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ABSTRACT 

 

Data mining applications and services are becoming increasingly important, especially in 

this age of Big Data. QoS (Quality of Service) properties such as latency, reliability, response 

time of such services can vary based on the characteristics of the dataset being processed. The 

existing QoS-based web service selection methods are not adequate for ranking these types of 

services since they do not consider these dataset characteristics. We have proposed a service 

selection methodology to predict the QoS values for data analytic services based on the attributes 

of the dataset involved by incorporating a meta-learning approach. Subsequently we rank the 

services according to the predicted QoS values. The outcome of our experiments proves the 

effectiveness of this approach with an improvement of above 20% in service ranking when 

compared to the traditional QoS selection approach. 
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CHAPTER 1 

INTRODUCTION  

 

1.1 Background and the Problem Statement 

1.1.1 Background  

In today’s fast growing and demanding IT world, the technical needs of businesses rely 

on a wide variety of development languages, tools and platforms. Moreover, many organizations 

need to connect across the globe to enable inter- and intra-organization communication. Service-

oriented computing (SOC) addresses many of these IT challenges by using services since 

services are platform independent, autonomous, loosely coupled as well as support rapid and low 

cost distributed application development [1]. Services are the fundamental elements that can be 

used for creating software applications that are made available across a network. 

A web service is a service that can be used across the Internet and is identified by a URI 

(Uniform Resource Identifier). Web services can be implemented using XML (Extensible 

Markup Language) based interfaces such as WSDL (Web Service Description Language) [2]. 

The SOAP (Simple Object Access Protocol) specification is an XML based protocol used to 

access web services across the Internet. Recently, the REST (Representational State Transfer) 

protocol has become widely adopted for web service creation. The REST architectural style is 

based on HTTP (Hypertext Transfer Protocol) standard methods used to retrieve or manipulate 

resources.  

Service Oriented Architecture (SOA) is an architectural model that can be used to 

logically support service oriented computing [2]. It typically comprises of three entities: the 

service provider, the service consumer and the service registry. Service providers can publish 
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their services, their constraints and descriptions in the service registry. Service consumers can 

find and select such services through the registry. The UDDI (Universal Description Discovery 

and Integration) is an open specification of a registry where services can be discovered using 

approaches such as keyword based search engines and category browsing [3]. 

 SOA can also include a service broker as a trusted third party to ensure that service 

providers comply with privacy and security regulations. It can assist the service requestor to find 

a provider from a list of service providers it manages based on the requirements.  

The implementation backbone for an SOA is the Enterprise Service Bus (ESB). The ESB 

is a message bus that supports interoperability among different service applications. It uses 

message protocols to ensure an efficient control, flow and translation of messages between 

services [4]. 

As more services become available, there is a need to be able to identify the most 

appropriate web service for a specific application. Various efforts have been made to utilize 

syntactic, semantic and structural information of web service specifications as well as build 

extensive service description and publication techniques [5]. Web services can be described on 

the basis of their functional and non-functional aspects. The functional value of a web service is 

used to describe what a web service does and the non-functional values describe how the web 

service supports what it offers [3]. To distinguish among functionally similar web services, non-

functional attributes or Quality of Service (QoS) attributes can be considered. For instance, to 

differentiate among several hotel booking reservation services that are functionally similar to 

each other, a user can provide his QoS attribute constraints such as the “cost of using the web 

service” should be less than $5, the “availability of service” should be greater than 90% and the 
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“reliability of the web service” should be greater than 80% in a high peak vacation time to find 

services that best satisfy his needs.  

Service matchmaking refers to the process of identifying services that meet the specified 

requirements of a service client. This process is used to determine which services meet the 

requestor’s QoS needs. Service matchmaking is used to filter services from the list of available 

services. Service ranking sorts the matched services based on the degree to which the service 

meets the specified requirements. 

1.1.2 Problem Statement 

Various approaches for QoS based web service selection have been proposed in recent 

literature. There are vector and matrix based approaches [6-8] in which provided QoS values and 

QoS requirements are represented in a vector form. The services are then ranked based on the 

distance between the vector representing the available QoS values and the request vector. Utility 

based approaches in [9, 10] optimize utility functions that are used to represent the QoS 

requirements. The MCDM (Multi Criteria Decision Making) approach in [11-14] is used to 

prioritize among different types of QoS (such as required QoS attributes versus optional QoS 

attributes) during service selection. 

We consider a situation where a web service is used to process data, for example data 

analytic web services such as classification or clustering services. In a world which is leaning 

towards big data and data analytics, data mining algorithms and predictive analytics have 

become more applicable and businesses are taking initiative and interest in investing into 

applying such techniques.  However, running such algorithms on a client machine may not be an 

ideal solution considering the volume of data, the speed of the incoming data and the cost of 

using such software. Hence, a client would prefer to use data analytic web services to process his 
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data. In such a scenario, the aforementioned web service selection methods would not suffice in 

recommending web services. This is because some of the QoS values for services would vary for 

different datasets. For example, a large dataset is expected to take longer for such services to 

process and can thus affect QoS performance attributes such as “response time” and “latency”. 

The “reliability” of a service can be negatively affected if the algorithm that the service 

implements is sensitive to certain meta-attributes. For example, a service that cannot handle 

missing data at all will fail on a dataset with missing values, which will thus decrease its 

reliability. 

The existing service selection schemes need to take into consideration the impact of 

dataset being processed on the QoS values of a service to support the recommendation of web 

services most suitable for the dataset. In other words, the service selection algorithm needs to 

incorporate “data-dependent QoS attributes”. We can further categorize such “data-dependent 

QoS attributes” as “per dataset data-dependent QoS attributes” and “per service data-dependent 

QoS attributes”. The “per dataset data-dependent QoS attributes” can include attributes such as 

latency, accuracy and response time as these attributes change for a service based on the specific 

dataset involved. The “per service data-dependent QoS attributes” on the other hand can include 

measures such as reliability and throughput since such metrics measure the overall quality of the 

service based on all the datasets they have dealt with. However, not all QoS values are data 

dependent, some QoS measures such as availability, interoperability, integrity are not affected by 

the data involved.  

Our focus is on services that process data such as data analytic services, and the problem 

we would like to solve in this work is to come up with a selection approach which considers not 

only a service’s QoS properties, but also the meta-attributes (e.g., dataset size, data type, number 
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of dimensions, etc.) of the dataset to be processed, and then rank or recommend data analytic 

services based on how well they deal with the given dataset. 

1.2 Objectives 

 In this thesis, we have proposed a QoS service selection system for data analytic services 

that incorporates the data characteristics i.e. the meta-attributes of the dataset involved. For our 

work, we have considered data clustering services as an example of such data analytic services. 

The previous methods for QoS based selection may not suffice in recommendation of such data 

analytic services as the QoS values of the service may vary based on the kind of the dataset being 

processed. To facilitate the selection of data analytic services, we have proposed to use a meta-

learning algorithm that predicts QoS values of services for a particular dataset, and then performs 

selection based on the predicted values.  

Our objectives include the following: 

1) To propose an algorithm that can be used to predict QoS values of data analytic web 

services for a new dataset to be processed;  

2) To provide a recommendation and ranking mechanism of data analytic services based on 

their predicted QoS values. 

1.3 Methodology 

Our approach towards recommending data analytic services involves training the 

framework with different datasets. Every time the system is used for running a service on a 

dataset, we can collect the information describing the datasets, i.e. “meta-attributes” as well as 

the QoS data based on the service performance. This collected data can be used to maintain a log 

of QoS values that can vary based on the kind of dataset. For the purpose of our experiments, we 
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generated many synthetic datasets and applied the services on them. This collected data can be 

used as the data-repository for the system. 

To rank services for a new dataset, we can identify datasets similar to it from the existing 

dataset repository. After having discovered similar datasets, we can predict the “per dataset data-

dependent QoS attributes”. In our thesis, we used accuracy and latency as “per dataset data-

dependent QoS attributes”. We also update the “per service data-dependent QoS attributes” such 

as reliability to reflect the overall behavior of the service based on the service performance for all 

the datasets used by the service.  

The estimated QoS values are in turn used as input to the QoS based service selection 

module to rank the services for the new dataset. In our framework, we have used a utility based 

selection technique to rank the services based on QoS values. This way, a service consumer can 

make a better decision about which service to select without having to try all the services. 

1.4 Thesis Outline 

The rest of the thesis is organized as follows: 

In Chapter 2, we discuss some of the clustering methods we used in our services. We 

present a review that spans over various QoS driven service selection techniques proposed in the 

past. We also review some meta-learning methods that have been used to predict the ranking of 

machine learning algorithms. 

In Chapter 3, the methodology of our system is presented. We explain how we calculated 

different QoS values for the services we have considered. We describe our similarity and 

prediction calculation approach. Finally, we provide a description of the service selection 

technique used in our framework. 
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In Chapter 4, we discuss our experiment design and the tools and system configuration. We 

discuss the data generator for creating the synthetic datasets used in our experiments. We also 

describe the metrics used for evaluating our approach. We present our experimental results and 

discuss our observations. 

Finally, we conclude our thesis in Chapter 5 with a summary of our methodology and 

results. We have also mentioned some suggestions for future work. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

 

There are two types of related work we would like to discuss in this chapter: i) QoS Based 

Web Service Selection and ii) Meta learning approaches. Before we go on to review these related 

works, we would first like to discuss the clustering algorithms that have been chosen as the 

representative data analytic algorithms for implementation of our services in the later 

experiment. We then present a review for various QoS based web service selection 

methodologies. We also discuss some meta-learning techniques that can be applied to provide 

recommendation of machine learning algorithms.  

2.2 Clustering Methods 

Clustering is a process which divides a set of data points into groups in such a way that the 

data points within a group are similar to each other while they remain dissimilar to points in 

other groups. Data clustering can be applied for a wide span of problems in image analysis, web 

search, social media, information retrieval, marketing etc. For example, in the area of image 

analysis, clustering can be used in handwritten character recognition systems based on the 

lexemes used in the text [15]. 

