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Abstract

Gillespie’s algorithm, also known as the Stochastic Simulation Algorithm (SSA),

is an exact simulation method for the Chemical Master Equation model of well-stirred

biochemical systems. However, this method is computationally intensive when some

fast reactions are present in the system. The tau-leap scheme developed by Gillespie

can speed up the stochastic simulation of these biochemically reacting systems with

negligible loss in accuracy. A number of tau-leaping methods were proposed, including

the explicit tau-leaping and the implicit tau-leaping strategies. Nonetheless, these

schemes have low order of accuracy. In this thesis, we investigate tau-leap strategies

which achieve high accuracy at reduced computational cost. These strategies are

tested on several biochemical systems of practical interest.

iii



Acknowledgements

Initially, I would like to express my wholehearted thanks and courtesy to all the

researchers whose journals are cited here and became treasures to enhance my knowledge

to complete this thesis. Secondly, I would like to thank my supervisor Prof. Dr.

Silvana Ilie; her commendable guidance, professional supervision and elaborative

instructions made my research and thesis work come to completion as this document.

Thirdly, I would like to thank my family, namely my father (Damber Dhoj Thapa),

mother (Angur Thapa), sister (Mamata Thapa), brother (Milan Dhoj Thapa) and

wife (Suraksha Khadka), for their constant support, motivation and inspiration through

all the ups and downs during the last two years and further. I would like to thank the

defense committee chair Dr. Jean-Paul Pascal and members, Dr. Dejan Delic and Dr.

Dzung Minh Ha for taking the time to read my thesis and for all their suggestions.

In addition to this, I would like to thank Steve Kanellis for his technical support and

my course instructor Dr Katrin Rohlf for her guidance. I am always thankful to my

friends, Amit Shrestha and Mathbar Singh Raut who keep me always motivated to

explore new things.

iv



Contents

Declaration ii

Abstract iii

Acknowledgements iv

List of Figures vii

1 Introduction 1

2 Background on Mathematical Models of Biochemical Systems and

Simulation Tools 6

2.1 Deterministic and Stochastic Models . . . . . . . . . . . . . . . . . . 6

2.2 Description of Stochastic Models . . . . . . . . . . . . . . . . . . . . 7

2.3 Chemical Master Equation . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Tau-Leaping Method: . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Chemical Langevin Equation . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Reaction Rate Equation . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.1 Derivation of Reaction Rate Equation: . . . . . . . . . . . . . 16

2.7 Stochastic Simulation Algorithm . . . . . . . . . . . . . . . . . . . . . 17

3 Stochastic Methods for Well-stirred Biochemical Systems 25

3.1 The Tau leaping Method for the Chemical Master Equation . . . . . 25

v



3.2 Midpoint Tau-leaping Method for Chemical Master Equation . . . . . 29

3.3 Trapezoidal Tau-Leaping Formula . . . . . . . . . . . . . . . . . . . . 30

4 Analysis of Tau-Leaping Method 32

4.1 Local Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Local Error Formula for the Mean and Covariance of Explicit Tau-leaping

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Local Error Formula for the Implicit Tau-leaping Method . . . . . . . 40

5 Numerical Experiments 43

5.1 Simple Reaction Channel . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Decay-dimerization Reaction Channel . . . . . . . . . . . . . . . . . . 50

5.3 Potassium Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Conclusion 67

Bibliography 74

vi



List of Figures

5.1 Simple reaction channel: Histograms of species S1 computed using

the SSA, the explicit, implicit, midpoint and trapezoidal tau-leaping

methods at time T = 0.05/4. . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Simple reaction channel: Histograms of species S2 computed using

the SSA, the explicit, implicit, midpoint and trapezoidal tau-leaping

methods at time T = 0.05/4. . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Simple reaction channel: A sample trajectory of number of molecules

of species S1 as function of time. . . . . . . . . . . . . . . . . . . . . . 48

5.4 Simple reaction channel: A sample trajectory of number of molecules

of species S2 as function of time. . . . . . . . . . . . . . . . . . . . . . 48

5.5 Simple reaction channel: Log log plot of the relative global error at

time T = 0.05/4 as function of step size τ , for all the tau-leaping

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6 Decay dimerization reaction: Histograms of species S1 computed using

the SSA, the explicit, implicit, midpoint and trapezoidal tau-leaping

methods at time T = 0.02/4. . . . . . . . . . . . . . . . . . . . . . . . 52

5.7 Decay dimerization reaction: Histograms of species S2 computed using

the SSA, the explicit, implicit, midpoint and trapezoidal tau-leaping

methods at time T = 0.02/4. . . . . . . . . . . . . . . . . . . . . . . . 53

5.8 Decay dimerization reaction: A sample trajectory of number of molecules

of species S1 as function of time. . . . . . . . . . . . . . . . . . . . . . 54

vii



5.9 Decay dimerization reaction: A sample trajectory of number of molecules

of species S2 as function of time. . . . . . . . . . . . . . . . . . . . . . 54

5.10 Decay dimerization reaction: Log log plot of the relative global error

at time T = 0.02/4 as function of step size τ , for all the tau-leaping

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.11 Potassium channel: Histograms of species S1 computed using the SSA,

the explicit, implicit, midpoint and trapezoidal tau-leaping methods at

time T = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.12 Potassium channel: Histograms of species S2 computed using the SSA,

the explicit, implicit, midpoint and trapezoidal tau-leaping methods at

time T = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.13 Potassium channel: Histograms of species S3 computed using the SSA,

the explicit, implicit, midpoint and trapezoidal tau-leaping methods at

time T = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.14 Potassium channel: Histograms of species S4 computed using the SSA,

the explicit, implicit, midpoint and trapezoidal tau-leaping methods at

time T = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.15 Potassium channel: Histograms of species S5 computed using the SSA,

the explicit, implicit, midpoint and trapezoidal tau-leaping methods at

time T = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.16 Potassium channel: A sample trajectory of number of molecules of

species S1 as function of time. . . . . . . . . . . . . . . . . . . . . . . 63

5.17 Potassium channel: A sample trajectory of number of molecules of

species S2 as function of time. . . . . . . . . . . . . . . . . . . . . . . 63

5.18 Potassium channel: A sample trajectory of number of molecules of

species S3 as function of time. . . . . . . . . . . . . . . . . . . . . . . 64

5.19 Potassium channel: A sample trajectory of number of molecules of

species S4 as function of time. . . . . . . . . . . . . . . . . . . . . . . 64

viii



5.20 Potassium channel: A sample trajectory of number of molecules of

species S5 as function of time. . . . . . . . . . . . . . . . . . . . . . . 65

5.21 Potassium channel: Log log plot of the relative global error at time

T = 5/4 as function of step size τ , for all the tau-leaping methods. . . 66

ix



Chapter 1

Introduction

Mathematical modeling [29, 1, 2] has been successfully used in several biological

disciplines for decades. Among the earliest quantitative biological models studied

extensively in the literature is the Lotka-Volterra model of species competition and

predator-prey relationships. In cell biology, many studies were dedicated to develop

accurate models and advanced simulation tools for examining the structure and

dynamics within a cell. Among the models considered were deterministic and stochastic

ones. Computational modelling in cell biology [40] has been widely used to make

significant progress leading to practical innovations in medicine, drug discovery and

other related research. At the same time, the modern software and computational

tools [28] contributed to the development and analysis of more realistic and complex

models of cellular processes.

In earlier studies, the mathematical modeling approaches of biological systems

were employed deterministic such as differential equations, which considered given

initial conditions and neglected the noise and randomness within the system, and

produces the similar results.

Among the deterministic models, an important class is that of systems of ordinary

differential equations (ODE) [23]. For example, ODEs are utilized to model networks

of well-stirred biochemical reactions, for which all molecular species have large population
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numbers. This ODE model, known as the reaction rate equations (RRE), governs

the behavior of the vector of concentrations of all species, as functions of time.

Nonetheless, when some molecular species in the cell have low population numbers

(such as in genetic networks), then the continuous deterministic model of the RRE

fails to accurately describe the system dynamics. Indeed, important species in genetic

networks come in low molecular counts (between 1 and a few tens), but these species

often significantly influence the system behavior. For such systems, stochastic discrete

models are required for capturing the random fluctuations which were observed in

experiments [5, 6, 11, 13, 14, 32, 34]. One refined stochastic discrete model of

well-stirred biochemical systems is the Chemical Master Equation (CME) [18, 29].

The Chemical Master Equation models the dynamics of the system state. The system

state X(t) is a vector with entries the number of molecules of each species at the

current time, t, rather than the species concentrations. More precisely, the CME

is a system of ordinary differential equations, in which each equation represents the

evolution in the probability of the system to be in a particular state. Since often in

application the number of all possible system states is very large, so is the dimensions

of the CME.

