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Abstract

Constraint satisfaction problems present a general framework for studying a large class

of algorithmic problems such as satisfaction of Boolean formulas, solving systems of

equations over finite fields, graph colourings, as well as various applied problems in

artificial intelligence (scheduling, allocation of cell phone frequencies, among others.)

CSP (Constraint Satisfaction Problems) bring together graph theory, complexity theory

and universal algebra.

It is a well known result, due to Feder and Vardi, that any constraint satisfaction

problem over a finite relational structure can be reduced to the homomorphism problem

for a finite oriented graph. Until recently, it was not known whether this reduction pre-

serves the type of the algorithm which solves the original constraint satisfaction problem,

so that the same algorithm solves the corresponding digraph homomorphism problem.
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We look at how a recent construction due to Bulin, Delić, Jackson, and Niven can be

used to show that the polynomial solvability of a constraint satisfaction problem using

Datalog, a programming language which is a weaker version of Prolog, translates from

arbitrary relational structures to digraphs.
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Chapter 1

Introduction

The central topic of this thesis are Constraint Satisfaction Problems and their reduction

to digraph homomorphisms. Constraint satisfaction problems play an important role

in the area of computer science (in particular, artificial intelligence) and have attracted

significant attention in the past 30 years, using methods and tools from logic, universal

algebra, and combinatorics.

A paper by Feder and Vardi [7], resulted in a famous conjecture asserting that any

constraint satisfaction problem over a finite relational structure is either tractable (solv-

able in polynomial runtime) or intractable (NP-complete). So far, all gathered evidence

points to the conjecture being true. In addition, Feder and Vardi showed in the same ex-

position that every constraint satisfaction problem over a finite structure can be reduced

to the homomorphism problem for a finite balanced digraph. We refer the reader to [10]
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CHAPTER 1. INTRODUCTION

for a detailed study of graph and digraph homomorphisms.

Recently, algebraic methods have been explored in the study of constraint satisfaction

problems and their complexity (see [3], [4]). One of the most important results is the

categorization of constraint satisfaction problems that are solvable using a simple class of

algorithms, called bounded width problems [2]. A recent result of Bulin, Delić, Jackson,

and Niven [5] shows that the original Feder and Vardi reduction to digraphs can be

modified so that a variety of polymorphisms are preserved. In particular, in their paper,

it is shown that this transformation reduces structures of bounded width to digraphs

of bounded width. The main result of this thesis is to give an alternative proof of this

result using the Datalog approach to prove bounded width. This is in contrast to a

purely algebraic approach used in [5] and [1], to give a similar proof for Feder and Vardi

construction.
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CHAPTER 1. INTRODUCTION 1.1. GRAPHS AND DIGRAPHS

1.1 Graphs and digraphs

To introduce the notion of CSP s (Constraint Satisfaction Problems) and their reduction

to digraphs, we must first consider some definitions related to graphs and digraphs. Our

main references for the material of this chapter are [10] and [19].

Definition 1.1. A graph G is a non-empty set of vertices denoted by V (G) together

with a set of edges E(G), where an edge joins two given vertices u and v. For this reason,

we often say that the edge relation is a symmetric binary relation on V (G). If u and v

are joined by an edge then these vertices are adjacent.

Definition 1.2. A digraph G is a non-empty set of vertices denoted by V (G) together

with a set of arcs E(G). An arc is marked by an orientation of the edge.

Definition 1.3. If u and v are adjacent in the direction from u to v, we say that u is an

in-neighbour of v and consequently v is an out-neighbour of u.

Figure 1.1: A graph with edges and a digraph with arcs.

Definition 1.4. Given two (di)graphs G and H, a mapping f from G to H is called a

homomorphism, if (arcs) edges of G can be mapped to (arcs) edges in H while preserving

3



1.2. HOMOMORPHISM AND ADJACENCY CHAPTER 1. INTRODUCTION

vertex relations. We have:

for all u, v 2 E(G), f(u)f(v) 2 E(H)

Homomorphisms will preserve edge relations in a graph but will also preserve the direction

of the arc in a digraph.

A homomorphism f between G and H is commonly denoted “G ! H”, where G is

said to be homomorphic to H or that G is H-colourable.

1.2 Homomorphism and adjacency

As stated in the previous section, homomorphisms preserve adjacency. We can introduce

more definitions related to graphs.

Definition 1.5. Given two vertices u and v of G, a walk from u to v is a sequence of

adjacent vertices allowing a connection from u to v.

Definition 1.6. In a closed walk the starting vertex and the ending vertex are the same.

Definition 1.7. A path P from u to v is a walk consisting of distinct vertices. If m

edges are traversed in the sequence from u to reach v, then we say that the path P is of

length m, denoted P
m

.

Definition 1.8. A cycle C is a sequence of distinct vertices, with the starting vertex

4



CHAPTER 1. INTRODUCTION 1.2. HOMOMORPHISM AND ADJACENCY

and the ending vertex being the same. If m edges are traversed in the sequence from u

back to u, then we say that the cycle C is of length m, denoted C
m

.

Proposition 1.1. (Hell, Nešetřil [10]) A mapping f : V (C
m

) ! V (G) is a homomor-

phism of C
m

to G if and only if f(0), f(1), . . . , f(m� 1) is a closed walk in G.

Proof. We refer the reader to [10] for a complete proof.

In Example 1.1 we will demonstrate that a mapping f between C7 and C5 preserves

adjacency.

Example 1.1. f : C7 ! C5

0

1

34

5

6

e

a

b

cd

2

f

Figure 1.2: A mapping f from C7 to C5

Mapping f, results in:
�ĺD
�ĺE
�ĺF
�ĺG
�ĺH
�ĺG
�ĺH

f(4)=f(6)=e

f(0)=a 

f(1)=b

f(2)=cf(3)=f(5)=d

Figure 1.3: Each vertex in C7 has an image in C5.
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1.2. HOMOMORPHISM AND ADJACENCY CHAPTER 1. INTRODUCTION

We see the closed walk f(0), f(1), . . . , f(6), f(0) in C5. All edge relations in C7 are

preserved in C5 after performing the mapping.

The above definitions are important tools in the study of homomorphism and adja-

cency. Similar definitions and properties exist for digraphs, which we proceed to introduce

next.

Definition 1.9. Digraphs are often referred to as oriented graphs.

Definition 1.10. To distinguish a graph from a digraph, we refer to it as an undirected

graph.

Definition 1.11. Given an oriented walk ofm vertices, adjacent in the following sequence

{v1, v2, . . . , vm}, a forward arc is defined as an arc from v
i

to v
i+1 and a backward arc

is an arc from v
i+1 to v

i

.