The k-means algorithm is a classic clustering algorithm which begins by assigning ‘k’ 

random data objects as the center of ‘k’ clusters. It then places the rest of the data points in these 

‘k’ clusters according to a similarity measure such as the Euclidean distance between the center 

and the data point. Next, the algorithm iteratively tries to improve the within-cluster variation by 
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recalculating the cluster centers based on the current memberships and subsequently reassigns 

the data objects according to the updated centers. The iteration continues until the assignment of 

the data points in their respective clusters is stable [16].  

Several variations to the k-means algorithms have been proposed. The x-means [17] 

algorithm extends the k-means algorithm using the ‘Improve Structure’ operation to determine 

which subset of the current centroids needs to be split. This information is used to decide where 

the new centroids should be placed. The set of centroids with the best ‘Bayesian Information 

Criterion’ score is used as the final output. 

The EM (Expectation Maximization) clustering algorithm, another k-means variant, 

employs a probabilistic approach in which each iteration comprises of two main steps : the 

‘expectation’ step in which cluster probabilities are computed and the ‘maximization’ step that 

attempts to maximize the similarity of the objects in a cluster by adjusting the center of the 

cluster [16, 18] . The Farthest First algorithm based on the farthest first traversal algorithm in 

[19] is another version of the k-means algorithm and is comparatively simpler and faster [18]. 

A global metric based on ‘cluster histograms’ which is generated based on size of a cluster 

is used in the CLOPE algorithm to cluster categorical data. A parameter called repulsion is used 

to control the extent of similarity of the objects within a cluster [20].  

The COBWEB clustering method is a clustering technique that produces a hierarchical tree, 

the nodes of which represent a cluster and the probability distribution associated with it. It 

supports incremental clustering and accommodates a new object in the tree based on the 

‘category utility', an evaluation metric used to maximize intra cluster similarity and inter cluster 

dissimilarity [21, 22]. 
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The notion of density based clustering is used in the DBSCAN algorithm which identifies 

clusters based on the neighborhood of the points in a dataset. The specified minimum number of 

points required to form a cluster and the distance between the points is used to define the 

neighborhood of a point. Data points that do not satisfy these cluster requirements are considered 

as outliers [23]. 

Hierarchical clustering methods organize data points in a hierarchical manner to determine 

groups of clusters and their sub groups. There are two main approaches to achieve hierarchical 

clustering, the agglomerative method (the bottom up approach) and the divisive method (the top 

down approach). The agglomerative method initially treats each data point as a cluster and 

merges the clusters in each step to create bigger clusters. The divisive method on the other hand, 

begins by considering one cluster comprising of all the data points which is split into smaller 

clusters iteratively [16]. 

Various agglomerative clustering techniques are based on the criteria used to determine 

similarity between clusters based on the linkage measure. The single linkage algorithm is based 

on the link between the nearest clusters and the shortest distance between the clusters controls 

the merge of two clusters. Conversely, the complete linkage algorithm allows clusters to fuse 

according to the maximum distance between the closest clusters [16]. 

      The average link clustering technique utilizes the average distance between every pair of 

member instances of the two clusters. The Ward clustering link type method aims to minimize 

the increase in the distance between the clusters prior to merging them in iteration. The distance 

used for Ward clustering is the sum of the squares of the distance of the data points from the 

centroid [18].  
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2.3 QoS Based Web Service Selection 

Web services are software resources that are well defined and self-contained, can be 

assembled to provide business functionalities and can be advertised across the Internet [4]. Web 

services are able to support various processes as well as the creation of dynamic web sites. Since 

many more web services are being developed by various providers, we need to be able to choose 

services that best meet the requirements at hand. To differentiate among services in a pool of 

functionally equivalent services, the non-functional attributes or QoS (Quality of Services) 

attributes such as response time, latency, reliability, availability, accessibility, etc. can be 

evaluated to distinguish services based on such quality criteria.  

The QoS attributes can include several measures [24] [7] that can be used to assess the 

performance of a service. Reliability indicates how many error messages have been generated 

compared to the total number of messages. Latency is considered as the time taken for the 

request to be processed. Response Time is the time it takes to send a service request and receive 

the response. Throughput is another performance measure that represents the maximum number 

of invocations that can be managed in a certain time period. Availability is defined as the 

percentage of time the service is available. Accessibility can be used to assess if the system is 

functioning normally or if the requests can be handled without delay.  

The QoS based service selection process can entail both service matching and service 

ranking. Service matching is done to match a specified request with available services to choose 

among several services. The matched services can then be ranked based on the degree to which 

they fulfill the requirements.  

Preferences for specific quality measures can be incorporated in the selection process by 

assigning weights to the QoS metric. Demands including user demands on different QoS metrics 
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can be expressed as constraints. To optimize the service selection process, several approaches 

such as constraint programming (CP), mixed integer programming, multi-criteria decision 

making approaches (MDCM) have been applied in recent works as discussed further on.  

QoS values for each web service are represented in two-dimensional matrix form in [6-8]. 

These values are then normalized to ensure a uniform measurement independent of the units 

used. In the model proposed in [6], the quality matrix undergoes an additional phase of 

normalization to allow the representation and manipulation of groups of quality criterion. The 

matrix representation facilitates service ranking in [7] by incorporating user specified weights 

and aggregating the values in each row, where each row represents a web service. Yan and Piao 

[8] discuss a matching algorithm which selects the services that meet the client requests based on 

the compulsory constraints and the relationship statements specified. The matched web services 

are then ranked by computing the distance between the vector representing the requirements and 

the vector representing the published QoS attributes. 

In [9], a global utility function is built as a weighted function of individual utility functions 

where each individual utility function is used for different QoS metrics such as response time 

and throughput. This function is used by a service broker to select a service provider by 

maximizing the user-provided utility function under the cost constraints. The framework here 

employs a predictive analytic performance model to estimate the values of such metrics for the 

current workload commitments of each provider. Another utility based approach is used in [10]. 

This method uses a declarative logic based mechanism to provide service selection. The ranking 

is based on optimizing utility policies using optimization techniques including linear 

programming. 
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The model in [25] allows two-way service matchmaking by checking conformance of the 

provider’s offer to the client’s demand after ensuring that both the constraints in the demand and 

offer are consistent with each other. A constraint can be represented as a relation among the 

different variables.  The offers are then optimized based on weighted combination of utility 

functions by considering it to be a constraint satisfaction problem (CSP). A CSP is a problem 

that is expressed in the form of constraints.  

The QoS-based web service matchmaking task in [26] is done using an MIP (Mixed Integer 

Programming) engine for linear constraints and CSP engine similar to [25] for non-linear 

constraints. The framework here also provides an advanced categorization of the results: super 

offers, exact offers, partial offers and failed offers based on how well the services have been 

matched to the constraints in the demand. 

The semantic QoS aware framework in [27] aims to find services that are semantically 

compatible in terms of their QoS attributes. The Semantic Matchmaking is done by applying 

description logic reasoning. The QoS conditions are translated to constraints and then checked 

for conformance using Constraint Programming. Finally, a vector based ranking approach that 

considers the tendency and weights associated with the QoS attribute is used to sort the candidate 

services. 

Multi Criteria Decision Making (MCDM) methods can be implemented to assist in service 

selection based on multiple priorities. Such techniques have been used to incorporate tradeoffs 

between QoS characteristics [11, 12]. Analytic Hierarchical Process (AHP) is a popular 

technique that solves problems by modeling them in the form of a hierarchy. This hierarchy is 

created by dividing the multiple criteria involved into sub-criteria and further dividing them 

again into sub-criteria and thus establishing different levels of criteria with the solution 
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alternatives in the final level. The priorities associated with the criteria and their sub criteria is 

incorporated to assist in computing the relative ranking of the various options within each level 

and finally determine the overall rank of each alternative [12]. 

The QoS-based ranking procedure in [12] implements the AHP method along with a 

supporting ontology. This approach entails four phases. First, the AHP hierarchy is generated to 

assist in establishing the importance levels between a pair of QoS related criteria such as user 

constraints versus system constraints, required constraints versus optional constraints etc. In this 

process, groups and sub-groups of QoS criteria are created at each level of the hierarchy. The 

candidate services form the alternative solutions of the AHP hierarchy. The normalized weight 

vector is computed for each group. The “service relative ranking” matrix is then calculated by 

considering predefined QoS comparison rules. Ultimately, the final ranking vector is derived 

from the “service relative rank” vectors of the QoS criteria and their associated weights. This 

vector is then sorted to acquire the ranked list of services. 

Another MCDM approach presented in [11] is a generic one that can be integrated with 

existing selection techniques that have not accommodated priorities. This methodology is an 

extension of the “UML QoS Framework” to allow representation of priorities by introducing 

new meta-classes. The “PROMETHEE method” is adopted here as a class of outranking methods 

to compare the alternatives in a pairwise fashion and generate a ranking.  

Skyline based approaches have also been employed as another method towards multi criteria 

matching of web services. A skyline is the subset of points in a d-dimensional space that are not 

dominated by any other point. This concept of “dominance” has been applied in the service 

selection proposal in [13]. For a particular object, the “dominated score” specifies the average 

number of objects that dominate it, while the “dominating score” represents average number of 
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objects that it dominates. “Dominance score” takes both of these measures into consideration 

with the help of a scaling factor. Three algorithms for ranking web services based on these three 

scores are presented in this research with the aim of retrieving the top specified number of 

dominant web services and combining the degrees of match for various parameters. 

The methodology in [14] takes into consideration the issue of uncertain QoS values and the 

notion of “p-dominant service skyline” to perform service optimization where ‘p’ is the 

probability of a service provider being dominated by another provider. A two-phase algorithm 

which makes use of a p-R-tree indexing structure to calculate the p-dominant service skyline is 

discussed. The p-dominated providers are pruned out using a dual-pruning scheme and then the 

dominant probability is calculated on the rest of the providers. 

