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Abstract

A New Strategy For Multi-Objective Dynamic and Kinematic Optimization of a Robotic 
Manipulator with Application in Haptic Interfaces 

Behrooz Alae , Master of Applied Science in 
Mechanical Engineering, Ryerson University, May 2006

There is an increasing demand for higher performance in modern robotic applications. 

To meet the need for more accuracy and fast dynamic response, considering inertial effects 

is necessary.

This thesis proposes a new global multi-objective optimization strategy to tune the geo­

metric and dynamic capabilities of a manipulator. Then, as a case study, the kinematics 

and dynamic behavior of a five-bar-linkage haptic interface is analyzed and a new design 

procedure is obtained using a new global and constrained multi-objective technique. The 

minimax culling algorithm was used to design parameters for optimal kinematics and dy­

namic dexterity measure.

Ill



Acknowledgement

I would like to express my gratitude to my supervisor Professor Farrokli Janabi-Sharifi 

from whom I have tried to learn intuitive and analytical thinking. I will always be his 

student.

I would like to express my heartfelt thanks to my mother and father, Fatemeh and 

Ayatollah, for their endless love and to my brother and sister, Behzad and Shahla for their 

great support.

IV



Table of Contents

Author D eclaration .........................................................................................  v

A b stra c t........................................................................................................  v

Acknowledgem ent..........................   v

List of Tables  .................................................................................................  vii

List of F ig u r e s ....................................................................................   vii

Nom enclature .....................................................................................................  vii

1 INTRODUCTION ...............................................................................................  1

1.1 Previous Work .................................................................................................. 1

1.2 Motivation........................................................................................................... 4

1.3 Contributions..................................................................................................... 5

1.4 Organization Of The T h esis .............................................................................  6

2 MANIPULABILITY ELLIPSOIDS  .................   7

2.1 Kinematic Manipulability Ellipsoids.................................................................  7

2.2 Dynamic Manipulability Ellipsoids .................................................................  11

3 CULLING OPTIMIZATION ALGORITHM .............................................  15

3.1 Introduction...................     15

3.2 Minimax Optimization Problem .......................................................................  16

3.3 The Minimax Culling Algorithm.......................................................................  17



3.4 An Example of a Two Degree of Freedom Minimax Optimization Problem . 20

3.5 Analysis of Culling A lgorithm ...........................................................................  24

4 KINEMATIC DESIGN OF FIVE-BAR PLANAR HAPTIC DEVICE 26

4.1 General Guideline For Design and Multi-objective Optimization of a Linkage

For a Haptic Interface : A Case S t u d y ............................................................. 26

4.2 Kinematic Design and Optimization of Planar Five-Bar L inkage.................. 28

4.3 Kinematic Optimization Conclusions...............................................   31

5 A NEW  STRATEGY IN MULTI-OBJECTIVE CONSTRAINT DYNAMIC  

OPTIMIZATION OF M A N IPU L A T O R S....................................................... 35

5.1 Dynamic Parameter Analysis of a Planar Five-bar Mechanical haptic device 35

5.2 Global Multi-Objective Minimax Optimization of a Planar Five-bar Haptic

D evice...................................................................................................................  39

5.3 Constraint Multi-objective Minimax Optimization of a Desktop Planar Five-

bar Haptic Device ..............................................................................................  42

5.4 Design Constraints For a Desktop 5-bar Haptic Device  ..............  43

5.5 Analysis of The Inertia Parameter On The Dynamic Dexterity Measure (Di­

mensional Analysis)..............................................................................................  44

5.6 Case Study with New M ethod...........................................................................  46

5.7 Case Study with Stocco’s Multi-objective Optimization M e th o d .................  50

5.8 Comparison Of Proposed Method With Stocco’s M eth o d .............................  52

6 CONCLUSIONS        . 54

6.1 Contributions  ........................................................    54

6.2 Future w o rk ......................................    55

A P erm issio n s   . 63

VI



List of Tables

4.1 Reduced parameter space......................................................................................  30

5.1 Result of proposed dimensionless optimization analysis of five-bar linkage for

r  =  20 cm...............................................................................................................  48

5.2 Comparison of Optimized 5 bar linkage with Stocco and the new method.

Unit of length, mass and inertia are cm, gr and gr cm  ̂respectively. Dexterity 

measures are unitless............................................................................................. 52

Vll



List of Figures

2.1 Planar two link manipulator and manipulability ellipsoid of end-effector . . .  8

2.2 Joint-rate/end-effector ellipses .............................,...........................................  8

3.1 Saddle point of a two dimensional quadratic fu n c tio n ...................................... 17

3.2 Planar elbow manipulator workspace......................   22

3.3 Kinematic dexterity measure for 2 DOF planar m anipulator..........................  22

3.4 Second culling algorithm in branching process..............................................   23

3.5 Second culling algorithm in bounding process.....................................................  24

4.1 A 2D OF planar five-bar linkage.....................   29

4.2 Optimal postures of five-bar linkage (With permission from Stocco) [3]. . . . 32

4.3 A schematic wide view of manipulator workspace...............................................  33

4.4 The dexterity and manipulability measure for non-optimal kinematic parame­

ters.......................................................................................................................   . 33

4.5 The dexterity and manipulability measure for an optimal kinematic parame­

ter............................................................................................................................  34

5.1 A 2D0F planar five-bar linkage....................................   38

5.2 The proposed dynamic design fiowchart of planar five-bar lin k a g e ................ 45

5.3 Proposed dimensionless curves for kinematic and dynamic optimization of

five-bar mechanism............................................   47

vni



5.4 Dexterity for a non-optimal dynamic param eter;..............................................  48

5.5 Dexterity for an optimal dynamic parameter;....................................................  49

5.6 Multi-objective optimization results from stocco method................................... 51

5.7 Multi-objective optimization results from Stocco dynamic dexterity definition 53

IX



a
b, bO,
c, cO, 
C
DDM
G
i
^2opt

I \o p t

^2~~low

I \ —up

h
J

k
fco) k\ 
KDM 
L 
M
rrii
Ms
Me
^min
^total
^2opt
'^2—low
^1—up
P
P*
Pi
Pi

N omenclature
base link length 

bl shoulders link length 
cl elbows link length

matrix including centrifugal and coriolis terms 
Dynamic dexterity measure 
matrix including gravity terms 
looping index
optimized inertia of elbow link 
optimized inertia of shoulder link 
inertia upperbound of elbow link 
inertia upperbound of shoulder link
mass moment of inertia of i-th link relative to the end point
Jacobian Matrix
inverse of condition number
condition number of a matrix
minimum and maximum safety margin
Kinematic dexterity measure
ratio of actuator torque to its maximum
inertia matrix
mass of link i
shoulder link inertia matrix 
elbow link inertia matrix 
mass per unit length
total mass of manipulator divided by two 
optimized mass of elbow link 
mass lowerbound for elbow link 
mass upperbound of shoulder link 
manipulator kinematic parameters 
optimum kinematic parameter of the manipulator 
set of all the parameter in parameter space 
design parameter



Nomenclature
Pi best known design parameter
q joint Space Configuration of a manipulator
q joint rate of manipulator
r workspace distance from the origin
Topt optimized workspace distance from the origin
s performance measure
s performance measure of best known design parameter
V velocity
W  set of all positions in workspace
X end-effector position
X acceleration of end-effector
Xvei acceleration(coriolis part)
^grav gravity term of acceleration
Xi the distance between the center of mass of link i to its end-point
X position with the smallest performance value
ajnin minimum singular value
o'max maximum singular value
^hmtt upper limit of actuator torque
a minimum singular value
â maximum singular value
Sj performance measure upperbounding function
Si performance measure lowerbounding function
7 workspace angular angle
T] workspace deviation
(Ti i-th singular value of a matrix
Ai i-th eigen value of a matrix
w kinematic manipulability ellipsoid
r  actuator torque
6i orientation of each link to horizontal axes
6i , the angle between shoulder links and horizontal axes
Oi , the angle between elbow

XI



Chapter 1 

INTRODUCTION

1.1 Previous Work

The world of robotics has entered a stage where the traditional repetitive task of assem­

bling of mechanical elements is just part of robotic applications. Robotics is finding its 

way in surgerical devices [1], astronomy, teleoperation, training and demonstrations [2] as 

well as haptic interfaces [3] used for interaction between people and computers. Thus not 

only workspace size and resolution and payload requirements [4] but also inertial parameter 

adjustments for mass, inertia and acceleration are important specifications that should be 

adjusted to do high precision tasks as mentioned above.

Given that the relationsliip between robot end-effector and actuators varies with position 

and direction, minimizing this variation and consequently maximizing mechanical isotropy 

[21] throughout the workspace is highly desirable in modern robotic applications. Study­

ing directional and scale isotropic behavior is really essential for a optimum actuator and 

controller design [2]. Increasing the isotropy strengthens the worst-case performance of the 

manipulator and allows smaller actuators to be used, leading to a smaller inertia for whole 

manipulator [2]. In other words, the robot should perform the task homogenously in differ­

ent directions. Considerable research has been done to design an isotropic robot in a special
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configuration [5] to move along a trajectory [5] or to explore a workspace [6] [7].