Definition 1.12. When a path or a walk is composed of both forward and backward

arcs, we refer to it as an oriented path or walk. When it is composed of forward arcs

only, we say that the walk or the path is directed.

Definition 1.13. A digraph is connected if any given two vertices are joined by an

oriented walk.

Definition 1.14. If a denotes the number of forward arcs and b the number of backward

arcs of an oriented walk, then the algebraic length of the walk is calculated as a� b.

6



CHAPTER 1. INTRODUCTION 1.3. HOMOMORPHISMS AND COLOURINGS

Proposition 1.2. (Hell, Nešetřil [10]) Let G and H be digraphs, and f : G ! H a

homomorphism. If v0, v1, . . . , vm is a walk in G, then f(v0), f(v1), . . . , f(vm) is a walk in

H of the same algebraic length.

Proof. We refer the reader to [10] for the complete proof.

Definition 1.15. An oriented path and cycle, denoted
�!
P
m

and
�!
C

m

respectively, are

defined similarly as the path P
m

and cycle C
m

, only that every v
i

v(i+1) is an arc and not

an edge.

Definition 1.16. A digraph G is balanced if any two oriented paths
�!
P1 and

�!
P2 between

vertices u and v have the same algebraic length.

1.3 Homomorphisms and colourings

In the previous section we had mentioned that a homomorphism from G to H is also

called an H-colouring of G. One of the most important and extensively studied prob-

lems in graph theory is that of graph colouring. It is a constraint satisfaction problem

that requires colouring vertices of a given graph G such that the following constraint is

satisfied: any two adjacent vertices should not be assigned the same colour.

We can define our mapping f as the assignment of m colours to vertices of G so

that no pair of adjacent vertices is assigned the same colour. Following this concept, the

graph H is the set of m vertices, where each vertex is labelled as a distinct colour from

7



1.3. HOMOMORPHISMS AND COLOURINGS CHAPTER 1. INTRODUCTION

its neighbour.

Definition 1.17. A graph of m vertices, is a complete graph (denoted K
m

) if every pair

of distinct vertices are connected by an edge.

Proposition 1.3. (Hell, Nešetřil [10]) A homomorphism f : G! K
m

is the m-colouring

of G.

Proof. We refer the reader to [10] for the complete proof.

Definition 1.18. Given a connected balanced digraph G, starting at a given vertex a,

we can label all vertices of G to produce levels. We start by labeling a as 0, then all its

out-neighbours incremented by 1 and in-neighbours decremented by 1. If applying this

procedure results in some negative labels, then we can add the same positive integer to

all labels so that the smallest label is 0. The label of each vertex is called the level of

the vertex. We call the height of G the maximum level of G.

Example 1.2. We start with G, then we proceed with the labeling

•

•

•

a

•

•

•

•

��

✏✏

✏✏

��

��

✏✏

✏✏

��

Figure 1.4: Balanced graph G
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3

2

1

0

1

2

3

4

��

✏✏

✏✏

��

��

✏✏

✏✏

��

Figure 1.5: Balanced graph G with its level function

Proposition 1.4. (Hell, Nešetřil [10]) If G and H are two balanced digraphs of the same

height, then any homomorphism of G to H preserves the levels of vertices.

Proof. We refer the reader to [10] for the complete proof.

Definition 1.19. If G! H and H ! G, then we say that G and H are homomorphically

equivalent.

Definition 1.20. Let H be a nonempty subset of V (G). Then, the graph with the vertex

set H and the set of edges E(G) \ (H ⇥H) is called an induced subraph of G, which we

will also denote H.

Definition 1.21. Suppose H is an induced subgraph of G, a retraction from G to H is

a homomorphism f : G! H such that each vertex u in H is mapped to itself in G.

Definition 1.22. Let H be an induced subgraph of G. An inclusion from H to G is a

homomorphism g : H ! G, which maps each vertex u in H to itself.

By composing the retraction and the inclusion in H and G, we can conclude that G

and H are homomorphically equivalent.

9



1.3. HOMOMORPHISMS AND COLOURINGS CHAPTER 1. INTRODUCTION

Definition 1.23. A core is the smallest induced subgraph onto which the graph can

retract.

Every finite graph must contain a core. For a proof, we refer the reader to [10].

10



Chapter 2

Basic Notions from Computational

Complexity Theory

Algorithms are built to determine the existence of homomorphisms. If we consider homo-

morphism problems based on the simplicity or complexity of the problem, then we can

classify them as P or NP problems. Our main reference for the material in this chapter

is [17].

Definition 2.1. A problem or a function f : N ! N is computable in polynomial time

(we say that f is in the class P or f is tractable) if there exists at least one algorithm A

which can solve f(n) in a finite number of steps that is bounded by a polynomial function

of n, the length of the input. P stands for the class of problems (functions) computable

in polynomial time.

11



CHAPTER 2. COMPLEXITY

Example 2.1. The following are in P:

1. Solving a linear equation over the field of real numbers R ([17]):

Given I = {{a, b, c} 2 R|c � b + a = x, x 2 R}, the problem of finding all triples

(a, b, c) such that c� b+ a = x can be solved by a polynomial algorithm, the usual

Gaussian elimination;

2. 2-colouring of C
n

, with n an even integer ([17]),

This can be achieved by assigning colours 1 and 2 respectively to adjacent vertices.

Definition 2.2. A function f : N ! N is in NP, if there exists at least one algorithm

A that verifies in polynomial time whether a proposed solution a is the correct solution

to f(n). This algorithm does not calculate the solution to the problem, it simply verifies

its correctness. NP stands for non-deterministic polynomial time.

Following these definitions, we know for certain that P is a subset of NP. Indeed,

if we can find a solution to a function f in polynomial time, then we can also verify its

correctness in polynomial time.

Example 2.2. The following problems are in NP but not known to be in P:

1. 3-satisfiability in Boolean logic ([17]);

2. Traveling Salesman Problem (TSP) ([17]):

Given a list of distinct cities c1, c2, . . . , cn, the problem involves finding the shortest

12



CHAPTER 2. COMPLEXITY

distance, a cycle of length l from c1 back to c1, while visiting each city exactly

once. Observe that l 
P

i=n

i=1

P
j=n

j=1 d(ci, cj), where d(ci, cj) is the distance in miles

between c
i

and c
j

.

The relationship between the classes P and NP is one of the central problems of the

theory of computational complexity. Though P is a subset of NP, the question remains

to determine if these two classes are identical. P=NP means that for every problem we

can find an algorithm that verifies the correctness of a solution to the problem, but also

an algorithm that can find this solution, if unknown, and this performed in polynomial

time. The most famous conjecture in this area is the so-called “P 6= NP”, which is still

open.