 Fuzzy logic theory concepts can be applied to perform service selection as well. A 

personalized web service selection UDDI based architecture is discussed in [28] which takes into 

consideration, both the objective information given by the service providers as well as the 

subjective information supplied by users. This system architecture enables the interaction 

between the client, the QoS Agent and the service provider. The client is responsible for 

handling user requests and responses while the service provider can provide QoS information to 

the extended UDDI registry. The QoS agent contains modules to handle client’s QoS requests, to 

monitor the QoS information and evaluate it to make recommendations. The fuzzy expert 

component uses the objective information to provide the final QoS matching degree after two 

stages of fuzzy inference. A genetic algorithm is used to modify the objective information to 

enhance the accuracy of the fuzzy inference. Finally, the average recommended information is 

obtained by calculating the “trustability” of the users and similarity between them. The 

recommender system generates the list of the top web services in accordance to user preferences. 
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We have reviewed the existing service selection approaches that aim to create a mechanism 

to assist in choosing among functionally equivalent services based on their QoS aspect. To the 

best of our knowledge, no paper has provided a QoS selection mechanism specific for data 

analytic services or considering the effects of data attributes on QoS values. In this thesis, we 

have discussed an approach to facilitate selection for data-analytic services considering that the 

quality of services can vary for different types of data. 

There have been some recent works [29-31], that address requirements and models to 

support the implementation of data mining services. The proposed model in [29] has two main 

components for implementing a data mining service: the “mining data” which is the data source 

and the “mining engine” which serves as the main building block and is responsible for mining 

tasks such as building the model, training it and evaluating it. Both models in [29, 30] support 

QoS negotiation though they have not discussed an approach towards QoS service selection. The 

K-Grid in [31] is a framework that allows the execution of data mining applications as services 

on the Grid.  

2.4 Meta Learning Approaches 

Algorithm selection in machine learning is a challenging task as it often relies on expensive 

trial and error techniques and specialized knowledge of the analyst. The meta-learning approach 

can assist in the recommendation of data mining algorithms based on previous performance 

results of these algorithms. Meta-learning techniques can be used to study the relationship 

between characteristics of the problem such as the characteristics of the dataset and performance 

of the machine learning algorithm.  

Meta-attributes can be used to measure the dataset characteristics. The meta-attributes can 

include simple measures that can be extracted directly (e.g., the number of examples in a 
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dataset), to statistical measures that are based on the probability distribution of the dataset (e.g., 

the skewness of the attributes), to information theoretic metrics that measure the entropy of 

attributes (e.g., mutual information) [32]. In many of the meta-learning frameworks, the 

performance of the candidate algorithms is assessed based on a single measure such as the 

accuracy of the algorithm. The learning process in the meta-learning system can be executed by 

machine learning algorithm such as decision trees and neural networks [33]. The knowledge 

acquired in this process can be used to recommend machine learning algorithms for a new 

dataset.  

The main application area towards selection of machine learning algorithms has been in the 

recommendation of classification algorithms [34]. In [35], the authors have attempted to 

generalize the learning approach for selection of algorithms to other domains such as regression, 

time series forecasting, sorting, constraint satisfaction problems and optimization. There has also 

been some recent research on applying meta-learning techniques to predict the performance of 

clustering algorithms such as [33, 36, 37] based on a set of meta attributes describing the dataset. 

The meta-learning approach in [33, 36, 37] employs a meta-learning algorithm to learn the 

relation between the set of meta-attributes and the ranking of the algorithms. The system is 

initially trained with a set of datasets based on the extracted meta-attributes that characterize 

these datasets. The clustering algorithms are ranked for each dataset based on a specific 

evaluation metric that assesses the quality of the clustering results such as the ‘global error rate’ 

in [36] or FBCubed Metric in [33]. In this manner, a recommendation can be made for a new 

dataset according to its meta-attributes.  

In [33], ranks of some clustering algorithms on selected UCI datasets [38] were established 

based on the calculated FBCubed Measure. The k Nearest Neighbor algorithm (kNN), Multi-
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Layer Perceptron (MLP), neural network, the Decision Tree and Naive Bayes were used as the 

meta learning algorithms to map the relationship between the proposed meta attributes and the 

ranking. Their findings showed that the kNN algorithm performed the best for their datasets. 

The Support Vector Machine (SVM) regression algorithm is used as the meta-learner in 

[37]. The SVM algorithm was chosen by the authors based on their preliminary analysis that 

indicated that SVM provided better accuracy than neural networks and kNN. The SVM based 

meta-learner was applied on cancer gene expression microarray datasets to suggest ranking of 

different clustering algorithms including the k-means algorithm, Single Linkage, Complete 

Linkage, Average Linkage, Spectral clustering etc.  

The above framework is extended in [36] with a different set of meta-attributes and the 

algorithms were ranked using Multilayer Perceptron network and Support Vector Regression as 

the meta-learners. The experiments here are based on artificially generated datasets. Several 

combinations of different dataset characteristics and cluster structures were used to train the 

system to work with different types of datasets.  

Brazdil et al [39] use a different approach towards recommendation of classification 

algorithms. The presented model here first identifies similar datasets to the query dataset based 

on the expectation that the performance of a classification algorithm should be comparable for 

similar datasets. Using this knowledge, a ranking can be generated based on the performance of 

the similar datasets. To identify these similar datasets, the kNN algorithm has been applied. 

Unlike [33, 36, 37], this approach considers multiple criteria for ranking of classification 

algorithms. The ranking of algorithms incorporates the speed of the classification algorithms in 

addition to their accuracy using a method called “Adjusted Ratio of Rank (ARR)” in which the 

advantage of one algorithm over the other is represented as a ratio. 
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Vukićević et al [40] opine that a cloud-based architecture would enable an efficient meta-

learning system since the size of the problem and algorithm space can affect the accuracy of the 

meta-model. They proposed an extended meta-learning system that clusters biomedical data such 

as gene expression and cell type classification datasets using a component based design. Using 

this model, a hybrid algorithm is created according to the meta-attributes of the current problem. 

The hybrid algorithm is developed by combining components that are reusable among similar 

structured algorithms that have common internal functionalities such as the distance measure 

used and cluster evaluation metrics.  

The meta-learning technique in [41] uses the “RIPPER algorithm” as a rule learner to 

generate rules for a pair of algorithms which can describe which algorithm performs better than 

the other. These pair wise meta-rules are then converted to meta-attributes. The “Approximate 

Ranking Tree Forest” is used to predict the ranking of supervised algorithms. 

Since meta-learning techniques provide recommendation based on the previous datasets 

used to train the learner, an experiment database can be used to ensure an effective 

implementation of meta-learning systems. Experiment databases store information associated 

with experiments which includes the datasets used, the algorithms and corresponding parameter 

settings applied along with the results [42]. An experimental database has been implemented in 

[42], and the authors have extended it in various works including supporting ontologies and a 

description language in [43]. 

An experimental database can provide a wealth of knowledge to analyze and enhance 

research experiments. The adoption of such a system can ensure the reproducibility and 

reusability of results and hence save researchers the time and effort of having to perform 

previously conducted experiments for benchmarking and comparison purposes [43]. Their 
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application can thus be extended to meta-learning systems as the information pertaining to the 

meta-attributes, the performance features of the candidate algorithms, the evaluation criteria and 

results used can be collected in an organized manner and assist in refining the meta-learning 

system.  

Our approach differs from the methodology used in these meta-learning algorithms. We 

have also used a meta-learning approach in our work to recommend data analytic services for 

different datasets. Our work focuses on multiple QoS attribute selection unlike the selection of 

algorithms based on a single performance measure approach used in [33, 36, 37]. The work in 

[39] is also based on a multi-criteria evaluation approach towards selection of classification 

algorithms. In their work, the similar datasets are used to estimate the rank of an algorithm where 

the ranking combines success rate and time.  Our work uses a set of identified similar datasets to 

predict the individual QoS attribute values (i.e. the “per dataset data-dependent QoS attribute” 

values). We have also included “per service data-dependent QoS attributes” that can be estimated 

based on the service’s behavior on past datasets.  These estimated values can then be used to 

rank the service. One advantage of predicting QoS values instead of only predicting the ranks is 

that we can provide such predicted values directly to a service broker or service client who may 

have their own selection and ranking methodology. 

Though we worked with data clustering services, we expect that our approach to work for 

other data processing or analytic services. Our proposed system, once implemented in a service 

search engine or a service marketplace, allows the QoS data of various data analytic services for 

datasets to be collected in an implicit manner, as opposed to the approach taken in the 

experimental database methodology [42] which relies on researchers to submit their experiment 

information.  
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CHAPTER 3 

METHODOLOGY 

3.1 Introduction 

Service selection mechanisms can be based on syntactical, semantic and structural 

information. Services that provide certain functionality can be found using service registries such 

as UDDI implementations through service selection systems. For example, a user may require a 

data storage service and identify several services through a keyword search. However, the 

candidate services may not fulfill the user’s concerns about the quality of the service, such as the 

availability of the service, the security the service offers and the cost of using the service. Thus, 

in spite of having retrieved various data storage services using a functional matching technique 

(keyword search in this case), the non-functional aspects of services need to be taken into 

consideration as well to ensure better selection of services. QoS driven selection techniques can 

be applied on functionally matched services to filter services based on the QoS requirements of a 

client. 

 Several QoS based selection techniques have been discussed in Chapter 2. Some methods 

use vector based mechanisms to rank services [6-8]. Many recent works have incorporated user 

and system constraints with the help of optimization methods [25, 26]. Multi-criteria based 

approaches using AHP [12] or skyline concepts [13, 14] have also been proposed. However, 

such selection mechanisms may not suffice in selecting services that process data such as data 

analytic services. Data analytic services can include data mining services, data cleansing 

services, data conversion services, etc. Since data needs to be processed by the service, the 
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service behavior can vary for different types of data – for example, some services cannot handle 

categorical data or the processing time of using the service can increase for larger datasets. 

Considering that datasets are now getting bigger and the rate at which they are being 

generated is also increasing, clients can no longer rely on locally installed data analytic tools to 

process data and thus may need to consult web-services. Hence, data analytic algorithms can be 

implemented as services to provide their functionality across the web while ensuring 

interoperability among the various entities that need to communicate for this process.  

In a scenario where such data analytic services are used by clients, a data dependent QoS 

based service recommendation can assist the user in identifying services that are most 

appropriate for the input dataset. In this thesis, we consider the problem of selecting data analytic 

services such as data mining services based on the input dataset’s characteristics, i.e., the meta-

attributes of the dataset. The service selection methodology would need to accommodate for 

different types of datasets.  

