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Abstract

The hardware-software co-synthesis of an embedded system's architecture involves the partitioning of a
system specification into hardware and sofiware modules so as to meel various non-functional
requirements. A designer can specify many non-functional requirements including cost, performance,
reliability etc. In this thesis, we present an approach to the hardware-sofhware co-synthesis of emhedded
systems largeting hypercube topologies. Hypercube topologies provide a flexible and reliable architecture
for an embedded device with multiple processing elements. To the best of our knowledge, this is the first
time that hypercube topologies have been supported in a co-synthesis algorithm.  The co-synthesis
approach presented here supports the following features: 1) input in the form of an acvclic periodic rask
graph with real-time constraints, 2) the pipelining of task graphs, 3) the use of a heterogencous set of
processing elements, 4) Support for fault tolerance through our newly developed group based fuull
tolerunce technique. The co-synthesis algorithm has been applied to two case studies to demonstrate its

efficacy.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The average Canadian equates the idea of a computer with a desktop or laptop. In
actuality, the definition of a computer is much broader. It is estimated that in the
average Canadian’s home there are 30 to 40 embedded systems. Television. audio
systems, refrigerators, telephones, temperature controls and stoves all use embedded
computers. Embedded computers also play an integral role in many of the assisted
devices that aid disabled individuals in performing daily activities, e.g. power
wheelchairs and communication devices. Additionally, many embedded devices are
responsible for protecting human life; embedded computers control modern medical
instrumentation. airplanes, air traffic control systems, anti-lock breaking systems
(ABS) and even the “fasten your seatbelt” light on the dashboard of your car. By
many estimates, embedded devices account for 99% of worldwide computers while
desktops and laptops account for just 1%. Embedded computers are small-scale
application-specific computing devices. Embedded computers already permeate our

society and their growth is expected to continue indefinitely.

It is common knowledge that technological developments are producing increasingly

efficient and compact computers. This applies to embedded computers as well. The
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morce powertul and complicated the components ot an embedded device. the more
difficult it is for a computer engineer to produce a product that meets safety.
performance, cost and power consumption requirements within a rcasonable amount
of time. The production of the high performance embedded devices of the future will

require tools and formal methods to aid engineers in system design and development.

The rescarch presented in this thesis is centred around the development of computer
aided design (CAD) software tools that will be used to aid in the design and
development of future embedded devices. Essentially. an engineer will tell the CAD
tool what the desired device should be capable of doing; the tool will analyze the
given information and recommend a reliable and efficient design. This can aid a
product engineer in developing systems that are far more reliable, cost, time and
power efficient. Reliability is key for the development of safety-oriented devices that
are responsible for protecting human life. Minimal production cost is important for
ensuring the final products are accessible to all people regardiess of socio-economic
status. Similarly, decreased labour costs as a result of more expedient design, results
in a cheaper product. Finally, minimizing a device’s power consumption is essential
to reducing energy costs, both financial and environmental. These CAD tools will aid
in the development of new devices that will continue to play a central role in our

lives.

Within electrical and computer engincering, embedded systems rescarch is in its

infancy. This makes it an exciting ficld to work in as it provides unique and novel

3]
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opportunities. 1t is also attractive due to its broad range of applications (acrospace,
automotive, communications etc.).  Decveloping these sofitware tools can be

technically challenging and thus intellectually rewarding.

1.2 Original Contributions

This thesis presents a new hardware-software co-synthesis tool to aid in the design
and development of high performance embedded devices. The proposed approach
focuses primarily on computationally intensive computing systems requiring high
levels of fault tolerance. A full hardware-software co-synthesis approach is presented
with comparisons to a fully exhaustive technique. Implementation results are also

provided in order to further demonstrate the algorithm’s efficacy.

The major contributions of this thesis are as follows:

. Development of a hardware-software co-synthesis algorithm capable of
generating hypercube architecture based embedded devices

. Development of group based fault tolerance (GBFT), a technique designed

to effic..atly add support for fault tolerance in embedded systems at the task

graph level
. Comparative analysis between the newly developed GBFT algorithm and
other existing methods

. Comparative analysis between the co-synthesis algorithm presented here and

i

. -
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the optimal case

. Implementation of a security/navigation device in simulation in order to
demonstrate the efficacy of the co-synthesis algorithm

. Implementation of a parallel block matching device in order to
demonstrate the efficacy of the co-synthesis algorithm

o Prototype construction of the block matching case study

1.3 Thesis Organization

This thesis consists of five chapters. The second chapter encompasses a survey of
hardware-software co-design, and a thorough survey of hardware-software
partitioning, and co-synthesis. Chapter 2 also includes background on hypercube
architectures. These two chapters are intended to provide the basic understanding of
the design issues of hardware-software embedded systems and to survey the existing

research in this field.

The third chapter is the main component of this thesis. [t consists of a full description
of all of the components of the co-synthesis algorithm. These include group based
fault tolerance, a pipelined scheduling technique, a method for adding processing
elements to the current system design, placing existing processing elements within a

hypercube topology and synthesizing all required communication links.

Reproduced with permission of the copyright owner. Further reproduction prohibited without periniss-cn.




The fourth chapter describes the two case studies implemented in order to
demonstrate the algorithm’s etficacy. The first case study performs the decoding of

parallel MPEG-2 video streams and compares the algorithm’s results with that of an

exhaustive technique. The second case study performs parallel block matching and a
final prototype device is constructed. The fourth chapter also includes a discussion of

the experimental results obtained from both of the case studies. The fifth chapter

concludes this thesis.
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CHAPTER 2

DESIGN OF EMBEDDED SYSTEMS

2.1 Intreduction to Hardware-Software Co-Design

This section surveys hardware software co-design. Hardware-software co-design is
an active area of research that involves the development of tools and methodologies
to aid in the design of embedded computer systems. Embedded computers are
processing devices used in areas as diverse as wireless communications, medical
instrumentation, transportation and food preparation. Although these fields are
widely different, the embedded device components of the products share common
design techniques. This is an outline of hardware-software co-design: a method for
designing and developing an embedded computer device. The motivation behind co-
design is that both hardware and software components shouldv be addressed
simultaneously in order to ensure that the final device meets cost, performance,

reliability and power consumption goals.