Conjecture 1. (Cook, [6]) P 6= NP.

The following diagram represents the relationship between the classes P and NP:

P NP-complete NP-hard

NP

Figure 2.1: Classes P and NP.

13



2.1. POLYNOMIAL TIME REDUCTION CHAPTER 2. COMPLEXITY

2.1 Polynomial time reduction

Definition 2.3. Given two problems C and D. We say that C is polynomial time

or poly-time reducible to D (denoted by C  D) if there exists a polynomial time

computable function f : C ! D such that for every x 2 C, we have that f(x) 2 D.

Definition 2.4. We say that two problems C and D are poly-time equivalent if C  D

and D  C.

Definition 2.5. Given a class of problems C we shall say that C1 (a problem) is C-hard

if

there exists C2 2 C such as C2  C1.

If an algorithm exists that is capable to transform C2 to C1 in polynomial time, then C1

is at least as hard as C2 2 C.

Definition 2.6. We say that a problem C1 is NP-complete if it is NP-hard and in NP

(see Figure 2.1).

There exists several notable problems that are NP-complete, one of them being the

SAT problem. The SAT problem consists of all satisfiable Boolean formulas using boolean

symbols ^,_,¬ and variables. SAT can be reduced in polynomial time to other problems

in order to prove their NP-completeness. We state the following fundamental theorems

but their proofs are rather involved and can be found in [17]

14



CHAPTER 2. COMPLEXITY 2.1. POLYNOMIAL TIME REDUCTION

Theorem 2.1. (See [17]) SAT is NP-complete.

Theorem 2.2. (See [17]) 3-SAT is NP-complete

Theorem 2.3. (See [17]) 3-colourability of graphs is NP-complete.

By definition, 3-SAT is the problem to determine satisfiability of a Boolean formula,

which is a conjunction of disjunctions, where each disjunction consists of at most three

terms, each being a variable or a negation of a variable.

Figure 2.2 depicts the relationship between SAT, 3-SAT and 3-colourability of a graph.

SAT 3-SATis polynomial 
time reducible to 

3-colourability 
of a graph

is polynomial 
time reducible to 

Figure 2.2: A diagram for three known NP problems.
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Chapter 3

CSP for relational structures

Definition 3.1. Let A be a nonempty set. A finitary relation R on A is any

R ✓ An = A⇥ · · ·⇥ A

for some n greater or equal to 0. In that case, we say that R is n-ary and call n the arity

of R. An is called the n-th power of A or the Cartesian product on A.

Definition 3.2. The arity of R is the number of variables on which it is defined. For

example, E, the symbol for edge relation is a binary relation so its arity is 2.

Definition 3.3. A relational structure S is a nonempty set S equipped with a collection

of relations R
i

, with i = 1, 2, . . . ,k. We write:

S = (S;R1, R2, . . . , Rk

)

16



CHAPTER 3. CSP

Definition 3.4. Two relational structures S and T are similar if they have the same set

of relation symbols and arities.

Definition 3.5. Let T be a nonempty subset of S. T , along with the restrictions of

relations of S, form a structure T, and we say that T is a substructure of S or T is

included in S. The inclusion mapping T! S is also a homomorphism.

Following are some properties of a homomorphism f : S! T:

1. f is an isomorphism if there exists an inverse homomorphism T! S.

2. f is an endomorphism if S = T.

3. f is an automorphism if it is both an endomorphism and an isomorphism.

A relational structure S is a core if all of its endomorphisms are automorphisms.

Definition 3.6. Let S be a relational structure. We define a constraint satisfaction

problem of S as the collection of all relational structures denoted CSP(S) which consists

of all structures that are homomorphic to S. CSPs are therefore problems of finding

homomorphisms between two given general relational structures S and T.

The constraint satisfaction problem of S is in NP for all S. In fact, any given ho-

momorphism between S and T can easily be encoded in a string whose length is linear

in |S| and verifying its correctness can be done in polynomial runtime. Thus, CSP(S) is

in NP. There is a famous conjecture by Feder and Vardi which relies on the assumption

that P 6=NP.

17



3.1. PRIMITIVE POSITIVE FORMULAS CHAPTER 3. CSP

Conjecture 2. (Feder, Vardi, [7]) Every CSP is either P or NP-complete.

3.1 Primitive positive formulas

Definition 3.7. An atomic formula is a formula of the form R(x1, . . . , xn

), where R is an

n-ary relation symbol. Given the class of all atomic formulas µ in some fixed signature,

we can produce a formula:

9↵1 . . . 9↵n

,�1(⇤, . . . , ⇤) ^ · · · ^ �
n

(⇤, . . . , ⇤),

where the stars are free variables (say, x1, . . . , xm

) and ↵1 . . .↵n

are bound variables. All

the �
i

belong to µ and are operation symbols.

If the class µ consists of formulas of the form R(x1, x2, . . . ,↵1, . . . ,↵n

), where R is a k-ary

relation, then we call a formula 9↵1, . . . , 9↵n

[�1(⇤, . . . , ⇤) ^ · · · ^ �
n

(⇤, . . . , ⇤)] primitive

positive.

Example 3.1. If E is the binary relation of an undirected graph, then an example of a

primitive positive formula in the language of graphs is, for instance,

9x9y9z(xEy ^ yEz).

18



CHAPTER 3. CSP 3.2. MORE PROPERTIES OF RELATIONAL STRUCTURES

3.2 More properties of relational structures

Definition 3.8. Given a relational structure S = (S,R), a k-ary function f defined on

the set S, where k � 1, is called a polymorphism if it preserves all relations in R.

Definition 3.9. We say that an n-ary polymorphism f : Sn ! S is idempotent if we

have that

f(x, x, . . . , x) = x, for every x 2 S.

Definition 3.10. Let S be a finite relational structure. We say that a polymorphism

f(x1, . . . , xn

), n � 2, is a weak near-unanimity polymorphism if

1. f(x, . . . , x) = x,

2. f(x, . . . , x, y) = f(x, . . . , x, y, x) = · · · = f(y, x, . . . , x).

Using a result of Maróti and McKenzie [16], Larose and Zadóri were able to prove

the following theorem, which gives a general criterion for a relational structure to have

an NP-complete CSP.

Theorem 3.1. (Larose, Zadóri [15]). Let S be a finite relational structure which does

not admit a weak near-unanimity polymorphism. Then there exists a finite relational

structure T whose only idempotent polymorphisms are projections, such that CSP(T) is

poly-time reducible to CSP(S). Therefore, if T does not have a weak near-unanimity

polymorphism, CSP(S) is NP-complete.