Studying the CME directly is very challenging. A simplifying assumptions is that

of large population numbers in each species (hundred or more molecules/ species). In

this case, the Chemical Master Equation model may be reduced to an approximate

time-evolution equation of Langevin type, called the Chemical Langevin Equation

(CLE) [20]. In this model, the stochastic process X(t) has entries which are real

values, rather than integers, as was the case for Chemical Master Equation. The

Chemical Langevin Equation is a system of stochastic differential equations, with one

equation for each reactant species in the biochemical system. This model is therefore

an easier to simulate numerically and analyze.

Further, under the assumption of the thermodynamic limit, in which the system

volume and the species populations tend to infinity, such that the species concentrations
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are bounded, the deterministic part dominates the stochastic part of the CLE. Then

we can neglect the stochastic terms of the Chemical Langevin Equation and we can

reduce the CLE to get a system of ODEs, namely the Reaction Rate Equations (RRE).

Since the Chemical Master Equation is very challenging to solve directly, many

studies were dedicated to the development of indirect methods to simulate the solution

of this model. Stochastic simulation strategies for the Chemical Master Equations are

classified as: exact and approximate methods. The Stochastic Simulation Algorithm

(SSA), proposed by Daniel Gillespie in 1976 [16, 17] is an exact such method, in the

sense that it generates trajectories of the stochastic process X(t), having a probability

in exact agreement with that modeled by the Chemical Master Equation. The SSA is

thus a Monte Carlo simulation strategy, Nonetheless, when the biochemical system is

subjected to some reactions which are very fast, the exact method is computationally

intensive. The next reaction method published in 2000 by Gibson and Bruck [15]

is another exact scheme for the CME, which has improved computational cost of

simulation compared to SSA. In the next reaction method, the unused reaction

times are reused and the algorithm employs a dependency graph for storing the

reaction propensities. Only the propensities affected by a reaction fires in the next

step are updated. While the next reaction method is more efficient than the SSA,

it is still very slow on stiff models of cellular processes. An exact methods for

the Chemical Master Equation were quite inefficient on stiff models of biochemical

systems, there was a growing demand for faster simulation methods, allowing some

minor sacrifice in accuracy in exchange for significant speed up. Examples of faster

approximate simulation methods for CME include hybrid methods and tau-leaping

schemes. Hybrid methods may combine exact or approximate methods for the CME,

with numerical methods for the CLE or the RRE to more efficiently simulate the

solution of a model of well-stirred biochemical system [1, 2, 25, 26, 35, 38].

The tau-leaping methods for the CME are based on the following idea: if a larger

step-size τ may be chosen, to jump over many reactions of each type and the number
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of each reactions may be accurate be approximated, then the system state can be

updated accordingly. The explicit tau-leaping method was developed in 2001 by

Gillespie [21]. This approximate strategy is applicable when the leap condition is

valid, that is the leap size τ is chosen small enough such that no propensity is varied

significantly over that step. When the condition is obeyed the number of reactions of

the jth type firing in [t, t+τ) is approximated by a Poisson distribution with mean and

variance equal to aj(X(t)).τ , where aj is the propensity function of the jth reaction

and X(t) is the system state at the beginning of the interval. When many reactions

occur over a step τ , the tau-leaping method is more efficient than the exact methods

for the CME. But the explicit tau-leaping scheme is inefficient on stiff problems. For

such problems Rathinam et al. [37] introduced the implicit tau-leaping scheme.

Both the explicit and implicit tau-leaping methods were shown to have low order

of accuracy by Rathinam et al. [37]. More accurate numerical strategies for stochastic

discrete biochemical systems are required, to assist researchers in the development and

analysis of refined models of cellular processes. Two such higher order of accuracy

method are analyzed in this thesis: the midpoint tau-leaping scheme [21] and the

trapezoidal tau-leaping strategy [9]. The midpoint tau-leaping scheme is half degree

higher order of accuracy than the explicit tau-leaping technique. The trapezoidal

tau-leaping is an implicit method, as is the implicit tau-leaping strategy, but of higher

order of accuracy. Also the trapezoidal rule is A-stable and does not have the damping

of noise effect as the implicit tau-leaping.

Our studies of the two higher order accuracy tau-leaping methods are numerical

in nature. We tested these methods on several models of biochemical networks of

practical interest and compared the results with those obtained using the explicit

and implicit tau-leaping schemes and the exact SSA.

Finally, the outline of thesis is as follows. Chapter 2 presents the backgrounds on

stochastic modeling approaches for well-stirred biochemical systems, namely the CME

and the CLE, along with the reduced deterministic model of the RRE. Stochastic
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simulation methods for the CME and CLE models are given in chapter 3. Chapter 4

gives some theoretical results on the order of accuracy of several existing tau-leaping

strategies. Numerical tests of the higher order tau-leaping methods considered in this

thesis are included in chapter 5. The summary of our findings and the topics of future

research are given in chapter 6.
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Chapter 2

Background on Mathematical

Models of Biochemical Systems

and Simulation Tools

Mathematical models are required to describe the behavior of biochemical systems [12]

and effective and accurate computational tools are needed to simulate their numerical

solution, to study the biological systems and reveal the factors affecting the system

like disease in organs and organisms. In addition to this, the mathematical models

also help to predict some data pattern which leads to biological discovery such as

treatment of diseases. Mathematical models of biochemical systems are classified

into two categories [30, 35]: deterministic and stochastic.

2.1 Deterministic and Stochastic Models

The deterministic model of well-stirred biochemical systems consists of systems of

ordinary differential equation (ODE) and with this model the outcomes are predictable

and remain the same if the initial conditions are kept constant. Deterministic models

are accurate for describing biochemical systems having very large molecular populations,
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while stochastic models [39, 41, 43] are also accurate in predicting the dynamics of

biochemical systems involving small number of molecules in some species, e.g. in a

cell.

2.2 Description of Stochastic Models

In a well-stirred biochemical system, the molecules can be assumed distributed evenly

[24, 34, 6, 8, 44]. In other words, a well-mixed system involves randomly distributed

reactant species which are no more likely to be found in any sub-part of the system

than in another of the same size. However, the natural motion of the molecules can

change the concentration of a particular sub-volume of the system [42] and the system

becomes heterogeneous and thus, to accomplish the requirements, one should stir the

system externally.

Let us consider a well-stirred (well-mixed) biochemical system kept at thermal

equilibrium in a constant volume. It consists of N molecular species {S1, S2, ..., SN}

undergoing M reaction channels {R1, R2, ..., RM}. At time t, the dynamical state

X(t) =



X1(t)

X2(t)

.

.

.

XN(t)


(2.2.1)

describes the biochemical system; hereXi(t) is the non-negative number of Si molecules
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at time t. Moreover, the state change vector of the reaction Rj is

νij =



ν1j

ν2j

.

.

.

νNj


,

where νij =the change in the number of Xi molecules produced by one Rj reaction.

The array {νij} with 1 ≤ i ≤ N , 1 ≤ j ≤ M is an N × M matrix, called the

stoichiometric matrix, where N represents the total number of species in a model and

M represents the total number of reactions.

To each reaction channel Rj it is associated a propensity function aj(x) such that

aj(x)dt is defined as the probability that one Rj reaction will happen within the

volume V in the next infinitesimal time interval [t, t+ dt), given that X(t) = x. For

instance, if the following reaction happens,

A+B
cj−→ C

with xA and xB being the number of molecules of A and B respectively, the propensity

function is given by

aj = cjxAxB

where cj is the reaction rate constant.

The propensity function depends on the molecular amounts of the reacting species,

while the reaction rate depends on the concentration of such species. The types of

reactions considered in the thesis are outlined below. Since reactions are assumed to

be instantaneous events, no more than two molecules may interact at any moment in

the system.
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First order reaction:

Sm
kj−→ something.

Here, if xm(t) denotes the number of Sm molecules at time t, then the propensity

function is

aj(x) = cjxm(t)

and the stochastic rate constant cj depends on the deterministic reaction rate parameters

kj according to:

cj = kj.

Second order reaction:

Sm + Sn
kj−→ something.

Here when m 6= n, if xm(t) and xn(t) denote the number of Sm and Sn molecules,

respectively, and V is the volume of the system, then the propensity function is

aj(x) = cjxm(t)xn(t).

If cj and kj are the stochastic and deterministic reaction rate parameters, respectively,

and V is the system volume, then

cj =
kj
V
.

Dimerization reaction:

Sm + Sm
kj−→ something.

9



Here, the propensity function may be written as

aj(x) =
cjxm(t)(xm(t)− 1)

2
,

and the following relationship exists between the stochastic and deterministic rate

constants:

cj =
2kj
V
.

2.3 Chemical Master Equation

If we consider a homogeneous biochemical system with fixed volume and temperature

[46], at each point in time, the state of the system isX(t) given by (2.2.1). HereX(t) is

a Markov process [18, 38, 11], we will show that the stochastic processX(t) is modelled

using a system of ordinary differential equations (ODEs), called the Chemical Master

Equation (CME) [19, 23].