3.2 Our Methodology 

In our system, we consider data clustering services as an example of data analytic services. 

Clustering is a data mining method that discovers groups within a dataset in such a way that 

members within a group are similar to each other but are dissimilar to members belonging to 

other groups.  

  Our selection methodology can be applied in systems that offer data analytic web services 

such as a service marketplace. Our selection system can be initially trained with sample datasets 

or synthetic datasets to create a data repository with different meta-attributes. This repository can 

be improved over time as more datasets are used. The repository can be built with the collected 

dataset information (i.e., the meta-attributes) and corresponding QoS data of invoked services. 
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By exploiting this data repository, we can recommend services for a new dataset. This can be 

achieved by identifying datasets similar to the new dataset to predict the QoS values for the 

clustering services on a new dataset. 

As shown in Figure 3-1, a user can seek a list of ranked services to make a decision about 

which service to apply on his dataset. To obtain the ranked list, the user first provides the meta-

attributes (A1s, A2s, … Ans) of his dataset ‘Ds’ where ‘n’ is the number of meta-attributes. The 

data dependent selection system consults the existing data repository to identify datasets similar 

to the user’s dataset. The similar datasets can be discovered with the help of a similarity measure 

which computes similarity between datasets based on the meta-attributes describing the datasets. 

 As mentioned earlier, data-dependent QoS values may be “per dataset data-dependent 

QoS attributes” or “per service data-dependent QoS attributes”. The “per dataset data-dependent 

QoS attributes” can vary according to the dataset involved.  For instance, the latency of a service 

may change according to the size of the dataset. These QoS attribute values can be predicted for 

the candidate services with the help of the past QoS data of these services on the similar datasets. 

In this way, the behavior of the services can be predicted without having to actually invoke the 

service on the dataset. The “per service data-dependent QoS attributes” such as reliability, are 

computed as an overall value based on the service’s performance on all the datasets it has 

processed. 

Once the QoS values are estimated for all the candidate services for the current dataset, 

they can be used for ranking the services. This ranked list of services (S1, S2, … Sr) is provided 

to the client. The client can then choose which service to use for his dataset.  

The user can select the service ‘St’ that he would like to apply on his dataset ‘Ds’ and have 

the system invoke the service on his behalf. Once the requested service has been invoked 
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successfully, the results are returned to the user. For every service invocation made, the system 

records the meta-attributes of the input dataset to keep a log of the meta-attributes of the dataset 

used. It also saves the corresponding “per dataset data-dependent QoS attribute” values of the 

service that has been used for that dataset that include QoS attributes such as latency and 

response time.  

Also, the “per service data-dependent QoS attribute” values are updated for the service. 

These values are computed based on all the datasets used for this service. Reliability and 

throughput can be considered as “per service data-dependent QoS attributes”. This type of data-

dependent QoS attribute reflects the services’ ability to deal with a variety of datasets. In this 

way the data repository is updated for the service invocation with the current meta-attributes 

(A1s, A2s, …, Ans) and the set of ‘M’ QoS result (Q1ts, Q2ts, … QMts) to reflect the performance of 

service St on dataset Ds. 
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Figure 3-1: Data Dependent Service Selection System 

 

3.2.1 Steps Involved in the Methodology 

The main steps in our methodology are explained as follows: 

1. Identification of  Similar Datasets 

In this step, datasets similar to the current dataset from the repository of datasets can be 

discovered with the help of the dataset’s meta-attributes, i.e., (A1s, A2s, …, Ans)  such as 

the dataset size, dimensionality, data type, etc. This step will be discussed in detail in 

section 3.3. 
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2. Prediction of the QoS values of the services 

The “per dataset data-dependent QoS attributes” can be predicted based on the QoS 

values of the services used on the similar datasets.  The prediction algorithm used is 

explained in Section 3.4. The “per service data-dependent QoS attributes” can be 

computed based on the service performance on all of the past datasets used for the 

service. 

3. Ranking the candidate services 

The candidate services can be ranked according to the estimated QoS values using a 

traditional QoS service selection technique. The ranking methodology is covered in 

Section 3.5. 

3.2.2 Quality of Service Properties 

QoS values usually include metrics such as response time, latency, throughput, reliability, 

availability, security etc. Domain specific QoS values pertaining to the service application can be 

used as well. For example, in [8], the QoS service selection module presented is discussed with 

regard to the phone services provisioning domain. The authors used business related criteria such 

as penalty and compensation rate as the domain specific QoS measures. In our case, we can 

include accuracy as another QoS measure to determine the performance of the data clustering 

services since the clustering algorithms have different approaches to clustering the data and thus 

may have different levels of accuracy. In general, accuracy is an important measure for many 

data mining applications. However, it is often ignored in QoS-based service selection systems. 

As discussed previously, some QoS properties may be data-dependent while others may 

not be. We categorized the data-dependent properties as “per dataset data-dependent QoS 
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attributes” and “per service data-dependent QoS attributes”. Table 3-1 shows some examples of 

attributes under each of these categories. 

Table 3-1: Types of QoS Attributes with examples 

 Per Dataset 

Data Dependent 

QoS Attributes 

Per Service 

Data Dependent 

QoS Attributes 

Data Independent 

QoS Attributes 

• Accuracy 

• Latency 

• Response Time 

• Reliability 

• Throughput 

• Availability 

• Integrity 

• Security 

 

We have computed latency and accuracy as “per dataset data-dependent QoS attributes” 

and reliability as a “per service data-dependent QoS attribute”. The definitions of these QoS 

attributes are as provided below. 

1. Latency: Latency is defined as the “time taken for the server to process a given request” 

[24]. For clustering web services, we consider latency as the time it takes the service to 

build the clustering model for a given dataset.  

2. Accuracy: This QoS value is used to determine the quality of the clustering results. We 

have used a modified version of the ‘Inaccuracy’ measure provided by the Weka toolkit 

[44]. The Weka software measures inaccuracy of clustering algorithms as the ratio of 

incorrectly clustered instances to the total number of instances as given below. It is 

expressed as a percentage as given in the equation 3.1. 

              (
  

  
     )                               

where    represents the number of instances that are incorrectly clustered and    

represents the total number of instances in a dataset. 

We have modified this measure to take into account instances that are not clustered as 

well i.e. instances that have been ignored by the clustering algorithm. This may happen 
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since the clustering algorithm considers some instances as “noise” and thus ignores these 

instances. Accuracy of a clustering service on a dataset is given in equation 3.2: 

                (
       

  
     )                               

where    is the number of instances that have not been clustered.  

We have used the above definition of accuracy to measure the clustering quality as we 

have knowledge about the actual clusters since we are using synthetic datasets in our 

experiment. In case the ground-truth data is not accessible, we can use intrinsic measures 

to evaluate the clustering quality. The Silhouette coefficient, for example, can be used as 

an intrinsic measure to determine the compactness of a cluster. It calculates how close an 

object in a cluster is to the other members of the same cluster as compared to objects in 

other clusters [16]. 

3. Reliability: Reliability is a quality metric that takes into account the proportion of 

service invocation failures to the total number of invocations. We have defined it as the 

proportion of the number of datasets for which the service did not fail to the total number 

of datasets used with the service. In this framework, we have accommodated failures due 

to internal algorithm issues and web services being unable to process datasets with 

certain characteristics such as a service not being able to handle numeric datasets or 

handling large dimensions. The formula is given below in equation 3.3, and this metric is 

also expressed as a percentage: 

               (
  

  
     )                               

where    is the number of datasets the service successfully processes and    is 

the total number of datasets used by the service in the past.  
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3.3 Calculating similarity between datasets 

We calculate the similarity between datasets based on their meta-attributes. Since 

clustering algorithms offer a different kind of performance for different types of dataset 

characteristics, we identified the following list of meta-attributes:  

1. A1: Dataset size – The size of the dataset or number of instances in a dataset. 

2. A2: Number of dimensions– The number of attributes in a dataset. 

3. A3: Percentage of Missing Data – The amount of missing data present in a dataset 

computed as a percentage. 

4. A4: Data type– This meta-attribute is used to indicate the type of data in the dataset. 

Currently we only consider two types – numeric and nominal, due to the constraints 

of the data generator we are using in the experiment.  

5. A5: Data distribution pattern – This meta-attribute is used to indicate what kind of 

distribution pattern defines the cluster positions. The clusters may be randomly placed 

or have a grid pattern. Though there could be more patterns, we consider these two in 

the current work.  

Each dataset ‘Ds’ can thus be represented as a vector of its meta-attributes (A1s, A2s, A3s, 

A4s, A5s). An example of a dataset’s meta-attribute vector could be : (1000, 3, 5, “Numeric”, 

“Random”) which represents a dataset with 1000 instances, 3 dimensions, 5% missing data with 

a completely numeric dataset and randomly placed clusters. 

The main steps for computing similarity values are presented in Algorithm 3.1. In this 

algorithm, we compute the similarity between the user input dataset and each dataset available in 

the repository. From our preliminary results, we found that the data distribution pattern and data 

type have the highest impact on prediction accuracy. Hence, we first compare if both datasets are 
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of the same type i.e. if both are either numeric or nominal and also check if the pattern of the 

clusters is the same.     

If the datasets match based on the aforementioned comparisons, we proceed to calculate 

the distance between each pair of the numeric meta-attributes that can be quantified. In our list of 

meta-attributes, dataset size, number of dimensions and percentage of missing data are the 

numeric meta-attributes. We use Manhattan distance similar to the one in [39] to calculate the 

distance between the meta-attributes as shown in equation (3.4): 

                   ∑
 |             |

|         |

  

   

                            

Where        and        are the values for the i
th

 meta-attribute of the user input dataset 

and repository dataset respectively.               are the maximum and minimum values for 

the i
th

 meta-attribute among all the datasets.    is the number of numeric meta-attributes. 

The algorithm for computing the similarity between the input dataset and repository 

dataset is provided below. As shown in, in line (12) the distance value is converted to similarity. 

