
NOTE TO USERS

This reproduction is the best copy available.

®

UMI
R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HETEROGENEOUS HYPERCUBE ARCHITECTURES
FOR FAULT TOLERANT EMBEDDED SYSTEMS

by

Jacob Levman, BASc, Toronto, September 17*’’ 2004

A thesis

presented to Ryerson University

in partial fulfillment of the

requirement for the degree of

Master of Applied Science

in the program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2004

© Jacob Levman 2004

Î . V - -
- I f L l d i i A R Y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: EC52963

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform EC52963

Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PO Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ryerson U niversity requires the signatures o f all persons using or photocopying this
thesis. Please sign below, and give address and date.

in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hardware Software Co-Synthesis of HetervKu:rieous
Hyperciibe Architectures for Fault Tolerant Embedded

Systems

Jacob Levman,
M asters o f Applied Science, 2004.

Electrical and Com puter Engineering.
Ryerson University

A bstract

The hardware-software co-synthesis oj an embedded system ’s architecture involves the partitioning o f a

system specification into hardware and software modules so as to meet various non-functional

requirements. 4 designer can specify many non-functional requirements including cost, performance,

reliability etc. In this thesis, we present an approach to the hardware-sofhvare co-synthesis o f em bedded

systems targeting hypercube topologies. Hypercuhe topologies provide a flexible and reliable architecture

fo r an em bedded device with multiple processing elements. To the best o f our knowledge, this is the fu s t

time that hypercube topologies have been supported in a co-synthesis algorithm. The co-.synlhesis

approach presented here .supports the follow ing features: I) input in the form o f an acn-'clic periodic task

graph with real-time constraints. 2) the pipelining o f task graphs. 3) the use o f a heterogeneous set o f

processing elements. 4) Support fo r fau lt tolerance through our newly developed group based fault

tolerance technique. The co-synthesis algorithm has been applied to two case studies to demonstrate its

efficacy.

I V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

th e author would like to thank his two supervising pro lessors. Dr. Gui Khan and Dr.

.lavad Alirezaic. for providing their guidance, knowledge and support. The author would

also like to thank the m em bers o f the review com m ittee for their participation. The

author would like to thank the National Science and Engineering Research Council o f

C anada (N SER C) for providing funding support for th is research project in the form of

m ultiple grants to my supervising professors. The author would like to thank Ontario

G raduate Scholarships (O G S) for funding this research through a scholarship. The author

w ould also like to thank Canadian M icroelectronics Corporation (CM C) for providing the

ARM rapid prototyping platform that was used in the case studies o f this thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedication

1 would like to dedicate this thesis to my wife whose drive to accom plish is inspiring.

W ithout her love and support 1 would not be where 1 am today.

VI

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table o f Contents

!. IN TR O D U CTIO N I

I . I O verview I

1.2 O riginal Contributions 3

1.3 Thesis O rganization 4

2. DESIG N O F EM BED D ED SY STEM S 6

2.1 Introduction to Flardw are-Software C o-D esign 6

2.2 H ardw are-Softw are Partitioning 16

2.2.1 Standard Approach 17

2.2.2 Partitioning Granularity 18

2.2.3 Dynamic Programming 21

2.2.4 Fault Tolerance 2 2

2.3 H ardw are-Softw are C o-Synthesis 25

2.4 H ypercube A rchitectures 28

3. C O -SY N TH ESIS FO R HY PERCU BE SY STEM S 33

3.1 Introduction 33

3.2 Fault Tolerance at the Task G raph Level 38

3.2.1 Overview 38

3.2.2 Task Based Fault Tolerance 3 9

3.2.3 Cluster Based Fault Tolerance 40

3.2.4 Group Based Fault Tolerance 44

3.2.5 Task Graph Based Fault Tolerance Comparison 49

3.3 Pipelined Scheduler 51

3.4 D evice Expansion 57

3.5 C om m unication Link Integration 62

4. IM PLEM EN T A TIO N AN D EX PERIM EN TA L RESU LTS 68

4.1 Parallel M PEG -2 D ecoding 68

VII

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 I’arallel B lock M atch in g 7.^

4.3 Discussion o f Experim ental Results 93

V I I I

5. CONCLUSIONS AND FUTURE WORK 98

REFERENCES

A ppendix A - Prototype Device C ode Listing 105

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Tables

I 'ab lc 3.1 : Fault I'olcrance C om parison D ata 50

T able 4.1 : P rocessing E lem ent U tilization o f Design Space for M PEG D ecoding 72

fab le 4.2; P rocessing E lem ent U tilization o f Design Space for B lock M atching 86

T able 4.3: G enerated M otion V ectors 92

I X

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Figures

i-'igure 2.1 : T raditional Design 8

Figure 2.2: M ardware-SoFtware C o-D esign 10

Figure 2.3: lia rdw are-S oflw are C o-Synthesis 12

Figure 2.4: A 4D H ypercube 29

F igure 2.5: E xam p,e H ypercube A rchitecture 32

F igure 2.6: Exam ple H ierarchical A rchitecture 32

F igure 3.1 : H ypercube C o-Synthesis A lgorithm F low 37

Figure 3.2: T ask Based Fault T o lerance Exam ple 40

F igure 3.3: C luster B ased Fault T olerance — Inpu t & 1 Iteration 42

F igure 3.4: C luster Based Fault T olerance - 2 & 3 Iterations 43

F igure 3.5: C lu ste r B ased Fault T olerance — Final C lustering 43

F igure 3.6: F inal A dded A ssertion Tasks A fter C lustering 44

F igure 3.7; G roup Based Fault T olerance - Inpu t & 1 Iteration 47

F igure 3.8: G roup Based Fault T olerance - 2 & 3 Iterations 47

F igure 3.9: G roup B ased Fault T olerance - Final G rouping 48

F igure 3.10: Final A dded A ssertion T asks A fter G rouping 48

F igure 3 .11: R andom ly G enerated Task G raph (G raph #1) 51

F igure 3 .12: H ypercube C o-Synthesis Scheduler 54

F igure 3.13: B inary N am ing for H ypercube N odes 63

F igure 3.14: N on-Sym m etricai 3-D H ypercube 66

F igure 4.1: Parallel M PEG D ecoding: Functional T ask G raph 69

F igure 4.2: D esign Space Exploration o f Parallel M PE G D ecoding 71

F igure 4.3: Parallel M PE G D ecoding: A rchitecture for L ‘ Test C ase 73

F igure 4.4 : Parallel M PE G D ecoding: A rchitecture for 2" ‘̂ T est C ase 74

F igure 4.5: Parallel M PEG D ecoding: A rchitecture for s" ’ Test C ase 75

F igure 4.6: B lock M atching: Functional Task G raph 77

Figure 4.7: B lock M atching Task G raph: G B FT G rouping 78

Figure 4 .8 : B lock M atching Task G raph with A dded A ssertion Tasks 79

Figure 4.9: B lock M atching: Final R esultant T ask G raph 80

x

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.10; Block M atch C ircuit Design

Figure 4.11 : Block M atch State M achine

i’igure 4.12: Design Space Exploration o f Parallel Block M atchini

Figure 4.13: Final Prototype Device A rchitecture

Figure 4.14: R eference Image

Figure 4.15: Input Image

Figure 4.16: M acroblock Identification

81

83

85

89

90

91

91

X I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Glossary o f A cronym s

CA D - C om puter Aided Design

G B FT - G roup Based Fault Tolerance

C B FT - C luster Based Fault Tolerance

T B FT - I 'a sk Based Fault Tolerance

CPU — Central Processing Unit

A SIC - A pplication Specific Integrated C ircuit

FPG A - Field Program m able Gate A rray

M PEG - M otion Picture Experts G roup

PE - P rocessing E lem ent

IP - In tellectual Property

SW — Softw are

HW - Flardware

VI IDE - V ery high speed integrated circuit H ardw are D escription Language

X I I

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH A PTER I

INTRODUCTION

1.1 O verview

T he average C anadian equates the idea o f a com puter w ith a desktop or laptop. In

actuality , the defin ition o f a com puter is m uch broader. It is estim ated that in the

average C an ad ian 's hom e there are 30 to 40 em bedded system s. T elev ision , audio

system s, refrigerators, telephones, tem perature contro ls and stoves all use em bedded

com puters. E m bedded com puters also play an integral role in m any o f the assisted

dev ices tha t a id d isabled individuals in perform ing daily activ ities, e.g. pow er

w heelchairs and com m unication devices. A dditionally , m any em bedded devices are

responsib le fo r protecting hum an life; em bedded com puters control m o d em m edical

instrum en ta tion , airplanes, a ir traffic control system s, an ti-lock b reak ing system s

(A B S) and even the “ fasten your seatbelt” light on the dashboard o f your car. By

m any estim ates, em bedded devices account for 99% o f w orldw ide com puters w hile

desk tops and laptops account for ju s t 1%. E m bedded com puters are sm all-scale

app lication -specific com puting devices. Em bedded com puters already pem ieate our

society and their grov/th is expected to continue indefinitely.

It is com m on know ledge that technological developm ents are p rpducing increasingly

effic ien t and com pact com puters. This applies to em bedded com puters as w ell. The

1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.

m ore pow erful and com plicated the eomponenLs o f an em bedded device, the more

d ifllcult it is for a com puter engineer to produce a product that m eets safety,

perform ance, cost and pow er consum ption requirem ents w ithin a reasonable am ount

o f tim e. The production o f the high perform ance em bedded devices o f the future will

require tools and form al m ethods to aid engineers in system design and developm ent.

The research presented in th is thesis is centred around the developm ent o f com puter

aided design (CA D) softw are tools that will , be used to aid in the design and

developm ent o f future em bedded devices. Essentially, an engineer will tell the CA D

tool w hat the desired device should be capable o f doing; the tool will analyze the

given inform ation and recom m end a reliable and efficient design. This can aid a

product engineer in developing system s that are far m ore reliable, cost, tim e and

pow er efficient. R eliability is key for the developm ent o f safety-oriented devices that

are responsib le for protecting hum an life. M inim al production cost is im portant for

ensuring the final products are accessible to all people regardless o f socio-econom ic

status. S im ilarly , decreased labour costs as a result o f m ore expedient design, results

in a cheaper product. Finally, m inim izing a dev ice’s pow er consum ption is essential

to reducing energy costs, both financial and environm ental. These CA D tools will aid

in the developm ent o f new devices that will continue to play a central role in our

lives.

W ithin electrical and com puter engineering, em bedded system s research is in its

infancy. T his m akes it an exciting field to w ork in as it provides unique and novel

R eproduced with permission of the copyright owner. Further reproduction prohibited without oermission.

opportunities. It is also attractive due to its broad range o f applications (aerospace,

autom otive, com m unications etc.). D eveloping these software tools can be

technically challenging and thus intellectually rewarding.

1.2 O riginal Contributions

This thesis presents a new hardw are-softw are co-synthesis tool to aid in the design

and developm ent o f high perform ance em bedded devices. The proposed approach

focuses prim arily on com putationally intensive com puting system s requiring high

levels o f fault tolerance. A full hardw are-softw are co-synthesis approach is presented

w ith com parisons to a fully exhaustive technique. Im plem entation results are also

provided in order to further dem onstrate the algorithm ’s efficacy.

T he m ajor contributions o f this thesis are as follows;

• D evelopm ent o f a hardw are-softw are co-synthesis algorithm capable o f

generating hypercube architecture based em bedded devices

• D evelopm ent o f group based fault tolerance (GBFT), a technique designed

to effiCi^.itly add support for fault tolerance in em bedded system s at the task

graph level

• Com parative analysis between the newly developed G BFT algorithm and

other existing m ethods

• Com parative analysis betw een the co-synthesis algorithm presented here and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the optim al case

im plem entation o f a security/navigation device in sim ulation in order to

dem onstrate the efficacy o f the co-synthesis algorithm

Im plem entation o f a parallel block m atching device in order to

dem onstrate the efficacy o f the co-synthesis algorithm

Prototype construction o f the block m atching case study

1.3 T hesis O rganization

This thesis consists o f five chapters. The second chapter encom passes a survey o f

hardw are-softw are co-design, and a thorough survey o f hardw are-softw are

partitioning and co-synthesis. Chapter 2 also includes background on hypercube

architectures. These two chapters are intended to provide the basic understanding o f

the design issues o f hardw are-softw are em bedded system s and to survey the existing

research in this field.

The third chapter is the main com ponent o f this thesis. It consists o f a full description

o f all o f the com ponents o f the co-synthesis algorithm . These include group based

fault tolerance, a pipelined scheduling technique, a m ethod for adding processing

elem ents to the current system design, placing existing processing elem ents w ithin a

hypercube topology and synthesizing all required com m unication links.

Reproduced with permission of the copyright owner. Further reproduction prohibited without penniss 'cn .

1

The fourth chapter describes the two case studies im plem ented in order to

dem onstrate the algorithm 's efficacy. The first case study perform s the decoding o f

parallel M PEG -2 video stream s and com pares the a lgorithm 's results w ith that o f an

exhaustive technique. The second case study perform s parallel block m atching and a

final prototype device is constructed. The fourth chapter also includes a discussion o f

the experim ental results obtained from both o f the case studies. The fifth chapter

concludes th is thesis.

Reoroduced with oermission of the coovriaht owner. Further reoroduction oroh ib ited w ithou t oerm ission.

CHAPTER 2

DESIGN OF EMBEDDED SYSTEMS

2.1 Introduction to Hardware-Software Co-Design

This section surveys hardw are softw are co-design. Hardware-software co-design is

an active area o f research that involves the developm ent o f tools and m ethodologies

to aid in the design o f em bedded com puter systems. Em bedded com puters are

processing devices used in areas as diverse as wireless com m unications, medical

instrum entation, transportation and food preparation. Although these fields are

w idely different, the em bedded device com ponents o f the products share comm on

design techniques. This is an outline o f hardw are-software co-design: a m ethod for

designing and developing an em bedded com puter device. The m otivation behind co­

design is that both hardware and software components should be addressed

sim ultaneously in order to ensure that the final device m eets cost, perform ance,

reliability and pow er consum ption goals.

Separate software and hardw are design m ethods have been the subject o f a great deal

o f research over the years [21, 41]. However, the design o f both hardw are and

softw are as a jo in t venture rem ains an area o f rapidly growing research. M ost o f the

em bedded system s research has been stim ulated by the developm ent o f fairly

inexpensive high perform ance m icroprocessors [8]. W hen em bedded processors were

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s:

exclusively small and responsible for the execution o f m inimal am ounts o f software,

sim ple techniques w ere m ore than sufficient to create devices that satisfied

perform ance and functional goals w ithin a reasonable tim e to market. W ith the

num ber o f transistors on a chip increasing exponentially, em bedded devices have the

potential to utilize far more sophisticated circuits and architectures [48]. The

em bedded engineer requires CA D tools to aid in the design and developm ent o f

em bedded com puters and to predict im plem entation costs.

T he rest o f the subsection introduces the m otivation behind hardw are-softw are co­

design o f em bedded system s. A dditionally, it intends to introduce the various

com ponents o f the hardw are-softw are co-design process.

Co-Design Overview

T he em bedded system design process will vary considerably w ith respect to the type

o f product under developm ent. How ever, com m onalities can be identified and the

ability to abstract hardw are and software com ponents to the same level is greatly

exploited in hardw are-softw are co-design. The traditional approach to the design o f

an em bedded com puter system is to enforce hardw are-softw are partitioning at an

early stage. This results in w ell-defined design tracks for both the hardw are and

softw are com ponents. The m ajor w eakness in traditional em bedded system s design

Reoroduced with oermission of the coovriaht owner. Further reoroduction orohibited without oermission.

lies in the early partitioning process. A graphical overview o f the traditional design

approach is provided in Figure 2.1 below.

Integration

Requirements And
Specification

Completed Design

Software Design

Partitioning

Hardware Design

Figure 2,1: Traditional Design

O ne o f the m ajor flaws o f such an approach is the inability o f the design and

developm ent flow to correct m istakes m ade in the partitioning phase. I f during

integration, an em bedded system s engineer discovers that the product w ill not m eet

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

various non-functional requirem ents (perform ance, power consum ption, etc.), the cost

im posed on re-evaluation o f the design will be extrem ely high.

The hardw are-softw are co-design process begins with the creation o f device

requirem ents, which leads to a form al specification. Both functional and non­

functional requirem ents such as perform ance, cost and pow er consum ption are

specified. T his can then be converted into a standardized system description or

specification. Em bedded system specification requires detailed m odels to aid in the

abstract description o f com ponent functionality. A bstract m odeling that does not

differentiate betw een hardw are and softw are is know n as co-specification. Further

research into the high level m odeling o f em bedded devices w ould be greatly

beneficial.

It is com m on for this standardized description to be converted into a task graph

form at. H ardw are-softw are partitioning is perform ed on this task graph. Partitioning

is concerned with assigning an execution location (softw are or hardw are) to each

task. A fter partitioning, co-synthesis is perfom ied and typically, the co-synthesis and

partitioning phases are closely knit. C o-synthesis is broken dow n into the

assignm ent, allocation and scheduling phases. Finally, the generated softw are,

hardw are and interface m odules are integrated. Feedback in the design process can

occur at system integration by returning to the partitioning phase, thus allow ing the

designer to refine the given solution. A t integration, the overall system can be

evaluated for functional and non-functional requirem ents by using hardw are softw are

Reoroduced with oermission of the coovriaht owner. Further reoroduction orohibited without oermission.

co-sim ulation. Co-sim ulation allows for both hardware and softw are com ponents to

be tested congruently. A visual overview o f the co-design process is provided in

Figure 2.2.

Softw are Interface H ardw are

Requirem ents and
Specification

Com pleted Design

H ardw are-Softw are
Partitioning and Co-

S yn thesis

C onversion to T ask Graph

Prototyping

Integration

Figure 2.2: Hardware-Software Co-Design

10

R eoroduced w ith oe rm iss ion o f the coovriah t ow ner. Further reoroduction o roh ib ited w ithou t oe rm iss ion .

HW /SW Partitioning

T he partition ing process is concerned w ith decid ing w hat system functionality w ill be

im plem ented as hardw are and w hat will be im plem ented as software. T ypically , an

em bedded device will need to m eet a num ber o f non-functional requirem ents. T hese

w ould often include perform ance, price, reliability and pow er consum ption. W ith

m ore com ponents im plem ented in hardw are, system price and pow er consum ption

w ill increase. H ow ever, w ith a large num ber o f com ponents im plem ented in

softw are, system perform ance and reliab ility can degrade. It is im portan t to balance

the selection o f hardw are and softw are com ponents to ensure that all system

requirem ents are met. S ignificant research has been conducted w ith respect to

partition ing algorithm s in order to autom ate the process o f obtaining an efficien t

hardw are-softw are layout for an em bedded device.

HW/SW Co-Synthesis

H ardw are-softw are co-synthesis o f an em bedded device is the process by w hich the

hardw are-softw are architecture o f the system is autom atically derived to satisfy

m ultip le goals. These goals can include factors such as cost, perform ance and pow er

consum ption . H ardw are-softw are co-synthesis is inseparable from the process o f

1 1

R p.nrnrli in e d w ith nprm L Q pinn n f t h p r .n n w rin h t n w n p r F u r th e r m n m r l i irttinn n m h ih itp H w ith n i it n p r m is c in n

partition ing . The hardw are-softw are co-synthesis design flow consists o f three main

com ponents: allocation, assignm ent and scheduling. A llocation is concerned with

selecting the num ber and type o f com m unication links and processing elem ents in the

system . The assignm ent com ponent is concerned w ith the m apping o f tasks to

p rocessing elem ents. The scheduling com ponent is concerned w ith the tim ing o f task

execu tion and com m unications. T ypically , the partitioner will iteratively adapt its

hardw are m appings based largely on tlte resu lts o f the scheduler. The scheduler is

typ ica lly the final phase o f co-synthesis. A visual overview o f a com m on approach to

co -syn thesis is provided in F igure 2.3.

*

Î

I
I

Allocation

Assignment

Scheduling

I

I

I

Figure 2.3: HW/SW Co-Synthesis

12 *

R eproduced with perm ission of th e copyright owner. Further reproduction prohibited without permission.

HW /SW Co-Simui'ation

H igh perform ance em bedded system com ponents can be extrem ely com plex. It Is

d ifficu lt to develop com prehensive analytic system s to m odel the perform ance o f an

em bedded device that consists o f com plicated com ponents. C oncurren tly sim ulating

com ponents w ith d iffering behavioural m odels is referred to as co-sim ulation.

Typically , a co-sim ulation environm ent will m odel m ultip le com ponents, both

softw are and hardw are. This can be a d ifficult task as softw are sim ulation consists o f

m odeling a processor executing a series o f instructions. H ow ever, hardw are

sim ulation can consist o f m odeling som ething com pletely different, such as an analog

or d igital circuit. In an em bedded device it is com m on for the execution o f

application specific integrated circuits to depend on com m ands issued by one o f the

system ’s processors. O ne should note that co-sim ulation requires the hardw are

sim ulato r to react to input from the softw are sim ulator and vice versa.

A num ber o f co-sim ulation tools have been developed. O ne o f the m ost w ell-know n

co-sim ulation tools is Seam less from M entor G raphics. Seam less allow s the user to

tie in various hardw are and softw are sim ulators. Seam less coord inates the

com m unications betw een sim ulators to ensure that the overall behaviour reflects that

o f an em bedded device. A lthough Seam less perform s as an effective co-sim ulation

tool, it can also be applied for hardw are-softw are co-verification [44].

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HW /SW Co-Verification

Presently , our know ledge o f the jo in t hardw are-softw are design process is far m ore

lim ited than that o f e ither o f the two separately. W hile em bedded system s

developm ent can be perform ed as separate processes o f hardw are and softw are

14

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i
The com plexity o f em bedded system s prevents the designer from relying on #

traditional validation techniques such as sim ulation and testing. These techniques are #

*
insufficient to properly verify the correctness o f such a system . To address this f

problem , new form al verification m ethods are needed to overcom e the lim itations o f %

traditional validation techniques. f

M ultip le m ethods have been developed for perform ing hardw are-softw are co- |

verification. A com m on approach involves the use o f a Petri-net based representation E

o f em bedded system s, as in the system nam ed PRES [9, 10]. The PR ES m odel

proves the correctness o f an em bedded system fay determ ining the tru th o f |

com putation tree logic and tim ed com putation tree logic. These research projects | |

$
m ake use o f m odel checking to prove the correctness o f em bedded system s and have |

used an autom atic teller m achine server to dem onstrate the feasib ility o f their I
Iapproach. A nother approach developed by H siung involves the use of linear hybrid |

I
autom ata and em ploys a sim plification strategy to address the state-space explosion |

that occurs in the form al verification o f com plex system s [26]. |

design , this route can be far m ore challenging w hen attem pting to m eet various price

and perfo rm ance re<- icn ts . A dditionally , this design path has a tendency to result

in m ore erro r prone ucts due to difficulties in em bedded system verification.

R esearch in to system m odeling is a key elem ent to our understanding o f hardw are-

so ftw are co-design. W hile m any abstract m odels for em bedded system com ponents

ex ist, there is a lack o f accurate m odels to address the detailed characteristics o f these

com ponents. Em bedded system s are alw ays being developed w ith various

perfo rm ance and cost m etrics in m ind. In order to properly m eet those requirem ents,

it is essential to develop a thorough understanding o f m odeling that includes both the

in tricacies o f a com ponent as well as its h igh level properties.

In the cu rren t em bedded system s m arket, designers and developers can m ostly

p roduce dev ices that m eet requirem ents w ith in a reasonable am ount o f tim e.

H ow ever, soon the u tilization o f sophisticated hardw are-softw are co-design

techn iques w ill be required in order to m eet future device dem ands. A s advanced

p rocessors and A SIC s becom e less expensive, the need for too ls to aid the design and

d evelopm en t process w ill increase dram atically in order to ensure the developm en t o f

h igh quality devices w ith a m inim um tim e to m arket.

15

Reproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.

2.2 H ardw are-Softw are Partitioning

H ardw are-softw are partitioning is the process by which the various com ponents o f an

em bedded com puter’s functionality are placed in either hardw are o r softw are. The

m otivation behind the partitioning process is to produce a reliable em bedded device

that m eets perform ance, cost and pow er consum ption requirem ents.

T he partition ing process is a subset o f hardw are-softw are co-design. C om puter

com ponents suitable for use in em bedded devices have increased in ability and

com plexity dram atically in recent years. The jo b o f an em bedded system s engineer

involves selecting appropriate com ponents and integrating them to produce an

em bedded device. The rapid increase in both com plexity and perform ance o f these

com ponents has resulted in an increase in the difficulty o f com ponent selection and

integration. These d ifficulties have fuelled dem and for too ls and design

m ethodologies to aid in the creation o f em bedded devices th a t are com prised o f both

hardw are and softw are com ponents.

The typical em bedded system design approach is significantly restrictive. The main

flaw revolves around the lack o f design flow after system integration and prototyping.

If the system is integrated and an expensive prototype is produced, further design

changes can be extrem ely costly. These further design changes m ay have to occur if

16

R eoroduced with oermisslon of the coDvrlaht owner. Further renroduction o roh lh ited w ithou t nerm lcR inn

prototyping reveals that the system will not m eet non-functional requirem ents (such

as perform ance).

This subsection 's goal is to introduce the reader to the m otivation behind hardw are-

softw are partitioning for em bedded devices. Additionally, this subsection intends to

introduce the reader to the existing research in hardw are-softw are partitioning.

2.2.1 Standard Approach

The partitioning process is concerned w ith deciding which system functionality will

be im plem ented as hardw are and w hich will be im plem ented as softw are. It is

im portant to balance the selection o f hardw are and software com ponents to ensure

that all system requirem ents are m et. Significant research has been conducted w ith

respect to partitioning algorithm s in order to autom ate the process o f obtaining an

efficient hardw are-softw are layout for an em bedded device.

The standard approach to hardw are-softw are partitioning involves the use o f a

heuristic to prioritize a task set. This prioritization aids in the determ ination o f task

m apping (to hardw are or software). O ften m uch o f the job o f the partitioning

algorithm researcher is sim ply to develop an effective heuristic that w ill result in an

optim al partitioning algorithm .

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T he earliest partitioning algorithm s proposed, began by im plem enting all com ponents

in software and proceeded to move com ponents to hardware im plem entations until

various system requirem ents were optim ized [18]. O ther early approaches proposed

to im plem ent all com ponents in hardware and to proceed to m ove com ponents to

software until system requirem ents were met [22]. A more recent approach involves

m aking an educated guess with reference to whether a given task should first be

m apped to software or to hardw are [6]. Afterwards, the algorithm would iteratively

attem pt re-m apping tasks from their original locations until requirem ents are satisfied.

These techniques and versions thereof are still in use. In all cases the approach is

sim ilar, the algorithm attem pts a default o r initial configuration, analyzes its

effectiveness and iteratively alters the current layout i f non-functional requirem ents

are not m et. O ther techniques to aid in the heuristics for partitioning decisions

include linear integer program m ing [38], sim ulated annealing [40] and petri-nets [19].

2.2.2 Partitioning Granularity

G ranularity defines the size o f system com ponents that can be im plem ented in either

hardw are or software. A partitioning algorithm that operates a t a high level o f

granularity (also referred to as coarse-grained) uses only large blocks o f system

functionality to be im plem ented on any given processing elem ent (PE). It can be

beneficial for a large segm ent o f functionality to be im plem ented on the same PE.

This is particularly evident in larger scale distributed em bedded devices, where

18

R eoroduced w ith oerm iss lon o f th e c n n u r i o h t ow ner F u r t h e r r e n r n d i lo tinn n rn h ih i t e H w i th m it n o r m io o i o n

I

dividing a high grained system into sm aller com ponents and then m apping them

across the system can yield an unnecessarily high com m unication overhead. This

occurs when tightly coupled com ponents arc “spread out” throughout the system.

U sing the granularity that is specified by the program m er o f an application is often

referred to as a high level o f granularity. Gupta and DeM icheli developed an

approach to the coarse grained hardw are-softw are partitioning problem [23]. They

present a partitioning procedure to identify potential hardw are and software

com ponents o f a system. Their technique also utilizes the O lym pus Synthesis System

for digital design [39] for the synthesis o f dedicated hardw are w ithin their system.

Yen and W o lf have also developed an approach to the coarse grained partitioning

problem [52]. They present an autom atic iterative im provem ent technique for

sim ultaneously perform ing concurrency optim ization and hardw are-softw are

tradeoffs. By considering both concurrency and hardw are-softw are tradeoffs, their

approach is able to identify cost/perform ance points that may not have been identified

otherwise.

A partitioning algorithm that operates at a low level o f granularity (also referred to as

fine-grained) will often divide an em bedded system ’s functionality into extrem ely

sm all com ponents. Fine-grained partitioning algorithm s have the disadvantage that

separating system functionality on such a small scale can dram atically increase

com m unication overheads, which has the effect o f decreasing system perform ance.

Som e system s use this approach when they are dealing with partially re-configurable

processors (processors whose IP cores can be m odified during the design process).

19

R eoraducsd w ith nerm iss ion o f t h e oonurlnht ow ner F u r t h e r r e n r n r l n o t in n n rn h ih i t e H w ith n i it n e r m i c c i n n

Finally, there is one research project know n that involves m erging these tw o ideas o f

varying granularity [24]. This concept is known as flexible granularity. D epending

on the characteristics o f the specific application and the system ’s non-functional

requirem ents, the selected granularity can span from a low level o f base blocks all the

way to the user-defined functions. This approach is intended to overcom e the

shortcom ings o f both o f the previous approaches. This work also includes estim ation

20

Fine-grained system s can provide a better solution than coarse-grained algorithm s

because they are more llexible in tenns o f m apping the correct com putationally

intensive com ponents to the appropriate processing elem ents. Fine-grained system s

reduce the potential negative effect o f having to deal with a poorly defined system §

functional specification. A fine-grained system can refine the design on such a small

scale that some will take one single com putationally intensive CPU instruction and |

treat it as a separate task [1]. It is com m on for tasks (individual com ponents that can i

be m apped to hardware) to be called base blocks when dealing w ith fine grained ^

partitioning. Ernst et al. have developed a heuristic approach to the fine grained 1
fthardw are-softw are partitioning problem [18]. They have developed an iterative É

partitioning process which is based on hardw are extraction and is controlled by a cost §

function. This technique is in use in the CO SYM A system [40]. K nudsen and |

M adsen have also presented an approach to the fine grained partitioning problem |

;
[30]. This approach uses dynam ic program m ing to solve both tlie problem s o f system I

execution tim e and hardw are area constraints. This technique is in use in the LY COS I
Isystem [38]. i

s

m ethodologies adapted to different levels o f granularity, which help to determ ine the

final system granularity.

2.2.3 Dynamic Programming

D ynam ic program m ing is a technique ideal for problem s where calculating all

possib le outcom es is not com putationally feasible. This m akes dynam ic

program m ing well suited to the partitioning problem , which can be extrem ely

com putationally intensive. Typically, a dynam ic solution is recursive and iterative in

nature.

D ynam ic program m ing problem s can alw ays be divided into stages where a decision

w ill be required at each stage. Typically there are a num ber o f states associated with

each stage. D ecisions m ade at one stage will alter the current state into a new state in

the nex t stage. The decision m ade at a given state does not depend on the decisions

m ade in the previous state. It can be seen that dynam ic program m ing extends itse lf

easily to hardw are-softw are partitioning w hich can be approached as a recursive,

iterative, state based problem . O ften a dynam ic program m ing solution will

effectively process a task graph and im prove algorithm execution speed by avoiding

testing infeasible combinations.

21

R eoroduced w ith oerm iss lon o f the coovrioh t ow ner. Furthe r renroduction oroh ih ited w ithou t oerm isslon.

Fault tolerance is a large area o f com puting, whereby com putational devices are

developed which m ust m eet various m ission critical and safety critical requirem ents.

These types o f system s are com m on in aerospace and biom edical applications. Fault

tolerant com puting has been a large area o f study [46], however, incorporating som e

o f these ideas into hardw are-softw are partitioning is an extrem ely young discipline.

the design process, such as hardw are-softw are partitioning.

22

p A n r n t r l i ir iAfl w i t h n A r m i c i s i n n n f t h A r t n n v / r i n h t n u / n A r P i i r t h A r r A n r n r l i i r i i n n n r n h i h i t A r l \A/i th r ti it n A r m l c c l r v n

Shrivastava et al. [45] have used dynam ic program m ing to develop an algorithm that

can effectively solve the partitioning problem with extrem ely fast execution tim es.

Chang and Pedram [5] have also used dynamic program m ing to determ ine the

solution to the coarse-grained partitioning problem o f a generic task graph. Knudsen

and M adsen [31] have used dynamic program m ing to determ ine the solution to the |

I
fine-grained partitioning problem . |

#

I
2.2.4 Fault Tolerance |

Î
I
I%It is com m on in the developm ent o f fault tolerant devices to incorporate a system ’s |

fault tolerant com ponents late in the design process. This often creates a significant

overhead in terms o f im plem entation cost. Incorporating fault tolerance at an earlier

stage o f design is likely to be very beneficial in reducing th is overhead. This line o f
$

reasoning has sparked research in incorporating fault tolerance into earlier phases in |

I
I

Fault tolerant hardw are-softw are partitioning generally involves adapting the

partitioning process to autom atically accom m odate system s requiring fault tolerance.

T he m ost predom inant work in this field is that o f Dave and .Iha [13]. These

researchers have developed a system that will input a functional task graph

specification and perform task clustering for fault tolerance. Their system will

choose an error recovery topology that is optim ized to use a small num ber o f extra

processing elem ents. A dditionally, Bolchini e t al. [4] have developed a partitioning

algorithm that incorporates fault detection capabilities. This m ay not be as robust as

full fault tolerance, how ever fault detection is relevant as it is a subset o f fault

tolerance.

Presently, ou r know ledge o f the jo in t hardw are-softw are design process is far m ore

lim ited than that o f either o f the tw o separately. W hile em bedded system

developm ent can be perform ed as a separate process o f hardw are and softw are

design, this route can be far m ore challenging w hen attem pting to m eet various price

and perform ance requirem ents. A dditionally, this design path has a tendency to result

in m ore error prone products due to a lack o f form alism in design m ethods.

H ardw are-softw are co-design is a burgeoning field o f research and one o f its m ost

active subsets is hardw are-softw are partitioning. Partitioning is the process o f

deciding w hat functional system com ponents w ill be im plem ented as hardw are and

w hat will be im plem ented as softw are. Effective hardw are-softw are partitioning is

23

Reoroduced with oermisslon of the coovrioht owner. Further reoroduction orohihited without oermisslon.

24

Reoroduced with oermisslon of the coovrioht owner. Further reoroduction orohihited without oermisslon.

essential for creating em bedded devices that m eet non-functional requirem ents such

as perform ance, pow er consum ption and cost.

Since hardw are-softw are partitioning has begun to flourish as a field o f research,

greatly varying approaches to the problem have been taken. R esearchers have

attem pted to tack le m any issues and incorporate m any varying ideas. The concept o f

varying degrees o f granularity allow s an algorithm to separate a system ’s

functionality into com ponents o f various size. D ynam ic program m ing is an iterative,

recursive technique that has been effectively incorporated into approaches to

partitioning. Fault tolerance is an extrem ely im portant issue, especially in em bedded

system s, and partitioning approaches have been developed to incorporate these

abilities.