Let us consider X(t0) = x0 to be the initial conditions, which are assumed known.

To describe the dynamics of the system, we determine

P (x, t|x0, t0)

the probability of the system to be in state x at time t, given that X(t0) = x0.

For simplicity, we denote this probability by P (x, t). We wish to find P (x, t + dt)

for an infinitesimally small time dt and any system state x. In other words, here the

system jumps from X(t) to X(t + dt) = x. We have two options to be in the latter

state: either the system was already in state x at time t and no reaction took place

during [t, t + dt) or, for some 1 ≤ j ≤ M the system was in state (x − νj) at time t

and the jth reaction happened during [t, t+ dt) resulting in the system being in state

x at t + dt. In order to account for all such events, we have to use a result from the

probability theory, called the law of total probability.
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Let us assumeA to be the event of interest and suppose that the eventsH0, H1, H2, ..., HM , HM+1

are such that:

a) no more than one can happen.

b) at least one event must occur.

Using the law of total probability, we obtain,

P (A) =
M+1∑
j=0

P (A|Hj)P (Hj). (2.3.1)

where P (A|Hj) is being the probability of getting A given that Hj happens. Here A

is the event which describes the system in the state x at time t + dt. Let us assume

that H0 is the event that the system is in state x at time t, and Hj for 1 ≤ j ≤M to

describe the event that the system is in state x− νj at time t. Assume that HM+1 is

the event that the system is in any other state at time t. Note that, for

1 ≤ j ≤M,

P (A|Hj) represents the probability of the reaction Rj happening during [t, t + dt).

Now, using the definition of propensity function, we get

P (A|Hj) = aj(x− νj)dt (2.3.2)

for 1 ≤ j ≤ M . We also remark that, P (A|H0) represents the probability that no

reaction happens during [t, t+ dt). The probability of no reaction happening during

[t, t+ dt) is 1 minus the probability of any event happening in [t, t+ dt), hence

P (A|H0) = 1−
M∑
j=1

aj(x)dt (2.3.3)
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We note that,

P (A|HM+1) = 0 (2.3.4)

since HM+1 refers to all the states that are two or more reactions away from x and

during [t, t+dt) we assumed that at most one reaction can occur. Now, from equations

(2.3.1)- (2.3.4),we get

P (x, t+ dt) = (1−
M∑
j=1

aj(x)dt)P (x, t) +
M∑
j=1

aj(x− νj)dtP (x− νj, t) (2.3.5)

After simplifying the above equation, we obtain,

P (x, t+ dt)− P (x, t)

dt
=

M∑
j=1

(aj(x− νj)P (x− νj, t)− aj(x)P (x, t))

As dt→ 0, the above equation becomes an ordinary differential equation:

dP (x, t)

dt
=

M∑
j=1

[
aj(x− νj)P (x− νj, t)− aj(x)P (x, t)

]
. (2.3.6)

Equation (2.3.6) is known as the Chemical Master Equation [19]. Recall that the

expectation is defined as of a function f(.) of the stochastic process X evaluated at t.

E(f(X(t))) ≡
∑
x

f(x)P (x, t) (2.3.7)

Applying the expectation to equation (2.3.6) and using equation (2.3.7), we derive

dE(Xi(t))

dt
=

M∑
j=1

vijE(aj(X(t))),

for j = 1, ...,M .

Suppose that all the reactions are at most of first order, then the propensity
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functions will be linear functions of the state variables or constants and thus

E
(
aj(X(t))

)
= aj

(
E(X(t))

)
.

If there are some bi-molecular reactions, we may obtain

E
(
aj(X(t))

)
6= aj

(
E(X(t))

)
.

If all the reactions are of at most first order, then we derive

d

dt
E(X(t)) =

M∑
j=1

νjaj(E(X)) (2.3.8)

If Y (t) = E(X(t)), then equation (2.3.8) is the Reaction Rate Equation (RRE) in the

average trajectory, Y (t). The reaction rate equation is a set of N coupled first-order

ODEs. This model was traditionally employed for studying chemical kinetics, where

molecular populations of all species are in large molecules.

2.4 Tau-Leaping Method:

In 2001, Gillespie proposed the tau-leaping method [21]. This method may significantly

reduce the computational cost of Gillespie algorithm without loss of accuracy. In

this strategy the step size τ is previously chosen. (with applying Leap Condition).

Moreover, it is an approximate method.

The tau-leap scheme may be applied when the following leap condition is obeyed:

τ > 0 is small enough such that aj(X(s)) ' aj(X(t)) for any 1 ≤ j ≤M and any

t ≤ s ≤ t+τ . The number of events that happens in [t, t+τ) is Pj(
∫ t+τ
t

aj(X(s)ds)) '

Pj(aj(X(t)).τ), where Pj is a Poisson distribution. We assumed that the leap condition

applies. Provided that X(t) = x, the number of reaction Rj that fire during the

interval [t, t+ τ ] has a Poisson distribution with parameter aj(X(t))τ . Using the leap

13



condition, we can write the basic tau-leaping method as

X(t+ τ) = x+
M∑
j=1

Pj(aj(x)τ)νj (2.4.1)

if X(t) = x.

2.5 Chemical Langevin Equation

Under certain assumptions, the biochemical systems may be described using a simplified

stochastic model [20, 25, 26].These assumptions are:

(1). The step size τ is small enough such that each propensity function aj(X(t))

changes insignificantly over [t, t+ τ).

(2). τ is large enough such that the product aj(X(t)).τ is much larger than 1 for

any 1 ≤ j ≤M .

Derivation of the Chemical Langevin Equation (CLE): Since aj(X(t)).τ >>

1, then we can approximate the Poisson random variable Pj(aj(X(t).τ) with a normal

random variable Nj(aj(X(t))τ), aj(X(t))τ) with the same mean and variance, namely

aj(X(t))τ , in the tau-leaping method. Thus

Pj(aj(X(t)τ)) ∼ aj(X(t))τ +
√
aj(X(t))τZj,

and substituting in (2.4.1) we obtain

X(t+ τ) = X(t) + τ
M∑
j=1

νj(aj(X(t)) +
√
τ

M∑
j=1

νj

√
aj(X(t)Zj (2.5.1)

where Zj are independent normal distributions with mean 0 and variance 1. Here,

the entries of the state vector are real numbers, since the amount of molecular species
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are computed using real-valued normal random variables rather than integer valued

Poisson random variables.

Equation (2.5.1) represents the Euler-Maruyama method for a stochastic differential

equation (SDE).

Taking, τ → dt an infinitesimal step, in the limit, we obtain, the following stochastic

differential equation,

dX(t) =
M∑
j=1

νj(aj(X(t)))dt+
M∑
j=1

νj

√
aj(X(t)dWj(t) (2.5.2)

where Wj(t) are independent scalar Wiener processes for 1 ≤ j ≤M . The stochastic

differential equation (2.5.2) is known as the Chemical Langevin Equation(CLE) [20].

This model is used when conditions (1) and (2) above simultaneously apply. These

two conditions can be applied if all the molecular populations for all species are

sufficiently large.

We remind the reader that a Weiner process is a stochastic process W : [0, 1] such

that

1. W (0) = 0 with probability one.

2. for any 0 ≤ s ≤ t, W (t) − W (s) is normally distributed with mean 0 and

variance (t− s).

3. for any 0 ≤ u ≤ v ≤ s ≤ t, W (t) −W (s) and W (v) −W (u) are independent

random variables.

Note that the Chemical Langevin Equation is an N-dimensional SDE and it may be

derived by reducing the CME in the regime of large population numbers.

15



2.6 Reaction Rate Equation

The law of mass action governs the reaction rates in biochemistry, in other words it is

the fundamental empirical law and it states that, for a reaction in a well-mixed and

free medium, the reaction rate is proportional to the concentrations of the individual

reactants involved. This law leads to the deterministic model of biochemical system

known as the Reaction Rate Equations (RRE).

Thermodynamic limit: This is defined as the state at which the molecular amount

of each species and the volume V of the system approach infinity such that Xi
V

is

bounded for any 1 ≤ i ≤ N . In this limit, the size of the stochastic term in equation

(2.5.2) is much smaller compared to the size of the deterministic term, thus it may be

ignored. Therefore, the CLE (2.5.2) may be simplified to the reaction rate equation:

dX(t)

dt
=

M∑
j=1

νj(aj(X(t))). (2.6.1)

Equation (2.6.1) is valid when the molecular amounts of all species are very large.

2.6.1 Derivation of Reaction Rate Equation:

Indeed, if the molecular population is very large, the stochastic part of Chemical

Langevin Equation (CLE) can be neglected and the new equation is an ordinary

differential equation, called the reaction rate equation [27]. In order to get the reaction
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rate equation, let us take the expectation in equation (2.5.2), and we get

E(dX(t)) = E(
M∑
j=1

νj(aj(X(t))))dt+ E
[ M∑
j=1

νj

√
aj(X(t))dWj(t)

]

E(dX(t)) =
M∑
j=1

E(νj(aj(X(t))))dt+
M∑
j=1

νjE
[√

aj(X(t))dWj(t)

]

E(dX(t)) =
M∑
j=1

νjE((aj(X(t))))dt

Dividing both sides by dt, we get,

d

dt
E(X) =

M∑
j=1

νjE((aj(X(t)))).