Separate software and hardware design methods have been the subject of a great deal
of research over the years [21, 41]. However, the design of both hardware and
software as a joint venture remains an area of rapidly growing research. Most of the
embedd‘ed systems research has been stimulated by the development of fairly

inexpensive high performance microprocessors {8]. When embedded processors were
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exclusively small and responsible for the execution of minimal amounts of software,
simple techniques were more than sufficient to create devices that satisfied
performance and functional goals within a reasonable time to market. With the
number of transistors on a chip increasing exponentially, embedded devices have the
potential to utilize far more sophisticated circuits and architectures [48]. The
embedded engineer requires CAD tools to aid in the design and development of

embedded computers and to predict implementation costs.

The rest of the subsection introduces the motivation behind hardware-software co-
design of embedded systems. Additionally, it intends to introduce the various

components of the hardware-software co-design process.

Co-Design Overview

The embedded system design process will vary considerably with respect to the type
of product under development. However, commonalities can be identified and the
ability to abstract hardware and software components to the same level is greatly
exploited in hardware-software co-design. The traditional approach to the design of
an embedded computer system is to enforce hardware-software partitioning at an
early stage. This results in well-defined design tracks for both the hardware and

software components. The major weakness in traditional embedded systems design
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lies in the early partitioning process. A graphical overview of the traditional design

approach is provided in Figure 2.1 below.

Requirements And
Specification

l

Partitioning

R s e e e e e )

i)

R I S R

Hardware Design Software Design
\\/ ?
integration 3

Completed Design

Figure 2.1: Traditional Design
One of the major flaws of such an approach is the inability of the design and _
development flow to correct mistakes made in the partitioning phase. If during
integration, an embedded systems engineer discovers that the product vill not meet
L
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various non-functional requirements (performance, power consumption. etc.), the cost

imposed on re-evaluation of the design will be extremely high.

The hardware-software co-design process begins with the creation of device
requirements, which leads to a formal specification. Both functional and non-
functional requirements such as performance, cost and power consumption are
specified. This can then be converted into a standardized system description or
specification. Embedded system specification requires detailed models to aid in the
abstract description of component functionality. Abstract modeling that does not
differentiate between hardware and software is known as co-specification. Further
research into the high level ﬁqodeling of embedded devices would be greatly

beneficial.

It is common for this standardized description to be converted into a task graph
format. Hardware-software partitioning is performed on this task graph. Partitioning
is concerned with assigning an execution location (software or hardware) to each
task. After partitioning, co-synthesis is performed and typically, the co-synthesis and
partitioning phases are closely knit. Co-synthesis is broken down into the
assignment, allocation and scheduling phases. Finally, the generated software,
hardware and interface modules are integrated. Feedback in the design process can
occur at system integration by returning to the partitioning phase, thus allowing the
designer to refine the given solution. At integration, the overall system can be

evaluated for functional and non-functional requirements by using hardware software

A
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co-simulation. Co-simulation allows for both hardware and software components to
be tested congruently. A visual overview of the co-design process is provided in

Figure 2.2.

Requirements and
Specification

Conversion to Task Graph

Hardware-Software
Partitioning and Co-
Synthesis

Hardware

Integration
&
Prototyping

Completed Design

Figure 2.2: Hardware-Software Co-Design
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HW/SW Partitioning

The partitioning process is concerned with deciding what system functionality will be
implemented as hardware and what will be implemented as software. Typically, an
embedded device will need to meet a number of non-functional requirements. These
would often include performance, price, reliability and power consumption. With
more components implemented in hardware, system price and power consumption
will increase. However, with a large number of components implemented in
software, system performance and reliability can degrade. It is important to balance
the selection of hardware and software components to ensure that all system
requirements are met. Significant research has been conducted with respect to
partitioning algorithms in order to automate the process of obtaining an efficient

hardware-software layout for an embedded device.

HW/SW Co-Synthesis

Hardware-software co-synthesis of an embedded device is the pfocess by which the
hardware-software architecture of the system is automatically derived to satisfy
multiple goals. These goals can include factors such as cost, performance and power

consumption. Hardware-software co-synthesis is inseparable from the process of

11
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partitioning. The hardware-software co-synthesis design flow consists of three main

components: allocation. assignment and scheduling.  Allocation is concerned with

selecting the number and type of communication links and processing elements in the .
5

system. The assignment component is concerned with the mapping of tasks to #

processing elements. The scheduling component is concerned with the timing of task £

R

execution and communications. Typically, the partitioner will iteratively adapt its
hardware mappings based largely on the results of the scheduler. The scheduler is
typically the final phase of co-synthesis. A visual overview of a common approach to

co-synthesis is provided in Figure 2.3.
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Figure 2.3: HW/SW Co-Synthesis
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HW/SW Co-Simuiation

High performance embedded system components can be extremely complex. It is
difficult to develop comprehensive analytic systems to model the performance of an
embedded device that consists of complicated components. Concurrently simulating
components with differing behavioural models is referred to as co-simulation.
Typically, a co-simulation environment will model multiple components, both
software and hardware. This can be a difficult task as software simulation consists of
modeling a processor executing a series of instructions. However, hardware
simulation can consist of modeling something completely different, such as an analog
or digital circuit. In an embedded device it is common for the execution of
application specific integrated circuits to depend on commands issued by one of the
system’s processors. One should note that co-simulation requires the hardware

simulator to react to input from the software simulator and vice versa.

