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Abstract

Due to an increase in sports activities, the prediction of athletes’ health (AH) has recently

become an important research topic. However, it is a challenging task to predict AH because

of the nature of the data and the limitations of predictive models. The main objective of this

work is to develop appropriate models that can forecast AH using historical data. This work

will enable sport organizations to monitor the well-being of their athletes.

In this thesis, we explore the applicability of various machine learning (ML) methods for

predicting AH. Traditional ML methods do not perform well for class-imbalanced data as these

methods are biased towards the majority class. In this work, we propose to use ensemble-based

methods which utilize downsampling, bootstrap sampling, and boosting techniques to improve

the classification performance. Various metrics are used to evaluate and to compare the model

performance. Our results show the superiority of ensemble-based methods over traditional

approaches. The random forest and the RUSBoost classier models are in particular found to

produce the best performance in handling imbalanced classes.
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Chapter 1

Introduction

1.1 Introduction and Motivation

The benefits of exercise and sport participation are well-documented and have been discussed

and reported in the literature [1, 2, 3, 4, 5, 6, 7]. Regular exercise through sport participation

can help in reducing stress and in improving physical and mental health. It is also helpful for

obese people. Typically, athletes need to undergo high levels of physical training in order to

improve their performance. Thus, there is always a chance of getting injured or sick. Injuries

occur quite often at sport competitions and can be a serious concern for sport organizations.

Participation in sports continues to grow globally at every level. For example, college

football programs increased by over one hundred programs in just 16 years [8]. As the number of

participants in sports increases, it is reasonable that an increasing number of injuries may occur.

Around 1.4 million injuries happen annually in the United States among high school athletes

[9]. Researchers have found injury rates to be between 65% and 95% annually in Swedish soccer
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populations [10]. Pre-injury analysis has found several factors that might increase injury risk

among athletes. Researchers in [11] developed a theoretical model in which internal risk factors

are related to an athlete’s tendency towards increased injury risk.

It is evident from the references that athletes are prone to get injured or sick. This fact

motivates us to investigate suitable models for predicting athletes’ health (AH) beforehand so

that precautionary measures can be taken before participating in an event. However, it is a

challenging task to predict AH due to the nature of the psychometric data and the limitations

of predicting models.

Before the advent of data science, sport organizations mainly depended on human experi-

ence which was neither accurate nor efficient. To overcome these problems, the use of machine

learning (ML) and statistical techniques in sports has started to become popular recently.

ML methods have been used for many purposes in sports. This thesis compares various su-

pervised ML methods such as logistic regression (LR), naive Bayes (NB), k-nearest neighbor

(k-NN), artificial neural network (ANN), support vector machine (SVM), decision tree (DT),

and ensemble-based algorithms like AdaBoost, LogitBoost, RUSBoost, and random forest (RF)

to construct suitable predictive models. This will enable sport organizations to monitor the

health risks of their athletes. Our research emphasizes imbalanced data which has rarely been

addressed in sports data analysis.

1.2 Literature Review

Due to an increase in sports activities, the prediction of AH has recently become an important

research topic. One can find much research in the fields of sports. However, the application
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of ML methods in this area is still limited. Most of the research in different areas of sports

has been carried out using traditional statistical methods like regression analysis. For example,

logistic regression is used in [12] to identify program applicant characteristics in order to predict

academic success in professional academic training programs. However, the purpose of that

study was to recruit and select the best students from a pool of candidates rather than predicting

their health status.

Psychosocial variables are related to athletic injury and time missed from participation in

sports. The influence of psychosocial variables and time to injury in college athletes is examined

in [13]. However, their research focuses more on the psychosocial data that could be used for

psychosocial screening of athletes.

Receiver operating characteristic and logistic regression analysis are used in [14] to identify

dichotomized predictive factors that distinguished injured from uninjured status in college foot-

ball players. Gary et al. in [15] address the prevalence of metabolic syndrome among collegiate

football players and develop a clinical prediction rule to identify players who possess a high level

of cardiometabolic risk. They used chi-square analysis and logistic regression in their study.

Researchers in [16] use logistic regression in conjunction with the Wald test for the prediction

of injuries and injury types to determine the relationship among the results in different groups

of armies and soldiers. Smith et al. in [17] apply a univariate and step-wise logistic regression,

F-test, and chi-square test to determine both the incidence of injury and the influence of phys-

ical, situational, and psychological factors in high school ice hockey players. The authors in

[18] used machine learning and sensor fusion for fatigue prediction in outdoor runners. Their

results claim to be useful and represent a solid start for moving into a real-world application
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for monitoring the fatigue level of outdoor runners using wearable sensors. Although these

papers achieved their respective research objectives, none of them, however, addressed the class

imbalance problem that we often encounter in real-life applications.

ML methods have been used particularly for sport result prediction. In the paper [19],

Josip and Alen used ML techniques to develop software in order to predict the results of

football matches. However, the accuracy of the most successful classifier has reached a limit

of 68% only. In [20], the authors develop a hybrid fuzzy-SVM model by integrating the fuzzy

approach and the SVM technique for predicting basketball game outcomes that help the players

to enhance their performance. They also claim that their proposed model can be applied to

other sports such as soccer, baseball and golf. The paper [21] provides a critical analysis of the

literature in machine learning, focusing on the application of ANN to sport result prediction.

The article also proposes a novel sport result prediction framework through which machine

learning can be used as a learning strategy. Machine learning techniques such as ANN, random

forests and logistic regression are used in [22] to achieve an effective team strategizing analysis.

Note, however, that all this research were conducted for sport result prediction using some

popular ML methods. The crucial issue of imbalanced classes was not taken into consideration

in those studies.

ML methods have also been used in many areas of medical science including breast cancer

detection, cardiovascular risk prediction, stroke prediction, Parkinson’s disease prediction, and

medical imaging, to name a few [23, 24, 25, 26, 27, 28, 29]. For example, researchers in [29]

use naive Bayes and logistic regression models for early detection of breast cancer. In the

paper, the authors claim that computer-based quantitative methods improve diagnosis on breast
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ultrasound and have the potential to reduce the number of biopsies. Wang et al. [28] use the

multilinear sparse logistic regression model for the prediction of clinical risks of Alzheimer’s

disease and heart failure. Unlike logistic regression, which requires the inputs to be in vector

form, the proposed method in [28] can directly take data matrices or tensors as inputs to

perform prediction. Although these methods showed good performance in detecting breast

cancer, Parkinson’s and Alzheimer’s diseases, they perform poorly where the minority class

needs to be detected with reasonable accuracy.

Using ML techniques of boosted logistic regression, classification trees, Bayes Net and multi-

layer perceptron, researchers in [27] develop an improved approach for the prediction of Parkin-

son’s disease for real life applications. The paper [24] compares deep neural network (DNN)

with three other ML methods for predicting 5-year stroke occurrence using a large population-

based electronic medical claims database. The article claims that the DNN achieves optimal

results by using lesser amounts of patient data when compared to the gradient boosting de-

cision tree. Stephen et al. [26] conducted a study which show that ML algorithms perform

better at predicting the number of cardiovascular disease cases correctly. It is demonstrated

in a large patient population using routinely collected electronic health data. The importance

and applications of ML techniques in various healthcare industries have been addressed and

explained in [25]. This research work demonstrates the usefulness of ML methods in various

areas.

Inspired by the above-mentioned articles, in this thesis, we apply ML methods to our psycho-

metric data in order to build suitable models for predicting AH. Traditional statistical models

like regression analysis or ML methods such as LR, DT, etc. perform poorly in classifying
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imbalanced data. In our research, we aim to improve the classification performance by using

ensemble-based methods like AdaBoost, LogitBoost, RUSBoost, and random forest. We have

chosen several supervised ML methods for prediction purposes and a comparative performance

analysis of these methods has also been made by various performance evaluation metrics.

1.3 Research Objectives and Contributions

The main goal of this thesis is to build effective classifier models in order to predict athletes’

health (illness/wellness) using a new dataset with imbalanced classes. This broad goal can be

accomplished through the objectives and contributions outlined as follows:

• Clean and prepare the raw data for machine learning methods.

• Find the best interpolation technique to fill in the missing values in the dataset.

• Perform statistical analysis for feature selection purposes.

• Find the best possible parameters for the classifier models through optimization and fine-

tuning techniques.

• Apply the traditional ML methods to the dataset for predicting athletes’ health.

• Use ensemble-based methods to improve the classification performance.

• Use the ARMA model to further improve the classification performance.

• Analyze the results, compare the performance of the models with each other, and propose

the best classifier model(s) for the prediction of athletes’ health.
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1.4 Organization of the Thesis

The remaining chapters of this thesis is organized as follows.

Chapter 2 presents a brief description of the dataset and explains various methods and

techniques for data cleaning and preparation that are vital for constructing good predictive

models. Predictive performance of ML models can be improved by properly handling the

dataset. As such, this chapter talks about missing values treatment, outlier detection and

treatment, handling imbalanced classes, and so on. It also explains some of the key issues

related to machine learning that are useful for improving the classification performance.

Chapter 3 introduces the use of the correlation matrix and p-values to find correlated and

significant features for feature selection. The aim is to reduce the size of the original dataset in

an efficient way so that we can save time by not computing unnecessary features. This chapter

also talks about various performance evaluation metrics, especially for imbalanced classes.

Chapter 4 first outlines the traditional ML methods that are applied to our data for pre-

dicting AH. The technique of fine-tuning is then applied to the models to find the optimal

parameters for each model. Then, experiments using 10-fold cross-validation are performed fol-

lowed by a discussion of the results. The performance of the classifier models is also compared

with each other.

Chapter 5 first presents an overview of the ensemble-based methods used in this thesis in

order to improve the classification performance. Model tuning is then performed to obtain

the best possible parameters for each model. An ensemble approach called RUSBoost, which

uses downsampling and boosting, is utilized to alleviate the class imbalance problems in the
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dataset. This chapter also provides evaluation results through various experiments followed by a

comparative discussion and analysis. The models are then tested after eliminating insignificant

features and the health feature. The ML models are further tested using the ARMA model to

see if the classification performance can be improved. Finally, a comparative discussion of the

training time of each model is presented followed by a summary on the chapter.

Finally, Chapter 6 concludes the thesis by providing a summary of the research along with

suggestions for future work.
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Chapter 2

Data Exploration and Preparation

for Machine Learning

Machine learning (ML) is a comparatively new method of data analysis that enables computers

to search hidden insights while not being explicitly programmed [30, 31]. It is a branch of

artificial intelligence (AI) that focuses on prediction, based on known properties learned from

training information. Figure 2.1 shows a simple flowchart of how the ML system works to solve

a problem.

ML algorithms are divided into supervised, unsupervised, and reinforcement learning tasks

[31]. The basic idea of supervised learning is that the machine (computer) is provided with

both training examples (inputs) and their correct labels (outcomes). Labelled data contains

input feature variables and output target variables. The goal is to build a generalized model

which can predict the outcome of new data. In other words, the machine learns to predict

the outcome of new data based on the past examples [32]. Here, the users determine which

9



Figure 2.1: A simple flowchart of machine learning.

features the model should analyze and use to develop predictions. After finishing the learning

or training stage, the model can be applied to new examples.

Supervised learning algorithms are widely used in many real-life applications such as bioin-

formatics, spam detection, fraud detection, database marketing, pattern recognition, speech

recognition, and so on. Based on the desired output of a machine-learned system, ML al-

gorithms can further be categorized as classification, regression, clustering, association rules

learning, and dimensionality reduction. Classification algorithms are employed when the out-

put labels are categorical such as healthy/sick, positive/negative, or male/female. In this thesis,

we used supervised ML algorithms for predicting athletes’ health (AH) and for classifying their

health status.

Predictive performance of ML models can be improved both at the data level and at the

algorithm level. In the process of building an efficient predictive model, we first address the

following important topics that are used at the data level.
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2.1 Data Exploration

Data exploration is a preliminary investigation process of a dataset in machine learning. In

most cases, data are collected in an unstructured way and in large bulk. These raw data need to

be prepared in an organized manner for better analysis. For these reasons, data exploration is

necessary to have a better understanding of our data [33]. If we understand the characteristics

of our data well, we can use them efficiently.

There are two ways to explore a dataset: statistical techniques and visualization techniques.

Statistical techniques explore the mean, median, mode, and standard deviation of data. These

values help us to better understand the dataset. Whereas, visualization techniques assist us in

visualizing our data graphically. There are several types of plots that can be used to visualize

data. Some of the most common plotting techniques include histogram, line plot, scatter plot,

box plot, and density plot. Each type of plot is used for different purposes depending on the

data at hand. By visualizing data using graphs and charts, we are better able to discover the

most relevant aspects of our datasets.

2.2 The Purpose of Data Cleansing

Data quality is one of the major issues in machine learning and other related areas. Data cleans-

ing is the process of identifying and rectifying inaccurate or corrupted data from a database

to achieve high quality data. It is a valuable process that can help organizations save time

and increase their efficiency. Maintaining excellent quality data is also essential since the per-

formance of a predictive model could be impacted if the missing values are not appropriately
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handled. Moreover, invalid or inconsistent data can lead to false conclusions. Therefore, we

should ensure that the database is free from corruption. As a part of the data cleansing process,

we will talk about missing values and outliers in the next sections after introducing our dataset.

