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Abstract

Estimation and Equalization Strategies for Fiber-Wireless
Communications in a Multiuser CDMA Environment

© Stephen Z. Pinter, 2005

Master of Applied Science
Department of Electrical and Computer Engineering
Ryerson University

Two major issues associated with fiber-wireless technology are the nonlinear distortion of the
optical link and the multipath dispersion of the wireless channel. In order to limit the effects
of these distortions, estimation, and subsequently equalization of the concatenated fiber-
wireless channel needs to be done. This thesis addresses three scenarios in this regard, they
are: uplink estimation ﬁsing pseudonoise (PN) sequences, downlink estimation using Walsh
codes, and uplink equalization using a decision feedback equalizer (DFE) and series reversion,
all in the presence of both wireless and optical channel noise. The training sequences used
in the identification are practically feasible. These training sequences have white noise-like
properties which effectively decouples the identification of the linear and nonlinear channels.
Correlation analysis is then applied to identify both systems. Furthermore, we propose an
algorithm to mitigate the adverse effect of multiple access interference (MAI). Numerical
evaluations show a good estimation of both the linear and nonlinear systems with 10 users
for the uplink and 54 users for the downlink, both with a signal-to-noise ratio (SNR) of
25 dB. Chip error rate (CER) simulations show that the proposed MAI mitigation algorithm

leaves only small residual MAL
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Chapter 1

Introduction

1.1 Overview of fiber-wireless technology

Wireless technology is a major part of everyday communications. From cell phones to E-
commerce to personal computers, wireless communications is widespread in both indoor
and outdoor environments. Wireless technologies have emerged from simply transmitting
voice, to multimedia services such as videos, pictures, and data. Present consumers are not
interested in the underlying technology; they simply need reliable and cost effective commu-
nication systems that can support anytime, anywhere, any media they want. Furthermore,
new wireless subscribers are signing up at an increasing rate demanding more capacity while
the radio spectrum is limited. As a result of these ever increasing demands comes the need
for broadband access. One of the technologies proposed to satisfy this increasing demand
suggests integration of the high capacity of optical networks with the flexibility of radio
networks; this is referred to as radio-over-fiber (ROF), a fiber-based wireless access scheme
([1], [2], [3]). By combining these two areas, ROF strives to meet the demand for growing

broadband access.

1.1.1 Cell architecture

The fiber-wireless architecture for cellular networks is shown in Figure 1.1. In this scenario
there is an intermediate stage between the central base station and the mobile units. This
intermediate stage is the optical fiber and the radio access point (RAP in Figure 1.1). The

RAPs provide wireless access instead of the conventional base station, and are connected to

1



Chapter 1 Introduction

Micro/Pico Cell

,,,,,,
RS

Central
Base
Station

Radio-Over-Fiber
(ROF) link

Radio Access Point

Figure 1.1: Fiber-wireless cellular architecture.

the central base station via the ROF links. In the downlink, the radio frequency (RF) signal
is transmitted through the optical fiber, via subcarrier transmission, and is radiated to the
mobile units upon being received at the RAP. The opposite takes place in the uplink. Using
the RAPs as an intermediate base station allows for a mirco/pico cell scenario; the micro
cell having a cell radii of 200 m to 1 km, and the pico cell having a cell radii of 10 m to 200
m. It is important to keep the RAPs complexity, cost, and power at a minimum in order
to allow for large scale deployment. By doing so, a large cell can easily be split into smaller
cells by dispersing RAPs throughout. This increases frequency reuse and enables broadband

access.

Several observations can be made from Figure 1.1. First, signal processing should not be
done at the RAP for cost considerations. Therefore, compensation should be done at the
mobile unit or at the central base station. By performing most of the signal processing at the
central base station, i.e. by asymmetric distribution of the complexity, the cost can be shared

by many users and therefore helps reduce overall system cost. Second, the compensation

2



1.1 Overview of fiber-wireless technology

of the concatenated fiber-wireless channel should be handled jointly. This is a challenging
- task because of the time varying multipath wireless channel in series with the nonlinear
optical channel. Furthermore, the uplink and downlink require different solutions. Third, it
is desirable not to modify the portable units because of the ROF link. In other words, the
portable unit should not be aware of the existence of the ROF link. This makes seamless

roaming between fiber-based and conventional wireless systems possible.

1.1.2 Radio-over-fiber transmission

In order to get the RF signal from the base station to the RAP, or from the RAP to the
base station, the RF signal must be transmitted along the optical fiber. This is done by
modulating an optical signal at radio frequencies and then transmitting the optical signal
through the optical fiber. This is referred to as analog subcarrier transmission, which is
shown in Figure 1.2. Here, the RF signal rides along the RF modulated optical carrier. At
the receiving end of the optical fiber, the RF signal is demodulated and transmitted to the

corresponding wireless user.

Optical Carrier

)

Transfer function of the fiber

RF Subcarrier /

- p—
- e . - tam wm -

M1 n

A, = 1310 nm | ,|
RF Bandwidth

Figure 1.2: Spectrum of subcarrier transmission [4].

Subcarrier transmission allows ROF technology to alleviate the increasing demand for
broadband services through the implementation of the previously discussed micro/pico cel-
lular architectures. Advantages of ROF include:

e Large optical bandwidth enables the multiplexing of several radio channels,

3



Chapter 1 Introduction

e Multiple services can be transmitted on a single fiber; each radio channel may belong

to a different system such as wireless LAN (IEEE 802.11) or cellular radio (CDMA),
e Line-of-sight operation minimizes the effect of multipath dispersion,

e Ability to use existing dark/dim fibers to transmit the radio signal (dim fiber can be

used with WDM techniques),
e Inherent immunity to electromagnetic interference,

e Allowing for transparent operation and easy integration and upgrades; attributed to
the fact that the RF to optical modulation is typically independent of baseband to RF

modulation format,

e Enhanced cellular coverage in indoor environments such as offices, airport terminals,

and shopping malls, and

e System coverage can be extended by simply connecting additional low cost, low power

RAPs.

Conventional transmission mediums such as copper coaxial may not be completely re-
placed by optical fiber, but in applications where factors such as RF power loss, future
system upgrades and transparency are considered, fiber is regarded as the most practical
and efficient medium. Though the prospects of ROF are substantial, there is still plenty of

research to be carried out in this area before widespread deployment can be considered.

1.2 Contributions

This thesis addresses some of the dominant issues associated with fiber-wireless transmission,
4the"se include: intersymbol interference (ISI), multiple access interference (MAI), nonlinear-
ity, and performance evaluation in the presence of noise (these distortions will be elaborated
upon_in Section 2.2). ISI is a major concern because it is coupled with the nonlinear dis-
tortion of the optical link. In order to limit the effect of these distortions, estimation, and

subsequently equalization of the concatenated fiber-wireless channel should be done. The

4



1.2 Contributions

goal in this thesis is to first estimate the parameters of the fiber-wireless channel and then
" to devise appropriate equalization and compensation. The estimation is performed by ap-
plying correlation analysis, which is a control systems technique, to the area of wireless
communications.

Equalization can be performed in one of two ways. Either the equalizer coefficients can
be calculated based on estimates of the channel parameters, or adaptive techniques can
be used to directly adjust the equalizer coefficients in order to minimize the error between
the equalized signal and a training sequence. So why is one method preferred over the
other and why is equalization via estimation employed in this thesis? Major drawbacks
of adaptive techniques include increased complexity and even a single decision error in the
recursive least squares (RLS) algorithm can disturb the adaptation process [5]. On the other
hand, the estimation technique is found to be a potentially fast converging technique. It is a
good candidate for equalization because non-adaptive adjustment of the equalizer coefficients
makes the algorithm more robust in rapidly dynamic wireless channels [5]. However, the
effectiveness depends on the quality of the channel impulse response (CIR) estimate. A major
drawback with equalization via estimation is the overhead associated with the transmission
of a training sequence. Typically, training is used to converge a filter at startup as part of
the initialization overhead; then adaptation techniques can be used to track and compensate
for minor variations in the CIR [6]. Perhaps this combination of both techniques is most
suitable.

The work in this thesis stems from two major pieces of literature. The first is [7], where
the authors’ perform a complete identification of the fiber-wireless uplink using & single
pseudonoise (PN) sequence and in the presence of a single noise term. The second is []
(and the references therein), where the authors’ analyzed the Wiener model (fiber-wireless
uplink) under the excitation of a single PN sequence in a continuous-time baseband en-
vironment. A more practical application calls for extending identification to a multiuser
environment, as well as including the effects of both wireless and optical channel noise. The

major contributions of this thesis are summarized below:

1. The channel parameters of the fiber-wireless uplink are estimated in a multiuser CDMA

5



Chapter 1 Introduction

environment using PN sequences. The CIR of each user is estimated along with the

nonlinearity of the common optical link.

e Wiener system estimation theory is derived for a multiuser discrete-time passband

system.

e Since MAI is a major concern in a multiuser environment, an algorithm is devel-
oped to mitigate this issue and is shown to significantly improve the estimation

in the presence of multiple users.

2. Estimation of the wireless channel of the fiber-wireless downlink in a multiuser CDMA

environment is done using multiple Walsh codes.

e Hammerstein system estimation theory is derived for a multiuser discrete-time

passband system.

3. The fiber-wireless uplink is equalized in a single user environment while using the
estimated channel parameters from the multiuser case. A decision feedback equalizer
(DFE) is used to equalize the wireless channel and series reversion is used to compensate

for the nonlinearity.
4. The effects of both wireless and optical channel noise are studied by error rate analysis.

The use of PN sequences for estimation of the fiber-wireless uplink, and Walsh codes for
estimation of the fiber-wireless downlink, is attractive because these spreading codes are
already widely used in spread spectrum communications [1]. They are practically feasible
training sequences. To the author’s knowledge, there is no work reported so far that looks
specifically at identifying the multiuser fiber-wireless uplink using PN sequences, as well as
identifying the multiuser fiber-wireless downlink using Walsh codes.

Although the work in this thesis is tailored to a multiuser fiber-wireless CDMA commu-
nication system, it can also be applied to areas outside of the communication field Where a

parallel connection of multiple linéar systems is encountered in series with a single nonlin-

earity.



1.3 Organization
1.3 Organization

The rest of this thesis is organized as follows. Chapter 2 introduces some more background
material (in addition to that of Chaptér 1) on fiber-wireless communication using ROF
technology. Issues such as ISI, MAI, noise, and nonlinearities are discussed in detail. It is
essential to thoroughly review ROF because it is still relatively new. An overview of nonlinear
systems theory is then presented, specifically looking at its application to the fiber-wireless
channel. To end the chapter, direct sequence spread spectrum communications is discussed
where the focus is mainly on describing spreading codes, i.e. PN and Walsh, and their

properties.

Chapter 3 highlights related literature on Wiener and Hammerstein (block-oriented) sys-
tem identification. An overview of different identification algorithms is covered, along with

some discussion pertaining to the multiuser aspect of identification.

Chapter 4 applies correlation analysis to estimate the fiber-wireless uplink using PN se-
quences. A small section on baseband and passband representation precedes this discussion.
Three different fiber-wireless scenarios are covered, with the MU case being the most impor-
tant. A complete analytical treatment on using correlation analysis to estimate the wireless
and optical channels in a multiuser environment is given. In addition, an iterative algorithm
to remove MAI is proposed. The chapter concludes with a discussion of the simulation

results.

Equalization of the fiber-wireless uplink is covered in Chapter 5; the wireless channel
by DFE and the nonlinear channel by series reversion. Some related work on nonlinear
compensation is presented and the advantages and disadvantages of series reversion are given.
Simulation results are discussed next by obtaining an error rate analysis, i.e. chip error rate
(CER). Several conclusions regarding the chosen estimation and equalization algorithms are

drawn from the CER.

Chapter 6 applies correlation analysis to estimate the fiber-wireless downlink using Walsh
codes. The derivation of key correlation relationships is shown. A difficulty with using Walsh

codes is presented, as well as a discussion on how to overcome it. The chapter concludes with

7



Chapter 1 Introduction

simulation results on wireless channel estimation. Equalization of the downlink is performed
using a DFE, and CER results are discussed.

Conclusions of the thesis are given in Chapter 7. The major contributions are summa-
rized, and possible directions for future research are suggested. Lastly, appendix A contains

a discussion on the multinomial theorem.



Chapter 2

Background

2.1 Fiber-wireless system model

An overview of the fiber-wireless channel was presented in Chapter 1. In this chapter, a
system model is discussed along with some critical issues. The relationship between the
practical implementation of the fiber-wireless channel and the corresponding mathematical
system is shown in Figure 2.1. The fiber-wireless channel consists of an ‘ROF’ link (which
can be characterized by a nonlinearity) followed by the ‘Air’ transmission medium (which
can be characterized by a CIR reflecting the multipath dispersion). Figure 2.1 represents
the fiber-wireless downlink (base station — user), in the uplink (user — base station) the

two systems are reversed.

Central e
Siation (CBS) | S
t N »
tation (CBS) Radio access Mlngc: :
points (RAP or picoce

x() R

Figure 2.1: Block diagram representation of the fiber-wireless system [9].



Chapter 2 Background

2.2 Issues with the fiber-wireless system
Dominant issues in the fiber-wireless channel are discussed in detail in this section.

2.2.1 Wireless channel distortion

Two important distortions resulting from the wireless channel include ISI and MAIL

ISI: ISI is caused by multipath propagation and results in the spreading of a transmitted
pulse over time. Depending on the environment, the multipath propagation can either

be severe or mild.

MAI: When multiple users are transmitted via the wireless channel each user acts as inter-
ference to all other users and vice versa. MAI is a major issue and its effects cannot

be neglected.

Dynamic range is also a conéern. This is true more so in the uplink than the downlink. In
the uplink, the received signal first travels through the wireless channel, resulting in path
losses, fading and shadowing (due to obstructions), before entering the optical fiber; this
makes the dynamic range of the input very large.

Of course, as with any other medium, the input signal is distorted to a certain degree by
the addition of noise. Noise is random and unpredictable and can come from many sources.
Examples of external noise include man-made noise, fluorescent lights, and natural noise such

as lightning. Internal noise comes from electronic circuitry in the transmitter and receiver.