In the current em bedded system s m arket, designers and developers can m ostly I

produce devices that m eet requirem ents w ithin a reasonable am ount o f tim e. f

H ow ever, soon the utilization o f sophisticated hardw are-softw are co-design 1
#

techniques will be required in order to m eet future device dem ands. A s advanced I

I
processors and A SIC s becom e less expensive, the need fo r tools to aid the design and S

Idevelopm ent process will increase dram atically in order to ensure the developm ent o f |

high quality devices with a m inim um tim e to m arket. H ardw are-softw are partitioning I

*
will be an integral com ponent o f these tools. |

2.3 H ardw are-Softw are Co-Synthesis

A n em bedded system ’s architecture is typically determ ined by the intuition o f a

design engineer. This process adds tim e to the developm ent cycle and som etim es

resu lts in arch itectu res that do not m eet non-functional requirem ents. It can also

resirit in an over-designed architecture w ith excessive hardw are that resu lts in overly

expensive devices. C onsequently , incorporating hardw are-softw are co-synthesis in

design au tom ation too ls is essential for producing optim al devices w ith an accelerated

tim e-to-m arket. The hardw are-softw are co-synthesis problem is concerned with

determ ining optim al hardw are and softw are architectures. This involves the selection

o f processors (C PU s), application specific integrated circuits (A SIC s) and

com m unication links in order to produce a device that m eets non-functional

requirem ents. The co-synthesis problem typically involves the selection o f the

quantity and type o f processing elem ents and com m unication links (allocation), task

assignm ent from a task graph to processing elem ents and confirm ation o f w hether the

system m eets requirem ents (usually through scheduling). A task graph is a collection

o f tasks and com m unication dependencies that describe device functionality . The

a llocation and scheduling phases are know n to be N P-com plete [20, 33], thus

determ ining an optim al solution in the co-synthesis phase can be extrem ely

com putationally intensive.

T his w ork is m otivated by the need to autom ate the em bedded system design process

w hile sim ultaneously producing high quality devices. The research presented in this

25

R e o r o d u c e d w i th o e r m i s s l o n o f t h e c o o u r i n h t o w n e r F u r t h e r r e n r n d i i c t in n o r o h i h i t e d w i th n i it n e r m i s s i o n

thesis is further aim ed at p roducing high perform ance fault to lerant em bedded

system s. Em bedded applications that w ould particularly benefit from high levels o f

fault to lerance include aerospace, m edical instrum ents and high perform ance

telecom m unication system s. In fact, it is believed that w ithin the next two or three

decades probes will be sent to o rb it nearby stars [34]. Such em bedded devices w ould

be responsib le for considerable system control and m easurem ent instrum entation in

addition to unparalleled fault to lerance requirem ents.

T he prim ary focus o f m ost o f the co-synthesis research problem has concentrated on

the sim plistic single processor and A SIC architecture [3, 6, 18, 28]. Som e approaches

assum e m ore com plicated architectures, such as tw o C PU s and hardw are-accelerated

circu itry [37]. V arious approaches have been attem pted that involve m oving tasks

from hardw are to softw are o r vice versa in o rder to m eet the system requirem ents. In

the co-syn thesis o f d istribu ted system s, target architectures can incorporate m ultiple

p rocessors, A SIC s o r FPG A s (field program m able gate arrays). T w o m ain techniques

have been u tilized to hand le the co-syn thesis o f d istribu ted system s: the optim al and

heuristic approaches.

T he optim al approach can be d iv ided in to three sections: exhaustive, m ixed integer

linear p rogram m ing, and constra in t solving. The exhaustive approach is

characterized by attem pting all possib le m appings to provide an optim al solution. It

can be very com putationally in tensive and is only suitable for sm aller system s.

D ’A m brosio and Hu have presented an exhaustive technique for hardw are-softw are

26

R o n r n r l i icieri w i th r\<=»rmi.o.c.inn n f t h o n n n v / r in h t n w n o r P i i r t h o r I 'onrnr l i m t in n n r n h i h i t o r i w i th n i it n o r m i c c i n n

I

partitioning [11]. H ow ever, their approach is lim ited to single processor architectures

and ignores the com m unication overhead. A hardw are-softw are partitioning

technique using m ixed integer linear program m ing is presented by Prakash and

Parker [42]. T he execution tim e o f th is technique is prohibitive for large task graphs.

M oreover, this approach is lim ited to bus based architectures or pre-determ ined point-

to -poin t in terconnection topologies. A constrain t solving approach has been

presented by K uchcinski in the JaC oP system that concentrates on scheduling and

resource assignm ent [32].

The heuristic-based co-synthesis approach can be divided into tw o m ethods:

constructive and iterative. The iterative schem e is characterized by having an initial

so lution, w h ich is iteratively im proved. K irovski and Potkonjak presented an

iterative algorithm that includes pow er as a cost function but their approach ignored

the in ter-task com m unication tim e [30]. O ther iterative techniques have been

developed [25] but they are lim ited in that they allow for only one type o f

com m unication link. Li and W o lf have presented an iterative co-synthesis algorithm

capable o f synthesizing m em ory hierarchies for bus architecture topologies [36].

M O G A C is an iterative approach to the co-synthesis problem that uses genetic

algorithm s [16]. Experim ental results show that for large system s M O G A C suffers

due to large execution tim es. W olf has also presented an iterative approach to the co ­

synthesis problem producing generic device architectures [47]. G eneric device

arch itectures can be tuned to a particular application, but it can also result in

d isorganized and d ifficu lt to understand designs as the interconnection topology m ay

27

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

no t con fonn to an established architecture. The constructive heuristic m ethod is

characterized by building the solution step by step, w here the final ou tput is not

available until the algorithm term inates. C onstructive co-synthesis algorithm s are

presented in the CO SY N [15J and C O FTA [13] system s. Bakshi and G ajski have

also presented a constructive partition ing approach that supports p ipelin ing at vary ing

degrees o f granularity [2]. A lthough their approach allow s the addition o f m ultip le

softw are processors, it does not account for the hardw are cost o f add ing each CPU .

A ll o f the above co-synthesis algorithm s support distributed em bedded system s but

none have utilized hypercube topologies as a target architecture.

2.4 H ypercube A rchitectures

H ypercube topologies are useful for h igh perform ance em bedded system s and have a

num ber o f advantages over o ther architectures [12, 27, 35, 43]. H ypercube nodes

represent processing elem ents (PE) and a link betw een nodes represen ts a

com m unication interface (serial, parallel, E thernet link, etc.). H ypercube topologies

are very flexible, versatile and generic. Figure 2.4 show s a hypercube netw ork o f

degree four, constructed from tw o 3D hypercubes. T he high level o f

in terconnectiv ity in a hypercube architecture results in a system that is su ited to fault

tolerance. A dditionally , hypercube system s support high perform ance com putation

w hile lim iting the com m unication overheads and/or bottlenecks associated w ith large-

scale system s consisting o f m any PEs. These features m ake hypercube arch itectures

28

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an excellen t choice for m ultip le PE em bedded system s that need to couple fault-

to lerance w ith com plex com putation. A dditional advantages o f hypercube

arch itectu res include topologies w ith sm all d iam eters and high levels o f sym m etry.

F inally , routing in hypercube netw orks is w ell researched and efficien t routing

a lgorithm s are available [29].

Figure 2.4: A 4D Hypercube

The m ain d isadvantage o f hypercube topologies is their poor upw ard scalability . It

can be a d ifficu lt and com plex process to add nodes to a hypercube netw ork . This

critic ism app lies m ore d irectly to hypercube com puter system s, w hich are likely to be

reconfigured and expanded regularly . It is uncom m on for a d istributed em bedded

device that has already been m anufactured to require any additional processing

29

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.

elem ents. Such a circum stance could be used in reconfigurable space system s.

A nother d isadvantage o f hypercube system s is the large num ber o f com m unication

links, bu t additional links support fault tolerance. These com m unication links and

their interfaces to the processing elem ents result in a significant cost overhead.

H ow ever, it should be noted that this research targets h igh perform ance fault-tolerant

em bedded devices. As a result, the associated cost to produce system s that m eet the

flexibility, reliability and perform ance requirem ents o f dem anding applications is

know ingly accepted.

M any co-syn thesis m ethods for distributed em bedded system s target varying

architectures. H ypercube topologies can be considered a superset o f a num ber o f

other h ierarch ical architectures. Topologies such as m esh, torus, binary and quad

trees can be partially represented by suitable sized hypercube topologies. B inary

trees have even been em bedded in incom plete hypercube system s [51]. A hierarchical

arch itecture (e.g. tree topology) is one o f the m ost prevalent system targets in the high |

perform ance d istribu ted co-synthesis research projects [13, 14].

M uch o f the w ork on autom atic architecture generation in co-synthesis algorithm s for

d istributed em bedded system s has concentrated on hierarchical topologies [14].

A lthough hierarchical system s can be adapted to enhance their fau lt tolerant t
;

capabilities [13], a com parison o f the two architectures is provided to illustrate the

capabilities o f hypercube topologies. Consider a 3D hypercube w ith eight processing

elem ents presented in Figure 2.5. I f the com m unication link betw een PE° and PE '

30

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

fails, the device could still operate correctly by routing m essages along alternate

channels (e.g. PE" PE"* PE^ —> P E '). System perform ance would decrease as

com m unication between nodes connected by a faulty link (e.g. PE" - P E ') would take

longer (three transfers instead o f one). Elowever, most im portantly, the system will

continue to function. N ow consider a possible hierarchical architecture

im plem entation o f the same em bedded device show n in Figure 2.6. If the equivalent

com m unication link (connecting PE° and P E ') fails, P E ', PE^, and PE^ o f the

em bedded device would cease to function as they cannot com m unicate w ith any o f

the other PEs. This w ould result in a catastrophic system failure. The benefits over

alternative architectures were a m ajor m otivation for developing the first hardw are-

softw are co-synthesis algorithm targeting hypercube topologies.

31

Reoroduced with oermission of the coovrioht ow ner. Further reoroduction oroh ih ited w ithou t oerm iseion.

PE'

Broken

I i

Link

Figure 2.5: Example Hypercube Architecture

a

Broken
Link

PE°

PE

PE

Figure 2.6: Example Hierarchical Architecture

«

32

Ronrrvrll iP.oH \A/ith n o r m i c o i n n n f f h o nnnv /r lnh f nvA/nnr P i i r fh n r m n rn H i m tin n nrnhiKifnX vA/liKm if

CHAPTER 3

CO-SYNTHESIS FOR HYPERCUBE SYSTEMS

3.1 Introduction

A constructive co-synthesis approach that targets a hypercube topology as the final

system architecture is presented. The algorithm uses a library o f processing elem ents

(PEs) including processor cores (CPUs) and application specific integrated circuits

(A SIC s), w hich provides relevant data such as hardware area requirem ents and

perform ance inform ation. The library can consist o f many C PU types and ASICs.

The library also provides inform ation related to various types o f com m unication links

available w ith their interconnectivity costs. The algorithm takes in a task graph

representing the functionality o f the device. The com m unication links are generic

and the co-synthesis algorithm supports all types o f com m unication links including

serial, parallel, etc. The algorithm assum es that each PE in the hypercube system

consists o f either a CPU or an ASIC. In addition to this, each PE consists o f some

local m em ory for com putational purposes and interface circuitry for com m unication

links.

The constructive co-synthesis approach presented in this thesis is provided in Figure

3.1 and consists o f six main steps:

33

Reoroduced with oermission of the coovrioht owner. Further reoroduction orohihited without oermission.

1) Specification; Defining the required device functionality and perform ance

and area requirements.

2) Profiling; Evaluating each functional unit in the specification for perform ance

and area utilization data.

3) Group Based Fault Tolerance (GBFT); A heuristic technique for adding

fault tolerance to an em bedded device at the task graph level.

4) Scheduling; A technique for evaluating the current device architecture for

perform ance.

5) Add Processing Element; A heuristic technique for adding an additional

processing elem ent (CPU or ASIC) to the current device architecture.

6) Synthesize Communication Links; A technique for arranging the system ’s

processing elem ents into a hypercube topology and synthesizing all

connecting com m unication links.

The first phase o f the approach is concerned w ith defining the device requirem ents.

A lthough any specification language can be used, the experim entation presented in

this thesis has been specified in C language. The second phase or the algorithm

involves the profiling o f the device specification. The specification is m anually

converted into task graph form. Each task in the task graph represents a functional

section o f the overall device. Each o f these functional sections are tim ed for

execution on each type o f processor available in the library. A dditionally hardware

alternatives to the software im plem entation are developed and are profiled for both

perform ance and area utilization. The profiling stage is com plete once the software

34

Î

R e n r n d u c . e d w i th n e r m i s s i n n n f t h n n n n u r l n h t n w n n r F i i r th n r rn n rn r l i in tinn n rn h lh i to r l w i th n i it n o r m i c t i n n

and hardw are tim ing data and the hardw are area data have been collected for each

task in the task graph.

The third phase is the group based fault tolerance (GBFT) m ethod which is applied to

the input task graph. This heuristic was developed to add a m inimal fault detection

m echanism to the system and to sim plify fault recovery. The algorithm adds

additional assertion and duplicate/com pare tasks to the task graph. It m inim izes the

fault detection overhead by exploiting a task ’s error transparency and com bining

tasks into groups. The quantity and type o f spare PEs in the final device is set by the

user. I f a fault is detected by one o f the added tasks, an additional processing elem ent

is signaled to com m ence execution o f the failed task group. This sim ple heuristic

provides a low overhead m ethod for perform ing node-fault detection and recovery.

T he fourth phase is the scheduling tec’in ique (see the “ Scheduling” block in Figure

3.1). This heuristic m ethod was developed to efficiently evaluate the current device

architecture to determ ine if it m eets perform ance requirem ents. In order to improve

device throughput, the scheduling technique utilizes the established RECOD retiming

heuristic to support pipelining o f the task graph [7]. The scheduler accurately

predicts overall device perform ance by scheduling tasks based on data dependencies.

If the scheduler finds a task execution configuration that allows the current device

architecture to m eet perfom iance requirem ents then the co-synthesis algorithm

term inates successfully. If the scheduler is unable to schedule the task graph within

device perform ance constraints the co-synthesis algorithm proceeds to the fifth phase.

35

Reoroduced with oermission of the coovrioht owner. Further reoroduction orohihited without oermission.

The fifth phase is concerned with the addition o l'ano ther processing elem ent to the

system (see the "A dd Processing Elem ent” block in Figure 3.1). This section o f the

co-synthesis algorithm analyzes the current device architecture, the current task

m appings, each ta sk 's hardw are/softw are perfom iance data and each task’s hardware

area data to determ ine the ideal type o f processing elem ent to add to the current

system. I f this phase is successful in adding a processing elem ent to the system , the

co-synthesis algorithm proceeds to phase six. If this phase is unsuccessful in adding

another processing elem ent (unable to add more hardware while still m eeting the

device hardw are area constraint) the co-synthesis algorithm term inates unsuccessfully

and provides the user with the partial solution generated.

The sixth phase is concerned with arranging the system ’s processing elem ents within

a hypercube configuration and synthesizing all o f the com m unication links (see the

“Synthesize Com m unication L inks” block in Figure 3.1). This phase arranges all o f

the processing elem ents w ithin a hypercube topology w hile attem pting to keep PEs

w ith high levels o f intercom m unication within close proxim ity o f each other. Once

all o f the system ’s PEs have been arranged, com m unication links connecting the PEs

are synthesized. O nce this phase has com pleted, the co-synthesis algorithm proceeds

to the scheduling phase.

36

I

R e n m d u c e d w ith D s r m i s g l o n o f t h e c o o v r i o h t o w n e r . F u r t h e r r e n r o d u c t i o n n rn h ih i t e r i w i t h o u t n e r m i s s i o n

Specification

Profiling

GBFT

Scheduling

Yes
Constraints
Satisfied? Finish - Successful

N o

Add Processing
E lem ent

N o
Finish - UnsuccessfulSuccessful ?

Y es

Synthesize
Communication Links

Figure 3.1: Hypercubc Co-Synthesis Algorithm Flow

37

R o n m r l i i P - f a r l VA/ith n c a r m l c c i n n r \ f t h o r t n n v / r i n h t n v A /n o r P i i r t h o r r o n r r v H i i / ^ t i n n n r n h i h i t c i H i A / l t h r v i i + n c s r m iG c l r v n

3.2 F ault T oleran ce at the T ask G raph Level

3.2,1 Overview

This subsection discusses the tw o main preexisting techniques for adding fault

detection/tolerance at the task graph level. A dditionally, section 3.2.4 presents an

original contribution to task graph based fault tolerance techniques. In all cases fault

detection is accom plished through the addition o f fault detection tasks to the task

graph. There are three types o f tasks that any o f the approaches presented m ay add to

a task graph: assertion tasks, duplicate tasks and com pare tasks. An assertion task

w ill analyze another task’s output in order to determ ine w hether the generated results

are erroneous. A duplicate task reproduces the sam e w ork as another task in the

graph. Typically a duplicate task will utilize an alternative im plem entation to that

used by the task it is duplicating. A com pare task will exam ine the results o f tw o

tasks to detect any inconsistencies. The addition o f an assertion task typically

requires considerably less com putational overhead than the addition o f a duplicate

and com pare set. How ever, assertion tasks are not alw ays feasible. For an assertion

task to be used, error states m ust be able to be detected by analyzing the results. An

exam ple assertion task could be the analysis o f a checksum or checking that the

generated results lie w ithin an expected range. Duplicate and com pare tasks tend to

require a m uch higher com putational overhead. First the entire task ’s functionality

needs to be duplicated and then both generated results need to be com pared.

38

R eoroduced with oermission of the coDvriaht owner. Further reoroduction orohibited without oermission.

3.2.2 Task Based Fault Tolerance

Task based fau lt to lerance (TB FT) w as developed by Y ajnik et al. [49]. Task based

fault to lerance is a technique designed to add fault detection capabilities at the task

graph level, in task based fault tolerance, som e form o f error detection m ust be

perform ed fo r the results generated by each node in the task graph. Due to the

sign ificant d ifference in fault to leran t overhead, assertion tasks are favoured in the

task based fau lt to lerance algorithm . If a given task is capable o f supporting

assertions then an assertion task is added. D uplicate and com pare tasks are only

added i f assertions are unavailable for the given task. To dem onstrate these concepts

F igure 3.2 provides an exam ple input task graph. Figure 3.2 also illustrates the

resu ltan t task graph after processing by the task based fault to lerance algorithm . H ere

all o f the tasks in the g raph support the use o f assertion tasks for error detection w ith

the excep tion o f task T3. Task T3 has had duplicate and com pare tasks added to

provide support for fault detection.

39

R eoroduced w ith oe rm iss ion o f the co o v rio h t o w ne r. Fu rthe r reo roduction o roh ib ited w ith o u t oe rm iss ion .

TO

Assert
TO

T1T1

T3T2T3 Dupi.
T3

T2

Input Assert
T1

Assert
T2

Output

Comp.
T3

Figure 3.2: Task Based Fault Tolerance Example

40

I

3.2.3 Cluster Based Fault Tolerance

C luster based fau lt to lerance was developed by D ave and Jha [13]. T his technique

w as developed as an extension o f the ideas presented in the task based fau lt tolerance

algorithm . M odifications w ere m ade to the approach in o rder to reduce the

substan tial fault to lerant overhead prevalen t in task based fau lt tolerance. In cluster

R p -n m rli ir .e ri w ith n o r m k c i n n n f t h e c n n u r in h t n u u n e r F u r t h e r re n ro H i le t in n n r e h ih i t e r l vA/ithei it n o t ' m i e c . i n n

based fault tolerance, Dave and Jha have introduced the concept o f error transparency

[13]. I f a task provided w ith an erroneous input alw ays produces an erroneous output

then that task is said to be error transparent. This effect is exploited in their algorithm

by grouping error transparent tasks into clusters which only require one assertion or

duplicate /com pare task. Figure 3.3 shows an exam ple task graph input and the results

generated by one iteration o f the cluster based fault tolerance algorithm . Figure 3.4

show s the results after both 2 and 3 iterations o f the algorithm . Figure 3.5 show s the

final c lusters for the given input task graph. A fter all o f the tasks have been grouped

into clusters, each cluster is given an assertion or duplicate/com pare task to perform

erro r detection. Figure 3.6 show s the final clustered task graph with the addition o f

erro r detecting assertion tasks. Each cluster is now treated as a single task in order to

ensure that all tasks w ithin a cluster are executed on the sam e processing elem ent. In

the exam ple graph provided, all o f the tasks are assum ed to be error transparent.

The C B FT algorithm traverses a task graph based on task priority levels that favour

tasks that are h igher in the graph. The algorithm only allow s one o f a given ta sk ’s

children to be added to that task ’s cluster. C luster based fault to lerance also

introduces the concept o f a m axim um tolerated error detection tim e. If a large

num ber o f tasks were grouped into one cluster and an error occurs in the upperm ost

task, the erro r state w ould not be detected until all tasks in that cluster have com pleted

execution. T h is may be undesirable as it will adversely affect perform ance. To avoid

th is problem , Dave and Jha have incorporated a user specified m axim um tolerated

error detection tim e into the cluster based fault tolerance algorithm [13]. The

41

algorithm will not group m ore tasks into one cluster if the sum o f the softw are

execution tim es o f those tasks exceeds the user specified m axim um error detection

tim e. In the cluster based fault tolerance algorithm , if an error is detected on a given

cluster, the entire functionality o f that cluster is m oved to a spare processing elem ent

and signaled to recom m ence execution.

TO

T1 T2

T3

Input

Cluster 1 / /
TO

T1 T2

T3

After 1
Iteration

Figure 3.3: Cluster Based Fault Tolerance — Input & 1 Iteration

: ;

42

R enroduced w ith oe rm iss ion o f the co o v rio h t ow ner. Fu rthe r reo roduction o roh ib ited w ith o u t oe rm iss ion

C luster 1
C lu ste r 1.

TO

C luster 2

T2T1 T1

T3 T3

After 2
iterations

After 3
Iterations

Figure 3.4: Cluster Based Fault Tolerance — 2 and 3 Iterations

Cluster 1

TO

Cluster 2

T1 T2

T3

After 4
Iterations

Figure 3.5; Cluster Based Fault Tolerance - Final Clustering

43

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.

C lu ste r 1

TO

C luster 2

T2

T5T3

Assertion
Tasks

T4

Figure 3.6: Final Added Assertion Tasks After Clustering

3.2.4 Group Based Fault Tolerance

T his section presents a new and original technique for adding fault detection and

to lerance at the task, graph level nam ed group based fault tolerance (G BFT). This

technique w as developed as an extension o f the ideas presented in both the task based

fau lt to lerance [49] and cluster based fault tolerance algorithm s [13]. M odifications

w ere m ade to the approaches in order to reduce the fault to lerant overhead prevalent.

T h is algorithm utilizes the concept o f error transparency. G roup based fault tolerance

also uses the concept o f a user specified m axim um tolerated error detection tim e.

44 I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In group based fault tolerance, the task graph is traversed from the lowest nodes to the

highest nodes. Each leaf node (bottom level node) is assigned to its own group. Each

o f the le a f s parents are analyzed to determ ine whether they can potentially be added

to the given le a f s group. A parent is considered a possibility for grouping in its

ch ild 's group i f it is not already grouped and if adding it to its ch ild 's group will not

violate the user im posed error detection tim ing constraint. Once the set o f parents

eligible for grouping have been assem bled for a given task, the parents are iteratively

added to the group in order o f decreasing fault tolerant overhead. This process is

ended if the addition o f another parent task to the group will violate the user defined

error detection constraint. I f a task has no children, its fault tolerant overhead is set to

its assertion overhead. If a task i does have children, its fault tolerant overhead is

calculated to be:

m a x [a sse r tio n _ o v e rh e a d { c h ild re n { i)) + C o m {i,c h ild re n { i))] + a sse r tio n _ o v e r h e a d (/)

where,

assertion_overhead(/) = the assertion overhead o f task / children(t) =

set o f the child tasks o f i

Com(z/, v) = com m unication tim e from task u to v across a

com m unication link

Figure 3.7 show s an exam ple task graph input and the results generated by one

iteration o f the group based fault tolerance algoritlim. Figure 3.8 shows the results

after both 2 and 3 iterations o f the algorithm . Figure 3.9 shows the final groupings

for the given input task graph. Finally, Figure 3.10 shows the final clustered task

45

Renroduced with nermission of the coovriaht owner. Further reoroduction orohibited without oermission.

graph with the addition o f error detecting assertion tasks. A m ore com plex exam ple

o f GBFT based task groupings is provided in Figures 4.6, 4.7, 4.8 and 4.9 in section

4.2. After all o f the tasks have been grouped, each group is given an assertion or

duplicate/com pare task to perfonn error detection. Each group is now treated as a

single task in order to ensure that all tasks w ithin a group are executed on the sam e

processing elem ent. In the exam ple graph provided, all o f the tasks are assum ed to be

error transparent. In the group based fault tolerance algorithm , if an error is detected

on a given cluster, the entire functionality o f that cluster is m oved to a spare

processing elem ent and signaled to recom m ence execution.

The group based fault tolerance algorithm adds assertion and duplicate/com pare tasks

to a task graph. It does not add assertion or duplicate/com pare tasks to perform

checks on the fault detection tasks that it adds. I f fault detection o f faults occurring in

the G B FT added tasks is wanted, then it m ust be added m anually after the G BFT

algorithm has com pleted execution.

46

R e n m d u c e d w i th nArmiRRinn n f t h n n n n v /r inh t n w n n r F i i r th p r r n n r n d n n t i n n n rn h ih i to H vA/ithniit n o r m i c e i n n

TO TO

T2 T1

Group 1
T3 T3

After 1
IterationInput

Figure 3.7: Group Based Fault Tolerance — Input & I Iteration

TO TO
Group 1

Group 1

T2T1 T2

After 2
Iterations/

T3 T3

After 3
Iterations

Figure 3.8: Group Based Fault Tolerance - 2 & 3 Iterations

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

' TO
/G roup 1

/ .V

1 T3

After 4
Iterations

Figure 3.9: Group Based Fault Tolerance - Final Grouping

TO
'Group 1

T2

T3

Assertion
Task T4

Figure 3.10: Final Added Assertion Task After Grouping

48

Reproduced with permission of the copvriaht owner. Further reproduction prohibited without permission.

3.2.5 Task Graph Based Fault Tolerance Comparison

A com parison o f the results o f the group based fault tolerance algorithm with both the

cluster based and task based techniques is provided in order to evaluate the newly

developed G B FT technique. Thirteen random test cases were generated and the

output o f all three algorithm s is com pared. The test cases have varying task graph

configurations and varying user defined tolerated error detection tim es. The

outputted error detection inform ation from each algorithm is com pared. The data

collected has been assem bled in Table 3.1. Here the values under the GBFT, CBFT

and TBFT colum ns are the counts o f error detection tasks added to the task graph.

The fewer num ber o f error detection tasks added to a task graph results in a sm aller

fault tolerance overhead. A sm aller fault tolerance overhead is desirable as it will

y ield a fault tolerant device that utilizes less hardw are and/or less com putation time.

The first random ly generated task graph has been provided in Figure 3.11. Task

graph 4 corresponds to the task graph from the M PEG decoding case study. The task

graph can be found in Figure 4.1. Task graph 5 corresponds to the task graph from

the block m atching case study and can be found in Figure 4.6.

T he infoim ation gathered in the table reveals that the group based fault tolerance

technique yields a 18.75% im provem ent in fault tolerance overhead over the cluster

49

Reoroduced with oermission of the coovrioht owner. Further reoroduction orohibited without oermission.

based (dull tolerance technique and a 45.83% im provem ent over the task based (ault

tolerance technique.

Table 3 .Ï : Fault Tolerance Comparison Data

Task Graph # Tolerated Error Detection Time
(msec)

GBFT CBFT TBFT

1 4 2 3 8

1 3 3 3 8

1 2 4 4 8

2 3 7 7 11

2 2 7 8 11

3 9 1 3 9

3 8 2 3 9

3 7 2 3 9

3 6 3 3 9

3 5 3 3 9

3 4 3 3 9

3 3 4 3 9

3 2 5 5 9

4 800 1 16 22

4 300 15 16 22

4 120 14 17 22

4 80 17 17 22

4 40 21 21 22

4 34 22 ■ 22 22

5 150 000 1 16 22

5 40 000 13 16 22

5 30 000 14 16 22

5 20 000 15 16 22

5 15 000 16 16 22

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.11: Randomly Generated Task Graph (Graph #1)

3.3 Pipelined Scheduler

T he functionality described in this sub-section occurs in the ‘"Scheduling’' b lock in

F igure 3.1. T he effectiveness o f a given architecture alternative is evaluated by

ob tain ing a pipelined schedule that is executed in the algorithm ’s scheduling phase.

A pipelined schedule w ith a m inim um period P is an assignm ent o f com pletion tim es

o f all tasks, F(v)^ such that for all tasks v in the system 0 < = F (v) < - P . For a task v

51

R eoroduced with oermission of the coovriaht owner. Further reoroduction orohibited without oermission.

with a data dependence e = (u. v j. where u is a parent o f v, the schedule tim e o f v m ust

honour the following equation;

/•■(V) > /•■(II) + V,„, +C{IKV) if P S M a tc h (u, v)

A-(otherwise

where,

Vexec ~ execution tim e o f task v

C(xi, v) - the overall com m unication tim e betw een m apped tasks u and

V (0 i f no com m unication)

P S M a tc h (u , v) = true if tasks u and v are located on the sam e pipelined

stage, false otherw ise

This definition requires that a task will not com m ence execution before receiving the

required data from all parent tasks. The scheduler takes com m unication delays and

resource usage into account w hen assigning tasks to processing elem ents. The

algoritlim utilizes the established RECO D retim ing transform ation to divide the task

graph into m ultiple pipelined stages [6, 7].

The RECO D retim ing transform ation divides a task graph into m ultiple pipelined

stages by inserting a cut-line which separates two tasks (parent and child) and defines

the separation betw een two pipelined stages. The location o f this cut-line is

dependent on the parent and ch ild ’s cu iren t pipeline stage, the parent and ch ild ’s

m apping, the length o f the constraining path o f the parent and the am ount o f

inform ation passed betw een the parent and child.

52

R e o r o d u c e d w i th o e r m i s s i o n o f t h e c o o u r i n h t o w n e r F u r t h e r r e n r o r i n n t in n n r n h i h i t e d w i t h o u t o e r m i s s i o n

Initially, the R E C O D transform ation is repeatedly used to divide the task graph into a

m axim um num ber o f pipelined stages. A fter perform ing the R ECO D retim ing

transform ation , the scheduler attem pts to assign com pletion tim es to all tasks to

satisfy dev ice perfo rm ance requirem ents. If unsuccessful, the algorithm attem pts to

im prove the task a llocations iteratively in order to m inim ize device com m unication

overhead. A flow d iagram o f the scheduler’s operation is provided in Figure 3.12.

53

R ctnrnH l irtoH \ A / i t h n o rm ic .c in n o f rh o o o n v /r lo h f ovA/ncsr P n i 'th o r rooroW i lo tlo n orohiK iFo/4 v A / i F h o i iF r \ o r m 1 e e i / - \ r

Successful?

Yes
Consiraints
Satisfied?

N o

NoImproved ^
from Previous

S ched u le? ̂

Y es

Remap Task Back

Schedule

iterative Improve

Finish - Constraints
not Satisfied

Finish - Constraints
Satisfied

Figure 3.12: Hypercube Co-Synthesis Scheduler

For the purposes o f scheduling (“ Scheduling” b lock in Figure 3.1), each task from the

input task graph is assigned to one o f the three sets, m , n and p . In o rder to specify

the llrs t set, p a lh L o a d C h ild , p a lh L o a d P a r e n t and p a lh L o a d variab le values arc

assigned to each task v. These values are defined as:

54

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.

palliLoadCh'ld{v) = + max{PSMalc/i{v.chilcJrL>n(v))* pa(l}LouclCliild(chiUixni,\'))\

path Load Pa rent {v) = + m vi\{PSM atch{\ \ parents{v)) * pathLoadPu ren t{paren ts(v))}

pa lhLoad(v) = pathLoadChild{v) + pathLoadParent{v) -

where,

PSM atch(w, v) = 1 i f tasks u and v are located on the sam e pipelined

stage, 0 otherw ise

children(v) = set o f the child tasks o f v

parent(v) = set o f the paren t tasks o f v

A s a result, a task v 's p a lh L o a d is the value o f the heaviest loaded path contain ing

task V.

T he first set o f tasks m is defined as;

3 m A T —>■(p a lh L o a d (m) = = m a x { p a th L o a d (A T)J)

w here,

3 , , and = represent th e r e ex is ts , s u c h th a t and e q u iv a le n t

respectively

A T is the set o f all tasks

Set m is the set o f tasks that are located on the constraining path and are scheduled

first. Set w consists o f all the tasks having a path to m. The second set is defined

as: /7 = M' - m .

Set n consists o f tasks that are ancestors o f all the tasks o f set m excluding the

m em bers o f set m .

55

R enroduced with nermission of t h e coovrioht owner. Further r e o ro d L ic t i n n n r n h i h i t e r l w i t h o u t n o r m iR s in n

The final sel p . is defined as; p = A T - m - n . Set p consists o f the rem aining

ungrouped tasks and will be scheduled last.

T hese sets are used to prioritize the tasks for scheduling. The constrain ing path is the

longest path through the graph in tenus o f the execution tim es o f its tasks. W hen

scheduling a task o f set m that has unscheduled parents, the parents are scheduled

first. D ividing tasks into these set configurations prioritizes tasks located on the

constraining path. The tasks on the constraining path are m ost likely to adversely

affect the target device perform ance and so the m otivation is to schedule them first.

If a system schedule is obtained that m eets the perform ance requirem ents, the

schedule function exits successfully , otherv\'ise the scheduler attem pts to im prove

iteratively. Excessive com m unications is a potential problem in hypercube topologies

as they can slow dow n overall system perform ance by causing PEs to w ait for data.

W hen two tasks are located far from each o ther in the architecture, com m unication

betw een them m ay require m ultip le hops. In o rder to alleviate this potential problem ,

the algorithm includes an iterative im prover (as labeled in F igure 3.12) w hose goal is

to refine the task m apping. The value c o m m L e v e l for each task is defined as:

comm Level (v, PE) = ^ Com{v, x) * Nh{v, x) + ^ Com(ii, v) * Nh{u, v)

w here,

C o m (u , v) - com m unication tim e from task « to v across a

com m unication link

N (u , v) = num ber o f links (hops) that m ust be traversed to

com m unicate betw een tasks z/ and v

56

R eoroduced w ith oe rm iss ion o f t h e co n v rio h t ow ner. F u r t h e r r e n rn r i i io t in n n r n h i h i t e d w i t h n i i t n o r m i c e i n n

X = c h ild r e n (v)

u = p a r e n ls (v)

A task q is se lected fo r re-m apping based on the follow ing equation:

execTime{v,execLoc(v)) + comm Level {v, exec Loc{v))
q = arg max

execTime{v, APE) + commLevel{v. APE)

w here,

e x e c L o c (v) = the execution location (PE) o f task v

e x e c T im e(v , P E f) = the execution tim e o f task v on P E f

A P E = the set o f all processing elem ents

The above equation selects task q for m apping based on total perform ance gain. T ask

q is subsequen tly rem apped to a new processing elem ent to im prove the overall

execu tion and com m unication tim es. This process is repeated as long as the

schedu ler reveals con tinued im provem ents in the overall solution. W hen th is iterative

process does no t p rov ide any further im provem ents, the schedu ler ex its

unsuccessfully . T his technique w as incorporated in order to help m inim ize any

unnecessary com m unications.

3.4 D evice E xpansion

The functionality described here is executed as part o f the “Add P rocessing E lem en t’’

block o f the design flow given in F igure 3.1. T his co-synthesis section is responsib le

57

Reproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.

for expanding the current system architecture to include an additional processing

elem ent (PE). The PE type can be a CPU or an application specific integrated circuit

(A SIC). T he prim ary focus o f th is function is to determ ine the m ost effective type o f

PE to be added. The addition o f a PE should provide a m axim um perform ance

enhancem ent w ith a m inim um additional hardw are area. I f the addition o f a PE

causes a vio lation o f the hardw are area constraint, the function exits unsuccessfully.