2.3 Dataset and Feature Description

In this thesis, we have used a psychometric dataset from a company. Our dataset contains

several features that include nutrition, sleep, irritability, hydration, stress, rest, energy, soreness,

health, enjoyment, and exertion. The dataset also contains the athletes’ names, IDs, and date

of data entry. Athletes enter the data for these features on a daily basis. For each feature, they

enter a number from 1 to 7. For example, in the health feature, if athletes feel very good for

the day, they enter 7. When they are very sick, the entry is usually 1. When they feel moderate

in health, the score varies from 4 to 6. The features of our dataset are presented in Table 2.1

with their respective ratings.

It has been documented in research-based articles that health and wellness are dependent

upon several factors or features. The selection of features is very important in ML as it helps

improve the model performance. Most of the features in the dataset we used in this thesis

(e.g., nutrition, stress, rest, enjoyment, hydration, irritability, energy, etc.) are well-established

in the literature [34, 35, 36]. For example, there is a clear relationship between nutrition

and health. Similarly, hydration, rest, enjoyment, sleep, irritability, energy, etc. are also

directly or indirectly related to health. On the other hand, stress affects both psychological

and physiological functioning. There is also a strong positive connection between enjoyment

and sense of well-being, including physical as well as mental health.

12



Table 2.1: Features and their respective ratings.

Feature Ratings

Nutrition (x1) 1 = very bad, 7 = very good

Sleep (x2) 1 = very bad, 7 = very good

Irritability (x3) 1 = worst, 7 = no irritability

Hydration (x4) 1 = very bad, 7 = very good

Stress (x5) 1 = overwhelmed, 7 = no stress

Rest (x6) 1 = no rest, 7 = very good rest

Energy (x7) 1 = very low, 7 = very high

Soreness (x8) 1 = very sore, 7 = no soreness

Health (x9) 1 = very bad, 7 = very good

Enjoyment (x10) 1 = no enjoyment, 7 = enjoyed very well

Exertion (x11) 1 = very low effort, 7 = very high effort

The original raw data contain a total of 1,116 athletes (or users). Out of 1,116 athletes, only

542 files contain valid records. The remaining athletes did not have any record at all. So, we

have discarded those athletes whose records are empty. Moreover, many of them have missing

data. The missing values were filled in by interpolation techniques. The athletes whose missing

data rate (before interpolation/after interpolation) is more than 40% were also removed. After

the initial stage of data cleaning, we have ended up with 265 athletes with many missing values.

2.4 Missing Values Treatment

Missing values in raw data are a common phenomenon in real-world problems. It may occur

for several reasons and affects the quality of data. The impact of missing values can lead to

many problems including biased estimates of parameters, loss of information, and weakened

generalizability of findings.
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The treatment of missing values has been a major concern in machine learning and data

science in recent years. Missing values in data can be handled in various ways [37, 38, 39, 40, 41,

42]. First, if the number of cases of missing values are much smaller than the total number of

observations, then the observations (rows) that contain missing values can be deleted without

losing much information. Second, if a feature contains more missing values than the rest of

the features in the dataset and if it is not a significant predictor, then that feature can be

removed from the dataset. Third, the missing values can be replaced with the mean or median

or mode of the respective feature. Fourth, the missing values can be replaced by interpolation

techniques. Given the nature of our dataset, we have used interpolation techniques to fill in

the missing values.

2.5 Choosing the Right Interpolation Technique

Interpolation is the process of estimating unknown values within the range of a discrete set of

known data points. Many interpolation techniques exist in the literature [43]. They include lin-

ear interpolation, modified Akima cubic Hermite interpolation, nearest-neighbor interpolation,

next-neighbor interpolation, shape-preserving piecewise cubic interpolation, previous-neighbor

interpolation, spline interpolation, etc. A comparison of these interpolation techniques is shown

in Figure 2.2 for an artificially generated signal.

The choice of an interpolation technique depends on the nature of the dataset and its ap-

plication. There is no one best interpolation technique for any specific type of data or industry.

To find the best technique for a specific dataset, the best thing to do is to experiment with

different techniques until a desired result is obtained. In our case, we have applied different
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Figure 2.2: Comparison of various interpolation techniques.

interpolation techniques to our data to produce AUC (area under the ROC curve) using several

ML methods. Then, we selected the interpolation technique which gave the best AUC. Accord-

ing to our experiments, the nearest-neighbor interpolation technique worked the best for our

data. In nearest-neighbor interpolation, the interpolated value at a query point is the value

at the nearest sample grid point which yields a piecewise-constant interpolant. It requires less

memory and computation time than linear interpolation. After completing interpolation, we

finally ended up with around 67,766 observations.

We have also used z-score to standardize the data values having a mean of zero and a

standard deviation of 1. It is always beneficial to standardize or normalize the data. The

optimization algorithm converges faster for normalized data, and, as a result, the algorithm

run-time decreases.
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2.6 Outliers Detection and Treatment

An outlier is an extreme value that is distant from other observations. Outlier detection is the

process of detecting outliers from a given dataset. Most real-world datasets contain a certain

number of outliers. These observations substantially deviate from the general trend. Therefore,

we should isolate these outliers in order to improve the quality of original data and reduce

the adverse impact on data analysis. Outliers in data can also distort predictions and affect

accuracy. However, there is no standardized mathematical method for determining an outlier

as it depends on the data and applications at hand.

Some of the most common causes of outliers in a dataset are data entry errors, measurement

errors, experimental errors, data processing errors, and sampling errors. Graphical methods like

boxplot and scatterplot are commonly used for detecting outliers. Some of the most popular

statistical methods such as z-score, linear regression models (PCA), and k-means clustering are

also used for outlier detection purposes [44]. A detailed survey of outlier detection methodologies

can be found in [38].

The outliers can be treated in several ways. One way is to soften the impact of outliers

by transforming data using some expressions such as square roots and logarithms. When the

outliers lie significantly beyond the range of the data, they should be deleted. However, in the

case of natural outliers that have significant impact on the dataset, they are treated separately.

Another effective way of dealing with outliers is to use methods that provide a robust treatment

of outliers, such as tree-based methods like random forest and boosting techniques. Regarding

our dataset, some users have mistakenly inserted 8 or 9 instead of 7 in the exertion feature.
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The number of these apparent outliers is very small compared to the total number of instances.

Moreover, these few outliers do not have any significant impact on any model that we used in

this thesis. However, we have replaced those outliers with the maximum rating 7.

2.7 Generating Health Index or Output Label

The original data did not have output labels. Therefore, we generated output labels for super-

vised learning algorithms. The criterion for predicting the health index of athletes was decided

based on the health feature in a way that if the athletes are sick for at least one day in a

period of one week, they are considered sick, otherwise they are assumed healthy. The AH

is represented by a binary number referred to as the output label. If the value of the health

feature is larger than 3.5, it is assigned 0 (healthy), otherwise 1 (sick) is assigned. This can be

represented using OR logical function in a time period of one week as follows:

HIndt = 1, if OR(Healtht+1 < 3.5, Healtht+2 < 3.5, Healtht+3 < 3.5, Healtht+4 < 3.5,

Healtht+5 < 3.5, Healtht+6 < 3.5, Healtht+7 < 3.5)

Otherwies, HIndt = 0 (2.1)

where HInd is the health index or output label and t is the time.

According to our dataset, most of the time the athletes have reported from 5 to 7. It makes

the negative (healthy) cases much higher compared to the positive (sick) cases. An example of

generating health index (output label) for a single athlete based on (2.1) is presented in Table

2.2 (right-hand column). By inspecting the features, most of the time the user has entered 5
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Table 2.2: Seven omit days output labels for a single user.

Date Nutrition Sleep Irritability Hydration Stress Rest Energy Soreness Health Enjoyment Exertion HInd

13 4 4 4 4 4 4 4 4 4 5 7 -

12 5 6 5 3 5 5 3 4 5 5 7 -

11 5 5 4 5 5 5 3 3 3 3 7 -

10 6 4 5 5 4 4 4 4 4 5 5 -

9 4 4 4 4 4 4 4 4 4 4 6 -

8 6 6 5 6 6 6 5 6 5 5 5 -

7 5 6 5 3 4 5 5 3 5 3 7 -

6 5 6 3 3 5 6 5 7 5 5 7 1

5 5 5 5 4 6 5 3 3 5 5 5 1

4 5 5 5 4 6 5 3 3 5 5 5 1

3 5 6 5 3 3 6 3 3 5 2 4 0

2 6 6 6 4 5 5 5 3 5 5 5 0

1 5 4 5 5 6 5 3 5 4 5 7 0

or above. It is also observable that there are no 1 or 2 ratings for this user. About the labels,

there can be found 3 healthy (negative) cases and 3 sick (positive) cases.

Note that instead of using individual athlete data, we have used the panel data which is

the combination of all the athlete data. Panel data usually refers to data containing time series

observations of a number of individuals [45, 46]. In our case, the panel data can be represented

in the matrix form as:

X =



X1

X2

...

XN


(2.2)

where N represents the total number of athletes, X is the panel data matrix, and X1, X2, ..., XN
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represent individual athlete data matrix. An individual data matrix can be expressed as:

X =



x11 x21 · · · xm1

x12 x22 · · · xm2

...
...

. . .
...

x1Tj x2Tj · · · xmTj


(2.3)

where m is the number of features (columns) in the dataset, Tp is the time variable, and xiTp

refers to the data value of feature i in Tp time. The advantage of panel data is that it gives us a

large number of data points which increase the degrees of freedom and reduces the collinearity

among explanatory variables. As a result, panel data offers more accurate inference of model

parameters [45].

Our initial investigation suggests that the positive (sick) and negative (healthy) cases in

our dataset are not balanced in that there are many more healthy cases (over 90%) than sick

ones. It means that our dataset contains imbalanced classes. It can also be seen in histograms

in Figures 2.3 to 2.5. The histogram of the health feature makes it clear that most of the good

scores (healthy cases) are on the right-hand side of the histogram. In the next section, we

address dealing with imbalanced classes.

2.8 Handling Imbalanced Classes

The existence of imbalanced data has been a relatively new challenge to the data scientist

community. Most of the real-world datasets commonly exhibit an unbalanced distribution,

where one of the classes outnumbers other classes by a large proportion. This kind of problem
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Figure 2.3: Histogram of nutrition, sleep, irritability, and hydration features for all athletes.

Figure 2.4: Histogram of stress, rest, energy, and soreness features for all athletes.
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Figure 2.5: Histogram of health, enjoyment, and exertion features for all athletes.

is encountered more frequently in binary classification problems than multi-class classification

problems. The imbalanced classes can be found in many applications such as fraudulent trans-

action detection, spam filtering, or identifying cancer, hepatitis, and cardiovascular disease.

Traditional ML methods will not perform well for class-imbalanced datasets as these meth-

ods will be biased towards the majority class [47]. Several techniques have been proposed both

at the data level and at the algorithmic level to solve class-imbalance problems [48, 49, 50, 51].

Data level techniques for handling imbalanced datasets include undersampling, oversampling,

and feature selection. Algorithm level techniques for dealing with imbalanced datasets include

threshold methods and cost-sensitive learning. In addition to these techniques, combining

methods are also used for the same purposes.

To deal with imbalanced data, some simple steps can be applied first. For example, more
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data can be collected as a larger dataset might have more balanced classes. The performance

evaluation metric can be changed. Instead of using traditional classification accuracy, we can

use AUC and F-score as performance measures. In the next step, we can apply re-sampling

techniques at the data level to combat imbalanced data. These techniques aim to change or

modify the dataset using some mechanisms to have more balanced data. Resampling of imbal-

anced data is performed mainly in three ways: oversampling, undersampling, and synthetic data

generation. At the algorithmic level, we can try different techniques and models to evaluate

what works best. The most used of all these techniques are briefly explained in the subsequent

sections.

2.8.1 Oversampling

The idea of oversampling is to increase the size of the minority class until the number of observa-

tions balance the majority class. This technique is used when the quantity of data is insufficient.

An advantage of the oversampling technique is that it leads to no loss of information. However,

this technique may lead to overfitting and can also introduce an additional computational cost.

2.8.2 Undersampling

Undersampling is an efficient technique for balancing imbalanced data. It is performed by

deleting instances from the majority class to balance the data. This technique is usually used

for a large dataset. However, reducing observations may lose some information from the training

set.
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2.8.3 Synthetic Data Generation

The synthetic data generation technique aims to overcome imbalances by generating synthetic

data. A simple way to generate synthetic samples is to randomly sample the instances in the

minority class. Using this concept, SMOTE (Synthetic Minority Oversampling Technique) has

been a powerful and widely used technique in machine learning to combat imbalanced data.

Instead of creating mere copies, the SMOTE algorithm creates synthetic samples from the mi-

nority class. It first selects two or more similar samples from the minority class using a distance

measure. Then, it introduces synthetic samples along the line segments connecting any/all

the k minority class nearest neighbors. Neighbors from the k-nearest neighbors are selected

randomly depending on the amount of required oversampling. Since there is no replication of

minority class records, SMOTE does not suffer from overfitting problems seriously.