2.2.2 Nonlinearity

One of the major issues with the fiber-wireless channel is the nonlinear distortion of the
optical (ROF) link. This is due mainly to the laser diode, and partly to the high-gain RF
amplifier at the optical receiver. The nonlinear nature of the optical source is shown in Figuré
2.2. There is a limited linear region and eventually the output optical power saturates. The

noniinearity of the laser diode can be expressed by the polynomial

P = D+ P,(S + D,S?* + D35%), (2.1)

10



2.2 Issues with the fiber-wireless system

/ saturation

~~
=
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L I
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Figure 2.2: Laser nonlinearity.

where P is the output optical power, S is the modulating current signal, P, is the average
transmitted optical power, and D, D, and D3 are constants determined by the laser diode
such as the optical modulation depth. Furthermore, the nonlinearity of the laser can be

affected by factors such as leakage current and temperature variations.

Experimental measurements on the combined nonlinearity of the ROF link are shown
in Figure 2.3. This figure shows the output RF power from the optical receiver versus the
input RF power into the laser. It is clear that the output power is a nonlinear function of »
the input power, in large part due to the laser diode and would be even more pronounced
with an amplifier in the system. The dynamic range requirement of the uplink in a typical
microcellular environment is 80-90 dB, but the dynamic range available from a typical ROF
link is about 20-30 dB less than the above requirement [10]. To satisfy this large dynamic
range, the nonlinearity must be characterized in order to apply adequate compensation. This
is especially important in a multiuser environment where the number of users is dynamic.

According to the theorem of Weierstrass [11], any function which is continuous within
an interval may be approximated to any required degree of accuracy by polynomials in
this interval. From Figures 2.2 and 2.3 it is clear that the nonlinearity follows a saturating

characteristic and can therefore be modelled using a third order memoryless polynomial ([12],

11
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Figure 2.3: ROF link nonlinearity.

[13], [7]). However, the modelling of the nonlinearity should be done on Figure 2.3 because
this relates the input power to the output power. Two important observations regarding the

output of a nonlinear system in the passband can be made from [14] and [15], they are:
1. only odd order terms contribute to the system output, and
2. even order terms appear out of band and can easily be filtered out.

Taking into consideration the above, the ROF link nonlinearity can be approximated by a

third order polynomial of the form
Y= 611173 + ¢z, ' (22)

where adjusting the coefficients ¢; and c; lead to different saturating characteristics. There
is no constant term in equation (2.2) because in most practical applications if there is no
input there is no output. For our case this is justified in Figure 2.3.

2.2.3 Optical receiver noise

Optical receiver noise is another concern. Either PIN or avalanche photodiode (APD) type

detectors are used in optical receivers. PIN photodetectors are used in ROF because they

12



2.2 Issues with the fiber-wireless system

perform better at wavelengths of 1310 nm and 1550 nm [4]. Therefore, only the noise issues
" for a PIN photodetector will be discussed. Photodetector noises in the receiver arise from
the statistical nature of the photon-to-electron conversion process, and thermal noises come
from the amplifier circuitry [12]. Two important noises in the optical receiver are described

below.

Shot noise: Comes from the incoming photon stream. This noise occurs because of the
random nature of the production and collection of photoelectrons when an optical

signal is incident on a photodetector. The expression for shot noise can be written as
(i2hot) = 2¢1,B, (2.3)

where ¢ is the charge of an electron, I, is the average value of the photocurrent, and

B is the bandwidth.

Thermal noise: Comes from the bias resistor and is directly proportional to the tempera-

ture. The expression for thermal noise is given as

_ AT g (2.4)
L

(i7)
where kg is Boltzmann’s constant, 7" is the absolute temperature in Kelvin, and Ry, is
the load resistance.

2.2.4 Relative intensity noise

Changes in the amplitude or intensity of the output of a laser produce optical intensity noise.
These changes can either be due to temperature variations or from spontaneous emissions.
The noise resulting from these random intensity fluctuations is called relative intensity noise

(RIN) [12]. The mean square value of the RIN noise current is given by
(i%in) = PranR*Fi B, (2.5)

where Pgyy is the relative intensity noise parameter in dB/Hz, R is the responsivity, and

P, is the mean optical power.
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2.3 Nonlinear system theory

This section deals with the mathematical modelling of the fiber-wireless channel. Modelling
dynamic systems with linear models is difficult because linear models only approximate the
system behaviour around a given operating point. However, modelling dynamic systems
with nonlinear models allows the behaviour of the system to be approximated over the
whole operating range. But since the field of nonlinear systems is so huge, it is difficult to
characterize all nonlinear systems with one model structure. The selection of a nonlinear
model depends on the application.

In our case it is already known that the fiber-wireless channel consists of the series
connection of a linear dynamic system with a static nonlinearity. This type of nonlinearity
can be modelled using a block-oriented structure. It has been shown in many applications
(see [16] and the references therein) that block-oriented models can successfully represent a
wide range of nonlinear systems. For example, block-oriented models have been successfully

used in the areas of:

e chemical processes,
¢ biological processes,
e satellite communications, and

e control systems.

Some of the more common types of block-oriented models are: 1) Feedback block-oriented,
2) Wiener, and 3) Hammerstein. The Wiener and Hammerstein block-oriented models con-
sist of the interconnection of a linear time invariant (LTI) system with a static memoryless
nonlinearity and are shown in Figure 2.4. Aside from the fact that our channel is dynamic,
these structures are ideal for modelling the fiber-wireless link. But in order to get a com-
munication system oriented model, multiple users, as well as wireless and optical channel
noise must be considered. In the next section, the theory for the basic Wiener and Hammer-

stein systems will be discussed. In Chapter 4, this theory will be extended to a multiuser

communications environment.
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2.3 Nonlinear system theory

2.3.1 Volterra series

The Wiener and Hammerstein models are shown in Figures 2.4(a) and 2.4(b), respectively.
These are special cases of the Wiener-Hammerstein model of Figure 2.4(c). The following two

similarities between the system models in Figure 2.4 and the fiber-wireless communication

link can be made:

1. the Wiener model is analogous to the fiber-wireless uplink, and

2. the Hammerstein model is analogous to the fiber-wireless downlink.

h(n) : h(n)
x| 1] a(n) %C ) xin) /a1 r(n)
(a) Wiener system. (b) Hammerstein system.
h,(n) hy(n)

x(n) ’I I | q(n) , / y(n) ’I | I r(n)
—_— > ——

(c) Wiener-Hammerstein system.

Figure 2.4: Wiener and Hammerstein models for series connection of linear systems with static
memoryless nonlinearities.

Wiener and Hammerstein systems provide a convenient means to model the fiber-wireless

channel and fortunately extensive mathematical analysis has been done with these sys-
tems. These models have been thoroughly analyzed in a single control signal (or single
user) continuous-time baseband environment ([17], [8], [11], [18]).

The input-output relationship of a nonlinear system with memory is given in [19] and
[20] in continuous-time. Converting to discrete-time, the relationship can be given by the

following Volterra series

r(n) = ho + Z hy(my)z(n —my) + Z Z ha(ma, mg)z(n — my)z(n — my)

m1=-—0Q0 o0 M2=-—00
+ot Y

oo
mp=-—00

hn(my, ..., M) (N — my)...2(n — my), (2.6)

my
[oo]
Mp=—00
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where hn(my,...,my,) are called the Volterra kernels of the system. Just as an LTI system
can be completely characterized by its impulse response, so can a nonlinear system, which
can be represented by a Volterra series, be completely characterized by its Volterra kernels
[21]. It can also be shown [19], using a similar argument to that for linear systems, that a

nonlinear system is causal if and only if
hn(my,...,my) =0, for any m; <0, (2.7)

where j = 1, ...,n. Equation (2.6) is a very general definition, and hence the Volterra kernels
vary depending on the mathematical structure of the nonlinearity. The Volterra series and
kernels for the case when the nonlinearity is given by a polynomial of order ! will be discussed

next.

Wiener system

The output of the linear channel in Figure 2.4(a) can be written as

q(n) = h(n) xz(n) = Z h(m)z(n —m). (2.8)

m=—oo

Then, the output of the nonlinear system can be represented by a polynomial of the form

r(n) = Flg(n)] = Aig(n) + A2¢*(n) + ... + Aid'(n), (2.9)
where Aj, A,, ..., A; are the polynomial coefficients and [ is the highest order of the polyno-
mial. By substituting for g(n) in the above equation, the system output can be expressed
by the following discrete-time Volterra series

r(n) = A; Z h(my)z(n —my) + A Z Z h(my)h(mo)z(n — my)z(n — my)

mip=—00 m1=-—00 Ma=-—-00
+ ...+ A4 Z Z H h(m;)z(n —m;). (2.10)

m=—o00 m=-—00 i=1
The output 7(n) consists of an input z(n) that has been dispersed in time due to the impulse
response and subsequently raised to higher order powers due to the nonlinearity. The output
lth

can also be written as a summation of the output of the isolated [** order kernel as

r(n) = wi(n) + wa(n) + ... + wi(n), (2.11)
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where

oo 0o l
wn) =4 > .. > [[rmi)zn—m). (2.12)

mp=—00 my=-—o00 i=1

Comparing equations (2.6) and (2.10) (and substituting g, for h, to avoid confusing nota-

tion), the Volterra kernels g,(m;,ma, ..., m,) for a Wiener system can be found to be
© P
gp(m1,ma, .cymy) = Ay Y [ hlms — 7). (2.13)
T=—00 i=1

This general definition takes into account a memory term 7, however, we assume our non-
linearity to have no memory and hence the memory term is excluded in our derivation. In

general, the output of the isolated I*! order kernel for a Wiener system can be written as ;

wy(n) = i Z g,(ml,mg,...,ml)Ha:(n—m,-). (2.14)

mp=—00 M=—00

The Volterra series and kernels for the Hammerstein system are discussed next.

Hammerstein system

In the case of Figure 2.4(b), the output of the nonlinear channel is given by
q(n) = Flz(n)] = Ai1z(n) + Asz’(n) + ... + Aizl(n), (2.15)
and the output of the linear system can be represented by a convolution of the form

r(n) = h(n) * q¢(n) = Z h(m)q(n —m). (2.16)

m=-—0o0

By substituting for g(n) in the above equation, the system output can be expressed by the

following discrete-time Volterra series

r(n) =41 ) h(m)z(n—m)+ 4y Y h(m)z*(n—m)

m=-—00 m=-—00

oo l
+ ..+ A 2 h(m)nm(n—m). (2.17)

m=-—00
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The output consists of an input that has been raised to higher order powers and subsequently
dispersed in time. The output can also be written as a summation of the output of the

isolated I** order kernel as
r(n) = wi(n) + wa(n) + ... + wi(n). (2.18)

Comparing equations (2.6) and (2.17) (and again substituting g, for h,,), the Volterra kernels

gp(m) for a Hammerstein system are simply given as
gp(m) = A h(m). (2.19)

The above theory provides a foundation onto which the extension into the multiuser domain

can be done.

2.4 Spread spectrum communications

This section provides a brief overview on spread spectrum communications and a compre-
hensive overview of spreading sequences. Spread spectrum techniques are widely used in the
communications industry. In CDMA, a communication channel with a certain bandwidth
is accessed by all users simultaneously. This is achieved by spreading the baseband signal
bandwidth over a larger bandwidth by introducing a higher frequency signal (or code) [22].
At the receiver, the same code that was used in spreading the information is used to per-
form an operation called despreading, which recovers the original data signal in its original

bandwidth. Some advantages to spread spectrum communications include:
e antijamming capabilities,
¢ interference rejection,
e low probability of interception and detection,

e privacy through secure communication, and

e ability to provide multiple access (CDMA).
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2.4 Spread spectrum communications

One of the most important aspects of spread spectrum systems is the code embedded
in the information signal. This code can be utilized in a variety of ways, each resulting
in a different spread spectrum technique. In direct sequence spread spectrum (DSSS) the
spreading code is inserted at the data level, in frequency hopping spread spectrum (FHSS)
the spréading code actsvat the carrier-frequency level, and in time hopping spread spectrum

(THSS) the spreading code acts as an on/off gate to the transmitted signal ([23], [24]).

RF-out x(n)
d(n) 7 1]-'
Modulator ——J [_ —I '
| nimag 0T
x(n) —.'T,'.-
Spreading
code d(r)
l pr—
>
b5
RF-in
- = y(n) = d(n)x(n)
d(n) Y
'Demodulator 1 -—I
-t
x(n) i | N
o— T, —|
Spreading b
code
(a) Spreading the data signal. (b) Top: spreading sequence, Middle: data

signal, Bottom: spread signal.

Figure 2.5: DSSS communications.

An example of DSSS follows. In this scheme, the spreading is done by multiplying the
input data by a spreading sequence whose bit rate is much higher than that of the data rate.
The data signal, given by d(n) in Figure 2.5, is expressed as

o0
d(n) = Y dgr,(n—kTy), (2.20)
k=—o0
where d, = £1 and gr, (n) is a rectangular pulse of duration T}. In order to spread the data
signal, it is multiplied by a spreading sequence given by

z(n) = i zkpr,(n — kTe), (2.21)

k=—00
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where z; is the spreading sequence (in this case it is a sequence of +1’s) and pr.(n) is a
rectangular pulse of duration T;. The multiplication of d(n) and z(n) spreads the bandwidth
of the data signal from 1/T; Hz into a much wider bandwidth of 1/T, Hz. The resultant

signal is

oo
y(n) = > wrr.(n— kTo), (2.22)
k=—00
where y, is the product diz) and rz,(n) is a rectangular pulse of duration T,. The processing

gain is defined as

_ BW[y(n)]

PG = BWldm))

(2.23)

where BW|y(n)] > BW|[d(n)].

The code used in spreading the spectrum is an integral part of the system. Prior to
transmission, the transmitter and receiver must have knowledge of which code is used. In
the event that the wrong code is used for despreading, the received data will be useless.
The idea is to generate a sequence that appears random to the channel but is reproducible
at the receiver. This ensures that the aforementioned benefits of spread spectrum will hold
true. The bit pattern of a truly random sequence never repeats, and in order to retain this
characteristic it is desirable for the user generated code to be as long as possible and as
random as possible. Generation of a sequence with these properties is difficult and would
have little use in a practical system. The idea is to generate a semi-random sequence or
a pseudo-random bit sequence (PRBS). Some of the more popular PRBS sequences are:
PN (or m-sequences), Gold, Kasami, and Hadamard-Walsh. Each of these codes can be
classified according to various properties. The more important properties are run length,
autocorrelation, cross correlation, and orthogonality.