O therw ise, the function will add a new PE and exit successfully. In order to m ake a

know ledgeable decision on w hich PE to add, the algorithm estim ates the ratio o f

expected perform ance im provem ent due to the increase in hardw are area for all the

available options. For these calculations the variable, s p e e d u p S W is included as a

prelim inary estim ate o f perform ance im provem ent due to the addition o f another CPU

and defined as:

* (1 - rp/(rp+1))

where,

TSWexec(v) = the total execution tim e o f all tasks m apped to SW from

set V

T P = the count o f total CPUs in the current system architecture

The variab le r a t io S W x s defined that estim ates the perform ance to hardw are area ratio

for add ing a C PU and is defined as:

ra/ioS W = ExL * speedupSW/ PA C

where,

P A C = the area cost for the addition o f another CPU

58

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

E x L - the expected load o f the new processor

E xL is provided to w eight the decision o f adding a new processor based on the

expected load that processor w ould receive. E xL is defined as:

E x L = Q \ Ï C S T < ^ T P

E x L = C S T /(k * T P)

E x L = 1

if Œ T > r f and Œ T <

otherwise

where,

C S T = the count o f tasks currently m apped to software

As an estim ation, it is assum ed that if the current system architecture contains k times

as m any tasks m apped to software as there are CPUs, then the new ly added processor

will be provided w ith a full task load. The value k is user set. These equations were

selected to quickly approxim ate the expected am ount o f speedup obtained by adding

an additional CPU to the system.

W ith respect to the speedup and ratio factors for adding new A SIC s, a task set v is

declared as the set o f all tasks currently mapped to software. The s p e e d u p H lV [v] and

r a tio H W [v] array variables are then calculated for the set o f tasks in v. Each

individual r a t io H W value represents an expected im provem ent factor for m oving the

given task from its current location in software to an ASIC im plem entation. The

s p e e d u p H W [v] represents the difference between the execution tim e o f task v in

softw are and in hardware. In order to define r a tio H W the variables iC o u ld B e n and

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tW iU B en are created. The tC o u ld B e n [v] variable is defined as the count o f tasks

having an identical hardware configuration pattern as task v. The t lV illB e n [v J

variable is defined as the count o f tasks having an identical hardware configuration

pattern as task v and is currently mapped to software. The r a tio H W [v] is defined as;

speedupHlV[v] tWillBen{v] -1
tCouldBen[v'\X(v)

where,

A (v) = the area cost for the hardware im plem entation o f task v

The above form ulation encourages the selection o f hardware solutions that can be

reused by m ultiple tasks. All o f the ratio values (both hardw are and software)

obtained are com pared and the m aximum value is used to decide the PE type to be

em ployed in the expansion. W hen the PE being added is an ASIC {P E a s ic)- , the

function assigns a m axim um num ber o f tasks w ith m atching configuration patterns to

the newly added ASIC, given that the following constraints are met:

^ timCons

where,

tim C o n s = the user specified device tim ing constraint

P T (P E) = the set o f tasks allocated to processing elem ent PE

THWexec(v) = the total execution tim e o f all tasks m apped to H W from

set V

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W hen the added PE is a CPU, the function m ust decide which tasks will be initially

allocated to the new CPU. The task to be allocated to the new processor is

selected from the processor identified by the variable Pdonor in the following equation;

where,

A P is the set o f all processors

The above equation ensures that the donor processor would always be the most

heavily loaded. The task w ith the lowest com m unication overhead with respect to the

other locally allocated tasks is selected for rem apping from the donor process. This is

intended to m inim ize the com m unication overhead and sim plify the iterative process

for the scheduler. A fter this task has been reallocated to the new PE, the selection o f

a donor processor and a task is repeated until the new CPU load reaches the average

processor load. To accom plish this, the variable loadAverage - / TP is defined,

where T P is the total num ber o f processors. This process is repeated until an

allocation is obtained such that the difference betw een the load on the new processor

and the average load is a minimum .

W hile adding new hardware, the algorithm tracks the overall area o f the device to

ensure an accurate prediction o f the final system cost. The hardware area overhead

associated w ith each com m unication interface located at each PE node is recorded, in

addition to the cost o f each com m unication link.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 Com m unication Link Integration

The lunctionality described here is executed in the “ Synthesize Com m unication

Links" block o f the design flow provided in Figure 3.1. This section o f the co­

synthesis algorithm is responsible for connecting all the system PFs and assignm ent

o f com m unication links to fomn a hypercube topology. To lim it the com m unication

overhead, the processing elem ents w ith high levels o f inter-com m unication are placed

as close as possible in a hypercube topology. An array o f com m unication coefficients

is defined, c o m C o e ff[T P E] (where TPE = the count o f total processing elem ents), for

each processing elem ent. The c o m m C o e ff for processing elem ent PEn with respect to

PEn, is defined as:

where,

P E T (P E) = the set o f tasks currently allocated to P E

P E A r r a y - the array o f all processing elem ents

In order to clarify the process o f assigning specific locations to each processing

elem ent w ithin the fram ew ork o f a hypercube architecture, the established binary

nam ing convention for labeling nodes is utilized [29]. The binary nam ing convention

in a 3D hypercube is show n in Figure 3.13. This nam ing convention is convenient for

m essage routing and the num ber o f com m unication hops between two nodes can be

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

quickly determ ined by the num ber o f bit-w ise m ism atches between the binary

identifiers for each node.

110

O il010

101100

000 001

Figure 3.13: Binary Naming for Hypercube Nodes

Initially, the first C PU is placed at location 000. Subsequently, each location (hA^ is

filled by the PE nam ed in the variable s e le c le d P E by the following definitions:

3 p e in A P E ~ ^ h e (h N , B L (p e))

selectedPE = arg inax(̂ PEArray[n].comCoeff\LJPE])

where.

63

Reoroduced with Dermission of the coDvriaht owner. Further reoroduction orohibited without oermission.

A P E = Ihc set, o f all processing elem ents currently assigned to a

specil'ic hypcrcube location

B L (p e) = the binary num ber that processing elem ent p e is assigned to

he(hN , h M) = the hypercube edge connecting binary location h N to

binary location h M

LIFE = the set o f all processing elem ents currently unassigned to a

specific hypercube location

The next PE to place in the hypercube is selected from the set o f unassigned PEs.

The PE is selected such that it has the largest com m unication coefficient with respect

to the already assigned PEs that will be its neighbour. This process is repeated until

all the PEs arc allocated to hypercube nodes. This heuristic was selected to m inim ize

the occurrence o f long com m unication delays.

The co-synthesis algorithm does not require the hypercube architecture to be perfectly

sym m etrical. I f all the processing elem ents are not a pow er o f two, som e o f the PEs

will have few er com m unication links than the others. This is generally considered

undesirable as one o f the advantages o f hypercube architectures lies in its innately

fault-tolerant topology. Consequently, if the total num ber o f processing elem ents is

not a pow er o f two, an additional com m unication link to com pensate for the shortage

in the m ost recently added PE is introduced. This com m unication link connects the

PE in the highest binary location (fin a lP E), with a d e s lin a lio n P E . In order to

determ ine the d e s lin a lio n P E , the set o f processing elem ents, n e ig h is defined as the

64

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

set o f PEs that share a neighbour with the fm a lP E . The processing cicm cnl

d e s lin a lio n P E , is selected to be the task identified by:

ma.x{PEArra]{ finalPE]£omCoqfj\n]) while n e n e ig h

The above equation w as selected to connect the final PE with the com patible PE with

which it com m unicates m ost often. To illustrate this exam ple consider Figure 3.14,

where a 5-node hypercube is provided and the final com m unication link will connect

the PE at node (100) to the shaded PE with which it com m unicates most. As

previously m entioned, one o f the advantages o f hypercube topologies is its inherent

fault tolerant capabilities. The m otivation for the above heuristic is to elim inate the

potential catastrophic failure that could occur if the com m unication link connecting

node (000) and (100) fails. This heuristic preserves fault tolerance in non-

sym m etrical hypercuhe system s.

65

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

011

1 0 0

000

Figure 3.14: Non-Symmetrical 3-D Hypcrcube

In sum m ary the approach consists o f six phases. The first three are perform ed once,

and the final tliree are repeatedly executed until a final device architecture has been

generated. The first phase is responsible for clearly defining the dev ice’s functional

and non-functional requirem ents. T he second phase is concerned w ith converting the

functional requirem ents into task graph form and gathering all o f the relevant data

needed in the later phases. The th ird phase adds fault detection tasks to the task

graph, thus facilitating low overhead fault tolerance. The fourth phase involves

evaluating the device’s perform ance and determ ining if it m eets non-functional

perform ance requirem ents. The fifth phase is concerned with adding a processing

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

elem ent to the system . Finally, the sixth phase is responsible ibr synthesizing all o f

the d ev ice 's com m unication links.

67

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH A PTER 4

IM PLEM ENTATIO N AND EXPERIM ENTAL RESULTS

4.1 Parallel M PEG -2 D ecoding

An effective dem onstration o f the capabilities o f the co-synthesis algorithm w ould

have to involve an application that is com putationally intensive. A dditionally , for

dem onstra tive purposes it is beneficial to im plem ent a device that is easily

understood . A m ultip le PE em bedded device w as im plem ented, w hich is responsible

for decod ing 16 M PE G -2 video stream s and sim ultaneously com paring their decoded

im ages to predefined data. Such a device could be used in au tonom ous navigation or

security system s. T he device w as fully specified in C language encom passing 9500

lines o f code. A task graph represen ta tion w as obtained by analysis o f the

specifica tion and is provided in F igure 4.1. The functionality o f the system is

expressed as a graph o f 22 tasks. The design space o f the application has been tested

in term s o f device a rea and tim ing constrain ts in order to evaluate the perform ance o f

the presented approach. The test and experim ental results are provided in Figure 4.2.

T he results o f an optim al techn ique that exhaustively attem pts each possib le

com bination is also included. This is useful fo r dem onstrating the quality o f the

a lgorithm and its results as com pared to the optim al solution.

68

R eoroduced with oerm ission of the coovriaht o w n e r. F u rth e r reo ro d uc tio n o ro h ib ite d w ith o u t o e rm iss ion .

Initialization

16
MPEG

Decoders

P a sse s One
Frame

R egional
Comparison20

P a s s e s
H igh est

Correlation
Frame

X Final22 / Comparison
J Stage

Figure 4.1: Parallel MPEG Decoding: Functional Task Graph

A set o f hardw are and softw are im plem entation data is provided to the algorithm . In

order to establish the softw are execution tim es for each task, the C language based

specification w as profiled on a Pentium II 450 M H z CPU . The a lgorithm library can

consist o f m any CPU types how ever, for sim plicity and practicality only the Intel

Pentium II 450 M H z CPU was included for this case study. Each o f the tasks w ere

fully im plem ented in hardw are and profiled for perform ance and hardw are area

requirem ents on an A ltera FLEX IO K E FPGA. The only exception is the M PEG -2

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decoding tasks, w here the pre-ex isting IP core from A m phion Sem iconductor w as

utilized for the hardw are im plem entation. Table 4.1 provides inform ation regard ing

the quantity o f each type o f PE used for each o f the design constrain ts studied.

The co-synthesis algorithm provides support for fault to leran t com m unications by

generating the target device into a hypercube architecture. By using the group-based

fault to lerance techniques (G BFT) previously outlined, a fault to leran t em bedded

device has been synthesized. The G B FT algorithm adds assertion and

duplicate/com pare tasks to the task graph. U pon detection o f a failure, the

assertion /com pare task signals one o f the spare PEs to com m ence execution o f the

failed task. T he type and num ber o f spare PEs are defined by the user. It should be

noted that in o rder to com pare the algorithm w ith the optim al case the G B FT section

o f the algoritluu had to be disabled. The G B FT algorithm w ould substan tia lly

increase the total num ber o f tasks in the task graph. The optim al approach is

extrem ely com putationally in tensive and unable to generate results for larger task

graphs w ithin a reasonable am ount o f tim e. A lthough node fault to leran t versions o f

this case study have been sim ulated , the data presented illustrates resu lts obtained

w ithout the use o f the G B FT portion o f the algorithm . Further analysis tha t includes

the erro r detection tasks added by the G B FT portion o f the algorithm is provided in

section 4.2.

70

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

15 -----

— O— Device Constraints
• □ ■ Device Results

- -A- - Optimal Device

2
I
(0cn

co

E
3
<
0)Ü

I

90 120 130 60030 40 50 60 770

Device P^iod (msec)

Figure 4.2: Design Space Exploration of Parallel MPEG Decoding

The results provided in F igure 4.2 dem onstrate the ability o f the m ethod to synthesize

em bedded devices w ith varying design constrain ts. A com parison o f hardw are area

to perform ance trade-offs can be very useful to an em bedded engineer in o rder to

exam ine d ifferences betw een design alternatives. The resu lts from using an

exhaustive (optim al) m apping technique is a lso provided. The exhaustive approach

attem pts all the possib le com binations and is very com putationally intensive.

C om parison results from the co-synthesis algorithm w ith those obtained by the

optim al technique revealed that the algorithm produces em bedded devices w ith

96.25% o f the perform ance obtained by the optim al technique on average.

71

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.

A dditionally , the em bedded devices generated by the algorithm only utilized 0.62

(average) m ore hardw are than the devices obtained by the optim al m ethod.

Table 4.1: Processing Element Utilization of Design Space for MPEG Decoding

Area
Constraint
(millions of
transistors)

Timing
Constraint

(msec)

Initial
H W -

Task 1

MPEG-2
Decoding

Cores
Tasks 2-17

HW — Reg.
Comparison
Tasks 18-21

HW - Final
Comparison

Task 22

Total
PEs

Exec.
Time

(msec)

Qpiimsà \

esse '
ExeeiSSsir j

1
13.5 30 1 6 1 1 10 35.2 -2 4 j

!

11.5 40 0 4 1 1 7 14.8

] 1 50 0 3 1 1 6 11.2

1
10.5 60 0 3 1 1 6 13.5 - 3 4 ^ 1

!
9.5 90 0 2 1 ! 5 7.9

9 120 0 1 1 1 4 4.2 -34 «rs

8.5 130 0 1 I 0 3 3.4

7.6 600 0 0 1 0 2 1.6 I
!!

-M hrs-

7.5 770 0 0 0 0 1 0.8 1 --im-s

Table 4.1 provides detailed inform ation regarding the configuration o f each solution

that the co-synthesis algorithm produced. Given the design constraints provided in

the first two colum ns, the algorithm generated a device that could m eet specification^'.

The next four colum ns (3-6) provide the count o f various ASIC circuits present in tk s

final synthesized system . The total PEs colum n provides a count o f the total nmnse?

o f PEs present in the given device. The count o f C PU s in the table have not hcen

included as there is only one CPU for each case. The execution tim e colum n sW % r

72

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

the length o f tim e the algorithm took to execute on a Pentium IV in order to

synthesize the device. The final colum n provides the approxim ate execution tim es

from perform ing exhaustive co-synthesis. Figure 4.3 provides the final device

architecture for the first test case provided in table 4.1. Figure 4.4 provides the final

device architecture for the second test case. The architecture for the fifth test case is

provided in Figure 4.5.

.0110

MPEG
D ecode

MPEG
D ecode

MPEG
D ecode

Init

001001

MPEG
D ecode

MPEG
D ecode

1100 1101

Regional '
Comparison.

Final
Comparison

MPEG
D ecode

CPU

0001 1001tooo 1000

Figure 4.3: Parallel MPEG Decodir g: Architecture for 1* Test Case

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

Final \
Comparison

Regional 1
Comparisoni

MPEG
Decode

O il
010

MPEG
Decode

MPEG
Decode

101100

MPEG
DecodeCPU

001
000

Figure 4.4: Parallel MPEG Decoding: Architecture for 2"** Test Case

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

I:

&

Regional
Comparisoi

MPEG
Decode

011
010

Final
Comparison

100

MPEG
DecodeCPU

001
000

Figure 4.5: Parallel MPEG Decoding: Architecture for S"* Test Case

4.2 Parallel B lock M atching

An effective dem onstration o f the capabilities o f the co-synthesis algorithm would

have to involve an application that is com putationally intensive. Additionally, for

dem onstrative purposes it is beneficial to im plem ent a device that is easily

understood. In the previous case study a device has been im plem ented that utilizes 16

M PEG decoders. M PEG decoding is the process by which a com pressed video file is

uncom pressed for the purpose o f view ing or accessing the raw image data. For the

second case study, the block m atching algorithm has been im plem ented. M PEG and

o ther video com pression formats are designed for fast transm ission / easy storage o f

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

video data. In order for such a form at to be useful, the decoding process m ust be

relatively fast. In order to efficiently com press the video data for easy decoding, a

com putationally intensive encoding algorithm m ust be run. Block m atching is the

m ost tim e consum ing com ponent o f M PEG encoding. Block m atching analyzes the

m acroblocks from the input image and com pares them w ith the surrounding area on

the reference image. By analyzing all possible locations, an exhaustive block

m atching algorithm will generate m otion vector data indicating the m ovem ent o f a

given m acroblock from one image to the next.

A m ultiple PE em bedded device responsible for perform ing the block m atching

algorithm has been implemented. Such a device could be used for any application

involving the acquisition o f video data. The device is fully specified in C language.

A task graph representation is obtained by analysis o f the specification and is

provided in Figure 4.6. The functionality o f the system is expressed as a graph o f 22

tasks. The group based fault tolerance (GBFT) techniques previously outlined have

been used and the resultant task grouping is provided in Figure 4.7. The G B FT

grouping results in the addition o f the assertion tasks shown in Figure 4.8. The final

resultant task graph after GBFT has been perform ed and each group has m erged to

becom e a single task is provided in Figure 4.9. Further discussion o f how the G BFT

algorithm groups tasks together is provided in section 3.2.4.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Initialization

P a s s e s One
V ector

V ector
Assembly

Final V ector
Assembly

Figure 4.6: Block Matching: Functional Task Graph

I Fram e
Blocktnalching

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G roup

Group 3
G roup 4

G roup 15 G ro u p /G

G roup

F igu re 4.7: B lock M atch ing T a sk G ra p h : G B F T G ro u p in g

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

g

Group

Group 3
Group 4

Group 2
Assert

Group 3
Assert

Assert
Group 16

Assert
Group 15

Assert

Group 1

Assert

Figure 4.8: Block Matching Task Graph with Added Assertion Tasks

79

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inilializalion
and 1

Blockmalching

Init Assert

j 4 1 BlockMalch

Group 3
Assert

/ BlockMalch
Assert

1 Blockmalching
and all Vector

Assembly

Final Assert

Figure 4.9: Block Matching: Final Resultant Task Graph

The m ost com plex task in the device outlined is the block m atch task. In order to

obtain pertinent hardw are perform ance and area inform ation for all tasks, the

functionality needs to be im plem ented in hardw are. This task has been im plem ented

with the design provided in Figure 4.10. Yang et al. have presented an entire m otion

estim ation architecture which utilizes a sub-circuit responsible for error calculations

that is sim ilar to the im plem entation in Figure 4.10 [50j. Dutta and W olf have

presented a flexible m otion estim ation architecture [17] based on the research o f

Yang ct al. In the design presented, the d iff circuit calculates the absolute difference

between the two input values. 'I'he absolute d ifference between the corresponding

80

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

g

I
I

pixel values o f the tw o input im ages is the error at the given point. T he adder c ircu it

adds the curren t error to the previously calculated errors to sum the overall e rro r for a

given vector. The com parison circuit com pares the two input values and if the new

value is low er than the old value, the c ircu it outputs the new value and latches the

curren t 1 and J values into an internal register. These I and J values represen t the

current m otion vector. The control unit tracks the current state o f the circuit and

signals all sub circuits, registers and outputs accordingly. A form al descrip tion o f the

functionality o f the device is provided in the V H D L code in A ppendix A.

Control

addByle allDone

Start

tu tien l

current Jrn B y le *■

OUll'
outJ

Adder Conrpare

Register Register

F ig u re 4 .10: B lock M atch C irc u it Design

81

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This b lock m atch circuit operates using a state m achine w hich is adm inistered in the

control unit and is p rovided in Figure 4.1 1. State 0 is the initial state w hen the circuit

is w aiting for input. In state 1 the c ircu it has ju s t received an even num bered coun t o f

inputs and as a result, the adder reg ister is signaled to load the adder c ircu it generated

value. In state 2 the c ircu it has ju s t received an uneven num ber o f inputs. I f the

circu it has received 512 input values, the c ircu it transitions to state 3 and signals the

com pare sub-circu it to begin execution, o therw ise the circuit returns to state 1. In

state 3 the com pare reg ister is signaled to load the com pare c ircu it generated error

value. In state 4 the adder reg ister is in itialized and the incom ing data is loaded into

the input register.

82

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.

so

81

else

S2

If addC oun lô î >
th resho ld e lse

S3

If finished

S4

Figure 4.11: Block Match State Machine

T he design space o f the application in term s o f device area and tim ing constra in ts has

been tested in order to evaluate the perform ance o f the approach. T he test and

experim ental results are provided in Figure 4.12. A set o f hardw are and softw are

im plem entation data w as provided to the algorithm . In order to establish the softw are

execution tim es for each task, the C language based specification w as profiled on an

A R M 7TD M I processor. The algorithm library can consist o f m any CPU types.

83

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

how ever, for sim plicity and practicality only the A R M 7TD M I has been included for

th is case study. Each o f the tasks were fully im plem ented in hardw are and profiled

for perform ance and hardw are area requirem ents on a X ilinx V irtexE X C V 2000E

FPG A. T able 4.2 provides inform ation regarding the quantity o f each type o f PE

used for each o f the design constraints studied.

The co-synthesis algorithm provides support for fault to leran t inter-PE

com m unications by generating the target device into a hypercube arch itecture. By

using the group-based fault tolerance (G BFT) m ethod, fault to leran t em bedded

devices have been synthesized. The G B FT algorithm adds assertion and

dup licate/com pare tasks to the task graph. U pon detection o f a failure, the

assertion /com pare task signals one o f the spare PEs to com m ence execution o f the

failed task. The type and num ber o f spare PEs are defined by the user.

In the prev ious case study the results were com pared w ith those o f an exhaustive

technique. The exhaustive technique is very com putationally intensive. O n the 22

node task graph provided in the previous case study, the exhaustive technique

required approxim ately 24 hours o f execution tim e. The parallel block m atch ing case

study consists o f 32 nodes (after GBFT) and as a result the exhaustive technique is far

too com putationally intensive to gather com parative results w ithin a reasonable

am ount o f tim e. A s a result, in Figure 4.12 only the device constrain ts have been

provided to our program and the resultant output provided by the a lgorithm have been

included.

84

R eproduced with permission of the copyriglit owner. Further reproduction prohibited without permission.

200

180 -

% i2

1
B
'</>
C

160

* z
<n
TO 140
c10
o 120JZ

100

80

50

- - -o- - - Device Results

— A— Constraints

V
__X.

Ej— — ^ I
■ s - t --W-.

- m

15 17.5 18.5 25 30

D evice Period (sec;

32 35 150

Figure 4.12: Design Space Exploration of Parallel Block Matching

T he results provided in Figure 4.12 dem onstrate the algorithm ’s ability to synthesize

em bedded devices w ith varying design constrain ts. A com parison o f hardw are area

to perform ance trade-offs can be very useful to an em bedded eng ineer in o rder to

exam ine differences betw een design alternatives.

85

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.

Table 4.2: Processing Element Utilization of Design Space for Block Matching

1

Area Constraint
(thousands of

transistors)

Timing
Constraint

(sec)

CPU
cores

Block
Matching

Cores

Block match
Assert Cores

Final
Assert
Cores

Total
PEs

Exec.
Time

(msec)
189 15 2 3 1 1 7 342.4

174 17.5 2 2 1 1 6 233.7

94 18.5 1 2 1 1 5 144.0

91 25 1 2 1 0 4 112.5

90 30 1 2 1 0 4 153.7

83 32 I 1 1 0 3 100.3

82 35 1 1 1 0 3 112.5

74 150 1 0 0 0 1 2.4

Table 4.2 provides detailed inform ation regarding the configuration o f each solution

that the co-synthesis algorithm produced. G iven the design constraints provided in

the firs t two colum ns, the algorithm generated a device that could m eet specifications.

The n ex t four colum ns (3-6) provide the count o f various ASIC circuits present in the

final synthesized system . The total PEs colum n provides a count o f the total num ber

o f PEs present in the given device. The count o f initialization cores and final cores

have not been included as there are none im plem ented in hardw are for each case.

The final colum n provides the length o f tim e the algorithm took to execute in order to

synthesize the device.

86

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In order to further dem onstrate the efficacy o f the approach a prototype device has

been constructed based on the design generated by the hardw are-softw are co­

synthesis algorithm . A device based on the third set o f design constraints provided in

table 4.2 has been constructed. The algorithm was provided with an area constrain t o f

20000 gates in excess o f the area o f the initial CPU (74209 gates). The algorithm was

also provided with a perform ance (period) constraint o f 18.5 seconds. A fter co­

synthesis, the algorithm generated a final device architecture as seen in Figure 4.13.

The design consists o f a single CPU, two block m atching PE circuits, one block

m atch assert circuit and one final assert circuit. A dditionally, in order to support fault

tolerance one additional spare block m atching circuit and two repeater circuits have

been included in the design.

The algorithm predicted a final device area o f 19683 gates in excess o f the initial

CPU area (74209). One block m atching processing elem ent and tw o repeater

processing elem ents w ere added to support fault tolerance. A single block m atching

circuit has been synthesized and determ ined to utilize 3451 gates. The addition o f

three more processing elem ents also results in the addition o f six new com m unication

links. Each additional link results in the addition o f two com m unication interfaces.

Each additional com m unication interface has been synthesized and determ ined to

utilize 354 gates. Finally, in order to support software to hardw are com m unications

on the ARM rapid prototyping platform , additional interface circuitry is required.

T his circuitry was synthesized and detennined to utilize 2866 gates. The algorithm

also predicted a device period o f 18.49 seconds.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The sum o f all o f the hardw are area predictions are as follows:

19863 Gate count o f initial hardware in excess o f initial CPU

+

74209

3451

4248

2866

104637

Gate count o f initial CPU

Gate count o f 1 additional block m atch circuit

Gate count o f 12 additional interface circuits (12 * 354)

Gate count o f ARM circuitr>' required for HW /SW comm.

Total gate count

The entire device represented by Figure 4.13 w as im plem ented in over 2500 lines o f

VHDL and C code. A listing o f the code is provided in A ppendix A. Synthesis o f the

final device’s non CPU hardw are revealed an actual gate count o f 28368 transistors.

Adding the total gate count o f the initial CPU (74209) yields a final device actual gate

count o f 102577 transistors.

The com pleted hardw are-softw are device was profiled for perform ance. It was

determ ined to have a period o f 17.02 seconds.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

111

010

RepeaterRepeater

Block
Match
Assert

Block
Match

Final
A ssert

Block
Match

Figure 4.13: Final Prototype Device Architecture

The group based fault tolerance m ethod developed allows the user to m anually select

the quantity and type o f spare processing elem ents. In order to support fault tolerance

but to also limit the fault tolerance overhead one spare block m atching processing

elem ent has been included. Additionally, in order to sim plify the hypercube topology

and for ease o f link fault tolerance, two repeater processing elem ents have been

included. The repeater processing elem ents consist solely o f com m unication

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T
interface circuitry, and are only responsible for repealing incom ing data on the

appropriate outgoing link.

In order to test the device’s functionality, an input image and a reference im age have

been provided as input. The device then calculated the motion vectors for each o f the

16 m acroblocks in the images. The reference image is provided in Figure 4.14. The

input im age is provided in Figure 4.15. The m acroblock num bering convention used

is provided in Figure 4.16. The generated vector data is provided in Table 4.3.

«'"""'I < . \ • - ./-w.-v

u r n s :

Figure 4.14: Reference Image

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

•• ** •

%L.. ;..■(■ ■

VT| * " " — - r - - ;

,. . - r ■ . . - , 'f '- ^ . ‘I

Figure 4.15: Input Image

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

Figure 4.16: Macroblock Identification

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.3: Generated Motion Vectors

Macrobiock Row Shift Column Shift
0 0 0
1 0 0
2 0 0
3 0 0
4 0 0
5 -1 -1
6 0 0
7 0 0
8 0 0
9 0 0
10 0 0
11 0 0
12 0 0
13 -2 0
14 0 0
15 0 0

In order to confirm that the device correctly supports fault tolerance error states w ere

sim ulated. Random error conditions in various block m atching subcom ponents w ere

sim ulated by using a random num ber generator. A fter an error state has been

detected, all further com m unication to the block m atching PE where the error was

detected is rerouted to one o f the spare block m atching PEs. Additionally, the set o f

tasks executed on the PE where the error was detected m ust be re-executed on the

newly activated spare PE. This results in a degradation o f overall system

perform ance for the period in which the error was detected. The average m easured

period o f the device when an error was detected is 20.94 seconds. The output results

from the cases where an error was detected is identical to those generated by the

device when no error was detected.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Discussion o f Experim ental Results

A design m ethodology For m edium to large-scale fault-tolerant em bedded system s has

been presented. The objective has been to introduce a tool to aid the em bedded

system s developer to create hypercube devices m eeting perform ance, cost and

reliability constraints w ithin a reasonable am ount o f time. To achieve this goal

efficiently and effectively, a series o f equations were developed to govern pipelined

scheduling, task reallocation, addition o f processing elem ents, configuration o f

processing elem ents w ithin a hypercube topology and synthesis o f inter-PE

com m unication links. One o f the predom inant m otivations is to m inim ize undesirable

m ulti-hop com m unications that can occur in hypercube system s. A dditionally , the

innate link-fault tolerant nature o f hypercube architectures is preserved. Support for

fault tolerance has been developed through the use o f the group based fault tolerance

technique.

In order to dem onstrate the efficacy o f the new group based fault to lerance technique,

the algorithm was com pared to both cluster and task based fault tolerance. To the

best o f our knowledge cluster and task based fault toleranee are *the only other

published m ethods governing the addition o f error detection functionality at the task

graph level. The experim ental results showed that on average the group based fault

tolerance m ethod yields a 9.8% im provem ent in fault tolerant overhead over the

cluster based fault tolerance m ethod and a 61% im provem ent over the task based fault

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tolerance m ethod. These results dem onstrate the efficacy o f the group based fault

tolerance method.

In order to evaluate the efficacy o f the co-synthesis approach the results o f an optim al

algorithm have been provided for the test cases o f the first case study. The exhaustive

technique is a sim ple approach that attem pts all possible com binations and is

extrem ely com putationally intensive. This exhaustive technique was im plem ented for

the sole purpose o f evaluating the results o f the algorithm w ith the optim al solution.

On average the approach yielded devices that under-perform ed the optim al case by

3.75%. A dditionally, the algorithm resulted in designs that use 0.62% m ore hardw are

area than that o f the optim al approach. These results show only small deviations

betw een the algorithm ’s solutions and the ideal ones, indicating that the proposed

m ethod yields high quality solutions. To the best o f our know ledge, this approach is

the first co-synthesis algorithm developed targeting em bedded hypercube system s.

C om paring the results o f this approach with, for instance, a co-synthesis algorithm

developed to target bus system s w ould be inconclusive due to the differences in the

target architectures. Consequently, the com parison has been limited to that o f the

optim al m ethod.

A nother com m on approach for com paring various co-synthesis or partitioning

techniques is to evaluate their respective execution tim es. Som e tim ing analysis o f

the algorithm has been performed with relation to the case studies presented in this

paper (see Tables 4.1 & 4.2). It can be observed that as the hardw are constraint rises,

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

so does the execution tim e. A s m ore hardw are is added to the system , m ore iterations

o f the algorithm m ust be executed. T he average execution tim e for the a lgorithm

(across both case studies) is 84.92 m s. Synthesizing the 22-task em bedded device

(first case study) for the g iven set o f input requirem ents w ould take approx im ately 24

hours to com plete using the optim al approach. The execution tim e o f such an

approach is im practical for the com parable task graphs o f the case study devices.

A dditionally, it is expected that the execution tim e w ould increase exponen tially i f

the num ber o f tasks in the device specification increases. This w as verified w hen

attem pting to use the optim al m ethod on the 32-node task graph from the second case

study. The optim al execution tim e w as observed to be prohibitive and as a resu lt no

optim al cases w ere com pleted. In the cases w here the optim al technique cou ld be

used, it w as found to produce m arg inally better designs but its execution tim e w as too

large and im practical. Both a lgorithm s w ere executed on a Pentium IV 2.8 G H z

system w ith 512M B o f m em ory. T he execution tim ing results ind icate tha t the

approach is efficient and its execution tim e is not a serious im pedim ent to its

perform ance. The first case study presented in this paper is fully im plem ented and

executed in sim ulation.

In order to further confirm the effectiveness o f the devices that the algorithm

produces, a prototype o f the second case study device has been bu ilt using a rapid

prototyping platform based on the A R M CPU and X ilinx V irtexE FPG A.

95

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n

T he results show a final device gate count o f 102577 transistors. As d iscussed in the

previous section, the algorithm predicted a total device gate coun t o f 104637

transistors. These p red ic ted results y ield a 2 .0% error. T his erro r has been attributed

to the estim ates on the cost o f the com m unication link interfaces. T he in terface gate

count w as estim ated by synthesizing a standard com m unication in terface. T he largest

source o f the d iscrepancy com es from the com m unication link in terface circuitry that

accom panies the C PU processing elem ent. D ue to the com plex nature o f the CPU ,

th is interface circu itry deviates considerably from that o f the o ther processing

elem ents. A dditionally , the V H D L com piler a ttem pts to optim ize the device area

w hich m ay reduce the overall device gate count. The ex istence o f these d iscrepancies

w as not realized until the final dev ice w as com pleted , as a resu lt the m odeling o f

these costs into the actual system w as not possible.

T he resu lts show a final device perform ance period o f 17.02 seconds. T he algorithm

predicted a final device period o f 18.49 seconds. T his is an 8.6% error. This error

has been a ttribu ted to the observed inconsistency in the tim e m easurem ent functions

available fo r use w ith the A R M CPU . D uring profiling, the sam e functionality was

repeatedly m easured fo r tim ing . The execution tim e o f the sam e softw are functional

b lock w as observed to typically vary by approxim ately 10% and in som e cases as

m uch as 40% . D ue to th is d iscrepancy, estim ated execution tim es based on the

m axim um m easured values w ere selected . T his is believed to be the m ain source o f

error contributing to the overall device period estim ate being 8.6% higher than the

final m easured value.

96

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.

It should be noted that with a period o f 17.02 seconds, the prototype device is slow .

This is due to us using an A R M 7TD M I processor. The A R M 7 is w idely used in

sm all scale em bedded system s and at 74,209 transistors., it is an extrem ely sm all

processor. By com parison, an old desktop CPU such as the Intel Pentium II, eonsists

o f 7.5 m illion transistors w hich is approxim ately 100 tim es larger. A dditionally the

com m unication bus on the rapid pro totyping platform is also slow.

97

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH A PTER 5

CO N C LU SIO NS AND FUTURE W ORK

T he hardw are-softw are co-synthesis o f an em bedded system architecture involves the

partition ing o f a system specification o r functional description into hardw are and

softw are m odules so as to m eet a series o f non-functional requirem ents such as cost

and perform ance. V arious distributed em bedded device architectures have been

presented previously , including bus, h ierarchical and hypercube. H ypercube

arch itectu res are particularly suitable fo r use in fault to lerant and high perform ance

devices. T o the best o f our know ledge, the first co-synthesis a lgorithm has been

presented that w ill autom atically generate fault to leran t hypercube architecture based

em bedded devices. T he new ly developed group based fault tolerance, a techn ique for

add ing fault to lerance to an em bedded device at the task graph level has also been

presented. The co-synthesis algorithm consists o f six m ain steps; specification -

defin ing device functional and non-functional requirem ents, profiling - evaluating the

functional specification for perform ance and area utilization, group based fault

tolerance - adding fault to lerance to the device at the task graph level, scheduling -

evaluating the perform ance o f the curren t device architecture, addition o f processing

elem ents — im proving device perform ance by adding m ore hardw are, and the

synthesis o f com m unication links - arranging all processing elem ents w ithin a

hypercube topology and synthesizing all com m unication links. The algorithm

attem pts to m inim ize the occurrence o f m ultiple hops during inter-task

98

Reproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.

com m unications. T h is helps to reduce the overall system com m unication overhead

and thus increases device perform ance.

A security /navigation device has been im plem ented that is responsible for decod ing

16 M PEG video stream s in parallel. T he co-synthesis algorithm ’s final arch itecture

results w ere com pared with that o f the optim al case. This com parison revealed only

m inor deviations betw een the co-synthesis algorithm ’s generated devices and tha t o f

the op tim al technique. These m inor deviations illustrate how the co-synthesis

algorithm is capable o f generating h igh quality solutions.