In addition to the above techniques, penalized algorithms or ensemble methods are also used

to handle the classification problem of imbalanced data [52, 53, 54, 55, 56]. These methods

impose a penalty for misclassification on the minority class during training. These penalties

can push the model in a way that it pays more attention to the minority class.

In the process of building a robust predictive model, we encounter many challenging prob-

lems. In addition to the above-mentioned methods and techniques, the model performance can

also be improved through some changes or modifications or tuning at the algorithm level. In

the next sections, we will present some of the most common problems that can be removed or

minimized at this level to enhance model performance.
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Figure 2.6: Examples of underfitting (left), balanced (middle), and overfitting (right) models.

2.9 Underfitting and Overfitting Problems

Underfitting and overfitting are two common problems in machine learning and data science.

A machine learning model is said to have underfitting when it cannot capture the underlying

trend of the training data. It is usually a result of an extremely simple model. The picture on

the left of Figure 2.6 shows an underfitting case. As can be seen, the line does not cover all

the points in the graph. Such an underfit model will have high training and high testing error.

Underfitting can be avoided in several ways such as by using more data and/or by adding more

features and/or by increasing the degree of the polynomials or by using alternative models.

A model is said to be overfitting when it performs very well on training data but performs

poorly on unseen data. It is typically a result of an overly complicated model. The graph on

the right in Figure 2.6 shows that the predicted line covers all the points in the graph. This

kind of model will have an extremely low training error but a high testing error.

Both underfitting and overfitting can lead to poor prediction performance on new datasets.

To know how well a model will perform on new data, we can split our initial dataset into separate

training and test subsets. If the model performs very well on the training set compared to its

performance on the test set, then it is most likely an overfitting case.
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When we build a predictive model, we want to avoid overfitting as it performs poorly on

the unseen data. However, in the process of reducing overfitting, we may end up having an

underfit model which is another problem in machine learning. This is known as the bias-variance

dilemma. We need to minimize both bias and variance as much as possible in building a model

which generalizes well to new data. Cross-validation is a powerful preventative measure against

overfitting [57]. The methods of pruning and regularization are also used to prevent overfitting

in some cases. We will explain these methods in the following sections.

2.10 Cross-validation to Avoid Overfitting

One simple way to avoid overfitting is to divide the dataset into a training set to train the

model, and a validation or test set to evaluate its performance. This technique is called cross-

validation in its simplest form. This simple technique helps avoid overfitting as the model is

tested against unseen data. However, the most popular and widely used method is k-fold cross-

validation [58, 59, 60, 61]. In k-fold cross-validation, the original dataset is partitioned into k

subsets or k folds. Of the k subsets, a single subset is kept for validation, and the remaining

k-1 subsets are used for training the model. The process is then repeated k times until each of

the k subsets is used as the validation set. The average of k results is then used to produce a

single estimation.

Choosing the right value of k is a difficult task. A lower value of k can produce more biased

results. Whereas, a higher value of k can reduce bias but can suffer from large variability. In

practice, the best choice for the value of k is 5 or 10 [61]. One obvious disadvantage of this

method is that it can be computationally intensive. In the case of a smaller dataset, it is better
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to apply cross-validation. Otherwise, a simple train-test split could be enough for a larger

dataset.

2.11 Pruning to Reduce Overfitting

Pruning is a technique used in machine learning for dealing with overfitting in tree-based al-

gorithms [62, 63]. Pruning can be of two types: pre-pruning and post-pruning. Pre-pruning

is the process that stops the tree-building process before it becomes a fully-grown tree. One

obvious disadvantage of early stopping is that it may underfit the data by stopping too early.

However, early stopping may save computation time. Whereas, post-pruning allows the tree to

grow fully with no size limit, and then prune or remove the nodes that do not provide additional

information. Pruning in general reduces the complexity and the overfitting of the final classifier

without reducing predictive accuracy significantly.

2.12 Model Tuning

So far, we addressed many methods and techniques for improving the results of a machine

learning model. Model tuning is another strategy that can be employed intelligently to boost

model performance. This technique is also called parameter tuning or parameter optimization.

ML models require us to set different parameters. We can tune or optimize those parameters

until the best possible result is achieved.

Our ML-based prediction algorithm can be summarized as follows:

• Clean and prepare the dataset.
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• Generate the output labels.

• Divide the dataset into training and test sets.

• Build/train the models using the training dataset.

• Evaluate the models using the test dataset.

• Predict the output and make a decision (healthy or sick).

2.13 Summary

In this chapter, we presented some useful methods and techniques for data cleaning and prepara-

tion and to enhance the predictive power of ML algorithms. We also addressed some important

issues related to machine learning that are useful for improving the classification performance.

In the next chapter, statistical analysis for feature selection along with evaluation metrics to

evaluate the performance of ML models are presented.
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Chapter 3

Statistical Analysis for Feature

Selection and Evaluation Metrics

3.1 Statistical Analysis for Feature Selection

Our dataset might contain an excess number of features. All those features might not be

useful in constructing a machine learning (ML) model. In fact, some features might even make

the model worse. So, feature selection plays an important role in building ML models. We

want to explain the data in the simplest possible way and thus the redundant features should

be removed. Feature selection is the process by which we can reduce the size of the original

dataset by selecting the best features out of many. By doing this, we can save time and/or

money by not measuring unnecessary features. In this thesis, we use correlation matrix and

p-value as measures to select the right features.
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3.1.1 Correlation Matrix

Correlation means the degree of association between two independent variables or features.

When there are more than two features, the collection of pair-wise correlations is succinctly

represented in a correlation form which is called the correlation matrix. In short, a correlation

matrix is a table showing correlation coefficients among all features. The purpose of examining

correlations is to identify the collinearity between features.

The values of the correlation coefficients always range from -1 to 1. The positive or negative

sign tells us the direction of the relationship, and the number tells us the strength of the

relationship. If there is perfect positive relationship between two features, the correlation

coefficient will be 1. If there is perfect negative connection between two features, the correlation

coefficient is -1. A correlation coefficient of zero means that there is no link between the features.

The most common way to quantify this relationship is the Pearson’s correlation coefficient.

Typically, a correlation matrix is square, with the same features shown in the rows and

columns. This matrix is symmetrical, with identical correlation shown on top of the main

diagonal being a mirror image of those below the main diagonal. The line of 1s going from

the top left to the bottom right is the main diagonal, which shows that each feature always

perfectly correlates with itself.

Highly correlated features are more linearly dependent and hence have almost the same

effect on the output variable. So, when two features have high correlation, we can drop one.

For our data, a correlation matrix is used to investigate the relationship among multiple features

together. The correlation matrix of our data is shown in Table 3.1. Besides the main diagonal

elements, it can be observed that the highest correlation (0.53) occurs between stress and
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Table 3.1: Correlation matrix.

Nutrition Sleep Irritability Hydration Stress Rest Energy Soreness Health Enjoyment Exertion

Nutrition 1 0.41 0.43 0.52 0.37 0.33 0.33 0.27 0.49 0.30 0.07

Sleep 0.41 1 0.42 0.39 0.38 0.47 0.50 0.32 0.46 0.27 0.07

Irritability 0.43 0.42 1 0.36 0.53 0.34 0.35 0.29 0.45 0.30 0.05

Hydration 0.52 0.39 0.36 1 0.30 0.30 0.33 0.25 0.40 0.28 0.10

Stress 0.37 0.38 0.53 0.30 1 0.32 0.37 0.31 0.39 0.25 0.04

Rest 0.33 0.47 0.34 0.30 0.32 1 0.42 0.33 0.39 0.18 0.13

Energy 0.33 0.50 0.35 0.33 0.37 0.42 1 0.46 0.44 0.29 0.05

Soreness 0.27 0.32 0.29 0.25 0.31 0.33 0.46 1 0.34 0.21 0.01

Health 0.49 0.46 0.45 0.40 0.39 0.39 0.44 0.34 1 0.31 0.07

Enjoyment 0.30 0.27 0.30 0.28 0.25 0.18 0.29 0.21 0.31 1 0.07

Exertion 0.07 0.07 0.05 0.10 0.04 0.13 0.05 0.01 0.07 0.07 1

irritability features. But the lowest correlation (0.01) can be found between soreness and

exertion. However, there is no perfect or high correlation between any two features in our

dataset.

3.1.2 t-Value and p-Value

The t-value is a test statistic. A test statistic is the result of a statistical test or t-test. The exact

formula for t depends on the type of t-test. For two sample tests, it is a standardized difference

between the two means. That is, it is a measure of how far apart the two means are. Every

t-value has a p-value (probability value) associated with it to measure the statistical significance

of the difference. There can be found tables, spreadsheet programs and statistical software to

help calculate the p-value. p-Value is used to decide if a feature is statistically significant based

on a significance level α (usual values used for α = 0.05, 0.01, 0.001). If p ≤ α = 0.05 for

a specific feature, then it is considered as statistically significant, otherwise it is assumed as
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Table 3.2: Descriptive statistics and p-values for all features.

Feature Estimate Standard error t-Statistic p-Value

Intercept -2.4335 (β0) 0.0147 -165.48 0

Nutrition -0.0418 (β1) 0.0142 -2.9556 0.00312∗

Sleep -0.0131 (β2) 0.0150 -0.8706 0.38398

Irritability -0.0087 (β3) 0.0151 -0.5756 0.56491

Hydration -0.0464 (β4) 0.0141 -3.2972 0.00098∗

Stress 0.0105 (β5) 0.0151 0.6923 0.48876

Rest -0.0638 (β6) 0.0150 -4.2533 2.11e-05∗

Energy -0.0174 (β7) 0.0157 -1.1145 0.26508

Soreness -0.0045 (β8) 0.0143 -0.3153 0.75257

Health -0.4248 (β9) 0.0129 -32.905 1.9e-237∗

Enjoyment -0.0024 (β10) 0.0140 -0.1747 0.86136

Exertion -0.0401 (β11) 0.0137 -2.9336 0.00335∗

Chi2-statistic vs. constant model: 1.56e+03, p-value = 0
∗ represents significant p-value with α ≤ 0.05

statistically insignificant. Table 3.2 presents the estimated feature coefficients and p-values for

our dataset. The regression model used to obtain the statistics in Table 3.2 is given in (3.1) for

eleven features.

ĤInd = β0 + β1Nutrition+ β2Sleep+ β3Irritability + β4Hydration+ β5Stress+ β6Rest

+ β7Energy + β8Soreness+ β9Health+ β10Enjoyment+ β11Exertion (3.1)

where β0 is the intercept and the parameters {β1, β2, ..., β11} represent the coefficients of the

respective features.

Considering α = 0.05 (5% significance level), the p-values of 0.00312, 0.00098, 2.11e-05, 1.9e-

237, and 0.00335 indicate that the coefficients of the features nutrition, hydration, rest, health,

31



Table 3.3: Descriptive statistics and p-values for ten features.

Feature Estimate Standard error t-Statistic p-Value

Intercept -2.4335 0.0147 -165.48 0

Nutrition -0.0419 0.0141 -2.9624 0.00305

Sleep -0.0131 0.0151 -0.8703 0.38413

Irritability -0.0089 0.0150 -0.5942 0.55236

Hydration -0.0464 0.0141 -3.3019 0.00096

Stress 0.0104 0.0151 0.6861 0.49264

Rest -0.0637 0.0150 -4.2498 2.14e-05

Energy -0.0177 0.0156 -1.1356 0.25611

Soreness -0.0046 0.0143 -0.3238 0.74606

Health -0.4250 0.0129 -32.961 2.9e-238

Exertion -0.0403 0.0137 -2.9454 0.00323

Chi2-statistic vs. constant model: 1.56e+03, p-value = 0

and exertion are statistically significant. The features sleep and energy can be considered as

relatively less significant. On the other hand, the features irritability, stress, soreness, and

enjoyment are not significant at the 5% significance level given the other terms in the model.

Therefore, we can remove these insignificant features to test our model performance. Backward

elimination technique can be applied for this purpose. According to this technique, we start

with all the features in the model. Then, we remove the feature with highest p-value greater

than α. We then refit the model and repeat the previous step. The process is stopped when

all p-values are less than α. The results are presented in Tables 3.3 to 3.8. In Table 3.3, the

feature enjoyment (p=0.86136) was removed. In Table 3.4, the feature soreness (p=0.74606) was

removed. In a similar manner, the feature related to the maximum p-value greater than α was

removed in every subsequent Table. Based on these data, we will present experimental results

in Chapter 5. Note that the significant features may not be automatically good predictors [64].
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Table 3.4: Descriptive statistics and p-values for nine features.

Feature Estimate Standard error t-Statistic p-Value

Intercept -2.4334 0.0147 -165.48 0

Nutrition -0.0419 0.0141 -2.9621 0.00306

Sleep -0.0131 0.0151 -0.8678 0.38549

Irritability -0.0091 0.0150 -0.6063 0.54435

Hydration -0.0465 0.0141 -3.3060 0.00095

Stress 0.0101 0.0151 0.6714 0.50196

Rest -0.0641 0.0149 -4.3010 1.70e-05

Energy -0.0186 0.0153 -1.2123 0.22541

Health -0.4251 0.0129 -33.007 6.5e-239

Exertion -0.0401 0.0137 -2.9354 0.00333

Chi2-statistic vs. constant model: 1.56e+03, p-value = 0

Table 3.5: Descriptive statistics and p-values for eight features.