19
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Proof. We refer the reader to [15] for the complete proof.

Due to Theorem 3.1, the Dichotomy Conjecture of Feder and Vardi can be reformulated

as follows:

Conjecture 3. (Bulatov, Jeavons and Krokhin [4]) Let S be a finite relational structure,

then CSP(S) is in P if and only if S admits a weak near-unanimity polymorphism.

0

3

1

2

Figure 3.1: A digraph not admitting a weak near unanimity polymorphism.

Example 3.2. It can be shown that the digraph in Figure 3.1 does not admit a weak near

unanimity polymorphism and consequently, its homomorphism problem is NP-complete

[10].
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Chapter 4

Datalog and Bounded Width

Definition 4.1. A Datalog program is a finite set of rules of the form:

t0 :- t1, t2, . . . , tn

where “:-” separates the head and the body of the clause and each t
i

, i = 0, 1, . . . , n is

an atomic formula R(x
i1 , . . . , xik

). Then we call t0 the head of the rule, and the sequence

t1, t2,. . . , tn the body of the rule.

Definition 4.2. The signature of the input of the program is the language of a relational

structure. For example, the signature of a graph is a single binary relation.

Definition 4.3. The predicates (atomic formulas) or statements in the heads of the

rules are not from the signature and are called IDBs (or intentional database predicates)
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while all other predicates come from the signature and are called EDBs (or extentional

database predicates).

One of the IDBs, which is usually nullary, as it does not depend on any variables,

is designated as the goal predicate of the program. The goal predicate is assumed to be

initially set to FALSE and we say that a Datalog program accepts a structure S if its

goal predicate evaluates to TRUE on S.

Example 4.1. The following Datalog program accepts an undirected graph if and only

if the graph is not 2-colourable. In essence, the program is searching for the occurence of

an odd cycle, as odd cycles are not 2-colourable. Once such a cycle is found, the program

evaluates to TRUE.

Odd(X, Y ) : �E(X, Y )

Odd(X, Y ) : �Odd(X,Z), E(Z, T ), E(T, Y )

non2col : �Odd(X,X)

The first clause provides the definition of an odd path between X and Y. The second

clause is used to define odd paths recursively; it does so by adding two edges to an odd

path, which also results in an odd path. The goal predicate decides whether the path

between X and X (a cycle) is either odd or even.

In this example, Odd and non2col are the IDBs and non2col is the program’s goal

22



CHAPTER 4. BOUNDED WIDTH

R: Red
B: Blue

00

B B

B B B

B

B

B

B

BB

R

R

R

R

R R

R

R

R

R R

R

R

R

C3 returns TRUE C4 returns FALSE C5 returns  TRUE

C7 returns  TRUEC6 returns  FALSE

Figure 4.1: A 2-colouring of even and odd cycles.

predicate. The only EDB is the signature predicate E.

EDBs consist of the relations provided by the signature, while IDBs are “new” rela-

tions derived from EDBs. An important observation is that each program line or clause

is, in fact, a positive primitive formula, which defines an IDB in terms of basic structure

relations.

Definition 4.4. Given S a finite relational structure with a finite signature ⇢, we define

the class coCSP (S) to consist of all finite structures T in the same signature as S such
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that T is not homomorphic to S.

Definition 4.5. We say that a finite relational structure S, with a finite signature ⇢, is

of bounded width if there exists a Datalog program which accepts precisely the structures

from coCSP(S).

Example 4.2. [10]

1. If S is a 2-colourable undirected graph or a 2-colourable digraph, then S is of

bounded width.

2. Any finite undirected graph or a digraph containing a loop is of bounded width.

3. For every k �2, �!C
k

is of bounded width. It can be shown ([10]) that G 6! �!C
k

if and

only if
�!
C

m

! G for some oriented cycle of algebraic length m not divisible by k. So,

coCSP(
�!
C

k

) consists of all digraphs G which contain oriented cycles whose algebraic

length is not divisible by k. The Datalog program which accepts coCSP(
�!
C

k

) can

be constructed similarly to the one from Example 4.1.

Proposition 4.1. (Hell, Nešetřil [10]) If a finite relational structure S is of bounded

width, then CSP(S) is in P.

Proof. Fix a finite relational structure S with a finite signature ⇢ so that S is of bounded

width. There exists a Datalog program which accepts coCSP(S). Suppose T is a finite

relational structure in signature ⇢. Since a Datalog program always terminates its run
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CHAPTER 4. BOUNDED WIDTH 4.1. CONSISTENCY CHECK

in a number of steps which is a polynomial function in |T |, we can decide in polynomial

time whether T is homomorphic to S or not.

For digraphs, the run of a Datalog program can be formulated in terms of a purely

graph-theoretic algorithm. Such algorithms are called consistency checks.

4.1 Consistency check

Given two digraphs G and H with u
i

2 V (G), i = 1, 2, 3 . . . , |V (G)|. We define a vertex-

to-vertex assignment, denoted by “ ”, where u
i

 v
j

, with v
j

2 V (H), and j =

1, 2, 3 . . . , |V (H)|. Initially the possible vertices candidates for the assignment to u
i

constitute the domain  
ui , the list of all vertices v

j

in H.

This is how the consistency check works:

Remove vertex v
j

from  
ui if for ui+1 (adjacent to u

i

in a given direction), there is no

v
j+1 in  ui+1 , adjacent to v

j

in the same direction as u
i

u
i+1. We say that the domain of

each vertex in G is consistent if it remains nonempty after possible changes (removals).

It is said to be inconsistent if the domains become empty, meaning that all vertices were

removed from their lists.

a c e

0    1              2               3              4               5

b d fG H

Figure 4.2: Consistency check performed on two oriented paths.

25
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Example 4.3. Given the two oriented paths G and H from Figure 4.2, let us check if

they are consistent.

Initially the domains are:

 
a

= {0, 1, 2, 3, 4, 5}

 
b

= {0, 1, 2, 3, 4, 5}

 
c

= {0, 1, 2, 3, 4, 5}

 
d

= {0, 1, 2, 3, 4, 5}

 
e

= {0, 1, 2, 3, 4, 5}

 
f

= {0, 1, 2, 3, 4, 5}

We now consider  
a

and check for a possible change. Since there exists an arc ab we

must remove any vertex from the domain that does not o↵er the same adjacency in H,

thus, 5 needs to be removed. After applying the check to each domain, the lists are

nonempty and consequently consistent:

 
a

#
= {0, 1, 2, 3, 4, 6 5}

 
b

"
= {6 0, 1, 2, 3, 4, 5}

 
c

#
= {0, 1, 2, 3, 4, 6 5}

 
d

"
= {6 0, 1, 2, 3, 4, 5}

 
e

#
= {0, 1, 2, 3, 4, 6 5}

 
f

"
= {6 0, 1, 2, 3, 4, 5}

The arrow index below each vertex of G shows the direction of the arc.
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Lemma 4.1. (Hell, Nešetřil [10]) If G is H-colourable, then the consistency check will

succeed.

