high-

pressure region that extends to the trailing edge of the airfoil. Figure (4.8) shows the separation of 

the flow and its subsequent reattachment at the end of the recirculation zone. It should be noted 
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here that the numerical solution managed to capture three different length scales of vortices trapped 

at the corner of the step. Theoretically, a large number of closed eddies with decreasing sizes and 

strengths is expected. 

 

Figure 4.8. Streamlines showing the separation of the flow at the step edge and the creation of 

low pressure recirculation zones over the step’s vicinity. The step is located at the mid-chord 

length on the suction side of a NACA 2412 (Re = 5.7e6, M = 0.2, and α = 2.5°). 

The change in the airfoil thickness, and consequently the increase of the pressure distribution over 

the suction side of the airfoil significantly affects the lifting capabilities of the airfoil and drops it 

below the value obtained from the clean NACA 2412 airfoil. At the same boundary conditions, a 

clean NACA 2412 obtains a lift coefficient value of 0.5172 which exceeds all the values obtained 

from the stepped airfoil configurations as shown in figure (4.6). As the step location shifts towards 

the trailing edge, the region of high pressure diminishes, and the lift coefficient increases. This 

justifies the direct proportionality relationship between the step location and the value of lift 

coefficient 𝑐𝑙. 

The second observation shown in figure (4.6) is the change of the slope of the lift coefficient curve 

for the points located before 𝑋𝑈 𝐶⁄ = 0.4 and the points after  𝑋𝑈 𝐶⁄ = 0.5. This change in the 

slope is mainly driven by the relative position of the step with respect to the point at which the 

laminar boundary layer experiences a transition from laminar to turbulent. At the chosen boundary 

conditions, the natural transition of the boundary layer from laminar to turbulent is approximately 

at  𝑋 𝐶⁄ = 0.425. For cases with a step located before this natural transition point, the presence of 
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the step triggers the transition before the point of natural transition, prolonging the instability of 

the boundary layer.  

 

4.2.1.2 Effect of the Step Location on the Drag Coefficient 𝒄𝒅 

In each of the eleven configurations, the drag coefficient was calculated, and the relation between 

drag coefficient and the location of the step is shown in figure (4.9). 

 

Figure 4.9. The variation of the drag coefficient at different step locations (Re = 5.7e6, M = 0.2, 

and α = 2.5°). 

Similar to the observations in figure (4.6), figure (4.9) reflects two main characteristics in the 

relationship between the drag coefficient 𝑐𝑑 and the step location. The first observation is that the 

drag coefficient has an inverse relationship with the step location. As the step location shifts from 

the leading edge of the airfoil towards the trailing edge, the drag coefficient value decreases. The 

second observation is again related to the sudden change in the slope of the lines before and after 
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the location of transition of the viscous boundary layer, which is approximately at 𝑋 𝐶⁄ = 0.425. 

For streamlined bodies, viscous drag dominates the pressure drag, as it is the case of airfoils with 

small angles of attack. This makes the graphs of the wall shear stresses 𝜏𝑤 or the skin friction 

coefficient, a good tool to compare the drag forces on different airfoils designs. Equation (4.1) 

shows that as the area under the curves of the skin friction coefficient increases, the viscous forces 

and consequently the total drag forces increase. Therefore, to justify the relation between the drag 

coefficient and the step location, the skin friction coefficient of all cases is plotted in figure (4.10). 

Figure (4.10) presents the skin friction coefficient distribution in two separate subfigures, because 

of the different nature of the skin friction coefficient values for cases with a step located before the 

transition point (  𝑋 𝐶⁄ = 0.425) and after this point. Figure (4.10 a) shows the skin friction 

coefficient distribution in cases when the step is located before the natural transition point. The 

figure shows that the skin friction coefficient drops smoothly at the laminar section of the viscous 

boundary layer, but as the flow reaches the edge of the step, the laminar nature of the boundary 

layer is interrupted and transition from laminar to turbulent takes place. 

  

(a) (b) 

Figure 4.10. Skin friction coefficient values for airfoils with a step (a) before the viscous 

boundary layer transition point and (b) after the transition point (Re = 5.7e6, M = 0.2, and α = 

2.5°). 

 

Right after the step, the skin friction coefficient value drops close to zero due to the presence of 

low energy eddies trapped at the corner of the step. This is followed by a concaved down curve 
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confining the recirculation zone. After the reattachment of the boundary layer at the end of the 

recirculation zone, the skin friction coefficient follows the natural pattern of a turbulent boundary 

layer. The curves in figure (4.10 b) show that the presence of the step after the natural transition 

point has an important influence on the behavior of the skin friction coefficient. It prolonged the 

transition region and minimized the turbulent one before dropping towards zero at the tip of the 

airfoil. 

As the step is shifted towards the trailing edge, the area under the curves in figure (4.10 b) 

increases, so the drag coefficient should have increased, but this contradicts the values shown in 

figure (4.9) where the drag coefficient values followed a negative slope when plotted versus the 

step location. This means that the pressure drag is the dominant component in the drag coefficient 

value in cases of airfoils with a backward-facing step, and only a decomposition of the drag 

coefficient can resolve this conflict. 

The drag coefficient is decomposed into its main components, namely, the pressure drag and the skin 

friction drag coefficients as: 

𝒄𝒅 = 𝒄𝒑 + 𝒄𝒇 =  
𝟏

𝝆 𝒗𝟐𝑨
 ∫(𝑷 − 𝑷𝟎)(𝒏̂ . 𝒊̂ ) 𝒅𝑨

𝑺

 +
𝟏

𝝆 𝒗𝟐𝑨
 ∫𝝉𝒘(𝒕̂ . 𝒊̂ ) 𝒅𝑨

𝑺

 (4.1) 

 

where 𝐶𝑝  is the pressure drag coefficient, 𝑐𝑓  is the friction drag coefficient or viscous drag 

coefficient, 𝜌  is the fluid density, 𝑣  is the reference velocity, 𝐴 is the reference area, 𝑝 is the 

pressure at the surface 𝑑𝐴, 𝑝0 is the reference pressure, 𝑛̂ is a unit vector normal to the surface 𝑑𝐴, 

𝜏𝑤 is the wall shear stresses at the surface 𝑑𝐴, and 𝑡̂ is a unit vector tangent to the surface 𝑑𝐴.  

Figure (4.11) shows the decomposed values of the drag coefficient in case of a clean NACA 2412 

airfoil and in cases when the step is employed at different locations on the upper surface of the 

airfoil. 

In all cases, the value of the viscous drag coefficient has minor changes from one case to the other, 

and the variation in the pressure drag component constitutes the major change in the total drag 

force. Unlike streamlined airfoils, the low-pressure recirculation zone acting on the vertical step 

creates an adverse force on the airfoil that significantly increases the pressure drag. For that reason, 

it is insufficient to use the skin friction coefficient values as the sole assessment of the variation of 

the drag coefficient. The pressure distribution over the airfoil will provide a better assessment to 

compare the values of the drag coefficient at different step locations. 
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Figure 4.11. Decomposition of the drag coefficient to pressure drag and viscous drag 

coefficients. 

Figure (4.7) showed that a low-pressure zone always exists after each step due to the vortex 

formation. The range of this minimum pressure varies with the variation of the step location. As 

the step location increases (moves towards the trailing edge), the pressure after the step relatively 

increases, so the adverse force acting on the step wall gradually decreases. This explains the 

inverse relationship between the drag coefficient values and the step location shown in figure (4.9). 

The change in the slope in figure (4.9) is again attributed to the transition of the viscous boundary 

layer, where for the cases with the step located before  𝑋 𝐶⁄ = 0.425, the presence of the step 

triggers the transition before the point where it naturally occurs. 

4.2.1.3 Effect of the Step Location on the Critical Angle of Attack 𝜶𝒄  

This part of subsection 4.2.1 tests the effect of the backward-facing step on the critical angle of 

attack 𝛼𝑐𝑟 and the near stall behavior of the stepped airfoil. Four different configurations of the 

NACA 2412 were tested. The first configuration is the clean NACA 2412, without any steps. The 

second, third and fourth cases incorporated a backward-facing step on the upper surface of the 

airfoil at  𝑋𝑈 𝐶⁄ = 0.25, 0.5 and 0.75, respectively. The four configurations were tested over a 

wide range of angles of attack 𝛼 at which the separated flow on the airfoil hinders its ability to 

create lift. 

 

 



 

83 

  

(a) (b) 

Figure 4.12. (a) Lift and (b) drag coefficients versus angle of attack  𝛼 (Re = 5.7e6 and M = 0.2). 

 

Figures (4.12 a) and (4.12 b) show the values of the lift coefficient 𝑐𝑙 and drag coefficient 𝑐𝑑 at 

different angles of attack 𝛼. The lift coefficient values shown in figure (4.12 a) start with a linear 

relationship that extends up to an angle of attack of 10°. As the separated flow starts to become 

dominant around the airfoils, the relation between the lift coefficient and angle of attack becomes 

non-linear and quickly reaches the critical angle of attack 𝛼𝑐𝑟. It is shown in figure (4.12 a) that 

the three cases of the stepped airfoil experienced an early onset of stall when compared to the case 

of the clean airfoil whose 𝛼𝑐𝑟 is approximately at  18°. While in cases of a backward-facing step 

at  𝑋𝑈 𝐶⁄ = 0.25, 0.5  and  0.75 , the critical angle of attack was nearly at 13°, 17°  and  17° 

respectively. This suggests that installing a backward-facing step on the upper surface of an airfoil 

speeds up the onset of stall and lowers the critical angle of attack. The drag coefficient values 

shown in figure (4.12 b) reflect that stepped airfoils will experience higher dragging forces when 

compared to the clean airfoil. As the step location is shifted towards the leading edge of the airfoil, 

higher values of the drag coefficient are experienced, and they grow faster with larger angles of 

attack. These results show that installing a backward-facing step on the upper surface of the NACA 

2412 degrades the overall stall behavior of the airfoil. 
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4.2.2 Effect of the step depth 𝑫𝑼/𝑪 

 

This subsection will investigate the effect of the step depth on the aerodynamic coefficients of the 

stepped airfoil. In all the coming numerical cases of this subsection, the step location is fixed at 

the mid-chord length (𝑋/𝐶 =  0.5) , and the only variable will be the step depth. The first 

configuration of the stepped airfoil starts with a step depth of 𝐷𝑈/𝐶 = 0.0075 and increase to 

𝐷𝑈/𝐶 = 0.025 with an increment of 0.0025 𝐶 from one configuration to the other. Figure (4.13) 

shows the two extreme configurations of the step depths 𝐷𝑈/𝐶 = 0.0075 and 𝐷𝑈/𝐶 = 0.025, 

where 𝐷𝑈 is the step depth and 𝐶 is the chord length. 

 

Figure 4.13. The two extreme depths of the step. 

As the depth increases from 𝐷𝑈/𝐶 = 0.0075 to 𝐷𝑈/𝐶 = 0.025 going through the eight different 

configurations, the lift coefficient decreased by about 20%, and the highest value of lift coefficient 

obtained from the stepped airfoils (0.4812) is lower than the value obtained by the unchanged 

(clean) NACA 2412 which is equal to 0.5172. Figure (4.14) shows the inverse relation between 

the lift coefficient 𝑐𝑙  and the step depth 𝐷𝑈/𝐶. 
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Figure 4.14. Effect of the step depth on the lift coefficient of the stepped NACA 2412 airfoil (Re 

= 5.7e6, M = 0.2, and α = 2.5°). 