Feature Estimate Standard error t-Statistic p-Value

Intercept -2.4334 0.0147 -165.48 0

Nutrition -0.0425 0.0141 -3.0138 0.00258

Sleep -0.0138 0.0150 -0.9205 0.35730

Hydration -0.0470 0.0140 -3.3500 0.00081

Stress 0.0071 0.0142 0.4965 0.61953

Rest -0.0643 0.0149 -4.3104 1.63e-05

Energy -0.0195 0.0153 -1.2809 0.20022

Health -0.4258 0.0128 -33.181 2.0e-241

Exertion -0.0401 0.0137 -2.9311 0.00338

Chi2-statistic vs. constant model: 1.56e+03, p-value = 0
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Table 3.6: Descriptive statistics and p-values for seven features.

Feature Estimate Standard error t-Statistic p-Value

Intercept -2.4335 0.0147 -165.48 0

Nutrition -0.0420 0.0141 -2.9841 0.00284

Sleep -0.0131 0.0149 -0.8794 0.37919

Hydration -0.0467 0.0140 -3.3312 0.00086

Rest -0.0638 0.0149 -4.2861 1.82e-05

Energy -0.0186 0.0151 -1.2285 0.21925

Health -0.4253 0.0128 -33.246 2.3e-242

Exertion -0.0401 0.0137 -2.9303 0.00339

Chi2-statistic vs. constant model: 1.56e+03, p-value = 0

Table 3.7: Descriptive statistics and p-values for six features.

Feature Estimate Standard error t-Statistic p-Value

Intercept -2.4334 0.0147 -165.48 0

Nutrition -0.0428 0.0140 -3.0483 0.00230

Hydration -0.0474 0.0140 -3.3915 0.00070

Rest -0.0666 0.0145 -4.5873 4.49e-06

Energy -0.0223 0.0145 -1.5367 0.12436

Health -0.4265 0.0127 -33.548 9.6e-247

Exertion -0.0401 0.0137 -2.9316 0.00337

Chi2-statistic vs. constant model: 1.56e+03, p-value = 0
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Table 3.8: Descriptive statistics and p-values for five features.

Feature Estimate Standard error t-Statistic p-Value

Intercept -2.4332 0.0147 -165.49 0

Nutrition -0.0439 0.0140 -3.1374 0.00171

Hydration -0.0486 0.0140 -3.4816 0.00050

Rest -0.0722 0.0140 -5.1403 2.74e-07

Health -0.4309 0.0124 -34.725 3.3e-264

Exertion -0.0397 0.0137 -2.9054 0.00367

Chi2-statistic vs. constant model: 1.55e+03, p-value = 0

3.2 Performance Evaluation of Machine Learning

After implementing a machine learning model and getting some results, the next step is to

see how effective the model is based on some metrics. The evaluation of a model is normally

done by splitting the dataset into a training set and a test set. The model is then trained on

the training set, while the test set is used to calculate performance indicators to evaluate the

quality of the model. Various performance evaluation metrics are used to evaluate different

models. In this thesis, we focus on the ones that are used for classification problems [65]. The

choice of metrics is also important because it influences how the performance of ML algorithms

is measured and compared.

The most commonly used metric to evaluate classifier performance is accuracy, which is the

percent of correct prediction. Accuracy is a good measure when the target variable classes in

the dataset are nearly balanced. However, accuracy gives a false impression about the classifier

in cases with highly skewed dataset, i.e., where the classes are not balanced. Therefore, we

need to use additional metrics such as AUC (area under the ROC curve), precision, recall, and
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Table 3.9: Example of a confusion matrix.

Predicted Class

Positive Negative

Actual Class Positive TP FN

Negative FP TN

F-score for evaluation. The best-known evaluation metrics including the confusion matrix are

presented below.

Confusion Matrix: A matrix that contains information about true and predicted values

of a classifier. It is useful for measuring evaluation metrics such as accuracy, precision, recall,

specificity, F-score, etc. Table 3.9 shows the confusion matrix for a binary class classifier.

True Positives (TP): The number of cases when the actual class and the predicted class

are both positive.

True Negatives (TN): The number of cases when the actual class and the predicted class

are both negative.

False Positives (FP): The number of cases when the actual class is negative, but the

predicted class is positive. It is also known as the false alarm.

False Negatives (FN): The number of cases when the actual class is positive, but the

predicted class is negative.

Accuracy: The ratio of correctly predicted observations to the total observations, also

called the probability of a correct classification.

Precision: The ratio of correctly predicted positive cases to the total predicted positive

cases. High precision relates to the low false positive rate.
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Table 3.10: Performance evaluation metrics.

Measure Formula

AUC Area under the ROC curve

Accuracy TP+TN
TP+FN+FP+TN

Precision TP
TP+FP

Recall TP
TP+FN

Specificity TN
TN+FP

F-score 2× (Precision×RecallPrecision+Recall )

Recall or Sensitivity: The number of positive predictions divided by the number of

positive cases in the dataset, also known as the true positive rate (TPR).

Specificity: The proportion of actual negative cases which are correctly predicted, also

known as the true negative rate (TNR).

F-score: The weighted average of precision and recall. It conveys the balance between

the precision and the recall by taking both false positives and false negatives into account. In

the case of imbalanced classes, F-score is more useful than accuracy. It tells us how precise a

classifier is. An F-score of 1 means perfect precision and recall, and 0 means the worst case.

The formulae for performance evaluation metrics are tabulated in Table 3.10.

The receiver operating characteristic (ROC) curve is a plot of the true positive rate (TPR)

against the false positive rate (FPR). It can be used to select a threshold for a classifier which

maximizes the true positives, while minimizing the false positives. ROC curves also give us the

ability to assess the performance of the classifier over its entire operating range [66, 67]. The

most widely used measure is the AUC, which is the area under the ROC curve. The greater
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Figure 3.1: ROC curves showing two test results.

the AUC, the more accurate the test. A perfect test has an AUC of 1. The AUC can also be

used to compare the performance of two or more classifiers. If one ROC curve dominates all

others, then the best method is the one that produced the dominant curve, which is the curve

with the largest AUC. Figure 3.1 shows ROC curves of two test results. In terms of AUC, Test

2 is better than Test 1.

3.3 Summary

In this chapter, we presented a statistical analysis of our data using a correlation matrix and

p-values for an efficient way of feature selection. We also discussed performance evaluation

metrics, especially for imbalanced classes. In the next chapter, traditional ML methods and

relevant results are presented for the prediction of athletes’ health.
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Chapter 4

Athlete Health Prediction Using

Traditional ML Methods

4.1 Introduction

The primary aim of this study was to analyze a dataset and to build suitable classification

models in order to predict athletes’ health (AH). The secondary purpose was to find the best

classifier for our class-imbalanced dataset. This is the first known study that compares various

supervised ML methods for predicting AH. We evaluated the performance of the models by

six measures: AUC, accuracy, precision, recall, specificity, and F-score. ROC curves were also

used for a better visualization between the true positive rate (recall/sensitivity) and the false

positive rate.

The rest of this chapter is organized as follows. Section 4.2 states the formulation of the

problem. Section 4.3 introduces the traditional ML methods namely logistic regression, naive
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Bayes, k-nearest neighbor, artificial neural network, support vector machine, and decision tree.

Section 4.4 discusses about parameter tuning of the models. Experiments are then conducted,

and the results and analysis are given in Section 4.5 to evaluate the performance of the models.

Section 4.6 summarizes the chapter.

4.2 Problem Formulation

Getting injured or sick is a common phenomenon among sport participants and can be a serious

concern for sport organizations. Millions of injuries occur annually throughout the world among

sports participants. As such, the prediction of health earlier could help sport organizations to

monitor illness/wellness of their athletes before participating in an event. However, most of the

research on this area of sports has been carried out using traditional statistical methods like

regression analysis. The research in this study, on the other hand, aims to use ML methods for

predicting athlete health. To do this, we used a psychometric dataset from an organization to

perform training and to test the models to measure their classification performance.

Let X be the input matrix of our dataset whose i− th row is the input vector xi. If there

are n rows or instances and m features or predictors, X is a matrix with dimension n × m.

Also, let Y be the n× 1 vector of health labels or target values and HIndi be the i− th value

of Y. Given the input matrix X and the health label vector Y, the goal is to build suitable

ML models in order to predict AH label. In relation to our dataset, the prediction of AH label
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is made based on eleven features which can be expressed as:

ĤInd = β0 + β1Nutrition+ β2Sleep+ β3Irritability + β4Hydration+ β5Stress+ β6Rest

+ β7Energy + β8Soreness+ β9Health+ β10Enjoyment+ β11Exertion (4.1)

where β0 is the intercept and the parameters {β1, β2, ..., β11} represent the coefficients of the

respective features.

4.3 Traditional Machine Learning Methods

A prime objective of learning is to generalize from its experience. In machine learning, gener-

alization is the ability of a learning machine to perform reasonably well on unseen examples

after having experienced a training dataset. The aim is to build a generalized model based on

the training examples that enable it to produce sufficiently accurate predictions in new cases.

The traditional ML methods that were used in this thesis are briefly introduced in the next

subsections in the context of our dataset.

4.3.1 Athlete Health Prediction Using Logistic Regression

Logistic regression (LR) is a type of classification model for analyzing a dataset in which

there are one or more independent variables that determine an outcome [28]. We applied LR

to our data as the binary logistic model has two possible outcomes such as sick or healthy.

To understand logistic regression, it is important to understand the sigmoid function. The

sigmoid function can take any real input, whereas the output always takes values between 0
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and 1 [68]. Given the parameter vector β = (β0, β1, ..., βm)T and an input set of features

x = (x0, x1, ..., xm)T , x0 = 1, the hypothesis for logistic regression can be expressed as:

hβ(x) =
1

1 + e−(β0x0+β1x1+β2x2+...+βmxm)
=

1

1 + e−βT x
(4.2)

where in relation to our dataset: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, and x11 (m = 11)

respectively represent the features nutrition, sleep, irritability, hydration, stress, rest, energy,

soreness, health, enjoyment, and exertion. The parameters in the vector β are determined by

minimizing the cost function using the gradient descent algorithm. The output hβ(x) in (4.2)

has the value in the range (0,1) and is interpreted as the probability of the class variable HInd.

The new input example x is classified as healthy when hβ(x) ≥ 0.5, else it is classified as sick.

The threshold 0.5 can be changed depending on our requirements.

4.3.2 Athlete Health Prediction Using Naive Bayes

Naive Bayes (NB) is a supervised ML method used for binary and multi-class classification

problems [69], which is also useful for our data. For a binary classification problem like ours,

given a health label HInd ∈ (0, 1) and a vector of features x = x1, x2, ..., xm, Bayes’ theorem

can be stated mathematically as follows:

P (HInd|x) =
P (HInd)P (x|HInd)

P (x)
(4.3)

where P denotes probability, P (HInd|x) is the posterior probability (outcome) of health label

HInd given input feature x, P (HInd) is the prior probability of HInd, P (x|HInd) is the
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likelihood which is the probability of x given HInd, and P (x) is the prior probability of x.

With the naive independence assumption among the m features, (4.3) can be rewritten as:

P (HInd|x1, ..., xm) =
1

C
P (HInd)

m∏
i=1

P (xi|HInd) (4.4)

where C = P (x) =
∑
P (HInd)P (x|HInd) is a constant for a given input. To create a classifier

model, we need to find the probability of a given input set for all possible values of the class

variable HInd. According to the maximum a posteriori or MAP decision rule, we can pick up

the output with maximum probability. This can be expressed mathematically as:

ĤInd = argmax
HInd

P (HInd)

m∏
i=1

P (xi|HInd) (4.5)

Using (4.5), we can predict AH for new instances. For numerical features, a common strategy

is to fit a distribution over the data and use this to get estimates of P (xi|HInd). An advantage

of naive Bayes classifier is that it is computationally fast, and it requires limited training data

to estimate the parameters necessary for classification.

4.3.3 Athlete Health Prediction Using k-Nearest Neighbor

k-Nearest neighbor (k-NN) is a non-parametric supervised method of machine learning that can

be applied to our data. Its purpose is to predict the classification of a new input instance with

the help of a training dataset. For a new sample x, predictions are carried out by searching

through the whole training dataset for the k most similar neighbors based on some distance

metric [69]. The distance is then used to find the k-closest neighbors to a new sample.
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Selecting the value of k in k-NN is the most critical problem. We used the technique of

parameter tuning in that we computed classification errors for different values of k to obtain the

best value of k. Given a positive integer k, the k-NN algorithm can be summarized as follows:

• Select an appropriate distance metric for the training data.

• Compute distances between a new sample x and each training instance xi, i = 1, ..., n.

• Arrange the distances in ascending order.

• Take the first k entries from this sorted list which are closest to the new sample.

• Find the output labels of the selected k nearest points.