A number of co-simulation tools have been developed. One of the most well-known
co-simulation tools is Seamless from Mentor Graphics. Seamless allows the user to
tie in various hardware and software simulators. Seamless coordinates the
communications between simulators to ensure that the overall behaviour reflects that
of an embedded device. Although Seamless performs as an effective co-simulation

tool, it can also be applied for hardware-software co-verification [44].

13
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HW/SW Co-Verification

The complexity of embedded systems prevents the designer from relying on
traditional validation techniques such as simulation and testing. These techniques are
insufficient to properly verify the correctness of such a system. To address this
problem, new formal verification methods are needed to overcome the limitations of

traditional validation techniques.

Multiple methods have been developed for performing hardware-software co-
verification. A common approach involves the use of a Petri-net based representation
of embedded systems, as in the system named PRES [9, 10]. The PRES model
proves the correctness of an embedded system by determining the truth of
computation tree logic and timed computation tree logic. These research projects
make use of model checking to prove the correctness of embedded systems and have
used an automatic teller machine server to demonstrate the feasibility of their
approach. Another approach developed by Hsiung involves the use of linear hybrid
automata and employs a simplification strategy to address the state-space explosion

that occurs in the formal verification of complex systems [26].

Presently, our knowledge of the joint hardware-software design process is far more

limited than that of either of the two separately. While embedded systems

development can be performed as separate processcs of hardware and software

14
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design, this route can be far more challenging when attempting to meet various price
and performance rec ~ nonts. Additionally, this design path has a tendency to result

in more error prone - .ucts due to difficulties in embedded system veritication.

Research into system modeling is a key element to our understanding of hardware-
software co-design. While many abstract models for embedded system components
exist, there is a lack of accurate models to address the detailed characteristics of these
components. Embedded systems are always being developed with various
performance and cost metrics in mind. In order to properly meet those requirements,
it is essential to develop a thorough understanding of modeling that includes both the

intricacies of a component as well as its high level properties.

In the current embedded systems market, designers and developers can mostly
produce devices that meet requirements within a reasonable amount of time.
However, soon the utilization of sophisticated hardware-software co-design
techniques will be required in order to meet future device demands. As advanced
processors and ASICs become less expensive, the need for tools to aid the design and

development process will increase dramatically in order to ensure the development of

high quality devices with a minimum time to market.

15
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2.2 Hardware-Software Partitioning

[y
.

Hardware-software partitioning is the process by which the various components of an
embedded computer’s functionality are placed in either hardware or software. The
motivation behind the partitioning process is to produce a reliable embedded device

that meets performance, cost and power consumption requirements.

The partitioning process is a subset of hardware-software co-design. Computer
components suitable for use in embedded devices have increased in ability and
complexity dramatically in recent years. The job of an embedded systems engineer
involves selecting appropriate components and integrating them to produce an
embedded device. The rapid increase in both complexity and performance of these
components has resulted in an increase in the difficulty of component selection and
integration.  These difficulties have fuelled demand for tools and design
methodologies to aid in the creation of embedded devices that are comprised of both

hardware and software components.

The typical embedded system design approach is significantly restrictive. The main
flaw revolves around the lack of design flow after system integration and prototyping.
If the system is integrated and an expensive prototype is produced, further design

changes can be extremely costly. These further design changes may have to occur if

16
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prototyping reveals that the system will not meet non-functional requirements (such

as performance).

This subsection’s goal is to introduce the reader to the motivation behind hardware-
software partitioning for embedded devices. Additionally, this subsection intends to

introduce the reader to the existing research in hardware-software partitioning.

2.2.1 Standard Approach

The partitioning process is concerned with deciding which system functionality will
be implemented as hardware and which will be implemented as software. It is
important to balance the selection of hardware and software components to ensure
that all system requirements are met. Significant research has been conducted with
respect to partitioning algorithms in order to automate the process of obtaining an

efficient hardware-software layout for an embedded device.

The standard approach to hardware-software partitioning involves the use of a
heuristic to prioritize a task set. This prioritization aids in the determination of task
mapping (to hardware or software). Often much of the job of the partitioning
algorithm researcher is simply to develop an effective heuristic that will result in an

optimal partitioning algorithm.

17
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The carliest partitioning algorithms proposed. began by implementing all components

TR P ) >

in software and proceeded to move components to hardware implementations until
various system requirements were optimized [18]. Other early approaches proposed

to implement all components in hardware and to proceed to move components to

S T e

software until system requirements were met [22]. A more recent approach involves

FE

making an educated guess with reference to whether a given task should first be

TR

G

mapped to software or to hardware [6]. Afterwards, the algorithm would iteratively

attempt re-mapping tasks from their original locations until requirements are satisfied. ¢

. . ~ cry - . &
These techniques and versions thereof are still in use. In all cases the approach is z
similar, the algorithm attempts a default or initial configuration, analyzes its :

effectiveness and iteratively alters the current layout if non-functional requirements
are not met. Other techniques to aid in the heuristics for partitioning decisions

include linear integer programming [38], simulated annealing [40] and petri-nets [19].

2.2.2 Partitioning Granularity

T oo P e S o e T s A e

Granularity defines the size of system components that can be implemented in either

3
B
=
&
Fod
s

hardware or software. A partitioning algorithm that operates at a high level of
granularity (also referred to as coarse-grained) uses only large blocks of system

functionality to be implemented on any given processing element (PE). It can be

B

beneficial for a large segment of functionality to be implemented on the same PE.