Also, weighted similarity is computed as given in this line to incorporate weight values for the 

meta-attributes. The overall similarity between a pair of datasets is thus calculated as the 

weighted average of the similarities for the meta-attributes.  
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Algorithm 3.1: Pseudo code for calculating similarity between datasets 

Input: Dataset DS_Inp- Input Dataset;// ‘Dataset’ is a user defined class 

            Dataset DS_Rep- Dataset from existing repository;  

             // ‘Meta-Attribute’ is a user defined class 

            ArrayList<MetaAttribute> Meta_Attributes- List of numeric meta- attributes  

 

Output: The overall similarity between DS_Inp and DS_Rep ; 

 

Algorithm: 

(1) Similarity(DS_Inp, DS_Rep, Meta_Attributes) 

(2) { 

(3)    double overall_similarity = 0; 

                      //now check if data type (‘type’) and data distribution pattern (‘pattern’) is same for both datasets 

(4)  If (DS_Inp.type < > DS_Rep.type || DS_Inp.pattern < > DS_Rep.pattern) 

(5)  { 

(6)   return overall_similarity; 

(7)  } 

(8)  total_weight=0; 

(9)  For (MetaAttribute a : Meta_Attributes) // each meta-attribute 'a' in Meta_Attributes 

(10)  { 

                             //calculate normalized Manhattan distance 

(11)   current_distance = NormalizedDistance(DS_Inp.a, DS_Rep.a);  

(12)   current_similarity = ( 1 - current_distance) * a.weight ;  

(13)   overall_similarity += current_similarity; 

(14)   total_weight += a.weight; 

(15)  } 

(16)  overall_similarity  = overall_similarity / total_weight ; 

(17)  return overall_similarity; 

(18)  } 

 

3.4  Prediction of QoS Values 

After obtaining similarity values between the input dataset and datasets in the existing 

repository, we can now predict the “per dataset data-dependent QoS attribute” values of the 

dataset. To estimate these QoS values, for a particular service on the input dataset, we use a 

weighted sum approach often used in collaborative recommendation systems.  

In recommendation systems, several techniques are used to predict the utility of an item 

for a user. As mentioned in [45], one technique of estimating the utility of an item for a particular 

user ‘c’ is to consider the similarity between the user c and past users as well as the rating given 

to that item by similar past users. One of the formulae listed in this paper is the weighted 
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approach shown in equation (3.5) which sums the product of past user similarity, Sim and the 

corresponding user’s rating for the item s. The predicted rating for user c on item s is given as: 

       ∑                  

   

                          

where            is the similarity between the user c and    where    belongs to the set of 

similar users ‘C’.        is the rating given to item s by the user   .This aggregated value is 

then multiplied by a normalizing factor   , which is usually defined as the inverse of the 

sum of the similarity values used. This way, the calculation allows a higher preference for 

more similar users. 

We have adopted this approach to predict the “per dataset data-dependent QoS” values 

that include latency and accuracy for each service on the new dataset. This method is shown in 

equation 3.6 with QoS value used in lieu of the rating values and similarity between datasets is 

computed instead of similarity between users. 

             
   ∑    (         )                           

       

In the above equation (3.6), we compute the QoS value,           
for the candidate 

service    with the input dataset,        The similarity is computed for the set of similar datasets 

   . The normalizing factor in our case would be given in (3.7): 

    
 

∑    (         )            

               

To identify the similar datasets, we use a threshold, “Threshold_Similarity” (for example 

0.9) to select datasets with similarity above this threshold value. Another approach to select 

similar datasets is to choose the top ‘K’ similar datasets. 

We have also provided an automatic selection of the similarity threshold value 

(“Threshold_Similarity”).  Our approach is to first identify the similarity value of the most 
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similar dataset (with respect to the input dataset) which we refer to as the “highest similarity 

value”. For example for a new dataset, the closest neighbour dataset may have a similarity value 

as 0.84. We then set the threshold value to the highest value that is a multiple of 0.05 and is 

smaller than the “highest similarity value”.  In this example, the threshold value would be set as 

0.8. 

We have also accommodated for failed services in this algorithm. Another parameter, 

‘”Threshold_Fail” assists us in predicting if the service fails for the input dataset. For example, 

this threshold value can be set to 50%  as such a value seems to be reasonable enough to predict 

if a service may fail, if it has failed for half or more than half of the time for similar datasets. For 

a new dataset, if there are 5 similar datasets identified, 3 of which could not be used successfully 

with service ‘S’ i.e. 60% of the datasets could not use the service, we predict that service ‘S’ to 

fail for the current dataset as well.  

In case there are no similar datasets identified for the new dataset, we consider the 

average QoS values of the available service for all the past datasets. If a new service Sq is 

introduced in the system, we can build an initial repository of QoS values by invoking it on a set 

of synthetic datasets or sample datasets. We could even use some of the existing datasets in the 

repository. To decide which datasets to invoke, we can first randomly pick a dataset Dg and 

compute the QoS values for Sq with Dg. The next dataset Dh can be randomly picked and the 

service Sq is invoked for this dataset as long as Dh is not “similar” to Dg based on a pre-decided 

similarity threshold value. We try to use a variety of different datasets and avoid using too many 

similar datasets for this initial training phase. The pre-decided similarity threshold value can be 

set as the most frequently used similarity threshold value used in the system. 
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Algorithm 3.2: Pseudo code for prediction of QoS values 

Input: Dataset DS_Inp-Input Dataset; 

            double Threshold_Fail- The threshold for determining if a service may fail 

            ArrayList<Service> Services-List of candidate services // ‘Service’ is a user defined class 

            //’QoSMetric’ is a user defined class 

            ArrayList<QoSMetric> QoSMetricList_perDS – List of per dataset data-dependent QoS metrics 

            ArrayList<Dataset> SimilarDatasets- List of similar datasets identified 

 

Output: The predicted QoS values for each service   

 

Algorithm: 

(1) Prediction (DS_Inp, Threshold_Fail, Services, QoSMetricList_perDS, SimilarDatasets) 

(2) { 

(3)                double partialQoS, normalizingFactor; 

(4)                int count_failedServices;  

(5)                For (Metric M : QoSMetricList_perDS )  // each QoSMetric 'M' in QoSMetricList_perDS 

(6)  { 

(7)                 For (Service S : Services)// each Service 'S' in Services 

(8)   { 

(9)                   partialQoS = 0; 

(10)                 normalizingFactor = 0; 

(11)                 count_failedServices = 0; 

(12)                 For(Dataset DS_Sim: SimilarDatasets)//each Dataset DS_Sim in SimilarDatasets 

(13)    { 

                                              //-1 represents failed services                

(14)      If(QoS value ‘V’ for service 'S' with DS_ Sim == -1)  

(15)      {  

(16)                     count_failedServices++; 

(17)       } 

(18)                    Else 

(19)       { 

(20)                                                             partialQoS += ( DS_ Sim.Similarity(DS_Inp) x V )  

(21)                                                             normalizingFactor += DS_ Sim.Similarity (DS_Inp); 

(22)       }     

(23)     } 

(24)                 If(Percentage (count_failedServices) >= Threshold_Fail) 

(25)    { 

(26)                  QoSPredicted = -1; 

(27)    } 

(28)                 Else 

(29)    { 

(30)                  QoSPredicted = partialQoS / normalizingFactor ; 

(31)    } 

  //This function records the predicted QoS value for metric ‘M’ of Service ‘S’ with ‘DS_Inp’ 

(32)   RecordQoSValues(DS_Inp, M, S, QoSPredicted);  

(33)   }  

(34)               } 

(35) } 
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The algorithm for predicting QoS values is provided in algorithm 3.2. After the QoS 

predicted values are computed, the system is updated with each predicted QoS metric value for 

every service. We updated these values as a batch insert.  

To identify the list of similar datasets, we used one of the two methods described 

previously, i.e., by selecting top K datasets or selecting datasets with similarity above the 

Threshold_Similarity. 

3.5 Ranking of Web Services 

After obtaining the predicted QoS values for the candidate services on the input dataset, 

our final task is to rank the services to help the user to select a service for the input dataset. The 

ranking method used here combines multiple QoS attributes. 

The tendency of a QoS metric described the direction of the metric value. It may be 

positively or negatively monotonic. Metrics such as availability, reliability, security and accuracy 

have positive tendencies as a higher value for such metrics signifies a better performance of the 

service. However, metrics such as latency and response time have a negative tendency since 

services that run and respond faster are considered to perform better. 

The users can additionally provide a priority value for each QoS attribute based on their 

preferences. For instance, a user may need a service that is time sensitive and thus give a higher 

priority to the response time. Another user may need services that are price sensitive and thus 

provide a higher preference value for the cost of using the service. 

We have used a utility based approach to rank our services that combines the multiple 

QoS metrics involved. The utility function we have used allows different tendencies of QoS 

metrics and accommodates user preferences for different QoS values using weights. The utility 
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function for Service     is given below in equation 3-8 and is based on the objective function in 

[26]. 

       ∑
        

         
   

        ∑
        

         
   

                           

where ‘X’ is the set of positively monotonic QoS metrics and ‘Y’ is the set of negatively 

monotonic QoS metrics.     (or     ) is the value of the QoS measure for service   .    

(or   ) represents the corresponding weight for the i
th

 (or j
th

) QoS attribute.      and 

     (or       or     ) represent the maximum and minimum values for these QoS 

metrics among all the candidate services.  

 

Based on the computed utility function solution, the services can be ranked. The 

algorithm for ranking the services is given in Algorithm 3.3. The solution value of the utility 

based expression is computed based on the QoS metric’s tendency, weight, maximum and 

minimum values as per equation 3.8.  

With the calculated solution values, services can be ranked. We have sorted the list of 

candidate services based on this solution value in a descending manner to have the service with 

the highest solution value on top of the ranked list. This list of ranked services is then presented 

to the user.   

We have considered latency, accuracy and reliability as the QoS measures for service 

selection as discussed earlier. In our case, latency and accuracy values would differ for each 

input dataset provided by the user. The value for latency and accuracy (which are considered as 

“per dataset data-dependent QoS attributes”) is predicted based on similar datasets as explained 
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in section 3.4. For reliability, a “per service data-dependent QoS attribute”, the value of the 

service would change when a new dataset’s information is added to the repository.  