For a first order reaction with a propensity function of the form aj(x) = cjXm or

aj(x) = cj we have, then E(aj(x)) = aj(E(x)). However, for a second order reaction

with a propensity function either aj(x) = cjxmxn for m 6= n or aj(x) = cj
xm(xm−1)

2

for m = n, in general E(aj(x)) 6= aj(E(x)). Consequently, for biochemical systems

with reactions of order zero or one, the behavior of the average trajectory of the CME

satisfies the RRE:
dX(t)

dt
=

M∑
j=1

νj(aj(X(t))) (2.6.2)

In conclusion, equation (2.6.2) representing the RRE, can be derived from Chemical

Langevin Equation or from the Chemical Master Equation when all the reactions are

first or zero order.

2.7 Stochastic Simulation Algorithm

The Chemical Master Equation is a system of ordinary differential equations of very

large dimension. It has one equation in P (x, t) for each possible state of the system, x.

Due to its very large dimension, it can not be solved directly, in general, by analytical

or numerical methods [27]. However, there exist Monte Carlo simulation methods for
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generating trajectories in exact agreement with the solution of the Chemical Master

Equation. The Stochastic Simulation Algorithm (SSA) is one such method and it

was proposed by Gillespie[16, 17].

The SSA is based on the idea of generating trajectories of X(t) obeying a certain

probability P (τ, j|x, t). Here, P (τ, j|x, t), is the probability that, provided that

X(t) = x, the next reaction will be fired in the infinitesimal time interval [t + τ, t +

τ + dτ) where dτ is an infinitesimal time and this reaction will be Rj. We so obtain

later that, in fact, P (τ, j|x, t) is the joint probability density function of two random

variables which are as follows: τ = time to the new reaction and j= index of the new

reaction.

Assume that P0(τ |x, t) is the probability of no reaction firing in the time interval

[t, t+ τ), given that X(t) = x. From the laws of probability, we can write,

P (τ, j|x, t)= probability of no reaction in [t, t+ τ)× probability of reaction Rj in

[t+ τ, t+ τ + dτ). Thus

P (τ, j|x, t)dτ = P0(τ |x, t)aj(x)dτ. (2.7.1)

Now we compute the conditional probability P0(τ |x, t). The probability P0(τ |x, t)

equals the probability of no reaction during [t, t + τ + dτ), or, equivalently, the

probability of no reaction during [t, t + τ) and the probability of no reaction over

[t+ τ, t+ τ + dτ). However, the probability of no reaction over the infinitesimal time

interval [t+τ, t+τ +dτ) is 1 minus sum of probabilities of each reaction Rj occurring

in [t+ τ, t+ τ + dτ), 1 ≤ j ≤M , which is

1−
M∑
j=1

aj(x)dτ

To summarize,

P0(τ + dτ |x, t) = P0(τ |x, t)
(

1−
M∑
j′=1

a′j(x)dτ

)
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After doing some algebraic simplifications on the latter equation with the limit dτ →

0, we obtain an ordinary differential equations of the form,

dP (τ |x, t)
dτ

= −
M∑
j′=1

a′j(x)

with the initial condition P (0|x, t) = 1. Solving this equation leads to :

P0(τ |x, t) = e(−a0(x)τ),

where

a0(x) =
M∑
j′=1

a′j(x).

Substituting this into equation (2.7.1) ,we get

P (τ, j|x, t) = aj(x)e(−a0(x)τ)

We can re-write this equation as

P (τ, j|x, t) =
aj(x)

a0(x)
.

[
a0(x)e(−a0(x)τ)

]
(2.7.2)

Equation (2.7.2) is the mathematical foundation for the SSA procedure [12]. Indeed,

(2.7.2) says that the joint density function of time to the next reaction, τ , and the

index of the next reaction, j can be expressed as the product of the τ density function,

which is a0(x)exp(−a0(x)τ), and the j− density function which is aj(x)/a0(x). Consequently,

we can generate random samples from the above density functions by using the

inversion method of the Monte-Carlo theory [15]. If r1 and r2 are random numbers

from the uniform distribution in the unit time interval, then τ may be computed as

τ =
1

a0(x)
ln

1

r1
(2.7.3)
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while j may be calculated as the smallest integer 1 ≤ j ≤M such that

j−1∑
j′=1

aj′(x) ≤ r2a0(x) <

j∑
j′=1

aj′(x) (2.7.4)

To justify the computation of the index j to the next reaction in the SSA, we give

below some theoretical results. These results explain the choice in equation (2.7.4).

Proposition 2.7.1. [45] If Xi = Exp(ai), i = 1, 2, ...,M are independent random

variables distributed exponentially with parameters ai, then the minimum of them is

exponentially distributed with parameter a0 as follows,

X0 ≡ mini{Xi} ∼ Exp(a0),where a0 =
M∑
i=1

ai.

Proof. Note that for an exponential distribution X with parameters a , X ∼ Exp(a)

we have P (X > τ) = e−(aτ) for τ real scalar.

Now, consider

P (X0 > τ) = P

(
mini=1,...,M{Xi} > τ

)
= P

([
X1 > τ

]⋂[
X2 > τ

]⋂
...
⋂[

XM > τ

])
=

M∏
i=1

P

(
Xi > τ

)

=
M∏
i=1

e−(aiτ)

= e−x
∑M
i=1 ai

= e−(a0τ).
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As a consequence, we derived that,

P (X0 ≤ τ) = 1− e−(a0τ)

and hence X0 ∼ Exp(a0), is an exponential distribution with parameter a0 =
∑M

i=1 ai.

Lemma 2.7.1. [45] Suppose that X ∼ Exp(a) and Y ∼ Exp(b) are independent

random variables exponentially distributed with parameters a and b. Then the following

is true,

P (X < Y ) =
a

a+ b
.

Proof. We can write the following derivation

P (X < Y ) =

∫ ∞
0

P (X < Y |Y = y)f(y)dy

=

∫ ∞
0

P (X < y)f(y)dy

=

∫ ∞
0

(1− e−ay) b e−bydy

.

Therefore,

P (X < Y ) =
a

a+ b
.

Proposition 2.7.2. [45] Assume Xj ∼ Exp(aj), j = 1, 2, ...,M are independent

random variables exponentially distributed each with parameter ai, and let i be the

index of the smallest of the Xj. Then i is a discrete random variable with probability
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mass function

πj =
aj
a0
,where a0 =

M∑
j=1

aj.

Proof. Note that,

πi = P

(
Xi < minj 6=i{Xj}

)
= P (Xi < Y )

Here we denoted Y = minj 6=i{Xj},

so that Y ∼ Exp(a−i) and a−i =
∑
j 6=i

aj

πi =
ai

ai + a−i

Then finally using lemma (2.7.1),

πi =
ai
a0

This leads to the SSA [17] as follows:

1 Take t = t0 and x = x0 as initial time and state of the system respectively.

2 Calculate aj(x) and a0(x) at time t and state x.

3 Find values for τ and j using equations(2.7.3) and (2.7.4)

4 Update the system by replacing t← t+ τ and x← x+ νj.

5 Save (x, t) as desired and repeat it by going to step 2 or, otherwise, end the

simulation.

We note that the SSA is slow for some biochemical systems involving some fast

reactions but easy to implement. The reason for its inefficiency on many systems
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arising in applications is due to the factor 1/a0(x) in equation (2.7.3). This factor

becomes very small if the population of the reactant species is large. Another cause

of the high computational cost of the SSA is due to searching for the index j of the

first reaction and updating all the propensities functions after each time step, in case

the biochemical system has many reactions (M large).

Gibson and Bruck [15], in 2000, proposed the Next Reaction Method which is

an improvement interms of efficiency over the Gillespie algorithm [17]. The Next

Reaction Method reduces the computational cost of computing exact trajectories for

the CME by updating only the parts of the system changed by a reaction and by

storing them in a special structure. At each time-step, Gillespie’s First Reaction

Method [16, 17] consists of generating all the possible time at which each reaction

Rk fires, namely τk for each Rk, and then choosing j such that τj = mink=1,...,Mτk.

The system is thus updated as x ← x + λj and t ← τj. The three time consuming

steps (which occur during every iteration of Gillespies First Reaction Method) are

proportional to the number of reactions Rj:

1. updating of all reactions associated with propensity functions aj

2. generating a possible time, τk for the next reaction Rk and

3. identifying the smallest possible time, τj = mink=1,...,Mτk

The Next Reaction Method [15] discards each of these steps and uses new ideas which

are as follows:

1. Store not only al but also τl,

2. Recalculate al with τl only if they are changed by the reaction that occurred

( use a dependency graph, which allows to update the minimum number of

propensities al)

3. Re-use τl wherever appropriate.
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Further, the algorithm of the Next Reaction Method proceeds as follows:

1 Initialize the initial number of molecules X = X0 at time t = 0.

2 Find the propensity function,aj(X) for each reaction Rj.

3 Generate M independent, uniform(0,1) random numbers rj.

4 Find τj ,τj = 1
aj
ln 1

rj
., for each reaction Rj, j = 1, ...,M .