This is particularly evident in larger scale distributed embedded devices, where

S

RS
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dividing a high grained system into smaller components and then mapping them
across the system can yield an unnecessarily high communication overhead. This
occurs when tightly coupled components are “spread out” throughout the system.
Using the granularity that is specified by the programmer of an application is often
referred to as a high level of granularity. Gupta and DeMicheli developed an
approach to the coarse grained hardware-software partitioning problem [23]. They
present a partitioning procedure to identify potential hardware and software
components of a system. Their technique also utilizes the Olympus Synthesis System
for digital design [39] for the synthesis of dedicated hardware within their system.
Yen and Wolf have also developed an approach to the coarse grained partitioning
problem [52]. They present an automatic iterative improvement technique for
simultaneously performing concurrency optimization and hardware-software
tradeoffs. By considering both concurrency and hardware-software tradeoffs, their
approach is able to identify cost/performance points that may not have been identified

otherwise.

A partitioning algorithm that operates at a low level of granularity (also referred to as
fine-grained) will often divide an embedded system’s functionality into extremely
small components. Fine-grained partitioning algorithms have the disadvantage that
separating system functionality on such a small scale can dramatically increase
communication overheads, which has the effect of decreasing system performance.
Some systems use this approach when they are dealing with partially re-configurable

processors (processors whose IP cores can be modified during the design process).

19

A

Renrodueced with nermission of tha canvriaht owner  Furthar ranradiictinn nrahihitad withat it narmiecinn



Fine-grained systems can provide a better solution than coarse-grained algorithms

because they are more {lexible in terms of mapping the correct computationally

intensive components to the appropriatc processing elements. Fine-grained systems
reduce the potential negative effect of having to deal with a poorly defined system
functional specification. A fine-grained system can refine the design on such a small
scale that some will take one single computationally intensive CPU instruction and

treat it as a separate task [1]. It is common for tasks (individual components that can

-

T R B Y

be mapped to hardware) to be called base blocks when dealing with fine grained

partitioning. Ernst et al. have developed a heuristic approach to the fine grained

A

hardware-software partitioning problem [18}. They have developed an iterative

partitioning process which is based on hardware extraction and is controlled by a cost
function. This technique is in use in the COSYMA system [40]. Knudsen and
Madsen have also presented an approach to the fine grained partitioning problem
{30]. This approach uses dynamic programming to solve both tlie problems of system

execution time and hardware area constraints. This technique is in use in the LYCOS

system [38].

Finally, there is one research project known that involves merging these two ideas of

varying granularity [24]. This concept is known as flexible granularity. Depending

D B A P T RS P R R

on the characteristics of the specific application and the system’s non-functional
requirements, the selected granularity can span from a low level of base blocks all the
way to the user-defined functions. This approach is intended to overcome the

shortcomings of both of the previous approaches. This work also includes estimation
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methodologies adapted to different levels of granularity, which help to determine the

final system granularity.

2.2.3 Dynamic Programming

Dynamic programming is a technique ideal for problems where calculating all
possible outcomes is not computationally feasible.  This makes dynamic
programming well suited to the partitioning problem, which can be extremely
computationally intensive. Typically, a dynamic solution is recursive and iterative in

nature.

Dynamic programming problems can always be divided into stages where a decision
will be required at each stage. Typically there are a number of states associated with
each stage. Decisions made at one stage will alter the current state into a new state in
the next stage. The decision made at a given state does not depend on the decisions
made in the previous state. It can be seen that dynamic programming extends itself
easily to hardware-software partitioning which can be approached as a recursive,
iterative, state based problem. Often a dynamic programming solution will
effectively process a task graph and improve algorithm execution speed by avoiding

testing infeasible combinations.
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Shrivastava et al. {45] have used dynamic programming to develop an algorithm that
can effectively solve the partitioning problem with extremely fast execution times.
Chang and Pedram [5] have also used dynamic programming to determine the
solution to the coarse-grained partitioning problem of a generic task graph. Knudsen
and Madsen [31] have used dynamic programming to determine the solution to the

fine-grained partitioning problem.

2.2.4 Fault Tolerance

Fault tolerance is a large area of computing, whereby computational devices are
developed which must meet various mission critical and safety critical requirements.
These types of systems are common in aerospace and biomedical applications. Fault
tolerant computing has been a large area of study [46], however, incorporating some

of these ideas into hardware-software partitioning is an extremely young discipline.

It is common in the development of fault tolerant devices to incorporate a system’s
fault tolerant components late in the design process. This often creates a significant
overhead in terms of implementation cost. Incorporating fault tolerance at an earlier
stage of design is likely to be very beneficial in reducing this overhead. This line of
reasoning has sparked research in incorporating fault tolerance inio earlier phases in

the design process. such as hardware-software partitioning.
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Fault tolerant hardware-software partitioning generally involves adapting the
partitioning process to automatically accommodate systems requiring fault tolerance.
The most predominant work in this field is that of Dave and Jha [13]. These
researchers have developed a system that will input a functional task graph
specification and perform task clustering for fault tolerance. Their system will
choose an error recovery topology that is optimized to use a small number of extra
processing elements. Additionally, Bolchini et al. [4] have developed a partitioning
algorithm that incorporates fault detection capabilities. This may not be as robust as
full fault tolerance, however fault detection is relevant as it is a subset of fault

tolerance.

Presently, our knowledge of the joint hardware-software design process is far more
limited than that of either of the two separately. While embedded system
development can be performed as a separate process of hardware and software
design, this route can be far more challenging when attempting to meet various price
and performance requirements. Additionally, this design path has a tendency to result

in more error prone products due to a lack of formalism in design methods.

Hardware-software co-design is a burgeoning field of research and one of its most
active subsets is hardware-software partitioning. Partitioning is the process of
deciding what functional system components will be implemented as hardware and

what will be implemented as software. Effective hardware-software partitioning is
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essential for creating embedded devices that meet non-functional requirements such

as performance, power consumption and cost.