The steep slope of the curve shown in figure (4.14) reflects the strong inverse correlation between 

the step depth and the lifting forces of the stepped airfoil. To study the relationship between the 

lifting forces and the step depth, the pressure distribution over the eight configurations of step 

depths is shown in figure (4.15).  

The step caused the airfoil thickness to locally decrease, which results in flow spatial deceleration. 

The conservation of momentum dictates that with the entropy preserved, the pressure will increase 

after the step location. As the step depth increased, the pressure increased on the suction side 

leading to an overall drop in the lift coefficient values.  
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Figure 4.15. Pressure distribution over NACA 2412 airfoils with different step depths (Re = 

5.7e6, M = 0.2, and α = 2.5°). 

It was observed that the step does not only affect the pressure distribution after it, but also has a 

small effect on the pressure distribution before it. It is observed from figure (4.15) that as the step 

depth increases, the pressure before the step slightly increased too. From this analysis, it could be 

concluded that an increase in the step depth will cause the lifting forces to decrease. 

Similar to the previous analysis, the drag coefficient in each of the eight cases is calculated to 

establish a relationship between the step depth and the drag acting on the airfoil. Results of these 

calculations are shown in figure (4.16). 
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Figure 4.16. Effect of the step depth on the drag coefficient of the stepped NACA 2412 airfoil 

(Re = 5.7e6, M = 0.2, and α = 2.5°). 

 

An approximate linear relationship is observed between the depth of the step  𝐷𝑈 and the drag 

coefficient of the airfoil. The lowest value of drag coefficients found in the eight configurations is 

still higher than the value obtained from a clean NACA 2412 at the same conditions where the 

drag coefficient was found to be equal to 0.00515. While the lowest value shown in figure (4.16) 

is observed to be equal to 0.00668 at a step depth of 0.0075 𝐶. 

Figure (4.16) shows that there is a constant increment in the drag value from one case to the other 

of approximately 7E-4 with each 0.0025 𝐶 increment in the step depth. This relationship holds 

over the full testing range. The inverse linear-like relationship shown in figure (4.16) can be better 

understood by decomposing the drag coefficient into its two main components; the pressure drag 

coefficient and the viscous drag coefficient using equation (4.1). The results of this decomposition 

are shown in figure (4.17). 
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Figure 4.17. Decomposition of the Drag coefficient to pressure drag and viscous drag 

coefficients at different step depths. 

Similar to the results shown in figure (4.11), the viscous drag component is nearly constant, while 

the pressure drag noticeably increases from one case to the other. This shows that the pressure drag 

is the dominant component in the case of stepped airfoils, and its contribution increases with the 

increase of the step depth. As the step depth increases, the pressure experiences a slight increase, 

but the exposed area of the airfoil noticeably increases. For that reason, the drag coefficient 

continuously and linearly increased as the step depth increased. 
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4.2.3 Effect of the step angle 𝜷 

 

In this subsection, the effect of the step angle on the aerodynamics of the stepped airfoil is studied. 

Figure (4.18) shows the five configurations of an airfoil with a backward-facing step at the mid-

chord length, and a step depth of 𝐷𝑈 = 0.015 𝐶, while the step angle 𝛽 changed from 45° to -45°, 

with the zero at the vertical position and positive angles are in the counter clockwise direction. In 

each case, the lift coefficient, drag coefficient and lift-to-drag ratio is calculated, and the results 

are tabulated in table (4.1). 

 

Figure 4.18. Different configurations of the NACA 2412 with different step angles. 

 

Table 4.1. Values of the cl, cd and L/D at different step angles 𝜷. 

Step Angle 𝒄𝒍 𝒄𝒅 𝐋/𝐃 

45.0 ° 0.44439 0.00878 50.6115 

22.5 ° 0.44494 0.00873 50.9527 

0 ° 0.44504 0.00873 50.9919 

-22.5 ° 0.44503 0.00873 50.9779 

-45.0 ° 0.44495 0.00873 50.9495 

 

The five cases obtained nearly the same values for the three aforementioned aerodynamic 

properties. A very small difference was observed in the lift-to-drag ratio 𝑐𝑙/𝑐𝑑  in case of the 

angle 𝛽 = 45°. This is due to a small displacement of the recirculation zone to the lower corner of 

𝛽



 

90 

the inclined step. In cases of step angles from 𝛽 = −45° 𝑡𝑜 22.5° the recirculation zone started 

at 𝑋/𝐶 =  0.513, while in the case of 𝛽 = 45°, the bottom corner of the step is shifted to 𝑋/𝐶 =

 0.517, which is the location that marks the beginning of the recirculation zone. For cases with 

negative step angles, the additional space that is added to the step vicinity is filled with low-energy 

minute eddies that have negligible effect on the aerodynamics of the flow. Therefore, the effect of 

the step angle 𝛽 that is ranging between 45° to −45° showed to be negligible on the aerodynamics 

of an airfoil with a backward-facing step on the upper surface of an airfoil. 
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 Aerodynamics of Backward-facing Steps on the Lower Surface 

of an Airfoil: 

In this section, a detailed numerical simulation will be presented investigating the aerodynamic 

performance of airfoils with backward-facing step installed on the lower surface of a NACA 2412. 

The analysis starts with a mesh independence study using a family of five consecutively refined 

meshes to ensure a mesh independent numerical solution. The number of nodes is doubled from 

one mesh to the other, while the number of cells quadruples. The flow around the stepped airfoil 

was solved on the five meshes and values of the lift coefficient 𝑐𝑙 is compared from one mesh to 

the other. In figure (4.19), the lift coefficient values are plotted on the y-axis and the corresponding 

number of cells on the x-axis.   

 

Figure 4.19. Convergence of the lift coefficient values as the mesh density increases. 

As the number of cells increases, the calculated lift coefficient value approaches the asymptotic 

value that is theoretically achieved when the mesh spacing  ℎ  tends to zero (ℎ → 0 ). This 

continuum value 𝑐𝑙 (ℎ=0) was extrapolated using Richardson’s method explained earlier and found 

equal to 0.5775 which shows that the result obtained from the finest mesh (𝑐𝑙 5) is about 0.1% off 



 

92 

the continuum value 𝑐𝑙 (ℎ=0). For that reason, the density of the finest mesh with about 180,000 

cells and 340 nodes along the airfoil surface will be used to carry out all the numerical simulations 

in this study. All simulations carried out with the finest mesh obtained a Y+ value lower than 0.6. 

Therefore, the finest mesh will adequately ensure a mesh independent solution and is used in the 

following numerical analyses. 
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4.3.1 Effect of the step location 𝑿𝑳/𝑪: 

 

This subsection will present the effect of the step location on the aerodynamic properties of the 

stepped airfoil. The location of the step changed from 25% to 75% of the chord length with a 5% 

increment between a single configuration and the succeeding one. 

4.3.1.1 Effect of the Step Location on the Lift Coefficient 𝒄𝒍 

The variation of the lift coefficient value 𝑐𝑙 with the change of the step location is shown in figure 

(4.20). A first observation in figure (4.20) is that employing a step on the lower surface of the 

NACA 2412 has increased the lift coefficient when compared to the clean airfoil, regardless of the 

step location. At the same conditions, the clean airfoil achieved a lift coefficient value of 0.517 

which is 11% lower than the lowest value obtained by the stepped configurations.  

 

Figure 4.20. The lift coefficient value 𝑐𝑙 at different step locations (Re = 5.7e6, M = 0.2, and α = 

2.5°). 

This increase in the lifting force is attributed to the sudden change in the airfoil thickness which 

will result in the deceleration of the flow at the step vicinity. The conservation of momentum 
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dictates that a decrease in the velocity will cause the static pressure to increase on the pressure 

side, and since the total pressure did not decrease, the lifting forces acting on the airfoil 

significantly increased. The second observation in figure (4.20) is that the variation of the lift 

coefficient value with the step location did not follow a linear-like behavior as it was the case of a 

step on the upper surface, but rather a non-linear parabolic-like curve with a minimum value 

obtained for a configuration of a step at 𝑋𝐿/𝐶 = 0.55. To understand this behavior, a closer look 

on the flow around the stepped airfoil is needed. Figure (4.21) shows the streamlines of the flow 

flooded with colors of the velocity magnitude. The backward-facing step resulted in a sudden 

reduction in the airfoil’s thickness which forces the flow to locally separate at the edge of the step 

and create a low pressure recirculation zone as shown in figure (4.21). 

 

Figure 4.21. Streamlines of the flow around the stepped NACA 2412 showing its separation at 

the step edge, the creation of a recirculation zone and the further reattachment of the flow. 

This low-pressure region assists the flow to reattach back to the thinned airfoil surface. In 

accordance with the conservation of mass, the reattached flow will be decelerated. Again, the 

conservation of momentum dictates that a decrease in the velocity field will result in an increase 

in the static pressure after the step. Therefore, in comparison to the clean airfoil, the pressure field 

will experience two additional variations; the first is a sudden reduction in the pressure field due 

to the presence of the recirculation zone, followed by an increase attributed to the change in the 

airfoil thickness. Figure (4.22) shows the pressure coefficient distribution over the lower surface 

of the clean NACA 2412, as well as in the eleven stepped configurations. By comparing the curve 

of the clean airfoil with cases of the stepped airfoil, the effect of the backward-facing step on the 

pressure distribution is clearly demonstrated. The separation of the flow at the step edge entrains 

a low-pressure recirculation zone, which decreases the lifting force of the airfoil. On the other 

hand, the change of the airfoil thickness will increase the pressure after the step and enhance the 

lifting force of the airfoil. 
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Figure 4.22. Pressure distribution over the lower surface of a clean NACA 2412 as well as in 

cases of stepped airfoil with steps at different locations (Re = 5.7e6, M = 0.2, and α = 2.5°). 

As the step location shifts from the leading edge towards the trailing edge, the area of the airfoil 

exposed to the high-pressure region decreases, leading to a drop in the lift coefficient value as 

shown in figure (4.20). However, for cases with a step located after 𝑋𝐿/𝐶 = 0.55, a small increase 

in the lift coefficient values is observed. This is due to the thickness distribution of the NACA 

2412 airfoil that promotes an increase in the pressure near the trailing edge of the airfoil. Therefore, 

as the step shifts towards the trailing edge, the pressure gradient along the airfoil supresses the 

intensity of the low-pressure recirculation zone and adds to the value of the high-pressure zone 

after the step. This leads to a slight increase in the value of the lift coefficient for cases with a step 

located after the point 𝑋𝐿/𝐶 = 0.55. 
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4.3.1.2 Effect of the Step Location on the Drag Coefficient 𝒄𝒅 

In each of the eleven configurations of different step locations, the drag coefficient was calculated 

by resolving the normal and axial forces acting on the airfoil to a component parallel to the main 

stream velocity. Figure (4.23) shows the variation of the drag coefficient value as the step location 

shifts towards the trailing edge. 

 

Figure 4.23. Pressure distribution over the lower surface of a clean NACA 2412 as well as in 

cases of stepped airfoil with steps at different locations (Re = 5.7e6, M = 0.2, and α = 2.5°). 