5 Compute t = minj{τj} and suppose τk be the time where the minimum is

realized.

6 The molecular amount of each species is updated according to reaction Rk.

7 Update all the propensity functions affected by the occurrence of reaction Rk,

let them be a′j.

8 Set all τj =
aj
a′j

(τj − t) + t for each j 6= k.

9 If r is uniform random number in (0,1), then set τk = 1
a′k
ln1

r
+ t.

10 Set aj = a′j for each j.

11 Go to step 5 or else end the simulation.
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Chapter 3

Stochastic Methods for

Well-stirred Biochemical Systems

3.1 The Tau leaping Method for the Chemical

Master Equation

In 2001, Gillespie proposed the tau-leap method [21] to achieve significant speed-up

of the computation without significant loss in accuracy. Gillespie’s algorithm is slow

when the system is subject to very fast reactions, as it simulates all reactions in the

system, one at a time. By contrast, the tau-leaping method [3, 10] collects details

of how many reactions of each type occur in a certain time interval. If the time

interval is large enough for many reactions to happen, that leads to noticeable gain

in the computational time. On the other hand, in order to maintain accuracy, an

appropriate length of the time interval, τ , has to be chosen, which should be small

enough so that the change in each propensity function is negligible. This is called the

leap condition.

The leap condition: It requires that the size of τ is chosen such that the relative

changes induced in the propensity functions during τ are small. In other words, for
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the current state x, it requires τ to be small enough that the change in the state

during [t, t+ τ) will be so small that no propensity function will suffer an appreciable

change in its value. Tau-leaping proceeds with a pre-selected time τ , during which

many reactions fire. If τ is chosen sufficiently small to satisfy the leap condition and

X(t) = x (which makes propensity function almost constant), then each reaction Rj

happens nearly Pj(aj(X(t))τ) times in [t, t + τ), where Pj(aj(X(t))τ) is a Poisson

distribution of mean and variance aj(X(t))τ . The exact formula is

X(t+ τ) = x+
M∑
j=1

vjPj

(∫ t+τ

t

aj(X(s))ds

)

but due to the leap condition,

Pj

(∫ t+τ

t

aj(X(s))ds

)
' Pj(aj(X(t)), τ).

Therefore, we can write the following approximate formula

X(t+ τ) = x+
M∑
j=1

vjPj(aj(X(t)), τ). (3.1.1)

For this algorithm M Poisson random numbers need to be generated for every leap.

Formula (3.1.1) is called the tau-leaping method. It is more efficient than SSA when

many reactions are fired during a leap. If τ → 0, the tau-leaping schemes becomes the

SSA. Then it becomes very inefficient as most random numbers in equation (3.1.1)

will be zero.

The tau-leaping method is an approximate Monte Carlo strategy for simulating

the solution of the CME. The scheme (3.1.1) is known also as the explicit tau-leaping

method and it is appropriate for simulating stochastic models of non-stiff biochemical

systems. Stiffness arises in biochemical systems when both fast and slow reactions are

present, the fastest dynamics being stable. Stiffness presents challenges for solving
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deterministic models of biochemical systems and these challenges are more significant

when stochastic models are solved. In the deterministic setting, implicit strategies

are more efficient for solving numerically stiff problems than the explicit technique.

This is also true when dealing with stiff stochastic models of biochemical systems.

For these, the so-called implicit tau-leaping method was proposed Rathinam et al.[36].

In fact, in the implicit tau-leaping scheme only the deterministic term is implicit, the

stochastic term of mean zero is in an explicit form. The implicit tau-leaping scheme

outperforms in terms of efficiency the explicit tau-leaping strategy and the SSA for

stiff biochemical systems.

Explicit tau-leaping method : As discussed before, if τ satisfies the leap condition

then the explicit tau-leap method is given by,

X(t+ τ) = x+
M∑
j=1

Pj(aj(X(t)), τ)νj

where X(t) = x. Here Pj(aj(X(t)), τ) are independent Poisson random variables with

means and variances (aj(X(t))τ).

For stability, the explicit tau-leaping method requires a small step size when fast

reactions are present.

Algorithm of Explicit tau-leaping method :

1 Select τ satisfying the leap condition and an initial state of x ← x0 at time

t← t0.

2 Generate the number of firings kj of channel Rj in [t, t + τ) as kj = P (aj(x)τ)

with (j = 1, ...,M).

3 Update t← t+ τ and x← x+
∑M

j=1 kjνj.
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4 Record (x, t). Then return to step (1) or else end the simulation.

Here, if the generated value of kj are noticeably large, the explicit tau-leaping method

will be faster than the SSA.

Implicit tau-leaping method : Recall that when solving numerically an ordinary

differential equation (ODE) of the form

dX

dt
= f(X, t) (3.1.2)

We can apply explicit Euler method [22]

X(t+ ∆t) = X(t) + f(X(t), t)∆t.

When the ODE (3.1.2) is stiff, the implicit Euler method is preferred, as it is unconditionally

stable. This method may be written as

X(t+ ∆t) = X(t) + f(X(t+ ∆t), t+ ∆t)∆t.

To compute X(t + ∆t an implicit equation needs to be solved. To solve the implicit

equation in X(t+ ∆t), we can use the Newton iteration method or something similar

may be applied to the tau-leaping method. The implicit tau-leaping scheme can be

written as

X(t+ τ) = x+
M∑
j=1

[Pj(aj(X(t)), τ)− aj(X(t))τ + (aj(X(t+ τ))τ ]νj

where X(t) = x.

Here, the mean of the Poisson random variable Pj(aj(X(t)), τ) is subtracted and

changed to be the value at time (t + τ). The explicit tau-leaping method may be
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written in the form:

X(t+ τ) = X(t) +
M∑
j=1

νjajX(t)τ +
M∑
j=1

νj[Pj(aj(X(t)), τ)− aj(X(t))τ ]

where
∑M

j=1 νjajX(t)τ is the deterministic part and
∑M

j=1 νj[Pj(aj(X(t)), τ)−aj(X(t))τ ]

is the stochastic part of mean zero.

Now, we can make the method implicit in the deterministic part as below:

X(t+ τ) = X(t) +
M∑
j=1

νj[Pj(ajX(t), τ)− aj(X(t))τ ] +
M∑
j=1

νjaj(X(t+ τ)τ). (3.1.3)

Equation (3.1.3) can be solved numerically to estimate X(t + τ) by using Newton’s

method with the initial guess X(t). The implicit tau-leaping scheme is noticeably

faster than explicit tau-leaping method on stiff systems as it allows larger step sizes.

The former method is unconditionally stable where the latter is conditionally stable.

3.2 Midpoint Tau-leaping Method for Chemical

Master Equation

In 2000, Gillespie introduced the mid-point tau-leaping method [21] to get higher

accuracy of the numerical simulation.

When solving numerically an ordinary differential equation of the form

dX

dt
= f(X(t))

by the explicit or implicit Euler’s method, then the accuracy of the numerical solution

is O(∆t). In order to use this technique along with the tau-leaping method, we first

create the increment,

λ′ =
M∑
j=1

(aj(x)τ)νj,
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on the interval [t, t+ τ), where X(t) = x. The midpoint is

x′ = x+ [
λ′

2
]

. Using this predicted midpoint, the state at the end of the interval is

X(t+ τ) = x′ +
M∑
j=1

Pj(aj(x
′), τ)νj

This formula is known as the midpoint tau-leaping method [21].

Midpoint Tau-leaping Algorithm :

1 Initiate the system state x← x0 at t← t0 and set rate parameters.

2 Select the τ which satisfies the leap condition.

3 Compute the expected state change

λ′ = τ
∑
j

aj(x)νj

during [t, t+ τ ].

4 Using x′ = x+[λ
′

2
], generate for each j = 1...M a sample value kj of the Poisson

random variable Pj(aj(x
′)τ).

5 Update t← t+ τ and x← x+
∑M

j=1 kjνj.

6 Record (x, t). If t < T return to step [2] or else end the simulation.

3.3 Trapezoidal Tau-Leaping Formula

In 1998, Ascher and Petzold schemed the trapezoidal rule to be A-stable [7]. In this

section we discuss the extension of the trapezoidal method for ODEs to the tau-leaping
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scheme by Cao and Petzold [9]. Though it is of first order for the variance, it is of

second order for the mean. Unlike the implicit tau-leaping scheme it is free from the

damping effect.