Thus, we can predict ranking of candidate services for the user’s input dataset based on 

the dataset’s meta-attributes without having to compute the actual QoS values for all the 

services. As the system is used over time, it can learn to improve the service recommendation 

and ranking. 

Algorithm 3.3: Pseudo code for ranking the services 

 

Input: ArrayList<Service> Services-List of candidate services 

            ArrayList<QoSMetric> QoSMetricList– List of QoS metric attributes 

 

Output: returns list of ranked services  

 

Algorithm: 

(1) RankServices(Services, QoSMetricList) 

(2) { 

(3)   For (Service S: Services) //each service S in ‘Services’ 

(4)   { 

(5)    double SolValue = 0; //solution value 

(6)    For (QoSMetric M: QoSMetricList ) // each QoSMetric M in QoSMetricList 

(7)     {  

(8)                               double diff = getMaxValue(M) - getMinValue(M); //difference 

(9)                               If(M.tendency == Positive) 

(10)                               { 

(11)                 SolValue+= ((getQoSValue(S,M) – getMinValue(M))/diff) * M.Weight; 

(12)                               } 

(13)                               Else 

(14)                               { 

(15)                SolValue += ((getMaxValue(M) - getQoSValue(S,M))/diff) * M.Weight; 

(16)                               } 

                            //update the Service object S’s member variable ‘SolutionValue’ 

(17)    UpdateSolutionValue(SolValue,S);  

(18)               } 

(19)              Services =SortServices_Descending(Services);// reorder services  

(20)              return Services; 

(21) } 
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3.6 Summary 

In this chapter, we discussed our proposed methodology towards selection of services 

based on the dataset given by the user. This methodology can assist in selection of data analytic 

services. We have used data clustering services as example of such data analytic web services in 

our framework. 

Our approach can be used to recommend a ranked list of services to the user based on his 

input dataset before he invokes an actual service. Our proposed approach can be used in a system 

that offers data analytic services such an existing service marketplace. For every service request 

with the input dataset, we record the meta-attributes (of the dataset) and the corresponding QoS 

information for the service. This recorded data can be maintained in our repository.  

The system learns to recommend services based on such previously collected data. For 

this, we have identified 3 main steps. First, datasets similar to the current input dataset are 

identified from the existing repository. The meta-attributes of the input dataset can be used to 

determine which datasets from the repository are similar to it. Next, with the information of QoS 

values of previously invoked services on similar datasets, we can then predict “per dataset data-

dependent QoS attribute” values for candidate services for the current input dataset. The “per 

service data-dependent QoS attributes” are computed based on all the datasets used for the 

service. Finally, we can rank the services based on these predicted QoS values using a service 

selection technique and present this list to the user. 
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CHAPTER 4 

EXPERIMENTS 

4.1 Introduction 

In this chapter, we will first discuss our experimental methodology, followed by the 

implementation details and then proceed to our results. We would like to compare our prediction 

of QoS values as well as the service ranking with that of the traditional service selection 

methodology’s results. We have worked with several datasets to compare these two cases. We 

have also analyzed the effect of the number of similar datasets and the impact of different meta-

attributes used for prediction.  

4.2 Experiment Design 

We would like to prove that considering meta-attributes in the selection of services that 

process data is important. We have incorporated the use of some meta-attributes that can be used 

to determine the nature of the dataset for this purpose. In our experiments, we assume that the 

system has been used for a certain period of time, and that there has been a certain amount of 

QoS data collected from past datasets together with their meta-attributes. To verify our approach, 

we have generated a number of different datasets and used services that implement several data-

clustering algorithms. This approach can be used to work with other data mining services as 

well, such as data classification and data regression services. 

First, we generated various kinds of datasets with different meta-attributes, i.e. dataset size, 

number of dimensions, type of data (nominal and numeric), data distribution pattern and 

percentage of missing data. We used the 10-fold cross validation technique to split the datasets 
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into training and test datasets. The training datasets have been used as the dataset repository for 

the system and the test datasets have been used to evaluate the system. We assessed the quality 

of the prediction of QoS values for the services on these test datasets. We also compared the 

ranking of the services based on predicted QoS values with respect to the ranking of services 

based on actual QoS values for the test datasets.  

We compared our results with the default ranking which would be the average QoS-based 

ranking algorithm. Since previous service selection techniques do not consider the type of data 

being processed by the service, the QoS values in such a case would be the average of QoS 

values in the past invocations.  To compute the average value for the QoS metric ‘M’ for a 

particular service ‘S’ we compute it as the average of all the values for ‘M’ over all the datasets 

used by ‘S’. 

We have used two approaches for identifying similar datasets to the input dataset as 

mentioned previously. One method is to select the top K datasets closest to the input datasets. 

We tested different values of K to examine how the prediction accuracy can vary for different 

values of K. The other approach is to select datasets with similarity above a specified threshold.  

We have tested the effect of having different number of datasets with a common range of 

meta-attributes. Also, we have analyzed the impact of different meta-attributes on the prediction 

accuracy.  

4.2.1 Dataset Generation 

To generate datasets for testing the data clustering web services, we opted to use synthetic 

datasets as opposed to working with real datasets so that we can generate a wider variety of 

datasets based on their meta-attributes to train and test our system. This way we can 

systematically test the impact of different meta-attributes as well as their values on the accuracy 
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of our selection system.  Although the UCI repository provides real datasets for machine learning 

research, there are only a limited number of them for testing clustering algorithms. Most of the 

meta-learning papers use a handful of UCI datasets. In our opinion, using a small number of 

datasets is hard to study the impact of meta-attributes on the system performance. Therefore, in 

this work, we used an artificial data generator provided by the Weka [44] toolkit. This data 

generator is based on the generator developed by the authors who proposed the BIRCH 

Clustering algorithm [46]. This data generator places the cluster centres according to a pattern 

parameter provided by this data generator. We have used the grid pattern and random pattern to 

generate our clusters to distinguish between the results when different patterns are used. The grid 

pattern generates clusters with their centres placed on a  √   √   grid where   is the number of 

clusters. The cluster centres are placed randomly for the random pattern. The data points are 

generated based on a normal distribution. The original data generator supports the creation of 

only two-dimensional datasets. The Weka implementation further allows generation of datasets 

with higher dimensions.  

The datasets generated using this generator have numeric values. To create nominal datasets, 

we applied the Weka’s ‘Discretize Filter’ on the dataset. This filter is an attribute filter which can 

discretize a range of numeric dimensions into nominal attributes. This discretization is based on 

simple binning [44]. 

To generate datasets with missing values, we created a program to randomly delete values in 

the dataset. A percentage parameter is used to determine the number of values to be deleted. For 

each value to be deleted, a random number ranging from (1, N) is generated, where N is the total 

number of values (i.e. the product of number of instances and number of attributes). The value at 

this corresponding number is then removed.  
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In our experiments we used 5 meta-attributes i.e. “Dataset size”, “Number of dimensions”, 

“Percentage of missing data”, “Data Type”, “Data distribution Pattern”, first three of which are 

numeric attributes. For dataset size and number of dimension, we decided to consider different 

scale values such as “small”, “medium” and “large” while for missing data we considered two 

scales: “small” and “large”. These scales are based on different ranges that were determined 

according to our preliminary analysis. After having established different ranges as scales, we can 

easily work with different combinations of meta-attributes for the experiments. For missing data, 

we observed that for higher amount of missing data, the accuracy of some services decreased 

significantly. In many cases we observed that some services outperformed others for datasets 

with missing data above 10-15%. We used only 2 scales of missing data since datasets with a 

very high amount of missing data is generally not used. The data type can be “numeric” or 

“nominal”. We have used datasets of two distribution patterns – “grid” and “random” as 

explained above. The meta-attributes and the possible values are shown in Table 4-1. 

Table 4-1: Meta-attributes 

Meta Attribute Value 

Dataset size Small, Medium or Large 

Number of dimensions Small, Medium or Large 

Percentage of missing data  Small or Large 

Data type  Nominal or Numeric 

Data distribution pattern  Random or Grid 

The range values used for datasets size, number of dimension and missing data scales are 

provided in Tables 4-2 to 4-4. We limit the size of the datasets to a maximum of 5000 as very 

large sizes slow down the experiment process. The datasets were generated with different 

number of clusters ranging from 4 to 6 clusters per dataset. The radius of the clusters ranged 

from 0.1 to 0.5 units.  
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Table 4-2: Range for ‘dataset size’ 

Dataset size scale Number of instances 

Small 500 - 1000 

Medium 2500 - 3000 

Large 4500 - 5000 

 

Table 4-3: Range for ‘number of dimensions’ 

Number of dimensions scale Number of dimensions 

Small 5 - 20 

Medium 30 - 45 

Large 55 - 70 

 

Table 4-4: Range for ‘percentage of missing data’ 

Missing data scale Percentage of missing data 

Small 0 - 5% 

Large 15 - 20% 

 

 

4.2.2 QoS Computation 

In this set of experiments, we have used services created in [47] that wrap various clustering 

algorithms available through the Weka Toolkit API. These services have been implemented as 

RESTful services. By applying these services on the datasets, we can collect QoS values of the 

services for each dataset. The clustering algorithms used in these services for our experiments 

are listed in Table 4-5. 

As mentioned previously, we have computed two “per dataset data-dependent QoS metrics” 

– latency and accuracy for all services for each dataset. Latency is computed as the time it takes 

the service to process the dataset. In this case, it is the time to build the clustering model for the 

dataset. Accuracy is calculated as the percentage of correctly clustered instances. We also 

computed one “per service data-dependent QoS metric” i.e. reliability. Reliability is determined 

as the percentage of number of datasets for which the service did not fail to the total number of 

datasets used with the service. 
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Table 4-5: List of Services 

No. Clustering Algorithm used a service 

1 CLOPE 

2 Cobweb 

3 DBSCAN 

4 EM 

5 FarthestFirst 

6 SimpleKMeans 

7 XMeans 

8 Hierarchical Clustering with SINGLE link 

9 Hierarchical Clustering with COMPLETE link 

10 Hierarchical Clustering with AVERAGE link 

11 Hierarchical Clustering with WARD link 

 

4.2.3 Experiment Settings 

For most of our experiments, unless explicitly stated, we used the automated similarity 

threshold method (explained in section 3.4) to determine the similarity threshold to be used for 

prediction of the QoS values. This method selects the similarity threshold based on the “highest 

similarity value”, i.e. the similarity value of the most similar dataset to the input dataset. The 

threshold value is set to the highest value that is a multiple of 0.05 and is smaller than the 

“highest similarity value”. The other approach to prediction is to use the top K similar datasets 

which we will consider in one of our experiments.  