As mentioned in the previous chapter, the spreading sequences utilized for estimation in
this thesis are PN sequences and Walsh codes. For the purposes of identification it is
essential that the correlation properties of these sequences be well understood, especially in

a multiuser environment. The remainder of this chapter discusses these properties.
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2.4.1 Pseudonoise sequences

PN sequences can either be classified as maximal length (m-sequences) or non-maximal
length. The sequences t;hat have received the most attention are maximal length sequences,
because, as the name suggests, they are sequences of maximum possible period generated
from a linear feedback shift register (LFSR). Properties of non-maximal sequences are gen-
erally poor compared to those of maximal sequences, and so m-sequences are usually much
preferred over their non-maximal counterparts. The LFSR generator polynomial dictates»
whether or not the seqlience reaches its maximum possible period before repeating. Galois
field mathematics can be used to derive the feedback taps that provide this condition. When
referring to PN sequences in the rest of this thesis, they will always be of maximal length.
PN sequences have well defined correlation properties ([25], [26], [27]). The properties of

maximal length PN sequences are summarized below:
Length: The length of a PN sequence is given by
Ny=2"—1, (2.24)

where n = degree of generating polynomial. The PN sequence is periodic, repeating

every N, samples.

Monopolar/Bipolar: The sequence can be defined in terms of 0’s and 1’s or +1’s. The
formula given by )
b=(-1)"=1-2m (2.25)

can be used to convert from monopolar to bipolar and vice versa. m refers to the

monopolar value and b refers to the bipolar value.

Balance: The number of 1’s and 0’s differs only by one, with there being an additional 0

for the monopolar case and an additional 1 for the bipolar case.

Autocorrelation: One of the most important properties of a PN sequence is its periodic
autocorrelation. The periodic autocorrelation of the PN sequence z(n) can be defined

as
Razz(0) = El(z(n)z(n - 0)] = z(n)z(n - 0), (2.26)
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which gives one of two cases [26]

N, ifoc=0

2.27
-1 ifa#0’ (2.27)

Rez(0) = {

when the autocorrelation is taken over the period 0 < n < N, — 1. Clearly, the auto-
correlation properties of maximal-length PN sequences are very good. It is important
to have this optimal autocorrelation otherwise there will be multiple identifications,
one at each autocorrelation peak. Also, multiple identifications would make it difficult

to separate the actual impulse response from the erroneous impulse response peaks.

Cross correlation: The cross correlation of the PN sequences z(n) and y(n) can be defined

as
Ray(0) = El(z(n)y(n — 0)] = z(n)y(n — 0). (2.28)

For system identification purposes, it is important that the sequence family posses low
Cross vcorrelation so as to minimize the interaction between users. Using independent
PN sequences, i.e. each sequence is generated using a different LFSR generating poly-
nomial, ensures that the cross correlation is minimized. However, the cross correlation
properties of PN sequences are still limited when compared to the good autocorrela-
»tion property. It was shown in [26] that PN sequences can have relatively large cross
correlation peaks as presented in Table 2.1. These maximum cross correlations are the
worst case scenarios. Numerical analysis showed that the peak cross correlations of
the PN sequences used for the simulations in this thesis had much smaller peak values

than those shown in Table 2.1.

Example: PN sequence

The purpose of this small section is to show a PN sequence that satisfies all of the above

properties. A 4" order PN sequence is given by

1 -1 -1 -11111-11-=-111 -1 -1], (2.29)

which has a length of N, = 2 —1 = 15. It is a bipolar sequence that satisfies the balance

property (8 ones and 7 negative ones). The autocorrelation of this PN sequence is given in
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Number of | Maximum peak

n | N, | PN sequences | cross correlation
3 7 -2 5

4 | 15 2 9

51 31 6 11

6 | 63 6 23
71127 18 41

8 | 255 16 95
"9 | 511 |. 48 113

10 | 1023 60 383

11 | 2047 176 287

12 | 4095 144 1407

13 | 8191 630 > 703

Table 2.1: Peak cross correlation of PN sequences.

Figure 2.6. The autocorrelation property is satisfied because at the zeroth lag the amplitude

is 15 (IV;), whereas at all other lags the amplitude is -1.

2.4.2 Walsh codes

Walsh codes are used in the downlink of CDMA systems because of their orthogonality
property and hence good correlation properties when synchronized. In the downlink, trans-
mission is synchronous, and as long as the Walsh codes are orthogonal they do not interfere
with one another. The despreading operation works best under this condition. Orthogonal
codes are used in systems where the receiver is perfectly synchronized with the transmitter.
The base station transmits a pilot signal to help the receiver gain synchronization.

Walsh codes have the following properties:

Length: The length (or period) of a Walsh code is given by N, where N,, is a power of 2.
The code index, which is an integer scalar in the range [0, 1, ..., Ny, — 1], specifies the

number of zero crossings in the output.

Autocorrelation: The autocorrelation, at zero lag (o = 0), of the Walsh code z(n) can be

defined as
R:2(0) = E[(z(n)z(n)] = z(n)z(n) = Ny. (2.30)
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16

12

10|

Amplitude

IEEEEEEEEEEREER:

Figure 2.6: PN sequence autocorrelation.

Cross correlation: The cross correlation, at zero lag (o = 0), of the Walsh codes z(n) and

y(n) can be defined as
Rey(0) = E[(z(n)y(n)] = z(n)y(n) = 0. (2.31)

Unfortunately, Walsh codes do not have as well defined correlation properties as PN se-
quences, other than during synchronization. In contrast, Walsh codes can have relatively
large autocorrelation and cross correlation peaks at non-zero lags ([28], [29]). Studying
Walsh codes theoretically can prove to be difficult, but studying Walsh codes through simu-
lations is an effective way to analyze their correlation properties. Simulations of Walsh code
correlations will be discussed graphically in Chapter 6. It will be shown, through the use

of simulations, that Walsh codes can indeed be used for estimation purposes under certain

conditions.
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Related work on identification of
block-oriented models

Several approaches have been developed in the literature to identify Wiener and Hammerstein
(or block-oriented) nonlinear systems. One of the most important conclusions that was
made upon reviewing the literature was that current methods fail to address the problem
of estimation in an environment where a parallel connection of multiple linear systems is
encountered in series with a single nonlinearity. All Wiener/Hammerstein identification
methods were performed with either single signals or with multiple input single output
(MISO) block-oriented systems [30]. The problem with MISO systems is that there are
multiple nonlinear channels in addition to multiple linear channels. This results in system
dynamics that are very different from the situation where the summation of multiple signals .
is sent through a single nonlinearity. Even though there hasn’t been literature published on
fiber-wireless system identification specifically, it is still useful to discuss other approaches
for the single user case. The three main approaches for single user Wiener/Hammerstein

system identification are based on:

e iterative techniques,
e orthonormal bases, and

e correlation analysis.

Some additional techniques involving subspace, frequency domain, and neural network ap-

proaches will also be discussed.
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3.1 Iterative techniques

Narendra et al. [31] developed an iterative procedure for identification of a Hammerstein
system. The parameters of the linear system and the coefficients of the polynomial are
alternately adjusted to minimize a mean square error (MSE) criterion. The optimal values
for one system are calculated while fixing the parameters of the other system. The output

of the nonlinearity of the Hammerstein system in Figure 2.4(b) is given by the polynomial
q(n) = Flz(n)] = Aiz(n) + Aoz?(n) + ... + Azl (n), (3.1)

and the linear channel is denoted by the transfer function
H(z) =ap+a127 4 ... + ap_g 2=, (3.2)

The coefficients Aj, Ay, ..., A; and ag, ay, ...,an_; are adjusted to minimize >_; € where e;
denotes the error at time j between the output of the system and the model output. The
summation is carried out over the total number of input and output samples. The steps of

the algorithm are outlined below:

1. The linear approximation of H(1)(2) is obtained by using the input-output records of

the linear system along with the iterative algorithm referred to in [31].

2. The coeflicients of the nonlinear system A;, A,, ..., A; are calculated by minimizing a
mean square criteria. Since the input z(n) is known, the updated signal ¢®(n) can

also be calculated once the polynomial coefficients are estimated.

3. Using the signal ¢'»(n), an updated approximation of the linear system H(?(2) is
obtained by repeating step 1. The process is continued for as many iterations as

needed to satisfy the error criterion.

Access to the internal signal g(n) was assumed in this approach. However, in the fiber-

wireless communication system there is no access to this signal.
Korenberg et al. [32] developed an iterative technique for the Wiener system of Figure

2.4(a). The algorithm is used in a single signal biomedical setting. The advantage of this
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technique is that the estimation can be done when the record length is relatively short. The

algorithm comprises the following steps:
1. Estimate h(n) from the best dynamic linear fit between z(n) and r(n).

2. Estimate g(n) from the convolution g(n) = > o___ h(m)z(n —m).

m=—00
3. Best fit a polynomial between the estimate of g(n) and r(n).

4. Use the inverse of the estimated polynomial, with 7(n) as the input, to obtain a new

estimate of g(n).
5. Re-estimate h(n) from the best dynamic linear fit between z(n) and the updated q(n)
6. Re-estimate g(n) from the convolution qgn) =3 o__ o h(m)z(n —m).
7. Either go to step 3 (another iteration) or go to step 8 (final estimate).
8. Best fit a polynomial between the latest g(n) estimate and 7(n).

The iterative techniques described above only consider noise distortion at the output.
They do not analyze the effects of any distortion on the internal signal ¢(n). Therefore, no
conclusions are made regarding the robustness of the algorithms in the presence of multiple
error terms. It is desirable to be able to estimate the system using PN sequence inputs,
however, Korenberg et al. stayed away from using white noise-like inputs because of the
requirement for a large record length. If the record length is not sufficiently large then the
estimates of the linear and nonlinear elements in the Wiener model can have significant
inaccuracies [32]. Consequently, Korenberg et al. described an iterative procedure that can
enhance the accuracy of estimating a Wiener model when the record length is relatively
short, and that effectively corrects for the restriction on the input to be white noise-liké
[32]. The iterative algorithm has the advantage of efficiency, however convergence can be a

concern.
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3.2 Orthonormal bases

Gémez et al. [16] provide a comprehensive treatment on noniterative algorithms for the
identification of Wiener and Hammerstein systems based on orthonormal functions. A priori
information of the system dynamics is available during system identification by representing
the linear and nonlinear systems with orthonormal functions. In terms of basis functions,

the nonlinearity can be written as

Flg(n)] = Zaifi(Q(n))v (3.3)

where a; are unknown matrix parameters. The nonlinear functions f; are generally poly-
nomials which allows for the representation of smooth nonlinearities, but they can also be
radial basis functions or basis functions generated by translations and dilations of a mother
function (e.g. wavelets) [16]. The linear system can be written in terms of the basis functions

as

H)) =3 bBia), (3.0

where ¢ is the forward shift operator, b, are unknown matrix parameters, and B;(q) are
rational orthonormal bases functions. The identification problem is to estimate the unknown
parameter matrices a; (i = 2, ..., r) (a; is taken to be equal to the identity matrix) and b, (1
=0, ..., p-1) from recorded input-output measurements.

Defining 6 £ [ay, a3, ..., ar, bo, b1, ..., bp-1], ® as a matrix containing the basis functions,
and Y as the system output, the steps of the algorithm for identification of the Wiener

system are:

1. Compute the least squares estimate of 8 by using the equation § = (OnDL) 1 DNYN.
2. Compute estimates of the matrices a and b by partitioning 8 obtained in step 1.

The Hammerstein identification algorithm is based on a least squares and singular
value decomposition (SVD) approach. The linear and nonlinear systems are defined the
same as for the Wiener model (equations (3.4) and (3.3), respectively). The steps for the

Hammerstein system identification are:
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1. Compute the least squares estimate § using the equation § = (®y®%)~1®yYy, where
® is a matrix containing the basis functions and Y is the system output. Then find
the matrix (:-)ab by using 6 and the block column matrix approach as in Section 2.2 of

[16].
2. Compute the SVD df O, and the partition of this decomposition.

3. Compute the estimates of the parameter matrices a and b using the above decomposi-

tion of Ogp.

~

©4p and 0 are defined as

TyT ,THT T
b on 10
azby azby ... ab
A A 240 241 2 Yp-1 A T
eab = . . . ’ and 0= [bgal, veny boar, ceey bp_lal, veey bp_lar] . (35)
TLT T)T T,T
a;by azby ... a;b,

There is obviously more depth to the algorithm than what was presented above. The al-
gorithm is presented in broad terms because the intention of this section is just to give a

general overview. The reader is referred to [16] for details.

Neural network approach

Fang et al. [33] used an orthogonal wavelet-based neural network (OWNN) to identify
a Wiener system. A linear auto regressive moving average (ARMA) model was used to
model the linear subsystem and an OWNN was used to model the static nonlinear subsystem.
In terms of modelling the static nonlinearity, different kinds of neural networks such as the
multilayer feedforward neural network, radial basis functions, and wavelet networks can be
used because of their well-known ability to approximate nonlinear functions [33]. In Fang et
al.’s approach, the OWNN architecture is simplified and a simple learning method is used
to search for the optimum neural network weights. A few iterations of the back-propagation
algorithm and a QR-decomposition-based optimal technique were used in the neural network

learning method. Wavelets were used as the basis for the othonormal functions.
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Let the structure of the linear system and nonlinearity in Figure 2.4(a) be given as

q(n) = Z aig(n —1i) + Z bjz(n — j), and (3.6)
r(n) = Flq(n)), (3.7)

respectively. The goal of the identification algorithm is to appropriately adjust the coeffi-
cients of the ARMA model and the weights of the OWNN. The internal signal g(n) is not
available for measurement, and so the coefficients of the ARMA model are first estimated
using the RLS algorithm. A small input signal is used for this part of the estimation to
ensure that the nonlinear system operates in the linear range. The amplitude of the input
signal is then increased and the weights of the OWNN are determined. The steps of the

algorithm are outlined below:

1. Initialize the ARMA model and apply a small input signal to the system. Record the
output.

2. Use the RLS algorithm to identify the coefficients of the ARMA model.

3. Increase the amplitude of the input signal and apply it to both the ARMA model
and the system. Use a combination of the back-propagation algorithm and QR-
decomposition to learn the weights of the OWNN (for details on this refer to Section
I1T of [33]).