Ma and Angeles [5] described the concept of dynamic isotropic configurations and tried 

to optimize geometrical and dynamical parameters for a serial planar three DOF manipu­

lator to find the isotropic configurations of the manipulator. They introduced the dynamic 

conditioning index (DCI) to quantitatively measure the difference between a given position 

and the dynamic isotropic configuration [5]. They also applied the concept in the problem 

of robot trajectory planning and finally they developed a basic theorem about the rela­

tion between the kinematic and dynamic pure isotropy for a parallel manipulator in specific 

isotropic configurations [8]. More research on isotropy and its effect on controller design are 

presented by Salcudean et al. [9] and a special analytical example of a five-bar haptic device 

control design was presented as a case-study by Nenchev [10].

To extend the mechanical capability of a manipulator, a suitable measure should be in­

troduced to provide useful information for both the design of multi-purpose robot task as 

well as planning their efficient motion. Considering the manipulator kinematic properties 

such as Jacobian, Yoshikawa [11] suggested a measure based on volume of the velocity ma­

nipulability ellipsoids. This measure was defined as the set of end-effector velocities which 

can be performed by joint velocities belonging to a unit sphere. Moreover, according to 

the duality principle, the force manipulability ellipsoid is defined as the ability of exerting 

end-effector forces along each task-space direction for a given set of joint torques. Although 

both ellipsoids principle axes coincide but the lengthes of the axes are inversely propor­

tional. Chiu viewed a manipular as a ’’mechanical transformer” and introduced the term 

of task compatibility index as a basis for computing postures that optimize the robot’s 

performance at a special task application [12].

In many applications the manipulator dynamics can not be neglected, which means quan­

tifying dynamic and acceleration capabilities of a robot manipulator is really critical in robot



design. Yoshikawa [13] proposed another measure, known as the dynamic manipulability 

measure which incorporates the manipulator mass matrix in addition to Jacobian to find 

the best dynamic manipulability posture for a planar two-link manipulator. The dynamic 

manipulability ellipsoids can be imagined as a measure to describe end-effector acceleration 

with the the joint torques adopted from a unit sphere.

Manipulability ellipsoids are effective tools for performing task space analysis of robotic 

manipulators. The shape of these ellipsoids demonstrates the ability of the robot to apply 

velocity, acceleration or force in different directions and various configuration. These measure 

determine the maximum available performance of a manipulator in a given posture and 

end-effectors direction of motion. This may be helpful in robotic design where the best 

manipulator structure and size is needed to execute a given task.

Chiacchio et al. [14] demonstrated that gravity shifts the dynamic manipulability ellipsoid 

center. Rosenstien [15] investigated the role of velocity, Coriolis and Centrifugal forces on 

dynamic manipulability . A new definition of dynamic dexterity ellipsoid was proposed by 

Chiacchio [16] which led to more correct results in evaluating manipulator capabilities in 

terms of task-space accelerations. Yoshikawa [17] also proposed a method to investigate the 

compliant motion manipulability for a given compliant motion trajectory.

The haptic interface design is effected by different geometrical, kinematical, dynamical 

and engineering factors. Since the device is a human-machine interface, it should meet the 

minimum ergonomic requirement. Device size, inertia, frequency response criteria [18] and 

workspace size all are the main design factors for the optimum kinematic and dynamic design 

of a industrial haptic device [7]. The actual size of the mechanism should be around desktop 

size with minimum possible mass. Also translational motions should occur in the largest 

portable area within the task-space [7]. Clearly, an optimum kinematical and dynamical 

design, a multi-dimensional multi-objective optimization method would be required.



Karadis et al [19] designed a dynamically counterbalanced five-bar linkage for micro­

probing applications. Hayward et al [7] proposed kinematic optimization of a five-bar mech­

anism to get a general rough design of a planar 2D0F haptic robotic interface. Stocco in­

troduced a novel approach based on the culling algorithm [6] with a new dynamic dexterity 

measure to optimize five-bar haptic device both kinematically and dynamically [3]. Design 

and kinematic optimization of a 5-DOF twin-Pantograph haptic pen [3], twin-Pantograph 

hybrid manipulator [3], and Stewart platform [6] was presented in reference [2], [22]. A 

new design matrix normalization technique is presented to cope with the problem of non- 

homogeneous physical units for manipulators having both translational and rotational para­

meters [23], [24].

1.2 M otivation

Although a significant research in multi-objective kinematic and dynamic optimization of 

haptic interfaces was done by Stocco [3], but still the algorithm needs to be modified to 

challenge, more practical applications. Only rough approximation of inertia matrix was 

used in [3]. Since the method is dynamically a one dimensional multi-objective optimization 

technique, parameter space is very small. The method in Stocco [3] ignores multi-dimensional 

optimization along all possible dynamic parameter space. For example, inertia and mass 

of each link must be treated independent of each other and of geometry of mechanism 

(kinematics). Therefore, there is a need to perform dynamic analysis and establish a multi­

dimensional multi-objective method to address the nature of this multi-objective design 

problem. Also it is necessary to have a good understanding of nature of dynamic equations 

of 5 bar mechanism for optimization purpose. The optimization technique presented in this 

thesis is a four dimensional multi-objective optimization problem. The parameter space is 

big enough, the inertia matrix used for 5 bar linkage is exact, and the results are more



realistic.

1.3 Contributions

In this thesis, a new multi-dimensional multi-objective optimization method is introduced to 

design a kinematically and dynamically conditioned haptic device. The culling algorithm [3] 

is used as a global optimization method in place of other existing optimization methods such 

as Genetic Algorithm [26] which cannot guarantee the global optimum [25] [27] [28] . Also 

the inertia matrix used for optimization purpose is completely valid with no approximation 

involved, which could be one of the major contributions of this research. A new vision 

toward dynamic parameter analysis of five-bar linkage is presented and to avoid the trivial 

answer involved, with the global optimization a new constrained multi-objective optimization 

method is proposed based on the design guideline and procedures. During the optimization 

process, due to the nature of Culling Algorithm, the end-effector may hit positions with 

bad conditions i.e, self-motion [29],[30] and singularity points [31],[32]. Therefore, having a 

good knowledge of these concepts presented in respective references would be really crucial 

in computer programming to avoid divergence in culling algorithm.

In short, the main contributions by this research include:

• Using the exact inertia matrix for 5-bar mechanism in optimization process.

• Presenting a new multi-objective optimization.

• A new dimensionless analysis for dynamic parameters of 5-bar linkage.

• Presenting a new optimal design procedure and guideline.



1.4 Organization Of The Thesis

In chapter 2, the manipulability and dexterity measure and its importance in robotic design 

is reviewed. In chapter 3, the culling algorithm as an global optimization algorithm is 

introduced, chapter 4 discuses culling algorithm application for basic kinematic optimization 

of a 5 bar linkage mechanism and the design guidelines is derived for haptic devices. Dynamic 

analysis of a five-bar linkage is presented in chapter 5 and then a new strategy for global 

multi-objective optimization is used to design a 5 bar haptic interface. The general fiowchart 

of the design process is introduced. The contributions and future research are outlined in 

chapter 6.



Chapter 2

MANIPULABILITY ELLIPSOIDS

Design of robotic manipulators requires optimization of their manipulation ability. For this 

purpose, manipulability and dexterity measures have been developed. In this chapter, mea­

sures and analysis associated with the manipulability will be reviewed and the concept of 

manipulability ellipsoid will be presented as an index characterizing manipulation ability of 

a robotic manipulator. The manipulability ellipsoid can be defined and used in kinematic 

and dynamic contexts to graphically demonstrate the manipulation ability of a robotic ma­

nipulator in different kinematic and dynamic configurations. The introduced measures and 

ellipsoids will be utilized in the next chapters for optimizing the five-bar structure.

2.1 Kinematic Manipulability Ellipsoids

Consider the planar manipulator in Fig. (2.1) . The Jacobian matrix is a matrix that relates 

end-effector velocities to the joint rates denoted by v and q, respectively [21]. This relation 

is defined as follows :

q =  J(q)v. (2.1)

This matrix generally is a function of the manipulator configuration q and can be assumed 

as a transmission ratio between the actuator and end-effector.



M a n lp u lib ility  e l l ip s o id

Figure 2.1: Planar two link manipulator and manipulability ellipsoid of end-effector

Transformation 
function J

Vx

Figure 2.2: Joint-rate/end-effector ellipses



Consider the set of joint velocities of constant unit norm as follows

q^q =  1. (2.2)

The above equation shows all velocity vectors as points on the surface of a unit sphere in the 

joint velocity space. It is desired to describe the operational space velocities in end-effector 

that can be generated by the given set of joint velocities. Substitution of eq. (2.1) in eq. 

(2.2) yields

v^J^(q)J(q)v =  1. (2.3)

this ellipsoid describes all the points in the end-effector velocity space and is called kinematic 

manipulability ellipsoid [21].

As shown in Fig. (2.2), all the point on the surface of the sphere are mapped onto the 

surface of the ellipsoid in the end-effector velocity space . The kinematic manipulability 

ellipsoid is a measure that shows direction of dexterous manipulability.