We set the “Fail_Threshold” to 50% as we felt it is a reasonable value to consider for 

determining if a service may fail for the new dataset if half or more than half of the similar 

datasets could not be handled by the service. We used an equal weight distribution for all the 

numeric meta-attributes in the similarity computation. We also used equal weights for the QoS 

attributes in the service selection module.  
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We used the clustering services with most of the default settings. The minimum number of 

points in DBSCAN was set to the minimum number of points in a cluster. For k-means, X-

means, Farthest First, EM clustering and the hierarchical clustering services, the number of 

clusters parameter was set to the actual number of clusters in the dataset.  

As mentioned previously, we used the 10-fold cross validation method to assess our 

results. In this evaluation procedure, the datasets are randomly split into 10 samples. We use 10 

rounds of validation with one sample as the test datasets for evaluation and other 9 as training 

datasets. 

4.2.4 Evaluation Metrics 

 

For the purpose of evaluating our experimental results, we used two metrics: MAE (Mean 

Absolute Error) and SRC (Spearman's Rank Correlation). We used MAE [48] to assess the 

accuracy of the prediction of the “per dataset data-dependent QoS metrics” (i.e. latency and 

accuracy). MAE measures how close the predicted results are to the actual values. We first 

normalized these QoS values i.e. latency and accuracy and then computed MAE. The MAE 

value for QoS attribute ‘Q’ is computed as given in equation 4.1. 

       
 

     
∑∑|       

         
|

  

   

   

  

   

      

 where        
  and        

 represents the actual and predicted values for the QoS attribute 

‘ ’ for service ‘  ’ on dataset ‘  ’. The number of datasets is represented by ‘  ’ , and ‘  ’ is 

the number of services. Lower values of MAE i.e. values closer to 0 indicate better prediction 

accuracy.  

 The services are ranked based on their QoS values using a utility based approach as 

explained in section 3.5. This ranking method sorts services with the help of an objective 



 

46 

 

function that combines all the QoS attributes.  We use this ranking technique to rank the services 

based on their actual QoS values as well as based on the predicted QoS values. Since the 

traditional service ranking methodologies do not take meta-attributes of the dataset into account, 

the ranking would then be based on the average QoS values. We have generated a ranking based 

on the average QoS values for comparison purpose.  

The SRC coefficient [41] can be used to assess the ranking accuracy by calculating the 

relationship between the rankings based on actual and predicted QoS values. We also computed 

SRC for the average QoS-based ranking which can be considered as the default ranking. SRC is 

computed for the ranked list of services for a dataset ‘D’ as shown in 4.2. 

          
 ∑   

  
   

       
                           

where    is the difference between the ideal and predicted ranking value for the i
th

 

service.   is the size of the ranking which in this case would represent the number of services 

being ranked. The SRC coefficient can range from -1 to +1. A value close to 1 reveals that the 

two rankings are very similar.  

4.2.5 Implementation Details 

 

To implement our data-dependent service selection framework, the dataset generation 

process as well as the procedure for the evaluation, we used the JAVA language. The services 

were hosted on a local APACHE server. The configuration used to run these programs are as 

below: 

CPU: Intel CORE i5 

RAM: 8 GB 

Operating System: Windows 7 
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Software: Eclipse Kepler Service Release 1 with Java and Matlab for preliminary 

analysis 

Database: MySQL 

APIs: Weka API for dataset generation and clustering and IBM CPLEX Optimization 

API for service selection.  

4.3 Results Compared to the Average QoS based Ranking 

 

With the different possible values of meta-attributes as shown in Table 4-1, we can have 

3 x 3 x 2 x 2 x 2 = 72 combinations. For each of these combinations, we can generate a number 

of datasets. Table 4-6 shows the distribution of datasets in each combination for each of these 

pairs.  

Table 4-6: Distribution of datasets 

Number of datasets per 

combination 

Number  of 

combinations 

Total 

datasets 

30 4 120 

20 8 160 

10 12 120 

5 28 140 

1 20 20 

 

For this experiment, we applied all the services on this set of 560 datasets. We compute the 

overall SRC by computing the average SRC for all the datasets. The overall SRC result is 

provided in Table 4-7. We compute the overall SRC as the average SRC over all the datasets. 

We measured the overall MAE by computing the average MAE over all the services on each 

dataset for accuracy and latency to assess our prediction quality as shown in Table 4-8 and 4-9. 

We compare our predicted result to the average QoS scenario. 
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Table 4-7: Overall SRC result 

Case Average SRC Standard Deviation 

Predicted Result 0.960 0.047 

Average Result 0.769 0.109 

 

Table 4-8: Overall MAE result on Accuracy 

Case Average MAE Standard Deviation 

Predicted Result 0.058 0.039 

Average Result 0.403 0.069 

 

Table 4-9: Overall MAE result on Latency 

Case Average MAE Standard Deviation 

Predicted Result 0.192 0.093 

Average Result 0.784 0.066 

 

We can see that our predicted SRC result is much higher than the average case. Our SRC 

result indicates that our prediction is quite close to the actual ranking result. Our MAE results for 

both latency and accuracy are also much lower than the average case. Latency has a higher 

variation among the datasets as latency increases with increase in the size of the dataset and 

number of dimensions. Thus the MAE value for predicting latency is higher than that of 

accuracy.  

Once we provide the ranked list of services to the user, a user is likely to pick the highest 

ranking service for his dataset unless perhaps the service is unavailable for some reason. We 

compared the accuracy of predicting the highest ranking service as shown in Table 4-10. 

Table 4-10: Rank 1 Prediction Accuracy 

 

Case Accuracy  

Predicted Result 74.11 % 

Average Result 35.36 % 

 

As shown in the above table, our prediction accuracy is quite decent and much higher, more 

than twice as that of the average case. Thus, it can be seen that incorporating a meta-learner for 
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prediction of QoS values and ranking is important. Relying on the traditional approaches with 

the average QoS values shall certainly not be sufficient and accurate for ranking data analytic 

services. 

4.4 Effect of number of datasets 

In this set of experiments, we created different dataset repositories based on the number of 

datasets in a combination. In total, we worked with 5 different repositories each with equal 

number of datasets per combination. We set the number of datasets in a combination as 1, 5, 10, 

20 or 30 for each repository. For example, we created a dataset collection based on the 

combinations with only 10 datasets per combination.  

In this manner, we created 5 different sets or collections of datasets. In each of these sets, 

the number of datasets per combination are equal, i.e. the first set or collection with 1 dataset per 

combination, the second with 5 datasets per combination and so on.  

We worked with the same 20 combinations for all the repositories. The distribution of 

dataset combinations with respect to the numeric meta-attributes (i.e. dataset size, number of 

dimensions and percentage of missing data) is shown in Table 4-11. The 5 listed combinations 

were used for both types of data (numeric and nominal) and both patterns (random and grid), 

which collectively forms 20 different combinations. 

Table 4-11: Meta-attributes used 

Dataset Size Number of Dimensions Percentage of Missing Data 

Small Small Small 

Small Medium Large 

Medium Medium Small 

Medium Large Large 

Large Small Large 
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Figure 4-1 reveals that the ranking accuracy represented by SRC values is the lowest for 

the repository with 1 dataset per combination while MAE values for both latency and accuracy 

were highest for this case as well. On the other hand, the rest of the repositories had similar 

results in terms of SRC and MAE values. From this we observe that when there is only 1 dataset 

in a combination, the accuracy of our prediction is affected. The other 4 cases have higher 

prediction accuracy since there are more similar datasets available. 

 

 

Figure 4-1: SRC values for different number of datasets in a combination in the repository 
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Figure 4-2: MAE (Accuracy) results for different number of datasets in a combination in the 

repository 

 

 
Figure 4-3: MAE (Latency) results for different number of datasets in a combination in the 

repository 
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4.5 Results for Top-K Similar Datasets 

As discussed in section 3.4, to predict the “per dataset data-dependent QoS attribute” values, 

we first need to identify a set of datasets similar to the input dataset. We described two 

approaches to select similar datasets. One method is to use the top K most similar datasets and 

the other is to specify a similarity threshold to choose datasets with similarity above this 

threshold. The selection of the similarity threshold can be done automatically as well. 

  In this set of experiments, we analyzed the effect of using the top K similar dataset 

approach for prediction of QoS values. In this approach, the number of neighboring or similar 

datasets is selected by the user. We worked with different values of K (1, 5, 10, 15, 20, 25, 30, 35 

and 40) on the set of datasets.  

First, we used the same set of 560 datasets from the experiment described in section 4.3 to 

perform this experiment. It can be seen that the SRC is highest at the value K = 5 in Figure 4-4. 

For K greater than 5, the SRC value begins to decrease. We have a similar observation for the 

MAE results for latency and accuracy in Figures 4-5 and 4-6, i.e. the overall error is lowest at K 

= 5 and then the MAE increases after this point.  

K = 5 seems to provide the best prediction results. Also, the prediction accuracy 

corresponding at K = 1 and K= 10 are not very different from the results at K = 5. We compared 

these results with the automated similarity threshold selection technique, i.e. the original results 

mentioned in section 4.3, and found that the difference in the original MAE and SRC results with 

respect to K = (1, 5, 10) is not significant.  