3.3 Correlation analysis

Correlation analysis techniques for Wiener ([8], [11], [18]) and Hammerstein [34] system
identification have been extensively studied by Billings et al.. In the aforementioned pa-
pers, correlation analysis was used to decouple the identification of the linear and nonlinear
component subsystems. The identification was done by using maximal-length PN sequences
which satisfied the requirement for an input with white noise-like properties (i.e. an impulse-
like autocorrelation function). It is on the work of Billings et al. that much of the work in

this thesis is based upon, so at this point a discussion of correlation analysis techniques is

put off until Chapter 4.
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3.4 Other techniques

Frequency domain identification

Bai identified a Wiener and Hammerstein model in the frequency domain in [35] and [36],
respectively. Frequency domain identification is based on analyzing the fundamental fre-
quency and harmonics generated by an unknown nonlinearity. By exploring the frequencies
contained in the output, the phase of the unknown transfer function can be calculated based
on discrete Fourier traﬁsforms of the sampled output. Then, the nonlinearity as well as
the magnitude of the linear part can be estimated. Consider the Wiener system in Figure
2.4(a). Let the transfer function H(s) represent the unknown linear system and F(.) rep-
resent the unknown nonlinearity. In order to perform frequency domain identification, the

input

z(t) = A cos(wit) (3.8)

is applied to the system, where £ = 1,2,...,q, and for some value of A. The goal is to

determine a pair of estimates so that
F[]— F[], and H(jwy) — H(jwy). (3.9)

No a priori information on the structure of F(.) is assumed. The only requirement for
the unknown nonlinearity is that it be continuous and piecewise smooth. Bai justifies this
restriction by saying that many nonlinearities encountered in practice can either be charac-
terized by polynomials, or have a saturating or dead-zone characteristic. Frequency domain
identification is particularly useful when knowledge about the system before identification is
so poor that the family of all possible characteristics cannot be parameterized [35]. A draw-
back of the algorithm is that it has to be run as many times as the number of frequencies
q.

Thé Hammerstein identification is done in a similar manner as for the Wiener system.

For specifics the reader is referred to [36).
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Chapter 3 Related work on identification of block-oriented models

Subspace methods

Subspace-based state-space system identification methods have been successfully used in
identifying LTI systems. Gomez et al. [37] expanded subspace identification from LTI
systems to that of block-oriented systems. The idea is to use a subspace-based method to
estimate the system matrices of the linear model and then to perform an SVD in order
to separately estimate the nonlinear and linear matrix coefficients. The subspace-based
approach requires modest computational complexity and is more robust than correlation
based techniques. There has been gaining interest in this area and an idea for future work
is to examine how the subspace-based approach performs in identifying a multiuser fiber-

wireless CDMA communication link.
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Chapter 4

Fiber-wireless uplink estimation using
PN sequences

Fiber-wireless uplink estimation in three different CDMA scenarios is considered in this "

chapter, they are:
1. single user,
2. multiuser with a common wireless channel for each user (MUc), and
3. multiuser with a different wireless channel for each user (MU).

Of the three scenarios presented above, the lattermost has the most practical value and so
more emphasis is put on analyzing that case (specifically in the simulations of Section 4.7).
The theory for each scenario will be discussed with the help of nonlinear systems theory.
Since a thorough analysis of the single user case (neglecting noise) was presented in Section
2.3, only the major variations from that single user case will be discussed with respect to the
above three cases. Before proceeding with the estimation theory, a short section regarding

complex notation will be discussed.

4.1 Passband complex consideration

Communication signals and systems are passband. In order to use baseband signal process-
ing, communication signals in the passband (i.e. real-valued signals [22]), must be appro-

priately translated from the passband to the baseband. Generally, this translation results
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Chapter 4 Fiber-wireless uplink estimation using PN sequences

in complex-valued baseband signals [22]. Therefore, in a fiber-wireless passband system, the
signals, as well as the CIR and nonlinear component are complex-valued. We now show how

these complex-valued quantities can be split into real-valued quadrature components.

o F()
T O O G
-90° Fof)
(a) Single complex-valued (b) Two real-valued systems.
system.

Figure 4.1: Inphase and quadrature phase model for a complex nonlinear system.

When an RF signal undergoes a nonlinear transformation one of the major concerns is the
AM-AM and AM-PM distortions. The complex-valued nonlinear fiber link in Figure 4.1(a)
introduces both of these distortions [10]. It has been shown in [38] and [4] that a bandpass

memoryless nonlinearity can Be modelled with a baseband complex nonlinear model. Then,
| the nonlinear distortion can be expressed by inphase and quadrature phase components that

are real. Let the input signal in Figure 4.1(a) be given as
q(t) = A(t)cos|wct + 6(t)]. (4.1)
Then the output 7(t) is
r(t) = R[A(t)]cos{wct + 6(t) + ¢[A(2)]}, (4.2)

where R is the AM-AM distortion and ¢ is the AM-PM distortion. The output r(¢) can also

be expressed as
r(t) = R[A(t)]cos(d)[A(i)])cos(wct + 6(t)) — R[A(t)]sin(p[A(t)])sin(wet + 6(t)), (4.3)

using the trigonometric identity cos(A+ B) = cos(A)cos(B) — sin(A)sin(B). Equation (4.3)

can then be written as

T(t) = p[A(t)]cos(wet + 0(t)) — r4[A(t)]sin(wet + 6(2)), (4.4)
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4.2 Single user CDMA environment

where

rp[A(t)] = RIA(t)]cos(#[A(2)]) (4.5)

rqlA(t)] = RIA®))sin(¢[A()))- (4.6)

Equation (4.4) shows that the bandpass nonlinearity can be separated into an inphase com-

ponent and a quadrature phase component with only AM-AM distortion. Therefore, the

two real-valued systems shown by the quadrature model in Figure 4.1(b) are equivalent to

the complex-valued system shown in Figure 4.1(a). Similarly, the bandpass CIR can also be
separated into inphase and quadrature phase components [22].

Mathematically, real quantities are easier to work with and therefore the quadrature

model is the representation of choice in this thesis. As a result of this, it can be stated‘

that for both the linear and nonlinear systems in this thesis, the real-valued inphase and

quadrature phase components are estimated individually. All variables introduced hereafter

are real quantities unless otherwise specified.

4.2 Single user CDMA environment

Continuing with the estimation theory. The most basic fiber-wireless communication system
is that of a single user. In such a case, there is no MAI from other users and the limitations
to successful estimation are multipath dispersion, nonlinearities, and wireless and optical
channel noise. The block diagram of Figure 4.2 depicts the fiber-wireless uplink in a single

user CDMA environment. This block diagram represents one branch in the architecture of

Mobile Wireless channel Radio Optical channel To base
unit access station
point

Figure 4.2: Fiber-wireless uplink in a single user CDMA environment.
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Chapter 4 Fiber-wireless uplink estimation using PN sequences

Symbol Description
z;(n) input PN spreading sequence, 1 < j < N
u(n) compound PN signal input

hj(n) | wireless channel impulse response, 1 < j < N
Nw(j)(n) | wireless channel Gaussian noise, 1 < j < N

q(n) signal sent to optical channel

F() optical channel nonlinear function
Nop(N) optical receiver Gaussian noise

r(n) signal sent to central base station

Table 4.1: Symbol descriptions for fiber-wireless uplink.

Figure 1.1. The wireless channel noise is added after the wireless channel and the optical
channel noise is added at the optical link receiver; both noise sources are Gaussian. The RAP
is shown in Figure 4.2 simply as a summation—the RAP has more relevance in the multiuser
case and is included here for purposes of continuity with the multiuser block diagrams. All
signals used in analyzing the fiber-wireless uplink, along with their descriptions, are shown in
Table 4.1. These symbols Wili be relevant for this single user case and forthcoming multiuser
cases as well.

The first step in estimating the single user fiber-wireless uplink is to define the output of
the system. Using the theory presented in Section 2.3, the system output in Figure 4.2 can

be written as

r(n) = ZAk( Yo Z Hh(m, o(n — m;) + nk (n)) + CMT + ngy(n), (4.7)

k=1

where the cross multiplied terms (CMT) can be found using the multinomial theorem [39]
with 2 terms and I*! order. Refer to appendix A for a discussion on the multinomial theorem.
The output can also be written as a summation of the output of the isolated {** order kernel

as

r(n) = wi(n) + we(n) + ... + wi(n) + nep(n), (4.8)

where CMT is included in the terms w;(n), we(n),...,wi(n). By studying the correlation
between the output r(n) and the input z(n), as well as the output of the 15* order kernel

w;(n) and the input z(n), the linear and nonlinear channels can be estimated. But before
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4.3 Multiuser CDMA environment with a common wireless channel

analyzing the correlation relationships, the system outputs of the other two multiuser cases

will be presented.

4.3 Multiuser CDMA environment with a common wire-
less channel

Identification of the fiber-wireless channel in a single user CDMA environment yields the best
results; however, transmission of only one users signal through the fiber-wireless channel is
not very practical. Extending the theory for the single user case to a multiuser environment
can yield a much more useful application of the estimation algorithm. The theory developed
in this section, and proceeding sections, shows that the fiber-wireless uplink can be identified,
to a certain degree of accuracy, in a CDMA communication system where all users transmit‘
their signal simultaneously. However, as the number of users increases, MAI becomes a

major concern that must be removed in order to succeed with the identification.

F()

xlr) D )

A SN £ AU £ SOOI
Mobile Wireless channel Radio Optical channel To base
units access station

point

Figure 4.3: Fiber-wireless uplink in a multiuser CDMA environment with a common wireless
channel.

The scenario of a multiuser CDMA environment with a common wireless channel is
shown in Figure 4.3.) This sort of environment may be encountered in a restricted scenario

where users are in a cluster and therefore has practical limitations. It is considered here for

1The common wireless channel is allowed due to the distributive law for convolution. For example,
instead of having each user transmit through the same wireless channel, i.e. {z1(n) * h(n) + z2(n) * h(n)},
the summation of all users can be transmitted through one wireless channel, i.e. {[z1(n)+ z2(n)] * h(n)}.
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Chapter 4 Fiber-wireless uplink estimation using PN sequences

completeness. For this case, the input is a compound input consisting of the summation of

multiple users PN sequences. The compound input is given as
u(n) = z1(n) + z2(n) + ... + zx(n), (4.9)

where N is the number of PN sequences and hence the number of users. The multiple PN
sequences are independent of each other. In other words, each is generated using a different

LFSR polynomial. The signal at the RAP in Figure 4.3 is given as
N
an) = (Y 5(n)) * h(n) + nu(n) = u(n) * h(n) + nu(n). (4.10)
j=1
After the nonlinear channel, by substituting for g(n), the output of the fiber-wireless uplink
is
!
r(n) = ZAqu (n) + ngp(n)
k=1

1
= A (u(n) * h(n) + nw(n)) 4 Nop(n). (4.11)

k=1
Further utilizing the Volterra series representation and expanding the convolution gives the

final output as

l oo [es) k
r(n) =2Ak( o> Hh(m,-)u(n—m,-)mg(n)) + CMT +ng(n). (4.12)
k=1

mp=—00 mr=-—00 i=1

Similar to equation (4.7), the output can also be written as a summation of the output of

the isolated I** order kernel as
r(n) = wi(n) + wa(n) + ... + wi(n) + nep(n), (4.13)

where CMT is included in the terms wj(n), wz(n),...,w;(n) and can be found using the

multinomial theorem with 2 terms and {** order.
4.4 Multiuser CDMA environment with separate wire-

less channels

The scenario of a multiuser CDMA environment with separate wireless channels is shown

in Figure 4.4. In this scenario: 1) each user generates an independent PN sequence, 2)
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q(n) F)

Mobile Wireless channel Radio Optical channel To base

. access i
€ station
units point

Figure 4.4: Fiber-wireless uplink in a multiuser CDMA environment with separate wireless chan-
nels.

transmits through a separate wireless channel’followed by the addition of an independent
wireless channel noise?, 3) multiple users are then combined and transmitted through the
nonlinear optical link followed by the addition of optical receiver noise, and finally 4) the
combined signal is sent to the central base station for further processing. This scenario
generates a multitude of signal impairments, particularly because of ‘transmission through
the many wireless channels. impairments include: 1) ISI from the wireless channels, 2)
different path loss affecting dynamic range, 3) addition of wireless and optical channel noise,
4) MAI at the RAP, 5) carrier regrowth, inband distortion, and cross multiplication of terms,

all resulting from the nonlinear optical link.

Taking the summation of all wireless channels at the RAP in Figure 4.4 gives

N
a(n) =Y _[wj(n) * hj(n) + nug)(n))- (4.14)

j=1

2Different ‘initial seed’ settings are used during simulation to ensure independence.
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Chapter 4 Fiber-wireless uplink estimation using PN sequences

After the nonlinear channel, the output of the fiber-wireless uplink is
!
r(n) = Z Arg*(n) + nop(n)

—EAk(Z[x,m)*h () + nuy(@)]) + (), (4.15)

j=1

giving the final output as

r(n) = ZAk{ Z ( Z Z Hh (my)zj(n —m;) + nw(J)(n))} + CMT + ngp(n),
e e (4.16)

where CMT can be found using the multinomial theorem with [2 x N] terms and I*" order.
The output can also be written as a summation of the output of the isolated {** order kernel

as

T(n) = wi(n) + we(n) + ... + wi(n) + nyp(n), (4.17)

where CMT is included in the terms w;(n), we(n), ..., w;(n). It may seem repetitive to keep
mentioning that the output can be written as equation (4.17), however, expressing the output

in this manner is a crucial step in developing the correlation relationships that follow.

4.5 Correlation relationships

The next step in the estimation of the fiber-wireless channel is to further process the input-
output relations, as defined above, by utilizing correlation relationships. Only the correlation
relationships for the MUc and MU case are developed. It is straightforward to extend the

theory from these more complex cases to the simpler single user case.

4.5.1 Input-output correlation

The expression for the input-output correlation can be generalized for all three cases under
the condition that the output r(n) is expressed by equations (4.8), (4.13), and (4.17). A
commonly defined input is used in the derivation, given by z(n), where

e z(n) = z(n) in the single user case,
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4.5 Correlation relationships

e 2(n) = u(n) in the MUc case, and
e 2(n) = z;(n) in the MU case.