 

In all cases, the drag coefficient value is higher than 0.00515, which is the value obtained by the 

clean airfoil at the same conditions. Equation (4.1) is again used to decompose the drag coefficient 

to its two main components. It should be noted here that for 2D subsonic flows, the wave drag and 

the induced drag components are inapplicable. Figure (4.24) shows the results of this 

decomposition in cases of the stepped airfoils as well as in case of a clean airfoil. 
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Figure 4.24. Decomposition of the drag coefficient to pressure drag and viscous drag 

coefficients (Re = 5.7e6, M = 0.2, and α = 2.5°). 

The decomposition of the drag coefficient in figure (4.24) explains the inverse relation between 

the drag coefficient and the step location shown in figure (4.23). As the step location shifts towards 

the trailing edge, both components of the drag coefficient decrease with decrements that are 

proportional to the step’s shifted distance, but each component drops for a different reason. 

The pressure drag coefficient is influenced by the static pressure value at the recirculation zone 

which acts directly on the vertical wall of the backward-facing step. As the step location shifts 

towards the trailing edge, the static pressure increases due to the decrease of the NACA 2412 

thickness, which in turn increases the pressure at the recirculation zone. For that reason, the 

pressure drag coefficient value decreases as the step shifts from the leading edge towards the 

trailing edge. 

On the other hand, the net viscous force is calculated as the integral of the shear stresses over the 

surface of the airfoil. To study the variation of the viscous drag coefficient values, the wall shear 

stress distribution over the airfoil (or the skin friction coefficient distribution) is presented in figure 

(4.25).  
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Figure 4.25. Skin friction coefficient distribution over the lower surface of a clean NACA 2412 

as well as in cases of stepped airfoil with steps at different locations (Re = 5.7e6, M = 0.2, and α 

= 2.5°). 

In the case of the clean NACA 2412, the transition of the viscous boundary layer on the lower 

surface occurred naturally at about 73% of the chord length. As the step shifts towards the trailing 

edge, the area under the curves of the wall shear stress (or the skin friction coefficient in figure 

(4.25) decreases leading to a drop in the value of the viscous drag coefficient as shown in figure 

(4.24). With constant decrements in the pressure drag coefficient and viscous drag coefficient, the 

overall drag coefficient value decreases in a linear-like behavior as the step shifts towards the 

trailing edge. 

Figure (4.25) shows another interesting observation which is the ability of some stepped 

configurations to delay the natural transition of the boundary layer from laminar to turbulent flow. 

In case of the clean airfoil, the viscous boundary layer experiences the transition at about 73.3% 

of the chord length, while in cases of the stepped airfoil, the transition occurs when the flow 

reattached after the recirculation zone. This was consistently observed in the last three 

configurations, where the step was located at 𝑋𝐿/𝐶 = 0.65, 0.7 and 0.75, respectively. In these 
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three cases, the transition occurred at about 𝑋/𝐶 =  0.74, 0.78 and 0.83, respectively, which are 

after the natural transition point in the case of the clean airfoil. This delay resulted in lower values 

of the viscous drag component when compared to the clean NACA 2412. Figure (4.25) shows that 

the viscous drag coefficient of the clean airfoil was 0.00370, while in the last three cases of the 

stepped airfoil, the viscous drag coefficient values were 0.00364 , 0.00355  and 0.00347 , 

respectively. 

4.3.1.3 Effect of the Step Location on the Critical Angle of Attack 𝜶𝒄 : 

The near stall behavior of airfoils with backward-facing step on the lower side of the airfoil is 

studied using three stepped airfoil configurations with steps located at 𝑋𝐿/𝐶 = 0.25, 0.5 and 0.75. 

These configurations are tested and compared to the clean NACA 2412. Figures (4.26 a) and (4.26 

b) show the values of the lift coefficient 𝑐𝑙 and drag coefficient 𝑐𝑑 at different angles of attacks. In 

the three configurations of the stepped airfoil, the maximum lift, and thus the critical angle of 

attack 𝛼𝑐𝑟 was at 16°. On the other hand, the clean airfoil achieved the maximum lift at a critical 

angle of attack of 18°. It is speculated that this is due an alternation in the pressure distribution on 

the upper surface of the airfoil. This alteration is due to trailing edge effects of the flow that is 

influence by step location on the lower surface. 

 

  

(a) (b) 

Figure 4.26. (a) Lift and (b) drag coefficients versus angle of attack 𝛼 (Re = 5.7e6 and M = 

0.2). 

The effect of the early stall behavior of the stepped configurations is manifested in figure (4.26 b) 

which shows the amplified drag coefficient values as the flow approaches stall. This means that 
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employing a step on the pressure side of an airfoil has an adverse effect on the onset of stall, and 

the step location has a negligible effect on the critical angle of attack 𝛼𝑐𝑟.  
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4.3.2 Effect of the step depth 𝑫𝑳/C 

 

This subsection studies the effect of the step depth on the aerodynamics of an airfoil with a 

backward-facing step installed on its lower surface. Eight different step depths are examined, 

starting from 𝐷𝐿/𝐶 = 0.0075  to  𝐷𝐿/𝐶 = 0.025 , with an increment of 0.0025 𝐶  from one 

configuration to the other. The step is fixed at the mid chord-length of the airfoil, and the flow is 

directed at an angle of attack of 2.5°. In each case the flow is solved numerically, and the lift 

coefficient 𝑐𝑙 and the drag coefficient 𝑐𝑑 are calculated to establish a correlation between these 

aerodynamic properties and the backward-facing step depth. 

 

 

Figure 4.27. The lift coefficient value cl at different step depths (Re = 5.7e6, M = 0.2, and α = 

2.5°). 

The lift coefficient was observed to increase by approximately 10% from 0.55 to 0.62 as the step 

increased from 𝐷𝐿/𝐶 = 0.0075 to 𝐷𝐿/𝐶 = 0.025, respectively as shown in figure (4.27). All the 

lift coefficient values obtained from stepped airfoils with lower surface step are higher than 0.517 
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which is the value obtained from the clean NACA 2412 at the same boundary conditions. Despite 

this noticeable improvement in the lifting capabilities of the airfoil, installing the backward-facing 

step on the lower surface has perturbed the streamlined profile of the airfoil, and induced an 

additional form drag component that adds to the total drag force on the airfoil. Figure (4.28) shows 

the variation of the drag coefficient value from one configuration to the other. The drag coefficient 

values of the stepped airfoil experienced a noticeable increase that is directly proportional to the 

step depth. 

 

Figure 4.28. The drag coefficient value cd at different step depths of a backward facing step 

installed on the lower surface of a NACA 2412 airfoil (Re = 5.7e6, M = 0.2, and α = 2.5°). 

The smallest step depth of 𝐷𝐿/𝐶 = 0.0075 resulted in an approximately 29% increase in the value 

of the drag coefficient when compared to the value obtained by the clean airfoil. This increase in 

the drag value grows with the step depth to reach approximately 71.3% in the case of a step depth 

of of 𝐷𝐿/𝐶 = 0.025. The decomposition of the drag forces into its two components, namely, 

viscous drag and pressure drag is shown in figure (4.29). 



 

103 

 

Figure 4.29. Decomposition of the drag coefficient to pressure drag and viscous drag 

coefficients at different step depths. 

As the step depth increases, the viscous drag force slightly drops, while the pressure drag 

component increases significantly. The viscous drag is dropping slightly with increased step depth 

because larger steps produce more entropy at the recirculation zone which results in more energy 

dispersal, hence, lower turbulent kinetic energy after the flow reattachment. This drop in the 

turbulent kinetic energy is translated to lower wall shear stresses and consequently lower skin 

friction coefficient values as shown in figure (4.29). The pressure drag increases with the step 

depth for the same reason mentioned in subsection 4.2.2. As the step depth increases, the low-

pressure recirculation zone acts on a larger surface area resulting in larger drag force acting on the 

airfoil. The increase in the pressure drag overshadows the slight decrease in the viscous forces 

resulting in an overall increase in the drag coefficient value with the increase of the step depth as 

shown in figure (4.28). 

 

4.3.3 Effect of the step angle 𝜷 

Similar to the analysis shown in subsection 4.2.3 where the effect of the angle of the upper surface 

backward-facing step was investigated, the same procedure is followed in this subsection, but this 

time the step is installed on the lower surface of a NACA 2412 airfoil. The step location is fixed 

at the mid-chord length with a depth of 𝐷𝐿 = 0.015 𝐶, and an angle ranging from 𝛽 = 45° to 𝛽 =

 −45°, where a positive angle is measured from the lower edge of the step and in the counter-
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clockwise direction. In each of the five cases, the lift coefficient, drag coefficient and lift-to-drag 

ratio are calculated and tabulated in table 4.2. 

 

Table 4.2. Values of cl, cd and L/D at different step angles. 

 

As observed in subsection 4.2.3, changing the step angle has a negligible effect on the lift 

coefficient, drag coefficient and lift-to-drag ratio. The five configurations obtained the same 

pressure distribution curves and the same skin friction coefficient curves. In all cases, the 

recirculation zone started at 𝑋/𝐶 = 0.52 and ended at 𝑋/𝐶 = 0.585 even at a step angle of 𝛽 =

45° which creates the largest vicinity at the step corner. The additional space is filled with a 

cascade of eddies trapped in the step’s corner and their length scales decrease gradually from one 

level to the other. These eddies are known as the Moffatt eddies, and theoretically there should be 

an infinite number of these vortices trapped at the step corner as their length scale drops to zero. 

As the resolution of the computational domain increases, more Moffatt eddies can be modeled. 

Figure (4.30) shows the streamlines of the Moffatt eddies in each of the five configurations at 

different step angles. 

As shown in figure (4.30), the main recirculation zone has the same structure and dimensions in 

all the five cases. As the step angle varied from 𝛽 = −45° to 𝛽 = 45°, an additional space is 

created at the step corner. This additional space is filled with the low energy Moffatt eddies whose 

influence on the airfoil aerodynamics is negligible. Four levels of the Moffatt eddies were modeled 

in case of a step angle of 𝛽 = 45°, and the number of eddies’ levels decreases with the step angle 

as shown in figure (4.30). Only the main recirculation zone has influence on the aerodynamics of 

the airfoil, and since the main recirculation zone has the same structure in the five configurations, 

the lift coefficient, drag coefficient and lift-to-drag ratio are not influenced by the variation of the 

step angle 𝛽. 

 

𝜷 𝒄𝒍 𝒄𝒅 𝒄𝒍/𝒄𝒅 

45.0 ° 0.57703 0.0076517 75.41296 

22.5 ° 0.57698 0.0076474 75.44916 

0 ° 0.57697 0.0076459 75.46084 

-22.5 ° 0.57699 0.0076473 75.45039 

-45.0 ° 0.57706 0.0076571 75.36398 
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Figure 4.30. Streamlines of the recirculation zone and the Moffatt eddies at different step angles. 

 
Studying sliding panels as a solution for the morphing skin problem has showed that the 

discontinuity introduced between the panels have imposed an aerodynamic penalty on the 

performance of this morphing design. The only case where the aerodynamic performance matched 

that of the clean airfoil is when the panels are separated by gaps that follow the condition 
𝐿

𝜃
∗
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√𝑅𝑒𝜃 < 600. Unfortunately, this condition is not easily fulfilled at different morphing motions as 

shown in figure (1.5). For that reason, a seamless smooth design of morphing skin will be presented 

in chapter 5. The design of a flexible morphing skin and its aerodynamics will be presented.