Proof. We refer the reader to [10] for the complete proof.

Example 4.4. We have previously established that any even cycle is 2-colourable. Let

us consider C6 and K2.

Initially the domains are :

 
a

= {red, blue}, 
b

= {red, blue}, 
c

= {red, blue}, 
d

= {red, blue}, 
e

= {red, blue},

 
f

= {red, blue}.

After applying the consistency check, the list remains intact as neither red nor blue needs

to be removed, because the edge relation constraint is satisfied at every step of the check.

Theorem 4.1. (Hell, Nešetřil [10]) If H is an oriented path, then H is of bounded width.

Proof. Example 4.3 confirms this theorem, but we will prove it in its generality.

A theorem from Hell, Nešetřil [10] states that a given H is of bounded width if and

only if there exists G such that G ! H when the consistency check performed on G

succeeds. Using this notion on H, an oriented path, we will use the consistency check.

If it succeeds, then we will define an H-colouring and thus prove that H is of bounded

width.

Let us label all the vertices of the path H as 1, 2, 3, . . . , |V (H)|. If indeed the consis-

tency check succeeds on H, then 
u

, for all u 2 V (G) will be nonempty but will contain

at least one vertex of H. And the list being consistent means that for any given vertex
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v1 in  
ui , there must exist its adjacent vertex v2 in  

ui+1 . This is important to note

for consistency, in order to ensure arc relations between  
ui and  ui+1 . We claim that

we can find an homomorphism f , by assigning to each f(u) the corresponding smallest

labeled vertex residing in the consistent domain  
u

. This is our H-colouring.

4.2 Pair consistency check

Pair consistency check applies to pairs of vertices. In the pair consistency check proce-

dure, the arc-to-arc assignment is (u1, u2)  (v1, v2), where u1 is taken to v1 and u2 is

taken to v2 following arc adjacency and direction constraint.

Initially possible pairs of vertices, candidates for any assignment are all tuples (v1, v2) 2

V (H) with connecting arcs.

This is how the pair consistency check works:

Remove any pairs (v1, v2) from  
u1,u2 , if there is no v

↵

in the tuples of the domain

 (u1,u3) and  (u2,u3), assuming there exists an arc between vertices (u1, u2), (u1, u3) and

(u2, u3) such that (v1, v↵) belongs to  (u1,u3) and (v2, v↵) belongs to  (u2,u3). We say

that the domain of each pair of vertices is consistent if the list remains nonempty after

possible changes (removals). It is said to be inconsistent if the domains become empty.
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4.3 Majority polymorphism

Let S be a finite relational structure with a finite signature. We say that S admits a

majority polymorphism if there exists a ternary polymorphism m : S3 ! S such that

m(x, x, y) = m(x, y, x) = m(y, x, x) = x, for all x, y 2 S.

Theorem 4.2. (Hell, Nešetřil, [10]) If H admits a majority polymorphism, then H has

bounded width.

Proof. The proof [10] uses the fact that if a given digraph admits a majority polymor-

phism, then the pair consistency check will be successful, and a homomorphism can be

defined based on the success of the pair consistency check.

Corollary 1. (Hell, Nešetřil, [10]) If H admits a majority polymorphism, then the H-

colouring problem is polynomial time solvable.

Example 4.5. Using the digraph in Figure 4.3, let us define a majority polymorphism.

We have the following possible scenarios

xyz =

8
>>>>>>>>>><

>>>>>>>>>>:

(1) xyz are some permutations of {0,1,2};

(2) xyz are in {0,1,2} but at least two terms are equal;

(3) xyz are all di↵erent but contains one instance of 3;

(4) xyz contain 3 but are not all di↵erent;

We are giving special attention to vertex 3 as it does not have any out-neighbours, it is
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0

3

1

2

Figure 4.3: A digraph admitting the majority polymorphism.

a dead end. We will try to avoid going to 3.

(1) In consideration for the length of this thesis, we will consider only few permutations

of {0, 1, 2}. The same operation can be applied to all other permutations.

Considering the order 012, we study out-neighbours of each vertex 0,1 and 2.

From 0 , we can either go to 1 or 3. Since the rule is to avoid the dead end, we choose

1 .

From 1 , we can either go to 2 or 3, we avoid 3 by choosing 2 .

From 2 , we will choose 0 .

Figure 4.4 represents a fragment of the Cartesian product graph G3, which consists of

the triples in {0, 1, 2}3 all of whose coordinates are distinct:

We quickly notice the following pattern 0 ! 1 ! 2 ! 0 ! 1 ! 2 ! . . .

Hence, the majority polymorphism here is defined as it would be in
!
C3.

(2) Since two coordinates are equal, we take the majority element, m(112) = 1.
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0 1 2
# # #
1 2 0
# # #
2 0 1

������������

1 0 2
# # #
2 1 0
# # #
0 2 1

������������

2 0 1
# # #
0 1 2
# # #
1 2 0

������������

2 1 0
# # #
0 2 1
# # #
1 0 2

������������

Figure 4.4: Connectivity of triples built from 0, 1, and 2.

(3) With all xyz di↵erent but including 3, we decide to take m(xyz) = 3.

(4) Since two coordinates are equal, we take the majority element m(223) = 2.

The existence of a majority polymorphism for a given structure, among many other

polymorphisms, is su�cient to prove the CSP can be solved in polynomial time.

Definition 4.6. Let S be a relational structure of finite signature. We say that a k-ary

polymorphism f : Sk ! S is a k-ary near-unanimity polymorphism on S if

f(xx . . . xy) = f(xx . . . yx) = · · · = f(yx . . . xx) = x, for all x, y 2 S

.

Theorem 4.3. (Barto, Kozik [2]) Any finite relational structure which admits a k-ary

near-unanimity polymorphism is of bounded width.

Proof. We refer the reader to [2] for the complete proof.
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We are now in position to sketch the proof of the homomorphism dichotomy for undirected

graphs, due to Hell and Nešetřil [10].

Theorem 4.4. (Hell, Nešetřil, [10]) Let H be a graph admitting loops.

(1) If H is bipartite or contains a loop, then the H-colouring problem is in P.

(2) Otherwise, the H-colouring problem is NP-complete.