Using the general input 2(n) and the output 7(n), along with equation (2.28), the cross

covariance between them can be written as

Rr(0) = (r(n) — r(n))(2(n — o) — 2(n — 7). (4.18)

The cross covariance relationship is used extensively throughout this section. From this point
onward 7(n), u(n), ¢(n), nep(n), z(n), and z;(n), nyg)(n) for 1 < j < N will refer to their
respective signals with the mean removed. In some cases [11], a mean level is added to the
inpﬁt PN sequence to ensure that all terms in equations (4.8), (4.13), and (4.17) contribute.
to the 1%* order input-output cross correlation. However, in this case, only the output of the
1% order kernel is of interest (discussed shortly) and hence a mean level is not needed. With

means removed, the cross covariance can be written as
R.-(0) =r(n)z(n — 0). (4.19)

Substituting equation (4.17) into the above equation and simplifying gives

Rar(0) = [wi(n) +wa(n) + ... + wi(n) + ngp(n)][2(n — o))

=wi(n)z(n — o) + wa(n)z(n — o) + ... + wy(n)z(n — o) + nep(n)z(n — o)

=wy(n)z(n — o) + wa(n)z(n — o) + ... + wy(n)z(n — o) + nep(n)z(n — o)

= Rouy (0) + Rewy (0) + .. + Rawy (0) + Rin,, (0), (4.20)

which can be written in a more compact form as

)
Rer(0) = Y Rew, (0) + Rin,y (0)- (4.21)
k=1

Assuming the input PN sequence and noise process to be statistically independent, i.e.

Nep(n)z(n — o) = 0V o, the term R,,,, (o) becomes negligible. Equation (4.21) then becomes

l

Rar(0) = D Run (0), (4.22)

k=1
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Chapter 4 Fiber-wireless uplink estimation using PN sequences

however, if ®.(0) is evaluated directly as defined above, the terms S5 _, R.., (o) give rise
to anomalies associated with multidimensional autocovariances of PN sequences [8]. This
problem can be overcome by isolating ®.,,(c) using multilevel input testing. It should be
noted that if the channel were linear there would be no need to isolate R.,, (o) because
Row, (0) = R, (0).

Multilevel testing enables the extraction of R, (¢) from R,,(¢). This step is crucial for
successful estimation of the wireless channel. Multilevel testing is implemented at the RAP
by using the signal amg(n), where a,, # o) V m # I, and repeating [ times. For example,

with a 3" order nonlinearity the output of the MU system can be written as

T(n) = AIQ(n) + A2q2(n) + A3q3(n) + nop(n)

= wy1(n) + wa(n) + wz(n) + ngp(n). (4.23)
With the multilevel input a;q(n), the above equation becomes

Tay (n) = A1ong(n) + A203g®(n) + A303g3 (n) + ngp(n)
= oqw;(n) + afwa(n) + dwz(n) + nep(n), (4.24)

which when used to find R,,(o) gives the following modified form of equation (4.22)

l
§Rz"czm (0') = Z afnmzwk (0’), m= ]-a 2’ seey l y (425)
k=1

where 7, is the response of the system to multilevel inputs. An important condition when
using multilevel inputs is that the number of multilevel inputs used be equal to the high-
est polynomial order. This ensures that the algorithm works in the presence of any order

nonlinear function. Representing equation (4.25) in matrix form gives

[Rere, ()] ap o2 . . ] [Rew(0)]
Rar, (0) ay o} . . | |Ruw,(o)

. S (4.26)
_§Rzra, (U)_ o of af | Raw, (0)_
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To check the above o matrix for singularities, it is divided into two matrices as follows

er 0 . - 011 v &2 . &F
0 ap 0 . O 1 ap a% . a’{l

o ..oll|. . . | (4.27)
0 0 .. af|l oo of . o

The matrix on the left hand side (LHS) of equation (4.27) is clearly nonsingular for o, # 0.
The matrix on the right hand side (RHS) of equation (4.27) is the Vandermonde matrix
which has a non-zero determinant given by
II (- o) (4.28)
1<i<j<!
for o; # ;. Therefore, for every value of o, equation (4.26) has a unique solution for\

R, (0), i =1,2,..,1. Now that R,,, (o) (the input-kernel correlation) can be extracted,
the final step in the identification process is to find how R, (¢) relates to the CIR.

4.5.2 Input-kernel correlation for MUc case

In this section 2(n) = u(n). In order to accommodate for multiple PN sequences, as well
as wireless and optical channel noise, the covariance relationship in [8] had to be reworked.
Initially the input-kernel cross covariance Ry, s,. zywy(0) Was derived, however this result
was undesirable because of the dependency on higher order kernels wy, and hence multidi-
mensional autocovariances. Another approach was to consider the cross covariance between

the compound input u(n) and w;(n), given as

Ruw, (0) = wi(n)u(n — o). (4.29)

Replacing w; (n) using the information from equations (4.12) and (4.13) and expanding the

input u(n) gives

Ruwn (0) = Ar (32 hlma)lm(n = ma) + @a(n — ma) + ..+ 2 (n — ma)] + u(n))

mp=—00

([xl(n —0)+z(n—0)+ ...+ zn(n— a)]). (4.30)
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Another possibility for the above covariance was to consider the cross covariance between
wi(n) and individual users inputs, instead of the compound input u(n). However, it was
found through simulations that using the compound input gave more accurate results. The
reason being that a compound input gives N terms where two identical PN sequences are
correlated, compared to only one term when individual inputs are used. Overall, having
N terms results in better covariance properties as will be shown by the next equation.
Expanding and simplifying equation (4.30) gives
0
Ruwn (0) = A1 D h(ma) [Rayay (11— 0) + Rayay (M — 0) ..+ Ry (M1 — ) + Ry, (0)

m1=—00
+ Repn, (0) + oo + Reyny, (0) + CMT].  (4.31)
It is interesting to note that the optical noise term n,, is not present in the above equation.
However, n,, indirectly introduces error into the above expression via the multilevel testing
extraction process. During the extraction, the optical noise present in R,.(c) introduces
error into the extracted term Ry, .

Three different types of terms can be observed by examining equations (4.30) and (4.31):

1. Rzz;;-.(m1 — o), the covariance between two identical PN sequences,
2. Ruyz;,;.:(ma — 0), the covariance between two different PN sequences (CMT), and

3. Rz;n, (o), the covariance between a PN sequence and wireless channel noise,

where 1 < 3,7 < N. The outcome of the first case is the autocovariance, whose proper-
ties were discussed in Section 2.4.1. As mentioned above, using a compound input gives
the summation of N autocovariance terms. This yields a large autocovariance value and
hence improves the accuracy of identification. The outcome of the second case is the cross
covz;mriance. When compared to the large autocovariance value, the cross covariance can
be considered negligible. The outcome of the third case was again taken to be negligible
by assuming the input and noise process to be statistically independent. Applying all the
aforementioned approximations gives

§Ruw1 (U) = Al f: h(ml)[mzlzl (ml - 0) + §R:::z:r:z (ml - U) +...+ §Rx~z~ (m1 -_ 0')] (432)

mp=—00
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Using the relationship R;,,(A) = N.6;()\) and the convolution properties of the impulse
function gives

Ne—1
Ruw, (0) = A1 N, Z h(my)[61(my — @) + 82(my — 0) + ... + Sn(my — 0)]

m1=0

N
= AN, Z k(o). (4.33)

Therefore, the final cross covariance relationship can be written as

R, (0) = A1 NNR(0) (4.34)

where N is the number of PN sequences, N, is the PN sequence length, and A; is the
linear gain of the nonlinear system. The estimated CIR can be found by solving the above

expression.

4.5.3 Input-kernel correlation for MU case

In this section z(n) = z;(n). Using the input z;(n) (i.e. the channel of interest will be that
of the first user in all following derivations) and the output of the 15* order kernel w;(n), the

cross covariance between them can be written as

Rerwi (0) = wi(n)z1(n — 0). (4.35)

Replacing w;(n) using the information from equations (4.16) and (4.17) gives

Reywy (0) = {Al ZN: ( i hj(ma)z;(n — m1) + nuw) (n)) } {:vl(n - a)}. (4.36)

j:l m1=_
The first few terms of the above equation are expanded below in order to get a clear picture

of the covariances

Reyw (0) = A1 Z [hl(ml)ml(n —my)z1(n — o) + ho(my)z2(n — my)zi(n —0) -

m1=—00

+ ... + Ay(mi)zn(n — my)zi(n — a)] + nyuy(n)z1(n — o)

+ Ny(e)(n)z1(n = 0) + ... + nyvy(n)T1(N — 0). (4.37)
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Simplifying the above equation gives

o0

Reywn (0) = Ay Z [hl(ml)m—:tlzl (m1 = 0) + ho(m1)Ryyzy (M1 — 0) + ... + hy(my)

mp=—0o0
Resan (M1 = 0)| + Rarny (0) + Ry (0) + e+ Ry (0):
: (4.38)
Ideally, only the term R, ., (m; — o) would be present on the RHS of the above equation
and the identification of the wireless channel would be complete. However, in a multiuser

environment there are two different types of additional terms, they are:
1. [N] cross covariance terms of the form Rainugncicnm (), and
2. [N — 1] additional cross covariance terms of the form Ro1z;0c,en (M1 = 0).

The outcome of the first case is simply the cross covariance between the desired users input
with each wireless channel noise. These terms can be taken negligible by assuming the input
and noise process to be statistically independent. However, with additional users, even these
noise terms can cause problems in the identification. The practical limitation of our scheme
in terms of signal-to-noise ratio (SNR) will be discussed in Section 4.7.

The outcome of the second case is the cross covariance between the desired users input
with all other users inputs. This is a major source of interference, i.e. MAI, and it must
be mitigated in order to end up with an accurate identification. As the number of users
increéses, MAI becomes an increasingly large error term that hinders the identification.

MATI mitigation can be done in one of two ways:

1. by using longer PN sequences to improve the covariance relationships, or

2. by using an iterative technique to remove MAL

The first solution would be easy, however not very practical. The second solution is what is
proposed in this thesis. With knowledge of the initial CIR estimates, an iterative technique is

developed to minimize the effect of MAI The steps for the iterative algorithm are described

below:
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Iterative algorithm

Step 1: Run simulation algorithm. This gives access to z1(n)...zn(n), r(n) (MAI inclusive)

and initial CIR estimates Bﬁ" (n)ﬁg\l,) (n).

‘Step 2: Using initial/updated CIR estimates and known PN inputs, approkimate the signals
entering the RAP, 4;(n)...9Jn(n), by convolution (refer to Figure 4.5).

Step 3: To isolate a user, subtract all linear MAI from the corrupted output r(n) using the

above estimates. For example, the MAI reduced outputs for users 1 and 2 are
F(n) = r(n) — (J2(n) + g3(n) + ... + gn(n)), and (4.39)
7(n) = r(n) = (Gu(n) + F3(n) + ... + In(n)), (4.40)-

respectively. This gives a better estimate of the output for each user, less other users

MAL

Step 4: Using the covariance between each users input PN sequence z;(n)...zy(n), and their
respectively reduced MAI outputs 7(n), find an updated CIR estimate Bﬁ” ) (n)izgg) (n),

where p is the number of iterations.

Step 5: Either go to step (2) to perform another iteration, or go to step (6) (CIR estimation

is complete).

Step 6: Proceed to optical channel estimation.

It should be noted that in step (3) above, the esti- user 1 (¥,(n))
user 2 (¥,(n))

r==-=---

Dpam

--'RAP

mated linear MAI is always subtracted from the cor-

rupted output found in step (1). This way, a pro-

gressively larger amount of MAI is removed from the

corrupted output. Only the linear MAI need be sub-

tracted because the output of the 15 order kernel w; (n) user N (7))

is extracted using multilevels. An advantage of the al- _ L
Figure 4.5: Estimation of internal

gorithm is that it not only improves the CIR estimate, signals.
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Chapter 4 Fiber-wireless uplink estimation using PN sequences

but it also successfully removes erroneous peaks; more on this will be discussed in Section
4.7. A drawback of the iterative technique is that it requires a good initial estimate of the
CIRs. In other words, the algorithm requires an initial estimate that has the general char-
acteristics of the actual CIR. Therefore, as the number of users increases, the improvement
in the estimation resulting from iterations starts to degrade. Additional processing time is
also a concern.

Taking that MAI for user 1 is removed successfully and that the input and noise are

statistically independent, equation (4.38) becomes

§Rx1w1 (O') = Al Z hl(ml)%xm (ml - 0'). (441)

mp=—o0

Using the autocovariance property of PN sequences and the convolution properties of the

impulse function, the above equation becomes

Nc—1

Raywy (0) = A1Ne Y ha(ma)dy(my — o) (4.42)

my =0

Rz1w (0) = A1Nhi (0)

(4.43)

giving the final cross covariance relationship. Where again, the estimated CIR can be found

by solving the above expression.

4.6 Optical channel estimation theory

The optical channel is estimated by performing a least squares polynomial fit between the
input and output of the nonlinear system. In the fiber-wireless channel there is no access
to the internal signal g(n) (the input to the nonlinear system) and therefore it must be

estimated. Referring to Figure 4.4, this internal signal can be estimated by:

1. convolving the final CIR estimates E?” (n)ﬁ(ﬁ) (n) (after p iterations) with their re-

spective PN inputs z;(n)...zy(n), and

2. summing the result over all users convolutions, giving the signal §(n).
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4.7 Simulation results and discussion

The least squares polynomial fit is then applied to the estimated signal §(n) and the measured
output r(n).
Estimates of the polynomial coefficients can be made by using the aforementioned signals

and an appropriate curve fitting algorithm. Let the estimated polynomial coefficients be

given as

A=[4, A A, . . . A (4.44)
The estimated signal 7(n) of the output of the nonlinear system is then given as
#(n) = Ag + A1G(n) + A@(n) + ... + AiG (n) + nep(n). (4.45)

The vectors q and r are defined as the signals §(n) and r(n), respectively. The Vandermonde .
matrix V can then be defined such that each row of V is a polynomial of the corresponding

data point in q. V is given by

1 4(0) g*(0) @0 . &)
1 (1) (1) ¢ . @)
V=|. . . . . . (4.46)
1 g(Ne=1) @(Ne—1) @(Ne—1) . §(Ne—1)
In matrix notation, the equation for a polynomial fit is given by
#=VA. (4.47)

Orthogonal-triangular (QR) decomposition was used to solve for A in [7]. In this thesis,
premultiplication is used. Premultiplying by the matrix transpose VT and solving for A
gives

A = (VTV)~ VTt (4.48)

The error between the actual data r and the estimated data t is given by e = r — VA. The
order of the polynomial ! must be selected to minimize the MSE.