• Determine the AH label based on the majority voting.

k-NN has some disadvantages, especially being computationally intensive for very large data

and prone to overfitting. However, its simplicity can make it a relatively good benchmark for

more complicated methods.

4.3.4 Athlete Health Prediction Using Artificial Neural Network

Artificial neural network (ANN) is a branch of computational intelligence and one of the main

tools used in machine learning for classification purposes [69]. Depending on the applications,

there can be found multiple types of neural networks. We chose to apply the feedforward neural

network to our data for the prediction of AH. The basic architecture of a neural network is

shown in Figure 4.1.
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Figure 4.1: An example of a neural network structure. (Credit: TeXample.net)

In order to train a neural network to perform some tasks, the error between the desired

output and the actual output should be reduced by adjusting the weights of each unit. This

process requires the computation of the error derivative of the weights. The output HInd of a

single neuron is calculated as the weighted sum of its input as:

ĤInd = b+
m∑
j=1

wjxj (4.6)

where b is the bias and wj is the weight corresponding to the input feature xj . For the hidden

layer, the output HInd is passed through an activation function. The values of the bias and

the weight parameters need to be determined to classify input vectors into two categories.

The process of finding the parameters is called training the network. We trained the network

using the Levenberg-Marquardt optimization algorithm [70] as it is the fastest backpropagation

algorithm in the MATLAB Toolbox. We used a set of training data from our dataset to train

the network. The training algorithm goes as follows:
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• Select a network architecture.

• Initialize weight matrices to have small random values.

• Perform forward propagation to get initial prediction HIndi for any xi, i = 1, ..., n.

• Calculate the error of the final layer.

• Do backpropagation and compute the error in each layer.

• Update the weights.

• Repeat the previous four steps on the whole training dataset.

• Stop the process when the error converges within an acceptable limit.

After completing training, we can test the model using new data and the desired output

class can be determined. Based on the output, we can decide if an athlete is healthy or not.

One of the disadvantages of neural networks is that they suffer from local minima. Training a

neural network can also be computationally intensive.

4.3.5 Athlete Health Prediction Using Support Vector Machine

In binary classification, a support vector machine (SVM) is based on the idea of finding the best

line or hyperplane that represents the largest separation or margin between the two classes [69].

If the training data are not linearly separable, SVMs handle this by using a non-linear kernel

function to map the data into a different space. This technique is called kernel-trick [71]. For n

training examples where each training example is a tuple of (xi, HIndi), the margin separating
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two classes can be maximized by solving the following optimization problem [72]:

min
w,b,ξ

(
1

2
wTw + C

n∑
i=1

ξi

)
(4.7)

Subject to

HIndi
(
wTΦ(xi) + b

)
≥ 1− ξ, ξ ≥ 0 (4.8)

where the function Φ(·) maps training instances xi into higher-dimensional space, w is a weight

vector, b is a scalar bias, C is a soft-margin constant which regularizes the trade-off between

training error and margin maximization, and ξ is an error parameter (or slack variable) to

denote margin violation. The optimization problem in (4.7) and (4.8) can be solved by using

the Lagrange multipliers method. After finding a solution, the resulting score function can be

given by:

f̂(x) =

n∑
i=1

α̂iHIndiK(x, xi) + b̂ (4.9)

where α̂ is an estimate of the Lagrange multiplier α and K denotes kernel function. After

performing experiments with different kernel functions, we chose a Gaussian kernel for our

data. Based on (4.9), we can predict AH for new observations.

4.3.6 Athlete Health Prediction Using Decision Tree

A decision tree (DT) is a graphical representation of the possible outcomes to a decision based

on certain conditions [30, 69]. A decision tree usually starts with a single node. Then, it

branches into possible outcomes. Each of the outcomes leads to new nodes, and it goes on. The
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result is a tree-like structure with many nodes. A general algorithm for a decision tree can be

stated as follows:

• Start with a training dataset which contains features and labels.

• Using a feature selection measure, determine the best feature which best splits the data.

• Make that feature the root node and break the dataset into smaller subsets.

• Start tree building by repeating this process recursively until a stopping criterion is met.

• Once the decision tree is trained, predict AH based on the new observations.

For the selection of the best split feature at each node, the standard CART algorithm is

used which makes use of the Gini index as an impurity measure. Note that decision trees still

do not find wide acceptance because of their problem with overfitting.

4.4 Parameter Tuning for ML Methods

Model selection varies depending on the type and the number of parameters. Setting param-

eters for each model leads to good results. Four of our methods described in this chapter are

associated with a few parameters that need to be fine-tuned during training for the best possible

performance. For example, for NB, we need to decide the type of distribution function, the

type of kernel, and the width of the window. For k-NN, the number of k neighbors and the

distance function must be known. For ANN, we need to find the number of hidden layers and

the number of neurons for each hidden layer. The network training function and the number
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Table 4.1: Parameters for experiments and the optimal parameters for each model.

Model Parameters for experiments Optimal parameter

LR — —

Hidden layers ∈ {1, 2, ..., 3} 1

ANN Hidden neurons ∈ {3, 7, ..., 51} 11

Network training functions: Levenberg-Marquardt,
Bayesian regularization, Gradient descent

Levenberg-Marquardt

Data distributions: Kernel smoothing density estimate, Gaussian Kernel

NB Kernel smoother type: Box, Gaussian, Triangle Gaussian

Kernel smoothing window width ∈ {0.001, 0.01, ..., 1} 0.01

k ∈ {1, 3, ..., 25} k=3

k-NN Nearest neighbor search methods: Kdtree, Exhaustive Exhaustive

Distance metrics: Euclidean, Manhattan, Minkowski Manhattan

Kernel functions: Linear, Gaussian, Polynomial Gaussian

SVM Kernel scale ∈ {0.1, 0.5, ..., 2} 0.6

Regularization parameter, C ∈ {0, 0.5, ..., 5} 1

DT — —

of epochs for the backpropagation algorithm should also be determined. For SVM, we need to

find the type of kernel function, kernel scale, and the regularization parameter.

One quick way to evaluate the performance of a model is to split the dataset into two

sets: the training set and the test or validation set. It is common to use 80% of the data for

training and 20% for testing [31]. A parameter grid was used in order to find the optimal setting

using the test set. Table 4.1 shows the parameters used for the experiments and the optimal

parameters for each model.

After obtaining the optimal parameters, the evaluation of the models was conducted through

10-fold cross-validation to avoid overfitting. In the next sections, we will present the results and

will compare the performance of the classifiers using ROC and performance evaluation metrics.
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Table 4.2: Performance measures for various ML models (seven omit days).

Model AUC Accuracy Precision Recall Specificity F-score

LR 0.625 0.870 0.251 0.232 0.933 0.241

ANN 0.640 0.859 0.227 0.245 0.919 0.235

NB 0.829 0.835 0.291 0.605 0.857 0.393

k-NN 0.752 0.909 0.471 0.278 0.970 0.350

SVM 0.813 0.936 0.845 0.333 0.994 0.478

DT 0.774 0.905 0.459 0.416 0.952 0.436

4.5 Model Evaluation Results and Analysis

In this section, we evaluate the models considering all the features. To perform 10-fold cross-

validation, for the NB classifier, we used the Gaussian kernel with a window width of 0.01. For

the k-NN classifier, we chose the three nearest neighbors and the Manhattan distance function

to measure the distance. For the ANN classifier, one hidden layer with 11 neurons were selected.

We also used Levenberg-Marquardt as the network training function for the backpropagation

algorithm to train the network. For the SVM classifier, the Gaussian kernel function with a

kernel scale of 0.6 and the regularization parameter of one were chosen.

Tables 4.2 and 4.3 summarize the performance measures of various classifiers for the seven

omit days and the fourteen omit days health labels, respectively. In terms of the accuracy

metric, the classifiers seem to perform reasonably well with SVM giving the best performance

with an accuracy of 93.6%. Whereas, NB gave the lowest accuracy of 83.5%. Note that for the

seven omit days output labels, our data contain around 91% negative cases and only 9% positive

cases. This may mean that some classifiers act like naive predictors which predict majority cases

most of the time and hence show high accuracy which may be confusing. Therefore, accuracy
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Table 4.3: Performance measures for various ML models (fourteen omit days).

Model AUC Accuracy Precision Recall Specificity F-score

LR 0.578 0.647 0.189 0.441 0.682 0.265

ANN 0.602 0.656 0.199 0.449 0.691 0.274

NB 0.830 0.805 0.393 0.642 0.833 0.488

k-NN 0.767 0.860 0.523 0.350 0.946 0.420

SVM 0.819 0.899 0.880 0.346 0.992 0.497

DT 0.789 0.863 0.526 0.510 0.923 0.518

cannot be a good evaluation metric for skewed data. Instead, we should investigate other

metrics such as AUC and F-score.

Now, if we see other metrics in Table 4.2, LR and ANN classifiers performed poorly with

AUCs of only 0.625 and 0.64, respectively. It is because LR is a generalized linear model and

it is almost impossible for real-life data to be linearly separable. However, we can use the LR

model as a baseline for comparison. The poor performance of ANN is probably due to the local

minimum problem. On the other hand, NB and SVM performed better than other classifiers

in terms of AUC and F-score. The k-NN and DT classifiers showed average performance.

For a clear view of the overall predictive performance of the models, we also plot the corre-

sponding ROC curves that are shown in Figures 4.2 and 4.3. The horizontal axis corresponds

to the false positive rate (FPR) and the vertical axis represents the true positive rate (TPR) or

sensitivity. The characteristic of a good classifier is that it will produce high TPR that corre-

sponds to low FPR. Thus, at any given FPR, an ROC curve with a higher TPR corresponds to

better classification performance. The computed AUC scores show that LR and ANN indeed

performed very poorly, whereas NB yielded the best results with an AUC of 0.83. SVM, DT,

and k-NN classifiers produce good performance with an AUC of 0.813, 0.774, and 0.752, respec-
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Figure 4.2: ROC curves for various ML models (seven omit days).

tively. However, the overall performance of these classifiers is not that impressive. Note that

AUC measures the ability of the model to correctly classify sick and healthy classes, where an

AUC of 1.0 represents perfect classification performance and 0.5 means random prediction. Be-

cause each point on a ROC curve corresponds to a threshold for distinguishing between healthy

and sick, the selected threshold could be set according to the individual needs of the athlete.

Note that depending on our requirements, we can adjust precision and recall (hence F-score)

by adjusting the threshold.

In summary, we evaluated six traditional ML classifiers using 10-fold cross-validation. The

LR and ANN classifiers performed very poorly. Other classifiers did not perform very well

either. This means that these classifiers are probably not good for imbalanced data. It is also

clear from the results that the accuracy metric cannot be used as a measure for imbalanced

classes. Therefore, we should give emphasis on other metrics for evaluation purposes.
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Figure 4.3: ROC curves for various ML models (fourteen omit days).
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Figure 4.4: Comparison of AUC for different omit days.
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Figure 4.5: Comparison of F-score for different omit days.

We also present the results showing a relationship between AUC and the number of omit

days to generate output labels which are shown in Figure 4.4. In a similar manner, Figure 4.5

shows the relationship between the F-score and the number of omit days. As can be seen in

Figure 4.4, in the case of the NB model, AUC values are almost the same in all cases. Whereas,

for k-NN, SVM, and DT, AUC values increase slightly with the increase of the number of

omit days. However, for LR and ANN, AUC values decrease rapidly from day one to day

fourteen, and then there is a gradual decrease of AUC. This was expected because as the

number of omit days is increased, the number of positive cases decreases, which makes the data

more imbalanced. LR and ANN performed poorly in classifying imbalanced data. Now, if we

investigate Figure 4.5, it is obvious that the F-score values increase gradually from the third

day onward for all the classifiers.
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Table 4.4: Regression equations for LR models for different omit days.

Omit days Regression equation

1 ĤInd = −4.192− 0.060x1 + 0.059x2 − 0.080x3 − 0.066x4 + 0.019x5 − 0.023x6
−0.153x7 + 0.051x8 − 0.942x9 − 0.015x10 − 0.091x11

3 ĤInd = −3.205− 0.056x1 + 0.002x2 − 0.021x3 − 0.045x4 − 0.006x5 − 0.051x6
−0.065x7 + 0.017x8 − 0.646x9 − 0.022x10 − 0.053x11

7 ĤInd = −1.810− 0.033x1 − 0.032x2 + 0.025x3 − 0.032x4 − 0.002x5 − 0.074x6
+0.003x7 + 0.002x8 − 0.257x9 + 0.002x10 − 0.045x11

14 ĤInd = −2.427− 0.023x1 − 0.008x2 − 0.014x3 − 0.041x4 − 0.002x5 − 0.062x6
−0.017x7 − 0.004x8 − 0.426x9 − 0.004x10 − 0.044x11

21 ĤInd = −1.470− 0.032x1 − 0.024x2 + 0.015x3 − 0.042x4 − 0.005x5 − 0.094x6
+0.012x7 − 0.012x8 − 0.205x9 + 0.0024x10 − 0.050x11

30 ĤInd = −1.168− 0.027x1 − 0.019x2 + 0.049x3 − 0.032x4 − 0.021x5 − 0.099x6
−0.003x7 + 0.001x8 − 0.149x9 + 0.0001x10 − 0.055x11

Note that we pruned our DT model for different levels. The difference between before

pruning and after pruning was not sufficiently significant to be included in the thesis. However,

pruning reduced the model complexity.