The end-effector can move with large velocity along the direction of the major axis of 

the ellipsoid, while the smaller end-effector velocities are obtained along the direction of the 

minor axes. The closer the ellipsoid is to a unit-sphere, the more capable the end-effector 

is in moving in diflferent directions of the workspace. It is known from basic mathematics 

that the general geometry of the ellipsoid is highly dependent on the core of quadratic form 

introduced in eq. (2.3). Also the sharpness and the orientation of ellipsoid depends on 

the core matrix which is generally a function of configuration. Therefore, the sensitivity 

of the motion in different directions is dependent on manipulator posture, while shape of 

manipulability ellipsoid is dependent on the characteristic of its core matrix J^J . The 

direction of the principle axes of the ellipsoid are determined by the eigenvectors of the 

matrix J^J , while the dimension is completely dependant on singular value of J  defined as

(Xi= \JAi(J^J) i =  1, ,n  (2.4)



where A{(JJ^) denotes the eigenvalues of J^J. A well-known measure to represent the 

manipulation ability is the volume of the ellipsoid which is proportional to the following 

quantity

w (q)= ^det(J^(q)J(q)). (2.5)

This measure is called Kinematic Manipulity Measure and in the case of non-redundant 

manipulator it can be reduced to

w(q) =  det(J(q)). (2.6)

It is concluded from the above definition that the manipulability measure is always non­

negative and is equal to zero in singular points. Therefore, in a way, this measure shows how 

much the cuiyent configuration is far from the singularity configuration.

It is clear that in positions near the singularities, when the manipulator is outstretched, 

the ellipsoid is very thin along vertical direction. On the other hand, when the manipulator 

is retracted, the ellipsoid is very thin along the vertical axes.

As it is shown, the eigenvalues approaches zero near the singular configuration. The best 

advantage of the manipulability measure index is that it can be computed easily through the 

determinant of J ^ J  matrix. On the other hand, since the values computed for manipulabil­

ity measures cannot demonstrate how close the mechanism is to singularity, this could be 

imagined as one of the its main disadvantages. For example, in case when different units and 

scales are used for the links’ length, our computation will get different performance results 

which differ from each other, almost around four order of magnitude.

Therefore, in general, when it is not easy to find a simple and meaningful index for 

manipulability measure to meet the the above mentioned problems, one can consider the 

ratio between the minimum and maximum singular values of the Jacobian ominimax as an 

effective isotropy performance indicator. This index is called dynamic dexterity measure

10



and is equivalent to inverse of condition number and gives not only a measure of closeness 

to singularity configuration but also provides an index to measure the ellipsoid eccentricity 

directly. On the other hand, the complex relation between this measure and configuration of 

the manipulator can be considered as one of its major disadvantages. Also, most of the time, 

it is impossible to find an explicit relationship based on the coordination of the manipulator.

2.2 Dynamic Manipulability Ellipsoids

Dynamic manipulability and dexterity is discussed exclusively in [15] and will be completely 

reviewed in this section for its importance in our research. The equation of motion for an 

open-loop manipulator with n rigid links can be expressed as

r  =  M (q)q+ C (q ,q ) +  G(q). (2.7)

In above equation effects of disturbances ,e.g., friction is ignored in dynamic analysis and r  

is an n X 1 vector of joint actuator torques and q, q and q are n x  1 vectors of generalized 

joint positions, velocities and accelerations respectively. In eq. (2.7), M(q) is the n x n 

inertia matrix that demonstrates the configuration dependent inertial properties, C(q, q) 

represents Coriolis and Centrifugal forces, and G(q) accounts for the vector of joint torques

due to gravity. Also x =  [xi X2   Xm]^ represents the m-dimensional task-space vector

which introduces the coordinates of the tip of end-effector. In this thesis, it is assumed 

that end-effector has just translational acceleration and m < 3. The equations describing 

the relations between positions from joint space to task space is nonlinear, and the m x  n 

Jacobian matrix J  represents the first-order term in a Taylor series of the respective mapping.

By differentiating the definition of Jacobian Matrix the corresponding relationship for 

acceleration is obtained.

x =  J(q)q-f j(q ,q )q . (2.8)

11



Since the mass matrix is positive definite and invertible, the eq. (2.7) can be solved for 

q as follows:

q =  M - i(T -C (q ,q ) -G (q ) ) .  (2.9)

Substituting eq. (2.9) in eq. (2.8) and dropping the explicit dependencies on q and q 

yields:

X  =  J M - ^ r  -  C -  G) +  jq . (2.10)

It is notable that the result is in terms of actuator torques rather than joint accelerations

and can be simplified to:

X = JM"V + X„e/+ Xgrau, (2.11)

where

x„e/ =  -JM ~^C  + j q  (2.12)

and

Xgrat. =  -JM -^G . (2.13)

we assume that torque limits are symmetric as in ref. [16] such that

_^iimu < n <  -  i = 1,................... , n, (2.14)

then we can introduce f  as a normalized actuator torque

f  =  (2.15)

where L =  diap(rf"“‘,  and with the help of eq. (2.14 ), a limit for admissible

torques is defined as:

||r||oo< 1. (2.16)

12



Changing eq. (2.11) to the new form with normalized actuator torques denoted as f  yields:

X =  JM~^Lf +  X„e/+  Xprot; (2.17)

=  JM -^Lf +  xwa ,̂ (2.18)

where the bias acceleration defined as x îas in following equation.

Xftias ~  XueJ "f- ÿ^grav^ (2.19)

To have a better imagination about the xwasi we can imagine it as the end-effector acceler­

ation while f  =  0 [15].

The inequality ||f||oo < 1 introduces an n-dimensional hypercube which is mapped by eq. 

(2.18) to an m-dimensional polytope that delimits the set of feasible end-effector accelerations 

(the bias term is ignored for simplicity). Alternatively, eq. (2.18) can be imagined as a matrix 

transformation of the n-dimensional sphere defined by

r ^ f <  1, (2.20)

to an m-dimensional ellipsoid. This dynamic manipulability ellipsoid is derived by solving 

eq. (2.18) for f  and substituting the results into eq. (2.20):

(x -  xw.a)^(JM -^L)-^(JM -^L)-Xx -  X bias) <  1- (2.21)

Since the inertia matrix and L are representing a symmetric matrix, the final inequality for 

dynamic manipulability ends up to the following equation:

{ X - X u a s f { J - ' ^ M L - ^ M 3 - ^ ) { X - X H a s ) < l .  (2.22)

The shape of the dynamic manipulability ellipsoid can be determined by the matrix 

which is determined by previous equation.
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On the other hand, in case when the actuator torque limits are the same, L matrix reduces 

to identity matrix which indicates that there is no need for actuator torque limits [15]. The 

ellipsoid principle axes is specified by the eigenvectors u, of manipulability matrix and the 

length of the eigenvectors is equal to l / y /w l , where Wi is the corresponding eigenvalues. On 

the other hand, the shape of kinematic manipulability ellipsoids can be defined by 

ignoring the manipulator’s inertia and actuator torque limits.

The dynamic dexterity measure [15] (DDM) can be introduced as:

where matrix J  is Jacobian matrix, M is inertia matrix of the manipulator and a and â 

represents minimum and maximum eigenvalues, respectively.

14



Chapter 3 

CULLING OPTIMIZATION 
ALGORITHM

3.1 Introduction

In previous section, dexterity measure is introduced as a good quantity to measure how 

well a robotic manipulator can react in different configurations while satisfying a designated 

performance function. Maximizing kinematic or dynamic dexterity measure is the main goal 

for optimization and there is just a few algorithm that can address the optimization problem. 

For the functions such as condition number or dexterity measure, since the objective function 

is highly nonlinear, discrete, discontinuous and even unbounded the optimization problem 

is more complicated. Descent algorithms which usually use differentiation of the objective 

function go to local optimum points and there is no clear definition for stopping criteria [3]. 

The performance of global search gets more poor as the search resolution gets smaller.

In the next section the nature of a typical minimax problem is discussed. The culling 

algorithm as an effective method to deal with optimization problem is discussed in section 

3.3. This new algorithm guarantees finding the same results as global search but ends up 

to the same solution with fewer steps in algorithm. The culling algorithm basically searches 

through the sub-optimal parameter space, evaluating all its elements and then culls the

15



non-optimal elements until it just ends to one element which naturally is the global optimal 

element. Then in section 3.4, a two degree of freedom minimax problem is discussed to show 

a more sensible geometrical view to the optimization process.

3.2 Minimax Optimization Problem

Basically the minimax optimization problem arises when mathematically we are looking for 

saddle points of a function. Consider a function with two variable such as

y = A + { x - B f - { p - C f  (3.1)

A three dimensional view is illustrated in Fig. (3.1). As it can be checked from basic 

calculus Point A(b, c) is the saddle point of the function and its magnitude is equal to the 

value a. According to mathematical definition, the saddle point is acting as minimum point 

in one direction such as x axis and maximum in other direction such as p axis. So if we are 

starting from an initial condition such as point A(x, p), with the help of following algorithm 

the process of searching ends up to saddle point and eventually the culling algorithm will be 

introduced as follows.

1. Set P{x,p) as initial point on the surface.

2. Repeat the algorithm until points P  and M gets to the same point.

3. Move along x direction with a fixed parameter p to find the minimum point as N.

4. Move along p direction with a fixed position x to find the minimum point as C.

5. Go to 2

Ideally when we have a two-variable quadratic function it just take two step to reach to 

optimal point and for more complex functions the process of optimization will take more
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p ( manipulator parameters)
X (end-effector position)

Figure 3.1: Saddle point of a two dimensional quadratic function

steps. This algorithm makes a lot of sense in the problems called ’’best worst-case scenario”. 

In these type of problems for finding the worst-case scenario we have to minimize a function 

and after finding the minimum we have to try to maximize that minimum to get to an overall 

good performance over a defined workspace. More discussion is done in section 3.3 where a 

optimization problem is explained for a simplified example of a two degree of freedom planar 

manipulator.