 

107 

5. DESIGN AND AERODYNAMICS 

OF FLEXIBLE MORPHING SKIN 
 

 Design of The Flexible Morphing Skin 

5.1.1 The Underlying Substructure: 

Another viable solution for the compromising problem of morphing skins is the use of flexible 

elastomer reinforced by fibers and an underlying structure. Elastomers are polymer-based 

materials made out of long chains of carbon, hydrogen and oxygen atoms. Each chain is cross-

linked to its neighbouring chains at different points. The cross-linkage has provided the elastomers 

with high elasticity ranging from 200 – 1000% depending on the material used. Elastomers are 

also known for their high resilience which ensures a quick restoration to its original shape after the 

deforming force has been removed. These advantages are added to their very low permeability to 

gases and liquids, their electric and thermal insulation, and their ability to adhere to different fibers 

and metals. 

The current study will take an advantage from this concept and use a specially modified zero-

Poisson ratio cellular structure as an underlying support for the skin while the major ribs of the 

mesh will provide the module with the required stiffness along the chord-wise direction. The mesh 

will be designed with high flexibility in the desired degrees of freedom to ensure minimal actuation 

requirements. A highly anisotropic elastomer composite will be used as a sealant for the mesh. 

This outer layer will be tailored to maintain high stiffness along the chord-wise direction with the 

usage of reinforcing fibers and metal strips. Out-of-plane deflection of the skin will be 

experimentally tested by applying normal loads on the skin. 
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5.1.2 Design of the Underlying Substructure: 

Cellular structures are widely used in aerospace applications for their low density, low in-plane 

actuation requirements and high out-of-plane stiffness. Conventional honeycomb meshes inherit 

positive Poisson ratio resulting in a contraction of the mesh in a direction normal to the applied 

force as shown in figure (5.1). 

 

Figure 5.1. Geometrical change of conventional mesh compared to zero-Poisson ratio accordion 

mesh. 

To overcome this disadvantage, a zero-Poisson ratio with accordion mesh will be used to provide 

the required motion without experiencing any contraction along the dimension normal to the 

applied force as shown in figure (5.1). Proper choice the geometric parameters of the accordion 

mesh shown in figure (5.2) will result in a viable substructure for a four-degree of freedom 

morphing skin. In the next few lines, these parameters will be determined according to the required 

skin kinematics without sacrificing strength in the desired directions. 

5.1.2.1 The Supporting Ribs: 

The accordion mesh consists of V-shaped minor ribs separated by major ribs along the chord-wise 

direction. These major ribs will provide the required stiffness and maintain the airfoil shape 

constant along the wing. Aluminum rods will be used as a reinforcement for the ribs as shown in 

figure (5.3). Aluminum was chosen for its high specific strength and workability where these rods 

will be bent to the desired airfoil of the wing. 
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Figure 5.2. Geometric parameters of a single element of a zero-Poisson ratio accordion mesh. 

When aerodynamic loads are applied on the wing, the major ribs will experience small deflections 

that could be estimated by solving the Euler-Bernoulli beam equation (5.1) for a fixed – fixed 

beam. 

 

 𝑬𝑨𝒍𝑰 
𝒅𝟒𝜹

𝒅𝒙𝟒
= 𝒒 (5.1) 

 

Where 𝐸𝐴𝑙 is the Young’s modulus of aluminum, 𝐼 is the second moment of area of the cylindrical 

rods, and 𝑞 is the distributed load. In turn, the ribs need to be supported using spars where the 

separating distance 𝐿 between the spars will depend mainly on diameter of the aluminum rods. 

 

Figure 5.3. Aluminum rods supporting the accordion mesh to minimize the out-of-plane 

deflection. 
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With a hypothetical choice of the pressure on the wing of P = 10 kPa and a maximum designed 

deflection for the aluminum rods of 𝛿𝑚𝑎𝑥 = 1 mm, equation (5.1) is solved to obtain:  

 

 𝑳 =  √
𝟑 𝜹𝒎𝒂𝒙 𝑬𝑨𝒍 𝝅 𝑫𝟒

𝟒 𝑷 (𝑫 + √𝟐 𝒍) 

𝟑

 (5.2) 

which represents the relationship between the separating distance of the spars 𝐿 and the diameter 

of the aluminum rods 𝐷. 

This relationship is plotted in figure (5.4) showing the required diameter of the aluminum 

reinforcement rods for different spars’ separating distances. Depending on the diameter of the rods, 

the height ℎ and the width 𝑤 of the major ribs in the mesh could be chosen to be a few millimeters 

larger than the diameter D. A diameter of ½ in is chosen for the prototype used in this study, 

therefore, the height and the width are chosen to be ℎ = 𝑤 = 15 mm. 

 

Figure 5.4. Relationship between the separating distance of the spars and the diameter of the 

supporting rods. 
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In-Plane Motion: 

The morphing wing is capable of performing two independent in-plane motions. These motions 

results in changing the span and the sweep angles of the wing. Most of the morphing skin will 

experience these two motions as a tensile and compressive loading when changing the wing’s span 

and a shear loading when changing the sweep angle. The main intent of a passive morphing skin 

is to maximize the range of these motions while keeping the actuation requirements to a minimum. 

This could be achieved by calculating an equivalent Young’s modulus 𝐸𝑒𝑞 and shear modulus 𝐺𝑒𝑞 

for the whole mesh. 

Gibbson and Ashbey [84] used the Euler-Bernoulli beam theory to calculate an equivalent in-plane 

Young’s modulus for conventional honeycomb meshes and the same concept was used in [85]. 

Following a similar procedure, 𝐸𝑒𝑞 and 𝐺𝑒𝑞 can be evaluated for the accordion mesh. 

 

Figure 5.5. The morphed accordion mesh when experiencing (a) tensile loading and (b) shear 

loading with the accompanying Von-Misses stresses calculated using FEA. 

If a force 𝐹𝑋 is applied to a rib member in the mesh, the deflection at the tip of the rib along the X-

direction is induced by the cosine component of the force 𝐹𝑋 resulting in a total deflection given 

by: 

 𝜹𝑻 𝒕𝒂𝒍 = 
𝑭𝑿 𝑪 𝒔(𝜽) 𝒍𝟑

𝑬𝟎 𝒉 𝒕𝟑
 (5.3) 
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Where 𝐸0 is the Young’s modulus of the mesh’s material, ℎ is the height of the mesh, 𝑤 is the 

width of the major ribs and 𝑙 is the length of the minor ribs.  

A reference area for a single element of the mesh with the height ℎ and a length 𝑠 will be used to 

calculate an equivalent stress along the 𝑋 direction where 𝑠 is the separating distance along the 

chord-wise direction between each two elements in the accordion mesh. 

 𝝈𝑿 = 
𝑭𝑿

𝒉 𝒔
 (5.4) 

   

 𝜀𝑋 = 
2𝛿𝑇𝑜𝑡𝑎𝑙  cos (𝜃) 

2 𝑙 sin(𝜃) + 𝑤
 (5.5) 

 

The equivalent in-plane Young’s modulus for the mesh can be evaluated as: 

 𝑬𝒆𝒒 = (
𝒕

𝒍
)
𝟑 𝑬𝟎 (𝟐 𝒍 𝐬𝐢𝐧(𝜽) + 𝒘)

𝟐 𝒔 𝒄 𝒔𝟐(𝜽)
 (5.6) 

   

Similarly, the equivalent shear modulus for the mesh is:  

 𝑮𝒆𝒒 = (
𝒕

𝒍
)
𝟑 𝑬𝟎 (𝟐 𝒍 𝐬𝐢𝐧(𝜽) + 𝒘)

𝟐 𝒔 𝒔𝒊𝒏𝟐(𝜽)
 (5.7) 

   

The main factors that affects the equivalent Young’s and shear moduli of the mesh are found from 

equations (5.6) and (5.7) to be the thickness 𝑡, the length of the minor ribs 𝑙 and the angle θ 

between the major and minor ribs. 𝐸𝑒𝑞  and  𝐺𝑒𝑞  are directly proportional to 𝑡3  and inversely 

proportional to 𝑙3 so the behavior of the mesh could be easily tuned by changing the values of 𝑡 

and 𝑙. The exact values of these parameters should be chosen in accordance with the maximum 

allowable out-of-plane deflection of the minor ribs given by: 

 

 𝜹𝒁 𝒎𝒂𝒙 =  
𝑭𝒁 𝒍𝟑

𝑬𝟎 𝒕 𝒉𝟑
 (5.8) 
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In this study, equation (5.8) was used to obtain the dimensions of the minor ribs to be 40 mm and 

1 mm for the length 𝑙 and the thickness 𝑡 respectively. This will result in a maximum deflection of 

𝛿𝑍 𝑚𝑎𝑥 ≈ 0.26 mm when the mesh is manufactured from a material with elastic modulus of 𝐸0 =

2.3 GPa. 

The angle between the minor and the major ribs appeared in both expressions (5.6) and (5.7) as 

sine and cosine functions. As a trade-off for θ, an angle of 45° is chosen to compromise the desired 

minimal values of both moduli. 

 

Figure 5.6. Different shapes of the minor ribs proposed by the author to reduce the local stresses 

for the in-plane motions. 

The commercial code ANSYS Mechanical was used to perform a finite element analysis (FEA) 

for the in-plane motions of the mesh. This analysis showed excess local strain on the minor ribs, 

hence, more actuation force is required to morph the skin. In a trial to minimize these local strains, 

the shape of the minor ribs was modified. The proposed shapes are shown with their corresponding 

governing equations in figure (5.6).   

These shapes were studied numerically to reduce the local stresses and strains. The span of the 

mesh in each case was changed by 12% and the sweep angle was changed to produce 30% global 

shear strain on the mesh. The maximum local strains obtained from each shape is shown in figure 

(5.7). 

It was found that the cosine shaped ribs experienced the least local strain with a deduction of 

12.94% compared to the mesh with straight ribs. This drop in the local strain is desired to minimize 

the actuation. 
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Figure 5.7. Maximum local strain obtained from the FEA when different shapes for the minor 

ribs are used. 

Out-of-Plane Motion: 

The out-of-plane motions of the wing are encountered when changing the twist and the dihedral 

angles of the wing. The zero-Poisson ratio accordion mesh inherits a low bending stiffness along 

the direction perpendicular to the major ribs. This serves perfectly in favor of achieving the 

required dihedral angles, however, twisting the mesh introduces highly concentrated stresses near 

the joining edge of the minor ribs as shown in figure (5.8 a). These excess stresses are practically 

understood as more actuation forces and lower life time for the mesh before failure. The factors 

affecting the twist angle α of ribs with constant cross-sectional area are found in: 

 𝜶 =  
𝑻 𝒍

𝑱 𝑮𝟎
 (5.9) 

Where 𝑇 is applied torque, 𝑙 is the length of the minor rib, 𝐽 is the moment of inertia and 𝐺0 is the 

shear modulus of the mesh material. The moment of inertia 𝐽 for rectangular sections depends 

mainly on the ratio between the sides of the rectangular section. As the ratio between the sides 

increases, the moment of inertia 𝐽 increases leading to a smaller twist angle 𝛼 for constant torque 

or more local stresses for constant twist angle. In a trial to reduce the stresses induced by the twist 

motion, the minor ribs are divided into four smaller ribs, the height of each rib is one forth the 

height of the original rib. The newly introduced ribs are distributed relative to each other so that 

the maximum out-of-plane deflection of the ribs is not changed. Using FEA, the newly designed 

ribs have reduced the maximum stresses by 20.28% and the locations of these stresses are greatly 

reduced as shown in figure (5.8 b) compared to figure (5.8 a). 
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Figure 5.8. (a) Highly concentrated stresses when twisting a single minor rib compared to (b) 

low stresses when 4 minor ribs are used instead. 