Since hardware-software partitioning has begun to flourish as a field of research,
&
greatly varying approaches to the problem have been taken. Researchers have

attempted to tackle many issues and incorporate many varying ideas. The concept of i

varying degrees of granularity allows an algorithm to separate a system’s

functionality into components of various size. Dynamic programming is an iterative,

recursive technique that has been effectively incorporated into approaches to
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partitioning. Fault tolerance is an extremely important issue, especially in embedded
systems, and partitioning approaches have been developed to incorporate these

abilities.

In the current embedded systems market, designers and developers can mostly

Wty ntoe s, 0
T

produce devices that meet requirements within a reasonable amount of time.

SaTy

However, soon the utilization of sophisticated hardware-software co-design

SR

i

techniques will be required in order to meet future device demands. As advanced
processors and ASICs become less €xpensive, the need for tools to aid the design and

development process will increase dramatically in order to ensure the development of

high quality devices with a minimum time to market. Hardware-software partitioning

will be an integral component of these tools.
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2.3 Hardware-Software Co-Synthesis

An embedded system’s architecture is typically determined by the intuition of a
design engineer. This process adds time to the development cycle and sometimes
results in architectures that do not meet non-functional requirements. It can also
residt in an over-designed architecture with excessive hardware that results in overly
expensive devices. Consequently, incorporating hardware-software co-synthesis in
design automation tools is essential for producing optimal devices with an accelerated
time-to-market. The hardware-software co-synthesis problem is concerned with
determining optimal hardware and software architectures. This involves the selection
of processors (CPUs), application specific integrated circuits (ASICs) and
communication links in order to produce a device that meets non-functional
requirements. The co-synthesis problem typically involves the selection of the
quantity and type of processing elements and communication links (allocation), task
assignment from a task graph to processing elements and confirmation of whether the
system meets requirements (usually through scheduling). A task graph is a collection
of tasks and communication dependencies that describe device functionality. The
allocation and scheduling phases are known to be NP-complete [20, 33]. thus
determining an optimal solution‘ in the co-synthesis phase can be extremely

computationally intensive.

This work is motivated by the need to automate the embedded system design process

while simultaneously producing high quality devices. The research presented in this
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thesis is further aimed at producing high performance fault folera11t embedded
systems. Embedded applications that would particularly benefit from high levels of
fault tolerance include aerospace, medical instruments and high performance
telecommunication systems. In fact, it is believed that within the next two or three
decades probes will be sent to orbit nearby stars [34]. Such embedded devices would
be responsible for considerable system control and measurement instrumentation in

addition to unparalleled fault tolerance requirements.

The primary focus of most of the co-synthesis research problem has concentrated on
the simplistic single processor and ASIC architecture (3, 6, 18, 28]. Some approaches
assume more complicated architectures, such as two CPUs and hardware-accelerated
circuitry [37]. Various approaches have been attempted that involve moving tasks
from hardware to software or vice versa in order to meet the system requirements. In

the co-synthesis of distributed systems, target architectures can incorporate multiple

processors, ASICs or FPGAs (field programmable gate arrays). Two main techniques
have been utilized to handle the co-synthesis of distributed systems: the optimal and

heuristic approaches.

The optimal approach can be divided into three sections: exhaustive, mixed integer
linear programming, and constraint solving. The exhaustive approach is

characterized by attempting all possible mappings to provide an optimal solution. It

S e S e s T

Y

can be very computationally intensive and is only suitable for smaller systems.

5

o

D’Ambrosio and Hu have presented an exhaustive technique for hardware-software

-
i
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partitioning [ 11]. I-'Iowever, their approach is limited to single processor architectures
and ignores the communication overhead. A hardware-software partitioning
technique using mixed integer linear programming is presented by Prakash and
Paﬁrker [42]. The execution time of this technique is prohibitive for large task graphs.
Moreover, this approach is limited to bus based architectures or pre-determined point-
to-point interconnection topologies. A constraint solving approach has been
presented by Kuchcinski in the JaCoP system that concentrates on scheduling and

) resource assignment [32].

The heuristic-based co-synthesis approach can be divided into two methods:
constructive and iterative. The iterative scheme is characterized by having an initial
solution, which is iteratively improved. Kirovski and Potkonjak presented an
iterative algorithm that includes power as a cost function but their approach ignored
the inter-task communication time [30]. Other iterative techniques have been
developed [25] but they are limited in that they allow for only one type of
communication link. Li and Wolf have presented an iterative co-synthesis algorithm
capable of synthesizing memory hierarchies for bus architecture topologies [36].
MOGAC is an iterative approach to the co-synthesis problem that uses genetié
algorithms [16]. Experimental results show that for large systems MOGAC suffers
due to large execution times. Wolf has also presented an iterative approach to the co-
synthesis problem producing generic device architectures [47]. Generic device
architectures can be tuned to a particular application, but it can also result in

disorganized and difficult to understand designs as the interconnection topology may
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not conform to an established architecture. The constructive heuristic method is
characterized by building the solution step by step. where the final outpui is not
-available until the algorithm terminates. Constructive co-synthesis algorithms are
presented in the COSYN [15] and COFTA [13] systems. Bakshi and Gajski have
also presented a constructive partitioning approach that supports pipelining at varying
degrees of granularity [2]. Although their approach allows the addition of multiple
software processors, it does not account for the hardware cost of adding each CPU.
All of the above co-synthesis algorithms support distributed embedded systems but

none have utilized hypercube topologies as a target architecture.