The estimated regression equations are tabulated in Table 4.4 which can be used to repro-

duce the results presented in this chapter for the LR models. This Table shows the number of

omit days to generate output labels and the corresponding regression equation for our dataset

considering all the eleven features. Similarly, Table 4.5 presents the bias vectors, the weight

matrices, and the regression equation for the ANN algorithm for seven omit days health label.

4.6 Summary and Discussion

So far, we presented the necessary methods and techniques for data cleaning and preparation.

We also addressed some important issues related to ML methods that are useful for improving
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Table 4.5: Bias vectors and weight matrices for ANN algorithm.

Coefficient Values

B2 -0.7786

B1 -1.884 -1.380 -0.936 -1.550 0.210 0.021 -0.471 0.720 0.655 -1.072 1.762

-0.191 1.177 0.181 -0.499 1.419 -0.546 0.224 0.561 -0.014 0.724 0.515
0.784 0.408 -0.411 0.922 -0.654 0.307 0.609 0.579 0.133 0.248 0.155

1.552 -0.795 -0.242 0.262 -0.748 -1.549 -0.727 -0.050 -2.836 -0.073 0.802
0.060 0.184 -0.098 -0.020 -1.448 -0.484 -0.916 0.063 0.051 -0.014 0.232
-0.910 -0.391 -0.311 -1.779 0.506 0.007 0.186 -0.613 0.331 0.530 -0.186

IW 1.024 -0.343 -0.168 -0.067 -1.040 -2.521 -1.137 0.168 0.301 -0.413 -0.736
-0.357 0.321 0.208 -0.456 1.119 0.311 -0.822 -0.423 -0.411 0.462 -0.468

0.352 -0.198 -0.666 -0.677 -0.483 0.466 -0.790 -0.602 -0.453 -0.505 0.010
1.198 -0.633 0.782 0.806 -1.578 1.150 -1.174 0.081 7.514 -0.218 -0.189
-0.780 0.997 -0.176 -0.990 1.406 -2.000 2.681 -1.005 -3.774 0.161 0.201
0.978 -1.528 -0.962 0.757 -0.479 0.201 -2.039 1.154 0.246 -0.110 -0.539

LW -0.939 0.351 0.090 -0.609 0.136 0.177 0.044 -0.119 -0.858 -1.121 -1.368

Regression equation: ĤInd = B2 + LW ∗ tanh(B1 + IW ∗ x)
where B2 is the output bias, B1 is the input bias vector,

IW is the input weight matrix, and LW is the layer weight matrix

the classification performance. The concept of machine learning, its applications, and the

supervised ML methods which were used for our data analysis have also been introduced.

In this chapter, we first introduced six ML methods in order to predict AH. Then, we applied

these methods to our dataset and presented results in various forms. We have been able to

show that the ML classifiers are useful for the prediction of AH. We compared each classifier

in terms of AUC, accuracy, F-score, ROC, and other metrics. The NB model gave superior

performance to other models in terms of AUC. However, if we investigate other metrics, none

of the classifiers performed very well in classifying the two imbalanced classes. This is probably

because these classifiers are not good in handling imbalanced data effectively.

In the next chapter, advanced ensemble-based methods are investigated in order to further

improve the classification performance of the imbalanced data.
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Chapter 5

Improving Classification

Performance Using Ensemble

Methods

In the previous chapter, traditional ML methods were used to predict athletes’ health (AH).

Using these methods, we achieved some good results. However, the results may not be satis-

factory in applications in which a higher classification performance is expected. Most of the

traditional ML methods failed to provide sufficiently high performance. This is probably be-

cause our dataset has an unbalanced distribution of classes between the healthy class and the

unhealthy (sick) class. The healthy cases outnumbered the sick ones by a margin of 11:1.

In this chapter, we aim to explore different approaches to handling the class-imbalanced

dataset in order to improve classification performance. As discussed earlier, several strategies
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exist for dealing imbalanced data for classifier training, including resizing the training dataset

and adjusting misclassification costs. Ensemble-based ML methods are used for these purposes.

Ensemble methods work by combining predictions from multiple models that are trained on

samples from the original dataset. Tree-based ensemble techniques can be either bagging-based

trees or boosting-based trees. In bagging-based trees, the data is divided into N samples with

replacement. Then, out of N samples, an N number of trees are built to be combined to train

the model. Random forest is a special case of the bagging technique where a fraction of the

predictor variables is used for each tree. In boosting-based trees, however, prediction accuracy is

improved in each iteration by focusing on the misclassified instances from the previous iteration.

The remainder of this chapter is organized as follows. Sections 5.1 and 5.2 introduce the

ensemble-based ML methods which are used in this thesis. Section 5.3 addresses the parameter

tuning for ensemble methods. Section 5.4 presents experimental results and analysis to evaluate

the performance of the models. The effects of removing insignificant features is demonstrated

in Section 5.5. Section 5.6 presents evaluation results after eliminating the health feature.

To further improve the prediction performance, Section 5.7 presents results using the ARMA

model. Section 5.8 gives a comparative analysis of training time for each model. Section 5.9

summarizes the chapter with discussion.

5.1 Athlete Health Prediction Using Boosting Algorithms

Boosting is a sequential ensemble technique that strategically combines a collection of weak

learners to form a stronger model. It is suitable for low variance and high bias (i.e., under-

fitting) models. In this thesis, we consider the three most popular ensemble methods such
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as AdaBoost (Adaptive Boosting), LogitBoost (Adaptive Logistic Regression), and RUSBoost

(Random Undersampling Boosting) for our imbalanced data. These boosting algorithms are

briefly explained below.

AdaBoost (AB) is a popular boosting algorithm proposed by Freund and Schapire for binary

and multiclass classifications. It aims to convert a set of weak classifiers into a strong one. It

is used with a short decision tree, and it changes the weight of samples to let the algorithm

pay more attention to wrongly classified samples. For example, training data that is hard to

predict is given more weight, whereas easy to predict instances are given less weight. Following

these rules, models are created sequentially one after the other, each updating the weights

of the training instances that affect the learning performed by the next tree in the sequence.

After a certain number of iterations, we can get the final prediction by a majority vote over

the weighted predictions of weak classifiers. The AdaBoost algorithm goes as follows. Given a

training dataset (xi, HIndi) containing n observations:

• Initialize the weight for each data point as w(xi, HIndi) = 1/n, i = 1, ..., n.

• For iteration r = 1, ..., T , fit weak classifiers to the data and select the one with lowest

weighted classification error εr.

• Calculate the weight for the r − th weak classifier as αr = 1
2 ln

1−εr
εr

.

• Update the weights.
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• After finishing the training, compute prediction for new data using

f̂(x) = sign

(
T∑
r=1

αrhr(x)

)
(5.1)

where hr(x) is the output of weak classifier r for input x.

LogitBoost (LB) is one of the boosting algorithms for binary classification. It works similarly

to AdaBoost, except it optimizes the cost function of logistic regression.

RUSBoost (RUSB) is also a boosting algorithm particularly effective in handling the class

imbalance in the training data with discrete class labels. As such, this algorithm is useful for

our imbalanced data. The RUSB algorithm combines the undersampling and the standard

boosting procedure AdaBoost, providing a simple and efficient method for improving classifi-

cation performance when training data is imbalanced. The algorithm reduces majority class

samples through undersampling. It is computationally less expensive than other boosting algo-

rithms and results in a simpler algorithm with faster model training time [73, 74]. A detailed

description of these algorithms can be found in [75, 76, 77].

5.2 Athlete Health Prediction Using Random Forest Classifier

Random forest (RF) is an ensemble-based learning method used for classification and regression

purposes [78]. It is relatively new but is one of the most widely used algorithms for classification.

The RF algorithm starts with the technique called decision tree. For a given dataset, the RF

algorithm builds a set of decision trees. Each tree is developed individually from a bootstrap

sample from the training dataset. The idea is to combine many decision trees into a single
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Figure 5.1: An illustration of random forests. (Credit: William Koehrsen)

model. The prediction of the RF algorithm is obtained by a majority vote over the predictions

of the individual trees.

RF is a robust machine learning algorithm. It reduces the overfitting problems associated

with decision trees by averaging different outputs of the individual decision trees. The logic

behind this is that each of the models used is weak when employed on its own but gets stronger

when put together in an ensemble. The RF algorithm can also deal with imbalanced classes

[79] and missing data. Figure 5.1 shows an example of the RF algorithm. The main parameters

to be determined for the RF algorithm are the number of trees and the number of features to

use for each tree. The algorithm can be stated as follows:

• Take N random samples to create N subsets of the data.

• At each node, randomly select k features from total m features, where k < m. The feature
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that provides the best split is used to do a binary split on that node. A common setting

for k is equal to the square root of m.

• At the next node, randomly choose another set of k features and do the same.

• Repeat the previous steps to create N number of trees.

• Predict new examples by a majority vote over the predictions of the N trees.

We applied the above-mentioned ensemble methods to our dataset in order to improve

classification performance. In the next section, we will address parameter tuning of these

methods.

5.3 Parameter Tuning for Ensemble Methods

The ensemble methods described above are associated with some parameters that need to be

tuned to achieve the best possible performance. For example, for AB, LB, and RUSB algorithms,

we need to determine the number of learning cycles for boosting. The learning rates for these

algorithms should also be determined. For the RF algorithm, we need to select the number of

trees (NoT) for the forest and the number of features (NoF) to be used in random selection in

order to grow each tree. NoF must be lower than the total number of features in the dataset

[78]. We applied the same rules and technique as in Section 4.4 for training and testing the

ensemble models to find the optimal parameters.

Figures 5.2, 5.3, and 5.4 respectively show a series of AB, LB, and RUSB models with

different numbers of learning cycles. In the case of AB and LB models, the ensemble achieves
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Figure 5.2: Impact of number of cycles on the classification error for AdaBoost.

an error rate of around 7.5% after accumulating about 30 weak learners. For the RUSB model,

the ensemble achieves an error rate of around 14% using 30 or more weak learners. In all cases,

however, after approximately 50 learning cycles, no significant benefit is gained by including

more weak learners. Thus, to apply these models, we used 90 learning cycles which is a suffi-

ciently large number. For these algorithms, we also selected 0.1 for the learning rate through

the trial and error method. For the RUSB algorithm, we experimented with different values of

sampling proportion with respect to the minority class and finally came up with 1 as the best

value.

In the case of the RF algorithm, we optimized two important parameters, NoT and NoF. We

first set the NoF as three (square root of the number of features), and then plotted the error for

the different number of trees as shown in Figure 5.5. After about 200 trees, the error decreases
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Figure 5.3: Impact of number of cycles on the classification error for LogitBoost.
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Figure 5.4: Impact of number of cycles on the classification error for RUSBoost.
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Figure 5.5: Impact of number of trees on the classification error for RF.

very slowly with the number of trees. This slow rate ensures that no substantial benefit is

achieved by including more than 200 trees. Thus, we used 300 trees for our experiments which

can be considered a large number. For this algorithm, we also needed to determine the NoF.

To do that, we set the NoT as 300, and then the error for the different number of NoF are

computed which can be seen in Figure 5.6. Since a total of 11 features was used, a total of 11

RF models was constructed to find the best NoF. The far right of Figure 5.6 shows the results

of the bagging approach, where all the 11 features were used. The minimum error rate was

obtained with two features in use. However, we selected three features for this thesis.

Table 5.1 shows the parameters used for the experiments and the optimal parameters ob-

tained for each ensemble model. Using these parameters, we evaluated the models through

10-fold cross-validation. In the next sections, we will present results and analysis of each clas-

sifier using various performance evaluation metrics.
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Figure 5.6: Impact of number of features on the classification error for RF.

Table 5.1: Parameters for experiments and the optimal parameters for each ensemble model.

Model Parameters for experiments Optimal parameter

AdaBoost Number of ensemble learning cycles ∈ {10, 20, ..., 100} 90

(AB) Learning rate ∈ {0.05, 0.1, ..., 1} 0.1

LogitBoost Number of ensemble learning cycles ∈ {10, 20, ..., 100} 90

(LB) Learning rate ∈ {0.05, 0.1, ..., 1} 0.1

RUSBoost Number of ensemble learning cycles ∈ {10, 20, ..., 100} 90

(RUSB) Learning rate ∈ {0.05, 0.1, ..., 1} 0.1

Sampling proportion with respect to the minority class ∈ {1, ..., 5} 1

Random Forest Number of trees ∈ {10, 20, ..., 500} 300

(RF) Number of features to select at random ∈ {1, 2, ..., 11} 3
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5.4 Combined Results and Discussion Considering All Features

In this section, we evaluate the models considering all the features. In the next section, we will

examine the models after removing insignificant features from the dataset. We will then test

our models after eliminating the health feature from the dataset.