 

By doing this final modification, the mesh is now optimized to perform all the required morphing 

motions while needing minimum energy for actuation. The next section will focus on designing a 

sealant material that will cover the cellular structure to transfer the aerodynamic loads to the 

underlying mesh. 
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5.1.3 The Outer Composite Material 

The main challenge in the process of designing the outer layer of the morphing skin is to optimize 

the competing demands of a flexible continuous sealant material and still maintain its stiffness to 

carry all the aerodynamic loads. This can only be achieved by using a tailored composite material 

that has a flexible matrix material reinforced with longitudinal fibers along the wing’s chord-wise 

direction. Figure (5.9), depicts the design of the required composite material.  

The matrix material is the one which is in direct contact with the surrounding fluid, so it has to be 

chemically stable and maintain its flexibility over a wide temperature range. This made elastomers, 

a perfect candidate for this task where they are chemically inert and maintain their mechanical 

properties over a wide range of temperatures. Figure (5.10) shows different elastomer materials 

and their temperature range. From this figure, it can be observed that Silicone rubber maintain its 

properties over a wide range of positive and negative temeratures making it the best choice for the 

composite’s matrix material. 

 

Figure 5.9. Design of the composite material with its fibers parallel to the chord-wise direction. 

The shore hardness of the Silicone rubber has to be moderate, not too soft to prevent buckling and 

wrinkling, and not too hard to minimize the required actuation force. With these specifications, 

silicone rubber Ecoflex © 0030 was chosen as the matrix material composite. Ecoflex © 0030 has 

a Young’s modulus of 29 kPa and a Poisson ratio of 0.47 [86]. 
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Figure 5.10. Temperature range of different elastomer materials. 

In order to reinforce the composite material along the chord-wise direction, fibers with high 

strength have to be embedded inside the matrix material and maintain their direction parallel to the 

chord-wise direction. This direction will be the longitudinal one and characterized with a higher 

elastic modulus compared to the transverse span-wise direction which is perpendicular to the 

aligned fibers. 

Carbon fibers are among the common materials used for reinforcing elastomers. They are 

characterized by their high specific strength (strength-to-weight ratio) that is nearly ten times the 

specific strength of stainless steel. In this study, unidirectional carbon fibers with a Young’s 

modulus of 181 GPa are embedded in the composite material along the longitudinal direction. 

However, due to the nature of carbon fibers, they can only withstand tensile loads and cannot bear 

any compressive loads. For that reason, thin aluminum strips will be also tested as reinforcement 

fibers for the composite materials. 

Four different composite samples were manufactured to test the out-of-plane deflection of the skin 

when attached to the cellular substructure. The first two used carbon fibers with a fiber volume 

fraction of 2.5% and 5%. The other two samples will be reinforced with aluminum strips in 

percentages of 3% and 4%. 

Table (5.1) shows the highly anisotropic properties of the tailored composite material which are 

estimated using the rule of mixture for composite. 

-150 -50 50 150 250 350

Natural rubber
SBR

EPDM
Neoprene

CSM
Nitrile

Acrylic
Vamac

Epichlorohydrin
Butyl

Silicone
HNBR

Flurocarbon
Flurosilicone

Kalrez

°C
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Table 5.1. Properties of the four composite samples estimated using the rule of mixture for 

composites. 

 

It can be observed from table (5.1) that the composites with the carbon fibers have a higher 

longitudinal Young’s modulus because of their original high tensile strength. During the 

manufacturing process, the aluminum strips were observed to have a weak bonding to the silicone 

rubber, for that reason the actual transverse Young’s modulus will be slightly lower than that 

provided by the rule of mixture. 

Case 1 

Carbon Fibers 

2 

Carbon Fibers 

3 

Aluminum Strips 

4 

Aluminum Strips 

𝑽𝒇 2.5% 5% 3% 4% 

𝑬𝑳 𝒏𝒈𝒊𝒕𝒖𝒅𝒊𝒏𝒂𝒍 5.5 GPa 11 GPa 2.07 GPa 2.76 GPa 

𝑬𝑻 𝒂𝒏𝒔𝒗𝒆 𝒔𝒆 29.744 kPa 30.526 kPa 28.130 - 29.897 

kPa 

27.840 - 30.208 

kPa 

𝝂𝑷 𝒊𝒏𝒄𝒊 𝒂𝒍 0.4633 0.4565 0.4659 0.4646 

𝝂𝑺𝒆 𝒏𝒅𝒂 𝒚 2.505e-6 1.266e-6 6.729e-6 5.084e-6 
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5.1.4 Prototyping and Out-of-Plane Testing 

For quick prototyping, the 3D printing technology is used to convert the CAD design of the cellular 

structure into a prototype using Acrylonitrile butadiene styrene (ABS) plastic with a Young’s 

modulus of 𝐸0 = 2.3 GPa and a Poisson ratio of 𝜈0 = 0.35. Figure (5.11) shows the 3D printed 

prototype of the cellular mesh when morphed in the four required motions, namely, 

tension/compression, changing the sweep angle, changing the twist angle and changing the 

dihedral angle. 

 

Figure 5.11. Prototype of the morphing cellular structure when morphed in the allowable 

degrees of freedom. 

The four different outer layer samples were integrated with the reinforced cellular substructure 

using a silicone-based adhesive. The adhesive has thermal and mechanical properties similar to 

the used Ecoflex © 0030. This insures a homogeneous bonding and avoids any degradation in the 

desired properties. 
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Figure 5.12. Experimental set-up to test the out-of-plane deflection of the morphing skin. 

To test the out-of-plane deflection of the integrated skin, normal loads were applied to the skin 

prototype resembling the aerodynamic pressure. The experimental setup shown in figure (5.12) is 

designed to support the aluminum rods from both sides like the spars. Below the setup is a digital 

micrometer which comes in contact with the lower surface of the composite material.  

Table 5.2. Results of the out-of-plane deflection test. 

 

On top of the integrated morphing skin, loads were added in six successive increments of 48 N 

covering a circular area of 0.01767 m2 resulting in a maximum pressure of 16.32 kPa. Each of the 

Deflection of 

the skin at: 

Case 1 

Carbon Fibers  

2.5 % 

Case 2 

Carbon Fibers  

5 % 

Case 3 

Aluminum Strips  

3 % 

Case 4 

Aluminum Strips  

4 % 

10% 

Compression 

1.89 1.91 2.86 2.99 mm 

Normal 

Position 

1.94 1.77 2.59 2.88 mm 

10% Extension 1.66 1.67 2.16 2.74 mm 
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four cases was tested in three different positions; equilibrium, 10% compression and 10% 

extension. The results of the test are listed in table (5.2). 

The results in table (5.2) show that composite skins with carbon fibers have experienced less out-

of-plane deflection compared to the aluminum strips. This is due to the higher longitudinal elastic 

moduli of carbon fibers compared to aluminum. 
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 Aerodynamics of Flexible Morphing Skin  

5.2.1 FEA for Wrinkle Profile Prediction: 

To qualitatively predict the shape of the wrinkles forming on the surface of the flexible morphing 

skin, a finite element analysis (FEA) was performed. A single module of the morphing wing 

changes its geometry over the range of morphing. The twist motion was observed to introduce the 

largest magnitude of wrinkles when reaching its limits of ± 5°. Figure (5.13) shows the flexible 

morphing wing model twisted by 5° continuously distributed along the span of 1 meter. The colors 

shown in figure (5.13) represents the magnitude of absolute displacement obtained from the finite 

element model.  

 

Figure 5.13. Interpolating the skin wrinkles into Gaussian distribution and adding it to the 

NACA 2412 profile. 

A 2D profile of the morphed wing was extracted from the finite element model at the location of 

the maximum deformation. Since the purpose of this study is to systematically examine the 

aerodynamic effects of wrinkles on morphing skin, the shape of these formed wrinkles has to be 
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mathematically articulated. Different known mathematical functions were tested, and the simple 

Gaussian distribution function showed the best agreement with the profile extracted from the finite 

element model.  The Gaussian distribution function is given by equation (5.10): 

 𝒇(𝒙) =  𝜺 𝒆
−

𝒙𝟐

𝟐 𝝈𝟐 (5.10) 

Where 𝜀 is the height of the Gaussian distribution, 𝜎 is the standard deviation and is equal to 1 in 

case of a simple Gaussian distribution. The function has a zero mean value and is symmetric about 

x = 0. The 1/2 factor used with the exponent ensures a unit variance. This simple Gaussian 

distribution is added to the NACA 2412 profile as shown in figure (5.14). 

 

 

(a) 

 

(b) 

 

(c) 

Figure 5.14. 15 configurations of the wrinkled NACA 2412 airfoil with wrinkles added at (a) 

X/C = 0.25, (b) X/C = 0.50, and (c) X/C = 0.75. 

 

The FEA showed that the winkles on the wing are usually diagonally oriented along the span of 

the wing as shown in figure (5.13). This means that at different sections along the wing’s span, the 

wrinkle location is shifted along the chord-wise direction. For that reason, the Gaussian 

distribution is imposed on the NACA 2412 profile at three different locations along the chord-wise 

direction. These locations are at X/C = 0.25, X/C = 0.5 and X/C = 0.75, where C is the chord length 

of the airfoil. At each of these locations, five different heights of Gaussian distributions were added 
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to the NACA 2412 profile ranging from ε/C = 0.002 to ε/C = 0.01 resulting in 15 different 

configurations of the airfoil as shown in figure (5.14). 

The 15 different configurations or wrinkled airfoils shown in figure (5.14) cover a wide range of 

wrinkles’ profiles at different locations along the chord-wise direction. This gives a good 

representation of the diagonally oriented wrinkles shown in figure (5.13).  

 

5.2.2 Modeling and Accuracy Assessment: 

 

Boundary conditions and Baseline Geometry: 

This study focuses on the performance of wrinkled airfoils at the incompressible flow regime and 

low Reynolds number of 1 million. This flight regime is a common regime for unmanned aerial 

vehicles (UAV’s) which is the main application of the immature morphing technology. The Mach 

number is set to 0.2 which corresponds to a mainstream velocity of 69.42 m/s at a temperature of 

300 K.  The NACA 2412 airfoil used has a unity chord length, a sharp trailing edge, and an angle 

of attack of 0°. The computational domain is wrapped around the airfoil in a C-topology where the 

blocks are distributed along the computational domain in a C shape. The computational domain 

extends to 32 chords away from the airfoil and the boundary conditions at the inlet and outlet of 

the computational domain are set to pressure-far-field. The pressure far-field prevents pressure 

waves from being reflected at the boundaries by applying Riemann invariants for a one-

dimensional flow normal to the boundary. 

 

Accuracy and Spatial Convergence: 

One of the demanding tasks in any CFD study is determining the optimal density of the 

computational grid that can capture all the important flow features, and at the same time consumes 

reasonable computational time. To reach this demanding balance, the Richardson’s extrapolation 

method explained in chapter 2 is used on a family of three consecutively refined meshes as shown 

in figure (5.15). 
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Figure 5.15. A family of three consecutively refined meshes used to apply Richardson’s 

extrapolation method and estimate the spatial convergence. 