The trapezoidal rule has a higher convergence order that the explicit and implicit

Euler method for ODEs. Let us consider an ordinary differential equation of the form

dX

dt
= f(X, t).

Then, the trapezoidal method to solve the above equation is given by,

X(t+ ∆t) = X(t) +
1

2
∆t(f(X(t) + f(X(t+ ∆t))

The trapezoidal tau-leaping formula [9] is

X(tr)(t+ τ) = x+
M∑
j=1

νj[P (aj(x), τ)− τ

2
aj(x) +

τ

2
aj(X

tr(t+ τ))], (3.3.1)

where X(t) = x. We note that (3.3.1) is an implicit strategy in X(t+ τ). To solve it,

we may apply the iterative Newton’s method with the initial guess taken to be X(t).

Trapezoidal Tau-leaping Algorithm:

1 Initialize t← t0 and the system state x← x0.

2 Calculate the propensity function,aj(x) for j = 1, 2, 3, ...,M .

3 Generate M independent random numbers, kj from P (aj(x)τ) with j = 1, 2, 3, ...,M .

4 Solve (3.3.1) for X(tr) by Newton’s Method.

5 Update the system state and time by step (4) and t+ τ , respectively.

6 If t < T return to step (2) or else end the simulation.

31



Chapter 4

Analysis of Tau-Leaping Method

Tau-leaping method uses a piece-wise Poisson approximation with propensity function

assumption aj(x) + o(τ) as τ → 0 and for such a small value of τ , the behavior of

both explicit and implicit-tau leaping is obvious as suggested by Stochastic Simulation

Algorithm. Here, a quantitative estimate of error analysis as a function of stepsize τ

is done to develop idea of automatic stepsize selection and to gather information for

future study of higher-order accurate tau-leaping methods.

Let us suppose X(e) = x is the state at time t and for time step t+ τ where τ > 0

is the state can be written as

X(e)(t+ τ) = x+
M∑
j=1

νjK
(e)
j (x, τ)

Here, superscript ”e” stands for explicit tau-leaping method. Where K
(e)
j (x, τ) =

Pj(aj(x), τ) for j = 1, ...,M are independent Poisson random variables with mean

and variance aj(x)τ .

Suppose that X(i)(t) = x is the state at time t, the state at time t + τ using the
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implicit tau (unrounded version) method is given by

X(i)(t+ τ) = x+
M∑
j=1

νjaj(X
(i)(t+ τ))τ +

M∑
j=1

νj(Pj(aj(x)τ)− aj(x)τ)

where superscript ”i” is for implicit-tau leaping method.

Now we are going to see the local error using the local expansion of Taylor series

in τ . Below we follow the analysis by Rathinam et al.[37].

4.1 Local Error Analysis

Here we derive recursive integral forms for the solution of Chemical Master Equations

with local Taylor expansions of those integrals. This is the base to find the errors

generated by the tau-leaping methods [4]. Let us suppose the multi-index k =

(k1, ..., kl), where kj ∈ {1, ...,M}, represents a sequence of reaction events Rkj firing in

this order. Again, suppose |k| = l is the number of reactions and p(k;x, τ) represents

the probability that the sequence of reactions that happened in the interval (t, t+ τ ]

is exactly k given that X(t) = x. Then

p(φ;x, τ) = e−a0(x)τ

where φ means no reactions occurred. Let us consider the increment in the moments

be X(t+ τ)−X(t) given that X(t) = x. The conditional expectation may be written

as

E(X(t+ τ)−X(t)|X(t) = x) =
∞∑
l=1

∑
k,|k|=l

p(k;x, τ)

( l∑
α=1

νkα

)
(4.1.1)

while the order r conditional moment is

E((X(t+ τ)−X(t))r|X(t) = x) =
∞∑
l=1

∑
k,|k|=l

p(k;x, τ)

( l∑
α=1

νkα

)r
(4.1.2)
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For any state x and multi-index k, p(k;x, τ) is an analytic function of τ . The

components of E((X(t + τ) − X(t))r|X(t) = x) all analytic function of τ on a

neighbourhood of O. In order to compute the above moments up to terms including

of order 2 in τ , by assuming the moments exist, we have to add terms with l = 1 and

l = 2 in equations (4.1.1) and (4.1.2) and then derive

E(X(t+ τ)−X(t)|X(t) = x) =
M∑
j=1

νjp((j);x, τ)

+
M∑
j1=1

M∑
j2=1

(νj1 + νj2)p((j1, j2);x, τ) +O(τ 3)

It can be shown that

p((k1, k2, ..., kl);x, τ) =

∫ τ

0

p((k1, k2, ..., kl−1);x, s)×akl(x+νj1+...νjl−1
)e−a0(x+νj1+...+νjl)(τ−s)ds

By induction, we can show that p(k;x, τ) = O(τ |k|) in the limit as τ → 0. We have,

p((j);x, τ) =

∫ τ

0

e−a0(x)saj(x)e−a0(x+νj)(τ−s)ds (4.1.3)

and also

p((j1, j2);x, τ) =

∫ τ

0

p((j1);x, s)× aj2(x+ νj1)e
−a0(x+νj1+νj2 )(τ−s)ds (4.1.4)

for any j, j1, j2 ∈ {1, 2, ...,M}. Then using Taylor series expansion for the equations

(4.1.3) and (4.1.4), we get

p((j);x, τ) = ajτ −
1

2
τ 2

M∑
j1=1

aj(x){aj1(x+ νj) + aj1(x)}+O(τ 3)

and

p((j1, j2);x, τ) =
1

2
τ 2aj1(x)aj2(x+ νj1) +O(τ 3).
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Also, we obtain for the rth order conditional moment

E((X(t+ τ)−X(t))r|X(t) = x) =
M∑
j=1

νrj p((j);x, τ)

+
M∑
j1=1

M∑
j2=1

(νj1 + νj2)
rp((j1, j2);x, τ) +O(τ 3)

Using the Taylor expansion and simplifying for the mean, we get

E(X(t+ τ)−X(t)|X(t) = x) = τ
M∑
j=1

νjaj(x)

+
1

2
τ 2

M∑
j1=1

M∑
j2=1

νj1aj2(x){aj1(x+ νj2)− aj1(x)}

+ O(τ 3) (4.1.5)

Similarly, for the order r moment, we derive

E((X(t+ τ)−X(t))r|X(t) = x) = τ
M∑
j=1

νrj aj(x)

− 1

2
τ 2

M∑
j1=1

M∑
j2=1

νrj1aj1(x)aj2(x)

− 1

2
τ 2

M∑
j1=1

M∑
j2=1

νrj1aj1(x)aj2(x+ νj1)

+
1

2
τ 2

M∑
j1=1

M∑
j2=1

(νj1 + νj2)
raj1(x)aj2(x+ νj1)

+ O(τ 3)

Using the expression, for p((j);x, τ) and p((j1, j2);x, τ) we can compute the conditional
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co-variance Cov(X(t+ τ)|X(t) = x) as

Cov(X(t+ τ)|X(t) = x) = Cov(X(t+ τ)−X(t)|X(t) = x)

= E((X(t+ τ)−X(t))2|X(t) = x)− (E(X(t+ τ)−X(t)|X(t) = x))2

= τ
M∑
j=1

ν2j aj(x)

+
1

2
τ 2

M∑
j1=1

M∑
j2=1

ν2j1aj2(x){aj1(x+ νj2)− aj1(x)}

+
1

2
τ 2

M∑
j1=1

M∑
j2=1

νj1νj2aj1(x){aj2(x+ νj1)− aj2(x)}

+
1

2
τ 2

M∑
j1=1

M∑
j2=1

νj1νj2aj2(x){aj1(x+ νj2)− aj1(x)}

+ O(τ 3) (4.1.6)

We will find in what follows that the explicit tau-leaping method is weakly consistent

to first order in τ .

Theorem 4.1.1. [37]Order-1 weak consistency of the explicit tau-leaping method

Let x be any possible system state and r ≥ 1 be any integer, then there exists a

constant Mr > 0 and δr > 0 such that

||E(X(e)(t+ τ))− E(X(e)(t))r|X(e)(t) = x)− E((X(t+ τ)−X(t))r|X(t) = x)||

< Mrτ
2

for any 0≤ τ ≤ δr.
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Proof. Note that, given X(e)(t) = x, we have for the explicit tau-leap solution

E
(

(X(e)(t+ τ)−X(e)(t))r|X(e)(t) = x

)
=

= E
( M∑

j=1

νjPj(aj(x)τ)

)r

= τ
M∑
j=1

νrj aj(x) +O(τ 2). (4.1.7)

but for the exact solution we have

E
(

(X(t+ τ)−X(t))r|X(t) = x

)
=

= τ
M∑
j=1

νrj aj(x) +O(τ 2). (4.1.8)

The theorem is proved by combining (4.1.7) and (4.1.8).

Since, we know that the explicit method is weakly consistent to first order, now

we need to see that the mean and covariance of local error is O(τ 2).