At first, we conducted experiments using the SMOTE algorithm which creates synthetic

samples from the minority class to overcome the problem with imbalanced data. We experi-

mented with oversampling the minority (sick) class in the training set. However, the oversam-

pling approach did not improve the classification performance when compared with no oversam-

pling. Moreover, oversampling makes the algorithms computationally intensive. Therefore, we

did not include these results in the thesis. We then further experimented with undersampling

the majority class in the training set. We selected the RUSB algorithm for this purpose. The

RUSB algorithm combines undersampling and boosting techniques for improving classification

performance when training data contains imbalanced classes. It is also computationally much

faster than the SMOTE algorithm. The results are summarized in Tables 5.2 and 5.3 for all

the classifier models. For a better visualization, the results are also presented in Figures 5.7

and 5.8 in the form of ROC curves.

The results demonstrate that the ensemble-based methods outperform the traditional meth-

ods by a clear-cut margin in terms of AUC and F-score. In particular, the RF model shows

the best performance in terms of AUC followed by RUSB, LB, AB, NB, SVM, DT, k-NN,

ANN, and LR. In the case of traditional ML methods, LR and ANN are similar in perfor-

mance, whereas k-NN and DT are similar. For ensemble methods, AB and LB show similar
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Table 5.2: Comparative analysis of various ML models (seven omit days).

Model AUC Accuracy Precision Recall Specificity F-score

LR 0.625 0.870 0.251 0.232 0.933 0.241

ANN 0.640 0.859 0.227 0.245 0.919 0.235

NB 0.829 0.835 0.291 0.605 0.857 0.393

k-NN 0.752 0.909 0.471 0.278 0.970 0.350

SVM 0.813 0.936 0.845 0.333 0.994 0.478

DT 0.774 0.905 0.459 0.416 0.952 0.436

AB 0.877 0.933 0.689 0.433 0.981 0.531

LB 0.891 0.932 0.683 0.435 0.980 0.531

RUSB 0.901 0.871 0.381 0.736 0.884 0.502

RF 0.905 0.937 0.793 0.385 0.990 0.518

Table 5.3: Comparative analysis of various ML models (fourteen omit days).

Model AUC Accuracy Precision Recall Specificity F-score

LR 0.578 0.647 0.189 0.441 0.682 0.265

ANN 0.602 0.656 0.199 0.449 0.691 0.274

NB 0.830 0.805 0.393 0.642 0.833 0.488

k-NN 0.767 0.860 0.523 0.350 0.946 0.420

SVM 0.819 0.899 0.880 0.346 0.992 0.497

DT 0.789 0.863 0.526 0.510 0.923 0.518

AB 0.892 0.899 0.708 0.507 0.965 0.591

LB 0.904 0.900 0.713 0.518 0.965 0.600

RUSB 0.911 0.873 0.545 0.739 0.896 0.627

RF 0.914 0.904 0.802 0.448 0.981 0.575
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Figure 5.7: ROC curves for various models (seven omit days).
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Figure 5.8: ROC curves for various models (fourteen omit days).
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performance, whereas RUSB and RF are very close; however, the latter group outperformed

the former with a small margin.

The superior performance by ensemble methods over traditional methods is not surprising.

As explained earlier, the dataset used in our study contains imbalanced classes. In such a case,

traditional ML methods are unable to separate imbalanced classes with reasonable accuracy,

whereas ensemble methods are designed to handle this kind of data. Among the four ensemble

methods used in this study, the RUSB model achieved the best performance in terms of recall.

However, this was to be expected. It was explained that the RUSB algorithm uses downsampling

and boosting techniques which ensures the robustness of the model. The worst classification

performance comes from the LR model which assumes a linear separation of the two classes.

Note that there are 5893 sick (positive) cases in the dataset. The LR model predicted only 1348

positive cases correctly, resulting in a recall/sensitivity of a mere 23.2%. Whereas, the RUSB

model predicted 4370 positive cases correctly with a recall/sensitivity of 73.6%, which is 50.4%

more than the LR model.

Figures 5.9 and 5.10 show how AUC and F-score vary with the number of omit days to

generate output labels. As can be seen, AUC does not vary much over the number of omit days

in the case of the ensemble methods, NB, k-NN, SVM, and DT. The only exceptions are LR

and ANN, where AUC decreases as the number of omit days increases up to day 15 and then it

remains almost the same. Regarding Figure 5.10, especially after seven omit days, the F-score

increases with the increase of the number of omit days in all cases.

The model comparison results can also be seen as bar graphs in Figures 5.11 and 5.12 in

terms of AUC and F-score, respectively. These results are obvious and self-explanatory. From
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Figure 5.9: Comparison of AUCs for different omit days.

these graphs we can easily identify the best model and the worst model based on AUC and

F-score values.

We note here that the precision and the recall values depend on the selection of the threshold

based on which the healthy and sick cases are distinguished. By changing the threshold, we can

adjust the precision and the recall, and hence the F-score. As far as the specificity is concerned,

it is the true negative rate that we are less concerned with. In the case of our imbalanced data,

we gave more emphasis on the AUC and the F-score metrics.

5.5 Evaluation Results After Eliminating Insignificant Features

So far, we have considered all the features for our dataset. In this section, we present model

evaluation results after eliminating insignificant features that we have discussed in Chapter 3.
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Figure 5.10: Comparison of F-scores for different omit days.
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Figure 5.11: Model comparison results in terms of AUC.
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Figure 5.12: Model comparison results in terms of F-score.

Starting from all the eleven features, we eliminated one insignificant feature at a time. The

results are shown in Figures 5.13 and 5.14 in terms of AUC and F-score, respectively, for the

seven omit days to generate output labels.

Firstly, it is clear from the results that the performance of most of the classifiers decreases

slowly with the decrease of the number of features (from right to left). This was expected, since

information is reduced in the dataset after removing the insignificant features. Therefore, as far

as our dataset is concerned, it is probably not a good idea to remove the insignificant features.

In the case of DT, however, the AUC increases gradually with the removal of the insignificant

features. Therefore, the DT model can be a good choice when we want to eliminate insignificant

features.

Secondly, even after removing insignificant features, the results demonstrate that the en-
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Figure 5.13: Impact of number of features on AUC for various models.
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Figure 5.14: Impact of number of features on F-score for various models.
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semble models still outperform the traditional models. Similarly, AB and LB yield similar

performance, whereas RUSB and RF are very similar. It is also obvious that the latter group

(RUSB and RF) performs better than the former group (AB and LB).

Based on our experiments, it can also be said that removing insignificant features makes

the algorithms faster with little penalty. Therefore, depending on our requirements, we can use

a trade-off strategy of removing or not removing the insignificant features from a dataset.

5.6 Evaluation Results After Removing the Health Feature

Up to this point, we have presented the results by including the health feature in the dataset

based on which the output labels were generated. To check the impact of the health feature

on the results, we tested the models after eliminating this feature. Table 5.4 and Figure 5.15

present the results after removing the health feature from the dataset. Comparing the results

in Tables 5.2 and 5.4, it can be concluded that the overall performance of the models has been

degraded a bit after removing the health feature. However, the difference is not sufficiently

significant to be mentioned.

5.7 Performance Evaluation Results Using the ARMA Model

All the results presented thus far were produced by using the present day’s observations to

predict the next day’s health. In this section, we also consider the past six days observations in

order to further improve the prediction performance. The concept here is that the next value

will be dependent on the previous observations. This may improve the prediction performance.
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Table 5.4: Evaluation results for various models after removing the health feature.

Model AUC Accuracy Precision Recall Specificity F-score

LR 0.577 0.896 0.210 0.063 0.977 0.096

ANN 0.597 0.868 0.178 0.129 0.941 0.148

NB 0.816 0.836 0.282 0.553 0.864 0.373

k-NN 0.738 0.905 0.439 0.258 0.968 0.325

SVM 0.794 0.933 0.823 0.309 0.994 0.450

DT 0.750 0.900 0.424 0.373 0.951 0.397

AB 0.863 0.928 0.647 0.409 0.978 0.501

LB 0.881 0.930 0.673 0.406 0.981 0.507

RUSB 0.886 0.851 0.338 0.714 0.864 0.459

RF 0.892 0.934 0.773 0.359 0.990 0.491
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Figure 5.15: Impact of the health feature on the prediction performance.
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The model used for this purpose is called the ARMA model. In relation to our dataset, the

ARMA model can be represented in mathematical term as:

ĤIndt+1 = c+

p∑
k=0

αkNutt−k +

p∑
k=0

βkSlet−k +

p∑
k=0

γkIrrt−k +

p∑
k=0

δkHydt−k +

p∑
k=0

θkStrt−k

+

p∑
k=0

λkRestt−k+

p∑
k=0

µkEnet−k+

p∑
k=0

ξkSort−k+

p∑
k=0

ρkHeat−k+

p∑
k=0

σkEnjt−k+

p∑
k=0

φkExet−k

(5.2)

where α, β, γ, δ, θ, λ, µ, ξ, ρ, σ, and φ are the coefficients of the corresponding features, c is

a constant, and p is the lag variable which is 6 in our case. The names of the features in (5.2)

are written in short form. Based on (5.2), the estimated coefficients and p-values for all the 77

features are presented in Tables 5.5 and 5.6.

Considering the 5% significance level and also analyzing the p-values in Tables 5.5 and 5.6,

the coefficients of the features Nutt, Hydt, Heat, Exet, Heat−1, Irrt−6, and Heat−6 are considered

to be statistically significant. The feature Slet−6 is also very close to the significance level. It is

important to note that the health feature Hea appeared to be the most significant one among

all the features. However, most of the features are statistically insignificant. So, we extracted

the eight most significant features from the dataset to test our ML models. Based on these

features, we present results in Table 5.7 and in Figure 5.16 using 10-fold cross-validation.

The aim was to improve the classification performance using the ARMA model. However,

comparing the results between Table 5.2 and Table 5.7, we did not see any improvement. In

fact, the model performance is degraded a bit. One of the possible reasons behind this result

is that the psychometric data that we have used in this thesis could be problematic.
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Table 5.5: Descriptive statistics and p-values for all features.

Feature Estimate Standard error t-Statistic p-Value

Intercept -2.439 0.014772 -165.11 0

Nutt -0.031807 0.015611 -2.0374 0.04161∗

Slet -0.008826 0.016601 -0.53169 0.59494

Irrt -0.019086 0.016678 -1.1444 0.25246

Hydt -0.041443 0.015985 -2.5927 0.00952∗

Strt 0.002276 0.017983 0.12655 0.8993

Restt -0.035019 0.022988 -1.5233 0.12767

Enet -0.02192 0.017861 -1.2273 0.21972

Sort -0.010744 0.016697 -0.64347 0.51992

Heat -0.387991 0.015479 -25.065 1.2e-138∗

Enjt -0.011735 0.015266 -0.7687 0.44207

Exet -0.039158 0.015052 -2.6015 0.00928∗

Nutt−1 -0.011658 0.016915 -0.68921 0.49069

Slet−1 -0.009215 0.017825 -0.51699 0.60516

Irrt−1 0.009462 0.018044 0.52437 0.60002

Hydt−1 -0.016025 0.017482 -0.91668 0.35931

Strt−1 0.014485 0.019931 0.72674 0.46738

Restt−1 -0.011751 0.025464 -0.46144 0.64448

Enet−1 0.007648 0.019286 0.39655 0.6917

Sort−1 0.004189 0.018599 0.22527 0.82177

Heat−1 -0.070046 0.017874 -3.9189 8.90e-05∗

Enjt−1 0.008475 0.016222 0.52246 0.60135

Exet−1 0.015862 0.016309 0.97262 0.33074

Nutt−2 -0.018228 0.017043 -1.0696 0.28482

Slet−2 0.001072 0.017887 0.059939 0.9522

Irrt−2 0.012838 0.018166 0.70667 0.47977

Hydt−2 0.007539 0.017698 0.42595 0.67014

Strt−2 0.003471 0.019948 0.17398 0.86188

Restt−2 -0.012369 0.025622 -0.48274 0.62928

Enet−2 0.003078 0.019301 0.1595 0.87328

Sort−2 0.000208 0.018619 0.01119 0.99107

Heat−2 -0.023407 0.018536 -1.2628 0.20666

Enjt−2 0.009049 0.016263 0.55637 0.57796

Exet−2 0.006873 0.016349 0.42042 0.67418

Nutt−3 -0.008569 0.017189 -0.49854 0.6181

Slet−3 0.006305 0.017999 0.3503 0.72612

Irrt−3 -0.007244 0.018115 -0.39988 0.68925

Hydt−3 0.005401 0.017793 0.30357 0.76145

Strt−3 0.005997 0.019968 0.30033 0.76392
∗ represents significant p-value with α ≤ 0.05

78



Table 5.6: Descriptive statistics and p-values for all features.