The number of cells of the grids shown in figure (5.15) is approximately 9700, 38800 and 155200 

cells for the coarse, medium and fine meshes, respectively. The lift coefficient 𝐶𝑙 is used as the 

aerodynamic property ℱ  in equations (2.1) and (2.2). The observed order of accuracy 𝑝 calculated 

from equation (2.2) is found to be 2.0092 which is in a very good agreement with the theoretical 

2nd order accuracy used in the numerical solver. Equation (2.1) obtained a continuum value of 

0.15739, while the coarse, medium and fine meshes obtained lifting coefficients of 0.02811, 

0.12350, and 0.14850, respectively as shown in figure (5.16).  
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Figure 5.16. The lift coefficient values 𝐂𝐥 obtained on the coarse, medium and fine meshes, as 

well as the value extrapolated using Richardson’s extrapolation method. 

The percentage error of the fine mesh is found to be 0.88861%. This means that the fine mesh can 

resolve the flow with high fidelity, and any extra refinement of the grid will be perceived as 

unnecessary computational expenses and will not add much to the accuracy of the solution. For 

that reason, all the results shown in this paper are obtained using grids with similar densities as the 

fine mesh shown in figure (5.16). 

5.2.3 Results and Discussion: 

 

Using the settings and the mesh presented in the previous section, the flow over the 15 

configurations shown in figure (5.14) was solved. The main focus of this study is to determine the 

effect of the wrinkle height and location on the aerodynamic properties of the NACA 2412 airfoil. 

Figure (5.17) shows the lift coefficient Cl of the 15 configurations plotted using three curves, one 

for each wrinkle location. 
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Figure 5.17. Lift coefficient values 𝐂𝐥 of wrinkled airfoils with different wrinkle heights and 

locations along the chord-wise direction of the airfoil. 

Regardless of the wrinkle location, it is observed that the values of the lift coefficient have an 

inverse relationship with the wrinkle height. As the wrinkle height increases from 𝜀 = 0.002 C to 

0.01 C, the lift coefficient value Cl significantly dropped in a linear-like behavior. In case of a 

wrinkle located at X = 0.25 C and has a height of 𝜀 = 0.002 C, the lift coefficient value is 89.1% 

of the value of the clean airfoil. This value drops to 65.3% when the wrinkle height increases to 𝜀 

= 0.01 C with a drop of approximately 5% in the lifting capabilities with every 0.002 C increase 

in the wrinkle height. Similar results are observed for cases with the wrinkle located at mid chord 

length (X = 0.5 C). The lifting capabilities of the airfoil dropped from 93.7% to 73.4% as the 

wrinkle height increased from 𝜀 = 0.002 C to 𝜀 = 0.01 C, with an approximate increase of 4% for 

every 0.002 C increase in the wrinkle height. Similarly, cases with a wrinkle located at X = 0.75 

C, the inverse relationship between the lift coefficient and the wrinkle height is sustained. The 

interesting observation in the third data set when the wrinkle is located at X = 0.75 C, is that at a 

wrinkle height of 𝜀 = 0.002 C, the lift coefficient value is very close to the case of a clean airfoil. 

To understand the relationship between the lifting capabilities of the wrinkled airfoil and the 
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wrinkle height, the pressure coefficient distribution over the upper surface of the airfoil is plotted 

in figure (5.18). 

 

(a) 

 

(b) 
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(c) 

Figure 5.18. The pressure coefficient distribution for different wrinkles heights located at (a) 

X = 0.25 C, (b) X = 0.50 C and (c) X = 0.75 C. 

Figure (5.18) shows that due to the flow acceleration over the wrinkle, the pressure locally 

decreases due to the conservation of momentum. On the other hand, inserting a wrinkle on the 

airfoil’s surface obstructs the flow on the airfoil’s surface causing an overall deceleration. This 

deceleration increases the pressure on the suction side of the airfoil, and consequently decreases 

the lifting capabilities of the airfoil.  As the wrinkle height increases, the deceleration effect of the 

wrinkle becomes more prominent and results in higher static pressure on the suction side of the 

airfoil, and consequently smaller values for the lift coefficient. However, as the wrinkle location 

shifts towards the airfoil’s trailing edge, the disturbance caused by introducing the wrinkle fades. 

Figure (5.18 c) shows that in the case of a wrinkle height of 𝜀 = 0.002 C, the pressure distribution 

overlays the pressure distribution of the clean airfoil. For that reason, the lift coefficient of this 

case is very close to the value of the clean airfoil.  

A similar analysis was conducted to establish the effect of installing the wrinkle on the airfoil’s 

drag coefficient Cd. Figure (5.19) shows the relationship between the wrinkle height and the drag 

coefficient Cd at three different wrinkle locations along the chord-wise direction of the airfoil.  
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Figure 5.19. Drag coefficient values 𝐶𝑑 of wrinkled airfoils with different wrinkle heights and 

locations along the chord-wise direction of the airfoil. 

 

For the three wrinkle locations, X = 0.25 C, X = 0.50 C and X = 0.75 C, the drag coefficient 

increased linearly with the increase of the wrinkle height. For cases with a wrinkle located at X = 

0.25 C, the drag coefficient increased from 130.7% to 267.9% of the drag value of the clean airfoil 

as the wrinkle height increased from 𝜀 = 0.002 C to 𝜀 = 0.01 C. For cases with a wrinkle located 

at X = 0.50 C, the drag coefficient value increased from 118.0% to 221.4%, and for cases with a 

wrinkle located at X = 0.75 C, the drag coefficient increased from 104.1% to 207.1%. The reason 

behind this significant increase in the drag values can be explained from figure (5.20) which shows 

the skin friction coefficient distribution over the airfoil. 
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(a) 

 

(b) 
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(c) 

Figure 5.20. The upper surface skin friction coefficient distribution for different wrinkles 

heights located at (a) X = 0.25 C, (b) X = 0.50 C and (c) X = 0.75 C. 

 

For streamlined bodies such as airfoils, the drag coefficient is mainly calculated from the friction 

drag coefficient which is calculated as the integration of the skin friction coefficient. This means 

that as the area under the curves in figure (5.20) increases, the drag coefficient value increases. 

The skin friction coefficient starts from zero at the stagnation point at the leading edge of the 

airfoil. The skin friction coefficient experiences a sudden increase in value due to the acceleration 

of the flow over the airfoil’s leading-edge curvature. As the flow travels over the airfoil, the 

boundary layer thickens, the tangential velocity gradients decrease and the wall shear stresses 

decrease. This continues until the laminar boundary layer experiences a transition in its state from 

laminar to turbulent. In case of the clean airfoil, this transition occurs approximately at X/C ≈ 0.75. 

At this location, the velocity gradients increase significantly leading to a sudden increase in the 

value of the skin friction coefficient. For all the 15 cases with their different wrinkles’ heights and 

locations, the wrinkle has triggered the transition of the boundary layer from laminar to turbulent 

as shown from the intermittency contour plots in figure (5.21).  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.21. Intermittency contour plot in case of (a) clean airfoil, (b) wrinkled airfoil with the 

wrinkle at X/C = 0.25, (c) at X/C = 0.50, and at (d) X/C = 0.75. 
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Figure (5.21) shows that regardless of the wrinkle location and height (not shown in the figure), 

the laminar boundary layer experiences a transition from laminar to turbulent at the location of the 

wrinkle or at a location slightly upstream of the wrinkle location. This transition of the state of the 

boundary layer results in increased values of skin friction coefficient as shown in figure (5.20) and 

consequently increased drag coefficient as shown in figure (5.19). 

Combining the degraded lifting capabilities of the wrinkled airfoil with the increased drag force 

results in a significantly lower lift-to-drag ratio L/D for all the cases of the wrinkled airfoils. Figure 

(5.22) shows that lift-to-drag ratio calculated for the 15 different configurations of the wrinkled 

airfoils, with the value of the clean airfoil shown as a dashed line. 

 

Figure 5.22. The lift-to-drag ratio of wrinkled airfoils with different wrinkle heights and 

locations along the chord-wise direction of the airfoil. 

The lift-to-drag ratio is one of the most important aerodynamic performance metrics. For a 

particular UAV, the lifting force of the aircraft is dictated by its weight. Having a higher lift-to-

drag ratio means that the aircraft will experience less drag force for its particular weight 

requirement, and this is translated to a better fuel economy, an improved climbing performance, 

and higher glide ratio. Introducing a wrinkle to the upper surface of an airfoil significantly affects 

the lift-to-drag ratio. For the cases with a wrinkle at X = 0.25 C, introducing a wrinkle with a height 

of 𝜀 = 0.002 C has decreased to 68.2% of the lift-to-drag ratio of the clean airfoil at the same flight 

conditions. For a wrinkle height of 𝜀 = 0.01 C, the percentage dropped to 24.4%. As the wrinkle 

location is shifted towards the trailing edge of the airfoil, the deterioration in the lift-to-drag ratio 

is slightly mitigated. For the cases with a wrinkle located at X = 0.50 C, the lift-to-drag ratio 
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dropped to 79.4% for a wrinkle height of 𝜀 = 0.002 C, and decreased to 33.2% when the wrinkle 

height reached 𝜀 = 0.01 C. Similarly, for cases with a wrinkle installed at X = 0.75 C, the lift-to-

drag ratio dropped to 93.4% and 35.1% for wrinkle heights of 𝜀  = 0.002 C and 𝜀  = 0.01 C, 

respectively. These results presented in figures (5.17), (5.19) and (5.22) show that the aerodynamic 

performance of wrinkled airfoils is significantly lower than the performance of a clean airfoil at 

the same flight conditions, and that introducing a single wrinkle to the upper surface of the airfoil 

has a prominent degrading effect on its performance.
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6. CONCLUSION, 

CONTRIBUTIONS AND FUTURE 

WORK 
 

 Summary of the results: 

This thesis documented the analyses and results obtained while investigating the aerodynamic 

viability of promising designs of morphing skins. The main research tool used in the analyses was 

numerical simulations using computational fluid dynamics (CFD). 

Chapter 2 of this thesis presented an overview of the numerical algorithms used to resolve the 

flow over morphing skin. The work of this chapter focused on verifying the accuracy of gradient 

reconstructions methods when used on different types of meshes. A comparison between the 

numerical and experimental values of the lift and drag coefficients of a NACA 2412 at different 

angle of attacks was presented as a general validation test case. Results showed the following: 

1) The Green Gauss cell-based (GGCB) method is intrinsically inconsistent and achieves a 

formal order of accuracy of 0th order when used on arbitrary meshes due to the leading 

error term that contributes to the exact solution. 

2) The only scenario for the GGCB method to achieve a 2nd order accurate solution, is when 

used on meshes with uniform spacing in the X and Y directions. 

3) Both the Green Gauss node-based (GGNB) method and the LSCB method can attain a 1st 

order accurate solution regardless of the mesh geometric properties, and 2nd order accuracy 

when used on uniformly spaced meshes. 

4) In terms of the computational expenses, the GGNB method consumed about 9 - 34% 

additional time when compared to the fastest converging method in each test case. Both 

the GGCB and the LSCB methods consumed nearly the same computational time. 

5) Therefore, the LSCB method was used in all CFD simulations in this thesis because of 

compromising between accuracy and numerical efficiency. 