Proof. (1) follows directly from Example 4.1 at the beginning of this section.

(2) Suppose H = (V,E) is an undirected graph without any loops and containing an odd

cycle. Let C be an odd cycle in H. The heart of the proof consists in showing that C

cannot be compatible with a k-ary weak near-unanimity of any arity k � 2. The details

of the proof are rather technical and involved and, therefore, omitted.

Theorem 4.3 shows that if a finite relational structure admits a near-unanimity poly-

morphism, then it is of bounded width. This naturally leads us to the question whether

the property of being of bounded width (having a set of homomorphism recursively

defined by a Datalog program) can be characterized by the existence of a particular

polymorphism. This conjecture, originally posed by Larose and Zadóri [15] was finally

resolved recently through a very deep result of Barto and Kozik ([2]).

Theorem 4.5. (Barto, Kozik [2]) For a finite relational structure S, the following are

equivalent.

1. S is of bounded width.
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2. S admits a pair of weak near unanimity polymorphisms f,g of consecutive arities

n, n+ 1, for some n�3.

3. S admits a ternary weak near unanimity polymorphism f and a 4-ary weak near

unanimity polymorphism g, such that f(xxy) = g(xxxy).

Proof. We refer the reader to [2] for the complete proof.
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CSP Dichotomy Conjecture to

Digraphs

Feder and Vardi [7] assert that, for every finite relational structure S, CSP(S) is poly-

nomial time equivalent to the homomorphism problem for a suitable balanced digraph

DS, where DS is such that the following equivalences are true: CSP (S) , CSP (DS),

coCSP (S) , coCSP (DS), RET (S) , RET (DS). RET is the retraction transforma-

tion.

We are interested in the representation of a finite relational structure in a language that

is purely graph-theoretical followed by the translation of the finite relational structure to

a suitable digraph to ensure optimal polymorphism preservation. Our main reference for

the material in this chapter is [5]. In that paper, a simplification of the original reduction
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of Feder and Vardi is given, and will be the main tool used to obtain the original result

of the next chapter.

5.1 A suitable digraph for reduction

We mention essentially the results that were revealed by the work of [5] in their proof of

the reduction of CSPs to digraphs. Let us contemplate some of the identified properties

of a suitable digraph DS.

(1) DS must be built from a collection of minimal paths.

Definition 5.1. A path P from vertex a to b is called minimal if P starts with two

forward arcs from vertex a and ends with two forward arcs at b. The vertex a is called

the initial vertex and b is called the terminal verted of P , denoted init(P ) and term(P ),

respectively. Figure 5.1 is an example of a minimal path.

a•! •! • •! •! •! • •! •! • b

Figure 5.1: A minimal path.

Furthermore, if we use the direction of the arcs to create levels for P , with a at level

0 and b at level 5, then in a minimal path when going from a to b we never revisit level

0 or reach level 5 before we get to b.

Forward arcs are usually counted as “1” and backward arcs as “0”. Hence, P can be
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a•

•

•

•

•

•

•

•

•

•b

OO

OO __ OO

OO

OO __ OO

OO

Figure 5.2: Levels in the minimal path from Figure 5.1.

annotated with the string 110111011.

(2) DS must be balanced and h-bipartite.

Recall that a balanced digraph G is one for which any given two paths P1 and P2 between

a and b have the same algebraic length.

Definition 5.2. A balanced digraph is h-bipartite if all its paths are minimal and have

algebraic length h.

(3) In DS, intersections of minimal paths are not permitted.

As long as a 2 V (DS) is neither an initial vertex nor a terminal vertex to all minimal

paths P
i

in DS, a must solely belong to a unique P
i

.

5.2 Relational structures and algebra

Given f and g, two functions, they form a linear identity if at most one function symbol

appears on either side of the equation, f(x, y, z) = g(x, z, x, x).
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Definition 5.3. A linear identity is balanced if the same variables occur in f and g,

f(x, y, z, y) = g(x, y, y, y, z).

Definition 5.4. A linear identity f is idempotent if f(x, x, x . . . , x) = x.

Definition 5.5. A given relational structure S is said to satisfy a set of identities ⌃ if,

when these identities are evaluated in S, they are all true.

Definition 5.6. A relational structure T is primitive positive definable (pp�definable)

by a relational structure S, if the set T of T form a relation on S that is directly pp-

definable from S and each relation of T defined on the set of T is pp-definable from

S.

We will show that every relational structure S is pp-definable by a balanced digraph

DS where CSP (DS) is polynomial time equivalent to CSP(S).

Definition 5.7. Maltsev conditions are conjunctions of equations which polymorphisms

may satisfy in a given relational structure.

For more details on important Maltsev conditions in universal algebra, see [11]. When

Maltsev conditions are satisfied in a relational structure, it implies applicability of certain

algorithms which solve the CSP of the relational structure. Let N denote the oriented

path 101:

The path N satisfies most of the important Maltsev conditions relevant to the alge-

braic theory of CSPs and will later on be used in the reduction of CSP to a digraph.
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↵

�

�

�GG WW GG

Figure 5.3: The oriented path N .

Definition 5.8. We say that a finite relational structure S is congruence 3-permutable,

if it admits two ternary polymorphisms f and g such that

f(x, y, y) = x

f(x, x, y) = g(x, y, y)

g(x, x, y) = y,

for all x, y 2 S.

Lemma 5.1. (Bulin, Delić, Jackson and Niven, [5]) The path N admits a majority

polymorphism, congruence 3-permutability polymorphisms, and it satisfies any balanced

set of identities.

Proof. The three polymorphisms listed in Lemma 5.2.1 imply most of the Maltsev con-

ditions that have been studied in applications of universal algebra in the study of CSPs.

(1) N admits a majority polymorphism.

We can define the majority operation as described in the previous chapter to be the

majority element of {x, y, z} when at least two elements are equal. In the event that
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x 6= y 6= z, we can choose to have m(x, y, z) = ↵. The majority operation is a polymor-

phism because it preserves relations in N .

(2) N admits congruence 3-permutability polymorphisms.

Two linear polymorphisms f and g witnessing 3-permutability can be defined as

follows:

f(x, y, z) =

8
>>>>>>>><

>>>>>>>>:

� if � 2 {x, y, z} and y 6= z;

� if � 2 {x, y, z} and � /2 {x, y, z} and y 6= z;

x otherwise.

g(x, y, z) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

� if � 2 {x, y, z} and x 6= y;

� if � 2 {x, y, z} and � /2 {x, y, z} and x 6= y;

z if x = y;

x otherwise.