2.4 Hypercube Architectures

Hypercube topologies are useful for high performance embedded systems and have a
number of advantages over other architectures [12, 27, 35, 43]. Hypercube nodes
represent processing elements (PE) and a link between nodes represents a
communication interface (serial, parallel, Ethernet link, etc.). Hypercube topologies
are very flexible, versatile and generic. Figure 2.4 shows a hypercube network of
degree four, constructed from two 3D hypercubes. The high level of
. interconnectivity in a hypercube architecture results in a system that is suited to fault
tolerance. Additionally, hypercube systems support high performance computation
while limiting the communication overheads and/or bottlenecks associated with large-

scale systems consisting of many PEs. These features make hypercube architectures
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an excellent choice for multiple PE embedded systems that need to couple fault-
tolerance with complex computation. Additicnal advantages of hypercube
architectures include topologies with small diameters and high levels of symmetry.
Finally, routing in hypercube networks is well researched and efficient routing

algorithms are available [29].

Figure 2.4: A 4D Hypercube

" The main disadvantage of hypercube topologies is their poor upward scalability. It
can be a difficult and complex process to add nodes to a hypercube network. This
criticism applies more directly to hypercube computer systems, which are likely to be
reconfigured and expanded regularly. It is uncommon for a distributed embedded

device that has already been manufacturéed to require any additional processing
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elements. Such a circumstance could be used in reconfigurable space systems.
Another disadvantage of hypercube systems is the large number of communication
links, but additional links support fault tolerance. These communication links and
their interfaces to the processing elements result in a significant cost overhead.
However, it should be noted that this research targets high performance fault-tolerant
embedded devices. As a result, the associated cost to produce systems that meet the

flexibility, reliability and performance requirements of demanding applications is

knowingly accepted.

Many co-synthesis methods for distributed embedded systems target varying
architectures. Hypercube topologies can be considered a superset of a number of
other hierarchical architectures. Topologies such as mesh, torus, binary and quad
trees can be partially represented by suitable sized hypercube topologies. Binary
trees have even been embedded in incomplete hypercube systems [S1]. A hierarchical
architecture (e.g. tree topology) is one of the most prevalent system targets in the high

performance distributed co-synthesis research projects [13, 14].

Much of the work on automatic architecture generation in co-synthesis algorithms for
distributed embedded systems has concentrated on hierarchical topologies [14].
Although hierarchical systems can be adapted to enhance their fault tolerant
capabilities [13], a comparison of the two architectures is provided to illustrate the
capabilities of hypercube topologies. Consider a 3D hypercube with eight processing

elements presented in Figure 2.5. If the communication link between PE® and PE'
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fails. the device could still operate correctly by routing messages along alternate
channels (e.g. PE* — PE' — PE® — PE"). System performance would decrease as
communication between nodes connected by a faulty link (e.g. PEY - PE') would take
longer (three transfers instead of one). However, most importantly. the system will
continue to function. Now consider a possible hierarchical architecture
implementation of the same embedded device shown in Figure 2.6. If the equivalent
communication link (connecting PE’ and PE') fails, PE', PE’, and PE® of the
embedded device would cease to function as they cannot communicate with any of
the other PEs. This would result in a catastrophic system failure. The benefits over

alternative architectures were a major motivation for developing the first hardware-

software co-synthesis algorithm targeting hypercube topologies.
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Link

Figure 2.5: Example Hypercube Architecture

Broken
Link

Figure 2.6: Example Hierarchical Architecture
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CHAPTER 3

CO-SYNTHESIS FOR HYPERCUBE SYSTEMS

3.1 Introduction

A constructive co-synthesis approach that targets a hypercube topology as the final
system architecture is presented. The algorithm uses a library of processing elements
(PEs) including processor cores (CPUs) and application specific integrated circuits
(ASICs), which provides relevant data such as hardware area requirements and
performance information. The library can consist of many CPU types and ASICs.
The library also provides information related to various types of communication links
available with their interconnectivity costs. The algorithm takes in a task graph
representing the functionality of the device. The communication links are generic
and the co-synthesis algorithm supports all types of communication links including
serial, parallel, etc. The algorithm assumes that each PE in the hypercube system
consists of either a CPU or an ASIC. In addition to this, each PE consists of some
local memory for computational purposes and interface circuitry for communication

links.

The constructive co-synthesis approach presented in this thesis is provided in Figure

3.1 and consists of six main steps:
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1) Specification: Defining the required device functionality and performance
and arca requirements.

2) Profiling: Evaluating each functional unit in the specification for performance
and area utilization data.

3) Group Based Fault Tolerance (GBFT): A heuristic technique for adding
fault tolerance to an embedded device at the task graph level.

4} Scheduling: A technique for evaluating the current device architecture for
performance.

5) Add Processing Element: A heuristic technique for adding an additional

processing element (CPU or ASIC) to the current device architecture.
6) Synthesize Communication Links: A technique for arranging the system’s
processing elements into a hypercube topology and synthesizing all

connecting communication links.

The first phase of the approach is concerned with defining the device requirements.

Although any specification language can be used, the experimentation presented in
this thesis has been specified in C language. The second phase or the algorithm
involves the profiling of the device specification. The specification is manually
converted into task graph form. Each task in the task graph represents a functional
section of the overall device. Each of these functional sections are timed for
execution on each type of processor available in the library. Additionally hardware
alternatives to the software implementation are developed and are profiled for both

performance and area utilization. The profiling stage is complete once the software
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and hardware timing data and thc hardware area data have been collected for each

task in the task graph.

The third phase is the group based fault tolerance (GBFT) method which is applied to
the input task graph. This heuristic was developed to add a minimal fault detection
mechanism to the system and to simplify fault recovery. The algorithm adds
additional assertion and duplicate/compare tasks to the task graph. [t minimizes the
fault detection overhead by exploiting a task’s error transparency and combining
tasks into groups. The quantity and type of spare PEs in the final device is set by the
user. [Ifa fault is detected by one of the added tasks, an additional processing element
is signaled to commence execution of the failed task group. This simple heuristic

provides a low overhead method for performing node-fault detection and recoveryv.