3.3 The M inimax Culling Algorithm

In this research, minimax culling optimization algorithm is introduced as as a very useful form 

of manipulator optimization technique. Culling algorithm is basically a discrete optimization 

algorithm that belongs to the branch and bound family of optimization algorithms [3]. The 

algorithm checks all the parameter space and identifies the non-optimal ones and culls them 

from the parameter domain, resulting a domain with just one element which represents the 

saddle point or the minimax point of the function.

Hayward [7] used dynamic dexterity measure as the objective function s(p, x) =
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List of symbols
i looping index
Pi  set of all the parameter in parameter space
Pi  design parameter

' Pi best known design parameter
W  set of all positions in workspace
X end-effector position
X position with the smallest performance value
Sj : Pi — % minimum performance measure upper bounding function
Si : Pi — % maximum performance measure lower bounding function
s performance measure
k~^ inverse of condition number
s performance measure of best known design parameter

to optimize a planar pantograph haptic interface. This performance measure is not workspace 

inclusive and is a local function which make it easy for us to apply the new minimax opti­

mization algorithm.

Dynamic dexterity measure index varies from zero to one as the manipulator travels from 

a singular point to ideally a best possible performance point over a workspace W and it is 

desired to find p* which is the best worst-case behavior of the manipulator throughout the
I

whole the workplace.

p* = arg max min s{p, x) (3.2)

Minimax culling algorithm is specially designed to solve such a minimax problem. The 

algorithm is introduced in following flowchart from steps 1 to 10.

Minimax Culling Algorithm

1. set z — 0) sq —— Lq — 0

2. So(p) = 1 ;Vp e Po

3. Choose any {po =  Po) ̂ Po

While P i ^ P i
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4. Find =  arg min s{x,pi)

5. i f  Si+i -  s(pi, Xi) > Si ; Pi+i = Pi 

otherwise ;pi+: =  Pi ; Ij+i =  Si

6. Set SXP) ^  min ( £i(p), s{p,x^) ;Vp e

7. Set Pi+i = {pe Pi I

8. choose pi+i e argp  ̂ max

9. z =  i +  1 

End

As it is shown in the algorithm the best known performance measure is assumed zero and 

the algorithm contains a looping index. The algorithm starts with an optimistic bounding

functions (step 2) and an initial po is chosen arbitrarily from Po (step 3). At each point

of the workspace the performance measure can be computed from the Inertia matrix for 

that specific manipulator parameters and the worst performance posture of the manipulator 

will be obtained, (step 4) Then readily if the minimum performance measure generates a

better performance index than the best known parameter pi, it will be introduced as the

new best known parameter pi+i and a new best known performance measure sj+i will be 

calculated (step 5). In step (6) performance measure is calculated for each p in Pi at fixed 

æ,- and the upper bound of optimal design will be updated. In step 7 the parameter with 

the performance worse than new upper bound will be culled from our search domain. As it 

is shown in the flowchart of algorithm, the parameter with the largest performance measure 

is transferred as the new optimum candidate Pi in step 8. All the step between 2 to 10 are 

repeated and in each iteration, culling algorithm will cancel part of parameter domain and
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this process will continue until just one global optimum element remain in the parameter 

domain which is the global optimum answer.

Since the algorithm is designed in a way, that just elements with singular value ratios 

worse than other elements will be culled from the domain, the global optimum is guaranteed. 

Moreover, as it is shown in algorithm flowchart, by keeping a constant search strategy, the 

culling algorithm is exploring the whole workspace in different configurations and gradually 

gets close to a sub-optimal space which is the key for convergence of the algorithm to optimum 

element [3]. Culling algorithm also exhibit a good efficiency due to the fact that in a bounded 

continuous range of parameter the algorithm remain continuous and holds more or less same 

quality of performance in that neighborhood. In another word, if the manipulator acts poorly 

in a configuration, mostly around that neighborhood, the quality of the operation of robot, 

nevertheless kinematically or dynamically, would be more or less the same. Therefore, if an 

specific point is culled from the parameter space, more likely the points in its neighborhood 

would be the best candidate to be culled from parameter space when evaluated at that 

position.

3.4 An Example of a Two Degree of Freedom M inimax 
Optimization Problem

Consider the planar elbow manipulator of Fig. (3.2). In this example, a two dimensional 

geometrical concept of the algorithm is introduced to visualize the optimization process and 

have a general sense about the efficiency and reliability of the minimax culling algorithm. 

The example is illustrated in a good perspective to show how the algorithm converges. 

The performance index is s(x,p) = , the one that Hayward [7] used for examining

the manipulability of a two degree of freedom planar pantograph kinematic. For better 

geometrical imagination, it is necessary to reduce the parameter space to one dimension as
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well as the workspace dimension. Therefore, a constraint will be introduced to ensure that 

the boundaries of usable and reachable workspace are separated well enough, ko and A:i 

are two safety margins to keep the manipulator away from the singularity points in internal 

and external boundaries shown in Fig. (3.2). Also a minimum safety margin of length K is 

introduced as a general safety margin such that [fco ^i] > K  and I2 is defined as [6]

I2 =  max i\\y/^liax + y % \ \ y - h \ \ ) +  K. (3.3)

where Xmax, y, h, h  are shown in Fig. (3.2). The Jacobian matrix of such a system is 

defined as [33]

J  =
- y  , ( 4 x lo (x '^ + y ^ )-4 lo x d )(y / l l -c ^ ) )  - x  , {4ylo(x ‘̂ + y ‘̂ ) - 4 l o y d ) { - ^ l - < p ) )

( x 2 + J / 2 )  4 i g ( l 2 + y 2 ) 2 )  ( x 2 + j ; 2 )  ( 4 J g ( x 2 + y 2 ) 2 )

(3.4)

(" " 'V i '-

where Iq and li are link lengths. As it can be recognized from above equation that the 

performance index resulting from this matrix is highly nonlinear, non-differentiable and 

contains local minima and maxima. Assuming = 5 , y = 2 , K  = 0.4 and 2 < < 8,

this index is plotted in Fig. (3.3) against two variables, one working in operational space 

denoted as x and the another is p in parameter space.

The value of Zi =  6 is selected as an initial condition for the best known parameter 

denoted (step 3). Then the workplace of Zi = 6 is searched to find the configuration that 

makes the s{x,p) minimum (step 4) which is s(.4, 6) =  .28 Fig. (3.4). As it is clear by 

this process the condition index is updated by (step 5). Now the parameter space at the 

configuration with x  =  0.4 will be searched, and the upperbound 2% will get updated for 

each parameter (step 6), then parameters that have poor performance (non-optimal space) 

are culled from the original parameter space (step 7). li = 2.9 is the maximum point for 

s(x,p) curve while configuration is fixed at a: =  0.4 (step 8). In the next step the workspace 

of the li =  2.9 is explored (step 4 again) and s{x,p) reaches its maximum at s(5,2.9) =  .16
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reachable workspace

xmaxusable workspace
kO

y= constant

Figure 3.2: Planar elbow manipulator workspace

■E 0.6

p(cm) x(cm)

Figure 3.3: Kinematic dexterity measure for 2 DOF planar manipulator.
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minimizing in workspace Domain (p= 6)
0.42

0.4

O  0.38

0.36

0.34

Q - 0.32

0.3

0.28
30

X (mm)

Figure 3.4: Second culling algorithm in branching process.

which is lower than the old lowerbound .28 in Fig. (3.4 ). As there is no improvement 

in index due to step 5, l\ =  2.9 is still the best known parameter (step 5) and again the 

parameter space at æ =  5 will be searched and the upperbound Fig. (3.5) is updated 

from the remaining part of the parameter space (step 6 and eq. (3.5) ). Finally after 3 

iteration saddle point of the s(p, x) is found at the configuration s(0, 4.5) =  .41 .

2 ^ ^ ( i i ) =  m in (^ ^  (li), s(li,-5 )) =  min (s(li,0), s(li, - 5 ) )  (3.5)

At the last iteration, due to the fact that all the upper bounds belonging to remaining part 

of the parameter space are below this value and they are culled from the parameter space 

and the algorithm will end up to a remaining parameter space with just one element and 

finally the global optimum p* is obtained.
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maximizing in taskspace Domain
0.8

0.7

% 0.6

X = .4 cm
(/) 0.5 X = 5 cm

^  0.4

X  0.3

0.2

0.1

p (mm)

Figure 3.5; Second culling algorithm in bounding process.

3.5 Analysis of Culling Algorithm

The culling algorithm is specially designed for solving minimax problems and it is essentially 

part of family of optimization algorithm named branch and bound. In the process of bound­

ing there is no need to any worst-case estimate of the objective function and the algorithm 

works through explicit function evaluations [3]. The algorithm evaluates the condition index 

of a candidate parameter, then the computed value is used to push up the lower bound . 

Also for each new position, the condition number is computed for different parameter, and 

the value is used to push down the upper bound . When the value of the lower bound on 

the optimal performance index exceeds the upper bound on the performance index of any 

parameter, then the algorithm culls that parameter from the parameter space.

The process of branching is also the other essential part of the culling algorithm where 

it can go to different direction exploring all the variables by switching between workplace
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variable optimization to parameter space variable optimization and visa versa to end up to 

an integrated culling strategy. Simply in branching part of the algorithm, there is couple 

of successive alternation between workspace searches with fixed parameter and parameter 

space searches with a fixed position while the parameter and position is inherited from the 

result of previous iteration. It is essential to note that the result of the exhaustive global 

search will end up to the same global minimum obtained from culling algorithm in a more 

time consuming process [3].
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Chapter 4 

KINEMATIC DESIGN OF 
FIVE-BAR PLANAR HAPTIC 
DEVICE

Five-bar haptic device has a lot of applications in designing surgery devices. Karidis [1] 

introduced a balanced five-bar mechanism for micro probing. The basic design vision on 

kinematic optimization of a five-bar planar haptic device was presented by Hayward et al. 