6) The very good agreement that was observed between the numerical and experimental 

results of the NACA 2412 validation test case reflected the high fidelity and reliability of 

the CFD results. 
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Chapter 3 focused on studying the aerodynamics of another type of sliding skin discontinuity. In 

this configuration, a trench separates between each panel and the other. It was observed that based 

on the flow conditions and the length of the trench, some cases experienced a transition in the state 

of the boundary layer from laminar to turbulent, and in other cases the boundary layer bypassed 

the cavity as if the flow is traveling over a flat plate. A wide range of cavity dimensions and flow 

conditions were tested to examine the factors that influence the transition of the boundary layer, 

and the following conclusions were reached:  

7) The non-dimensional number 𝐿/𝜃 ∗ √𝑅𝑒𝜃 showed a strong correlation with the state of the 

boundary layer. As long as 𝐿/𝜃 ∗ √𝑅𝑒𝜃 is less than 600, the laminar boundary layer will 

bypass the cavity without experiencing any change in its state, but when 𝐿/𝜃 ∗ √𝑅𝑒𝜃 

increases beyond 600, the laminar boundary layer experiences a transition in its state from 

laminar to turbulent. 

8) This condition  (
𝐿

𝜃
∗ √𝑅𝑒𝜃 < 600)  can be used to design the gaps of the segmented 

morphing skin. 

9) A numerical test case was conducted testing a NACA 2412 airfoil with 5 gaps on the upper 

surface of the airfoil, and three gaps on the lower surface of the airfoil, all fulfilling the 

condition (
𝐿

𝜃
∗ √𝑅𝑒𝜃 < 600). It was observed that the aerodynamic performance of this 

trenched airfoil is similar to the performance of the clean airfoil. Only a drop of 3.9% was 

observed in the lift-to-drag ratio due to a very small upstream shift in the location of the 

boundary layer transition. 

This shows that the segmented morphing skin whose panels are separated with gaps can be 

designed using this condition (
𝐿

𝜃
∗ √𝑅𝑒𝜃 < 600)  to ensure an aerodynamic performance that 

matches that of a clean airfoil. 

 

Chapter 4 presented the numerical study of the aerodynamics of sliding morphing skins when the 

panels are overlapping with backward-facing step between each panel and the other. The chapter 

presented the effect of installing a backward-facing step on either side of an airfoil. For each case 

the aerodynamic effects of the step location 𝑋/𝐶 , step depth 𝐷/𝐶  and step angle 𝛽  were 

investigated, and the following conclusions were reached: 

10) A price has to be paid when using sliding morphing skin with a backward-facing step on 

the suction or pressure side of the airfoil. In comparison to the unchanged airfoil profile, 

employing a step on either the suction or pressure side of the NACA 2412 airfoil had an 

adverse effect on its lift coefficient 𝑐𝑙, drag coefficient 𝑐𝑑 and critical angle of attack 𝛼𝑐𝑟. 

For a step installed on the upper surface (suction side) of an airfoil: 
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11) The lift coefficient 𝑐𝑙 showed a direct relationship to the location of the step  𝑋𝑈/𝐶, where 

the values of the lift coefficient continuously increased by shifting the step location from 

the leading edge to the trailing edge of the airfoil. 

12) The values of drag coefficient  𝑐𝑑 showed an inverse relationship with the step location 

 𝑋𝑈/𝐶. 

13) Decomposition of the drag coefficient to its two main components showed a domination 

of the pressure drag coefficient over the viscous drag coefficient. This means that it is 

insufficient to use the skin friction coefficient as a sole tool of assessment, and only the 

pressure distribution curves will explain the relationship between the drag coefficient and 

the step location. 

14) As the step depth increased, the lift coefficient decreased, while the drag coefficient 

followed a linear-like behavior that increased constantly as the step depth increased. 

15) Changing the step angle from 45° to -45° did not have any effect significant effect on the 

aerodynamic properties. 

16) The backward-facing step promoted the onset of stall when installed on the upper surface 

of an airfoil. The case of a step at  𝑋𝑈 𝐶⁄ = 0.25 experienced an earlier stall condition when 

compared to cases with steps at  𝑋𝑈 𝐶⁄ = 0.5 and  0.75, which also have lower values of 

critical angle of attack  𝛼𝑐𝑟 compared to the clean airfoil. 

For a step installed on the lower surface (pressure side) of an airfoil: 

17) The change in the airfoil thickness caused by the backward-facing step has increased the 

lift coefficient 𝑐𝑙 in all configurations by at least 11% when compared to the clean airfoil 

at the same conditions. 

18) The pressure drag component has noticeably increased the value of the drag coefficients 

due to the low-pressure recirculation zone that is acting on the vertical wall of the step. 

This adverse effect is slightly mitigated as the step shifts towards the trailing edge of the 

airfoil. 

19) The backward-facing step has delayed the boundary layer transition from laminar to 

turbulent flow in cases where the step is located after the natural transition point. This led 

to a small drop in the viscous drag components for these cases. 

20) Increasing the step depth has improved the airfoil’s lifting capabilities by at least 6% for a 

step depth of 𝐷𝐿/𝐶 = 0.0075, and increased with the step depth to reach 17% for a step 

depth of 𝐷𝐿/𝐶 = 0.025. 

21) The near stall behavior of three different stepped airfoil configurations were compared with 

the clean airfoil. In the stepped configurations, the critical angle of attack 𝛼𝑐𝑟 was at 16° 

which is lower than the value of the clean airfoil by two degrees. 
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Therefore, sliding skin with a backward-facing step on either the suction or pressure side will 

degrade the aerodynamic performance of the airfoil and should be avoided. However, if this 

backward-facing step cannot be avoided, shifting the step from the leading edge towards the 

trailing edge, or/and decreasing the step depth can mitigate these adverse effects. 

Chapter 5 presented a design for a flexible morphing skin that consists of a highly anisotropic 

composite material. The matrix material of the composite outer layer was chosen to be silicone, 

for its proven reliability at a wide range of temperatures. Two fiber materials were tested, the first 

is the carbon fibers, and the second is aluminum strips. This composite material is supported on 

major ribs that extend along the chord-wise direction of the wing, and minor ribs that keep those 

major ribs intact, at the same time, they allow the major ribs to move relative to each other covering 

the envelope of morphing motion.  

22) FEA showed that a cosine shaped underlying mesh can reduce the local stresses and strains, 

especially for the shear (sweep) motion of the morphing skin.  

Silicone rubber composite with embedded carbon fibers and aluminum strips were tested as an 

outer sealant for the morphing skin. An experimental setup tested the out-of-plane deflection of 

the design by applying a normal pressure of 16.32 kPa on the morphing skin. Results showed that: 

23) Samples with carbon fibers showed lower out-of-plane deflection compared to the samples 

of the aluminum strips. Out-of-plane deflection could be further improved by increasing 

the fiber volume fraction in the composite material.  

In general, this morphing skin represents a kinematically successful design for a four-degree-of-

freedom morphing skin. However, a finite element model of the flexible skin was simulated over 

the morphing motion range, and wrinkles were formed on the flexible morphing skin.  

24) A normal Gaussian distribution showed to be a good representation of the shape of the 

formed wrinkles.  

Using a systematic approach, different wrinkles’ heights were introduced to the upper surface of a 

NACA 2412 airfoil at different locations along the chord-wise direction. Results showed that: 

25) Introducing a wrinkle to an airfoil adversely and significantly affects the aerodynamic 

performance of the wing. 

26) A wrinkle on the upper surface of an airfoil decelerates the flow, increases the pressure 

increase on the suction side of the airfoil, and results in lower lifting capabilities of the 

wrinkled airfoil. This drop reached 34.7% of the lift coefficient value of the clean airfoil 

when the wrinkle is introduced at X = 0.25 C and a height of 𝜀 = 0.01 C. 

27) This degraded lifting performance is mitigated when the wrinkle is shifted towards the 

trailing edge of the airfoil and its height decreases. The lift coefficient of an airfoil with a 
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wrinkle located at X = 0.75 and a height of 𝜀 = 0.002 C has increased to 99.5% of the clean 

airfoil. 

28) Introducing a wrinkle into the laminar boundary layer results in a transition in the state of 

the boundary layer from laminar to turbulent. This early transition of the boundary layer 

results in higher shear forces and larger drag coefficient values. In case of a wrinkle located 

at X = 0.25 C and a height of 𝜀 = 0.01 C, the drag coefficient increased by 267.9% of the 

value obtained by the clean airfoil. Shifting the wrinkle to a downstream location of X = 

0.75 C and decreasing its height to 𝜀 = 0.002 C resulted in lower drag forces that are 

104.1% of the clean airfoil.  

29) Combining the effect of the dropped lifting capabilities, and the higher drag forces has 

resulted in a significant degraded lift-to-drag ratios for airfoils with a wrinkled surface. The 

lift-to-drag ratio dropped by 75.6% for a wrinkle at X = 0.25 C and a height of 𝜀 = 0.01 C. 

This percentage improved to 93.4% by shifting the wrinkle location to X = 0.75 C and 

decreasing its height to 𝜀 = 0.002 C.  

30) In all cases, and regardless of the wrinkle location or height, the aerodynamic 

preperformance represented by Cl, Cd and L/D was significantly affected by the 

introduction of a single wrinkle. Usually during morphing, several wrinkles are formed, 

resulting in further lower performance.  

For that reason, and despite fulfilling the kinematic and structural requirements of a morphing 

skin, flexible skin is not a viable aerodynamic solution for morphing wings. 

As a general conclusion, it is recommended to use the sliding panels design as a solution for the 

morphing skin problem. Backward-facing steps must be avoided to mitigate the adverse 

aerodynamic effects listed above. Instead, gaps or trenches can be used between the panels.  If the 

condition 
𝐿

𝜃
∗ √𝑅𝑒𝜃 < 600  is fulfilled, the performance of this morphing skin can match the 

performance of a clean airfoil
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 Contributions: 

Most of the findings in this thesis have been published, either as a journal article, or in a conference 

proceeding. The publications that came out of each chapter are listed below. 

 

Chapter 2: 

In chapter 2, the CFD tool used to carry out the numerical simulations was presented. 

Unfortunately, there are few articles and documents in literature that have studied the effect of the 

gradient operator on the CFD solution. For that reason, the majority of chapter 2 has been dedicated 

to studying the order of accuracy of different gradient reconstruction methods, their compatibility 

with different types of grids, their efficiency and their effect on the accuracy of the solution. This 

work has resulted in two conference papers, and one journal article. 

 

1. Mishriky, F., and Walsh, P. (2016) Towards Understanding the Influence of Gradient 

Reconstruction Methods on Unstructured Flow Simulations. CSME Transactions 41. 2.1 

(8 pages). 

 

2. Mishriky, F., & Walsh, P. (2016) Towards Understanding the Influence of Gradient 

Reconstruction Methods on Unstructured Flow Simulations. Annual Conference of the 

CFD Society of Canada – CFDSC ‘16, Kelowna, British Columbia, June 2016. (8 pages) 

 

3. Mishriky, F., & Walsh, P. (2016) Observed Order of Accuracy of Gradient Reconstruction 

Methods. Annual Conference of the CFD Society of Canada – CFDSC ‘16, Kelowna, British 

Columbia, June 2016. (6 pages) 

 

Chapter 3: 

This chapter focused on studying the flow over cavities, and validating the numerical results versus 

experimental data, semi-empirical equations and other benchmark simulations. The high fidelity 

of the numerical results allowed the author to step up the analyses to derive a scaling law that can 

predict the critical width of the trench that will trigger the boundary layer transition. The analysis 

showed that when the trench fulfills the conditions (
𝐿

𝜃
∗ √𝑅𝑒𝜃 < 600) , the boundary layer 

bypasses the cavity and maintains its laminar state. This means that sliding panels can be 

kinematically designed to fulfill this condition resulting in a morphing skin has an aerodynamic 

performance close to that of a clean airfoil. The work of this chapter resulted in a journal article 

and conference proceeding. 
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4. Mishriky, F. & Walsh, P. (2017) Prediction of boundary layer transition over cavities and 

its applications in morphing wings. AIAA journal. (Submitted final revision on June 29th, 

2018, 28 pages). 