Feature Estimate Standard error t-Statistic p-Value

Restt−3 0.000525 0.025658 0.02048 0.98366

Enet−3 -0.004854 0.019328 -0.25116 0.80169

Sort−3 0.001182 0.018642 0.063437 0.94942

Heat−3 -0.014012 0.018943 -0.73969 0.45949

Enjt−3 0.002814 0.016246 0.17321 0.86248

Exet−3 0.001718 0.016258 0.10571 0.91581

Nutt−4 -0.007485 0.017171 -0.43592 0.66289

Slet−4 -0.009782 0.017968 -0.54442 0.58616

Irrt−4 0.005376 0.018185 0.29564 0.7675

Hydt−4 0.001112 0.017733 0.062729 0.94998

Strt−4 -0.011507 0.019872 -0.57905 0.56256

Restt−4 0.000565 0.025512 0.02216 0.98232

Enet−4 -0.011970 0.01929 -0.62054 0.5349

Sort−4 0.007712 0.018606 0.41452 0.67849

Heat−4 0.021853 0.019287 1.1331 0.25718

Enjt−4 0.005254 0.016279 0.32275 0.74689

Exet−4 -0.013363 0.016124 -0.82876 0.40724

Nutt−5 0.003351 0.017249 0.19424 0.84598

Slet−5 -0.004707 0.017965 -0.26201 0.79331

Irrt−5 0.000547 0.018241 0.030007 0.97606

Hydt−5 0.003331 0.017766 0.18749 0.85127

Strt−5 -0.011416 0.019896 -0.57375 0.56614

Restt−5 -0.000795 0.025516 -0.031133 0.97516

Enet−5 -0.002949 0.019289 -0.15291 0.87847

Sort−5 0.000938 0.018579 0.050522 0.95971

Heat−5 0.015121 0.019428 0.77828 0.4364

Enjt−5 -0.003062 0.016248 -0.18844 0.85053

Exet−5 -0.006094 0.016154 -0.37727 0.70597

Nutt−6 0.008377 0.016323 0.51325 0.60778

Slet−6 -0.030252 0.016969 -1.7828 0.074621∗

Irrt−6 0.035302 0.017349 2.0348 0.041873∗

Hydt−6 0.001361 0.016606 0.08197 0.93467

Strt−6 -0.000266 0.018191 -0.014638 0.98832

Restt−6 -0.012681 0.023269 -0.54497 0.58577

Enet−6 0.009649 0.018089 0.53347 0.59371

Sort−6 0.004248 0.016782 0.25316 0.80015

Heat−6 0.045555 0.017825 2.5556 0.0106∗

Enjt−6 0.010244 0.015507 0.66063 0.50885

Exet−6 -0.020645 0.015235 -1.3551 0.17539
∗ represents significant p-value with α ≤ 0.05
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Table 5.7: Evaluation results using the ARMA model (seven omit days).

Model AUC Accuracy Precision Recall Specificity F-score

LR 0.629 0.872 0.254 0.226 0.935 0.239

ANN 0.642 0.866 0.251 0.247 0.927 0.249

NB 0.821 0.849 0.302 0.542 0.878 0.388

k-NN 0.688 0.905 0.421 0.195 0.974 0.267

SVM 0.703 0.916 0.738 0.073 0.997 0.133

DT 0.714 0.893 0.384 0.342 0.947 0.362

AB 0.805 0.913 0.518 0.288 0.974 0.370

LB 0.845 0.916 0.544 0.319 0.974 0.402

RUSB 0.859 0.821 0.293 0.722 0.831 0.417

RF 0.858 0.919 0.631 0.216 0.988 0.322
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Figure 5.16: ROC curves using the ARMA model (seven omit days).
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Table 5.8: Regression equations for the LR models for different features.

No. of features Regression equation

11 ĤInd = −2.434− 0.042x1 − 0.013x2 − 0.009x3 − 0.046x4 + 0.011x5

−0.064x6 − 0.017x7 − 0.005x8 − 0.425x9 − 0.002x10 − 0.040x11

10 ĤInd = −2.438− 0.029x1 − 0.019x2 − 0.004x3 − 0.045x4 + 0.005x5

−0.061x6 − 0.025x7 − 0.002x8 − 0.417x9 − 0.043x11

9 ĤInd = −2.420− 0.056x1 − 0.023x2 − 0.015x3 − 0.037x4 + 0.026x5

−0.048x6 − 0.021x7 − 0.413x9 − 0.047x11

8 ĤInd = −2.440− 0.043x1 − 0.014x2 − 0.044x4 + 0.012x5 − 0.083x6

−0.009x7 − 0.448x9 − 0.030x11

7 ĤInd = −2.433− 0.036x1 − 0.020x2 − 0.040x4 − 0.060x6 − 0.021x7

−0.427x9 − 0.032x11

6 ĤInd = −2.430− 0.050x1 − 0.046x4 − 0.070x6 − 0.017x7 − 0.425x9

−0.040x11

5 ĤInd = −2.443− 0.050x1 − 0.039x4 − 0.064x6 − 0.434x9 − 0.045x11

Excluded the
health feature

(x9)
ĤInd = −2.370− 0.118x1 − 0.070x2 − 0.043x3 − 0.067x4 − 0.010x5

−0.087x6 − 0.085x7 − 0.017x8 − 0.022x10 − 0.038x11

ARMA model ĤInd = −2.439− 0.032x1 − 0.041x4 − 0.388x9 − 0.039x11 − 0.070046x20

−0.030252x68 + 0.035x69 + 0.045555x75

Table 5.8 presents the estimated regression equations which can be used to reproduce the

results presented in this chapter for the LR models. This Table shows the number of features

and the corresponding regression equation for seven omit days health label.
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Table 5.9: Training time (in sec.).

NoF LR ANN NB k-NN SVM DT AB LB RUSB RF

11 0.25 3.13 0.12 0.014 157.93 1.21 23.56 18.11 6.85 52.99

9 0.21 1.91 0.10 0.013 139.44 0.84 19.59 15.15 6.32 53.44

7 0.18 3.89 0.08 0.013 106.25 1.48 15.80 14.50 6.16 56.77

5 0.19 2.73 0.07 0.012 90.21 1.38 12.50 9.31 4.99 45.02

5.8 Training Time

In our experiments, all the algorithms were implemented with MATLAB. Table 5.9 summarizes

the training time of each model for different number of features. For a fair comparison, we used

the same training set to compute the runtime for all the models. As can be seen, the traditional

ML models are much faster than the ensemble models with k-NN takes the shortest training

time followed by NB, LR, DT, ANN, RUSB, LB, AB, and RF, whereas the SVM model takes

the longest training time. However, the performance of the traditional models is not as good

as the ensemble models.

Among the four ensemble models, the much-reduced training time of RUSB was expected

as it performs downsampling the majority class which reduces the length of the training data.

Therefore, it can be said that in terms of both accuracy and speed, RUSB outperforms all

the models used in this thesis. Note that the execution time decreases with the reduction of

the number of insignificant features which ensures faster performance. Among the traditional

methods, relatively better performance of SVM comes with the cost of high training time. Thus,

the selection of a model depends on the application and our requirements. Note here that the

training time of the ensemble methods can be reduced by reducing the number of learning

cycles for AB, LB, and RUSB models and the number of trees for the RF model.
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5.9 Summary and Discussion

In this study, we used a dataset from a company to predict AH using ML methods. The growing

interest in this topic is because AH could have a negative impact on team performance. Hence,

an accurate prediction of AH could have beneficial effects on team performance.

There are many ways to construct classification models, each with its own merits and demer-

its. This study used ten ML methods to predict AH using a new dataset. The classifier models

were trained through supervised learning. The classifiers were also evaluated using fine-tuning

and 10-fold cross-validation technique. The results presented in this chapter demonstrated that

it is possible to predict AH using ML methods.

ML methods such as LR and ANN appeared to be faster, but they showed poor performance

in classifying imbalanced data. Probably because of its overfitting problem, the DT classifier

also did not do a good job. Although SVM showed slightly better performance than LR, ANN,

and DT, however, it is computationally intensive. It is very common to use the Euclidian

distance function to compute the distance in k-NN algorithm. This thesis experimented with

different distance functions and selected the Manhattan function as the best for our dataset. Us-

ing the Manhattan distance as a distance measure, k-NN achieved better performance. Among

the six ML methods, NB proved to be the best classifier in terms of classification performance

and speed with the highest AUC of 0.83.

However, the primary goal of this chapter was to further improve classification performance

of the imbalanced data. Ensemble-based methods that address the problem of class imbalance

were used for this purpose. To improve the model performance, techniques such as bootstrap
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sampling, undersampling, and boosting were combined with ML methods. With this, we chose

four ensemble-based methods (AdaBoost, LogitBoost, RUSBoost, and random forest) to apply

to our data. Using the technique of undersampling the majority class, the RUSB ensemble

technique was exploited to alleviate the class imbalance in the training data. The results

demonstrated that ensemble-based methods can indeed classify imbalanced data with higher

performance compared to the traditional ML methods used in this study (Tables 5.2 and 5.3,

Figures 5.7, 5.8, 5.11, and 5.12).

As a matter of fact, it was found that the ensemble-based RF classifier offered the best

performance in terms of AUC, whereas the RUSB classifier gave the best performance in terms

of recall. However, if we consider the predictive performance and the training time together,

then the RUSB model could be a better option for our data.

We also performed experiments to demonstrate an efficient way of feature selection by

discarding insignificant features. Although removing insignificant features did not have any

significant impact on the results, however, removing those features made the algorithms faster

which may be good for some applications.

The models are also tested after eliminating the health feature from the dataset. It has

been shown that the overall performance of the models did not degrade significantly even after

removing the health feature. The performance of ML models is further tested using the ARMA

model to see if the classification performance can be improved. Finally, a comparative discussion

of the training time of each model is given.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Sport organizations will find it useful to monitor the performance of their athletes by predicting

their health beforehand. Therefore, it is important to develop suitable models using athletes’

historical data. However, there are two primary problems with the dataset we used in this

study. The first one is the missing values and the second one is the imbalanced classes, which

make it difficult for ML methods to accurately predict two classes.

To fill in the missing values, we compared several interpolation techniques and eventually se-

lected the nearest-neighbor interpolation technique for our data. Then, we tackled the problem

of classifying imbalanced data. Initially, we started the research with LR as a baseline method

and applied it to our data to predict athletes’ health (AH). However, the LR model performed

very poorly yielding an AUC of 0.625 and an F-score of 0.241. We then tried with more complex

ML methods. The algorithms were fine-tuned to obtain the best possible parameters. We also
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experimented with different kernel functions to improve the classification performance of the

NB and the SVM models. The results show that the traditional ML methods are useful for the

prediction of AH. Among all the methods, the NB classifier performed the best, resulting in an

AUC of around 0.83 and an F-score of around 0.4. Even though we managed to improve the

prediction performance, the results still may not be satisfactory in applications where a higher

performance is required.

Hence, to improve the classification performance further, we used ensemble-based methods

such as AdaBoost, LogitBoost, RUSBoost, and random forest. To improve the model per-

formance, techniques such as sampling and parameter tuning are utilized. These approaches

helped to alleviate the class imbalance problem in the training data. Our results show that

the ensemble-based methods outperformed the traditional methods in terms of all the metrics.

The results also demonstrate that among the four ensemble methods, the RUSBoost model has

the best overall performance. While the LR model predicted 1348 positive cases correctly out

of 5893 positive cases, resulting in a recall/sensitivity of a mere 23.2%, the RUSBoost model

predicted 4370 positive cases correctly with a recall/sensitivity of 73.6%, which is 50.4% more

than the LR model. In terms of the training time, the RUSBoost algorithm also appeared to

be faster than the other ensemble methods.

We also used the correlation matrix and p-values to identify and eliminate insignificant

features. It is demonstrated that by using p-values, the backward elimination technique can be

applied to remove insignificant features which reduce the size of the original dataset. Removing

insignificant features did not improve the classification performance in our case. It did, however,

make the algorithms faster with little penalty.
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6.2 Future Work

This study will influence future work in predicting athletes’ health. Based on the conclusions

of this study, possible future work could be expanded as follows.

The dataset used in this thesis does not contain enough data. The number of features is

also limited. In the future, more data could be collected by incorporating more features to test

the models. The models could also be tested in other applications such as spam detection and

fraud detection where datasets usually contain imbalanced classes.

In this thesis, the model parameters were tuned by using grid search method. In the future,

the parameters could be tuned by using optimization algorithms.

This thesis used AUC as a measure to select the best interpolation technique. In the future,

a study could be conducted to find a better way of selecting the best interpolation technique.

In the future, the binary classification problem of this thesis could be extended to ternary

or multi-class classification problems.

Although the classification performance obtained in this work is reasonably acceptable,

other methods could be sought to improve the model performance further.
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List of Abbreviations

AH Athletes’ Health

ML Machine Learning

AI Artificial Intelligence

LR Logistic Regression

NB Naive Bayes

k-NN k-Nearest Neighbor

ANN Artificial Neural Network

MLP Multilayer Perceptron

SVM Support Vector Machine

DT Decision Tree

DNN Deep Neural Network

RF Random Forest

AdaBoost (AB) Adaptive Boosting

LogitBoost (LB) Adaptive Logistic Regression

RUSBoost (RUSB) Random Undersampling Boosting
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Bagging Bootstrap Aggregating

ROC Receiver Operating Characteristic

AUC Area Under the ROC Curve

SMOTE Synthetic Minority Oversampling Technique

CART Classification And Regression Trees

PCA Principal Component Analysis

TP True Positive

TN True Negative

FP False Positive

FN False Negative

TPR True Positive Rate

FPR False Positive Rate

TNR True Negative Rate

MAP Maximum A Posteriori
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