[7]. Stocco [3] introduced a new definition of global isotropy and re-examined the kinematic 

and dynamic properties of a five-bar mechanism to achieve a dynamically and kinematically 

optimal design of a manipulator.

4.1 General Guideline For Design and M ulti-objective 
Optimization of a Linkage For a Haptic Interface : 
A Case Study

There are many factors affecting the design of optimized linkage for a haptic device. Factors 

such as size, workspace, intrusion, inertia, response and structural properties are considered 

as the most important parameters influencing the design measures. The relationship between 

these parameters is discussed by Hayward [7]. As a haptic interface is essentially a human
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machine interface, it must have the general features of an ergonomic design. In particular, 

the linkage for haptic applications should be compact and the workspace has to have a big 

size compared to the whole task space size. The haptic device should be designed in a way 

to fit on a table and its size should be about the size of a book [7]. On the other hand, 

having minimum intrusion in the work area of the user is another qualifying factor for the 

best design and usually it is difficult to quantify. However, quantitatively a low profile design 

compatible with the human hand would be the best choice [7]. Thus the size relations are 

the first general indicators of performance. Inertia could be another concern too. Practically, 

by considering the latest technology for designing the actuators and selecting the lightest 

design, an ideal inertia of fraction of a gram throughout a workspace (of the order .01 m^) 

[7] seems unreachable. Therefore, our trial will be focused on minimizing the inertia- of the 

whole mechanism.

As it is shown in basic dynamics, first natural frequency is really a critical parameter for 

dynamic design. Therefore, the response of a haptic device, operating below first natural 

frequency, will be governed by its multi-body dynamics.The frequency of output stimulator 

should be far enough from the first natural frequency. On the other hand, the frequency 

response must be wide enough since humans are known to perceive force stimuli well above 

300 Hz [7]. The manipulator should be designed in a environment free of backlash, friction, 

and other disturbing dynamics [7]. Although feedback and feedforward techniques can be 

applied to compensate for variation of transfer function, the expense for such a controller 

and suitable actuators could be high [2] and by making the design matrix such as Jacobian 

or inertia matrix more isotropic, the better and cheaper design for controller and smaller 

actuator can be achievable [2].
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4.2 Kinematic Design and Optimization of Planar Five- 
Bar Linkage

Hayward [7] examined the five-bar linkage based haptic interface by using the inverse of 

condition number as dexterity measure and introduced the general strategy for optimizing 

the five-bar mechanism. Using culling algorithm and new definition of global isotropy as 

kinematic dexterity measure, Stocco [3] established a more detailed research about the planar 

five-bar mechanism dynamics and kinematics.

The performance of a robot is highly affected by many parameters such as robot geometry 

and workplace position. As shown in Fig. (4.1), the workspace shape is assumed to be square 

with length w and position of the robot’s workspace are represented by two parameters (r, 7) 

as polar coordinate of center of workspace and rj represents the angle of the workspace from 

the horizontal axes (workspace orientation). The main motivation for introducing 7 and rj as 

workspace parameters is to investigate symmetric properties of the device and to obtain for 

future design optimization. The geometry of the mechanism is defined by three parameter 

a, h and c representing the length for three links. The length of the ground link is represented 

by parameter 2o; shoulder link by parameter b and elbow link by parameter c. To create an 

environment with more robotic applications and more compatibility to different tasks, non 

of these parameter is allowed to be zero.

In the formulation (4.1), (%, qi) act as input to the haptic device and (x, y) represent 

the output of the mechanism in the end-effector. The Jacobian matrix is the matrix that 

explains the relation between these inputs and outputs. As shown in eq. (4.1) to eq. (4.9) 

[3], the Jacobian matrix is function of position and link lengths.
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workspace

(c, 12, m2)

(b, I I , m l)

2a X

Figure 4.1: A 2D0F planar five-bar linkage

Qo
Qi = J  (p, x)

do =  (z 4- a)^ -f 2/

X

ÿ
2 , „,2

(4.1)

(4.2)

do — (3; +  o)  ̂+  

di = (x — o)  ̂-b 

Jo = bo — — do

(4.3)

(4.4)

(4.5)

Ji =  — cf — di

J2 =  do^46odo ~  (̂ 0 ~  ^  +  do)  ̂

J3 =  d i  ^ 46odo — (6q ~  Cq -b do)^

J  =
y I «/o(g+g) a;+a i «/py

do J2 do J 2
_Jl J i ( x - g )  x - a  __ J i y

di Jz d i Jz

(4.6)

(4.7)

(4.8)

(4.9)
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parameter
a

bo, k0

Co, Cl
7 , V

Min. val
0

5 cm
5 cm

Max. val.
15 cm
30 cm
30 cm

7t/2

Resolution
2 mm
2 mm
2 mm
7t/20

optimized results

bo = bo = b
Co Cl =  c

7 =  90; 7) =  0

Table 4.1: Reduced parameter space.

The isotropy is dependant on [3] which is the ratio between resolution of movement 

in the workspace and r (which shows the overall mechanism size). Since isotropy improves 

when r — > oo ov w — > 0 , to avoid trivial answers, the w and r should be fixed in the whole 

process of optimization. Stocco [3] investigated effect of variation of all the seven independent 

parameter (a, bo, bi, cq, ci, 7, tj) and proved that the center of optimized workspace should 

be located on y axis (7 =  90°) and the workspace has no horizontal deviation angle (77 =  0). 

As we mentioned before, all throughout the process two parameters are fixed (w =  10 and 

A(w) = 0.1). Moreover it was shown that the global optimization has the right and left 

symmetry of both robot and workspace and different shoulders and elbows have the same 

length (61 =  60; Cl =  Co). Therefore, for furthermore optimization just only three parameter 

(a, b = bo = bi, c =  cq =  ci) need to be optimized in half of the operational workspace 

{x > 0) [3]. All mentioned stooco results is shown in table (4.2) [6].

In the next step to get to more practical manipulator, Stocco [3] optimized the link 

length of a symmetric five-bar planar haptic device kinematically and dynamically [3]. Using 

culling algorithm. Result of kinematical optimization for different locations of the workspace 

while constraining the elbow angles Aq, Ai G {0....7t} is illustrated in Fig. (4.2) [3]. Fig. 

(4.3) shows a typical view of the workspace assuming r  =  10 cm; w = 10 cm and

Table 4.1 represents the reduced parameter space [3] used during the optimization. Also 

Fig. (4.4) shows the dexterity and manipulability measure for a non-optimal parameter 

such as a =  5 cm; b = 11 cm; c = 17 cm; r  =  15 cm. Fig. (4.5) also shows the
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dexterity and manipulability measure for manipulator in the optimal point introduced as 

a =  4 cm ; 6=  9 cm; c =  15 cm; r  =  15 cm.

As it can be examined from Fig. (4.2) the optimized manipulator can be categorized to 

4 general postures depending on how far the workspace is from the base.

1. elbow up: 10 < r  < 25

2. “M” posture: — 8 < r  < 10

3. star posture: — 12 < r  < —8

4. elbow in: — 25 < r  < — 12.

4.3 Kinem atic Optimization Conclusions

As it is clear on Fig. (4.2), Kinematic Dexterity curve is non-smooth and the optimal 

parameter curves (a, b and c) are discontinuous in r. These discontinuities happens in 

special locations on the Kinematic Dexterity curve when there is a switch from one posture 

to other. It can be concluded that although the performance curve is almost level in both 

star and M postures, the dexterity measure is not high enough and link lengths are longer 

than other postures which should be avoided. Elbow-up and elbow-in postures have good 

dexterity measures comparing to other two postures while elbow-out postures have smaller 

link lengths. Therefore, it seems that more compact mechanisms can be constructed by 

elbow-out postures having a relatively high acceptable dexterity measure.

So from perspective of kinematic optimization, “M” posture is the best and the dexterity 

measure increases when r — > oo. On the other hand, due to ergonomic constraints intro­

duced by hayward [7] the mechanism, should be assembled on a desktop and hold a space 

around a book which indirectly introduce upper constraint for r and consequently upper
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Figure 4.2: Optimal postures of five-bar linkage (With permission from Stocco) [3].
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Figure 4.3: A schematic wide view of manipulator workspace.
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Figure 4.4: The dexterity and manipulability measure for non-optimal kinematic parameters.

limit for maximum dexterity. So it can be concluded that all the elbow-out postures with 

r  > 10 (when workspace width is 10) are in optimal space depending on r which is the 

distance between workspace and the base. In other words, the global optimum point for 

kinematic optimization exists and it can be obtained as r — oo. A more natural method 

of keeping device sizes reasonable is introduced in new multi-objective optimization method 

introduced in next section.
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Chapter 5

A NEW STRATEGY IN 
MULTI-OBJECTIVE CONSTRAINT  
DYNAMIC OPTIMIZATION OF 
MANIPULATORS

Stocco managed to optimize 5 bar linkage kinematically [3]. To avoid complexity of multi 

dimensional multi-objective dynamic optimization, he introduced relationship between geo­

metric and inertial parameters and ended up with a one dimensional dynamic optimization 

problem [3] which is too simplified and is not so realistic. In this chapter, a new method 

for constraint multi-objective multi-dimensional dynamic and kinematic optimization is pre­

sented and the planar five bar linkage is used as a basic planar parallel manipulators for our 

case study.