4.2 Local Error Formula for the Mean and Covariance

of Explicit Tau-leaping Method

If we use the equation (4.1.5) and the fact that

E(X(e)(t+ τ)−X(et)(t)|X(e)(t) = x) = τ

M∑
j=1

νjaj(x)
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then, we get the local error in the mean for the explicit tau-leaping method [37] as

E(X(e)(t+ τ)−X(t+ τ)|X(e)(t) = X(t) = x) =

− 1

2
τ 2

M∑
j1=1

M∑
j2=1

νj1aj2(x){aj1(x+ νj2)− aj1(x)}

+ O(τ 3)

Since the Poisson random numbers Pj(aj(x), τ) are independent, we have,

Cov(X(e)(t+ τ)|X(e)(t) = x) = τ
M∑
j=1

ν2j aj(x). (4.2.1)

Now using the equations (4.1.6) and (4.2.1), we will get the local error in covariance

for explicit tau-leaping method as below ( see also [37])

Cov(X(e)(t+ τ)|X(e)(t) = x)

− Cov(X(t+ τ)|X(t) = x) =

− 1

2
τ 2

M∑
j1=1

M∑
j2=1

ν2j1aj2(x){aj1(x+ νj2)− aj1(x)}

− 1

2
τ 2

M∑
j1=1

M∑
j2=1

νj1νj2aj1(x){aj2(x+ νj1)− aj2(x)}

− 1

2
τ 2

M∑
j1=1

M∑
j2=1

νj1νj2aj2(x){aj1(x+ νj2)− aj1(x)}

+ O(τ 3).

Similar results may be obtained for the implicit tau-leaping method.

Theorem 4.2.1. [37] Consistency of rounded implicit tau-leaping method

If bounded Poisson random numbers are used then for any polynomial g : RN → R
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and any possible system state x ∈ ZN+ there exist C > 0 and δ > 0 such that

|E(g(X(ir)(t+ τ))− g(X(t+ τ))|X(ir)(t) = X(t) = x)| < Cτ 2

for all τ ∈ [0, δ].

Here, ’ir’ denotes rounded implicit of the tau-leaping method.

The proof uses the observation that X(0)(t+ τ) = X(e)(t+ τ) with probability 1,

provided that X(0)(t) = X(e)(t) = x, for any τ ∈ [0, δ].

Theorem 4.2.2. [37] Consistency of unrounded implicit tau-leaping method

If bounded Poisson random numbers are used, then for any polynomial g : RN → R

and any possible system state x ∈ ZN+ there exist C > 0 and δ > 0 such that

|E(g(X(i)(t+ τ))− g(X(t+ τ))|X(i)(t) = X(t) = x)| < Cτ 2

for all τ ∈ [0, δ].

Let us find the formula for the local error of the implicit tau-leaping method using

Taylor expansion in τ .
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4.3 Local Error Formula for the Implicit Tau-leaping

Method

Using Taylor’s formula and writing X(i)(t + τ) = X ′ and the intermediate state X ′e

where X ′ is a deterministic function of X ′e we have:

X ′ = X ′e + τ

M∑
j=1

νj{aj(X ′e)− aj(x)}

+
τ 2

2

M∑
j1=1

M∑
j2=1

νj1
∂aj1
∂x

(X ′e)νj2{aj2(X ′e)− aj2(x)}

+ O(τ 3) (4.3.1)

Assuming that bounded Poisson numbers are used, for any function g : RN → R that

is Lipschitz continuous on any bounded domain of RN and any possible system state

x there exist K > 0 and δ > 0 such that

|E(g(X(e)(t+ τ)− g(x)|X(e)(t) = x)| < Kτ

for all τ ∈ [0, δ].

This shows that double summation component in equation (4.3.1) can be replaced

by O(τ 3). Hence, the equation given below can be used to compare the local error in

implicit tau-leaping method to that of explicit tau-leaping scheme:

X(i)(t+ τ) = X(e)(t+ τ) + τ
M∑
j=1

νj{aj(X(e)(t+ τ))− aj(x)}+O(τ 3)

Here, we assume X(i)(t) = X(e) = x. In order to calculate the rth moment of X(i)(t+

τ), we need to raise the above equation to the power r and take expectation on both

sides.
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Below we present some theorems of weak convergence of the explicit and implicit

tau-leaping methods.

Theorem 4.3.1. [37] Order-1 weak convergence of explicit tau-leaping method

Assuming the propensity functions are linear and x is a possible state, if the explicit

tau-leaping method is applied with X(e)(t0) = x and the time steps τ1, τ2, ..., τn are

such that
∑n

j=1 τj = T , τ = maxj=1,...,n{τj}, then for any positive integer r, there

exist constants C > 0 and δ > 0 such that

||E((X(e)(t0 + T ))r)− E((X(t0 + T ))r)|| < Cτ

for all τ ∈ (0, δ).

The proof of this theorem, which is beyond the scope of this thesis, is based on

the standard result in numerical analysis stating that consistency and zero-stability

imply convergence.

Theorem 4.3.2. [37] Order-1 weak convergence of implicit tau-leaping method

Assuming the propensity functions are linear and x is a possible state, if the implicit

tau-leaping method is applied with X(i)(t0) = x and the time steps τ1, τ2, ..., τn are

such that
∑n

j=1 τj = T , τ = maxj=1,...,n{τj}, then for any positive integer r, there

exist constants C > 0 and δ > 0 such that

||E((X(0)(t0 + T ))r)− E((X(t0 + T ))r)|| < Cτ

for all τ ∈ (0, δ).

Under the assumption that all propensity functions are locally Lipschitz, Li[31]

showed that the explicit tau-leaping method has strong order of convergence 1/2 in
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L2 and weak order of convergence 1. In this case, if the tau-leaping method is applied

on a mesh 0 = t0 < t1 < ... < tn = T of the interval [0, T ], then there exists C > 0

such that, for τ = max
0≤l≤n−1

(tl+1 − tl) we obatin

sup
l≤n

E
(
|X(e)(tl)−X(tl)|2

)
≤ Cτ

and

|E(g(X(e)(tn)))− E(g(X(tn)))| ≤ Cτ.

This shows that the explicit tau-leaping scheme has strong order of convergence 1/2

and weak order of convergence 1. This is similar with the results for the Euler-Maruyama

strategy for SDE.
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Chapter 5

Numerical Experiments

In this chapter , we study the behavior of the higher order tau-leaping methods,

the midpoint and trapezoidal tau-leaping strategies, compared to the lower order

tau-leaping schemes and the exact stochastic simulation algorithm. We test these

methods on three models of biochemical systems of practical interest. On each

model, we simulate 10,000 trajectories for each method and compare the resulting

histograms with the histograms obtained using 10,000 trajectories generated with the

exact stochastic simulation algorithm of Gillespie.

5.1 Simple Reaction Channel

Consider first the simple reaction model from having four species and three reaction

channels [36]:

S1
c1−→ S3

S3
c2−→ S1

S1 + S2
c3−→ S1 + S4
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The total number of S1 and S3 molecules is constant (denoted by xT ). If we do

not consider the by-product S4, then this model can be expressed as system with

two variables, x1 and x2, where x1 and x2 are the molecular counts of S1 and S2

respectively.

The initial conditions and the reaction rate parameters are

c1 = 103

c2 = 103

c3 = 0.0005

x1(0) = 1000

x2(0) = 100

xT = 2000.

The propensity functions for the reactions above are as follows:

a1 = c1x1

a2 = c2(xT − x1)

a3 = c3x1x2

The system is studies on the time interval [0, 0.05
4

].

The state change vectors for the reactions R1, R2 and R3 , respectively are

v1 =

−1

0

 , v2 =

1

0

 , v3 =

 0

−1


We simulated 10000 trajectories for each of the midpoint, trapezoidal, implicit and

explicit tau-leaping methods and Gillespie’s algorithm and plotted the histograms for

these strategies at T = 0.05/4 for each of the species. Figure 5.1 shows the histograms

for the species S1, while figure 5.2 presents the histograms for the species S2.
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Sample time-evaluation trajectories for the species S1 and S2 are presented in

figures 5.3 and 5.4, respectively.

From Figures 5.1 and 5.2, we see that the midpoint and trapezoidal tau-leaping

schemes are slightly more accurate for the same size of the leap τ than the implicit

and explicit tau-leaping techniques.