Also, a closer look at the automated similarity threshold selection technique showed that 

smaller values of K were selected by this module for many datasets. For about 40% of the 

datasets, K was chosen as either 1 or 2 by this technique as shown in Figure 4-7. Though K = 5 
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may seem to provide the most optimal result as previously observed, we noticed that in many 

cases, different values of K chosen by the automated similarity threshold selection module 

provided a better SRC value. We investigated the combinations which have 5 or more datasets 

per combination and analyzed these datasets. We compared these results with the results at K=5. 

We found that the automated selection method provides the same result as that of K=5 for 55% 

of these datasets. For 18% of the remaining datasets, the automated selection technique had 

higher accuracy than that of K=5. Hence, for a user unsure of which K value to use, the 

automated similarity threshold selection technique should be adequate to provide a reasonable, if 

not optimal result. 

 

Figure 4-4: Effect of K on SRC  
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Figure 4-5: Effect of K on MAE (Latency) 

 
 

Figure 4-6 : Effect of K on MAE (Accuracy)  
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Figure 4-7: Value of K picked by the automated similarity threshold module 
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Figure 4-8 : Effect of K on SRC based on Nc 

 

 
 

Figure 4-9: Effect of K on MAE (Latency) based on Nc 
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Figure 4-10: Effect of K on MAE (Accuracy) based on Nc 
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the same combination as these datasets.  

If we compare the “best” SRC prediction results for each of these 4 repositories and with the 

prediction results provided by the automated similarity threshold technique, we find that the SRC 

results are quite close. The automated similarity threshold technique tends to pick smaller K 

values. Figure 4-11 shows the values of K chosen by this automated mechanism. Thus we can 
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conclude from this set of experiments that lower values of K generally provide better prediction 

results.  

 

                        Figure 4-11: Value of K picked by the automated similarity threshold module 

 

4.6 Impact of meta-attributes 

Similarity between datasets is based on the set of meta-attributes as explained in section 3.3. 

In this series of experiments, we examined the influence of each of the meta-attributes by 

eliminating one meta-attribute at a time in the similarity computation for each of these 

experiments. We worked with the same set of 560 datasets mentioned in section 4.3. We 

compare 6 cases, the first with all the meta-attributes considered and the next 5 with removal of a 

single meta-attribute in each case. The cases are listed on Table 4-12.  
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Table 4-12: Cases used to test impact of meta-attributes 

Case Meta Attributes Used 

All All Meta-attributes (original case) 

Without Dim All except number of dimensions 

Without DS All except dataset size 

Without MD All except percentage of missing data 

Without DT All except data Type 

Without DDP All except data distribution pattern 

 

 

 

 

 

 

 

 
Figure 4-12: SRC after removal of meta-attributes 
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Figure 4-13: MAE (Latency) after removal of meta-attributes 

 

 
 

Figure 4-14: MAE (Accuracy) after removal of meta-attributes 
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The figures 4-12 to 4-14 show the effect of removal of each meta-attribute on SRC and 

MAE (for accuracy and latency) respectively. Eliminating either data type or data distribution 

pattern as a meta-attribute has a significant impact on the prediction of accuracy values (Figure 

4-13). Services have different behaviors for different data distribution patterns. Through further 

analysis, we observed that most clustering services such as Farthest First and hierarchical 

clustering services did not perform very well on the grid pattern in terms of accuracy. On the 

other hand, the K-Means and EM clustering services are not affected significantly by numeric 

grid datasets as compared to random datasets. 

Some services, for example Cobweb and X-Means clustering services cannot handle 

nominal datasets while Clope cannot handle numeric datasets. Using data type as a meta-attribute 

can assist in predicting these behaviors. For services such as the hierarchical clustering with 

single and average link, it takes much longer to process numeric data. This makes identifying the 

data type important for the prediction process. 

The size of the dataset can influence the time it takes to process the dataset especially for 

services that use Hierarchical clustering to a very large extent. The large nominal datasets, for 

instance, can take about 50 times longer compared to the smaller datasets to process for 

hierarchical clustering services with single, complete and average linkages. Such algorithms do 

not scale well considering that their clustering algorithm have a high complexity. 

Certain services cannot handle high dimensions, for example Hierarchical clustering with 

Ward Linkage cannot handle datasets with a large number of attributes. The latency time 

increases two to four times for services such as K-Means, EM, Farthest First, X Means and 

DBSCAN. 
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It may seem that considering percentage of missing data as a meta-attribute has negatively 

affected the prediction results, though it can be noted that this negative influence is extremely 

low. We can however still use percentage of missing data as a meta-attribute as it impacts some 

services significantly. We have observed that the accuracy can decrease of a clustering service 

can decrease by about 30 to 40% for hierarchical clustering with single and ward linkage 

clustering services for datasets with “large” missing data (i.e. 15- 20% missing data). We also 

noticed that the latency increases twice as much for “large” missing data for services such as EM 

clustering, Clope and all the hierarchical clustering services for many nominal datasets. 

As shown in Table 4-13, we have considered an example of the effect of data type on 

prediction by comparing the actual ranked list of services for a pair of datasets D1 and D2, the 

former with numeric data and the latter with nominal data respectively. Both datasets have the 

same combination for the rest of the meta-attributes, i.e., the values for (Dataset size, Number of 

dimensions, Data distribution pattern, Missing data) are (Small, Small, Random, Small). Clope 

cannot handle D1 and DBSCAN, Xmeans and Cobweb cannot handle D2.  

Table 4-13: A ranking case example 

Service Rank Top services for D1 Top services for D2 

1 KMeans EM 

2 FarthestFirst KMeans 

3 EM FarthestFirst 

4 Xmeans 
Hierarchical Clustering with 

Average Linkage 

5 
Hierarchical Clustering with 

Complete Linkage 

Hierarchical Clustering with 

Complete Linkage 

6 Cobweb 
Hierarchical Clustering with 

Single Linkage 

7 
Hierarchical Clustering with 

Average Linkage 

Hierarchical Clustering with 

Ward Linkage 

8 DBSCAN CLOPE 

9 
Hierarchical Clustering with 

Ward Linkage 
- 

10 
Hierarchical Clustering with 

Single Linkage 
- 
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Thus, for such cases by eliminating certain meta-attributes, the ranking order of the services 

can change. Such trends can explain why the SRC value is also affected if a meta-attribute is not 

considered. 

4.7 Summary 

In this chapter, we explained our experiment settings and the process used for dataset 

generation. We described our implementation methodology and how we computed the QoS 

values for the services. We have also discussed the evaluation metrics, i.e. SRC and MAE that 

have been used to asses our results. We have compared our result to the average QoS scenario 

and observed a significant improvement on prediction of QoS values and service ranking. 

We have considered the impact of using different number of neighbouring datasets on our 

prediction results. We found that smaller number of similar datasets can provide good results. 

We have evaluated the influence of the meta-attributes considered and found that these meta-

attributes affect the service behaviour in different ways.  
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CHAPTER 5 
 

 

CONCLUSION AND FUTURE WORK  

5.1 Conclusion 

We have addressed the problem of QoS based service selection and ranking for data 

analytic services. Several meta-attributes can influence the service behavior thereby affecting the 

service selection and ranking results. The previous techniques cannot provide accurate ranking 

results as they do not consider these dataset characteristics. In this thesis, we have proposed a 

methodology that can be used to predict the QoS attributes of data processing services according 

to the nature of the dataset and then rank them.  

We distinguished between two kinds of data-dependent QoS attributes – “per dataset data-

dependent QoS attributes” and “per service data-dependent QoS attributes”.  The “per dataset 

data-dependent QoS attributes” can include latency and accuracy since these values vary for each 

service for a specific dataset. For “per service QoS attributes” such as reliability, the value is 

computed for the service based on all the datasets that have been processed by the service. 

Our contributions are as listed below: 

 We provided a method for prediction of the “per dataset data-dependent QoS 

attributes” values of a service based on a collaborative approach used in 

recommendation systems.  

 The services are ranked based on the predicted QoS results using a utility based 

approach. This way, our system is capable of recommending services for new 

datasets.  
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 We have considered accuracy in the QoS-based service selection process. Accuracy 

is seldom used as an attribute in QoS-based service selection work, to the best of 

our knowledge. While in many web-services such as weather forecasting, e-mailing 

services, accuracy may not be a concern; it is certainly a crucial quality aspect of 

data analytic services.  

We considered 5 meta-attributes for our similarity computation: dataset size, number of 

dimensions, percentage of missing data, type of data and the data distribution pattern. With the 

help of our experiments, we were able to establish the relevance of using these attributes in our 

meta-learning system. 

We found that our prediction and ranking results are significantly better than the traditional 

QoS ranking approach which is to take average QoS values for ranking purpose. This proves the 

importance of using a meta-learning approach for this problem. We also have provided the user 

an option to automatically select the similarity threshold of similar datasets which can provide 

accurate prediction results. 

5.2 Future Work 

There are several aspects we can consider for our future work. We would like to work with 

more data-dependent QoS attributes such as response time and throughput. We can also 

incorporate non data-dependent QoS attributes such as availability, accessibility, integrity etc. to 

provide a comprehensive QoS based selection and ranking system. 

We can consider different QoS based ranking methodologies as well. We could employ 

ranking methods that incorporate user constraints and system constraints, based on which the 

service matchmaking procedure optimizes the results. We would also like to test different 
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preference values for the QoS attributes based on the importance of the attributes which can be 

assigned according to the context and application of the service.  

We can work with different meta-learners such as the data mining algorithms used in recent 

research towards the ranking of machine learning algorithms that include the kNN, SVM or 

neural network algorithms. We plan to test this approach on real-datasets such as the datasets 

from the UCI repository as well. 

We are also interested to work with a wider range of meta-attribute values and would like to 

test other meta-attributes such as noise and work with multivariate datasets. Furthermore, we 

would like to study the interrelationship between the meta-attributes such as the effect of noise 

on numeric datasets versus nominal datasets. We can work with different weights for the meta-

attributes used in the prediction of different QoS attributes based on the level of impact of the 

meta-attribute. 

Finally, we can apply our selection mechanism for other applications, such as different data 

mining services like data classification services or regression services. We could experiment 

with such a selection mechanism for streaming data classification or clustering to handle big 

data. We could also delve into recommendation of other services that deal with data such as data 

preprocessing, data compression and data conversion services etc. 
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