A second device has been im plem ented to illustrate the algorithm ’s ab ility to generate

fau lt to leran t devices. This device is responsib le for perform ing the b lock m atch ing

algorithm w hich is a com putationally in tensive and an essential com ponent o f M PEG

encoding. A dditionally , in order to further dem onstrate the efficacy o f the approach,

a prototype device based on the a lgorithm ’s results has been im plem ented. T he final

prototype d ev ice 's area and tim ing values w ere com pared w ith the a lgo rithm ’s

predicted values and revealed only m odest deviations from the anticipated results.

Error conditions w ere also sim ulated on the prototype device to confirm correct fau lt

to leran t device functionality. This dem onstrates the co-synthesis a lgo rithm ’s ability

to generate fault tolerant devices and to accurately pred ict device a rea and

perform ance costs.

99

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.

During the synthesis and developm ent o f the block m atching case study, available

equipm ent w as lim ited to a sm all A R M 7TD M I CPU connected to a X ilinx FPG A via

a slow com m unication m edium . T his resulted in a slow perform ing but inexpensive

device. Future w ork will entail the developm ent o f an additional prototype based on

a faster and larger CPU. A dditionally , the system will have a faster FPG A for the

application specific circuitry and h igher speed hardw are-softw are com m unications.

This w ill further dem onstrate our co-synthesis algorithm ’s capabilities by

synthesizing and building a prototype device w ith m ore practical perform ance and

area constraints.

The co-synthesis algorithm presented, targets fault tolerant em bedded devices and

takes as input functional and non-functional requirem ents. The non-functional

requirem ents include perform ance and area. In order to further enhance the

algorithm ’s ability to synthesize fau lt tolerant devices, future w ork w ill entail

adapting the algorithm to include reliability as a non-functional requirem ent. CPU s,

ASICs and com m unication links all have an inherent reliability factor and the overall

device reliab ility w ill be a function o f the selection o f differing processing elem ents,

links and how they are interconnected.

100

R eproduced with permission of the copvriaht owner. Further reproduction prohibited without oermission.

I:

REFERENCES

[1] P. Alhanas, H. F. Silverm an, “Processor reconfiguration through instruction-set
m etam orphosis” , IE E E C o m p u te r , vol. 26, no. 3, pp. 11-18, M arch 1993.
[2] S. Bakshi and D. Gajski, “Partitioning and Pipelining for Perform ance-
Constrained Hardware/Softw are System s,” IE E E T ra n sa c tio n s o n V ery L a r g e S c a le
In te g r a tio n S y s te m s , vol. 7, no. 4, Dec. 1999.
[3] E. Barros, W. Rosenstiel, and X. X iong, “A m ethod for partitioning U N ITY
language to hardware and softw are,” P r o c e e d in g s E u ro p e a n D e s ig n A u to m a tio n
C o n fe re n c e , Sept 1994, pp. 220-225, G renoble, France.
[4] C. Bolchini, L. Pom ante, F. Salice, D. Sciuto, “Online Fault D etection in a
H ardware/Softw are Co-D esign Environm ent; System Partitioning”, P r o c e e d in g s IE E E
In te r n a tio n a l S y m p o s iu m o n S y s te m S y n th e s is , Oct. 2001, pp. 51-56, M ontreal,
Canada.
[5] Jui-M ing Chang, M assoud Pedram , “Codex-dp; Co-Design o f Com m unicating
System s U sing Dynamic Program m ing”, IE E E T ra n sa c tio n s o n C o m p u te r -A id e d
D e s ig n o f In te g ra te d C irc u its a n d S y s te m s , vol. 19, no. 7, July 2000.
[6] K. S. Chatha and R. Vem uri, “H ardw are-Softw are Partitioning and P ipelined
Scheduling o f Transform ative A pplications,” IE E E T ra n sa c tio n s o n V ery L a rg e S c a le
In te g ra tio n S ys te m s , vol. 10, no. 3, June 2002.
[7] K. S. Chatha and R. V em uri, “RECOD: a retim ing heuristic to optim ize resource
and m em ory utilization in H W /SW codesigns,” P ro c e e d in g s In te r n a tio n a l W o rk sh o p
o n H a rd w a re /S o ftw a re C o d e s ig n , M arch 1998, pp. 139-143, Seattle, USA.
[8] J. Choquette, M. Gupta, D. M cCarthy, J. Veenstra, “High perform ance RISC
m icroprocessors”. IE E E M ic ro , pp. 48-55, A ug 1999.
[9] L.A. Cortes, P. Eles, Z. Peng, “Formal coverification o f em bedded system s using
m odel checking” , P ro c e e d in g s E u ro m ic ro C o n fe re n c e , Sept. 2000, vol. 1, pp. 106-
113, M aastricht, Netherlands.
[10] L.A. Cortes, P. Eles, Z. Peng, “Verification o f em bedded system s using a Petri
net based representation” . P ro c e e d in g s In te r n a tio n a l S y m p o s iu m o n S y s te m S y n th e s is ,
Sept. 2000, pp. 149-155, M adrid, Spain.
[11] J. G. D’Am brosio and X. Hu, “Configuration-level hardw are/softw are
partitioning for real-tim e system s,” P ro c e e d in g s In te rn a tio n a l W o rk sh o p H a r d w a r e -
S o ftw a re C o -D e s ig n , Sept. 1994, pp. 34-41, Grenoble, France.
[12] S. K. Das, M. C. Pinotti and Sarkar, “Optim al and load balanced m apping o f
parallel priority queues in hypercubes,” IE E E T ra n sa c tio n s o n P a ra lle l a n d
D is tr ib u te d S ys tem s , vol. 7, issue 6, pp. 555-564, June 1996.
[13] B. P. Dave and N. K. Jha, “COFTA: Hardw are-softw are co-synthesis o f
heterogeneous distributed em bedded system architectures for low overhead fault
tolerance,” IE E E T ra n sa c tio n s o n C o m p u te rs , vol. 48, no. 4, April 1999.
[14] B. P. Dave and N. K. Jha, “COHRA: H ardw are-Softw are Cosynthesis o f
Hierarchical Heterogeneous D istributed Em bedded System s,” IE E E T r a n s a c tio n s o n
C o m p u te r A id e d D e s ig n o f In te g r a te d C irc u its a n d S y s te m s , vol. 17, no. 10, Oct.
1998.

101

R enroduced w ith oerm iss ion o f the coovrioh t ow ner. Further reoroduction oroh ib ited w ithou t oerm iss ion .

[15] B. P. Dave, G. Lakshm inarayana and N. K. Jha, “COSYN; H ardw are-softw are
co-synthesis o f heterogeneous distributed em bedded system s,” I E E E T r a m a c l i o n s o n

V L S I S y s te m s , vol. 7, no. 1. M arch 1999.
[16] R. Dick and N. K. Jha, “M OGAC: A M ultiobjective Genetic A lgorithm for
Hardw are-Softw are Cosynthesis o f Distributed Embedded System s,” IE E E
T ra n sa c tio n s o n C o m p u te r -A id e d D e s ig n o f In te g ra te d C irc u its a n d S y s te m s , vol. 17.
no. 10, pp. 920-935, Oct. 1998.
[17] S. D utta and W. W olf “A Flexible Parallel A rchitecture Adapted to Block-
M atching M otion-Estim ation A lgorithm s” , IE E E T ra n sa c tio n s o n C irc u its a n d
S y s te m s fo r V ideo T e c h n o lo g y , Vol. 6, No. 1, pp. 74-86, Feb. 1996.
[18] R. Ernst, J. Henkel, and T. Benner, “Hardw are-softw are cosynthesis for
m icrocontrollers,” IE E E D e s ig n & T est, vol. 10, pp. 64-75, Dec. 1993.
[19] F. C. Filho, P. M aciel, E. Barros, “A Petri N et Based A pproach For
H ardware/Softw are Partitioning”, S y m p o s iu m o n In te g r a te d C irc u its a n d S y s te m s
D esig n , Sept. 2001, pp. 72-77, Pirenopolis, Brazil.
[20] M .R. Garey and D. S. Johnson, C o m p u te rs a n d In te ra c ta b ility : A G u id e to the
T h eo ry o f N P -C o m p le te n e s s . San Francisco, CA: Freem an, 1979.
[21] C. Ghezzi, M. Jazayeri, D. M andrioli, F u n d a m e n ta ls o f Softw ’a re E n g in e e r in g ,
Prentice Hall, U pper Saddle River, N J, 1991.
[22] R. Gupta and G. DeM icheli, “Hardware/software cosynthesis for digital
system s,” IE E E D e s ig n & T e s t o f C o m p u te rs , pp. 29-41, Sept. 1993.
[23] R. G upta and G. DeM icheli, “System -level synthesis using re-program m able
com ponents”. P r o c e e d in g s E u ro p e a n C o n fe re n c e o n D e s ig n A u to m a tio n , Mar. 1992,
pp. 2-7, Brussels, Belgium .
[24] J. Henkel, R. Ernst, “A n A pproach to Autom ated H ardw are/Softw are Partitioning
Using a Flexible Granularity that is Driven by High-Level Estim ation Techniques” ,
IE E E T ra n sa c tio n s o n V ery L a rg e S c a le In te g ra tio n S y s te m s , vol. 9, no. 2, April 2001.
[25] J. H ou and W. W olf, “Process partitioning for distributed em bedded system s,”
P ro c e e d in g s In te? 'n a tio n a l W o rksh o p o n H a rd w a re /S o ftw a re C o d e s ig n , Sept. 1996.
pp. 70-76, Pittsburgh, USA.
[26] P.-A. Hsiung, “Hardw are-softw are tim ing coverification o f concurrent em bedded
real-tim e system s” , lE E P r o c e e d in g s C o m p u te rs a n d D ig ita l T e c h n iq u e s , pp. 83-92,
March 2000.
[27] B. A. Izadi, F. Ozguner, “Real-tim e fault-tolerant hypercube m ulticom puter,”
lE E P ro c e e d in g s C o m p u te rs a n d D ig ita l T e c h n iq u e s , vol. 149, no. 5, pp. 197-202,
Sep. 2002.
[28] A. Kalavade and E. A. Lee, “A hardw are-software codesign m ethodology for
DSP applications,” IE E E D e s ig n & T est, vol. 10, pp. 16-28. Sept. 1993.
[29] G. N. Khan, G. S. Hura, G. W ei, “Distributed Recovery Block Based Fault-
tolerant Routing in Hypercube N etw orks,” P ro c e e d in g s IE E E C a n a d ia n C o n fe re n c e
o n E le c tr ic a l a n d C o m p u te r E n g in e e r in g , May 2002, pp. 603-608, W innipeg,
Canada.
[30] D. Kirovski and M. Potkonjak, “System-level synthesis o f low -pow er real-tim e
system s,” P ro c e e d in g s D e s ig n A u to m a tio n C o n fe re n c e , June 1997, pp. 697-702,
Anaheim , USA.

102

R e n r o d u c e r i w i th n e r m i s s i n n n f t h p r .n n u r ln h t n w n e r F u r t h e r r f?n ro d i ic i in n n r n h ih i f p d vuithniit n e r m i s c i n n

[31] P. V. K nudsen, J. M adsen, “ PACE; A dynam ic program m ing algorithm for
hardw are/softw are partitioning” . P ro c e e d in g s 4 ‘̂ In te rn a tio n a l W o rk sh o p o n
H a rd w a re /S o ftw a re C o d e s ig n , pp. 85-92, 1996, Pittsburgh, USA.
[32] K. Kuchcinski, “ Constraints-driven scheduling and resource assignm ent,” A C M
T ra n sa c tio n s on D e s ig n A u to m a tio n o f E le c tro n ic S y s te m s , vol. 8, no. 3, pp. 355-383,
July 2003.
[33] Yu-Kwong Kw ok and I. Ahm ad, “D ynam ic critical-path scheduling: An
effective technique for allocating task graphs to m ultiprocessors,” IE E E T ra n sa c tio n s
o n P a ra lle l D is tr ib u te d S y s te m s , vol. 7, pp. 506-521, M ay 1996.
[34] L. E. LaForge, “Self-Healing A vionics for Starships,” P r o c e e d in g s IE E E
A e ro sp a c e C o n fe re n c e , M arch 2000, vol. 5, pp. 499-519, B ig Sky, USA.
[35] L. E. LaForge, K. F. Korver and M. S. Fadali, “W hat D esigners o f Bus and
Network A rchitectures Should K now about H ypercubes,” IE E E T r a n s a c tio n s o n
C o m p u te rs , vol. 52, no. 4, April 2003.
[36] Y. Li and W. W olf, “Hardw are/Softw are Co-Synthesis w ith M em ory
H ierarchies,” IE E E T ra n sa c tio n s o n C o m p u te r -A id e d D e s ig n o f In te g r a te d C ir c u its
a n d S y s te m s , \o \ . 18, no. 10 pp. 1405-1417, Oct. 1999.
[37] Huiqun Liu, D. F. W ong, “ Integrated Partitioning and Scheduling for
H ardw are/Softw are Co-Design” , P ro c e e d in g s In te r n a tio n a l C o n fe re n c e o n V L S I in
C o m p u te rs a n d P ro c e s so r s , Oct. 1998, pp. 609-614, A ustin, USA.
[38] J. M adsen, J. Grode. P.V . Knudsen, M .E. Peterson, A. Haxthausen, “ LYCOS:
the lyngby co-synthesis system ”. D e s ig n A u to m a tio n f o r E m b e d d e d S y s te m s , vol. 2,
no. 2, pp. 195-236, 1997.
[39] D.D. M itchell, D.C. Ku, F. M ailhot, and T. Truong, “The O lym pus Synthesis
System for digital design”, IE E E D e s ig n a n d T es t M a g a z in e , pp.37-53, Oct. 1990.
[40] A. Osterling, T. Benner. R. Ernst, D. Herrm ann, T. Scholz, and W. Ye, “The
CO SY M A system”, H a rd w a re /S o ftw a re C o -D e s ig n : P r in c ip le s a n d P ra c tic e , pp.
263-281. K luwer Academ ic Publishers, Am sterdam , 1997.
[41] D. A. Patterson, J. L. Hennessy, C o m p u te r A r c h ite c tu r e A Q u a n tita tiv e
A p p r o a c h 2'“̂ E d itio n , Morgan Kaufman Publishers Inc., San Francisco, CA, 1996.
[42] S. Prakash and A. Parker, “ SOS: Synthesis o f application-specific heterogeneous
m ultiprocessor system s.” J o u r n a l o f P a r a lle l a n d D is tr ib u te d C o m p u tin g , vol. 16, pp.
338-351, Dec. 1992.
[43] K. Raj an, L. M. Patnaik and J. Ram akrishna, “H igh-speed parallel
im plem entation o f a m odified PBR algorithm on D SP-based EH topology,” I E E E
T ra n sa c tio n s on N u c le a r S c ie n c e , vo ! ! , issue 4, pp. 1658-1672, Aug. 1997.
[44] E. Salminen, T. Ham alainen, T. Kangas, K. Kuusilinna, J. Saarinen, “ Interfacing
m ultiple processors in a system -on-chip video encoder” . In te r n a tio n a l S y m p o s iu m o n
C irc u its a n d S y s te m s , May 2001, vol. 4, pp. 478-481, Sydney, Australia.
[45] A viral Shrivastava, M ohit Kumar, Sanjiv Kapoor, Shashi Kum ar, M.
Baiakrishnan, “Optimal Hardware/Software Partitioning for Concurrent Specification
using Dynam ic Program m ing”. In te rn a tio n a l C o n fe re n c e o n V L SI D e s ig n , Jan. 2000,
pp. 110-113, Calcutta, India.

103

RAnrnHiinAcj w ith nprmI.CLQinn n f t h p n n n v / r in h t n u / n n r P i i r th n r rp n rn H i in t in n n rn h lh i tp H u / i th n i i t normic.QÎnn

[46] S. Srinivasan and N. K. Jha, “Hardware-Softw are Co-Synthesis o f Fault-Tolerant
R eal-T im e Distributed Em bedded System s,” P ro c e e d in g s E u ro p e a n D e s ig n
A u to m a tio n C o n fe re n c e , Sept. 1995, pp. 334-339, Brighton, UK.
[47] W. W olf, “A n architectural co-synthesis algorithm for distributed, em bedded
com puting system s,” 1E R E T ra n sa c tio n s o n V L S I S y s te m s , vol. 5, pp. 218-229, June
1997.
[48] W. W olf, C o m p u te r s a s C o m p o n e n ts , M organ Kaufm an Publishers Inc., San
Diego, CA , 2001.
[49] S. Y ajnik, S. Srinivasan, N . K. Jha, “TBFT: A Task Based Fault Tolerance
Schem e for D istributed System s,” P ro c e e d in g s In te r n a tio n a l C o n fe re n c e on P a ra lle l
a n d D is tr ib u te d C o m p u tin g S ysterns, Oct. 1994, pp. 483-489, Las Vegas, USA.
[50] K un-M in Yang, M ing-Ting Sun and Lancelot W u, “A Family o f VLSI Designs
for the M otion Com pensation Block-M atching Algorithm ” , IE E E T ra n sa c tio n s on
C irc u its a n d S y s te m s , vol.36, no .10, pp. 1317-1325, Oct. 1989.
[51] Y ao-M ing Y eh and Yiu-Cheng Shyu, “Efficient distributed schem es for
em bedding binary trees into incom plete hypercubes,” P ro c e e d in g s In te r n a tio n a l
C o n fe re n c e IE E E R e g io n 10 , Aug. 1994, vol. 1, pp. 182-186, Singapore.
[52] T.Y . Yen, W. W olf, “M ultiple-process behavioral synthesis for m ixed hardw are-
software system s”, P ro c e e d in g s 8 “̂ In te rn a tio n a l S y m p o s iu m on S y s te m S y n th e s is ,
Sept. 1995, pp. 10-15, Cannes, France.

104

R onrnH iiP .od \A/ith n o rm lc c i in n n f f h o n n n v /r inh f n\A/nor PEirfhor m n r n r ln n f in n nrnhiKifoH vA/ithnnt n o r m lc c i r

Appendix A - Prototype Device Code Listing

T h e following VHDL and C code define the final prototype device described in
section 4.2 and illustrated in figure 4.13. The device is a sym m etrical three
dim ensional hypercube that perform s the block m atching algorithm .

L in R -^ R Y iccc;
U S E icec .sld_ log ic_ l 164 .ALL:
U S E icee .s td Jo g ic_ arith .A L L ;
U S E iecc .s td Jo g ic_ u n sig n ed .A L L ;

E N T IT Y regS IS
PO R T (load : IN s td jo g ic ;

clock : in s td jo g ic ;
datain : IN s td_u log ic_vcc to r(7 dow ntoO);

dataout : O U T std_u log ic_vccto r(7 dow nto 0)): -p a ra lle l ou tpu ts
E N D rcgS;

A R C H IT E C T U R E rcgS OK regS IS
—SIG N A L in t_ reg ; integer range 0 to 65535;

B E G IN
process(clock)

—variab le vec: std_u log ic_vcc to r (1 to size);

B E G IN
il'(c lock 'evcn t and c lock = ' ! ’) th cn -n s in g _ e d g e (c lo c k) and load - 'T) then

il'(load = 'I ') then
- i n t r c g < = datain;

dataout <= datain ;
end if;

end if;
END PROCESS;
—connect internal reg ister to da taou t port
—dataout <= in t r c g ;

E N D rcgS;

L IB R A R Y iece;
U S E ic e c .s td ju g ic i 164.ALL;
U S E ieee .std Jog ic_arith .A L L ;
U S E icec .std Jog ic_unsigned .A L L ;

—our register definition
E N T IT Y reg655.35lnt2 IS

PO R T (load : IN s td jo g ic ;
clock : in s td jo g ic ;
inil : IN s td jo g ic ;

datain : IN in teger range 0 to 65535 ;
—datainZ : IN std_logic_vcctor(15 dow nto 0) ;- in te g e r range 0 to 65535;

dataout : O U T integer range 0 to 65535); -p a ra lle l ou tputs
E N D reg65535ln t2 ;

A R C H H E C T lJR H reg l OK reg65535 ln i2 IS
—SIG N A L in t_rcg : integer range (J to 65535;

B E G IN
process(elock . init)

-v a r ia b le vec; std u log ic vector (I to s i/e);

BE G IN
if(init = ' l ’) then

dataout <= 65535.
else

105

R onrnH i i/T<=rl w ith n o r m i c c i n n n f t h n n n n u r i n h t n w n o r F n r t h n r r<anrnHi m tin n n rn h ih l tn H w i t h n u t nnrmLQ.Qlnn

it\ c lock 'evc iii and c lock = '! ') then
it'(load = T) then
—inl_reg < = datain;

da taou t <= data in ;
end if;

end if;
end if;

t£ND PROCESS:
—connect in ternal reg ister to da taou t port
-d a ta o u t < = in t r c g ;

E N D rc g l;

L IB R A R Y icec;
U SE ieec .s td_ log ic_ l I64 .A LL;
U S E icce .std_logic_arith .A L L ;
U SE iecc .std_ log ic_unsigncd .A L L ;

EN T IT Y reg655351nt IS
PO R T (load : IN std logic;

c lock ; in std_ ,og ic ;
init ; IN s td jo g ic ;

datain : IN in teger range 0 to 65535;

dataout : O U T in teger range 0 to 65535); —parallel ou tputs
EN D rcg65535 ln t;

A R C H I TEC TU R E reg4 OF reg 65535 ln t IS
-S IG N A L in t rcg : in teger range 0 to 65535;

BE G IN
processfclock . init)

- v a r ia b le vec: std_u log ic_vec to r (I to size);

BEGIN
if(in it = T) then

da tao u t <= 0;
e lse
11% clock 'cven t and c lock = T ') then

if(load = 'I ') then
—int_reg < = datain;

dataou t <= datain;
end if;

end if;
end if;

E N D PROCESS;
—connect in ternal reg ister to dataou t port
—dataout < = in t rcg;

EN D reg4;

LIB R A R Y ieee;
U SE i e e c . s t d j o g i c j I64 .A L L ;
U S E icee.std_logic_arith .A L L ;
USE ic e e .s id J o g ic unsigned.A LL;

—o u r c om pare circu it defin ition
EN TITY com p IS

PO R T(inV al I : IN Integer range 0 to 65535; -p a ra lle l inputs
ini I ; in in teger range 0 to 32;
inJ I ; in in teger range 0 to 32;
inV al2 ; IN in teger range 0 to 65535; -p a ra lle l inputs
s ta rt ; in s td jo g ic ;
otiti ; out in teger range 0 to 32;
ou tJ : out in teger range 0 to 32;

out I : O U T integer range 0 to 65535); —parallel ou tputs
EN D com p;

ARCIIITKCrURE co m p l O F com p IS
- s ig n a l ou tT enip ; INTEGER;

106

R onrnr l t i r . f sd w i th npsrmiststinn nf t h n r- .nnurinht nw nnr F u r t h e r renrodtin fion n r o h i h i t e d w i t h o u t oerm iss ion .

BHOIN
procc.ss(start)

begin
ir{start'cvcm and start = ’I ') then

ir(inV all < lnV al2) then
out! < = in V a il;
outi < = ini I;
outJ < = in JI ;

end if;
end if;

end p rocess;
- o u t I < = o u lT c m p ;

K N D com pl ;

L IB R A R Y ieee;
U S E ie e e .s td J o g ic _ l 164.ALL;
U S E ieee .s td Jo g ic_ arith .A L L ;
U S E iece.std_logic_iinsigned.A L.L ;

—o u r add c ircu it defin ition
E N T IT Y add IS

P O R 'R in l : IN in teger range 0 to 65535; -p a ra lle l inputs
in2 ; IN integer range 0 to 65535; —parallel inpu ts

ou t! ; O U T in teger range 0 to 65535); -p a ra lle l ou tputs
E N D add;

A R C H IT E C T U R E add I OF add IS
s ig n a l outT em p ; IN TEG ER ;

B E G IN
p ro c c ss (in l. in2)

begin

end process;
out I <= outTem p;

ou lT em p < = ini + in2;

E N D add 1;

L IB R A R Y ieee;
U S E ieee .std_ log ic_ l 16 4 .ALL;
U S E ieec.sld_logic_arilh .A L L ;
U S E ieec.std_logic_un.signed.A I .1 ;

—our d ifie renec c ircu it definition
E N T IT Y d i in s

P O R T (in l : IN S td ulogic v e c to r ;7 D O W N TO 0); —parallel inputs
in2 ; IN Std_ulogic_veeu>r(7 D O W N TO 0); —parallel inputs

out I : O U T in tcaer range 0 to 65535); -p a ra lle l ou tputs
E N D d ilT ;

A R C IIIT E C T U R E d ill l Ob' dilT IS
s ig n a l outT em p : IN TlXiER;

B E G IN
process; in I . iii2)

variable val . IN TEG ER;
variab le v a il . IN TEG ER;
variable v a l2 : INTEGEiR;

variable b . IN I EG ER;

107

Reoroduced with oermission of the coovrioht owner. Further reoroduction orohibited without oermission.

BW JIN
val — 0;
b := I ;
for y in 0 to 7 loop

ll'(in l(y) = T) then
val := val + b:

end if; |
b:= b • 2 ;

end lo o p ;- fo r y
val I ;= val;

. val := 0;
b := t ;
for y in 0 to 7 loop

if\in2(y) = ’l ') then
v a l v a l + b;

end if;
b := b * 2;

end lo o p ;- fo r y
val2 := val;

iffval 1 < val2) then

else
outT em p < = (v a l2 - val I);

ou tT em p < = (val I - val2);
end if;

E N D PR O C E SS;
I

o u tI < = outT em p; j

E N D d iff I ;

L IB R A R Y ieee;
U S E icee .std_ log ic_ l 164.A LL;
U S E ieee .std_ log ie_arith .A L L ;
U S E ieee.std_ log ie_unsigned .A L L ;

--oiir reg iste r definition
EN TIT Y reg IS

PO R T fload ; IN s td jo g ie ;
c lo ck : in std logic;

datain : IN S td_u log ic_veeto r(7 D O W N TO 0); —paralle l inpu ts
dataout ; O U T S td_u log ic_vecto r(7 D O W N TO 0)); —parallel ou tputs

E N D reg;

A R C H IT E C T U R E v l O F reg IS
SIG N A L in t reg : S td_ulog ic_vecto r(7 D O W N TO 0);

B E filN
process! c lo ck)
BEGIN

ifle loek 'cven t and clock = 'I ') then
if(load = T) then
in t r c g < = datain;

end if,
en d if;

EN D PR O C E SS;
—connect in ternal reg ister to dataout port
dataout <= int r e g ; - w hen tim eT oO utpu l = 'I ' e lse "Z Z Z Z Z Z Z Z ”;

E N D v l ;

LIB R A R Y ieee;
U S E ieee..std_logie 1164.A L L;
U SE ieee.std log ie arith .A LL;
U SE ieee .std_ log ie_unsigned .A L L ;

108

ReDfoduced with Dermission of the copvriflht owner. Further reproduction prohibited without permission.

1;NTITY b lo ck m atch IS
[>ORT(

--stopA IID one : IN S T D LO G IC :
a(lclB>te
elk
InByle
allD onc
out!
ouU

E N D b lockm atch ;

IN .S T O _ L O G IC ;-g o e s h igh w hen it is tim e to a d d a by te to the a rray s
IN S T D _L U G IC ;
IN S T D _U t.O G IC _V I£C T O R (7 D O W N T O 0);
O U T S T D L O G IC :—goes h igh w hen E V E R Y T H IN G is fin ished
O U T in teger ran g e 0 to 3 2 : —the i sh ift va lue (SW w ill m ak e it -1 6 to + 1 6)
O U T in teger ran g e 0 to 32): - t h e j sh ift va lue (SW w ill m ak e it -1 6 to + 16)

ARCHITECTURE descrip tion O E b lockm atch IS

C O M P O N E N T reg IS
PO R T (load : IN s td jo g ie :

e lock : in s td logic;
datain : IN S td_u iog ic_vecto r(7 D O W N T O 0): - p a r a l le l inpu ts
da taou t : O U T S td_u log ic_vccto r(7 D O W N T O 0)): —para lle l ou tpu ts

EN D com ponen t;

C O M P O N E N T d i tr IS
PO R T (in l : IN S td_u log ic_vecto r(7 D O W N T O 0); —para lle l inpu ts

in2 : IN S ld_u log ic_vecto r(7 D O W N T O 0); —paralle l inputs
ou t I ; O U T integer range 0 to 65535): —paralle l o u tp u ts

EN D co m ponen t;

com ponen t add IS

PO R T (in I : IN in teger range 0 to 65535 : -p a ra lle l inpu ts
in2 ; IN in teger range 0 to 6 5 5 3 5 ; —paralle l in p u ts

ou t I : O U T in teger range 0 to 65535); —parallel o u tp u ts
EN D co m ponen t:

com ponen t c o m p IS

P O R T (inV all : IN in teger range 0 to 6 5535 : —parallel inpu ts
ini I ; in in teger range 0 to 32:
inJ I : in in teg e r range 0 to 3 2 :
in V al2 ; IN in teg e r range 0 to 65535 ; —para lle l inputs
s ta rt ; in s td_ log ic:
outI : o u t in teger range 0 to 32;
ouU ; o u t in teger range 0 to 32:

ou ti : O U T integer range 0 to 65535); —parallel o u tp u ts
EN D com ponen t:

com ponen t reg65535 ln t2 IS
PO R T (load : IN std logic;

c lock : in s td logic;
init : IN std logic;

datain ; IN in teger range 0 to 65535 ;
—datain2 : IN s td J o g ie _ v e c to r(15 dow nto 0) ;- in te g e r range 0 to 65535;

dataou t : O U T in teger range 0 to 65535); -p a ra lle l o u tp u ts
EN D com ponen t:

com ponen t rcg65535 ln t IS
PO R T (load : IN s td_ log ic;

c lock : in s td jo g ic :
init : IN s td jo g ic :

data in : IN in teger range Ü to 65535:
dataou t : O U T in teger range 0 to 65535): —parallel o u tp u ts

EN D co m ponen t:

—signal load : S T D J .O G IC _ V E C T O R (2 5 5 9 dow nto ());—th e load lines lo r all the reg isters
—signal regO u tpu l : S T I)_ I .O (/IC _ V E C rO R (2 5 5 9 dow n to O l;- lh e line ind icates i f th is reg is te r s h o u ld be ou tp u ttin g

109

Reproducetd with permission of the copyright owner. Further reproduction prohibited without permission.

s igna l rcg A c tiv e O u l : S T D _U L O O IC _V K C T O R {7 d o w n to 0);
- s ig n a l rcg O ld O m : ST D _U L O G lC _ V E C T O R (7 d o w n to 0);
s ig n a l d it'f lO u t : in teger ran g e 0 to 6 5 5 3 5 ; '
s igna l a d d R e g O u t : in tege r ran g e 0 to 6 5 5 3 5 ;
—signa l loadZ ndR cg ; S T D L O G lC _ V E C T O R (l 0 88 d o w n to 0);
- s ig n a l regZ ndO utpu t : S I D LO O IC _ V E C T O R (1088 d o w n to G);
s igna l iVal : in tege r range 0 to 32; —g e n e ra ted by con tro l c ircu itry to tell co m p a ra to r w h a t index is b e in g com pared
s igna l jV a l : in tege r range 0 to 3 2 ; —as a b o v e
s igna l co m p O u t ; in teger ran g e 0 to 6 5 5 3 5 ;
s igna l iO ul ; in teg e r range 0 to 32;
s igna l jO u t : in te g e r range 0 to 32;
s igna l b cs tE rro rY e t : in teger ran g e 0 to 6 5 5 3 5 ;
s ig n a l lo ad C o m p R eg : S T D _ L O G lC ;
s igna l in ilC o m p R eg ; S T D _ L 0 G 1 C ;
—signal rcg A d d e rln 2 : in te g e r range 0 to 65535 ;
—signal reg A c liv e T im e T o O u lp u t ; s td _ lo g ic_ v e e to r(2 5 5 dow n to 0);
—signal reg O ld T im e T o O u tp u t ; s td _ lo g ic_ v ec to r(2 3 0 3 d o w n to 0);

signa l ad d O u t ; in teger ran g e 0 to 6 5 5 3 5 ;
s igna l lo ad A d d R eg ; s td j o g i c ;
s igna l in itA d d R eg : std log ic ;
s ig n a l lo ad ln R e g : s td j o g i c ;
s igna l reg 2 n d O u t : s td J o g ic _ v e c to r(15 d o w n to 0);
- s u b ty p e W O R D S is S T D _ L O G lC _ V E C T O R (7 d o w n to 0);
—type A R R A Y 1089 is a rray (1088 d o w n to 0) o f W O R D S;
—signa l reg 2 n d O u t ; A R R A Y 1089;
s ig n a l c o m p S ta rt : s t d jo g ic ;

B EG IN

in R eg A ctiv eL ab e l: reg P O R T M A P (lo ad ln R eg , e lk , inB yte, reg A ctiv eO u t);
d in C irc u if . d i f f p o r t m ap (reg A c tiv e O u t, inB y te , d iff lO u t) ;
a d d l : add port m a p (d if f lO u t, a ddR egO ut, a ddO u t);
ad d R eg L ab c l: reg 6 5 5 3 5 In t p o r t m ap (lo ad A d d R eg , e lk , in itA d d R eg , a ddO u t, ad dR cgO ut);
c o m p l : com p p o rt m ap (ad d O u t, iV a l,jV a l, bcs tE rro rY et, c o m p S ta rt, iO u t ,jO u t, c o m p O u t); |
co m p R eg is te r; reg655351n t2 p o rt m ap (loadC om pR eg , e lk , in itC o m p R eg . co m p O u t. bcs tE rro rY e t); |

—tem p ln R c g O u t < = reg A c tiv e O u t; I
—te m p D iffO u t < = d ilT lO u t; |
—tem p A d d R e g O u t < = a d d R eg O u t; _|
—tem p A d d O u t <= ad d O u t; I
—tc m p C o m p R c g O u t< = b c stE rro rY e t; |
—tem p C o m p O u t < = c om pO ut; |

ak
p ro ce ss (c lk) a

v a ria b le ad d C o u n te r : in teger; 3
v a riab le c o m p C o u n tc r: in teger; |
v a riab le i ; in teger; j
v a riab le j : in teger; j

v a ria b le s ta te : in teger := 0; - 0 m eans w e a rc lo ad in g values. 1 m eans we a re d o in g I

beg in j
if(ris in g _ ed g e(clk)) th en i

—se t all reg is te rs to no load ;

a llD one < = 'O'; i

lo ad ln R eg < = 'O'; g
lo ad A d d R eg < = 'O'; ;
in itA ddR eg < = 'O'; 'j
lo ad C o m p R eg < = 'O'; j
in itC om pR cg < = 'O'; i|
c om pS ta rt < = 'O'; >

if(addB y tc = T) then j
—then w e are a d d in g an o th e r b y te to the c ircu it How |
tem pS ignal < = '1 '; ;
t e m p C lk < = 'l '; |
ad dC oun ter := a d d C o u n te r + I;
i f (s ta te = 1) then i

i
110 Î

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.

the add ing

loadA ddR eg < = '! ’;
s la te := 2;

cIsiR state = 2) then
lo ad ln R eg < = 'I ';
i l'(addC ounter > 511) th en —254) then

sta te := 3;
a d dC oun ter - 1 ;

j : = j + I;
iflj > 32) then

j - 0;
i := i + I;

end if;
if(i > 32) then

- r e s e t i - w e are d one - d o n 't upda te the ou tp u t i's and j's
i := 0;

else
IVal < = i;
jV a l < = j ;
c o m p S ta rt < = 'I ';

end if:
else

s ta te — I ;
end if:

c ls if(s ta te = 3) then
loadC om pR eg <= ’I ';
s ta te := 4;

c ls if(s ta te = 4) then
in itA ddR eg < = '! ' :
lo ad lnR eg < = ' I’;
co m pC oun ter := c o m p C o u n tc r + I :
ilfcom pC oun ter > 1088) then —w e ju s t d id the las t one

s ta te := 0;
a l lD o n e < = 'l ':

e lse
s ta te := I :

end if;
e lse —w e are in s ta te 0

load lnR eg < = '! ' ;
in itA ddR eg < = '! ' :
in itC om pR eg < = '! ';
i ;= 0;
j := 0:
- c o m p C o u n te r 0;
sta te := I :