5.1 Dynam ic Parameter Analysis of a Planar Five-bar 
Mechanical haptic device

Inertia matrix of a planar five-bar haptic device was presented by Kazerooni [34] in (5,1) to 

(5.9) as follows:

M Mil Mi2 

Mil M22
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where:

M n  =  A +  h P i3 +  +  n̂ 2[bQ + 2X260 cos(0i — 62) P13] (5.2)

M \2 =  liPlzPi^ "h IzPv2.Pa2 4- P 4 3  COs(̂ i — 9<̂ X.2bQTn,2 +  P\2 C0S(̂ 4 — %)X36iT7l3 (5.3)

M 2 1  =  M \2  ( 5 . 4)

M22 = A +  A.P43 +  A-f*42 4" ^ 3[6i +  2X361 C0s(̂ 4 — 03)P42] (5.5)

f i 3, A43, P12, P42 are given as follows:

^

Different parameters used in the inertia matrix are as follows:

M  the inertia matrix

li mass moment of inertia of link i relative to the end point

rrii mass of link i

Xi the distance between the center of mass of link i to its end-point.

6 1 ,  6 0  the length of link 1 and 4 or length of the shoulder links

Cl, Cq the length of link 2 and 3 or length of the elbows

9i orientation of each link with respect to horizontal axes

9i , A the angles between shoulder links and horizontal axis 

9i , A the angles between elbow links and horizontal axis

All kinematical and dynamical properties of the mechanism is assumed to be symmetric to 

the y axis to establish a more simplified model for the inertia matrix. Therefore, the dynamic
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and geometrical properties of the mechanism should satisfy the following equations.

h  =  h \  h  = n%2 =  ^ 3; ^2 =  %3 =  60 =  =  6; cq= Ci =  c; (5.10)

Applying the above assumptions to the inertia matrix introduced in (5.1), the following 

simplified inertia matrix is obtained.

Mil — A +  ^2[Pi3 +  P12] "b m.2[6̂ +  2X b cos(0j — 62) fis] (5.11)

Mi2 = l2[-Pl3-f43 +  ■Pl2l̂ 42] +  ^^2(̂ 43 COs(̂ i — ^2) +  f l 2 COs(̂ 4 — %)]% b (5.12)

M21 =  Mi2 (5.13)

M22 =  A +  -̂ 2[1̂ 43 +  +  ^.2(5̂ +  2X b cos(t 4̂ — ^3)1̂42] (5.14)

where 6 i, O2 , 6 3 , O4 can be defined as a function of end-effector coordinates {x,y) as follows.

=  arctan(!z +  r ,a  +  z) +  arccos (5.15)
'  2b^{y +  r)  ̂+ {x + a f  '  '

% = arccos (5.16)

% =  ,  -  ( a r c c o s (5.17)

04 =  ajctan(ÿ +  r, X — g) -  arccos  ̂ + (l/ +  J') +  (x a) c (5,18)
2b4/{y + r y  +  {x-a)^ '

where arctan is the same as function atan2 in Matlab software. By substituting eqs (5.15)

to (5.18) into eqs (5.11) to (5.14), we can transform the inertia matrix from coordinates

(#1, 04) to coordinates (x,y) as follows;

M  = h  +  h  fi{x, y, r) 4- m 2 f 2{x, y, r) h  f 3 {x, y, r) + m 2 f i ix ,  y, r) 
h  h{x,  y, r) 4- m 2 f 4 {x, y, r) h  4- h  h{x,  y, r) 4- m 2 feix, y, r) (5.19)
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where

workspace

(c, 12, m2)

(b, II , m l)

Figure 5.1: A 2D OF planar five-bar linkage

f i{x,y,r)  

f 2{x,y,r) 

M x ,y , r )  

f 4{x,y,r) 

f 5{x, y,r) 

k{x ,y ,r )

+ PI2]
+ 2X h cos (01 — 02) Pn]

[ f i 3  -P43 +  P12 P42]

[P43 cos(0 i — 02) +  P12 cos(04 — 03)]% b

[Pl + Pl]

[6  ̂+  2X b cos(04 — 03) ^ 2]

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

Here, (7%, I2 , m 2) are inertial and X, b are geometrical parameters appearing in inertia 

matrix of a planar five bar mechanism. It is notable to recognize that elbow link length 

denoted as c, mass of shoulder link denoted as mi, and location of center of mass of elbow 

denoted as X  have no effect on the inertia matrix.

As it is shown in (5.26) also inertia matrix can be imagined as summation of two inertia 

matrices Mg, Ms which represent the inertia matrices of elbows and shoulders relative to
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active joints respectively.

M,

=

M -  M s +  Me

h  0 
0 h
Mcii Mc\2 
Me2i Mb22

M en

M ei2

Mb21

M b22

h  f i { x , y , r )  +  7712 f2{x , y , r )

h  faix, y ,  r)  +  m 2 f4(x,  y,  r)

M \2

h  fbix,  y,  r)  +  7712 feix,  y , r )

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

where /i , / 2, /s, A, /s, /e are defined by (5.20) to (5.26).

As it can be examined from the concept of isotropy, Mg is diagonal and isotropic ma­

trix. The non-isotropic behavior of the inertia matrix originates from the elbow links which 

are located in distance from the mechanism base and they cause Coriolis and Centrifugal 

disturbing acceleration which should be optimized for better isotropic behavior of the mech­

anism.

5.2 Global M ulti-Objective M inimax Optimization of 
a Planar Five-bar Haptic Device

In this section, the culling algorithm and dynamic and kinematic dexterity measures are used 

to re-examine the five-bar linkage based haptic interface for both dynamic and kinematic 

conditioning. In Fig. (4.1), the general feature of five-bar linkage with a square workspace 

is shown. For an inertial optimization, it is assumed that the device is held with a light 

finger grip so hand inertia is neglected. Stocco optimized the mechanism due to kinematic
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conditioning and established the following symmetry and positioning guidelines for the device 

[3].

1. Center of square workspace is located on y axis. (7 =  90°)

2. The square workspace is parallel to x axis.()y = 0)

3. The manipulator is symmetric to y axis.(60 =  61; cq = ci)

4. The manipulator should not pass the singular points as it travels in the symmetric 

workspace. (0 < Aq < 180°; 0 < Ai < 180°) [3].

Since the computation cost for global minimax algorithm is highly dependant on number 

of independent parameters, to avoid numerical complexities in matter of multi-objective 

optimization problems, it is necessary to have more simplified dynamic inertia in terms of 

number of independent variables [6]. In section 4.2 of this thesis, more symmetry and inertia 

guidelines were introduced to get to a more simplified model such as simplified inertia matrix 

derived in (5.3).

In this section, a new global multi-objective algorithm is introduced to meet the complex­

ity problem of kinematic and dynamic conditioning of a planar five-bar mechanism. To get 

to best overall behavior from a reasonably small device, one should consider both kinematic 

and dynamic criteria simultaneously [6]. One option is to define a weighted function based 

on linear combination of kinematic and dynamic dexterity. Since the number of optimiza­

tion parameter increases, such methods could be computationally expensive and because of 

different nature of kinematic and dynamic dexterity, sometime the interpretation of result 

will be really complex or even meaningless. To avoid the difficulties involved in creating 

a weighted performance function, the parameter space of kinematic optimization problem 

has to be optimized and its domain must be narrowed down to kinematic optimal space. 

Then this kinematical optimum parameter space will be assumed as a sub-optimal domain 

to dynamic conditioning optimization problem to get to a final multi-objective optimal re­
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suits. In other word, the output of kinematic analysis will be used as input for dynamic 

analysis and the method could be computationally expensive. As it was discussed in section 

3.4, kinematically optimized 5-bar linkage has the "Elbow out” posture (when r  > 10 cm) 

and the performance increases as r — > oo. The optimal link lengths are calculated by the 

culling algorithm and are illustrated as functions of r  in Fig. (4.2).

As shown in eqs. (5.11) to (5.14), inertia matrix of the whole the manipulator is function 

of four independent dynamic parameters r, /i, I2, m 2 {X2 X 3 X  are assumed to be constant). 

The objective function for our optimization problem denoted as S  is the dynamic dexterity 

measure defined as:

5  (r, h , I2 , m 2) = DDM  =  (5.33)

where matrix J  is Jacobian matrix, M is inertia matrix of the manipulator and g_ and 

cr represents minimum and maximum eigenvalues, respectively. As shown in eq. (5.34) 

Finding the best worst case scenario of the objective function (S*) over entire workspace is 

our optimization problem.

S* =  max min S  (r, h , I2 , m 2) (5.34)

The culling algorithm is proposed as an effective optimization method for finding the best 

worst case scenario problem, specially in manipulator design [6]. Solving the optimization 

problem respective to 4 independent variable (r, A, I2 , m2) results in a trivial answer which 

is presented in following conditions.

•  opt  ̂ 0 0

•  'ni'2opt -----  ̂ 0

•  l2opt -----  ̂ 0
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•  I lo p t  -----  ̂ o o

It is clear that the results are not feasible and physically can not be acceptable. To avoid 

such trivial answers, a new constrained multi-objective minimax optimization method is 

introduced in following section.