If the tuple (x1, y1, z1) is sent to (x2, y2, z2) coordinate-wise, then in N, (x1, y1, z1)

must belong to {↵, �} and (x2, y2, z2) consequently must belong to {�, �}. This satisfies

the definition of f and g. Also f(x1, y1, y1) = x1 and g(x1, x1, y1) = y1 can be observed

directly from the definition of f and g. In f when variables y = z, by definition the value

assigned to the operation is x, in our case x1. Then in g, when variables x = y, the value
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assigned to the operation is z, in our case y1.

The identity f(x1, x1, y1) = g(x1, y1, y1) = x1 can also be proven by assuming x1 6= y1.

In f when x = y, the value of the operation is x, in our case x1, and in g, when y = z,

the value of the operation is x, in our case x1. Hence, both functions f and g yield the

same results x1.

(3) N satisfies any balanced set of identities.

Let ⌃ denote the balanced set of identities. For any given operations applied to N from

⌃, we can define them as the vertex that is closest to ↵.

5.3 Reduction to digraphs

We have identified some prerequisites on relational structures and digraphs necessary for

the reduction transformation. The process of the transformation is illustrated in Figure

5.4.

Relational 
structure

Bipartite
structure

Balanced
digraph

Figure 5.4: Process diagram for reduction to digraph.

Definition 5.9. A bipartite relational structure is a structure S = (S,R), where R is a

binary relation, and S = A
Ṡ
B (S is a disjoint union of A and B), and R ✓ A⇥ B.
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5.3.1 Translation to a bipartite structure

In the bipartite structure translated from the relational structure the set of vertices are

connected to the set of relations where they appear as coordinates. Here is how we can

ensure this:

Let S be a relational structure, we define two components of S, the set S and the set of

relations R1, R2, . . . , Rn

. Each of the R
i

relations have arity k
i

(1  i  n). We define

the transversal relation R = R1 ⇥R2 ⇥ · · ·⇥R
n

.

Now let us define the edge relation R
i

between the set S and the relations component R.

In our bipartite structure, R
i

will be defined as the edge connecting vertex a 2 S to the

relation which has a as the ith coordinate of the tuple:

R
i

= {(x
i

, (x1, . . . , xm

)) | (x1, . . . , xm

) 2 R}.

or using primitive positive formulas, we can define R:

R = {(x1, . . . , xk

) | 9y ((x1, y) 2 R1 ^ · · · ^ (x
k

, y) 2 R
k

)}.

Following the definition of pp-definable structures introduced at the beginning of this

section, we can conclude that the relational structure S is pp-definable by the bipartite

structure, denoted BS.

Theorem 5.1. (Bulin, Delić, Jackson and Niven, [5]) Given a relational structure S and
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its corresponding bipartite structure BS. S satisfies a set of identities ⌃, if and only if

BS satisfies ⌃.

Proof. We refer the reader to [5] for the complete proof.

5.3.2 Transformation to digraph

We will begin to transform our bipartite graph BS to the desired balanced digraph DS.

Let us replace every edge e 2 R
i

by an oriented path P
e

(of algebraic length 2k + 1)

defined as

P
e

= 1 + P 1
e

+ 1 + P 2
e

+ 1 + · · ·+ 1 + P k

e

+ 1,

P i

e

=

8
>>><

>>>:

1 if e 2 R
i

101 else.

where 101 is the path N, discussed earlier.

Example 5.1. Given the following tuples representing a relation from a bipartite struc-

ture BS,

(a) (x1, (x1, y1))

(b) (x1, (y1, x1))

we will build the corresponding P
e

. Since k = 2, P
e

= 1 + P 1
e

+ 1 + P 2
e

+ 1,

(a)Because x1 2 R1, P 1
e

= 1, P
e

is
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•

•

•

•

•

•

•

•

OO

OO

OO

OO __ OO

OO

Figure 5.5: Path representing (x1, (x1, y1)).

(b) Because x1 2 R2, P 2
e

= 1, P
e

is

•

•

•

•

•

•

•

•

OO

OO __ OO

OO

OO

OO

Figure 5.6: Path representing (x1, (y1, x1)).

Note that the algebraic length of both paths in (a) and (b) is 5 (by definition 2k+1).

After replacing every edge e by P
e

, we obtain a (2k + 1)-bipartite balanced digraph

with minimal paths and

|V (DS)| = |S|+ |R|+ 4|S||R|k � 2|R|k
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and

|E(DS)| = (|S||R|(4k + 1)� 2|R|k

.

Lemma 5.2. (Bulin, Delić, Jackson, Niven [5]) The relational structure S is pp-definable

in DS on the set S.

Proof. In [8], Häggkvist, Hell, Miller and Neumann established the existence of a minimal

path of height h that is homomorphic to the set of minimal paths in the balanced digraph

DS (of height h). Let P
m

denote such a minimal path that maps to all P
e

. This means

there is a trajectory P
m

that connects the vertices in S to the relation component. Hence,

the set S is pp-defined by DS:

S = {9b 2 DS|a
Pm! b}

Lemma 5.3. (Bulin, Delić, Jackson, Niven [5]) CSP(DS) reduces in polynomial time to

CSP(S).

Proof. We refer the reader to [5] for the complete proof.
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Chapter 6

Preservation of Bounded Width

The content of this section revolves around a new proof by Bulin, Delić, Jackson and

Niven on the reduction of a finite relational structure to a balanced digraph. According

to Theorem 4.5, the property of a CSP being of bounded width can be expressed by a

conjunction of two balanced identities. Since the construction from the previous chapter

preserves the validity of balanced identities, we have the following theorem:

Theorem 6.1. (Bulin, Delić, Jackson and Niven, [5]) Given a finite relational structure

S=(S,R), where R is k-ary relation (k � 2), CSP(S) is of bounded width if and only if

CSP(DS) is of bounded width.

Proof. The complete proof can be found in [5]. It is largely algebraic and does not

truly reflect the algorithmic reasons for such an equivalence. Namely, we would like

to gain a better insight into how expressibility in Datalog gets preserved under this
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construction.

We now proceed to give an alternative proof of Theorem 6.1 working strictly within

the Datalog-based definition of bounded width. Theorem 6.1 can be restated in the

following way:

Theorem 6.2. coCSP(S) is expressible in Datalog if and only if coCSP(DS) is expressible

in Datalog.

Proof. It is a well-known fact that if a finite relational structure S is positive-primitive

definable within a finite relational structure T, then if coCSP (T) is expressible in Datalog,

so is coCSP(S) [7]. For that reason, we only need to show that if coCSP(S) is expressible

in Datalog, so is coCSP(DS). First, we need to establish two claims:

Claim 6.1. Given m � 1, the set of all finite oriented paths whose algebraic length is

greater or equal to m+ 1 is definable in Datalog.