- s o w e are p robab ly in sta te 0 (lo ad in g o f the reg is te rs so do noth ing .,
end if:—if sta te = 1. 2

end if :~ ifa d d B y le = ’I'
tem pS ta te <= sta te :

end i f : - i f ris ing edge clock
end p rocess;

outi < = iO ut:
otitJ < = jO u t:

H N D descrip tion :

L IB R A R Y ieee:
U S n ieee.std log ic i I64.A I.L :
U S B ieee .s ld_ log ic_a rith ,A l.l,.
U S B ieee.std log ic u n sig n cd .A l.t.;

B N 'r i TY l> l;_B lockM atch IS
I’O R Tt

elk
InD estinationI
inSotireel
in D ata I

in std logic:
IN STD_l.OCIIC VI-;CrOR(2 dow nto 0):
IN S I D _I.D (IIC \V I:C fOR(2 dow nto 0):
IN .STD _U l.t)t;iC V U C ÏO R {7 d o w n to 0);

11

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E N D P E _B lückM atch ;

in iD I ; IN S T D _ U 1 .0 G IC _ V E C T 0 R (7 dow n to 0);
inS lartl : in s ld jo g ic ; - g o e s h igh w hen the th ree th in g s above a re ready
in D e s tin a tio n î ; IN S T D _ L O G lC _ V E C T O R (2 dow n to 0);
inSourcc2 ; IN S T D _ L O G IC _ V E C T O R (2 d o w n to 0);
inD ata2 : IN S T D _ U L O G IC _ V E C T O R (7 dow n to 0);
in lD 2 : IN S T D _ U L O G IC _ V E C T O R (7 dow n to 0);
inS lart2 : in s td j o g i c ; - g o e s h igh w hen the th ree th ings above are ready
inD estina tion3 : IN S T D _ L O G IC _ V E C T O R (2 dow n to 0);
inSource3 ; IN S T D _ L O G IC _ V E C T O R (2 d o w n to 0);
inD ata3 : IN S T D _ U L O G IC _ V E C T O R (7 d o w n to 0);
inID 3 : IN S T D _ U L O G lC _ V E C T O R (7 dow n to 0);
inStart3 : in s td j o g i c ; —goes h ig h w hen the three th ings above are ready
m y ID ; in s td _ lo g ic_ v ec to r(2 dow nto 0);—w hat th is P E 's ID is
ID I : in s td_ Iog ic_vcc to r(2 dow n to 0);—w hat PE I 's ID is
ID 2 : in s td _ lo g ic_ v ec to r(2 dow n to 0) ;—w hat PE 2 's ID is
1D3 : in s ld _ lo g ic_ v ec to r(2 dow n to 0);—w hat PE 3’s ID is
ou tD eslin a lio n I : o u t S T D _ L O G IC _ V E C T O R (2 dow n to 0);
o u lS o u rc e l ; o u t S T D _ L O G IC _ V E C T O R (2 d o w n to 0);
ou tD ala 1 : o u t ST D _U LO G IC _ V E C T 0 R (7 dow nto 0);
o u tlD I ; o u t S T D _ U L O G lC _ V E C T O R (7 dow n to 0);
o u tS ta rtI : o u t s td jo g ic ;
ou tD cstina tion2 : o u t S T D _ L O G IC _ V E C T O R (2 d o w n to 0);
o u tS o u rce2 ; o u t S T D _ L 0 G IC _ V E C T 0 R (2 dow n to 0);
ou tD ata2 : o u t ST D _U L O G IC _V E C T O R {7 dow n to 0);
ou tlD 2 : o u t S T D U L 0 a iC _ V E C T 0 R (7 dow n to 0);
o u tS ta r tI : o u t s ld jo g ic ;
ou tD estina tion3 : o u t S T D _ L O G IC _ V E C T O R (2 d o w n to 0);
ou lSoureeS : o u t ST D _L O G IC _V E C T O R (2 d o w n to 0);
ou tD ata3 : o u t S T D _ U L O G IC _ V E C T O R (7 dow n to 0);
0UIID3 : o u t S T D _ U L 0 G IC _ V E C T 0 R (7 dow n to 0);
outS tart3 : o u t s td jo g ic) ;

A R C H IT E C T U R E P E descrip tion O F PE _B lockM atch IS

co m ponen t b lo ck m atch IS
PO R T (

E N D co m p o n en t;

—stopA IID one : IN S T D LO G IC ;
addB yte : IN S T D _ L O G IC ;-g o c s h igh w hen it is tim e to add a byte to the arrays
e lk : IN ST D _L O G IC ;
inB yte : IN S T D _ U L O G IC _ V E C T O R (7 D O W N T O 0);
a llD one : O U T S T D _L C X 3IC ;-goes h ig h w hen E V E R Y T H IN G is fin ished
ou ti : O U T in tege r range 0 to 3 2 ; —the i sh ift va lue (SW w ill m ake it -16 to + 16)
o u t) ; O U T in teger ran g e 0 to 3 2); —the j sh ift v a lu e (SW w ill m ak e it -16 to + 1 6)

s ig n a l c ircu itS tart ; s td jo g ic ;—tied to elk
s ig n a l add ingA B yte : s td j o g i c ; —tied to addB yte
s ig n a l in D ata : s td_u log ic_vcc to r(7 d o w n to 0) ; - t i c d lo inB yte
s ig n a l done : s td J o g ic ; - l i s tc n i f c ircu it is d one
s ig n a l ou tD ata l lo t ; in teger ran g e 0 to 32;
s ig n a l outD ataJ J n t ; in teger range 0 to 32;
s ig n a l ou tD ata l : std_u log ic_vec to r(7 dow n to 0) ; - th c v a lu e o f outI from circu it converted to vec to r to send
s ig n a l ou tD ataJ : std_u log ic_vec to r(7 d o w n to 0) ; - lh e v a lu e o f outJ from circu it converted to vec to r to send
s ig n a l ou tD ata l L O G IC : s td J o g ic _ v c c to r(7 dow n to 0);
s ig n a l out D ata) LO G IC ; s td J o g ic _ v e c to r(7 dow n to 0);

b eg in

—w ill be sen t on o u tID lines a flag w ill have to be se t in the top 2 bits

B M : b lockm atch port m ap(add ingA B yte , e lk , in D ata , done , o u tD ata l Int. o u tD a ta J J n t) ;

p rocess(c lk)

va riab le d es tC oun terl : in teger range 0 to 3;
va riab le deslC oun tcr2 : in teger range 0 to 3;
v a riab le destC oun ter3 : in teger range 0 to 3;
va riab le iTem p ; in teger range 0 to 32;

112

Reprotduced with permission of the copyright owner. Further reproduction prohibited without permission.

variable jT cm p : inicner 0 to 32;

begin
if(ris ing ed g e (c lk)) iben

o u tS ta r tl < = '0 ';
ou tS la rt2 < = 'O';
ou lS la rt3 < = '()';
ad d in g A B y te < = 'O';
c ircu itS ta rt < = 'O’;
tcm p O u t3 < = 'O';

if(done = '!') then
--tempOut <='[';
—so the BM circuit just finished!
—convert outDatal lnt and outDataJJnt to outDatal and outDataJ
—set top 2 bits of outDataJ to zero (it won't overwrite any info)
—destination "000" figure out which link to send the data down
—assign outDestinalion# <= "000", outData# <= outDatal, outID# <= outDataJ.
-outStart# <= ' I ';
-same data must also be sent to ASSERT task at location "011 "
iTemp := outDatal Inf,
JTemp ;= outDataJJnt;
— they have been latched, tell the BM circuit to stop having all Done be high!
addingAByte <= '0';—without adding a byte
circuitStart <= 'I';
outDatal LOGIC <= CONV_STD_LOGIC_VECTOR(iTemp, 8);
outDataJ_LOGIC <=CONV_STDJ.OaiC_VECTOR(jTemp, 8);

for i in 0 to 7 loop
outDatal(i) <= outDatal_LOGlC(i);
outDataJ(i) <= outDataJ LOGIC(i);

end loop;
outDataJ(7) <= 'O';
outDataJ(6) <= '0';—Hags to indicate what this info is
—which link is closest to 000 and which to 011?
destCounterl ;= 0;
destCountcrZ := 0;
destCounterS := 0;
for i in 0 10 2 loop

if(IDl(i) = ’O') then
destCounterl := destCounterl + I;

end if;
if(ID2(i) = '0') then

destCounter2 := destCounter2 + I ;
end if;
if(ID3(i) = '0')then

destCounter3 := destCounter3 + I;
end if:

end loop;
if(destCounterl > destCounter2) then

if(destCounterl > destCounter3) then
—send down link!
outDestination! <= "000";
outSourcel <=mylD;
outDatal <= outDatal;
outiDI <= outDatal;
outStartl <='T;
-is assert closer to link 2 or 3'.'
dcslCounter2 := 0;
destCounter3 := 0;
for i in 0 to I loop

if(ID2(i) = 'l')then
dcs;Counter2 := destCounter2 + I ;

end if;
if(ID3(i) = 'l')lhen

deslCounter3 destCounter3 + I ;
end if;

end ItKip;
if(ID2(2) = '0')then

Reprotduced with permission of the copyright owner. Further reproduction prohibited without permission.

else

dcslC oun ler2 := dcstC oun tcr2 + 1 ;
end if;
if(lD 3(2) = '0 ') lh e n |

destC oun ler3 := dcstC oun ter3 + 1 ; |
end if; |
ir(dcstC oun tcr2 > destC oun ter3) then |

—sen d p ack e t dow n Iink2 |
ou tD estina tion2 < = "000"; |
ou tS ource2 < = m y ID; I
ou tD ata2 < = o u tD a ta l; |
o u tlD 2 < = ou tD ataJ; |
ou tS ta rt2 < = '1 '; 3

else
- s e n d packet dow n Hnk3
o u tD es tin a tio n] < = "000";
ou tS ourcc3 < = m ylD ;
o u tD a ta l < = outD ata l;
ou tlD 3 < = ou tD ataJ;
o u tS ta r tl < = T ;

end if;

—send down link3
outDestination] <= "000";
outSource] <= mylD;
outDatal <= outDatal;
outlDl <= OutDataJ;
outStartl <= ' I
—is assert closer to link 2 or 1 ?
destCounter2 ;= 0;
destCounterl ;= 0;
for i in 0 to I loop

iRID2(i) = 't') then
destCounter2 := dcstCounter2 + I ;

end if;
if(IDI(i) = 'I') then

destCounterl := destCounterl + I;
end if;

end loop;
if(ID2(2) = '0’)then

destCounier2 := destCounterl + I ;
end if;
if(IDl(2) = ’0 ') then

destCounterl := destCounterl + I;
end if;
if(dcstCounter2 > destCounterl) then

-ser d paeket down link!
outDestination! <= "000";
outSourcel <= mylD:
outDatal <= outDatal;
outlDl <= outDataJ;
outStartl <='l’;

else
-send packet down link I
outDestination I <="000";
outSourcel <= my ID:
outDatal-<= outDatal;
outlDl <= outDataJ;
outStartl <='l';

end if;
end if;

else
if(destCounterl > destCounterl) then

—send down linkl
outDestinationl <= "000";
outSourcel <= my ID;
outDatal <= outDatal;
outlDl <= outDataJ;
outStartl <=’l';
—is assert closer to link I or 37
destCounterl ;=0;

114

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

else

end if;

deslC o»nlcr3 := 0;
fur i in 0 to I loop

if(ID I(l) = ' r) then
destC oun terl •.“ destC o u n te rl -t- I;

end II;
il'(ID3(i) = ' l ’) then

destC ounler3 ;= destC oun ter3 + I t
end IT;

end loop;
i r (I D I (2) = '0’) th e n

destC oun terl := destC oun terl + I ;
end if;
if(ID3{2) = ’0 ') th e n

destC ountcrS ;= destC ounterS + I ;
end if;
if(destC ounlerl > destC ountcr3) then

- s e n d packet dow n Iink2
ou tD estina tion l < = "000";
ou lS ou rce l < = m ylD ;
o u tD ata l <= outD atal;
outi D I < = outD ataJ ;
o u tS ta rtl < = '1 ';

else
- s e n d packet dow n Iink3
outD estinalion3 < = "000";
outSourceS < = m y ID;
outD ata3 < = ou tD atal;
ou tlD 3 < = outD ataJ;
outS tart3 < = '1 ';

end if;

- s e n d dow n Ilnk3
outD estination3 < = "000";
oulSource3 <= m ylD ;
outD ata3 <= outD atal;
ou tlD 3 < = outD ataJ;
outStart3 < = ’! ’;
—is assert c loser to link 2 o r 1 ?
destC ounier2 ;= 0 ;
destC ounterl 0;
for i in 0 to I Itxtp

if(ID 2(i) = T) then
d e s tC o u n te rl := d e s tC o u n te rl + I ;

end if;
if(ID I(i) = 'l ') t h e n

destC oun terl ;= d e stC o u n te rl + I;
end if;

end loop;
if(ID 2(2) = '0 ') th e n

d e stC o u n te rl := d e s tC o u n te rl -t- I ;
end if;
if(ID I(2) = '0 ') th e n

destC oun terl := destC oun tcrI + I;
end if;
if(dcstC aun tc rl > destC oun terl) then

—send packet dow n l in k l
o u tD estin a tio n l <= "000";
o u tS o u rc e l < = m y ID;
o u tD a ta l <= outD atal;
o u t lD l < = outD ataJ;
o u tS ta r tl < = '1 ';

else
- s e n d packet dow n link l
ou tD estina tion l < = " 0 0 0 " ;
ou tS ou rce l <= m y ID;
ou tD ata l < = o utD atal;
ou tlD l < = outD ataJ;
ou tS ta rtl < = '1 ';

end if;

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end il';
end if;
illin S ta rtl = 'I ') then

--som eth ing h as com e in o f f o f the I lines
if(inD eslination l = m y lD) then

—this packet is for here! Pass it a long to the BM circu it
addingA B yte <= 't ' ;
in D ata < = InD ata l;
circu itS tart < = ’!';

else
—then we m ust forw ard the packet
—forw ard the packet to the ne ighbou r w ith the closest ID
d estC o u n te rl ;= 0;
desiC ounterS ;= 0;
il\inD cstination 1 (0) = 102(01) tlicn

d estC o u n te rl := d e s tC o u n te rl + 1;
end if;
if(inD estination 1(1) = 1D1(1)) then

d e stC o u n te rl := d e s tC o u n te rl + I ;
end if;
if (in D e stin a tio n i(l) = I D l (l)) then

d e stC o u n te rl := d es tC o u n te rl + 1 ;
end if;
if(inD estination !(0) = 1D3(0)) then

destC ounter3 := deslC ounler3 + I ;
end if;
if (in D e stin a tio n l(l) = 103(1)) then

destC ounter3 ;= destC ounter3 + 1 ;
end if;
if (in O e stin a tio n l(l) = 103(1)) then

d e stC o u n te rl := d estC o u n te rl + 1 ;
end if;
i((destC oun terl > d e s tC o u n te rl) then

- fo rw a rd packet to 103
o u tD estin a tio n l < = inO estination 1 :
ou tS o u rc e l < = inSource 1 ;
o u tD a ta l < = inO ata l ;
o u ti0 3 < = in lO l;
o u tS ta rtl < = ’l ’;

else
—forivard packet to 102
o u tD e s tin a tio n l < = inO estination 1 ; 0
o u tS o u rc e l < = inSource I;
o u tD a ta l < = in O a ta l;
o u t lO l < = in lO l;
o u tS ta r tl < = '1 ';

end if;
end if;

end if; |
if(in S ta rtl = T) then

if(inO estination2 = m ylO) then | ;
- th i s packet is for here! Pass it a long to the BM circu it I
addingA B yte < = '! ' ; |
in O a ta < = in O a ta l; i|
circu itS tart < = '1 '; *

else
—then we m ust forw ard the packet
—forw ard the packet to the ne ighbour with the c losest It)
destC oun terl := 0 ;
destC oun terl ;= 0;
if(inO estination l(0) = 101(0)) then

destC oun terl “ destC oun terl + 1;
end if;
il(in O c slin a tio n l(l) = 101(1)) then

destC oun terl “ destC oun terl + 1;
end if;
if (in O c stin a tio n l(l) = 101(1)) then

destC oun terl ;= destC oun terl + I;
end if;

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iU iiiC testinalion2(0) = 103(0)) tlKii
dcslC ountcr3 := destC oum cr3 + 1 ;

end if;
if(iiiDesiination2Cl) = 103(1)) ihen

dcstC ounlcr3 := desiC ounler3 + I;
end if;
if(inD cstination2(2) = 1 0 3 (2 » (hen

destC ountcrS := des(C ountcr3 + 1 ;
end if;
if(desiC ounler3 > d e s tC o u n te rl) then

—forw ard packet to 103
o u tD estination3 < = inO estination2;
ou tSource3 < = inSource2;
outO ata3 < = in O a ta l;
ou ti0 3 < = in l0 2 ;
outS tart3 < = '! ':

else
- fo rw a rd packet to 101
ou tD estina tion l <= inO estina tion !;
ou lS ou rce l < = inSource!:
ou tO ata l <= inO ata!;
o u tlD l < = in l0 2 ;
ou tS tartl < = '1 ';

end if;
end if;

end if;
if(inS tart3 = ' l ’) then

it);inDestination3 = m ylD) then
- th i s packet is for here! Pass it along to the BM circu it
I c m p 0 u t3 < = '1';
add ingA B yte < = '! ';
inD aia < = in O a ta l;
c ircu itS ta rt < = a d d in g A B y te ;- '! ';

else
—then w e m ust forw ard the packet
- fo rw a rd the packet to the neighbour w ith the c losest 10
d estC oun terl := 0 ;
d es tC o u n te r! := 0;
if(inO estination3(0) = 101(0)) then

destC oun terl := destC oun terl + I;
end if;
if(in O estin atio n 3 (l) = 101(1)) then

destC oun terl := destC oun terl + I;
end if;
il% inD estination3(!) = 101(2)) then

destC oun terl destC oun terl + I;
end if;
iflinD estination3(0) = 1 0 2 (0 » then

destC o u n te rl ;= d e stC o u n te rl + I;
end if;
if(inO estination3(l) = 1D2(I)) then

destC o u n te rl := d e stC o u n te rl + I ;
end if;
if(inD estinatio r,3 (l) = 101(1)) then

d estC o u n te rl ;= d e stC o u n te rl + I;
end if;
if(d estC o u n te rl > d estC o u n te rl) then

—forw ard packet to 103
o u tD estin a tio n l <= inO estina tion !;
o u lS o u rc e l < = inS ou rce l;
o u tO a ta l <= in O a ta l;
ou t!0 2 <= inlD 3;
o u tS ta r tl <= ' I ';

else
- fo rw a rd packet to IDI
ou tD estina tion l <= inO estina tion !;
ou tS ou rce l <= in Sou re e l;
ou tO ata l <= inO a ta l;
outi 01 < = in l0 3 ;
ou tS ta rtl < = '! ';

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end il':
end If;

end P tideserip tiim ;

end if;
end process;

end if;

L IB R A R Y ieee;
U S E ie c e .s td J o g ic _ l 16 4 .A L L;
U SE iccc .sld_logic_arilh .A L L ;
U S E iee e .s ld Jo g ic_ u n sig n cd .A L L ;

EN TIT Y PE _B M _A ssert IS
PO RT(

E N D PE BM Assert;

elk
inD estination l
inSource 1
inD aial
in lD l
inStartl
inD estination2
inSourcc2
inData2
inlD 2
inStarÜ
inD estinalion3
inSourcc3
inOata3
inlD3
inStarÜ
m y ID
IDI
1D2
ID3
outD estination!
ou lSourcel
ou tD atal
outi DI
outS tartl
oulD estination2
outSource2
outD ata2
0U1ID2
outStart2
outD estination3
outSourcc3
oulD ata3
0UIID3
outStart3

: in sld logic;
: IN S 'fb _ L 0 G lC _ V E C T 0 R (2 dow nto 0);
: IN S T D _ L 0 G IC _ V E C T 0 R (2 dow nto 0);
: IN STD _U L O G IC _V E C T O R (7 dow nto 0);
; IN ST D _U L O G lC _V E C T O R (7 dow nto 0);
: in s td jo g ic ; —goes high w hen the three things above are ready
; IN S T D _L O G iC _V E C T O R (2 dow nto 0);
: IN S T D _L 0G 1C _V E C T 0R (2 dow nto 0);
; IN STD _U L O G IC _V E C T O R (7 dow nto 0);
; IN S T D _U L 0G 1C _V E C T 0R (7 dow nto 0);
: in s td jo g ic ; —goes h igh w hen the three th ings above are ready
: IN ST D _L O G IC _V E C T O R (2 dow nto 0);
; IN S T D _ L 0 G IC _ V E C T 0 R (2 dow nto 0);
; IN STD _U L O G IC _V E C T O R (7 dow nto 0);
: IN STD _U L O O IC _V E C T O R (7 dow nto 0);
: in s td jo g ic ; —goes high w hen the three th ings above are ready
: in s td_logic_vector(2 dow nto 0);—w hat th is PE 's ID is
: in s td_logic_vector(2 dow nto 0);—w hat PE I's ID is
: in s ld Jo g ic _ v ec to r(2 dow nto 0);—w hat PE 2 's ID is
: in s td_logic_vector(2 dow nto 0);—w hat PE 3 's ID is
: out ST D _L O G IC _V E C T O R (2 dow nto 0);
; ou t ST D _L O G IC _V E C T O R (2 dow nto 0);
: out S T D _U L O G iC _V E C T O R (7 dow nto 0);
: ou t STD _U L O G IC _V E C T O R (7 dow nto 0);
: out s td jo g ic ;
: out ST D _L (X j 1C _V E C T 0R (2 dow nto 0);
: out S T D _ L 0 G IC _ V E C T 0 R (2 dow nto 0);
: ou t STD _U L O G IC _V E C T O R (7 dow nto 0);
: ou t S T D _ U L 0 G IC _ V E C T 0 R (7 dow nto 0);
: ou t s td jo g ic ;
: out S T D _L 0G 1C _V E C T 0R (2 dow nto 0);
: ou t S T D _ L 0 G IC _ V E C T 0 R (2 dow nto 0);
: ou t ST D _U L O G IC _V E C T O R (7 dow nto 0);
: out S T D _ U L 0 G !C _ V E C T 0 R (7 dow nto 0);
: out Sldjogic);

A R C H IT E C T U R E P E A sscndescrip tion O F PE_B M _A ssert IS

begin
proce.ss(clk)

variab le destC ounterl ; in teger range 0 to 3;
variab le dcstC ounter2 : in teger range 0 to 3;
variab le dcslC ounterS ; in teger range 0 lo 3;

variab le scndE rror : in teger range 0 to I ; - “goes high i f e rro r is detected (so a packet m ust be sen t to the
—control so that that PE is now neglected)

variab le badBM : std_ logic_vcctor(2 dow nto 0);—represents w hich BM is faulty

begin
il'trising edge(clk)) then

ou tS tartl < = '0 ';

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ou lS tart2 <= 'O';
o inS tart3 < = 'O';
sendE rro r ;= 0;
ir(inS tartl = T) then

—som eth ing has com e in o n 'o l 'lh e I lines
iR inD estina tion l = m y lD) th e n

—th is packet is for here!
—is there an erro r in the packet'.'
if((in lD I(7) = '! ') and CinID2{7) - 'I ')) then

- th e n it is an error packet
scndf-rror ;= I;
badB M := inSource I;

end if;

else
—then we m ust forw ard the paeket
—forw ard the packet to the neighbour w ith the c losest ID
d e stC o u n te rl := 0;
destC ounterS ;= 0;
if(in D estin atio n l(0) = 1D2(0)) then

deslC ounler2 ;= dcstC ounler2 + 1;
end if;
if(in D e stin a tio n l(l) = ID 2 (i)) then

d estC o u n te rl ;= d estC o u n te rl + I ;
end if;
il'linO estination I (2) = ID 2(2)) then

destC ounter2 ;= d estC o u n te rl + 1;
end if;
if(in D estin a tio n l(0) = ID3(0)) then

destC ounler3 ;= d estC o u n te rl + I ;
end if;
if\inO eslination 1 (1) = 1 D3(I)) then

d e stC o u n te rl ;= d e stC o u n te rl + I;
end if;
i l(in D cslin a tio n l(2) = I D l (l)) then

d estC o u n te rl := d e stC o u n te rl + I;
end if;
iffdestC o un te rl > d e s tC o u n te rl) then

—forw ard packet to ID I
o u tD es tin a tio n l <= inD estina tion l ;
o u tD a ta l < = inD atal ;
o u tlD l < = in lD l;
o u tS o u rc e l <= inSource I ;
o u tS ta r tl < = '1 ';

e lse
- fo rw a rd packet to ID I
o u tD e s tin a tio n l <= inD estination l ;
o u tD a ta l <= inD ata l;
o u t lD l <= in lD l;
o u tS o u rc e l <= inSource 1 ;
o u tS ta r tl < = T ;

end if;
end if;

end if;
il^ inS tartl = '! ') then

iffin D estin a tio n l = m ylD) then
—this packet is for here! I’ass it a long to the BM circu it
- w a s there an error in the packet'.'
if((in lD 2(7) - 'I ') and (in lD 2(7) = '1 ') Ithen

- th e n it is an error paeket
sendE rro r := I ;
badB M . - inS ou rce l;

end if;
else

—then we m ust forw ard the packet
- fo rw a rd the packet to the neighbour w ith the c losest ID
destC oun terl := 0 ;
d estC o u n te rl := 0;
if(inD estination l(0) - ID l(O)) then

destC oun terl destC oun terl + I;

119

Reproiduceid with pefmission of the copyfight owner. Further reproduction prohibited without permission.

cud if;
ir(in D eslin a tio n 2 (l) = 101(1)) then

destC oun terl ;= destC oun terl + 1;
end if;
if(inD cstination2(2) = 101(2)) then

destC ountcr 1 ;= destC oun ter 1 + I ;
end if;
il'(inD estination2(0) = 1 0 3 (0 » then

destC oun te r] ;= d es tC o u n tc r] + I ;
end if;
i(X inO estination2(l) = 103(1)) then

destC oun tc r] := d es tC o u n te r] + 1 ;
end if;
if(inD estination2(2) = 103(2)) then

d estC oun ter] := d estC o u n te r] + I ;
end if;
if(destC oun ter] > destC o u n te rl) then

—forw ard packet to ID]
ou tD estina tion] <= inO estina tion];
ou tS o u rce] < = inSourcc2;
ou tO a ta] < = inOata2;
o u tlD] < = inlD 2;
o u tS ta rt] < = ' l ’;

else
—forw ard packet to lO l
ou tD estina tion l < = in O estin a tio n];
ou tS o u rce l < = inSource2;
o u tD a ta l <= inO ata2;
o u tlD l < = inlD 2;
ou tS tartl < - '1 ' ;

end if;
end if;

end if;
ilf in S ta r t] = 'I ') then

i((inO estination] = m ylD) then
—th is packet is for here! Pass it a long to the BM circu it
—w as there an erro r in the packet?
if((in lD 3(7) = ' 1 ’) and (in l0 3 (7) = ' 1'))then

—then it is an e rro r p acket
sendE rro r ;= 1;
badB M := inS ource];

end If;
else

—then we m ust forw ard the packet
—forw ard the packet to the neighbour w ith the c losest ID
destC oun terl := 0;
destC oun te r] := 0;
if(inD estinalion](0) = 101(0)) then

destC oun terl := d es tC oun terl + 1;
end if;
if (in O e stin a tio n](l) = 1 0 1 (1 » then

destC oun terl ;= d es tC oun terl + 1;
end if;
if(inO cstination](2) = 101(2)) then

destC oun terl ;= destC oun ter 1 + 1;
end if;
if(inO estination](0) = 102(0)) then

destC o u n te r] ;= d e stC o u n tc r] + 1 ;
end if;
if (in O e stin a tio n](l) = 102(1)) tlicn

destC oun tc r] ;= d e stC o u n tc r] + 1 ;
end if;
if(inO estination](2) = 102(2)) then

d estC o u n te r] := d e stC o u n te r] + I ;
end if;
if(destC oun ter] > d e s tC o u n te rl) then

- fo rw a rd packet to 103
o u tD estin a tio n] <= inO estina tion];
o u tS o u rc e] < = in S o u rce];
ou tO a la] <= inO ata];

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

011ÜD 2 < = iiilD 3 -,

ou tS lart2 < = '1 ';
else

—forw ard p acket to IDI
ou tD estin a tio n l <= inD estinationS;
o u tS o u rc e l < = in S o u rc e3 ;
o u tD a ta l < - iuDalaS:
ou IID l <= in lD 3;
o u tS ta rtl < = T.

end if:
end if;

end if;
iffsendE rro r = 1) then

—sen d a packet to ”000" co n ta in ing a m essage that says:don ’t use BM located in
—badB M

- w h ic h link is c losest to 0007
destC o u n te rl ;= 0;
destC oun ter2 := 0;
dcstC ounterS ;= 0;
for i in 0 10 2 loop

if(ID I(i) = ’O') then
d estC oun terl := destC oun terl + 1;

end if;
ifl:iD2(i) = '0 ') then

d e s tC o u n te rl ;= d e s tC o u n te rl + 1 ;
end if;
ifîlD 3 (i) = '0 ') then

d e s tC o u n te rl ;= d estC o u n te rl + I ;
end if;

en d loop;
il% destCounterl > d e s tC o u n te rl) then

if(destC oun terl > d e s tC o u n te rl) then
—send dow n linkl
ou tD estina tion l < = " 0 0 0 ”;
ou tD ata l (7) < = '0 ';r
o u tD ata l (6) < = 'O';
o u tD a la l(5) <= 'O';
o u tD a ta l(4) < = 'O';
o u tD a ta l (l) <= 'O';
ou tD ala I (2) < = bad B M (l);
o u tD a ta t (t) < = b ad B M (l);
ou tD ata l(O) < = badBM (O);
o u tlD l <= ”00000000";
ou tS ou rce l < = m y ID;
ou tS tartl < = 'l ' ;

e lse
—send dow n lin k l
o u tD estin a tio n l <= "000";
o u tD a ta lf?) <= 'O';
o u tD a ta l(6) <= 'O';
ou lD ata3(5) < = 'O';
ou tD ala3(4) < = 'O';
o u tD a ta l(3) <= 'O';
o u tD a ta l(2) <= badB M (2);
o u tD a ta3 (l) < = hadB M (t);
ou tD ata l(O) <= hadBM (O);
ou tlD 3 <= ”00000000";
o u tS o u rc e l <= niylD ;
o u tS ta r tl < = '! ';

end if;
else

If(d es tC o u n te rl > d e s tC o u n te rl) then
- s e n d dow n lin k l
o u lD es lin a litm l <= "000”.
outDal;i2{7) < = 'O';
ou tD ala2(6) <= '()'.
ou tD ata2(5) <= 'O';
o u tD a ia l(4) 'O';

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end if;
end if;

end if;
end p rocess;

end PE A ssertdcscrip tion ;

else

end if;

ou tD ala2 (3) < = 'O';
ou tD a ta2 (2) < = b adB M (2);
ou tD ata2(1) < = badB M (I);
ou lD ata2 (0) < = badBM (O);
0UIID2 < = "00000000";
ou tS ou rce2 <= m ylD ;
ou lS tart2 < = '! ' ;

- s e n d dow n linkS
ou lD cslina lion3 < = "000";
ou tD ata3(7) < = 'O';
outD ataB fô) < = 'O';
ou tD ata3 (5) < = 'O';
ou tD ata3 (4) < = 'O';
ou lD ata3 (3) < = 'O';
ou tD ala3 (2) < = b adB M (2);
ou tD ata3 (1) < = b adB M (I);
ou tD ata3 (0) < = badBM (O);
o u t lD 3 < = "00000000";
ou lSourceS < = m y lD ;
ou tS lart3 < = '! ' ;

I

L IB R A R Y ieee;
U S E ie e e .s td Jo g ic _ I I64 .A L L ;
U S E ieee .sld_ log ic_arith .A L L ;
U S E ieee .std_ log ic_unsigned .A L L ;

EN T IT Y PE _F ina l_A sscrt IS
PO R T (.

elk
inD estina tion l
inS ource 1
inD ata l
in lD I
inS tartl
inD estination2
inSourcc2
in D a ta l
inlD 2
in S ta r tl
inD estination3
inSourcc3
inDataS
inlD 3
in S ta rtl
m ylD
IDI
ID I
ID3
o u tD estina tion l
o u tS o u rce l
o u tD a ta l
o u tlD l
o u tS ta rtl
o u tD e s tin a tio n l
o u tS o u rc e l
o u tD a ta l
o u tlD l
o u tS ta r tl
o u tD es tin a tio n l
o u tS o u rc e l
o u tD a ta l

in s td jo g ic ;
IN S T D _ L O G lC _ V E C T O R (l dow n to 0);
IN S T D _L O G IC _V E C T O R (2 dow nto 0);
IN S T D _U L O G IC _V E C T O R (7 dow n to 0);
IN S T D _U L O G lC _V E C T O R (7 dow nto 0);
in s td jo g ic ; —goes h igh w hen the three th ings above are read y
IN S T D _L O G lC _V E C T O R C l dow n to 0);
IN S T D _L O G lC _V E C T O R (2 dow n to 0);
IN S T D _ U L 0 G IC _ V E C T 0 R (7 dow nto 0);
IN STD _U L O G 1C _V E C T O R {7 dow nto 0);
in s td jo g ic ; —goes h igh w hen the three th ings above are ready
IN S T D _ L 0 G 1 C _ V E C T 0 R (1 d o w n to 0);
IN S r D _ L 0 G lC _ V E C T 0 R (2 dow nto 0);
IN ST D _U L O G IC _V E C T O R (7 dow nto 0);
IN S T D _ U L 0 G IC _ V E C T 0 R (7 dow nto 0);
in s td jo g ic ; - g o e s h igh w hen the three th ings above are ready
in s td _ lo g ic_ v e c to r(l dow nto 0);—w hat this PE 's ID is
in s td_ log ic_vec to r(2 dow nto 0);—w hat PE I 's ID is
in s td _ lo g ic_ v e c to r(l dow nto 0);—w hat PE I 's ID is
in s td _ lo g ic_ v e c to r(l dow nto 0);—w hat PE I 's ID is
o u t S T D _L O G IC _V E C T O R (2 dow nto 0);
o u t ST D _L O G IC _V E C T O R (2 dow nto 0);
o u t S T D _U L O G IC _V E C T O R (7 dow nto 0);
o u t S T D _U l.O G IC _V E C T O R (7 dow nto 0);
o u t s td jo g ic ;
o u t S T D _ L 0 G IC _ V E C T 0 R (2 dow nto 0);
o u t S T D LO G IC _ V E C T 0 R (1 dow nto 0);
o u t S T D _U L O G IC _V E C T O R (7 dow nto 0);
o u t ST D _U L O G IC _V E C T O R {7 dow nto 0);
o u t s td jo g ic ;
o u t S T D _ L 0 G IC _ V E C T 0 R (1 dow nto 0);
o u t S T D _ L O G IC _ V E C T O R (l dow nto 0);
o u t S T D _U L O G IC _V E C T O R (7 dow nto 0);

122

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<)UtlD3 : o u i S T D _U L O G IC _V K C T Ü R (7 dow nto Ü);
ou tS lart3 : o u t s td jo g ic) ;

i-.N D P(i l 'in a l_A sscrf.