In Figure 5.5, we showed the graphs of the relative global errors of each of the

tau-leaping methods at time T = 0.05/4, for the following sequence of step sizes

τ = 3.125× 10−7, 1.563× 10−7 and 7.81× 10−8. The loglog plots are presented. We

can clearly see that the errors in the higher order methods are smaller than those for

the lower order methods.
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Figure 5.1: Simple reaction channel: Histograms of species S1 computed using the
SSA, the explicit, implicit, midpoint and trapezoidal tau-leaping methods at time
T = 0.05/4.
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Figure 5.2: Simple reaction channel: Histograms of species S2 computed using the
SSA, the explicit, implicit, midpoint and trapezoidal tau-leaping methods at time
T = 0.05/4.
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Figure 5.3: Simple reaction channel: A sample trajectory of number of molecules of
species S1 as function of time.
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Figure 5.4: Simple reaction channel: A sample trajectory of number of molecules of
species S2 as function of time.
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Figure 5.5: Simple reaction channel: Log log plot of the relative global error at time
T = 0.05/4 as function of step size τ , for all the tau-leaping methods.
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5.2 Decay-dimerization Reaction Channel

The second model considered in this thesis is the Decay-dimerization reaction system

[36]. The system involves three species and four reactions:

S1
c1−→ 0

S1 + S1
c2−→ S2

S2
c3−→ S1 + S1

S2
c4−→ S3

The model is subjected to the following initial conditions:

x1(0) = 400

x2(0) = 798

x3(0) = 0.

It has the following parameter values c1 = 1, c2 = 10, c3 = 1000 and c4 = 0.1.

To the reaction channels above correspond the following propensities

a1 = x1

a2 = 5x1(x1 − 1)

a3 = 1000x2

a4 = 0.1x2

This model is integrated on the time interval [0, 0.2
4

].
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The state change vectors are

v1 =

−1

0

 , v2 =

−2

1

 , v3 =

 2

−1

 , v4 =

 0

−1

.

As with the previous system, the decay-dimerization model is simulated using 10,000

trajectories using the midpoint, trapezoidal, implicit and explicit tau-leaping methods

with the same value of the step-size τ and with 10,000 trajectories generated with

the SSA. The histograms at T = 0.02/4 obtained using each of these methods for

the species S1 and S2 are given in figure 5.6 and figure 5.7, respectively. It is worth

noting that this model is stiff, having both fast and slow reactions.

The trapezoidal tau-leaping method is the most accurate on this model. The

midpoint tau-leaping scheme is slightly less accurate on this stiff problem.

The evaluations in time of the molecular counts for species S1 and S2 on a sample

SSA are plotted in Figures 5.8 and 5.9, respectively. In addition, the loglog plot of

the relative error of each tau-leaping method at T = 0.02/4 compared to the reference

SSA solution, as a function of the step size τ is shown in Figure 5.10. This Figure

confirms that higher order tau-leaping methods are more accurate than lower order

ones.
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Figure 5.6: Decay dimerization reaction: Histograms of species S1 computed using
the SSA, the explicit, implicit, midpoint and trapezoidal tau-leaping methods at time
T = 0.02/4.
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Figure 5.7: Decay dimerization reaction: Histograms of species S2 computed using
the SSA, the explicit, implicit, midpoint and trapezoidal tau-leaping methods at time
T = 0.02/4.
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Figure 5.8: Decay dimerization reaction: A sample trajectory of number of molecules
of species S1 as function of time.
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Figure 5.9: Decay dimerization reaction: A sample trajectory of number of molecules
of species S2 as function of time.
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Figure 5.10: Decay dimerization reaction: Log log plot of the relative global error at
time T = 0.02/4 as function of step size τ , for all the tau-leaping methods.

5.3 Potassium Channel

The final model we analyze is the Potassium channel (A K+ channel)system. It

consists of three closed states (S1, S2, S3), one open state (S4) and one activation

state (S5), the there are N = 5 chemical species (S1, S2, S3, S4, S5) reacting through

10 reactions as mentioned below [33],
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S1
c1−→ S2

S2
c2−→ S1

S2
c3−→ S3

S3
c4−→ S2

S3
c5−→ S4

S4
c6−→ S3

S4
c7−→ S5

S5
c8−→ S4

S5
c9−→ S3

S3
c10−→ S5.

The propensity functions of the reactions above are, respectively,

a1(x) = c1x1

a2(x) = c2x2

a3(x) = c3x2

a4(x) = c4x3

a5(x) = c5x3

a6(x) = c6x4

a7(x) = c7x4

a8(x) = c8x5

a9(x) = c9x5

a10(x) = c10x3.

The molecular amount of the Si species is denoted by xi. The stoichiometric matrix

of the Potassium channel model may be written as
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V =



−1 1 0 0 0 0 0 0 0 0

1 −1 −1 1 0 0 0 0 0 0

0 0 1 −1 −1 1 0 0 1 −1

0 0 0 0 1 −1 −1 1 0 0

0 0 0 0 0 0 1 −1 −1 1


. The initial conditions are set to X(0) = [100, 50, 100, 50, 100]T ,

while the values of the reaction rate parameters are given by

c(1) = 0.1

c(2) = 0.1

c(3) = 0.1

c(4) = 0.1

c(5) = 0.1

c(6) = 0.1

c(7) = 0.1

c(8) = 0.1

c(9) = 0.1

c(10) = 0.1

.

This relatively large size system is integrated on the time interval [0, 5].

A sample size of 10,000 trajectories are simulated with the tau-leaping methods

considered in this thesis, using the same leap size τ and the results are compared to

those generated employing 10,000 trajectories of the exact SSA. The histograms at

T = 5 of each of the species S1, S2, S3, S4 and S5 are given in Figures 5.11, 5.12, 5.13,
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5.14 and 5.15., respectively. All tau-leaping methods are accurate on this model

with the step-size used, the midpoint and trapezoidal tau-leaping techniques are

slightly more accurate than the lower order implicit and explicit tau-leaping schemes,

as expected. As with the previous models, for this larger model the higher order

tau-leaping algorithms have higher order of accuracy as tested numerically.
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Figure 5.11: Potassium channel: Histograms of species S1 computed using the SSA,
the explicit, implicit, midpoint and trapezoidal tau-leaping methods at time T = 5.
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Figure 5.12: Potassium channel: Histograms of species S2 computed using the SSA,
the explicit, implicit, midpoint and trapezoidal tau-leaping methods at time T = 5.
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Figure 5.13: Potassium channel: Histograms of species S3 computed using the SSA,
the explicit, implicit, midpoint and trapezoidal tau-leaping methods at time T = 5.
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Figure 5.14: Potassium channel: Histograms of species S4 computed using the SSA,
the explicit, implicit, midpoint and trapezoidal tau-leaping methods at time T = 5.
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Figure 5.15: Potassium channel: Histograms of species S5 computed using the SSA,
the explicit, implicit, midpoint and trapezoidal tau-leaping methods at time T = 5.
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Figure 5.16: Potassium channel: A sample trajectory of number of molecules of
species S1 as function of time.
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Figure 5.17: Potassium channel: A sample trajectory of number of molecules of
species S2 as function of time.
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Figure 5.18: Potassium channel: A sample trajectory of number of molecules of
species S3 as function of time.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

t

50

52

54

56

58

60

62

64

S
pe

ci
es

 4

Figure 5.19: Potassium channel: A sample trajectory of number of molecules of
species S4 as function of time.
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Figure 5.20: Potassium channel: A sample trajectory of number of molecules of
species S5 as function of time.
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Figure 5.21: Potassium channel: Log log plot of the relative global error at time
T = 5/4 as function of step size τ , for all the tau-leaping methods.
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Chapter 6

Conclusion

Mathematical modeling and simulation of biochemical systems are important research

areas in systems biology. In recent years, mathematical modeling and computer

simulations have been recognized as some of the key tools for studying biochemical

process taking place in a single cell. With the advance of technology, more accurate

biological data become available. Those data may be used for building more realistic

models of critical processes at the cellular trend. In the case of processes involving

some biochemical species in low molecular counts ( such as DNA and RNA), stochastic

models are necessary for an accurate description of the system dynamics. Stochastic

models are more complex than the deterministic ones and more challenging to solve

numerically.

In this thesis, we study a stochastic discrete model of well-stirred biochemical

systems known as the Chemical Master Equation. Gillespie proposed an exact Monte

Carlo method for the Chemical Master Equation, the Stochastic Simulation Algorithm

or the SSA. Nonetheless, the SSA is very expensive on many realistic biochemical

systems arising in applications. To deal with this difficulty, Gillespie introduced

the approximate tau-leaping method, which steps over many reactions during one

simulation step. While the explicit tau-leaping method is applicable to non stiff

models of biochemical reactions, the implicit tau-leaping scheme is more efficient
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for stiff model. The explicit and implicit tau-leaping techniques have low order of

accuracy. This work focuses on the study of higher order tau-leaping methods, namely

the midpoint and trapezoidal tau-leaping schemes. We study these two higher order

methods and compare their performances with that of the low order methods, the

explicit and implicit tau-leaping schemes and the exact, but expensive SSA.

Our numerical tests on several systems encountered in applications showed that

the higher order leaping strategies give more accurate numerical results than the

low order leaping schemes and are therefore preferred when high accuracy of the

simulation is required. This is important , for example, when studying biochemical

systems which are sensitive with respect to some of their parameters.

In the future, we plan to study efficient time-stepping strategies for higher order

tau-leaping methods.
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