5.3 Constraint M ulti-objective Minimax Optimization  
of a Desktop Planar Five-bar Haptic Device

As described in the previous section, conditions explained as trivial answers are the global 

optimum solution for multi-objective optimization of a planar 5-bar haptic device. These 

answers are obviously not feasible answers. It can easily be imagined that since /sopt — 0 

and rri2opt —  ̂ 0, the optimum feasible answer must be the lowerbound of these two

parameters and , similarly, since ropt —  ̂ oo and Iiopt — * oo , the upperbound of 

these parameters must be the optimum feasible answers for the multi-objective optimization 

problem. So simply these feasible answers can be written in the following equations.

(5.35)

(5.36)

(5.37)

(5.38)

In the next section, a design guideline is proposed to find the lower and upper bounds of 

the inertial parameters. Moreover, the analysis will be based on the main characteristics of 

a good quality desktop planar haptic device that was investigated by Hayward [7]. In [7], 

the rough guideline for its size, in term of its footprint, was proposed to be around the size 

of a book. For practical purposes, the inertia of the whole system should be smallest within 

different design choices considering the lowest possible weight for actuators.
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5.4 Design Constraints For a Desktop 5-bar Haptic D e­
vice

Since the whole mechanism should be constructed as a desktop device around size of a book, 

Topt is predictable and can be assume as r„pt =  25 cm. The joint and rotor inertia is

dominated by the inertia of the linkages which are made from circular cross-section 2024-T4

aluminum tubing of thickness t. Center of mass of the tube is in links geometric center 

and mass per unit length is a function of wall thickness t and diameter d. Parameter t

is assumed to be constant and the minimum mass per unit length is calculated based on

following equation to avoid resonance of the structure [3].

TUmm = 8.71 d (gr/cm) (5.39)

d =  5.1 X 10“®(6opf +  CoptY w (cm) (5.40)

By having rrimin as minimum mass per unit length, m^-iaw can be computed as:

n%2—fow ~  '̂ Tnin ôpt (5.41)

Assuming the whole weight of the haptic system equals to mtotaU nii_up and consequently 

I\-up can be easily calculated as follows:

mi 4- m2 =  mtotai (5.42)

mi—up — m̂ oiuf ‘̂ 2—low (5.43)

I i—up ~  mi—up bgpf (5.44)

By finding upperbound and lowerbound of respective parameter and by using eqs. (5.45) 

to (5.47) the problem of constrained multi-objective optimization of the five bar mechanism 

will be solved. It should be mentioned that the problem of finding optimum link length
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already solved in (4.2) and the solution is as follows :

«opt =  a{ropt) (5.45)

hopt =  b{ropt) (5.46)

^opt (̂,'^opt'} ( '̂̂ )̂

5.5 Analysis of The Inertia Parameter On The D y­
namic Dexterity Meeisure (Dimensional Analysis)

The dynamic equations for a planar five-bar haptic device is introduced through eqs (5.1) 

to (5.5). As it was already discussed, inertial behavior of such a mechanism is dependent 

on four variables (r, Ii, fg, mg) assuming that the manipulator already been geometrically 

optimized to get to sub-optimal link length domain defined in Fig. (4.2). Therefore, the link 

length are functions of r and can be written as a(r), b(r), c(r).

Since in evaluation of dynamic dexterity measure introduced in (2.34) only the ratio 

between eigenvalues are important, it can be proved that the actual dexterity measure is 

only dependant just on three variables ( r, ^ ).

Validity of previous theorem can be easily shown by examining the different property of 

eigenvalues and eigenvectors of a square matrix in basic matrix calculus. The theorem is, 

if a matrix is multiplied by a diagonal matrix or a scalar value, all the eigenvalues will be 

multiplied by the same scalar but the ratio of the eigenvalues remains the same. As it can 

be seen in (5.1) to (5.5), the value 7i can be factored as an scalar from the mass matrix as 

follows:

M  = h 1 + f i  (x, y, r) 1 2  + /g {x, y, r) m 2  fs (x, y, r) 1 2  + (x, y, r) m 2

fz (x, y, r) 1 2  + f i  (x, y, r) m 2 l  + fs {x, y, r) 1 2  -b /e (z, y, r) m 2
(5.48)
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Find Ii(^,I3(^,ill3• opt 
from Eq. 5.35-38

Find M2 from 
eq. 5.47

Find û  from eq s.48 
Find DDM from Fig 5.3.A

Find 12 from 
Fig.5.3.B

Find ma-low  
from eq. 5.89

Find n ii-iç  
from eq. 5.41

Figure 5.2: The proposed dynamic design flowchart of planar five-bar linkage
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where 12 and M2 are defined as following ratios:

M2 =  (5.49)
h

12 = ^  (5.50)
h

It is proved from basic calculus that /i, as a scalar, has no effect on the dynamic dex­

terity performance. Therefore, two dynamic ratios M2, 12 as dynamic parameters and r 

as workspace location are main three dominant dynamic parameters. In the new proposed 

multi-objective optimization method, the output of kinematic optimization will be used. It 

means that link lengths are assumed to be function of r Fig (4.2). Fig. (5.3B) shows the 

relation between M2 and 12 in different workspace locations, ( parameters M2 and 12 are 

dimensionless and the resulting figure will make more sense ). Also in Fig (5.3A) the re­

lation between the DDM  as dynamic dexterity performance relative to M2 is illustrated 

for different desktop sizes and results for r== 20 cm is presented in Table 5.1. The width 

of workspace is fixed to 10 cm and the resolution is A{w) =  0.1. Also the dexterity and 

the manipulability for a non-optimal and optimal dynamic parameter was shown in Fig. 

(5.4) and Fig. (5.5) during the process of the optimization. A =  90 gr.cm^ h  = 1

gr.cm^; =  .8 gr; r=  25 cm are the dynamic parameters in Fig. (5.4) and Ii =  100

gr.cm^; I2 = I gr.cm^; m2 =  .8 gr; r  =  25 cm are the dynamic parameters in Fig. (5.5).

Also flowchart for the proposed design process, introduced in section 5.4, is presented in Fig.

(5.2).

5.6 Case Study with New M ethod

In this section, we are trying to design an actual planar five-bar haptic device through the 

new design method explained in the section 5.4 . The total mass for the desktop device is 

assumed to be 1000 gr constructed from circular cross section 2024-T4 aluminum tubing with
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A: Dynamic dexterity Manipulibiiity (DDM) versus Reiative Mass (M2)
0.7

CO
0.65 cm

0.6

r = 20 cm.5  0.55 
“O

r = 15 cm

0.45
M2 dimensionless

B: Relative Inertia (12) versus Relative Mass (M2)
0.2

r = cm
^  0.15

r =

r = 15 cm

"O 0.05
CM

M2 (dimensionless)

Figure 5.3: Proposed dimensionless curves for kinematic and dynamic optimization of five-bar 
mechanism.
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Table 5.1: Result of proposed dimensionless optimization analysis of five-bar linkage for r = 20 cm
M2 =  dimensionless 1 2 = ^  dimensionless DDM  dimensionless

6.25 .145 .5412
5 .119 .5469

3.75 .087 .5553
3.125 .031 .5616
1.875 .03 .5809
1.25 .012 .5980
.9375 .007 .6103
.625 .005 .6265

.4375 .0035 .6390

.3125 .0026 .6488

.1875 .0016 .6603

.0625 1.05e-5 .6815

^0.08

^  O  0.06

x(mm) y (mm)
y (mm) x( mm)

Figure 5.4; Dexterity for a non-optimal dynamic parameter;
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CO o w '

-

8 1 “ «
a  b  0.8 I;

y (mm) x( mm) y (mm) x( mm)

Figure 5.5: Dexterity for an optimal dynamic parameter;

wall thickness t = 2  mm. In Stocco’s research the first natural frequency of the mechanism 

is assumed to be w =  200 tt as a design parameter and the desktop size is around 30cm [3]. 

In order to be able to compare the results in this thesis and Stocco method, the same design 

parameter will be assumed throughout this research, r^ax is 25cm and the elbow length is 

found to be c =  25 cm from the Fig. (4.2). Minimum mass per unit length is computed 

from eqs. (5.39) and (5.40) by considering Cmin =  25 cm and bmin = 13 cm from the Fig.

(4.2).

d = (5.1)10“®(13 cm +  25 cm)^(2007r) =  .93 cm 

rrimin = 8.7 -^ ? ( .2  cm)4.62 =  1.6 gr/cm 

Then m 2-iow can be calculated as: 

m 2—low =  mmin c =  1.6(25) =  40 gr 

mi_up is computed from (5.43). 

mi-up =  mtotai -  m 2-iow =  1000 - 4 0  =  960 gr 

from (5.44) we can derive the h-up'

h-up =  mi-up — 960 * (13)^ =  162,240 gr cm^
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It is concluded from (5.37) that m 2opt =  m 2-iow =  40 gr and hopt = h-up =  162,240 gr. 

By evaluating the parameter M2 by eq. (5.49) we can calculate 12 and consequently hopt 

from eq. (5.50).