Once the CIRs have been estimated, the estimation of the nonlinear channel is straight-
forward. However, the accuracy of the nonlinear identification is highly dependent on the

CIR estimates and so it is important that the CIR estimation algorithm work well.
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Figure 4.6: Simulink model for fiber-wireless uplink simulation.

4.7 Simulation results and discussion

We have done simulations for only multiple users with individual wireless channels. The
simulation package used for all simulations herein was MATLAB with Simulink. Figure 4.6
shoxz;/s the Simulink model for a multiuser CDMA environment. The Simulink model was
used mainly as a means to gather the input-output data of the system. All the initializations

and identification calculations (i.e. correlations) were performed in MATLAB by sending the

Simulink inputs/outputs to the MATLAB workspace.

MATLAB and Simulink are the trade names of their respective owners.
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4.7 Simulation results and discussion

4.7.1 Asynchronous communication

In the uplink it is difficult to ensure synchronous communication. This would require all
transmitters to have access to a common clock [40]. Realistically, asynchronous communica-
tion takes place in the uplink and therefore, for more realistic results, all our simulations are
performed in an asynchronous environment. The timing diagram of Figure 4.7 shows how
the simulation is carried out. From the diagram it is clear that the input PN sequences are
not synchronized. Due to the cross correlation property of PN sequences, even if different
transmitters are not synchronized, the cross correlations (i.e. partial cross correlations) still

hold ([41], [40]) and the algorithm is able to successfully identify both systems.

collect data
A
l Y
i‘ buffer VE‘ N, -1 'i
x,(n) x,(n)

B NN NN\

- Z IR

n) n)

[N
start end
simulation simulation

Figure 4.7: Asynchronous CDMA communication.

4.‘7 .2 Parameters and channel characteristics

CIR: A sample of one of the CIRs used in the simulations is shown in Figure 4.8. All CIRs
satisfied the property of unit energy, i.e. 3, |h(n)|* = 1. This ensured no amplification

from the wireless channel.

Noise: All simulations were performed with the inclusion of additive Gaussian wireless and
optical noise, ny,(n) and ne(n), respectively. The SNR between each mobile user and

the RAP was set to 25 dB, and the optical noise power was set equal to the wireless
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Figure 4.8: One of the CIRs used in the simulation.

noise power. There are certain environments where either the wireless channel noise
or optical channel noise may be dominant [42]. However, a well designed system will

have both noise of equal order.

Number of users: 10 mobile users were simulated. The effect of including additional users

will also be shown.

PN sequence length: Simulations were performed with a PN sequence length of 4095
(212 — 1). The sequence length was chosen based on various trial identifications. Ac-
ceptable results were not obtained until after a PN sequence length of 1023. At this
length, the identification started to show convergence towards the actual CIR coeffi-
cients and a distinction between the actual impulse response and erroneous impulse
response peaks was evident. At N, = 2047 the algorithm performed well in the absence
of noise, but had difficulties in the presence of noise. The PN sequence length which
Agave acceptable results in both the nofseless and noisy cases was IV, = 4095; therefore,
this sequence length was used in all simulations. From this observation it can be stated

that the longer the PN sequence, the better the covariance properties and hence the
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4.7 Simulation results and discussion

better the identification. Compared to the single user case [7], identification in a mul-
tiuser environment requires a longer sequence length because there is MAI in addition

to ISI.

Cross covariance: Each of the multiple PN sequences was generated from a separate
maximal-length LFSR polynomial. This is in contrast to the common technique (used
in current CDMA systems) of using delayed versions of a single PN sequence to rep-
resent different users. The ‘delay’ technique can only be used if the largest memory of
the CIR is known prior to identification so that the PN sequence offset can be set larger
than this value. If the PN sequence offset is not longer than the memory, there will
be multiple identifications at the locations of cross covariance peaks. The ideal case"
would be to have zero cross covariance and perfect autocovariance within the sequence

family. This would result in a perfect identification.

Quality of fit: The quality of fit of the estimated CIR to the actual CIR was measured by

defining a normalized estimation error parameter

p= Zf:o[hactuzr(n’zl“ hest(k)]2, (4.49)

where L, is the largest CIR memory amongst all users. Dividing by L., makes p

independent of CIR memory. A smaller p means a better CIR estimate.

Polynomial: The major source of nonlinearity is the optical source, which can be modelled
using a third order memoryless nonlinearity with a saturating characteristic. The

model of the nonlinearity was discussed in Section 2.2.2.

Bit rate: The bit rate of the algorithm was calculated using the delay spread of the CIR.
The delay spread was taken to be 200 ns, which is typical for an indoor environment
([43], [44]). The maximum possible CIR memory that the algorithm can handle is

L = 4095, i.e. the memory of the channel can be as long as the PN sequence. This
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translates into a chip period of

4095 x T, = 200ns
.. T, = 48.84ps.

The theoretical maximum bit rate is then given as

Bit rate = i 1

T, 4095 x T, SMb/s.

Set simulation parameters (# of
users, PN code length, noise power, N, N,, n(n), n_(n
linear channels and nonlinear | ——> h (n)u h ((n)) Fo'(’() )
channel) AR A

Simulate model to ,::>
( find I/O data ) z(n) & r(n)

Calculate correlation between input _i i
and output ==> Ru(0) =Ry(0)i* Rua(0) +

R..(0)* ... + R,,(0)
+ noise terms

A 4

Use Vandermonde matrix to extract
the correlation term that has the :> szm(a)
output of the first order kernel

Find initial CIR estimates —=> h7n)... (n)

Use iterations
to improve initial CIR
estimates

==> h%(n)..A%n)

A

Convolve to find an estimate of the _
internal signal q(n) —> G(n)

Estimate polynomial using least mean ZD =
squares polynomial fit with the signals F()

G(n) and r(n)

Figure 4.9: Algorithm flowchart for fiber-wireless uplink simulation.
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4.7 Simulation results and discussion

4.7.3 Wireless channel identification

The general layout of the algorithm is shown in the flowchart of Figure 4.9. The flowchart
is self-explanatory, all steps needed for identification are presented in a clear and concise
manner. Since a third order nonlinearity was used, it was required to have three multilevel
inputs when identifying the CIR; the multilevels were chosen as o = 1.0,1.2,1.4. The CIR
identification could have been performed just as accurately using any polynomial as long as
the proper number of levels (o)) was chosen (more on the restrictions of the polynomial will

be discussed in Section 5.2.2).

0.8

® —— actual CIR
—x |nitial CIR estimate
0.6 —© iterated CIR estimate

1

04r

0.2

Amplitude

5 10 15 20 25 30 35 40 45
Delay (nTc)

Figure 4.10: Actual, initial, and iterated CIRs (h;(n)) of the wireless channel.

Figure 4.10 shows the estimated, iterated, and actual CIRs for the channel of the 15 user

given by

ha(n) = 0.078(n) — 0.216(n — 5) — 0.58(n — 9) + 0.726(n — 12) + 0.366(n — 16)
— 0.216(n — 19) + 0.0656(n — 23) — 0.0655(n — 27). (4.50)

At first glance, it may seem that using iterations doesn’t significantly improve the estimate.

However, this improvement will be justified in Section 4.7.4 where it is shown that the

55



Chapter 4 Fiber-wireless uplink estimation using PN sequences

iterated CIR estimate translates into a much more accurate estimate of the polynomial.
This is mainly due to the iterative algorithm being able to remove small non-zero erroneous
peaks, but also because of a better estimate of the actual CIR peaks. All aspects of the
identification are interconnected, so even a small improvement in the CIR estimate can go a
long way in the polynomial estimate. If the initial CIR estimate is not sufficient, the iterative

technique may reduce the accuracy of certain peaks, but overall the fit will still be improved.
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Figure 4.11: p versus number of iterations.

Figure 4.11 shows p versus the number of iterations. From this figure it is clear that
after just 2 iterations there is a significant decrease in p. As an example, the quality of
fit for user 10 improves by 94.83% over the initial CIR error, i.e. p improves from 2.634 x
1073 to 0.1361 x 1073. Further iterations (> 3) result in little change in the quality of fit.
Nevertheless, an accurate CIR estimate is a strict requirement for the nonlinear estimation,
so the number of iterations used in all subsequent simulations is 5, unless otherwise specified.
Another observation from Figure 4.11 is that initially, at 0 iterations, each user has a different
value for p. This is due to the characteristics of that users CIR (the delay between multipath

arrivals and the peak amplitudes). Although initially each user has a different value for p, a
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common value is reached after the iterations are performed.
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Figure 4.12: Final p (after 5 iterations) versus SNR.

The final p (after 5 iterations) versus SNR is shown in Figure 4.12. Even though theoret-
ically the noise is not correlated with the signal, p starts to increase rapidly for SNR < 20
dB. This presents a practical limitation; the algorithm requires an SNR > 20 dB in order to
give an acceptable identification. After ~25 dB, the improvement resulting from iterations
is minimal. Therefore, an SNR. of 25 dB was used in all simulations.

Figure 4.13 shows p versus the number of iterations at an SNR of 15 dB. This figure is
included to show the effect of a hostile noise environment. In this case, even using iterations
will not cause the error to converge close to zero. p converges at a noise floor of approximately

2.445 x 10~ after 5 iterations. The noise floor increases with decreasing SNR.

4.7.4 Fiber link identification

As mentioned above, the estimate of the polynomial is directly dependent on the quality
of the estimate of the wireless channel. Essentially, the validity of the CIR estimate can

be verified by observing how close of a polynomial estimate it produces. Even the slightest
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Figure 4.13: p versus number of iterations with SNR = 15 dB.

errors in the CIR estimate can be detrimental when estimating the internal signal g(n).
The nonlinear channel used in the simulations was a 3'¢ order saturating memoryless

nonlinearity given by the polynomial
r(n) = —0.35¢°(n) + q(n). (4.51)

It is important to state that the nonlinear system must have a linear coefficient A;, otherwise
identification of neither the linear channels nor nonlinear channel is possible. Without the
A; coefficient, the equations relating the cross covariance to the CIR (equations (4.34) &
(4.43)) would become zero.

The fit of the nonlinear identification depends on how much data is available, and so it
is desired to have the input cover a large dynamic range. A PN sequence length of 4095
and the multipath conditions of the linear channels ensured that a large dynamic range was

available for the polynomial fit.
Figures 4.14(a) and 4.14(b) show the estimated polynomial (with and without using

iterations) for an SNR of 25 dB and 15 dB, respectively. When using iterations there is a

significant increase in the accuracy of the polynomial estimates. For an SNR of 25 dB the
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Figure 4.14: Comparison of polynomial estimates (with and without using iterations).

estimated polynomial (using iterations) was
r(n) = —0.3559¢%(n) — 0.0095¢%(n) + 0.9716¢(n), (4.52)

which is accurate when compared to the actual polynomial of equation (4.51). The MSE
for the above case was 5.5954 x 10~. This estimate is obviously quite good, however, the
accuracy of the identification deteriorates with decreasing SNR. For an SNR of 15 dB, the

estimated polynomial (using iterations) was
r(n) = —0.3505¢°(n) — 0.0241¢%(n) + 0.6693¢(n), (4.53)
which has an MSE of 4.288 x 10~2. This again shows the practical limitation of the algorithm.

4.7.5 Additional users

The effect of additional users is shown in Figures 4.15 and 4.16. With additional users it
takes more iterations to decrease p and the estimated polynomial starts to move further
away from the actual one. On average, p = 1.212 x 10~ with 18 users and 10 iterations but
p = 3.012 x 10~5 with 10 users and 5 iterations. Even after 10 iterations the algorithm with
18 users is unable to come close to the algorithm with 10 users. The difference between the

two p’s is due to residual MAI
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iteration number

Figure 4.15: p versus number of iterations for 18 users (each line corresponds to one user).

- With 18 users the iterative algorithm still improves the CIR estimate and removes MAI,
but the requirements on the initial CIR estimate start causing a noticeable error in the
polynomial estimate. As the number of users increases past 18, the identification starts to
degrade rapidly. This is because our iterative algorithm is unable to cope with the additional
MALI This problem can be solved by increasing the PN sequence length, however this is not

a practical solution. Future work calls for investigating this scenario.
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Figure 4.16: Estimated nonlinearity with 18 users.

61



Chapter 5

Fiber-wireless uplink equalization

Having estimated the fiber-wireless uplink in Chapter 4, equalization can now be applied
to the wireless channel and nonlinear compensation to the optical link. The linear and
nonlinear parts are compensated for individually, allowing for a modular architecture that
is desirable for commercial implementation. The structure of the fiber-wireless equalizer
is shown in Figure 5.1. The receiver consists of a polynomial, which inverse models the
optical link, followed by a linear DFE arrangement that compensates for the wireless channel
dispersion. The validity of the estimation algorithm is tested by error rate analysis via the

said equalization and compensation techniques.

5.1 Wireless channel equalization by DFE

Decision feedback equalizers have been successfully used in equalizing wireless communica-
tion channels (refer to [45] and the references therein). DFEs have good performance at
moderate complexity, work well in equalizing frequency selective fading channels, and the
equalization taps can be obtained directly from the channel estimate; this is a major benefit
in our case. It is shown in [22] that a DFE is superior to a linear equalizer. A consider-
able performance gain comes from including the feedback portion. In addition, some work
in using a DFE in a fiber-wireless channel has already been done in [15]. For the reasons
presented above, a DFE is implemented for equalization of the wireless channel of the fiber-
wireless uplink in this thesis. The architecture of a DFE is shown in Figure 5.1. It consists

of 2 linear transversal filters, a decision device, and a feedback loop. The DFE is classified
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Figure 5.1: Block diagram for fiber-wireless uplink equalization.

as a nonlinear equalizer, where the nonlinearity can be attributed to the decision device. A
stand alone DFE is most efficient in equalizing linear channels.

The goal in a DFE system is to determine the current input, and then calculate and
remove all ISI that the current input contributes to subsequently received inputs. The feed
forward filter (FFF) in Figure 5.1 is used to eliminate the contribution from the precursors
of the wireless channel, and the feedback filter (FBF) in Figure 5.1 is used to eliminate that
part of the ISI from the present estimate caused by previously detected symbols. The linear
filter coefficients are optimized in order to maximally equalize the ISI. The MSE criterion is
used for optimization of the equalizer coefficients. Optimization of the DFE coefficients is a
well established technique when the CIR is known [22]. So the FFF and FBF taps can be
readily determined once the CIR has been estimated.