Proof. An oriented path
!
P is of algebraic length greater or equal to m+ 1 if and only if

!
P 6!

!
P
m

(no homomorphism exists between
!
P and

!
P
m

). Since
!
P
m

is of bounded width,

for every m � 1, the claim follows.

Claim 6.2. For every finite oriented path
!
P , coCSP (

!
P ) is definable in Datalog.

Proof. This follows directly from the fact that every finite oriented path is of bounded

width ([10]). This was proven in Chapter 4.
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Suppose S = (S,R) is a finite relational structure such that R is a k-ary (k � 2) relation,

and assume that coCSP (S) is definable in Datalog. Since the height of the associated

balanced digraph DS is 2k + 1, we can construct the Datalog program which will accept

coCSP(DS) as follows:

(1) Include the clauses which will guarantee acceptance of any digraph which contains a

path of algebraic length at least 2k + 2. This can be done using the reasoning in Claim

6.1.

(2) For each path
!
P1,. . . ,

!
P
k

used in the construction of DS, include clauses that will

guarantee the acceptance of all coCSP (
!
P
i

), i = 1, . . . , k. This can be done using Claim

6.2.

(3) For each clause of the program which accepts coCSP (S) in

t : �t0, t1, . . . , tm

t
i

is a relation that can be written as

R(x
i1 , xi2 , . . . , xik

)

for some elements x
i1 , xi2 , . . . , xik

, we replace it by a conjunction of the form

9y(“x
i1

P1! y” ^ · · · ^ “x
ik

Pk! y”)
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so that

“x
ij

Pj! y”

is a positive-primitive formula asserting that x
ij and y are connected by an oriented path

isomorphic to P
j

. Finally, we claim that the Datalog program constructed in this way

accepts a digraph G if and only if

G 6! DS.

If G is accepted by clauses from (1), then it contains a path of algebraic length greater

or equal to 2k + 2, so it cannot be homomorphic to DS.

If G is accepted by clauses (2), then it is either such that all the paths in G are of

algebraic length at most 2k with G not homomorphic to DS, or G contains a path of

algebraic length at least 2k+2. In the latter case, the clauses from (3) will accept G if it

is not homomorphic to DS.

Similarly, if G 6! DS, then one of the sets of clauses (1)-(3) will guarantee the acceptance

of G.
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Chapter 7

Conclusion and Open Problems

7.1 Summary

In Chapter 1, we gave basic definitions involving the concepts of homomorphisms on

graphs and digraphs and established elementary consequences of the existence of a ho-

momorphism between two graphs or digraphs. Chapter 2 presented basic notions from

the theory of computational complexity, such as problems being in complexity classes P

and NP. In addition, we found out that a well-known NP-complete problem, such as

SAT, can be polynomially reduced to 3-SAT and 3-colouring problems for graphs.

In Chapter 3, we introduced the notion of the constraint satisfaction problem for a

finite relational structure and investigated the role played by positive-primitive first-order

formulas in the polynomial reduction of one CSP to another.

The concept of bounded width CSPs was investigated in Chapter 4, where we studied
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several aspects in which it can be viewed using definability in Datalog, an algebraic

problem asking whether a certain structure admits particular polymorphisms or, in the

context of digraphs, whether particular intuitive algorithms are adequate to solve the

CSP in question.

The original work in this thesis lies in a new method of reducing CSPs for relational

structure to homomorphism problems for balanced digraphs, based on a recent work of

Bulin, Delić, Jackson, and Niven. The exposition of Chapter 5 follows closely the content

of [5].

Finally, Chapter 6 consists of original work, based on the techniques developed in

the previous chapter, to give an original proof that CSPs of bounded width transform

to homomorphism problems for digraphs which are also of bounded width. Unlike the

result of Atserias ([1]) and those of Bulin, Delić, Jackson, and Niven ([5]), our proof does

not rely on involved techniques from model theory or validity of algebraic conditions but

simply using Datalog-based definitions.

7.2 Open problems

As stated in Chapter 3, the main open problem in the area is the so-called Dichotomy

Conjecture, due to Feder and Vardi.

Conjecture 4. (Dichotomy Conjecture, [7]). Every CSP with a finite relational structure

is either in P or it is NP-complete.
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So far, all known evidence points to the a�rmative answer to the conjecture. The two

major results in the area ([2],[3]) indicate that the majority of CSPs over finite relational

structures which are tractable seems to be so for two reasons:

1. They are of bounded width, or

2. They can be solved using a generalization of Gaussian elimination (“few subpowers

algorithm” [3]). It is known that there are finite structures (see [7]) which are

solvable using the few subpowers algorithm but are not of bounded width, and

conversely.

In Chapter 5, we showed that if a relational structure S is such that coCSP(S) is

expressible in Datalog, so is coCSP(DS).

7.2.1 Datalog and LFP

The logic LFP (Least Fixed Point) is an extension of first-order logic that has an operator

allowing to define least fixed points of a given formula. The LFP is formed by closing

first-order logic under the rule: if µ is a formula, positive in the relational symbol R,

then so is

lfp
R,

!
x

µ(
!
t )

We interpret this to mean that the tuple
!
t is the least fixed point of the operator that

maps R to µ(R,
!
x).
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Example 7.1. The formula 8u8v[lfp
T,xy

(x = y_9z(E(x, z)^T (z, y)))](u, v) is satisfied

in a graph G = (V,E) if and only if G is connected.

This example shows that a Datalog program can be written as a single formula in

the LFP logic. One can show that, similarly, every Datalog program can be written as

a single LFP formula. However, there are examples (complicated) that show that the

converse is not true: there are queries which can be expressed using formulas in the LFP

logic, but which cannot be verified using Datalog programs. Thus, Datalog is a proper

subset (in terms of what it can express) of the LFP logic. Hence, our result from Chapter

6 naturally leads to the following two problems:

Problem 1. If a finite relational structure S is such that coCSP(S) is definable in LFP,

then is the same true for coCSP(DS)?

Problem 2. Is there an extension of the logic LFP such that, for a finite relational

structure S, coCSP(S) is definable in this extension if and only if CSP(S) is in P?

We notice that if such an extension of LFP indeed exists and if given a finite structure

S and a formula µ in this logic, we can decide whether

S |= µ.

That means if µ is true in S in runtime which is a polynomial function of |S|, the
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Dichotomy Conjecture is true. For that reason, we believe that further investigation of

these problems may play an important role in settling the Dichotomy Conjecture and it

will be the focus of our future research.
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