The fourth phase is the scheduling technique (see the “Scheduling” block in Figure
3.1). This heuristic method was developed to efficiently evaluate the current device
architecture to determine if it meets performance requirements. In order to improve
device throughput, the scheduling technique utilizes the established RECOD retiming
heuristic to support pipelining of the task graph [7]). The scheduler accurately
predicts overall device performance by scheduling tasks based on data dependencies.
If the scheduler finds a task execution configuration that allows the current device
architecture to meet performance requirements then the co-synthesis algorithm
terminates successfully. If the scheduler is unable to schedule the task graph within

device performance constraints the co-synthesis algorithm proceeds to the fifth phasc.
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The fifth phase is concerned with the addition of another processing element to the
system (see the “Add Processing Element” block in Figure 3.1). This section of the
co-synthesis algorithm analyzes the current device architecture, the current task
mappings., each task’s hardware/software performance data and each task’s hardware
area data to determine the ideal type of processing element to add to the current
system. If this phase is successful in adding a processing element to the system, the
co-synthesis algorithm proceeds to phase six. If this phase is unsuccessful in adding
another processing element (unable to add more hardware while still meeting the
device hardware area constfaint) the co-synthesis algorithm terminates unsuccessfully

and provides the user with the partial solution generated.

The sixth phase is concerned with arranging the system’s processing elements within
a hypercube configuration and synthesizing all of the communication links (see the
“Synthesize Communication Links” block in Figure 3.1). This phase arranges all of
the processing elements within a hypefcube topology while attempting to keep PEs
with high levels of intercommunication within close proximity of each other. Once
all of the system’s PEs have been arranged, communication links connecting the PEs

are synthesized. Once this phase has completed, the co-synthesis algorithm proceeds

to the scheduling phase.
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Figure 3.1: Hypercube Co-Synthesis Algorithm Flow
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3.2 Fault Tolerance at the Task Graph Level

3.2.1 Overview

This subsection discusses the two main preexisting techniques for adding fault
detection/tolerance at the task graph level. Additionally, section 3.2.4 presents an
original contribution to task graph based fault tolerance techniques. In all cases fault
detection is accomplished through the addition of fault detection tasks to the task
graph. There are three types of tasks that any of the approaches presented may add to
a task graph: assertion tasks, duplicate tasks and compare tasks. An assertion task
will analyze another task’s output in order to determine whether the generated results
are erroneous. A duplicate task reproduces the same work as another task in the
graph. Typically a duplicate task will utilize an alternative implementation to that
used by the task it is duplicating. A compare task will examine the results of two
tasks to detect any inconsistencies. The addition of an assertion task typically
requires considerably less computational overhead than the addition of a duplicate
and compare set. However, assertion tasks are not always feasible. For an assertion
task to be used, error states must be able to be detected by analyzing the results. An
example assertion task could be the analysis of a checksum or checking that the

generated results lie within an expected range. Duplicate and compare tasks tend to

require a much higher computational overhead. First the entire task’s functionality

needs to be duplicated and then both generated results need to be compared.

38
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3.2.2 Task Based Fault Tolerance

Task based fault tolerance (TBFT) was developed by Yajnik et al. [49]. Task based
fault tolerance is a technique designed to add fault detection capabilities at the task
graph level. In task based fault tolerance, some form of error detection must be
performed for the results generated by each node in the task graph. Due to the
significant difference in fault tolerant overhead, assertion tasks are favoured in the
task based fault tolerance algorithm. If a given task is capable of supporting
assertions then an assertion task is added. Duplicate and compare tasks are only
added if assertions are unavailable for the given task. To demonstrate these concepts
Figure 3.2 provides an example input task graph. Figure 3.2 also illustrates the
resultant task graph after processing by the task based fault tolerance algorithm. Here
all of the tasks in the graph support the use of assertion tasks for error detection with
the exception of task T3. Task T3 has had duplicate and compare tasks added to

provide support for fault detection.
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Figure 3.2: Task Based Fault Tolerance Example ;

3.2.3 Cluster Based Fault Tolerance

Cluster based fault tolerance was developed by Dave and Jha [13]. This technique
was developed as an extension of the ideas presented in the task based fault tolerance
algorithm. Modifications were made to the approach in order to reduce the

substantial fault tolerant overhead prevalent in task based fault tolerance. In cluster
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based fault toler.ance, Dave and Jha have introduced the concept of error transparency
[13]. If atask provided with an erroneous input always produces an erroncous output
then that task is said to be error transparent. This effect is exploited in their algorithm
by grouping error transparent tasks into clusters which only require one assertion or
duplicate/compare task. Figure 3.3 shows an example task graph input and the results
generated by one iteration of the cluster based fault tolerance algorithm. Figure 3.4
shows the results after both 2 and 3 iterations of the algorithm. Figure 3.5 shows the
final clusters for the given input task graph. After all of the tasks have been grouped
into clusters, each cluster is given an assertion or duplicate/compare task to perform
error detection. Figure 3.6 shows the final clustered task graph with the addition of
error detecting assertion tasks. Each cluster is now treated as a single task in order to
ensure that all tasks within a cluster are executed on the same processing element. In

the example graph provided, all of the tasks are assumed to be error transparent.