The output of the DFE in Figure 5.1 can be expressed as

0 K>
Bk)= Y qilk—3)+ Y cE(k—j), (5.1)
i=—Ki j=1

where c; are the tap coefficients, and the equalizer has (K; + 1) feedforward taps and K,

63



Chapter 5 Fiber-wireless uplink equalization

feedback taps. The MSE criterion for optimization yields
J (K1, Ks) = E|z(k) — 2(k)|%, (5.2)

which can be used to determine the FFF taps using the following equation!
0 -~
> wiyes = AP (=), (5.3)
Jj=—K
where | = — K, ..., —~1,0. The terms t;; are defined as

-l

Y=Y AP (M)A (m + 1 - 5) + Nody, (5.4)
m=0
where N is the equivalent noise variance of all noise sources and [,j = —Kj, ..., —1,0. The

FBF taps can be found from the FFF taps using

= ch{(k—j), (5.5)

j=—Ki
where k = 1,2, ..., Ky. A drawback of DFEs is that incorrect decisions can propagate through
the feedback loop and enhance, rather than remove, ISI. Incorrect decisions can also cause
errors in subsequent decisions as well. However, as SNR increases, the chance of error
propagation decreases. The performance loss due to incorrect decisions being fed back is

approximately 2 dB [22]. This value may change depending on the CIR.

5.2 Optical channel compensation

Related work on nonlinear compensation is presented below before introducing the series

reversion approach which was used for compensation in this thesis.

5.2.1 Related work on nonlinear compensation

Several approaches have been proposed to characterize and solve the problem of nonlinear

distortion. In [46], the authors demonstrated how external light injection into a directly

1Note: the subscripts used in the DFE equations are not related to the subscripts used for the estimation
derivations, except for p. They are simply used for continuity with [22].
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modulated laser diode can be used to enhance the linear performance of an ROF system.
This is done by making the modulation response of the device more linear around the RF
band of operation. In [47], low-cost predistortion circuits able to compensate second- and
third-order laser distortions in multiservice ROF industrial systems were developed. Other
approaches attempt to use a post nonlinearity recovery block by means of solving the laser
rate equations [13]. In the above approaches, knowledge of the device parameters is needed
because they use either additional hardware or require the solving of laser rate equations.
The drawback here is that device parameters can be device dependent or sometimes not even
available, and can even vary amongst similar devices. Instead of focusing on compensation at
the electronics level or by using the rate equations, this thesis focuses on a higher level systems
approach. Here, the nonlinearity is looked at in terms of its input-output characteristics, and
then compensated for accordingly. An advantage of the systems approach is that additional
nonlinearities can be modelled as well, i.e. those from amplifiers. This approach is similar

to adaptive asymmetric linearization reported in [10].

5.2.2 Linearization by series reversion

Nonlinear channel compensation is implemented in this thesis by including an inverse poly-
nomial (or additional filter) prior to the aforementioned DFE. This results in an architecture
called the Hammerstein type DFE [15]. The fiber-wireless uplink is a Wiener system and so
a Hammerstein type equalizer would be the natural choice for a block-oriented compensa-
tion scheme. A Hammerstein type DFE was developed for a Wiener system for a single user
environment in [15]. In this thesis, equalization is still done in a single user environment,
but using the estimated parameters from the MU case.

The additional filter in this thesis is generated using series reversion. The idea is to
determine how well the developed identification algorithm performs, and series reversion
provides a sufficient indication of this. Series reversion is one of the simplest techniques
for nonlinear compensation and therefore has its limitations. A comprehensive treatment on
series reversion is given by Tsimbinos in [48]. Some advantages of series reversion include: 1)

simplicity, 2) once F'(.) is known, finding the coefficients of G(.) is straightforward, 3) no need
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for adaptive methods as in [10], 4) low complexity is attractive for practical implementation,
and 5) simple yet effective for the fiber-wireless uplink. Some disadvantages include: 1)
limited amplitude interval for inversion; beyond this interval the system produces increasing
distortion and overpowers the inversion, and 2) dependence on nonlinearity strength. It
is important to mention that series reversion works well in inverting a weak nonlinearity
with a saturating characteristic; in this case, series reversion provides a significant CER
improvement that will be shown in Section 5.3. More elaborate nonlinearities will require

different compensation techniques.

Compensation
Interval 4
2
0.1 0.2 0.3 0.4 05
-2 Nonlinearity Strength, ¢
=}

Figure 5.2: Compensation interval versus strength of 3"¢ order nonlinearity (48].

One of the major issues with series reversion is the limited compensation interval due to
nonlinearity strength. The compensation interval for different values of nonlinearity strength,
¢, are shown in Figure 5.2 for the polynomial y = cz® + z. Conveniently, the polynomial
considered above has the same structure as the polynomial considered in the simulations of
the fiber-wireless uplink, i.e. r(n) = —0.35¢3(n) + ¢(n). From Figure 5.2 it is clear that
as the strength of the nonlinearity increases, the compensation interval decreases. However,
series reversion is still sufficient because only weak saturating nonlinearities are relevant in

the optical link, and the nonlinear compensation is performed on normalized inputs.

The polynomial F[.] and the inverse polynomial G[.] are defined as

7(n) = Flg(n)] + nop(n) = A1g(n) + Asg*(n) + ... + Aig'(n) + Nop(n), (5.6)
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and

4(n) = Glr(n)] = gir(n) + g2r*(n) + gar*(n) + ... + Gy, ™ (), (5.7)
respectively, where [ is the order of the polynomial and l;;, is the order of the inverse
polynomial. The series reversion generated coefficients of the inverse polynomial G [.] are

given in terms of Ay as

=1 __ _ 2(A2)* — A1As _ BA1 Ay A5 — Ag(A;)? — 5(Ag)?
a1 AI) g2 (A1)3) g3 (A1)5 ) g4 (A1)7

(5.8)

642 Ax(A1)? + 3(A1)2A2 + 14(Ay)" — As(Ar)* — 21A; Ag(As)?
gs = 9 ) g6 = .oy gr = ..,
(A1)
(5.9)

where g and g7 can be found in [49]. The order of the inverse polynomial /;,, must be selected
to maximize linearity. The resulting compensation contains higher order nonlinear terms that
produce distortion which is negligible at low signal amplitudes but become detrimental at

high signal amplitudes [48]. This affects the compensation interval.

5.3 Simulation results and discussion

The channel is estimated under a multiuser environment, but the equalization is done only
for a single user. The simulation parameters were the same as in Section 4.7.2. Additional
parameter definitions include the order of the inverse polynomial G[.], and the number of
DFE taps. A 7" order polynomial was selected for the inverse by testing the linearity of the
combined system F[.] and G[.] under various orders. A 7*! order inverse resulted in the most ‘7
linearized output. The number of DFE taps were derived based on the memory of the CIR
from Figure 4.8, which has a memory of L = 28. In order to completely eliminate post-cursor
interference, the number of FBF taps must satisfy the condition K, > L [22]. The number
of FFF taps is chosen to be approximately 2L, which is common in the literature. So, the
DFE parameters for the simulation were 56 FFF taps and 28 FBF taps.

Figure 5.3 shows the CER performance of the estimation algorithm for 2 different cases:
‘MU estimation’ (with details specified on the figure) and ‘Single user estimation.” ‘MU

estimation’ refers to the scenario where the equalization and compensation parameters are
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Figure 5.3: CER of fiber-wireless uplink.

derived using the channel characteristics found from MU estimation (the ones from Section
4.7). ‘Single user estimation’ refers to the scenario where the equalization and compensation
parameters are derived using the channel characteristics found from single user estimation.

It is important to mention that CER is much larger than BER. A correct decision on
a bit can still be made in the presence of many chip errors. For example, it was shown by
Cypher et al. [50] that, when using 64 chips to represent 1 bit, the BER lags behind the
CER by 18 dB. As a rough estimate, take the SNR lag between the BER and CER to be
20 dB (in our case N, is large so we have a lag greater than 18 dB).? An acceptable BER
for transmitting data is 1076. Taking into consideration the BER approximation above, our

algorithm can achieve this BER at an SNR of about 15 dB, which is comparable to the DFE

2Further mathematical analysis is needed in order to find the exact CER to BER conversion factor.
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BER curves obtained in [15] and [22].

Some important conclusions from Figure 5.3 are:

1. Correlation analysis alone gives unacceptable CER. The trace marked by #’s remains

high even as SNR increases.

2. Supplementing correlation analysis with the iterative algorithm results in an improve-
ment over the non-iterated CER. This is shown by the traces marked by o’s and x’s.
For an SNR > 15 dB, the CER marked by o’s starts to improve, whereas the * trace

remains high.

3. The iterative algorithm works well in removing MAI. This can be seen by examining the
traces marked by o’s and ¢’s. These two CERs are adjacent to one another, meaning
that with the iterative algorithm, the performance of MU estimation comes close to
that of single user estimation. The o trace has a slightly worse CER than the ¢ trace.

This can be attributed to residual MAI

4. Without polynomial compensation the CER is unacceptable (a). The performance
in this case is highly undesirable. The CER remains high, irrespective of high SNR,
because the DFE alone is unable to compensate for the nonlinearity. This justifies the

use of series reversion for polynomial compensation.

5. The trace marked by o’s is the performance of the DFE in a linear channel. Better
polynomial compensation methods will shift the CER (o) to the left, i.e. towards the -
o trace. However, this will require more complex polynomial compensation techniques
than series reversion. For example, series reversion can be improved by using orthog-
onal polynomials and orthogonal inverses to overcome some of the negative effects of

residual terms [48].

It should also be mentioned that CER performance depends greatly on the CIRs severity
of multipath conditions. This is shown in [22], where the error rate performance of various
CIRs is compared to a channel with no ISI. The performance can vary significantly depending

on the CIR.
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Chapter 6

Fiber-wireless downlink estimation
using Walsh codes

This chapter presents an investigation into the estimation of the wireless channel of the fiber-
wireless downlink in a multiuser CDMA environment using Walsh codes. An investigation
into the single signal estimation of a Hammerstein system has been covered in [34], but
Gaussian input were used and there was no extraction of the term R,,, (¢). In this chapter,
the theory is extended to the multiuser case where varying wireless channels are encountered
for each mobile user, and it is also shown that multilevel testing (via the Vandermonde

matrix) works in the downlink as well.
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Figure 6.1: Fiber-wireless downlink in a multiuser CDMA environment.

The block diagram in Figure 6.1 shows the fiber-wireless downlink in a multiuser COMA
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Symbol Description
zj(n) | input Walsh code spreading sequence, 1 < j < N
u(n compound Walsh signal input
F(-) optical channel nonlinear function
Nop(N) optical receiver Gaussian noise
q(n) signal sent through multiple wireless channels
hj(n) wireless channel impulse response, 1 < j < N
Nw() (1) wireless channel Gaussian noise, 1 <j < N
;i (n) signal sent to mobile units, 1 < j < N

Table 6.1: Symbol descriptions for fiber-wireless downlink.

environment. All signals used in analyzing the fiber-wireless downlink, along with their
descriptions, are shown in Table 6.1. The channel of interest will be that of the first user,
and therefore the output signal used in all following derivations will be r1(n). Proceeding to
the estimation theory, the output of the nonlinear system plus the optical noise is given by

a polynomial of the form
q(n) = Ayu(n) + Agu*(n) + ... + At (n) + ngp(n), (6.1)
where u(n) is a compound input of Walsh codes (of length N,,) that can be written as
u(r) = z1(n) + 22(n) + ... + TN (D). (6.2)

The downlink estimation is similar to the MUc estimation when considering only one wireless
branch in Figure 6.1. The major difference being that the two channels are reversed. The -

system output 71(n) can be expressed by the convolution
T1(n) = q(n) * hi(n) + nya)(n). (6.3)

Substituting for ¢(n) and expanding the convolution gives

r1(n) =4, Z hi(m)u(n —m) + Ay Z hy(m)u?(n — m) (6.4)
+ot A Y kmd(n—m)+ Y hi(m)ng(n —m) +nup(n),  (6.5)
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which can be written in a more compact form as

ri(n) = Z(Ak Z hl(m)Hu(n m)) Z ha(M)nep(n — m) + nugry(n) . (6.6)

m=-—oo m—-—oo
S

~

noise terms
As a summation of the output of the isolated I** order kernel, the above equation becomes
r(n) = wi(n) + wa(n) + wz(n) + ... + wy(n) + noise terms. (6.7)

In the downlink, multilevel testing is implemented prior to the optical channel by using the
signal apu(n), where oy, # oy V m # [, and repeating ! times. Given that the output
can be expressed by equation (6.7), it can easily be shown using the same procedure as in
Section 4.5.1 that multilevel inputs can be used to extract R, from R,,. Therefore, the

input-output correlation can be written as

Rura,, (0) = Za Ruw, (o), m=12,.,1| (6.8)

giving the same relationship as in equation (4.25).

6.1 Difficulties with the input-kernel correlation

The cross covariance between the compound input u(n) and w;(n) can be written as

Ruw, (0) = wi(n)u(n — o). (6.9)

Substituting for w;(n) and expanding u(n) gives

Ruw, (0) = (Al i hy(m)u(n — m)) (u(n - a))

m=—00

= A i hi(m)u(n — m)u(n — o) (6.10)

m=-—00

= A Z hi(m)(z1(n — m) + zo(n — m) + ... + zn(n — m))

m=-—00

(z1(n—0) +z2(n—0) + ... +a:N(n—-a)). (6.11)

The above equation can be considered two ways: 1) by expanding u(n), giving equation

(6.11), and 2) without expanding u(n), giving equation (6.10).
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6.1 Difficulties with the input-kernel correlation

1) Expanding u(n)

Simplifying equation (6.11) using correlation notation gives

Ruw (0) = A1 D ha(m) (Reyey (M — 0) + Rayey (M — 0) + .. + Ry (M — 0)

m=-00

+ Ry 50 (M — 0)). (6.12)
Since Walsh codes do not have well defined mathematical correlation properties as PN se-
quences, the above -equation cannot be further simplified. Individually, Walsh codes only
have good correlation properties when tightly synchronized and even then, it is only at the
zeroth lag. As the lag moves away from zero the correlation becomes unacceptable. This is
represented in Figure 6.2. This figure shows the autocovariance and cross covariance prop-
erties of two individual Walsh codes, one with a code index of 396 and the other with a code
index of 882. From Figures 6.2(a) and 6.2(b) it is clear that the autocovariance properties of
individual Walsh codes is unacceptable. For this reason, identification of the concatenated
channel in a single user Walsh code environment is difficult. But the situation drastically

changes when many users are considered at once:
2) Without expanding u(n)

The covariance properties of the summation of Walsh codes is very much different from the
covariance of individual Walsh codes. It has been found through simulations that, as more
and more users are added, this compound input of Walsh codes starts to resemble a white
noise-like process. This is an interesting outcome because it is known that identification of
the fiber-wireless downlink is possible under the condition that the input is white noise-like
([34], [8]). The autocovariance of the input u(n) is shown in Figure 6.3. There is some
resemblance observed between this autocovariance and that of the PN sequence, given by
Rz.x;(A) = Ncb;(N). Aside from the amplitudes at non-zero lags, the autocovariance of the

summation of Walsh codes can be approximated by the relationship?