A R C H IT r-C T U R Ë P E F ina lA ssertdescrip tion O F P E _F ina l_A sscrt IS

b e g in
proccss(c lk)

variab le d estC o u n te rl : in teger range 0 to 3;
variab le d e s tC o u n te r l : in teger range 0 to 3;
variab le des tC oun tcr3 : in teger range 0 to 3;

variab le se n d E rro r : in te g e r range 0 to 1 goes h ig h i f erro r is detected (so a packet m ust be sen t to the
—con tro l so that that PE is now neg lec ted)

variab le badB M : s ld J o g ic _ v e e to r(2 dow nto 0);—represen ts w hich B M is fau lty

begin
if(ris ing_edge(elk)) then

o u tS ta rtl < = 'O';
o u tS ta r tl < = 'O';
ou tS lart3 < = 'O';
sen d E rro r ;= 0;
if(in S ta rtl = T) then

—so m eth in g has com e in o f f o f the I lines
if(in D e stin a tio n l = m y ID) then

—th is packet is for here!
—is there an e rro r in the packet?
if((in lD !(7) = 'I ') and (in ID 2(7) = ' ! ')) then

—then it is an erro r packet
s e n d E rro r ;= I ;
badB M ;= in S o u rc e l;

end if;

e lse
- th e n w e m ust forw ard the packet
- fo r w a r d the p ack e t to the ne ighbou r w ith the c losest ID
d e s tC o u n te r l ;= 0;
destC oun tcr3 ;= 0 ;
if(inO estination 1(0) = ID 2(0)) then

d e s tC o u n te r l ;= d e s tC o u n te r l + I ;
end if;
if(in D e s t in a t io n l! I) = 1132(1)) then

d e s tC o u n te r l ;= d e s tC o u n te rl + 1 ;
end if;
if(in D e s tin a tio n l(2) = ID 2(2)) then

d e s tC o u n te r l d e s tC o u n te rl + I;
end if;
if(in D e stin a tio n l(0) = 1D3(0)) then

d e s tC o u n te r l ;= d e s tC o u n te rl + I ;
end if;
if(inD estination 1(1) = I D3(1)) then

d e s tC o u n te r l ;= d e s tC o u n te rl + 1;
end if;
if (in D e s t in a t io n l(l) = I D l (l)) then

d e s tC o u n te r l := d e s tC o u n te rl + I ;
end if;
i((d e s tC o u n te rl > d e s tC o u n te r l) then

—forw ard packet to ID1
o u tD e s tin a tio n l < - in D e s tin a tio n l;
o u tD a ta l < = in D a ta l;
o u t lD l < = in lD I;
o u tS o u rc e l <= in S o u rc e l;
o u tS ta r tl < = 'l ' ;

e lse
—forw ard packet to ID I
o u tD e s tin a tio n l < = in D e s tin a tio n l;
o u tD a ta l <= in D a ta l;

123

Reprotduced with permission of the copyright owner. Further reproduction prohibited without permission.

o u t!D 2 < = in lD l;
o u tS o u rce2 < = inS ou rce 1 ;
ou tS ta rt2 < = '1 ';

end if;
end if;

end if;
if (in S ta rl2 = T) then

if(in D estin a tio n 2 = m y ID) then
—th is p a c k e t is for here! Pass it a lo n g to the BM circu it
—w as th ere an e rro r in the p acket?
i!% (in lD 2 (7) = '] ’) and (in lD 2 (7) = T))thcn

—th en it is an e rro r packet
se n d E rro r ;= 1 ;
b adB M := inS ource2 ;

end if;
else

—then w e m u s t fo rw ard the p ack e t
—forw ard the packet to the n e ig h b o u r w ith the c lo se s t ID
d estC o u n te rl := 0 ;
destC o u n te r3 ;= 0;
if(in D estin a tio n 2 (0) = 1 0 1 (0)) then

destC o u n te rl .“ d estC o u n te rl + 1;
end if;
if(in O e s tin a tio n 2 (l) = 10 1 (1)) then

d e s tC o u n te rl ;= d e s tC o u n te rl + 1;
end if;
if(in O estin a tio n 2 (2) = 1 0 1 (2)) then

d e s tC o u n te rl ;= d e s tC o u n te rl + 1;
e n d if;
if(in O estin a tio n 2 (0) = 10 3 (0)) then

destC oun terS := d e s tC o u n te r3 + I ;
e n d if;
if(inO estination2{ I) = 10 3 (1)) then

destC oun ter3 := destC oun terS + 1 ;
end if;
if(in O estin a tio n 2 (2) = 1 0 3 (2)) then

de stC oun te r3 ;= d e stC oun te r3 + 1 ;
end if;
if(destC oun ter3 > d e s tC o u n te r l) then

—forw ard p ack et to 103
ou tO estin a tio n 3 < = inO estin a tio n 2 ;
o u tS o u rc e 3 < = inS ou rcc2 ;
ou tO a ta3 < = inO ata2;
o u t i0 3 < = in I0 2 ;
o u tS ta rt3 < = ' 1';

e lse

end if;

—forw ard p a e k e t to ID l
o u tD e s tin a tio n l < = in O estina tion2 ;
o u tS o u rc e l < = inS ource2 ;
o u tO a ta l < = inO ata2 ;
o u t lD l < = in i0 2 ;
o u tS ta r tl < = '1 ';

end if;
end if;
if(in S ta rt3 = '1') then

if(inO estination3 = m y ID) then
—th is p a c k e t is fo r here! Pass it a lo n g to the BM circu it
—w as there a n e rro r in the p acket?
iR (in l0 3 (7) = T) and (in l0 3 (7) = '! '))then

—th en it is an e rro r packet
se n d E rro r := 1 ;
b ad B M := inS ourcc3 ;

end if;
e lse

—then w e m u st forw ard the packet
—forw ard th e p ack e t to the n e ig h b o u r w ith the c lo ses t 10
d estC o u n te rl := 0;
destC oun terS := 0;
if(in O cstin a tio n 3 (0) - 1 0 1 (0 » then

124

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.

d c stC o u n lc rl := d estC o u n te rl + I;
end if;
if(in D e slin a lio n 3 (l) = I D I (l)) then

d e stC o u n te rl := d estC o u n te rl + I;
en d if;
lf(inD cstination3 (2) = ID I (2)) then

d e stC o u n te rl ;= destC o u n te rl + I;
end if;
il\in D estin a tio n 3 (0) = 1 0 2 (0 » then

dcstC oun tcr2 ;= destC oun ter2 + I ;
e n d if;
if(in O e stin a tio n 3 (l) = 1 0 2 (1 » then

destC oun ter2 ;= destC oun tcr2 + I ;
e n d if;
if(inD estination3 (2) = 1 0 2 (2 » then

dcstC oun ter2 dcstC oun tcr2 + I ;
end if;
if(destC oun tcr2 > d e s tC o u n te rl) then

—forw ard p aeket to 103
o u tO estina lion2 < = inO estination3 ;
o u tS ou rcc2 < - inSourcc3;
ou tO ata2 < = inO ataS;
o u t i0 2 < = in lD 3;
o u tS ta rt2 < = ' I ';

else
—forw ard packet to 101
o u tD es tin a tio n l <= inO estina tion3 ;
o u tS o u rc e l < = inS ource3 ;
o u tD a ta l < = in O a ta 3 ;
o u tiO I < = in lD 3;
o u tS ta rtl < = '1 ';

end if;
end if;

end if;
i f (s e n d E rro r= I) then

—send a packet to "000" co n ta in in g a m essage that say s .d o n 't use BM located in
—badB M

est to 000?—w hich link is cloS(
destC o u n te rl := 0 ;
des tC oun ter2 ;= 0;
deslC otin ter3 ;= 0;
for i in 0 to 2 loop

if(IO I(i) = '0 ') th e n
d estC o u n te rl := d estC o u n te rl + I;

end if;
i« ID 2 (i) = '0 ’) lh e n

destC oun ter2 := desiC oun ter2 + I;
end if;
ii(IO 3(i) = ’0 ’) th e n

d estC oun ier3 := destC oun ler3 + I ;
en d if;

end loop;
if(destC oun terl > destC oun ter2) then

if(deslC oun te rl > destC oun ter3) then
- s e n d dow n link l
o u tD estin a tio n l < = "000";
o u tD a ta l < = " 0 0 0 0 0 0 0 0 " ;
o u tlD l < = "00000000";
o u tS o u rce l < = m y lO ;
o u tS ta rtl < = '1 ',

else
—send dow n link3
ou tO estina tio ii3 <= "000";
ou iO ata3 < = "00000000";
o u tlD 3 < = "00000000";
<)utSource3 <= my ID;
u u tS ta r tj < = ' 1 ';

125

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

else
end if;

lfl;destC ounler2 > destC oun lcrS) Ihen
—send dow n l in k l
o u tD e s tin a tio n l < = "000";
o u tD a ta l < = "00000000";
o u t lD l < = "00000000";
o u lS o u rc e l < = m y ID;
o u tS ta r tl < = '1 ';

e lse

end if;
end if;

end if;
e n d if;

en d p rocess;
en d P F .l'in alA ssertdcscrip tion ;

L IB R A R Y ieee;
U S E iee e .s td _ lo g ic_ l 16 4 .A L L ;
U S E ieee .s td _ lo g ic_ a rith .A L L ;
U S E iece .s td _ lo g ic_ u n sig n ed .A L L ;

—send dow n Iink3
o u tD e s tin a tio n) < = "000";
ou tD ata3 < = "00000000";
ou tlD 3 < = "00000000";
o u tS o u rc e) < = m ylD ;
o u tS ta r t) < = '1 ';

EN TITY P E _C P U IS—th e in te rface and con tro l c ircu itry "a round" the cpu
PO R T (

elk
inS ignalF rom C P U
inD ataF rom C P U

inD estina tion l
in S o u rce l
in D a ta l
in lD I
inS tartl
in D e s tin a tio n l
in S o u rc e l
in D a ta l
in lD l
in S ta r tl
in D es tin a tio n)
in S o u rce)
in D a ta)
in ID)
in S ta rt)
m y lD
IDI
ID I
ID)
ou tS igna lT oC P U
—outD ataT oC P U
ou tD alaT oC P U
ou tD estin a tio n l
o u tS o u rc e l
o u tD a ta l
o u tlD l
o u tS ta rtl
o u tD e s tin a tio n l
o u tS o u rc e l
o u tD a ta l
o u t lD l
o u tS ta r tl
ou tD e s tin a tio n)
o u tS o u rc e)

in s td jo g ic ;
in s t d j o g i c ; —there is d a ta ava ilab le from the C P U
IN S T D _ U L O G IC _ V E C T O R (l6 dow n to 0) ; - 8 d o w n to 0) ; - th e da ta

—from the C P U
IN S T D _ L 0 G IC _ V E C T 0 R (1 dow n to 0);
IN S T D _ L 0 G I C _ ''E C T u R (2 dow n to 0);
IN S T D _ U L O G IC _ V E C T O R (7 d o w n to 0);
IN S T D _ U L O G IC _ V E C T O R (7 d o w n to 0);
in s td j o g i c ; —goes h ig h w hen the th ree th ings a b o v e a rc read y
IN S T D L O G IC _ V E C T O R (l d o w n to 0);
IN S T D I l O G IC _ V E C T O R (1 do w n to 0);
IN S T D _ U L 0 G IC _ V E C T 0 R (7 dow n to 0);
IN S T D _U L O G IC _V E C T O R (7 d o w n to 0);
in s ld j o g i c ; —goes h igh w hen the th ree th in g s above are rcadv
IN S T D L O G tC _ V E C T O R (l d o w n to 0);
IN S T D _ L 0 G 1 C _ V E C T 0 R (1 d o w n to 0);
IN S T D _ U L 0 G IC _ V E C TOR(7 d o w n to 0);
IN S T D _ U L 0 G IC _ V E C T 0 R (7 d o w n to 0);
in s td j o g i c ; —goes h igh w hen the th ree th ings above arc ready
in s td J o g ic _ v e c to r (l dow n to 0);—w h a t th is PE 's ID is
in s ld _ lo g ic _ v e c to r(l dow nto 0);—w hat PE I's ID is
in s td _ lo g ic _ v e c to r(l dow n to 0);—w hat PE I 's ID is
in s td _ lo g ic _ v e c to r(l dow n to 0);—w hat PE) 's ID is
ou t s t d j o g i c ; —there is d a ta ava ilab le from the C P U
o u t S T D _ U L 0 G IC _ V E C T 0 R (8 dow n to 0);—the d a ta from the C PU
out S T D U L O G IC _V E C T O R (16 d o w n to 0);—the d a ta front the C P U
out S T D _ L O G IC _ V E C T O R (l dow n to 0);
ou t S T D _ L O G IC _ V E C T O R (l do w n to 0);
ou t S T D _ U L O G iC _ V E C T O R (7 d o w n to 0);
ou t S T D _U L O G IC _V E C T O R (7 d o w n to 0);
ou t s td jo g ic ;
o u t S T D _ L O G IC _ V E C T O R (l dow n to 0);
ou t S T D _ l.O G IC _ V E C T O R (2 dow n to 0);
out S T D _U L O G IC _V E C T O R (7 dow n to (I);
o u t S T D _U L O G IC _V E C T O R (7 dow n to 0);
o u t s ld logic;
ou t S T D _ L O G IC _ V E C T O R (l dow n to 0);
o u t S T D _ L O G IC _ V E C f O R (l dow n to 0):

126

Reprotducetd with perm ission of the copyright owner. Further reproduction prohibited without permission.

ou tD ata3 ; o u t S rD _U L001C _V K C rOR[7 dow nto 0);
outi D3 : o u t STD_U LOG 1C_V ECTOR; 7 dow nto Ü);

—tem p tem p
tem p B M C o u n te r : o u t in teg e r range 0 to 13;
tem p D estin a tio n B M : o u t s td J o g ic _ v c c to r(2 d o w n to 0);
o u tS ta n 3 : o u t s td jo g ic) ;

EN D P E _ C P U ;

A R C H IT E C T U R E P E C P U O F PE _C PU IS

com p o n en t regS IS
P O R T (load : IN s td j o g i c ;

c lock ; in s td j o g i c ;
da ta in : IN std _ u lo g ic_ v ec to r(7 d o w n to 0);

d a ta o u t : O U T s td _ u lo g ic_ v ec to r(7 d o w n to 0)); —para lle l ou tpu ts
EN D c o m p o n e n t;

signal lo a d lR e g ; s td J o g ic _ v e c to r (!3 d o w n to 0);
signal lo ad JR eg : s td jo g ic _ v c c to r (l3 do w n to 0);
signal B M In te rm e d ia ie l : s td _ u lo g ic_ v ec to r(7 dow n to 0);
s ignal B M In te rm ed ia te J : s ld _ u lo g ic_ v ec to r(7 dow n to 0);
subtype W O R D S is S T D _ U L O G IC _ V E C T O R (7 d o w n to 0);
type A R R A Y O F B Y T E S I4 is array (13 d o w n to 0) o f W O R D S;
signal B M lD a ta : A R R A Y O F B Y T E S 14 ;
signal B M JD a ta : A R R A Y O F B Y T E S I4 ;
- s ig n a l B M I D estina tion : s td J o g ic _ v e c to r(2 do w n to 0) := "001 ";
- s ig n a l B M 2 D estin a tio n : s td J o g ic _ v e c to r(2 dow n to 0) := "CIO";
—signal S p a re B M ! : s td J o g ic _ v e c to r(2 dow n to 0) := " 10 1";
—signal S p areB M 2 : s td J o g ic _ v e c lo r(2 dow n to 0) " 1 10";
- s ig n a l S p a reB M 3 : s td _ lo g ic_ v ec to r(2 dow nto 0) := " 1 11";
—signal d es tin a tio n B M : s td J o g ic _ v e c to r(2 dow n to 0) ;= "001";
—signal B M c o u n tc r : in teg e r range 0 to 13 .•= 0;

begin
- r e g l : lo r i in 0 to 13 genera te

re g l Label: regS po rt m ap (lo ad lR eg (i) . e lk , B M ln tc m ic d ia te l. B M lD ata(i));
reg2L abel: regS po rt m ap (lo ad JR eg (i). e lk . B M In term ed ia teJ . B M JD ata(i));

—end generate;

p ro eess(c lk)

variable destCounterl ; integer range 0 to 3;
variable destCounter2 : integer range 0 to 3;
variable destCounterS : integer range 0 lo 3;
variable BMcounter : integer range 0 to 13 0;

variable BM I Destination : stdJogic_vector(2 downto 0) := "001"
variable BM2Destination ; stdJogic_vector(2 downto 0) := "010"
variable SpareBM I : stdjogic vector(2 downto 0) := "101";
variable SpareBMZ : stdJogic_vector(2 downto 0) := "110";
variable SpareBM3 ; std_logic_vector(2 downto 0) := " 111
variable destinationBM : stdJogic_vector(2 downto 0) := "001":

variable BMOutCounter ; integer := 0;

variable packotToGo : integer range 0 to I := 0;
variable toGoDestination : stdJogic_vector(2 downto 0);
variable toGoData : std_ulogic_vector(7 downto 0);
variable toGoLink • integer range I to 3;

beg in

tempDestinationBM <= destinationBM;
tempBMCounter <= UMCounter;

ilUising_edge(clk)) then
outStartl <= 'O’;
outStart2 <= 'O';
outStartS <= 'O';

127

ReDroduced with Dermission of the copvriaht owner. Further reproduction prohibited without permission.

o u tS ig n a lT o C P U < = 'O';
lo a d lR e g < = (o th e rs = > ’O');
lo ad JR eg < = (o thers = > '0 ');
i l \ in S ta rtl = 'I ') then

--so m eth in g has com e in otT o f the 1 lines
if(in D e stin a tio n l = m y ID) then

—th is packet is for here!
—i f it is from a BM circu it w e need to have that d a ta ready to g ive
—to the L E D S reg is te r
- i f it is from the BM assert then w e need to cancel use o f the g iven BM
- c i r c u i t
if(inS ou rce l = "011") then

—then it is an assert signal to b lock the use o f a B M c ircu it
—so sim ply change the B M #D estina tion s igna ls a n d spareB M
—s tu f f
il\S p a re B M l = "000") then

- th e r e are no spares left - do n o th ing
else
if((in D a ta l(2) = B M lD e s tin a lio n (2)) and (in D a ta l (l) =

B M lD c s tin a tio n (l)) and (inD aia 1(0) = B M lD estination(O))) then
—BM 1 is to be rep laced
BM 1 D estination ;= S pareB M I ;
- n o w m ove the o thers d o w n the line
S pareB M ! := S p a re B M 2 ;
S pareB M 2 SpareB M S;
S p a reB M] := "000";

else
—B M 2 is to be rep laced
B M 2D estina tion := SpareB M 1;
—now m ove the o th ers dow n the line
S pareB M 1 := S p a re B M 2 ;
S pareB M 2 ;= S p a re B M];
S p a reB M] := "000";

end if;
end if;

e ls i((in S o u rc e l = " 1 0 0 ") then
—then it is an erro r on the final task , w e a re not su p p o rtin g
—erro r recovery in th is case since w e have no sp a re general
- p u rp o s e CPU

else

end if;

else

- it is info from a BM circuit - that needs to be stored in the
—corresponding place
BMIntermediaiel <= inDatal;
BMIntermediateJ <= inlDl;
loadlReg(BMCounter) <='!';
loadJReg(BMCounter) <= '1';
BMCounter ;= BMCounter + 1 ;
if(BMCounter> 1]) then

BMCounter := 0;
end if;
—now just send it directly to the LEDS for reading by
—software
outDataToCPU(15 downto 8)<=inlDl(7 downto 0);
outDataToCPU(7 downto 0) <= inDatal(7 downto 0);
outSignalToCPU <='!';

-then we must forward the packet
—forward the packet to the neighbour with the closest ID
destCounter] := 0;
destCounter] ;= 0;
i('(inDestination 1(0) = 1D2(0)) then

destCounter] := destCounter] + 1 ;
end if;
if(inDestinationl(l) = 1D2(1)) then

destCounter] := destCounter] + 1 ;
end if;
if(inDcstinationl(]) = 1D2(])) then

destCounter] := destCountcr] + 1 ;

128

ReDroduced with permission of the copvriaht owner. Further reproduction prohibited without permission.

end if;
if(in D estin a tio n l(0) = 1D3(0)) then

destC oun ter] := dcstC ounlerd + I :
end if;
if(in D e stin a tio n l(l) = 1D3(D) then

d estC oun ter] .= destC ounter3 t- 1 ;
end if;
if(in l> ;s tin a tio n l(2) = 1D3(2)) then

destC oun te r] := destC oun ter] + I ;
e n d if;
if(dcstC ountcr3 > destC oun te r]) then

—forw ard packet to ID]
o u tD estina tion] <= in D estin a tio n l;
o u tD a ta] < = inD atal ;
o u tlD] < = in lD l ;
o u tS o u rc e] < = in S o u rce !;
ou tS tart] < = ' ! ’;

else
- fo rw a rd packet to 1D2
ou tD estin a tio n] < = inD estination l ;
ou tD ata2 <= in D a ta l;
ou tlD 2 < = in lD I:
o u tS o u rc e] < = inSourcel ;
ou tS tart2 < = ’!';

en d if;
end if;

end if;
iff in S ta rt] = '! ') then

if(inD estination2 = m ylD) then
—th is packet is for here!
—if it is from a BM c ircu it we need to have that d a ta ready to give
—lo the LEDS reg ister
- i f it is from the BM assert then we need to cancel use o f the g iven BM
—circu it
if(inSource2 = "011") then

—then it is an assert signal to b lock the use o f a BM circu it
—so sim ply change the B M #D estination signa ls and spareB M
- s tu lT
if(S pareB M l = "000") then

—there are no spares left - do no th ing
else
if((inD ata2(2) = BM 1 D estination(2)) and (inD ata2(1) =

BM I D estination(I)) and (inD ata2(0) = BM 1 D cstination(O))) then
—BM I is to be rep laced
BM 1 D estination := SpareB M 1 ;
—now m ove the o thers dow n the line
SpareB M I ;= SpareB M Z;
S p areB M] := S p a reB M];
S p areB M] := "000";

else
—BM 2 is to he replaced
B M 2D estination ;= SpareB M 1 ;
- n o w m ove the o thers dow n the line
SpareB M I ;= S p a reB M];
S p a reB M] ;= S p a reB M];
S p areB M] ;= "000";

end if;
end if;

e ls iftin S o u ree l — "100") then
—then it is an erro r on the final task, w e are no t supporting
—error recovery in this case since we have no spare general
—purpose CIH)

else
-it is info from a BM circuit - that needs to he stored in the
-corresponding place
BMlnlerniediatcl <= inData];
BMIntermediateJ <= inlD2;
loadIReglBMCounler) <= 'I';
loadJReg(BMCounter) <= T;
BMCounler ;= BMCounter + 1;

129

ReDroduced with Dermission of the coDvriaht owner. Further reoroduction prohibited without permission.

iHBMCounler> 13) then
BMCounler := 0;

end iC;
—now just send it directly to the LEDS lor reading by
-software
-outDataToCPU{8) <= 'O';
outDataToCPU(15 downto 8) <= inlD2(7 downto 0);
outDataToCPU(7 downto 0) <= inOata2(7 downto 0);
outSienalToCPU<='l';

end it;

else
—then w e m ust Ibrw ard the packet
- fo rw a rd the packet to the ne ighbou r w ith the c losest ID
destC oun terl ;= 0;
destC ounterS := 0;
if(inD eslination2(0) = ID l(O)) then
else

destC oun terl ;= destC oun ter! + 1 ;
end if;
if(inD estination2 (l) = I D l (l)) then
else

destC oun terl := destC oun terl + 1;
en d if;
if(inD estination2(2) = ID 1(2)) then
else

destC oun terl d es tC oun terl + I;
end if;
if(inO estination2(0) = ID 3(0)) then
else

destC ounterS := destC ounterS + I;
end if;
if(inD estination2(l) = ID S (I)) then
else

destC ounterS := destC ounterS + 1 ;
end if;
if(inD estination2(2) = 103(2)) then
else

destC ounterS ;= destC ounterS + I;
end if;
if(destCountcrS > destC oun terl) then

- fo rw a rd packet to IDS
outD estinationS < = inD cstination2;
outSourceS < = inSource2;
outD ataS <= inD ata2;
outlD S < - inlD 2;
outStartS < = '1 ';

else
- fo rw a rd packet to 1D 1
ou tD estina tion l <= inD estination2;
o u tS ou rce l < = inSourcc2;
o u tD ata l < = in D a ta 2 ;
o u tlD l < = inlD 2;
o u tS ta rtl < = '1 ';

end if;
end if;

end if;
iffinSlartS = '1') then

if(inD cstinationS = my ID) then
- th i s packet is for here!
—if it is from a BM circuit w e need to have that data ready to give
- t o the LEDS register
—i f it is from the BM assert then we need to cancel use o f the g iven BM
—circuit
if(inSourceS = "011 ") then

- th e n it is an assert signal lo block the use o f a BM circu it
- s o sim ply change the BM f!D estination signals and spareB M
—stulT
if(SpareB M l = "000") then

—there are no spares left - do noth ing

130

Reproduced with permission of the copvriqht owner. Further reproduction prohibited without permission.

else
il‘((inD ata3(2) = U M lD csliniU ioii(2)) and

(in D ata3 (l) = BM I D eslinaliiin(1)) and (inD ata3(0) = BM llD eslination(O))) then
—BM I is 10 he replaced
BM I D estination := S pareB M I ;
- n o w m ove the o thers d o w n the line
SpareB M 1 ;= S p a rc B M 2 ;
SpareB M Z := S p areB M] :
S pareB M] := "000":

else
- B M 2 is to be replaced
B M ZD cstination := S pareB M 1 :
- n o w m ove the others dow n the line
SpareB M 1 := SpareB M Z;
SpareB M Z := S p areB M];
S pareB M] ;= "000";

end if;
end if;

e ls if(inS ou rce l = "1 0 0 ") then
- th e n it is an error on the llnal task , u e are no t suppo rting
—erro r recovery in th is case since w e have no sp a re general
—purpose CPU

else

else

e n d if;

- i t is info from a BM circuit - that needs to be sto red in the
—correspond ing place
B M lnterm ediate l < = inD ata];
B M Interm ediateJ < = inlD 3;
load I Rcg(BM C ounter) < = '! ';
loadJR eg(B M C ounter) <= '1';
B M C ounler := B M C ounter + 1 ;
if(B M C ounter > 13) then

B M C ounler := 0;
end if;
—now ju s t send it d irectly to the LED S for read in g by
- so f tw a re
-o u tD ata T o C P U (8) < = 'O';
ou tD ataT oC PU (15 dow nto 8) <= in lD 3(7 dow nto 0);
ou tD ataT oC PU (7 dow nto 0) <= in D ata] (7 dow n to 0);
ou tS ignalT oC PU <= '1';

—then we must forward the packet
—forward the packet to the neighbour with the closest ID
destCounterl :=0;
destCounter] ;- 0;
if(inDestination](0) = 101(0)) then

destCounterl := destCounterl + 1;
end if;
if(inDestmation](l) = 1DI(1)) then

destCounterl := destCounterl + 1:
end if;
iftinDestination](Z) = ID 1(2)) then

destCounterl := destCounterl + 1;
end if;
if(inDestinalion](0) = 102(0)) then

destCounter] ;= destCounterZ + 1 ;
end if;
if(inDestination](l) = ID2(1)) then

destCounterZ := destCounterZ + 1 ;
end if;
if(inDostination](2) = 102(2)) then

destCounterZ := destCountcr] r I ;
end if;
if(destCounter2 > destCounterl) then

—forward packet to ID]
outDestination] <= inDestination];
outSourccZ <= inSource];
outDalaZ <= inData];
oullDZ <= inlD];
uutStartZ <='1';

131

Reproduced with permission of the cop'/right owner. Further reproduction prohibited without permission.

else
—Ibrw ard packet to IDI
ou tD estina tion l < = inD estina tion];
o u lS o u rce l < = inS ou rce];
o u tD a ta l < = in D a ta3 ;
o u tlD l < - inlD 3;
ou tS tart 1 < = ' I ';

end if;
end if;

end if;
iRinStgnalFromCPU = '1') then

- th e n there is incom ing data Irom the CPU it needs tu be distributed to a 13M
- c i r c u i t
- o r i f it is a signa lling packet w e need to put info on the LED S for read ing
il\inD ataF rom C P U (16) = '1 ') then

—then it is signa lling and \vc should load the contents o f the reg ister
—indexed
—in the low er 7 bits to the LEDS
if(inD ataP rom C P U (15) = '1') then

if(inD ataF ron iC PU (14) = '1 ') then
- s ig n a l from CPU to change the 13M destination
-c ircu it!
if(SpareB M l = "000") then

- th e r e are no spares left - d o no th ing
else

il% (inD ataF rom C PU (2) =
BM 1 D estination(2)) and (inD ataF rom C P U (1) =
BM 1 D estination)I)) and (inD ataFrom C PU (O) =
B M lD estination(O))) then

—BM 1 is to be rep laced
BM I D estination :=

SpareB M 1 ;
—now m ove the others
- d o w n the line

else

SpareB M 1
SpareB M 2
S p areB M]

= SpareB M 2;
= S p a reB M];

" 0 00 " ;

—BM 2 is to be replaced
f]M 2D estination :=

S pareB M I;
—now m ove the o thers
—dow n the line

end if;
end if:

SpareB M 1
SparcB M 2
S p areB M]

= SpareB M 2;
= S p a reB M];
= " 000 " ;

end if;
e lse

end if;
-o u tS ig n a lT o C P U < = ' l ’;

else
- th e n data needs to be d istributed to the BM circuit!
—im m ediate ly send data to destinationB M
- w h ic h link do 1 send it out on?
packetT oG o ;= 1 ;
toG oD estination ;= destinationB M ;
toG oD ata := inD ataF rom C PU)? dow nto 0);

destC oun terl ;= 0 ;
d es tC o u n te r] := 0;
d es tC oun ter] ;= 0;

if)destinationB M)]) = ID I)])) then
d estC oun terl ;= destC oun terl + I;

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end if;
if(deslinationB M (l) = ID I{I)) then

destC oun terl := deslC oun terl ■* I;

end if;
ir(destinationB M (0) = IDI(O)) then

destC oun terl — destC oun terl + It

end if;
if(destinatlonB M (2) = ID 2(2)) then

deslC ounter2 := destC ounterZ + I;

end if;
if(d estin atio n B M (l) = ID 2(I)) then

destC ounterZ ;= destC ounterZ + I ;

end if;
if(destinationB M (0) = ID 2(0)) then

destC ounterZ ;= destC ounterZ + I;

end if;
if(destinationB M (Z) = ID 3(Z)| then

destCounterZ := destCounterZ + I .

end if;
if(d estin a lio n B M (l) = ID3(I)) then

destCounterZ := destCounterZ + I;

end if:
if(desiinaiionB M (0) = ID 3(0)) then

destC ounterS := destC ounterS + I;

end if;
if(destC oun terl > destC ounterZ) then

if{destC ounlerl > destC ounterZ) then
- s e n d to IDI
outD estination I < = destinationB M ;
o u tD ata l <= inD atal-rom C PU (7 dow nto 0);
ou lS ou rce l <= "000";
outi L I <= "00000000";
o u tS ta rtl < = '! ';
toGoL.ink ;= I ;

else
- s e n d to 1D3
outD estinalionZ < = destinationB M ;
outDataZ <= inD atal-roniC I’U(7 dow nto 0);
outSourccZ <= "000";
0UIID3 <="00000000";
outStartZ <= ' I ’;
toG o l.ink ;= Z:

end If;
else

if(destCounterZ > destC ounterZ) then
- s e n d to ID2
outD estinationZ < = destinationB M ;
outD ataZ <= inD ata[-rom C I’U (7 dow nto 0);
outSourceZ < = "000";
outlD Z < = "00000000";
outStartZ < = '! ';
toG ol.ink := 2;

else
-send to IDZ
outDestinationZ <= destinationBM;
OutDataZ <= inDatal'roniCI'U(7 downto 0);
outSt'ureeZ <= "000";
outlD3 <= "00000000";
outSiart3 <= 'I';
toGol.ink := 3;

end if;
end if;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

U M O utC ountcr ;== B M O utC oun ter + I ;
iR B M G iitC ountcr = 1951509) then—3903018) then

—it Is tim e to change destinationB M ! (sw ap...)
it\d estin a tio n 8 M = BM I D estination) then

destinationB M := B M 2D estination ;
else

destinationB M := BM I D estination:

end if;

end if;
B M O utC oun ter := 0 ; - s ta r t again!

end if;
end if;
if(packctToG o = 1) then

ifltoG oL ink = I) then
ou tD estina tion l < = toG oD estination;
o u tD a ta l < = toG oD ata;
o u tS o u rce l < = " 0 0 0 " ;
o u tlD l < = "0 0 0 0 0 0 0 0 ";
o u tS ta rtl < = ' I';

e lsif(toG oL ink = 2) then
o u tD e s tin a tio n l < = toG oD estination;
o u tD a ta l <= toG oD ata;
o u tS o u rc e l < = "000";
o u t lD l < = "00000000”;
o u tS ta r tl <= '1 ';

else

end if;

o u tD estination? < = toG oD estination;
o u tD a ta l <= toG oD ata;
o u tS o u rc e l < = "000";
o u t lD l < = "0 0 0 0 0 0 0 0 ";
o u tS ta r tl <= ' 1';

end PEC PU ;

end if;
end if;

end p rocess;

— Purpose :
T h is A PB peripheral contains reg isters

lib rary IEEE;
use lÉEE .std J o g ic l 16 4 .all;

en tity A P B R egs i
p o r t(

— Inputs
PCLK
nR E SE T
P E N A B L E
PSE l.
PW R ITE
n P B U 'lT

SW

P W D A IA

PA

; in

: i n

ill s td jo g ic ; - APB clock
: in s td jo g ic ; - AM BA reset

: in s td jo g ic ; — A PB enable
in std log ic; - APB select
: in s td jo g ic ; - A PB read/w rite
; in s td jo g ic ; - input that will be latched for

— an interrupt exam ple
s td jo g ic _ v e c to r(7 dow nto 0);

— sw itches
in std J o g ic _ v e c to r (l 1 dow nto 0);

— A PB write data
s td j o g i c vector(4 dow nto 2);

— APB address bus
- Outputs

C T R l.C L K I ; out s td Jo g ic _ v ec to r(18 dow nto 0);

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C T R I.C 1.K 2

R C G SIN T
t.r-D

I’R D A TA

):
end A P B R egs;

— se ts frequency o fC L K l
; o u t s ld_ log ic_vec lo r(18 dow nto 0);

— se ts frequency o fC L K 2
: o u t s td jo g ic ; — in terrup t ou tpu t

: out s td_ log lc_vcc to r(8 dow nto 0);
— L E D control

; out s td_ logic_vector(31 dow nto 0)
— A PB read da ta

A P B R egs

— O verv iew

— fitis A P B peripheral con ta in s reg isters to...
— * program &. lock the tw o clock oscilla to rs
— * w rite to the general p u rpose LED s
— * c lear push button in te rrup t
— * read the general purpose sw itches

— C erta in reg iste rs are p ro tec ted by the L O C K register. Y ou m ust w rite 0.xA05F
— to the lock reg iste r to en ab le the follow ing reg isters to be m odified :

— L M _O S C I
— L M _O S C 2

— Provides nL M IN T to the top level & reg isters all in te rrup t sources

= A R C H IT E C T U R E =

arch itectu re syn th o f A P B R egs is

— C om ponen t declarations

com ponent P E _B lockM alch IS
PO R T(

elk in std log ic;
inD estination l IN ST D L O G IC V E C T O R !! dow nto U);
inS ource l IN ST D L O G IC V E C T O R !! dow nto 0);
inD ata l IN ST D U L O G IC V E C T O R !? dow nto 01;
in lD I IN ST D _U L O G IC _V E C T O R !7 dow nto 0);
inS tartl in std log ic; --goes h igh w hen the three th ings above are ready
in D estin a tio n l IN ST D L O G IC V E C T O R !! dow nto 0);
inSource? IN S T D LO G IC V E C T O R !! dow nto 0);
in D a ta l IN ST D U L O G IC V E C T O R !? dow nto 0);
in lD l IN ST D _U L O G IC _V E C T O R !? dow nto 0):
in S ta rtl in sld logic; —goes high w hen the three th ings above are reads
inD estina tion l IN S T D L O G IC V E C T O R !! dow nto 0):
inSourcc3 IN ST D L O G IC V E C T O R !! dow nto Of,
in D a ta l IN ST D U L O O IC V E C T O R !? dow nto 0 |;
inlD3 IN ST D _U L O G IC _V E C T O R !7 dow nto Of.
in S ta rtl in s td jo g ic ; —goes high when the three things above are ready
m y ID in s td Jo g ic _ v e c to r!2 dow nto 0);—w hat this PE 's II) is
IDI in s td J o g ic _ v c c to r!2 d o w n to 0) ;-w h a t PE I ’s ID is
ID I in std log ic_vecto r!2 dow nto ());—what PE 2 's ID is
ID I in sld logic v e c to r!! dow nto 0);—what PE I 's ID is
ou tD estina tion l out S T d ' l O G IC _ V E C T O R !! dow nto 0);