The CBFT algorithm traverses a task graph based on task priority levels that favour
tasks that are higher in the graph. The algorithm only allows one of a given task’s
children to be added to that task’s cluster. Cluster based fault tolerance also
introduces the concept of a maximum tolerated error detection time. If a large
number of tasks were grouped into one cluster and an error occurs in the uppermost
task, the error state would not be detected until all tasks in that cluster have completed
execution. This may be undesirable as it will adversely affect performance. To avoid
this problem, Dave and Jha have incorporated a user specified maximum tolerated

error detection time into the cluster based fault tolerance algorithm [13]. The
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algorithm will not group more tasks intc one cluster if the sum of the software
execution times of those tasks exceeds the user specified maximum error detection

time. In the cluster based fault tolerance algorithm, if an error is detected on a given

cluster, the entire functionality of that cluster is moved to a spare processing element

and signaled to recommence execution.
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Figure 3.3: Cluster Based Fault Tolerance — Input & 1 [teration
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Figure 3.5: Cluster Based Fault Tolerance — Final Clustering
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Figure 3.6: Final Added Assertion Tasks After Clustering

3.2.4 Group Based Fault Tolerance

This section presents a new and original technique for adding fault detection and
tolerance at the task graph level named group based fault tolerance (GBFT). This
technique was developed as an extension of the ideas presented in both the task based
fault tolerance [49] and cluster based fault tolerance algorithms [13]. Modifications
were made to the approaches in order to reduce the fault tolerant overhead prevalent.
This algorithm utilizes the concept of error transparency. Group based fault tolerance

also uses the concept of a user specified maximum tolerated error detection time.
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In group based fault tolerance, the task graph is traversed from the lowest nodes to the
highest nodes. FEach leaf node (bottom level node) is assigned to its own group. Each
of the leaf’s parents are analyzed to determine whether they can potentially be added
to the given leaf’s group. A parent is considered a possibility for grouping in its
child’s group if it is not already grouped and if adding it to its child’s group will not
violate the user imposed error detection timing constraint. Once the set of parents
eligible for grouping have been assembled for a given task, the parents are iteratively
added to the group in order of decreasing fault tolerant overhead. This process is
ended if fhe addition of another parent task to the group will violate the user defined
error detection constraint. If a task has no children, its fault tolerant overhead is set to
its assertion overhead. If a task i does have children, its fault tolerant overhead is
calculated to be:
max{assertion _overhead(children(i))+ Com(i,children(i))]+ assertion _overhead(i)

where,

assertion_overhead(/) = the assertion overhead of task / children(i) =

set of the child tasks of i

Com(u, v) = communication time from task » to v across a

communication link
Figure 3.7 shows an example task graph input and the results generated by one
iteration of the group based fault tolerance algorithm. Figure 3.8 shows the results

after both 2 and 3 iterations of the algorithm. Figure 3.9 shows the final groupings

for the given input task graph. Finally, Figure 3.10 shows the final clustered task
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araph with the addition of crror detecting assertion tasks. A more complex example
of GBFT based task groupings is provided in Figures 4.6. 4.7, 4.8 and 4.9 in section
4.2. After all of the tasks have been grouped, each group is given an assertion or
duplicate/compare task to perform error detection. Each group is now treated as a
single task in order to ensure that all tasks within a group are executed on the same
processing element. In the example graph provided, all of the tasks are assumed to be
error transparent. In the group based fault tolerance algorithm, if an error is detected
on a given cluster, the entire functionality of that cluster is moved to a spare

processing element and signaled to recommence execution.

The group based fault tolerance algorithm adds assertion and duplicate/compare tasks
to a task graph. It does not add assertion or duplicate/compare tasks to perform
checks on the fault detection tasks that it adds. If fault detection of faults occurring in
the GBFT added tasks is wanted, then it must be added manually after the GBFT

algorithm has completed execution.
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Figure 3.7: Group Based Fault Tolerance — Input & 1 Iteration
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Figure 3.8: Group Based Fault Tolerance —2 & 3 Iterations

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




e — ~—

/'
f

% \>/\

/,

/Group 1

\\T1> (Tz
\}TJ/

After 4 ~
lterations

Figure 3.9: Group Based Fault Tolerance — Final Grouping
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3.2.5 Task Graph Based Fault Tolerance Comparison

A comparison of the results of the group based fault tolerance algorithm with both the
cluster based and task based techniques is provided in order to evaluate the newly
developed GBFT technique. Thirteen random test cases were generated and the
output of all three algorithms is compared. The test cases have varying task graph
configurations and varying user defined tolerated error detection times. The
outputted error detection information from each algorithm is compared. The data
collected has been assembled in Table 3.1. Here the values under the GBFT, CBFT
and TBFT columns are the counts of error detection tasks added to the task graph.
The fewer number of error detection tasks added to a task graph results in a smaller
fault tolerance overhead. A smaller fault tolerance overhead is desirable as it will

yield a fault tolerant device that utilizes less hardware and/or less computation time.

The first randomly generated task graph has been provided in Figure 3.11. Task

graph 4 corresponds to the task graph from the MPEG decoding case study. The task

graph can be found in Figure 4.1. Task graph 5 corresponds to the task graph from

the block matching case study and can be found in Figure 4.6.

The information gathered in the table reveals that the group based fault tolerance

. technique yields a 18.75% improvement in fault tolerance overhead over the cluster
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based fault tolerance technique and a 45.83% improvement over the task based fault

tolerance technique.

Table 3.1: Fault Tolerance Comparison Data

Task Graph # | Tolerated Error Detection Time | GBFT | CBFT TBET
(msec)
I 4 2 3 8
1 3 3 3 8
1 2 4 4 8
2 3 7 7 11
2 2 7 8 11
3 9 1 3 9
3 8 2 3 9
3 7 2 3 9
3 6 3 3 9
3 5 3 3 9
3 4 3 3 9
) 3 3 4 3 9
3 2 5 5 9
4 800 1 16 22
4 300 15 16 22
4 120 14 17 22
4 80 17 17 22
4 40 21 21 22
4 34 22 - 22 22
5 150 000 1 16 22
5 40 000 13 16 22
5 30000 14 16 22
5 20000 15 16 22
5 15000 16 16 22
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Figure 3.11: Randomly Generated Task Graph (Gra