Ruu(A) = NuyN6(N), (6.13)

1Under the condition that the code indices for the Walsh codes occupy the entire range of indices available
for that certain code length, in equal intervals.
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Figure 6.2: Covariance properties of individual Walsh codes of length 210 for two different code
indices.

where N is the number of Walsh codes. Applying the above approximation to equation
(6.10) gives
Ny-1
Ruw (0) = ANy N Y hy(m)d(m — o). (6.14)
m=0

Using the convolution properties of the impulse function gives

‘ %uwl-(d) = AleNhl(U) ) (6-15)

which is exactly the same as the covariance for the MUc case in equation (4.34). Therefore,
it has been shown that the CIR can be estimated by utilizing the autocovariance property

of summed Walsh codes. Using a greater number of Walsh codes results in even better
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Amplitude

lag

Figure 6.3: Autocovariance of a summation of Walsh codes.

covariance properties and hence a more accurate identification.

6.2 Simulation results and discussion

Figure 6.4 shows the simulation model for the fiber-wireless downlink. Parameters and

channel characteristics are described below.

CIRs and polynomial: Refer to Section 4.7.2.

Noise: The SNR between the base station and RAP was set to 25 dB, and the wireless

noise power for each mobile user was set equal to the optical noise power.
Number of users: 54 users were simulated at the base station.
Walsh code length: Simulations were performed with a Walsh code length of 1024 (219).

Cross covariance: Lang et al. showed in [29] that, for 10" degree sequences, the average
Walsh code cross covariances are approximately 2.53 times larger than PN sequence

cross covariances. However, the adverse effect of these cross covariances are minimal
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Figure 6.4: Simulink model for fiber-wireless downlink simulation.

because they are relatively small when compared to the large autocovariance value.
This can also be seen by comparing Figures 6.2(c) and 6.3. From these figures it is
found that the maximum amplitude of the cross covariance is approximately 0.208%

of the maximum autocovariance.
Quality of fit: Refer to Section 4.7.2.

Synchronous communication: Synchronization can be achieved for all signals in the
 fiber-wireless downlink. The buffer period needed for the simulation of asynchronous
communication is not needed. All signals can start at the same time and data is col-

lected from the start of the simulation to the end (i.e. the time needed to cover one

period, Ny).
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6.2 Simulation results and discussion

6.2.1 Wireless channel identification

Two CIR estimates are presented in this section, they are defined as ‘good’ and ‘poor’. The
reason for this is to show that at this point there is an inconsistency between estimates and
that the quality of the estimate depends on the characteristics of the CIR (a major factor
being the spread between multipath arrivals). Figures 6.5 and 6.6 show the estimated and
actual CIR for the two different channels. There is a greater spread between multipath
arrivals in the ‘poor’ estimate of Figure 6.5; therefore, the algorithm is not as accurate but

it is still able to recover the general structure of the desired CIR.
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Figure 6.5: ‘Poor’ CIR estimate.

The quality of the CIR estimate, p, can be compared with the MU estimation of Section
4.7.3. Figure 6.5 has p = 4.241 x 1073 and Figure 6.6 has p = 1.462 x 10~%. When
comparing to Figure 4.11, the ‘poor’ estimate is comparable to doing no iterations and the
‘good’ estimate is comparable to doing 2 iterations. Contrarily to MU estimation, for Walsh
code estimation there is a large difference amongst users p’s. The significance of this is in

the polynomial estimation.
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Figure 6.6: ‘Good’ CIR estimate.

6.2.2 Fiber link identification

Once the CIRs are known, the internal signal q(n) must be estimated so that polynomial
fitting can be done between the signals u(n) and g(n). One possible method to estimate the
internal signal is by deconvolving h;,. y(n) with their respective outputs ;.. ~n(n). However,
estimating the nonlinearity is left for future work since the validity of the CIR estimate can
Be checked by simply comparing the value of p from the downlink to p from the uplink. This
comparison yields the observation that the ‘poor’ CIR estimate would give an unacceptable
polynomial estimate whereas the ‘good’ CIR estimate would give an acceptable polynomial

estimate. The major contribution here is that the CIRs have been estimated in the presence

of a nonlinearity.

6.3 Fiber-wireless downlink equalization

Although the nonlinear channel has not been estimated, equalization can still be performed
on the wireless channel of the fiber-wireless downlink. The structure of the equalizer is shown

in Figure 6.7. The receiver consists only of a linear DFE arrangement that compensates solely
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Figure 6.7: Block diagram for fiber-wireless downlink equalization.

for the wireless channel dispersion. Even though the polynomial is not compensated for, the
simulation results of the equalization still show a significant improvement in terms of CER.
As in the case of the fiber-wireless uplink equalization of Chapter 5, the equalization is done
for a single user, but the channel is estimated under a multiuser environment.

Two simulations were performed, one to determine the CER from an ‘average’ CIR
estimate, the other to determine the CER from a ‘good’ CIR estimate. The DFE parameters
were found (as explained in Section 5.3) based on the memory of the CIRs, which were
L = 9 (‘average’) and L = 13 (‘good’). The two CER curves are shown in Figure 6.8.
The performance of both channels is similar at an SNR < 25 dB, but the ‘good’ channel
outperforms the ‘average’ channel at higher SNR (> 25 dB). However, a wireless channel is
random by nature and so the CIR is dynamic. Therefore, the ‘good’ channel will not remain
good forever and hence a more realistic CER is that of the ‘average’ channel. Also note that
this is the CER, so the BER will be much less. In addition, the error rate can be improved

by including a polynomial compensation technique.
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Figure 6.8: CER of fiber-wireless downlink.
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Chapter 7

Conclusions and future research

7.1 Conclusions

The projected impact of implementing ROF schemes is substantial. The deployment of opti-
cal fiber technology in wireless networks provides great potential for increasing the capacity
and quality of service without largely occupying additional radio spectrum. ROF has the
potential to become ubiquitous in the communications industry. The research performed
in this thesis will bring ROF technology one step closer to providing a cost-effective, high
performance solution for present and future high-speed fiber based wireless access systems.

In this study we evaluated two techniques for system identification, one using PN se-
quences and the other using Walsh codes. We improved the single PN identification per-
formed in [7] to accommodate multiple PN sequences and showed the effect of both wireless
and optical channel noise in the output via error rate analysis. Our approach has prac-
tical merit in the sense that PN sequences and Walsh codes are already used in existing
spread spectrum communication systems. The goal in this thesis was to first estimate the
parameters of the fiber-wireless channel and then to devise appropriate equalization and
compensation techniques by using these estimates. It was shown that fiber-wireless system
identification in a multiuser environment is indeed possible using either PN sequences or
Walsh codes, depending on the communication link. Much of the conclusions regarding each
fiber-wireless scenario were made in the simulation and discussion sections. The conclusions
presented below summarize the observations of the thesis.

The application of nonlinear systems theory to the fiber-wireless uplink (Wiener system)
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in a multiuser discrete-time passband system was thoroughly carried out, and an in depth
analysis of the correlation relationships in terms of the desired and unwanted terms was
discussed. An algorithm to mitigate MAI was developed and shown to significantly improve
the estimation in the presence of multiple users. The iterative technique removed most MAI
in the system, with a small residual MAI left over. In an asynchronous CDMA environment
the proposed identification algorithm works well. The iterative algorithm improved the CIRs
quality of fit after just 2 iterations by a significant margin over the initial value. Equalization
of the fiber-wireless uplink was done in a single user environment while using the estimated
channel parameters from the multiuser case.

Some limitations of the correlation algorithm include:
1. With additional users the identification starts to rapidly degrade.
2. A fairly high SNR is required.

3. The interdependency between the quality of the CIR estimate and the quality of the

nonlinear estimate.

Hammerstein system estimation theory was derived for the fiber-wireless downlink in a
multiuser discrete-time passband system. It was shown that identification is possible using
Walsh codes, but only when multiple Walsh codes are used. The accuracy of the CIR
estimation was shown to depend on the CIR characteristics, but overall the algorithm was

able to pick out the general structure of the CIR.

7 .2 Future research

Although the identification algorithms performed well under certain conditions, there is still
a significant amount of research that can be done in order to provide a more realistic and

updated simulation model. Suggestions for future work are in the areas of:

Séquence length: The PN sequences and Walsh codes need to be fairly long in order for
the identification to work. The reason being the need for good correlation properties.

This presents a practical limitation in terms of convergence time and training overhead.
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Although sequence lengths have been getting longer, an idea for future work would be
to investigate how the correlation properties can be enhanced without the need for

longer spreading codes. This would also improve estimation convergence time.

Multilevels: Multilevel testing is required to extract the desired terms in the presence of the
nonlinearity. This introduces additional training overhead. Further improvements can
be made by investigating how multilevels can be reduced or even eliminated. By doing
so, the estimation convergence time would also be improved. Perhaps by recording data
while the mobile user is at different locations can provide an alternative to multilevel
testing. Another suggestion is to look at higher order input-kernel correlations. This

could give additional information about the desired CIR.

Multiuser detection: At this point the channel is estimated in a multiuser environment
and then equalized in a single user environment. An idea for future work would be
to implement multiuser detection algorithms so that each user is separated from the
combined signal and then equalized accordingly. It is important that the selected
multiuser detection algorithm work well in a fiber-wireless setting, not just a wireless

one.

Complex domain: Instead of estimating the inphase and quadrature phase components
of the systems individually, it would be interesting to see the identification procedure

evaluated when the theoretical derivation is done in the complex domain.

Estimation approaches: There has been gaining interest in the area of subspace-based
system identification. The subspace-based approach is more robust than correlation
based techniques and requires modest computational complexity. Implementing the
subspace-based approach in a multiuser fiber-wireless CDMA environment has the

potential to greatly improve the current technique.

Frequency domain: Shifting analysis from the time domain to the frequency domain is an-
other suggestion. Both the estimation of the fiber-wireless channel as well as analyzing

the effects of the nonlinearity can be performed in the frequency domain. The non-
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linearity in the ROF system generates distortions of harmonic, intermodulation, and
in-band. Analyzing the frequency response of the nonlinear system can provide insight
into the systems nonlinear distortions. Different approaches for nonlinear compensa-
tion can be validated by checking how close the CER performance with the nonlinear

compensator comes to that of the CER in a linear channel.

Fiber-wireless downlink: Only the CIRs were estimated in the fiber-wireless downlink.
In order to estimate the nonlinearity, the internal signal must be estimated first. One

possible method is by deconvolution.
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Appendix A

Multinomial theorem

The multinomial theorem generalizes the expansion of the powers of an expression. It is also
a generalization of the binomial theorem. The multinomial theorem is given as

(a1 +ag+ ... + an)" = Z C(n;ny,ng, ...,y )artag?...amm, (A1)

n1,n9,...,nm 20
ny+no+...+nm=n

where the summation is taken over all indices (ni,...,nx) € N that satisfy the equation
ny + ng + ... + nx = n, and the multinomial coefficient is given as

n!
C’(n;nl,ng,...,nm) = m (A2)

For example, with 2 terms and 39 order the mutlinomial theorem gives
(a1 + (12)3 = Cl,:l3 + 3(1%(12 + 3a1a§ + ag, (A3)

which is actually the binomial theorem. To see the application of the multinomial theorem
to the fiber-wireless channel, consider the single user CDMA output given in equation (4.7),

which is repeated here for convenience as

l o0 o) k
r(n) = ZAk( S o S [ amian - mi) +n’;,(n)) + OMT + ngy(n). (A.d)
k=1

mi=—c0 mg=—o0 i=1
The goal is to determine the quantity defined by CMT above. This can be done using the
multinomial theorem. First, some other equations stemming from the single user CDMA
environment of Fig. 4.2 are presented. These include the internal signal given by

q(n) = h(n) xz(n) +nu(n) = ) h(mi)e(n —m1) +nu(n), (4-5)

mp=—00
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and the output given by
T(n) = Flg(n)] = Aig(n) + Axg*(n) + ... + Aig'(n) + ngp. (A.6)

Let’s have a look at the term A3q3(n) in the above equation. Using the multinomial theorem
with 2 terms and 3 order gives the same expansion as that in equation (A.3). Substituting

for a; and a, from equation (A.5) gives the following expression for Azq®(n),

As(n) = Ao (m1)z(n — my) + nu(n ))3 (A7)

- Aa(
=

+ 3ny(n) Z Z h(my)h(ma)z(n — my)z(n — my)

2 !
Z Z Z h(mq)h(ma)h(ms)z(n — my)z(n — me)z(n — ms)

oo

9 3 hmoa(n —m) + ). (A8)

Therefore, the term CMT in equation (A.4) is given as

[ee]

CMT = A; (3nw(n) Z Z h(m)h(ma)z(n — m;)z(n — mz)-

m)=—00 M2=—00
o0

+3n%(n) Y h(ml)a:(n—ml)). (A.9)

mi1=-—00
In the absence of noise, only the term
A3( Z Z Z h(mi)h(mz)h(m3)z(n — m;)z(n — my)z(n — m3)) (A.10)
m]p=—00 Ma=-—00 M3=—00
would be present, but because of the wireless noise there are additional cross multiplied

terms which adversely affect the system output, and hence the system identification. The

CMT for different numbers of terms and orders can be found following the same procedure.
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