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F;ND com ponen t;

o u tS o u rc e l : o u t S T D _L O G IC _V E C T O R (2 dow nto 0);
o u tD a ta l ; o u t ST D _U L O G IC _V E C T O R (7 dow nto 0);
o u tlD l : o u t ST D _U L O G IC _V E C T O R (7 dow nto 0):
ou tS ta rtl ; out std_ log ic;
ou tD estinationZ : o u t S'I'D LO G IC _V E C T O R (2 dow nto 0);
outSourceZ : o u t S T D _ I.0 G IC _ V E C T 0 R (2 dow nto 0);
outD ataZ : o u t ST D _U L O G IC _V E C T O R (7 dow nto 0):
outlD Z : o u t ST D _U L O G IC _V E C T O R (7 dow nto 0);
outS tartZ : o u t std logic;
o u tD es tin a tio n] : o u t S T D _L O G IC _V E C T O R (2 dow n to 0);
o u tS o u rc e] : o u t S T D _L O G lC _V E C T O R (Z dow nto 0);
o u tD a ta] : o u t ST D _U L O G IC _V E C T O R (7 dow nto 0);
o u tID] : ou t ST D _U L O G IC _V E C T O R (7 dow nto 0);
o u tS ta r t] : o u t s td jo g ic) ;

com ponen t P E J3 M _ A ssc r t IS
PORT{

E N D com ponen t;

elk ; in s td jo g ic ;
inD estina tion 1 : IN S T D _L O G lC _V E C T O R (Z dow n to 0);
in S o u rce l : IN S 'l D _L O G IC _V E C I O R (2 dow nto Q);
inD ata l ; IN S T D _U L O G IC _V E C T O R (7 dow nto 0);
in lD I ; IN ST D _U L O G IC _V E C T O R (7 dow nto 0);
in S ta rtl : in s td jo g ic ; --goes h igh w hen the three th ings above are ready
inD cstinationZ ; IN ST D _L O G IC _V E C T O R (2 dow nto 0);
inSourceZ : IN S T D _L O G IC _V E C T O R (Z dow nto 0);
inD ataZ : IN S T D _U L O G lC _V E C T O R (7 dow nto 0);
inlDZ : IN ST D _U L O G IC _V E C T O R (7 dow n to 0);
inStartZ : in s td jo g ic ; - g o e s h igh w hen the th ree th ings above arc ready
in D estin a tio n] : IN S T D _L O G IC _V E C T O R (Z dow nto 0);
in S o u rc e] : IN ST D _L O O IC _V E C T O R (Z dow n to 0);
in D a ta] ; IN ST D _U L O G IC _V E C T O R (7 dow nto 0);
in lD] : IN S T D _ U L 0 G IC _ V E C T 0 R (7 dow nto 0);
in S ta rt] : in s td jo g ic ; - g o e s h igh w hen the three th ings above are ready
m ylD : in s td Jo g ic _ v ec to r(Z dow nto 0);—w hat this PE 's ID is
IDI : in s td Jo g ic _ v ec to r(Z dow n to 0);—w hat PE I's ID is
IDZ : in s td jo g ic _ v e c to r(2 dow nto 0);—w hat PE 2 ’s ID is
ID] : in s td J o g ic _ v e c to r(2 dow n to 0);—w hat PE] 's ID is
o u tD estina tion l : o u t S T D L O G IC V E C T O R (2 dow nto 0);
ou tS ou rce I : o u t S T D _L O G IC _V E C T O R (Z dow nto 0);
o u tD a ta l : o u t ST D _U L O G IC _V E C T O R (7 dow nto 0);
o u tlD l ; o u t ST D _U L O G IC _V E C T O R (7 dow nto 0);
ou tS ta rtl : ou t s td jo g ic ;
ou tD estinationZ : o u t S T D LO G IC _ V E C T 0 R (2 dow nto 0);
outSourccZ ; ou t S T D _ L 0 G IC _ V E C T 0 R (2 dow n to 0);
outD ataZ ; o u t ST D _U L O G IC _V E C T O R (7 dow nto 0);
outlD Z : o u t S T D _ U L 0 G IC _ V E C T 0 R (7 dow nto 0);
outS tartZ : ou t s td jo g ic ;
o u tD es tin a tio n] : o u t S T D J-O G IC _ V E C T O R (Z dow nto 0);
o u tS o u rc e] ; o u t ST D L O G IC _V E C T O R (Z dow nto (I);
o u tD a ta] ; o u t S T D _U L O G iC _V E C T O R (7 dow nto 0);
o u tID] : o u t ST D _U L O G IC _V E C T O R (7 dow nto 0);
outStarL i : ou t s td jo g ic) ;

com ponen t P E J 'in a l A sscrt IS
PO R T(

elk in sld logic;
inD estina tion l IN ST D LO G IC V ECTO R(Z dow nto 0);
inS ou rce l IN S T D L O G IC V EC TO R (Z dow nto 0);
inD ata l IN S T D U L O G IC V E C T 0 R (7 dow nto 0);
in lD I IN ST D _U L O G IC _V E C T O R (7 dow nto 0);
inS tartl in std logic; —goes h igh w hen the three th ings above arc ready
inD cstinationZ IN S I D LO G IC V EC TO R (Z dow nto 0);
inSourceZ IN S T D LO G IC V F.C TO R (2 dow nto 0);
inDataZ IN ST D U L O G IC V E C T 0 R (7 dow nto 0);
inlDZ IN ST D _U L O G IC _V E C T O R (7 dow nto 0);
inStartZ in std logic; —goes high w hen the three th ings ahove are ready
inD estin a tio n] IN S T D _L O G IC JV E C T O R (2 dow n to 0);

136

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

inSourcc3
inD ata3
inlD 3
inSlarO
m y ID
ID l
1 0 2
103
o u tD e s tin a tio n l
o u tS o u rcc I
o u tO a ta l
o u tlD l
o u ts ta rt 1
o u tO cstina tion2
o u tS ou rce2
ou tO ata2
ou tlD 2
outS tart2
ou tO cstina tion3
ou tS ource3
outO ata3
OUI103
ou tS tart3

EN D co m ponen t;

IN S T O _L O G IC _V E C T O R (2 dow n to 0);
IN S T O _U L O G IC _V E C T O R (7 dow n to 0);
IN S T O _U L O G lC _V E C T O R (7 dow n to 0):
in s ld_ log lc ; —goes h igh w hen the three th in g s above a re ready
in s td_ log ic_vec to r(2 dow nto 0);—w hat th is P E 's lO is
in s td_ lo g ic_ v ec to r(2 dow nto 0);—w hat PE I's lO is
in s td _ log ic_vec to r(2 dow nto 0);—w hat PE 2 's 10 is
in s td jo g ic _ v e c lo r(2 dow nto 0);—w hat PE 3 's ID is
o u t ST O _L .O G IC _V E C T O R (2 dow nto 0);
o u t ST D _L O G IC _V E C T O R (2 dow nto 0);
o u t S T D _U L O G IC _V E C T O R (7 dow nto 0);
o u t S T D _U L O G lC _V E C T O R (7 dow nto 0);
o u t s td jo g ic ;
o u t ST D _L O G IC _V E C T O R (2 dow n to 0);
o u t ST O _L O G IC _V E C T O R (2 dow nto 0);
o u t S T O _U L O G lC _V E C T O R (7 dow nto 0);
o u t S T D _U L O G lC _V E C T O R (7 dow nto 0);
o u t s td jo g ic ;
o u t ST O _L O G IC _V E C T O R (2 dow n to 0);
o u t ST O _L O G 1C _V E C T O R (2 dow nto 0);
o u t S T D _U L O G IC _V E C T O R (7 dow n to 0);
ou t S T O _U L O G IC _V E C T O R (7 dow nto 0);
o u t s td jo g ic) ;

c o m ponen t PE _C PU IS—th e in terface and c on tro l c ircu itry "around" the cpu
PO R T (

EN D c om ponen t;

— C onstan t declarations

elk
inS igna lF rom C P U
inO ataF rom C P U
inO estina tion I
in S o u rce l
inO ata l
InlD I
inS tarti
inO cstina tion2
inSource2
inO ata2
in l0 2
inS tart2
inO estina tion3
lnSourcc3
inO ataS
ini 0 3
inStartS
m y ID
101
102
103
ou tS igna lT oC P U
ou tO ataT oC P U
ou tO ataT oC P U
o u tD es tin a tio n l
ou tS o u rce l
ou tO ata l
ou tlO l
ou tS tart 1
ou tO estina tion2
ou tS ou rcc2
ou tO ata2
0U11D2
ou tS tart2
ou tO estlna tion3
ou tS ource3
outO ata3
outlD 3
outS tart3

in s td jo g ic ;
in s td j o g i c ; —there is da ta ava ilab le from the C PU
IN S T D _ U L O G IC _ V E C T O R (l6 dow n to 0) ; - th c d a ta from the C PU
IN S T O _L O G IC _V E C T O R (2 dow n to 0);
IN ST D _L O G iC _V E C T O R {2 dow n to 0);
IN S T 0 _ U L 0 G 1 C _ V E C T 0 R (7 dow n to 0);
IN S T 0 _ U L 0 G 1 C _ V E C T 0 R (7 dow n to 0);
in s td j o g i c ; —goes high w hen the th ree th in g s above arc ready
IN S T O _L O G lC _V E C T O R (2 dow n to 0);
IN S T O _L O G lC _V E C T O R (2 dow n to 0);
IN S T O _U L O G lC _V E C T O R (7 dow nto 0);
IN S T D _U L O G lC _V E C T O R (7 dow n to 0);
in s td jo g ic ; —goes high w hen the th ree th ings above arc rcadv
IN S T O _L O G lC _V E C T O R (2 dow nto 0);
IN S T O _L O G !C _V E C T O R (2 dow nto 0);
IN S T D _U E O C IC _V E C T O R (7 dow n to 0);
IN S T O _U L O G lC _V E C T O R (7 dow n to 0);
in s td jo g ic ; —goes high w hen the three th ings above arc ready
in s td jo g ic _ v e c to r{ 2 dow nto 0);—w hat this PE ’s II) is
in s td J o g ic _ v e c to r(2 dow nto 0);—w hat PE I's 10 is
in s td J o g ic _ v e c to r(2 dow nto 0);—w hat PE 2 's ID is
in s td J o g ic _ v c c to r(2 dow nto 0) ;-w h a t PE 3 's 10 is
o u t s td j o g i c ; —th ere is data ava ilab le from the C P U
o u t S T O _U L O G lC _V E C T O R (8 dow nto ()) ;- lh e d a ta from the C P U
o u t ST D _U L O G lC _V E C T O R (16 dow nto 0) ; - th c d a ta from the C PU
o u t ST O _L O G IC _V E C T O R (2 dow n to Ü);
o u t S T O J .O G IC _V E C TO R 12 dow nto 0);
ou t ST O _U L O G 1C _V E C T O R (7 dow nto 0);
o u t STD_U LOGIC_VECrOR(7 dow nto 0);
ou t s td jo g ic ;
o u t ST D _L O G IC _V E C I O R (2 dow n to 0);
o u t S T D _L O O IC _V E C T O R (2 dow nto 0);
o u t S T O _U L O G lC _V E C T O R (7 dow nto 0);
o u t S T D _U L O G lC _V E C T O R (7 dow nto 0);
o u t s td jo g ic ;
o u t S T 0 _ L 0 G 1 C _ V E C T 0 R (2 dow nto 0);
o u t S T D _ L O (ilC _ V E C T O R (2 dow nto 0);
o u t S T D _U E O G lC _V E C T O R (7 dow nto (I);
o u t S T D _ U E O G IC . VEC rO R (7 dow nto (!);
o u t s td jo g ic) ;

137

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— I M H z d e fa u l t c lock v a lu es
constan t O S C 1 V E C T O R : s td _ lo g ic_ v e c to r(18 d o w n to 0)

• = " 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 ” ;

c o n s tan t O S C 2 V E C fO R : s ld _ lo g ic_ v c c to r(18 d o w n to 0)
:= " 1100111110000000100" ;

— Lock re g is te r key OxAOSF
constan t l .O C K _ K l:Y : s td J o g ic _ v e c to r{ 15 d o w n to 0)

:= " 1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1 " ;

— A ddress d e c o d in g
constan t L M _ O S C l : s td _ lo g ic_ v e e to r(4 d o w n to 2) ;= "000";
— read /w rite

constan t L M _ O S C 2 ; s ld _ lo g ic_ v e c lo r(4 d o w n to 2) := "001 ";
— rcadA vrilc

constan t L M _ L O C K ; s td _ lo g ic_ v e c lo r(4 d o w n to 2) := "010";
— read /w rite

constan t L M _ L E D S ; s td J o g ic _ v e c lo r(4 d o w n to 2) ;= "011";
— read /w rite

constan t L M _1N T ; s ld _ lo g ic_ v e c to r(4 d o w n to 2) := " 100";
— read /w rite

constan t L M _ S W
— read on ly

; s td _ lo g ic_ v e c to r(4 d o w n to 2) := ” 101";

— Signal d e c la ra tio n s

signal L in O scR cg t
-- O sc illa to r reg is te r 1

s igna l L inO scR eg2
— O sc illa to r rcg is te r2

signa l L m L ck R eg
— Lock re g is te r

- s ig n a l L m L ed sR eg
signal L m L ed sR eg
— LED re g is te r

signal L n tlm R e g
— I N T re g is te r

signa l L m S w R eg
— Sw itch re g is te r

: s ld _ lo g ic_ v c c to r(18 d o w n to 0);

; s ld _ lo g ic_ v e c to r(18 d o w n to 0) :

: s td _ lo g ic_ v e c to r(15 d o w n to 0);

: s td _ lo g ic_ v e c to r(8 d o w n to 0);
: s td _ lo g ic_ v e c lo r(l 6 d o w n to 0);

: s td _ lo g ic ;

; s td _ lo g ic_ v e c to r(7 dow n to 0);

signal t .o c k e d : s td logic;
- R eg iste rs a re Locked

signa l N cx lP R D A TA
— read da ta

: s ld _ lo g ic _ v e c to r(3 1 d o w n to 0);

— a dup lex b u s based c o n im lin k w ith a bunch a n ecessary s ig n a ls (from PE 0 0 0 to PE 001)
signal cominDestOOO OOl ; s td _ lo g ic_ v e c to r(2 d o w n to 0);
signal comm SourceOOO OO 1 ; s td _ lo g ic_ v e c to r(2 do w n to 0);
signa l c o m m D ata000_001 : s td _ u lo g ic_ v c c to r(7 d o w n to 0);
signal commlDOOO OOl ; s td _ u lo g ic_ v c c to r(7 d o w n to 0);
signa l eommStartOOO OO 1 : s td log ic;

signal eo m m D est0 ()l_ 0 0 () : s td _ lo g ic_ v c c to r(2 d o w n to 0);
signal com m SoureeO O I 0 0 0 : s td _ lo g ic_ v ec to r(2 dow n to 0);
s igna l com m D ataO O l OOO : s td _ u lo g ic_ v e c to r(7 d o w n to 0);
s igna l co m m IDÜOI 000 : s td _ u lo g ic_ v e c to r(7 d o w n to 0);

138

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.

signal comniStartOOl OOO ; s td jo g ic .

- - a duple.s b u s based com m iink w ith a b unch a necessary s ig n a is
signal eom m D est0 0 0 _ 0 1 0 ; s ld J o g ic _ v e c to r(2 dow nto 0);
signal con im S o u rcc0 0 0 _ 0 1 0 ; s td J o g ic _ v c c to r(2 dow n to 0);
s ignal c o m m D ala000_010 : s ld _u log ic_vec to r(7 dow nto 0);
signal com m lD 0 0 0 _ 0 1 0 ; s ld _ u log ic_vec to r(7 dow nto 0);
signal coium .Start000_010 ; s td logic;

signal coinniD cstO lO JlO O : s td J o g ic _ v e c to r(2 dow nto 0);
signal com m S o u rcc0 1 0 _ 0 0 0 : s td Jo g ic _ v ec to r{ 2 dow nto 0);
signal com m D ata0 1 0 _ 0 0 0 : s td _ u lo g ic_ v ec to r(7 dow nto 0);
signal c o m m lD 0 1 0 _000 ; std_u Iog ic_vec to r(7 dow n to 0);
signal com m StartO i 0 000 : s td jo g ic ;

— a duple.N b u s based com m iin k w ith a bunch a necessary s igna ls
signal co m inD est000_100 ; s td J o g ic _ v c c to r(2 dow nto 0);
signal com m S o u rce0 0 0 _ 1 0 0 : std_ log ic_vec to r(2 dow nto 0);
signal com m D ataO O O JO O : s td _ u log ic_vec to r(7 dow nto 0);
signal co m m lD 0 0 0 _ 1 0 0 : s td _ u log ic_vec to r(7 dow nto 0);
signal c o m m S la rt000_100 ; s td jo g ic ;

signal c o n im D e s ll0 0 _ 0 0 0 : s td J o g ic _ v e c to r(2 dow nto 0);
signal com ntSourcclO O OOO ; s td J o g ic _ v e c to r(2 dow nto 0);
signal c o m n iD a ta l0 0 _ 0 0 0 ; s td _ u log ic_vec to r(7 dow nto 0);
signal co m in lD I0 0 _ 0 0 0 : std_u1og ic_vecto r(7 dow nto 0);
signal c o m m S ta n 100_000 : s td jo g ic ;

— a dup lex bus based com m iin k w ith a bunch a necessary signa ls
signal com m D eslO O l 101 : s td J o g ic _ v e c to r(2 dow nto 0);
signal com m SourceO O 1 1 0 1 : s td jo g ic _ v e c lo r(2 dow nto 0);
signal c o m m D a ta 0 0 1 _ I0 I : s td_u log ic_vecto r{7 dow nto 0);
signal com m lD 001_101 : std_u log ic_vecto r{7 dow nto 0);
signal com m StanO O l 101 ; s td jo g ic ;

signal c o m m D e s tl0 1 _ 0 0 I : s td jo g ic _ v e c to r (2 dow nto 0);
signal co m m S o u rce 1 0 1 0 0 1 : s td J o g ic _ v e c to r(2 dow nto 0);
signal c o m m D ata lO l OOl : s td _ u lo g ic_ v ec to r(7 dow n to 0);
signal co m m lD I0 1 _ 0 0 1 : s td _ u lo g ic_ v ec to r(7 dow nto 0);
signal c o m m S ta rtI0 l_ 0 0 1 : s td jo g ic ;

“ a dup lex bus based com m iink w ith a bunch a necessary signa ls
signal com m D eslO O l OI I : s td J o g ic _ v c c to r(2 dow nto 0);
signal com m SourceO O 1 _ 0 1 1 : s td J o g ic _ v e c to r(2 dow nto 0);
signal com m DataOOl OI I : s td_u log ic_vec to r(7 dow nto 0);
signal com m IDOO l Ol 1 : s td _ u lo g ic_ v cc to r(7 dow nto 0):
signal com m Start001_011 : s td jo g ic ;

signal com m D estO l 1 0 0 1 : s td J o g ic _ v e c to r(2 dow nto 0);
signal com m SourceO l 1 0 0 1 ; s td J o g ic _ v e c to r(2 dow nto 0);
signal com m D ataO l l_ 0 0 l : s td_u log ic_vecto r{7 dow nto 0);
signal com m ID O I 1 0 0 1 : s td _u log ic_vec to r(7 dow nto 0);
signal com m S tanO l 1 0 0 1 : s td jo g ic ;

— a dup lex bus based co m m iin k w ith a bunch a necessary signa ls
signal c o m mDestO 10 0 1 1 : s td jo g ic _ v e c lo r(2 dow nto 0);
signal co m m S o u rceO l0 0 1 1 ; s td J o g ic _ v e c to r(2 dow nto 0);
signal com m D ataO lO OI 1 : s td _ u lo g ic_ v ec to r(7 dow nto 0);
signal c o m m lD 0 1 0 _ 0 l 1 : s td _ u log ic_vec to r(7 dow nto 0);
signal com m StartO lO Ol I : s td j o g i c ;

signal com m D estO l 1 0 1 0 : s td_ log ic_vec to r(2 dow nto 0);
signal com m SourceO l t _ 0 10 ; s td J o g ic _ v c c to r(2 dow nto 0);
signal Com m D ataO l 1_010 : s td_u log ic_vec to r(7 dow nto 0);
signal com m lD O i 1_010 : std_u log ic_vecto r{7 dow nto 0);
signal c o m n iS tanO l l_01Ü : s td jo g ic ;

-- a dup lex bus based com m iin k w ith a hunch a necessary signa ls
signal co m m D e stO l0 1 1 0 : s td jo g ic _ v c c to r(2 dow nto 0);
signal c o m m S o u rc eO l0 _ 1 10 : s td J o g ic _ v e c to r(2 dow nto 0);

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s ig n a l c o m n iD a ta 0 1 0 _ l 10 ; s td _ u log ic_vec to r(7 d o w n to 0);
s igna l com nilD O IO _l 10 : s td _ u lo g ic_ v cc to r(7 dow nto 0);
s igna l com niS tartO IO _l 10 ; s td jo g ic ;

signa l c o m n iD c s tl lO OlO ; s td J o g ic _ v c c to r(2 dow n to 0);
s ig n a l c o n im S o iirce l IO_OIO : std log ic_vec to r(2 dow n to 0);
s igna l co rn m D a ta i 10 0 1 0 : s td _ u lo g ic_ v cc to r(7 d o w n to 0);
s igna l c o n im lD I 10 010 ; s td _ u lo g ic_ v cc to r(7 dow n to 0);
s igna l c o m m S ta rtl 10 0 1 0 : s td logic;

— a duplex b u s based co m m iin k w ith a bunch a ncccssar) ' s igna is
s igna l c o m m D c s tl 10 1 11 ; s td_ log ic_vec to r(2 dow n to 0);
s igna l c o m m S o u rce 11 0 1 11 : std log ic_vec to r(2 d o w n to 0);
s igna l c o m m D a ta l 10 1 11 : s td_u log ic_vec to r(7 d o w n to 0);
s igna l c o m m lD I I0 _ l II : s td _u log ic_vec to r(7 dow nto 0);
s igna l c o m m S ta rtl 1 0 1 11 : s td jo g ic ;

s ig n a l c o m m D c s tl 11 I 10 ; s td_ log ic_vec to r(2 d o w n to 0);
s ig n a l c o m m S o u rce 11 I I 10 : s td J o g ic _ v e c to r(2 dow n to 0);
s igna l c o m m D a ta l I I I 10 : s td _u log ic_vcc to r(7 d o w n to 0);
s igna l c o m m ID I I I I 10 : s td _ u lo g ic_ v ec to r(7 dow n to 0);
s igna l c o m m S ta rtl I I I 10 : s td jo g ic ;

— a dup lex b u s based co m m iin k w ith a b unch a necessary s igna is
s igna l c o m m D c s tl 1 0 1 0 0 : s td J o g ic _ v e c to r(2 d o w n to 0);
s igna l c o m m S o u rce 110_100 ; s td J o g ic _ v e c to r(2 dow nto 0);
s igna l c o m m D a ta l 10 100 : s td _ u lo g ic_ v ec to r(7 d o w n to 0);
s igna l c o m m lD l lO lüO : s td _ u log ic_vec to r(7 dow n to 0);
s igna l c o m m S ta rtl 1 0 1 0 0 : s td jo g ic ;

signa l c o m m D c stl 00 1 10 : s td J o g ic _ v e c to r(2 dow n to 0);
s igna l c o m m S o u rce I0 0 _ l 10 : s td J o g ic _ v e c to r(2 d o w n to 0);
s igna l c o m m D a ta l00 1 10 : s td_u log ic_vec to r(7 d o w n to 0);
s igna l com m lD IO O 1 10 : s td_u log ic_vec to r(7 do w n to 0);
s igna l c o m m S ta r t l0 0 1 1 0 : s td jo g ic ;

— a duplex b u s based com m iin k w ith a bun ch a n ecessary s igna ls
s igna l c o m m D estlO I I 11 : s td J o g ic _ v e c to r(2 dow n to 0);
s igna l c o m m S o u rc e I0 l_ l 11 : s td J o g ic _ v e c to r(2 d o w n to 0);
s igna l co m m D a ta lO l l 11 ; s td _ u lo g ic_ v ec to r(7 d o w n to 0);
s igna l c o m m ID IO l t 11 ; s td _u log ic_vec to r(7 dow nto 0);
s igna l c o m m S ta r t l0 1 1 11 : s td jo g ic ;

s igna l c o m m D c s tl 11 101 : s td jo g ic _ v e c to r(2 dow nto 0);
s igna l c o m m S o u rc e 11 I 101 : s td J o g ic _ v e c to r(2 dow n to 0);
s igna l c o m m D a ta l 11 101 : s td _ u log ic_vcc to r(7 d o w n to 0);
s igna l c o m m lD I 11 101 : s td _u log ic_vec to r(7 dow n to 0);
s igna l c o m m S ta rtl 11 101 : s td jo g ic ;

— a dup lex b u s based com m iin k w ith a bunch a n ecessary s igna ls
s igna l com m D estlO O lOI ; s td J o g ic _ v e c to r(2 dow n to 0);
s igna l c o m m S o u rc e 10 0 1 0 1 : s td jo g ic _ v e c to r(2 dow n to 0);
s igna l com m D aIalO O _IO I ; s ld_u Iog ic_vcc to r(7 d o w n to 0);
s igna l com m lD IO O lOI : s td _u log ic_vec to r(7 dow nto 0);
s igna l c o m m S ta r t l00 101 : s td jo g ic ;

s igna l c o m m D cstlO I 100 : s td J o g ic _ v c c to r(2 dow n to 0);
s igna l c o m m S o u rce 10 1 _ 100 : s td J o g ic _ v e c to r(2 d o w n to 0);
s igna l c o m m D a ta l01 100 : s td_u log ic_vec to r(7 d o w n to 0);
s igna l c o m m ID IO l 100 ; s td _ u log ic_vcc to r(7 dow n to 0);
s igna l c o m m S ta rtIO l 100 : sid logic;

— a dup lex b u s based co m m iin k w ith a bunch a n ecessary s igna ls
s igna l com m D estO l I I 11 : s ld jo g ic _ v e c to r(2 dow n to 0);
s igna l com m SourceO l l_ l . l I : s td J o g ic _ v c c to r(2 d o w n to 0);
s igna l com m D ataO l I I I I : s td_u log ic_vec to r(7 d o w n to 0);
s igna l com m ID O I I I 11 : s td _ u lo g ic_ v ec to r(7 dow nto 0);
s igna l com m StartO I I I 11 : s td jo g ic ;

s igna l c o m m D c s tl 11 0 1 1 : s td jo g ic _ v e c to r(2 dow nto 0);

140

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

signal co m m S o u rc e 111 0 1 1 ; sld J o g ic _ v e c lo r (2 d o w n to 0);
signal c o m m D a ta l 11 0 1 1 : s ld _ u lo g ic_ v ec to r(7 d o w n to 0);
signal c o m m lD I 11_011 ; s ld _ u lo g ic_ v ec lo r(7 do w n to 0);
signal c o m m S ta rtl 1 1 0 1 1 : s td jo g ic ;

—signal d a ta T o L liD s : s td _ u lo g ic_ v cc to r(8 dow n to 0);
signal d a ta T o l.E D s ; s td _ u lo g ic_ v ec to r(16 dow n to 0):
signal d a la l 'ro m L E D s ; s td _ u lo g ic_ v ec to r(16 dow n to 0);
signal s ig n a lT o L E D s : s td _ lo g ic ;
signal s ig n a l From LED s : s td j o g i c ;

signal VALOOO ; s td J o g ic _ v e c to r(2 d o w n to 0) := "000 '
s ignal VA LO Ol : s td jo g ic _ v e c to r (2 d o w n to 0) := "001
signal V A LO lO : s td J o g ic _ v e c to r(2 d o w n to 0) ;= ”010
signal V A L O l I : s td jo g ic _ v e c to r (2 d o w n to 0) := "011
signal V A LIO O : s td J o g ic _ v e c to r(2 dow n to 0) ;= "100
signal V A L lO l : s td J o g ic _ v e c to r(2 do w n to 0) := "101
signal V A L l 10 ; s td J o g ic _ v e c to r(2 do w n to 0) := " 1 10
signal V A L l 11 ; s td J o g ic _ v e c to r(2 do w n to 0) := " 111

— F u n c tio n dec la rations

- M ain b o d y o f code

begin
—i f you are c irc u it 000 then y o u r inpu ts s ta rt w ith 0 0 0 a n d y o u r ou tpu ts e n d w ith 000
PEOOO: P E _C P U port m ap (P C L K , s ig n a lF ro m L E D s, da taF rom L E D s, com m O estO O O JlO l. comm SourceOOO OO 1.

co m m D ata0 0 0 _ 0 0 1 , co m m ID 0 0 0 _ 0 0 1 , co m m S ta rt0 0 0 _ 0 0 1 .
commDcstOOO lOO, c o m m S o u ree0 0 0 _ 1 0 0 , commDataOOO_IOO, c o m m lD 0 0 0 _ l 0 0 , commStartOOO l 00,
commDcstOOO O 10, c o m m S o u rc e0 0 0 _ 0 10, c o m m D a ta 0 0 0 _ 0 10, co m m lD 0 0 0 _ 0 1 0 , c o m m S la rt0 0 0 _ 0 1 0 .
VALOOO, VA LO Ol, VALIOO, VA LO lO , signa lT oL E D s, dataT oL E D s,
co m m D est0 0 1 _ 0 0 0 , com m SourceO O 1_000, comm DataOO 1 000 , com m 1 DUO 1 0 0 0 , c o m m S la rt0 0 1 _ 0 0 0 ,
c o m m D est 100_ 0 0 0 , com m S ource 10 0 _ 0 0 0 , c o m m D a ta l0 0 _ 0 0 0 , com m lD 100__000, c o m m S ta rt 100_0(I0,
c o m m D estO l0 _ 0 0 0 , com m SourceO 10 000 , c o m m D ataO l0_000 , eom m lD O lO OOO, com m StartO 10 _ 0 0 0);

PEOOl : PE B lockM atch po rt m ap(PC L K ,
com m D estO O l 101, com m SourceO O 1 1 0 1 , comm DataOO 1 _ 101, com m lDOO l 101, comrnStartOO 1 _ 101,
co m m D cst0 0 1 _ 0 1 1 , com m SourceO O 1 011 , comm DataOO 1 0 1 1 , com m lDOO l Ol 1. com m StartOO I Ol 1,
com m DestOO 1 000 , com m SourceO O 1 000 , comm DataOO 1 _ 0 0 0 . co m m lD 0 0 1 _ 0 0 0 , com m StartO O l J) 0 0 .
VA LO O l, V A L lO l, VALOl 1, VALOOO,
c o m m D est 101 _ 0 0 1, c om m S ource 101 _ 0 0 1 , c o m m D ata lO l OOl. co m m lD 1 0 1 _ 0 0 1 , c o m m S la rtlO l J1 Ü I,
cfim m D cstO l l _ 0 0 i , com m SourceO l 1 0 0 1 , com m D ataO l 1 0 0 1 , com m lD O l 1 0 0 1 , com m S tartO l 1 001.
co m m D e s t0 0 0 _ 0 0 1, com m SourceO OO OO 1, comm DataOOOOO 1, com m lD O O O O O l, eom m StartO O O O O I);

PEOlO: PE B lockM atch po rt m ap(P C L K ,
com m D cstO 10 0 0 0 , com m SourccO 10 000 , com m D ataO 10 _ 000 , com m lD O 10 0 0 0 , com m StartO 10_000 ,
com m D cslO IO Ol 1, c o m m S o u rc eO l0 _ 0 1 1, co m m D ataO l0 0 1 1, com m lD O lO jO l 1. com m StartO lU 011.
com m D estO l 0 _ l 10, com m S ourceO l 0 _ 1 10, com m D ataO l 0 _ 1 10, com m lD O lO 110, com m StartO 1 0_110,
VA LO lO , VALOOO, VALOl 1. V A L l 10,
co m m D cst0 0 0 _ 0 1 0 , commSourceOOO O 10, commDataUUO OlO, commlDUOO OlO. commStartOOO O 10,
com m D estO l 1 0 1 0 , com m S ourceO l 1 0 1 0 , com m D ataO l 1 0 1 0 , com m lD O l 1 0 1 0 , com m StartO 1 1 0 1 0 ,
co m m D e st! 10 0 1 0 , com m S ource 110 0 1 0 , co m m D a ta l 1 0 0 10, co m m lD l 10 0 10. c o m m S ta rtl 10 OlOl:

P E O I1: PE B M A ssert p o rt m ap(P C L K .
com m D estO l 1 0 1 0 , com m SourceO l 1 0 1 0 , com m D ataO l 1 0 1 0 , com m lD O l 1J I I O , com m StartO 11 (110.
Com m D estO l 1 1 1 1 , com m SourceO l 1 1 1 1 . com m D ataO l 1 1 1 1, com m lD O l 1 1 1 1 . co m m S laaO 11 1 1 1 .
com m D estO l 1 0 0 1 , com m SourceO l 1 001 , com m D ataO l 1 J lO 1, com m lD O l 1 0 0 1 , com m StartO 1 1_001.
V A LO l 1, VALOlO, V A L l 11, VA LO O l.
co m m D e s tO l0 _ 0 1 1, com m SourceO 10 011. com m D atal) 10J) 1 1, com m lD O lO 0 1 1 , c o m m S ta rtl) lO J Il 1.
c o m m D c stl 1 1 0 1 1 , com m S ource 1 1 1 0 1 1 . co m m D a ta l 1 1 0 1 1 , co m m lD l 11 J) 1 1, co m m S la rt 1 1 1 0 1 1 .
com m DcstOOI Ol 1, com m SourceO O 1 _ 0 11, comm DataOO 1 0 1 I, comm lDUOl 0 1 1 , com m StartO O l J) 1 1);

PE 100: Pl J F in a l A ssert po rt m ap(PC L K ,
c o m m D est 1 0 0 _ l01 , com m S ource 100 101, c o m m D a ta lO O JO I. coinm lD IO O lO I. com m .Siart I00_ 101.