5. Mishriky, F. & Walsh, P. (2017) Aerodynamics of Trenched Airfoils for Morphing Skin 

Applications. CASI Aero’17 conference, Toronto, Ontario, June 2017. (9 pages) – The best 

presentation award. 

 

Chapter 4: 

Chapter 4 focused on the aerodynamics of airfoils when a backward-facing step is installed on 

either side of the airfoil. The aerodynamic effects of the step location, depth, and angle were 

studied to understand the penalties expected when the panels of the sliding morphing skin shifts in 

a way that introduces this type of discontinuity. The aerodynamic analysis of this chapter resulted 

in four journal articles. 

 

6. Mishriky, F., & Walsh, P. (2016) Effect of the Backward-Facing Step Location on the 

Aerodynamics of a Morphing Wing. Aerospace, 3, 25 (15 pages - Published). 

 

7. Mishriky, F., & Walsh, P. (2016) Effect of Step Depth and Angle in Kline-Fogleman 

(KFm-2) Airfoil. Global Journal of Research in Engineering, 16.1, (7 pages – Published). 

 

8. Mishriky, F., & Walsh, P. (2016) Effect of Step Depth and Angle on the Aerodynamics of 

a Sliding Morphing Skin. American Journal of Aerospace Engineering, Vol. 3, No. 3, 2016, 

pp. 24-30. doi: 10.11648/j.ajae.20160303.11 (8 pages – Published).  

 

9. Mishriky, F., & Walsh, P. (2016) Aerodynamics of a Backward-facing Step on the Lower 

Surface of a Sliding Morphing Skin. Advances in Aerospace Science and Technology (18 

pages – Under Review). 

Chapter 5: 

In order to avoid having discontinuities on the morphing skin, the design and aerodynamics of a 

flexible morphing skin have been introduced in chapter 5. The analysis showed that this design is 

kinematically viable. It can morph in the required degrees of freedom with minimum energy 

requirements, while maintaining its out-of-plane stiffness. However, during morphing, wrinkles 

are formed on the surface of the wing resulting in a poor aerodynamic performance. Results of 

these analysis resulted in two conference proceeding articles, one presents the mechanical design, 

and the other studies the aerodynamic performance of wrinkled airfoils. 

 

10. Mishriky, F. & Walsh, P. (2018) Aerodynamics of Flexible Morphing Skin. CFD Society of 

Canada. ‘18, Winnipeg, Manitoba, June 2018. 

 

11. Mishriky, F., Walsh, P., & Xi, F. (2015) Reinforced Cellular Structure Morphing Skin. 

CASI – AERO ‘15, Montreal, Quebec, May 2015. (10 pages) 



 

143 

 Future Work: 

This section presents some of the future work that can be added to the work present in each chapter. 

In chapter 2 which focused on the numerical results’ validation and verification, a study can be 

conducted to compare the numerical results of different turbulence models with benchmark 

experiments. Results can focus on boundary layer transition, flow separation over airfoils, laminar 

separation bubbles at low Reynolds numbers and shock wave formation at supercritical Mach 

numbers. These flow features are the main secondary flows that are commonly encountered. 

Another major limitation in CFD modeling is the turbulence modeling of separated flows. Despite 

providing several validation test cases for the turbulence model used in chapters 2 and 3, 

experimental validation of the ability of the transition SST model to capture the physics of shear 

flows will settle any disputes about this limitation. 

The third chapter focused on the geometrical factors of a trench, and their corresponding flow 

features that will cause the boundary layer to experience transition from laminar to turbulent state 

over the trench vicinity. One of the main reasons of the growth of the flow instabilities over the 

trench were the acoustic radiations that are emitted from the trailing edge of the cavity. The author 

believes that by rounding the trailing edge of the cavity, the acoustic waves can be reflected at 

different rates than the vortex shedding rate, thus avoiding aero-acoustic resonance. Other factors 

that was not investigated in this thesis and can affect the stability of the boundary layer are the 

cavity depth, and the turbulence intensity of the upstream flow. 

In chapter 4, additional analysis can be performed on airfoils with backward-facing steps by 

changing the shape of the step vicinity and restores the original shape of the airfoil after a small 

distance from the step edge. The author believes that this configuration can mitigate the large 

pressure drag acting on the step vertical wall. A cascade of backward-facing steps can also be 

tested to resemble a full morphing airfoil. In addition to this, a modal stability analysis can be 

performed to relate the step depth and flow variables with the instability modes and their 

amplification rates. This analysis may reveal ways that can delay the transition of the boundary 

layer at the step location. 

For the fifth chapter, further study of the kinematics of stretchable skin and their patterns of 

deformation during morphing can be of beneficial use to integrate the aeroelasticity of the design. 

The morphing motion of flexible skins can produce ripples and wrinkles parallel to the direction 

of morphing. The author believe that there is a condition that relates the boundary layer Reynolds 

number momentum thickness to the minimum height for the wrinkle that will allow the laminar 

boundary layer to maintain its laminar state. A systematic testing of the different winkle heights 

can yield a non-dimensional number that can predict the transition of the state of the boundary 

layer. 
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APPENDICES 

Appendix A: Steps to run a FLUENT case on Sharcnet server 

To run a FLUENT case on sharcnet, the user can follow these steps: 

1. Create the geometry and grid on your local machine. 

2. Open ANSYS FLUENT on a local machine (one of the computer labs on campus). 

3. Load the grid to FLUENT and set all parameters of the numerical solver. 

4. Initialize your case. 

5. Export the ‘.cas’ and ‘.dat’ files. 

6. Using a word processing software (such as ‘Wordpad’), generate a journal file. The 

journal file is the file that is used on sharcnet to start the simulation and communicate 

with FLUENT. A simple example of a journal file is shown below: 

 

Figure A. 1. Sample of a script used in a journal file used to start a FLUENT task on sharcnet. 

7. Using a secure shell software like ‘WinSCP’, copy the case and data files to a know 

folder on the work directory on sharcnet cluster. The cluster must be supporting FLUENT 

application such as Orca, Redfin and Saw. Please check Sharcnet for a full list of the 

clusters that can be used for this simulation. 

8. Login to a SSH client that supports command line user input such as ‘PuTTy’. 
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9. Navigate to the location where the case and data files are located. 

Ex: cd gwork/User_name/Folder_name 

10.  To start running the case, the FLUENT module has to be loaded first using the following 

command: 

module load ansys/15.0.7  

11. a command line has to be typed specifying the time of this simulation, the number of 

cores that need to be used, the RAM memory needed for this task, name of the output 

file, whether the case is 2D or 3D, specify if double precision is needed, and the name of 

the journal file that will initiate the simulation. 

sqsub -r 3h --nompirun -q  mpi -n 16 --mpp=1G -o ofile.%j fluent 2ddp Journal_file.jou 

Command Meaning 

-r 3h 
3 hours of running the simulation task 

-n 16 
16 cores will be used 

--mpp=1G 
1 G of RAM memory will be used 

-o ofile.%j 
The output data will be stored in a file named 

‘ofile’. This file will contain all data about the 

solution convergence. 

2ddp 
The case is 2D and double precision will be used 

for the solution. 

Journal_file.jou 
The journal file ‘Journal_file’ will be used to 

start the simulation 

Table A. 1. The command line used to run a FLUENT task on Sharcnet server 

 

12. To check the status of your task, you can type the following command: 

sqjobs 

The status of your task will be displayed on the command window; Q means that the task 

is queued, R means that the task is running, and D means that the task is done. 
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Appendix B: General guidelines in generating structured grids for 

airfoils 

The quality of the mesh is one of the most important element in any CFD numerical simulations. 

The more time spent in perfecting the grid, the less time the user will have to spend in trouble-

shooting the results. There are many lessons learnt over the course of this work that may be crucial 

in obtaining physical and accurate numerical results from the CFD simulator. The purpose of this 

appendix is to provide the reader with some of general tips when generating a mesh to simulate 

transonic flows over sharp edge airfoils. The presentation of these general guidelines do not follow 

any specific guidelines.   

• Blocking for a sharp trailing edge airfoil: 

A convenient topology for a sharp edge airfoil is the C topology where the blocks are wrapped 

around the airfoil in a C shape. An example of this grid topology is shown in the figure B.1. 

 

Figure B. 1. C-Grid topology for a NACA 2412 airfoil with a sharp edge trailing edge. 
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Sharp edges are usually a location where a there must be split. For sharp edge airfoils, the sharp 

edge is a place where there must be horizontal split in the grid. Also, it should be noted that every 

separate zone in the geometry must be covered with blocks that are not shared by any other zone.  

 

Figure B. 2. Blocks distribution around a NACA 2412. 

For example, in figure B.2 the airfoil has two zone, the upper and lower surfaces zones. The upper 

surface is covered with blocks A, B, C, D, and E, while the lower surface is covered with blocks 

F, G, H, I, and J. For if block A is shared between the upper and lower surfaces, only one of them 

will be recognized by FLUENT solver. 

 

• Location of first node and its effect on the y+ value 

Another important aspect that has to be carefully considered is the location of the first node close 

to the wall. Most turbulence models have special treatment for boundary layer and essential 

condition for this wall treatment to be correctly implemented, the first node of the mesh has to fall 

within the laminar (or sub-laminar) boundary layer. A general good practice for a proper resolution 

of the boundary layer is to have a Y+ value less than 1 over the surface of the airfoil. Since the Y+ 

value is function of the local velocities, the user needs to iteratively place the first node, resolve 

the flow, check the Y+ value, and repeat until the Y+ value falls below 1. However, a rule of thumb 

that the author found useful is using equation (B.1) to calculate the location of the first node. 

 ∆𝑦 = 𝐿 𝑌+√74 𝑅𝑒𝐿
−13/14 (1.7) 
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 Where ∆𝑦 is the location of the first node, L is the length scale, and 𝑅𝑒𝐿 is Reynolds number based 

on this length scale, which for airfoils will be the chord length.  

 

• Expansion ratio should not exceed 1.2 

Placing the first node at a proper location (Y+ <1) does not necessarily guarantee that the boundary 

layer is resolved well. For that reason, it is important to make sure that the expansion ratio away 

from the walls is always less than 1.2, a personal preference is 1.05 for the first few layers of the 

boundary layer. 

• Cluster more nodes at regions of higher curvature. Ex: the leading edge of the airfoil 

Now, having the nodes properly placed along the off-wall direction, the spacing between the nodes 

along the airfoil wall is another important issue. It is important to have enough nodes to properly 

resolve the curvature of the geometry. This means that at higher curvature more nodes should be 

used. Figure (B.3) shows how the mesh nodes are clustered at the leading edge of the airfoil. 

 

Figure B. 3. Clustering of the nodes at the leading edge of the airfoil to properly capture the 

geometry’s curvature. 
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At the end of the day, the mesh of any CFD model has to be treated as a piece of art. Any 

discontinuity or discrepancy that capture the eyes of the engineer means that there is a potential 

source of error in the CFD solution. Several tips and books on how to generate the grid will be 

useful, but it is the engineering judgement that can have the final word. 
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