M2=m2opt =  Î604o (25)  ̂=  .1541 dimensionless

12 = .87

hopt =  12 hopt =  (.87) (162,240) =  141,000 gr cm^

Therefor at the end the optimum parameters are introduced as follows: 

opt “  25 cm 

hopt =  162,240 gr cm  ̂

hopt =  141,000 gr cm  ̂

fn2opt =  40 gr and mi =  960 gr 

Dynamic dexterity performance =  .68 (dimensionless)

5.7 Case Study with Stocco’s M ulti-objective Optimiza­
tion M ethod

Stocco [3] proposed a multi-objective one-dimensional optimization method based on dy­

namic and kinematic conditioning. The method picks up the kinematically optimized geo­

metric parameters for different values of r  Fig (4.2) and then tries to find configurations 

with best dynamic dexterity performance. Masses of links are calculated from (5.39) and 

(5.40) and assuming a uniform cross section of aluminum tubing for link structure, the mass 

moment of inertia of link relative to its end point can be calculated from equation I  =

All geometric parameters (a, b and c) are chosen as a function of r from Fig.(4.2) and just r 

is the only independent variable. After evaluation of dynamic dexterity introduced in (2.34),

the maximum value for its performance can be easily found from Fig. (5.6) and the optimum

geometric parameters are:
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dynamic manipullbllty m easure

maximum 
atr=22 ^

i
10
E
b
I

Q
Û

M -  posturestar posture elbow up-postureelbow down posture

5 -10 -5  0 5

r (workspace distance from the base)

Figure 5.6: Multi-objective optimization results from stocco method. 

ropt = 2 2  cm; a =  7 . 5  cm; b =  1 1 . 5  cm; c =  2 1  cm,

By evaluating mass per unit length from (5.39) and (5.40) the other dynamic parameter 

can easily be computed as follows:

d =  2.55e —  6  (11.5 cm -f 21 cm -fll.5  cm-f 21 cm) 2QÜ7r =  6 . 7 7  cm

m =  8 . 7  ( . 2 )  ( 6 . 7 7 )  =  1 1 . 7 8  gr/cm

m 2  = c m  = 2 1  ( 1 1 . 7 8 )  =  2 4 7 . 4  g r

n i l  =  6  m  =  ( 1 1 . 5 )  ( 1 1 . 7 8 )  =  1 3 5 . 4 7  g r

I2 = I m2 ĉ  =  I (247.4) (21^) =  11,329 gr cm^

7i =  I mi 52=  i  (135.47) (11.52) =  11,329 gr cm2 

Dynamic dexterity performance =  .91
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Table 5.2: Comparison of Optimized 5 bar linkage with Stocco and the new method. Unit of
ength, mass and inertia are cm, gr and gr cm̂ ’ respectively. 'Dexterity measures are unitless.
Optimization methods opt ^opt ^opt Copt I \o p t ^2opt m 2opt K D M DDM
The proposed method 25 7.5 11.5 21 162 141000 40 .73 .68

Stocco’s method 22 9 13 25 53561 36309 247 .67 .52

5.8 Comparison Of Proposed M ethod W ith Stocco’s 
M ethod

As it is shown in table 5.2 by applying the new multi-objective method proposed on the 

manipulator with the same dynamic and kinematic parameters, the actual dynamic perfor­

mance will be calculated as .5243 cm which is too far from .6810 which is the dexterity 

performance calculated by our new multi-objective method. Kinematic dexterity measure 

obtained from the new method is also better than Stocco method. Therefore, it can be 

concluded that the optimized 5 bar linkage with proposed method is more dexterous both 

kinematically and dynamically comparing to the manipulator optimized by Stocco Method.

Since Stocco method is dynamically a one dimensional multi-objective optimization tech­

nique along parameter r, parameter space is very small and the method ignores more possible 

dynamic optimization along other main dynamic parameters such as (/i, I2 , m 2) resulting 

poor outputs. But the optimization technique presented in this thesis is a four dimensional 

multi-objective optimization technique along four parameter (r, /i, I2, m 2). Parameter 

space is big enough and the results are more liable.

Moreover, Stocco proposed Fig. (4.2) for kinematic design of 5 bar linkage and there is 

a high need for the respective optimization curves in dynamic studies. Presenting Fig. (5.3) 

and Table 5.1 as dynamic optimization results, in dimensionless form, could be one of the 

major contributions of this research which was totally ignored by Stocco’s Research.
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Dynamic Manipulibility Measure

maximum at r ='

star posture M -  postureelbow-down posture

Û 0.2

r = workspace distance from base (cm)

Figure 5.7: Multi-objective optimization results from Stocco dynamic dexterity definition
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Chapter 6 

CONCLUSIONS

6.1 Contributions

This chapter outlines the main contributions in this thesis and also some the challenging 

areas for future works is introduced. The contributions are summarized as follows:

• The exact inertia matrix for 5-bar planar haptic device.

Comparing to other works [3] [11], this research uses the exact inertia matrix for the 

five-bar planar manipulator [34] and the optimization results are more realistic due to 

having a good dynamical model for the system.

• Dimensional analysis of dynamic and geometric parameters.

By using dimensional analysis, number of inertial parameters (/i, I2 , m 2) reduced from 

three dependent variables to just two dimensionless independent variables {12, M2) 

introduced in section 5.5 .

• The global multi-dimensional multi-objective optimization technique.

As in other technique introduced by Stocco [3], there was a coupling between kine­

matic and dynamic parameters, due to (5.37) and (5.38), and these method can be
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imagined more constrained optimization method rather than a global techniques. In 

the new techniques proposed the relation between geometrical parameter and dynamic 

parameters is removed and more number of dynamical parameter is explored to get to 

actual optimum parameters. Hence, the result of these optimizations are more close 

to a global optimum result than stocco multi-objective method.

Moreover, due to the fact that, the new global multi-objective optimization techniques 

has a non-feasible trivial result , a new constrained techniques is developed by appli­

cation of design guidelines to avoid unrealistic results. In other word, since the global 

optimum is not achievable in reality, the closest parameters is selected as the feasible 

optimum results.

• New design procedure and guidelines for five-bar linkage haptic device.

A new design procedure for designing an dynamical and kinematical optimized desktop 

size haptic device is presented in section (5.4) and Fig. (5.2) . The main objective is 

to protect the device from resonance [7] [3] and consequently structural failure. Also 

in order to have a more fast-dynamic response system, the inertia of the system has to 

be minimized [7].

6.2 Future work

The future proposed works for dynamic and kinematic research of a five-bar linkage can be 

summarized as follows:

• Effect of natural frequency of five-bar mechanism on the design.

A very rough estimation of minimum natural frequency response is used by stocco

[7] [3] as an additional design parameter. The mass per unit length is assumed to be 

uniform which is not an assumption in the new design method introduced in this thesis.
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Therefore, more attempt is needed to have a better estimate of vibrational behavior 

of a five-bar haptic device with a non-uniform mass per unit length. Then we could 

use the results as more realistic constraint for finding a more realistic manipulator for 

industrial applications.

• Application of the new technique on more complex manipulators with different dex­

terity measures.

From point of view of engineering design for constructing a more dynamically fast- 

response device, minimizing total mass of the whole mechanism is very important [7]

[3]. Stocco introduced new dynamic dexterity measure to meet this requirement and 

proposed a new performance measure as which a is the biggest eigenvalue of the 

dynamic dexterity matrix introduced in (2.34). The multi-objective optimization re­

sults is illustrated in Fig. (5.6) which is completely different from results in Fig. (5.5). 

Implementation of the Stocco dynamic dexterity with the new proposed algorithm in 

this thesis can be another interesting and challenging problem . Also application of 

the new method on more complex haptic devices such as twin-pantograph haptic pen 

or twin-pantograph hybrid manipulator [3] [2] [22] could be a good challenge for our 

new optimization strategy.

• More theoretical and computational base sensitivity studies of all new optimization 

strategies in different kinematical and dynamical parameters and domains.

Since in our optimization strategy all parameters discredited and some of them as­

sumed to be constant and there is lot of coupling between these variables and moreover 

just limited domain of parameters is selected during optimization process, so basically 

there is no guarantee for generalizing the results to other parameter domain,unless 

by establishing a convergence analysis independent than discritization and parameter

56



dimensions and domains [6].
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Appendix A 

Permissions

Following is the permission email for Fig. (4.2).
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Corrections
p. 35, line 6 : “  and the planar...” should be changed to “...and a planar...” .
P.35, line 6 : “.. .manipulators . . .” should be changed to “. . .manipulator...”.
P.35, line 10: "... Kazerooni...” should be changed to “.. .Kazerooni and J. Guo...”. 
P.36, line 13: “...the end point...” should be change to “.. .base of each link...”.
P.36, line 15: “.. .end point...” should be changed to “.. .base...”.
P.36, line 20: “... 8 1 , 8 4 ...” should be changed “.. .0 2 , 8 3 ...”
P.36, line 20: “... Symmetric...” should be changed to “... geometrically symmetric” 
P.41, line 18: “.. .variable ...” should be changed to “.. .variables...”.
P.41, line 18: “...answer ...” should be changed to “... answer set...”.
P.42, line 1 : “.. .acceptable...” should be changed to “... realized.”.
P.42, line 19: “.. .Hayward...” should be changed to “.. .Hayward et al.”.
P.43, line 2: “.. .assume...” should be changed to “.. .assumed...”.
P.43, line 2: “... = 25 cm.” should be changed to “... = r^=25 cm.”.
P.44, line 15: “.. .theorem...” should be changed to “... fact...”.
P.44, line 16: “.. .The theorem is ...” should be changed to “... It is shown that...”.

P.44, line 21 : “.. .m2...” should be changed to “... ...”.
r

P.45, Fig. 5.2: 5.38, 5.41, 5.42, 5.47 and 5.50 should be changed to 5.41, 5.43, 5.44, 
5.49 and 5.50 respectively.
P.52, line 1 : “As it is shown in the table 5.2 by...” should be changed to “By using 
our optimization code and ...”
P.52, line 7: Stocco should be changed to Stocco’s.

• P.58, line 19: “... The Winter...” should be changed to “... Proc. the Winter...”.