141

Reprotduced with perm ission of the copyright owner. Further reproduction prohibited without permission.

co m m D est 1Ü0_000, co m m S o u rce 10ü_000, co m m D ata l 00_000, c o m m lD I0 0 _ 0 0 0 . com m S tart 100 000.
com m D estlO O l 10, co m m S o u rce 1 0 0 _ 1 10, c o m m D a ta l0 0 1 1 0 , com m lD lO O l 10, c o m m S ta rt 1 0 0 _ 1 10,
VA LIOO, V A L lO l, VALOOO, V A L l 10,
c o m m D est 1 0 1 1 0 0 , co m m S o u rce 1 0 1 1 0 0 , c o m m D a ta l0 1 _ 1 0 0 , co m m lD 1 0 1 _ 1 0 0 , c o m m S ta rt 1 0 1 100.
co m m D est0 0 0 _ 100, commSourceOOO l 00, commDataOOO l 00, commlDOOO lOO, co m m S tarl000_100 ,
c o m m D c stl 10 1 0 0 , com m S ource 1 1 0 1 0 0 , co m m D ata l I0_100 , c o m m lD l 10_100, c o m m S ta rtl 1 0 1 0 0) :

P t l O l : P l;_ B lo ck M atch p o rt m ap(P C L K ,
co m m D e st 1 0 1 0 0 1 , c o m m S o u rce 101 _ 0 0 1, c o m m D a ta lO lO O l, c o m m lD lO IO O l, com m S ta rt 1 0 1 0 0 1 ,
co m m D est I O i l 1 1, c o m m S o u rc e l0 1 _ l 11, c o m m D a ta l0 1 _ l 11, co m m lD 1 0 1 _ l 11, c o m m S ta rt l0 1 _ l 11,
com m D est 10 1 _ 1 0 0 , c o m m S o u rce 1 0 1_ I00 , c o m m D a ta l0 1 _ 1 0 0 , c o m m lD l O i l 00 , co m m S ta rt 10 I I 00,
V A L lO l, VA LO Ol, V A L l 11, VALIOO,
co m m D est0 0 1 _ 1 0 1 , com m SourceO O 1_101, commDataOO 1 1 0 1 , com m lDOO l lO l, co m m S ta rt0 0 1 _ 1 0 1 ,
c o m m D c stl 1 1 1 0 1 , c om m S ource 1 11_101, co m m D ata l 1 1 1 0 1 , co m m lD l 1 1 1 0 1 , co m m S ta rtl 11 101,
co m m D est 10t1_l0 1 , c o m m S o u rce 10 0 _ 101, c o m m D a ta l0 0 1 0 1 , com m lD IO O IO l, com m S ta rt 100 _ 101);

PEI 10: PE_I31ockM atch po rt m ap(PC LK .,
c o m m D c stl 10 _ 0 1 0, c om m S ource 1 10_010, co m m D ata l 10 _ 0 10, co m m lD l 10 _ 0 10, co m m S ta rtl 10 _ 0 10.
co m m D est 1 10_l 11, c om m S ource 1 10_ 1 11, co m m D ata l 1 0 1 11, co m m lD l 1 0 _ 1 11, c o m m S ta rtl 1 0 1 11.
c o m m D c stl 10_100, c o m m S o u rce 1 1 0 1 0 0 , co m m D ata l 1 0 1 0 0 , co m m lD l 10_100, co m m S ta rtl 1 0 1 0 0 ,
V A L l 10, V A LO lO , V A L l 11, VALIOO,
C om m D estO l0 1 1 0 , com m SourceO 10 1 1 0 , co m m D ataO l0 1 1 0 , com m lD O lO l 10, com m StartO 1 0 1 1 0 ,
co m m D c s tl 1I I 10, c o m m S o u rce 1 11 1 1 0 , co m m D ata l 1 ! _ 1 10, co m m lD l I I I 10, c o m m S ta rtl 1I I 10,
c o m m D c stl 0 0 1 1 0 , c om m S ource 10 0 1 1 0 , co m m D ata l 0 0 1 1 0 , c o m m lD lO O l 10, c o m m S ta rtl 0 0 1 1 0) ;

PE I 11: P E _B lockM atch p o rt m ap (P C L K ,
co m m D c s tl 1 1 _ 1 0 I, c om m S ource 111_101, co m m D ata l 1 1_101, c o m m lD l 1 1 1 0 1 , c o m m S ta rtl 1 1 1 0 1 ,
c o m m D c stl 1 1 0 1 1, c o m m S o u rce 1 1 1 0 1 1 , co m m D a ta l 1 1 _ 0 1 1, co m m lD l 11 0 1 1 , c o m m S ta rtl 1 1 0 1 1 ,
co m m D est 1 1 1 1 1 0 , co m m S o u rce) 1 1 1 1 0 , co m m D ata l 1 1 1 1 0 , co m m lD l 1 1 1 1 0 , co m m S ta rtl 1 I I 10,
V A L l 11, V A L lO l, V A LO l I , V A L l 10,
c o m m D e s t lO l l 11, c om m S ource 10 1 _ 1 1 1, co m m D ata l O i l 11, c o m m l D l O l l 11, co m m S ta rtl O i l 11,
com m D estO l 1 1 1 1 , com m S ourceO l 1_1 1 1, com m D ataO l l_ l 11, com m lD O l I I I) , com m StartO 1 1 1 1 1 ,
c o m m D c stl 1 0 1 1 1 , co m m S o u rce) 1 0 _ 1 11, co m m D ata l 1 0 1 1 1 , co m m lD l 1 0 _ 1 1 1, co m m S ta rtl 1 0 1 1 1);

— Locked signa l p ro tec ts reg iste rs that c o u ld be acciden tly changed
L ocked < = 'O' w hen (L m L ck R eg = L O C K _K E Y)

else
') ' ;

- sw itch reg is te r is read on ly
L m S w R eg < = SW ;

— Lock reg is te r is read /w rite

p L dL ckR egS eq : process(PC LK ., nR E S E T)
begin

if(n R E S E T = '0 ') then
L m L ckR eg < = (o thers = > '0 ') :

e ls il '(P C L K 'c v c n t and P C L K = 'I ') then
if ((P S E L and PW R IT E and P E N A B L E) = ') ') then

if (P A = L M _L O C K) then
L m L ck R eg < = PW D A T A (15 d o w n to 0);

end it':
end if:

end if:
end p rocess p l.dL ckR cgS eq :

— O sc illa to r) reg is te r is read /w rite , p ro tec ted by lock reg is te r

p _ l.d O sc R e g S e q l : p rocess)P C L K . nR E S E T)
begin

if (n R E S E T = '0 ') then
l.m O sc R eg l < = 0 S C 1 _ V E C T G R :

e ls if (P C L K 'even t and P C L K = ') ') then
i f ((P S E L and PW R IT E and ['E N A B L E and not Locked) = ') ') then

if (P A = L M _ O S C I) th e n
L .m O scR egl <= P W D A T A (I8 dow n to 0):

end if;

142

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end ill
end ill

end process p_L dO seR egS eq l ;

C T R I.C I.K 1 < = l.m O s c R e g l;

--O sc illa lo r2 reg ister is read/w rite , p ro tected by lock reg ister

p_L dO scR egS eq2 : process(PC L K . nR E SE T)
begin

il (nR E SE T = '0 ') then
L m O scR cg2 < = O S C 2_V E C T O R ;

e ls if (PC L K ’even t and PCLK = 'I ') then
i f ((PS CL and PW RITE and PEN A B LE and not Locked) = ’! ’) then

if(P A = L M _ 0 S C 2) then
I .m O scR eg2 < = PW D A TA (18 dow nto 0);

end ill
end ill

end ill
end process p_L dO scR egS eq2;

C I RLCLK 2 < = L.mOscReg2;

— LEDS reg is te r is read/w rite

p_L dL E D SR egS eq ; p rocess(PC L K , nR E SE T)
begin

if(n R E S E T = ’0 ') th e n
-- put a pa tte rn on them

Lm L edsR eg(8 dow nto 0) < = "101010101”;
signalF rom L E D s < = 'O';

e ls if (P C L K ’even t and PC LK = '1') then
signalF rom L E D s < = 'O';
i f ((PSE L an d PW RITE and PEN A B LE) = 'I ') then

if (PA = L M _LED S) then
—w e need to p lace th is info in d a ta from LED S

“ Lm L edsR eg(8 dow nto 0) < = P W D A T A (8 dow nto 0);
Lm L cdsR eg(16 dow nto 0) <= P W D A T A (16 dow nto 0);

end ill
end ill
if(sign:

dataProm L E D s(16) <
dataFrom L E D s(15) <‘
d a ta l 'ro m L E D s(l4) <
dataF rom L E D s(13) <
dataFrom L E D s(12) <
dataFrom L E D s(1 1)
dataProm L E D s(10) <
dataF rom L E D s(9) < -
dataF rom L E D s(8) <=
dataF rom L E D s(7) <=
dataF rom L E D s(6) <=
da ta l'ron iL E D s(5) <=
dataF rom L E D s(4) <=
dataF rom L E D s(3) <=
dalaF rom L E D s(2) <=
dataFrom L E D s! I) <=
dataF rom l,E D s(0) < =
signalF rom L E D s <=

;= P W D A T A (I6)
PW D A TA (15)

;= P W D A T A (I4)
:= P W D A T A (I3)

P W D A T A (I2)
:= P W D A T A (1 I)
:= P W D A T A (I0)

PW D A TA (9):
PWDATA(g)
PW D A T A (7)
PW D A T A (6)
PW D A T A (5)
PW D A TA (4)
PW D A T A (3)
PW D A T A (2)
P W D A T A (I)
PW DATA(O)

1 ';

lafl'o I.E D s = '1 ') then
1 .m l.edsR eg! 16) < = data'I'oL.EDsI 16);

I.m l.ed sR eg (15) < = dataT oL E D s(15);
l,m l,edsR eg(14) < = dataT oL E D s(14)
Lm LedsReg! 13) < = dataT oL E D s! 13)
Lm LedsReg! 12) < = dataT oL E D s! 12)

143

ReproducecJ with permission of the copyright owner. Further reproduction prohibited without permission.

L m l.edsR cgO I) < = clataToLED s(1 \
l.m l.ed sR eg (lO) < = dalaT oL E D s(IO);
L m L edsR cg(9) < = dataT oL E D s(9);
L .m LedsReg(8) < = dataT oL E D s(8);
Lm l,.cdsReg(7) < = dataT oL E D s(7);
L niL cdsR eg(6) < = dataT oL E D s(6);
l .n il.cd sR eg (5) < = dataT oL E D s(S);
l .n il.cd sR eg (4) < = dataToLEDs(4V.
l.n il.cdsR eg{3) < = dataT oL E D s(3);
L m LedsR eg{2) < = dalaT oL E D s(2);
[,m L c d sR e g (l) < = d a ta T o L E D s(l) ;
L m i.cdsR eg(O) < = dataToLEDs(O);

end if;
end il;

end process p_ l.d l.E D S R eg S eq ;

L E D <= L n iL cdsR cg(8 dow nto O Y .

- in terrup t is latched on ris ing edge ol nPS U T L utton input
— IN T reg is te r is read /w rite(lo c lear int)

p_L d ln tR cgS eq : p rocess(PC L K , nR E SE T , nPB U TT)
begin

if(n R E S E T = '0 ’) then
L m ln tR eg < = 'O';

e ls if(n P B U T T = '0 ') th e n
L m ln tR eg < = T ;

e ls ir(P C L K .'even t and PCLK. = 'I ') then
it'U P S E L a n d PW R ITE and PE N A B L E) = 'I ') then

it'(P A = L M J N T) then
L m ln tR eg < = PW DA TA (O);

end if;
end if;

end if;
end process p L d ln tR egSeq;

R E G S IN T < - L m lntR eg;

— Read reg isters

p_G enN P R D A T A C om b ; p rocess (PA, L m O sc R e g l. L m O scR eg2, L m LckR eg, Locked,
L m L edsR eg. L m lntR eg, Lm Sw R eg)

beg in
N ex tP R D A T A < = (o thers = > '0 ');
ease PA is

w hen L M _0.SC I =>
N ex tP R D A T A (l8 dow nto 0) < = l.m O sc R eg l;

w hen LM 0 S C 2 =>
N cx tP R D A T A (l 8 dow nto 0) < = L m 0 scR eg 2 ;

w hen LM LO C K = >
N extPR D A T A (15 dow nto 0) < = Lm LckR eg;
N ex tP R D A T A(16) <= Locked;

w hen L M _L E D S =>
--N ex tP R D A T A (8 dow nto 0) <= Lm LedsR eg;

N ex tP fiD A T A (16 dow nto 0) < = Lm LedsR eg;
w hen L M _IN T =>

N extPR D A TA (O) < = L m lntR eg;
w hen LM _.SW =>

N extPR D A T A (7 dow nto 0) <= L m Sw R eg;
w hen o thers = >

N extPR D A TA (31 dow nto 0) < = "00000000000000000000000000000000";
end case:

end process p C ienN PR D A 'fA C om b;

— W hen the peripheral is not b e in g accessed , 'O's arc driven
— on the R ead D atabus (PR D A T A) so as no t to place any restrictions
— on the m eth o d o f external bus connection . T he external d a ta buses o f the

144

Reprotducetd with permission of the copyright owner. Further reproiduction prohibiteid without permission.

- p eriphera ls on the APB m ay then be connected to the A S B -to-A PB bridge using
- M iixed or O R cd bus connection m ethod,

p_R dS eq ; process (PC L K , nR ESET)
begin

il (n R E S E T = '()') then
PR O A TA < = (o thers = > '0 '):

e ls ir(P C L K 'c v c n t and PC LK = 'I ') then
P R O A I'A <= NextPRDATA:

end ip
end p rocess p_R dS eq;

end .synth;

= End =

Sinctude <sld io .h>
^ in c lu d e < tim e.h>

//as de lm ed in irqint.s
ex tern vo id uH A L ir_E nab leln t(vo id);
extern void uH A L ir_D isableIn t(void);

extern v o id \vord_w rite(in t addr, int data);
extern in t vvord_read(int addr);
ex tern vo id hw ord_w rite (in t addr, int data);
extern in t hw ord_read(in t addr):
extern vo id by te_w rite(in t addr, int data);
extern in t byte_read(int addr);

/***** + * ***********
d e lin e FR A M E _D IM E N S!O N 16
d e tm e ,SCAN N IN G _R A D 1U S 16
A deline 1M A G E _R 0W S 64
d e tm e IM A G E _C O L S 64
Adeline FR A M E.S_IN _R O W 4//m ust be !M A G E _R O W S / FR A M E _D IM E N S10N
S dellne F R A M H ,S JN _C O L 4 //m ust be IM A G E _C O L S / FR A M E _D IM E N SIO N

//de tlne LM _LRD.S OxCOOOOOOCV/OxCOOOOOOS //tem p set to lock reg iste r instead // OxCOOOOOOC
w ith C = LED

- e n d with 8 = lock roe. end

/* T im e r reg iste r in fo rm ations* /
Sdetlne T IM E R I_ C T R L (0x13000108)
/fdeline T IM E R I_ V A L U E (0x13000104)
«define T IM E R l_ L O A D (0x13000100)
«define T IM E R 1_C L R (Ox 13000 IOC)
« define T IM E R 2 _ L 0 A D (0x13000200)
/* R eg iste r se t for IRQ con tro ller ... pp 4 -32 ♦/
«define IRQ STATUS (0x14000000)
«define 1R Q _R A W STA T (0x14000004)
«define IR Q _E N A B L E SE T (0x14000008)
«define IR Q _E N A B L E C L R (OxMOOOOOC)
/* h it assignm en t for in terrupts for in terrup t contro ller 0 (first C P U) */
«define S O F T IN T (0x1 « 0)
«define T IM E R IN T l (0x1 « 6)
«define T IM E R IN T 2 (0x1 « 7)
/* IRQ V ecto r address for Integrator/A P platform */
«define IR Q V E C T ' (0x18)

«define A N D FlL fE R OxOO()OFFFF//0.xOOOOQ03F

unsigned char ac tivcF ram e[F R A M E _D IM E N S I0N l(F R A M E _D IM E N S 10N |;
unsigned char
o ldF ram cA rea(FR A M E _D IM E N ,S IO N +2*SC A N N IN G _R A D IU ,S |(F R A M E _D IM E N .SIO N +2’ SC A N N lN C i_R A D lU .S |;
unsigned ch a r w ho le ln iage l | IM A G E _R O W S lllM A G E _C O L S];
unsigned ch a r w holc lm agc2[IM A G E _R O W S l[lM A G E _C O L S);

unsigned ch a r h itm a p lle a d e r ln fo (l4 |;
un signed ch a r int'ol leadcrln fo [40 j;

145

Reproducetd with permission of the copyright owner. Further reproduction prohibited without permission.

im coinUi;r;//uscd by liming lunclions

struct bilm apl Icaticr!
unsigned sh o rt int type; /* M agic identi lier ’ /

unsigned int size: /♦ 1-ile s ize in b) tes */
unsigned sh o rt int reserved 1. reservedZ:

/ / unsigned sho rt int paddingV /l've been g e tting th is padded so that offset is a lligned causing problem s!!

unsigned int o llse f, /♦ O ffset to im age data, bytes */

struct in lbH caderl
unsigned int size; /* H eader size in bytes */
int « td th .heigh t; /♦ W idth and heigh t o f im age * !

unsigned sh o rt int planes; /* N um ber o f co lour p lanes
unsigned sh o rt int bits; /* Bits per pi.\cl */
unsigned int com pression; /* C om pression type */
unsigned int im agesize; /* Im age size in bytes */
int x reso lu tion .y reso lu tion ; /» Pixels pe r m eter */
unsigned int ncolours; /* N um ber o f co lours */
unsigned int im portan tcolours; /* Im portan t co lours */

struc t te c tor I
int row M ovem ent;
int co lum nM ovcm ent;

struct te c to r M a ste r0u tlF R .A M B S _lN _R 0W l(F R A M E S _IN _C 01 ,l;

/♦»**»****FU N C T IO N P R O T O T Y PE S********/
struc t vector h lockM atch(vo id):
int init(void);
int absu lu tc tin t in),
void co tin ler_stan (vo id);
double coun ter_stop(vo id);
void c_enablein terrupt(void);
void lR Q cnab lc_ in terrup ts(vo id);
unsigned lR Q _insta ll_hand ler(ttnsigned location, unsigned *vector);
 irt| void IRtJI landler(void);
void loadA rra ts(vo id);

Moat dum bC ounter - 0;

int mainOI
int i, j , m, n, p, q;
struc t vector tem p;
double tim er,
int b lockM titehC ounler = -1 ;
int upperV al;
int low erV al;
int int l em p;
unsigned char to C irc u it|2 |;
int tv lm 2First = 0;
in t tv lm 2Second = 0;
int « Im I First = 0 :
int «1m l,Second - 0;
int c rro rD etectF lag = 1;

//tc in p ln t - « ord read fI.M 1,E 1)S);
//p rin tfC 'tem plnt: % d\r\n" , tem pin t);
//re tu rn 11;
printl'C 'starting up\r\n");
co u n te r startO ;

146

Reproiduced with permission of the copyright owner. Further reproduction prohibited without permission.

return 0;
I
/ /te s t lest
//re tu rn tl./Zdid the l.KDS g o o ir?
//iKuv lotnl up une fram e from each im age and call b loekm ateh . then sw itch to the next fram e.

fur(i - I), i < KRAM ES_1N_R0VV; i++)j
Ibrfi - 0; j < FR A M B S_IN _C O L ; j+ +) |

//now load the w hole co rrespond ing section o f each im age into the frame!
for(m = O', m < FR A M E _D IM E N SIO N ; m++){

for(n = 0; n < FR A M E _D IM E N SIO N ; n++1 j
activeFram clm }[n] =
w holelm agc2[i»FR A M H _D IM E N SIO N -t-m l!j*F R A M H _D IM E N SIO N r

III:
//printl'C 'aclivcFram c: % d\r\n" , a c tiv c F ra m e |m ||n |) t
w im 2F irst = i*FR A M E _D lM E N SIO N +m t
w ln i2Second= j*FR A M H _D IM E N .SIO N 't-iu

I//end for n
I//end for m
//prin tlV 'vvholclm agc2[% dll% d]\r\n" , wI m 2 First. w ln ü S c c o n d);
for(m = 0; m < FR A M E_D lM EN SIO N +2*.SC A N N IN G _R A D IU .S; m r +) |

for(n = 0; n < FR A M E _D IM E N S fO N + 2*S C A N N lN G _R A D IU S ; rvi-i-)|
if((i*FR A M E _D lM E N SIO N -.SC A N N lN G _R A D IU S+m) < 0) |

o ldF ran ieA rea[m)[n | = w ho le ln iage l l0 |[0 |: / /0 ;
w lm I First = 0;
wl m l.Second = 0;

I
else if((i’ F R A M E _D lM E N S 10N -.S C A N N lN G _R A D lU S + m) >

1M A G E_R0W .S) |
o ld F ram cA rea |m]fn | = w ho le ln iage l |0 |[0 |;//();
w lm 1 F irst = 0;
w lm 1 S econd = 0;

1
else il% (.i*FR A M E _D lM E N S10N -.SC /\N N lN G _R A D lU Sr-n) < 0 X

o ldF ran ieA rea[n iJ[n | = \v h o le lm a g e l|0 1 |0 |: //0 .
w lm 1 F irst = 0;
w lm lS e c o n d = 0;

1
else if(fj'*FR A M E _D lM E N SIO N -SC A N N lN G R A D IU S Ui)

1M A G E _C 0L S) {

o ld F ra m c A rea [m ||n | - vvholelm agel|()||()|'7 /():
w lm I F irst = 0;
w lm lS e c o n d = 0;

)
else I

o ld F ra m e A rea (m ||n | =
w h o le ln iage l (i*FR AM E _I>IM E N S10N -
SC A N N IN G _R ADI I IS+m j[i *
FR A M E_D hM EN SIO N -
SC A N N IN G _R A D IU S + nl;

w lm I First = i*F R A M E _D lM E N S 10N -
S C A N N lN G _R A D lU S H ii;

w lm lS e c o n d = j'*F R A M E _D lM E N S IO N -
SC A N N 1N G _R A D IU S h k

)

)//end for n
I//end for m
//p rin tfC 'w holeln iagel (% d |[% d |\r \n " , w lm 1 First, w lm I.Second);
blockM atchC ountert-t-;
prin tlC 'w orking on b loekm ateh task #% d\r\n ''. b lockM atchC ounterl;

//il'((b ltickM atchC oniiler < 13) || (lilnckM atchC ounter ="= U) || (b loekM alchC onn ter ■ l.S))]
if((b lockM atchC ounter < 12) || (b locklv latchC ountcr = 1.3) ji (h loekM atehC oun ter - - 14| | |

//then do it in IIW
//so ju st w rite all the d a ta to IIW
forip - 0; p < (2*S C A N N IN G _R A D IU S H l . p t t | |

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ibr(q •= 0; q < (2 ‘ S C A N N lN G _ R A n iU S H); q + 0 |
ror(ni --- 0 , ni < F R A M IiJ llM I-N S IO N ; m n - , |

lbr(n = 0; n < [•RA(Vll-;_l>IMl-.N.Si()N; n n -){
short * sh o rtT cn ip l’tr;
int in lcgcrT cm p;
loC irc iiit(0 | = a c tiv o l-ram c lm lln l;
(oC ira iitI I j -

ok ll'ra iiioA roalp I n i ||q + n |
sh o rtl 'cm p P lr = (short

*)(& to C irc iiit |0 |) ;
in teger lo n ip = "sltort'I 'enrpPlr.
\vortl_w rite(l,M _l,L ;h)S,

in tegcr'i'en ip);
inlTctrip =

integer'I'e inp;
1 //en J for n

)//end for in
I//end for q

}//cnd for p
prinirC 'inlTeinp: % d\r\n" . in lTeinp);

//w ait to be su re HW circuit has generated the results
lbr(p = 0; p < 20; p++){

dum bC ounter = dum bC ounter * 7;
dum bC ounter = dum bC oun ter / 5;

!//end for p
upperV al = word_re-ad(LM _t.L'.DS);
low erV al = upperV al;
//printfC 'initial value: % d\r\n" , upperV al);

//rem ove unw anted upper bits
low erV al = low erV al & OxOOOOOOFl-;
upperV al = upperV al & OxOOOOFFOO;
upperV al = upperV al » 8;
M asterO u t[i|f j] .eo lum nM ovcm en t = upperV al;
M asterO u tlijf jj.row M ovem en t = low erV al;

tem p = blockM alchO ;
M asterO ut[i][jJ.co lum nM ovem ent = tem p.co lun inM ovem cnt;
M asterO utfil[ij.row M ovem ent = tem p.row M ovem ent;

IlferrorD etectF lag —- i) |
if(i = 1) 1

if(j = 0)l
crro rD etec tF lag - OV/don't do this again!
//send an e rro r reconfigure packet to the circuit
//vvord_w ritc(l.M _L FD S, OxICOOl);//tell them to s top u s in a
//B M O O l
//now we m ust resend e ve ry th ing from the beginning!
//i = - 1 ;
//j = - I ;//so that they will he increm ented to 0

I
else I

'/ /e n d for j
I //end for i

fo rd = 0; i < FR A M FS IN J (O W ; i f+) |
for(i = (I; j < FK A M F:S_IN _R 0W ; j+ +) |

//llrs t .shift the values....
M aste rO u lli|[j|.row M ovem en t = M a ste rO u t|i ||j |.ro w M o v e m e n t - 16;
M a.sterO ut[ij|j).co lum nM ovem cnt = M a ste r()u t|i | |j |.c o lu in n M o v e in e n t - 16;
printl'C 'BM task H % n - row shift.-'FidI, co lum n shifl.'X ,d\r\n". 4*1 rj.

148

Reproduceid with permission of the copyright owner. Further reproiduction prohibited without permission.

MastcrOiulijlj],rowMovement, M;LStcrt)iitlii|j|.colnmiiMovemenl).
I //end lor j

I //end Ibri

tim e r = c o u n le rs to p O ;
p rln tl\" tim e r lor every th ing is % l'\n " . tim er);
printl'C lnnshethrX n");
re liirr i I;

in i in ilO l
//tim e to open the two b ig intages

I * KU.It* llrst. ♦second;
int i . j ;
in t llrs tlndex . .sceondlndex;
llrs t - ropen("c;\\0 .bm p", "r");
seco n d = I'opcnC'ctW I.bmp". "r");
il't (llrst = - N U L L) || (second — N U LL))|

p rin tlC 'read erro r on input llles\r\n");
retu rn 0;

I
fseekt llrst, OL, SLi-:K _Si;T);
lscek (second , OL, SE E K _SL T);
lbr(i = 0; i < id ; i+ +)|

I'scanl'illrst, '"koc", & (b itm apH eaderln lb [il));
I//end lor i
lb r (i = 0; i < 4 0 ; i+ +) |

I 'scanR llrst, "% c”, & (in roH eaderln fo (i]));
}//cnd lor i
/ /ju m p to the s ta r t o l 'th e im age data
tscek (sccond , 44L , SL E K _SE T);
fscek(llrs t. 4 4 L , SF.E1C_S[1T);
llrs tlndex = 44L ;
seco n d ln d ex = 44L ;

//n o w load up the overall im age
lbr(i - 0; i < IM A G F J^ O W S ' i-H-){

l'or(i = 0; i < IM AGR_COL.S; j + +) |
/ /ch a r charTem p;
//ch a r charT em p 1, ch a r TempZ;
//unsigned ch a r u C h a rT e m p l. uC harT em p2;
ini ou tputT em p;
int tails;

//Isca n tjllrs t, "% c". & .(charTem pl));//(w h o le lm ag e l (IM A G f:_C ()L .S*i + j |)) ;
//I'scan('(second, "% c", & (char'!em p2));(w ho le!m agc2(IM A G l'._C ()l..S * i ♦ j |)) .
Iscan l(llrs t, "% c", (w ho lelm agel[IM A G F _C O L .S ^ i t-jj));
I 'scan((second, "% c", (w ho lelm age2(IM A G F._C Ü L S *i + J |)) ;
ou tpu tT em p = (int)(w holelE iiagel [IM A G E _C O L S *i + j |) ;
p rin tf("w h o le lm a g e l[“'od| = % d \r \n " , IM A G E C O l.S ^ i + j , ou tpu t Temp);
ou tpu tT em p = (in t)(w holclm age2[IM A G E _C ()L ,S*i + j |) ;
p rin ltV 'w hole lm age2[% d | = % d \r \n " , IM A G E _C O L S*i + j , o u tp u ti'em p);

/ / charT em p I = fgeic(llrst);
// i ((charTem p I = EO F)
// printl'C 'l'getc 1 returned null\r\n");
// charT em p2 = (gctc(second);
// i((charT em p2 = EO F)
// printl'C’t'getc 2 returned nu ll\r\n "l,

//charT em p = (unsigned char)(w ho lelm agel|IM A G H _C O I..S * i + j |) ;
// uC harT cm pI = (unsigned c h a r)(ch a r(e m p I);
// uC harT cm p2 = (unsigned char)(char (em p2);
// ou tpu tT em p = (in t)(charT em pl);

//p rin tl't"w h o le ln iag e l; % d\r\n" . o u tpu tT em p);//w ho le lm age lllM A C iE C'OL.S’ i ■- j|) ;
/ /c h a r(e m p = (unsigned c h a r)(w h o le lm a g e 2 |IM A (iE C O LS*i ♦ j |) ;

/ / ou tput'I 'em p = (in t)(char'(em p2);
//p rin t(("w holelm age2 : % d\r\n" , ou tpu t (em p);//w h o le lm ag e 11 IM.AGE (.'Ol „S*i + j|).

U w h o le ln iag e l [IM A G L C O t.S 'i -I- j| - (unsigned ehar)(uC lia r (em p I);
// w holciniage2[IM A CiE_C O L.S^i i- jj - ()://utFliar'(enip2,

149

Reprotduced with peunission of the copynght o w n e r Fu(thor rep(oduction p(ohibited without pe(mission.

llrs tln d e x ++;
sccond liidex+ + ;
//printl'C 'that w as Ibr i: % d , j : % d\r\n" , I. j) ;
fails = Iseckfsecond , llrs tlndex . SliH K SIiTX
prin tf("fa ils ; % d\r\n" . falls);
fseck(first, secnnd lndex . .SliRK S I;! ') ;
p rintfC 'fails: '% d\r\n". fails);

[//end for j
//p riiu f("nnc row o f load ing it up donc\r\n");

I//end for i

;'/word_ wrile{LM _LI;[3.S.0x lOR);

//load up the arrays*/
loadA rraysO ;
prinlfC 'init is done\r\n");
return I;

im abso lu le (im in)|
i f (in < 0)

return -in,
else

return in;

I .struct vec to r b lockM ateliO l
I int b es tR ow l.oca tion . b es tC o lum nl.oca tion ;
I int lo w e s t! i r ro r =-100000000;
I int cu rrcn tR rro r - 0;
I // int h a llW ay = SC A N N IN G _R A D lU S;//used to be + 1 but 1 th ink that is w rong

S truct v e c to r out;
I tut i. I. in. n;
' f i
' ford -■ 0; i < (2*.SCA N N !N G _RA D 1U S+1); i+-t-)|

lo rd = 0 ; j < (2 * S C A N N IN G _ R A D iU S + l) ;j-H -)j
J for(m = 0; in < FR A M B JD IM R N S IO N ;
i for(n = 0; n < l-R A M R .,D IM E N S 10N ; n4-t-)|

c iirren tR rro r + = absolu te((activch‘ran ie |m l[n |-
.! o ld l 'r a in e .\ re a |i i i r i | |n r j |)) ;
' [//end for n

[//en d for ni
if(currentG rror < low est E rror) |

low estR rror = currcn tR rro r.
b estR ow L ocation = i;
b esiC olum n Local ion = j;

[
:• cu rrcn tR rro r - 0;

[//end fo rj
I //end for i
//se t them to he -ive i f below the h a lfw a y m ark
ou t.row M ovem en t ■- b estR ow L ocation ;// - halfW ay;
o u t.eo lum nM ovem cnt = bestC o lum nL oeation ;// - 1ml W a y ;
return out;

\ O l d c o u n te r slart()

e enab le in te rrup l().
1 R tjeu ah le in te rrup ts!);
eou iiter - 1).
*(im *) TIM R R l_C I'RL = OxOOOOOOCS;

doub le co u n te r stopt)

double total tim e;
/ /p rim f("stop \n");

150

Reprotduced with permission of the copyright owner. Further reproduction prohibited without permission.

♦(im ♦)T liV U -:R I_C rR I. = 0x00{)00()0();
/ / T he last n u m b er 0 .01936 Is the ove rh ead for s ta rtin g and lini.shing the function calls.
t o t a l j i m c = (doub le) 1/(24000000/2.06) ♦ (65535 - ♦(int ♦) T1MI-.R1_VA1.IJ1-: + co u n te r ♦ 6 5 5 3 5)- 0 .0 1 0 .
//,,r im l("% d \n " . ♦(int ♦) T lM H R l_V A 1 ,IJH);
//prin ll'C 'tin ie % l\n " . total tim e):
re tu rn total tim e;

/ / T h is function will e n ab le tim er 1.
void e _ e n ab le in te rru p t(v o id)
!

♦(in t ♦) T IM C R L V A L U Ü = 65535;
♦(in t ♦) T IM R R 1 J .O A D - - 65535 ;

void lR (,)enab le_ in te rrup ts(vo id)

unsigned o rig ina l vec to r 0x0;

o rig ina l vec to r = IRQ install hand ler((tin signed) IR Q l-landler, (unsigned ♦) IR Q V R C r);
♦(in t ♦) (IR Q JH N A B l.C SF .T) = 0x0; //d isab le A L L in terrup ts
♦(int ♦) (1R Q _I:N A B L I:C L R) = Oxl-'Tl-l-Kl-l'r; //c lea r A L L in te rrup ts

♦(in t ♦) (IR 0 _ E N A B L E S E T) |= T IM E R IN T l;
♦(in t ♦) (IR Q J-:N A B L E C L R) & = -T IM E R IN T l;
♦(in t ♦) (1R Q _E N A B LE.SE T) 1=T1M ER IN T2;
♦(int ♦) (1R 0_F :N A B L U C L R) & - -T 1M E R 1N T2;

//p rin tf(" lR O _ E N A B L E S E T = 0x% X \n". ♦(int ♦) (1R Q _E N A B L E SE T));
//p rin tl% "lR Q _E N A B L E C L R = 0.x% X\n", ♦(int ♦) (1R Q _E N A B L E C L R));

//p rin tfC 'ca llin g E nab ling in ts ...\n");
ul IA L ir_E nab le ln t();
//p rin tfC 'E in ished E nab ling in ts ...\n");
/ /p rititr("o rig in a l_ v ee to r = O x% X \n". o rig ina l vector);

u nsigned IRQ insta ll_h-andler(unsigned location , unsigned ♦vector)

u nsigned vec, oldvee;

« ifd e f DEBUG
p rin tR "lo ca tio n % % p: 0.x% p\n", location);
p rin ifC 'loca tion % % X : O x% X \n", location);

p rin tfC 'vccto r % % p: Ox% p\n". vector);
p rin ifC 'vccto r % % X : 0.x% X \n", vector);

p rin tfC 'location - vecto r %%.X: Ox% X \n", location - (u n signcd)vec to r);
printl'C’location - vecto r - 0x8 % % X : O x% X \n”, location - (unsigned)vec to r - 0x8);
p rin tl'("(locatinn - vec to r - 0 x 8) » 2 % % X ; Ox% X\n", (location - (unsigned)vec to r - O x 8) » 2) ;
p rin tf(" ((lo ca tio n - vec to r - 0 x S) » 2) | OxcaOOOOOO) % % X ; O x% X \n". ((location - (u n sig n c d)v e c lo r - 0 x 8) » 2) |

OxeaOOOOOO):
c n d if

vec = ((location - (unsigned)vec to r -0x8) » 2) ;
if(vcc & OxflOOOOOO)

p rin tf(" \n In sta lla tion o f hand ler failed !!\n");
retu rn) 1);

vec = OxeaOOOOOO| vec;
o ld v ee = ♦vecto r;
♦vector = vec:

/♦ Install new v ec to r ♦/
re tu rn (o ldvec);

151

Reprotducetd with permission of the copyright owner. Further reproduction prohibited without permission.

i| irq voiil IKOHandlor(voi(J)

/ / i n t n ;

iinsignecl ini "b ase = (u n s ig n e J int *) IR Q S T A T U S ; I * IR Q s ta tu s re g is te r Ibr p ro cesso r 0 */

/ • O o le n n in e in te rru p t type and call a p p ro p ria te h an d le r */

i lC h a s e & IIM IiR IN T I)
1

" tin t ♦) T IM [-;R I_C T R L = OxOÜOOOOüO;
counter+H ;
/ /lb r(n = 0 ; n< IO ; n++)

//p rin ttC '% d \n " . * (in t Q T IM E R L V A l.U H);
* (in t ♦)T IM 1-.R I_C 1.R = 0;
* |in t ♦)T IM I-R 1 C T R L =• OxOOOOOOC8;

152

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.

