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ABSTRACT 

A COMPUTATIONAL STUDY OF THE LUDWIG-SORET EFFECT ON THE 
THERMAl-INDUCED PHASE SEPARATION PROCESS IN POLYMER 

SOLUTIONS 

Sureshkumar B. Kukadiya., :NIASc, 2008. 

Departrnent of Chemical Engineering, Ryerson University. 
350 Victoria Street , Toronto , Ontario l\!I5B 2K3 Canada. 

Thermal-induced phase separation (TIPS) is one of the nwthods used to fabricate func-

tional polyn1eric materials, i.e. PDLC filn1s for electro-optical devices such flat-panel 

displays~ switchable windows etc., and rnicroporous synthetic membranes frorn polymer 

solutions. Since the characteristic thermal, rnechanical, and optical properties of these 

materials are controlled by the rnorphological features, it is important to understand the 

phase separation n1echanis1n that forrns these rnaterials. In this work, the effect of thermal 

diffusion, also known as the Ludwig-Soret effect, on the TIPS method of phase separation 

via the SD mechanism in polymer solutions under non-uniform temperature field has been 

investigated using the cornputa.tional technique. The Ludwig-Soret effect occurs -vvhen a 

ternperature gradient applied to a fluid mixture induces a net n1ass flow, which leads to 

the forn1a.tion of a concentration gradient. A rigorous mathematical rnodel for TIPS via 

the spinodal decon1position mechanisn1 based on the nonlinear Cahn-Hilliard and Flory-

Huggins theories cmnbined with thern1al diffusion phenomenon has been formulated for 

binary polymer solutions under non-unifonn ternperature field and solved nurnerically. 

N unwrical sirnula.tion results revealed that the therrnal diffusion phenon1enon had very 

little or negligible effect on the phase separation mechanism under a non-uniform temper-

ature field~ which was reflected from the studies of the tirne evolution of structure factor 

and transition time frmn the early to the intern1ediate stages of SD. 
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CHAPTER 1 

GENERALINT DUCTION 

Phase separation in polymer solutions or polymer blends has attracted a great arr1ount of 

interest arr1ong scientists in recent years. Phase separation in polyrr1er solution is one of the 

rnost ilnportant and very well known phenomena used for manufacturing functional poly­

meric rnaterials, ·which are extensively used in engineering applications. Son1e of the typical 

exa.Inples include micro-porous synthetic (polyrneric) rnembranes and polyrner dispersed 

liquid crystals (PDLC) filrns for electro-optical devices, such as flat-panel displays for conl­

puter rnonitors, televisions: svvitchable or privacy windows etc. Due to the widespread 

den1a.nd and scope of the unique therrnal} rnechanical and optical properties of these ma­

terials , there has been continuous research and development for the modification of these 

rnaterials for better properties and functionalities for the last two decades. Therefore, it is 

very in1portant to understand the nonlinear phenornena that fonn these special materials. 

This chapter describes the rnethods used to fabricate these n1aterials. It also describes the 

phenomenon of the 'Lu.dwig-Soret effect' or 'Therrnal Diffu,sion' as it contributes to the 

process of phase sepaTation along with the ncm-Fickian diffusion (uphill diffusion), under 

the influence of an externally irnposed spatial linear ternperature gradient. 

1 .. 1 Phase Sepa_ration in Polymer Solutio11s 

Phase separation processes in polymer solutions or polyrner blends are an i1nportant and 

well-studied problems in rnany areas of n1aterials science. Phase separation in polymer 
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solutions, often called as a process of' de-rn'ixing', involves the transforrnation of the homo­

geneous polyrner solution in its single-phase state to the inhornogeneous two-phase state, 

i.e. two-phase separated regions. Such a kind of phase separation can be achieved ei­

ther by the Nucleation and Growth (NG) nrechanisnr or by the Spinodal Decomposition 

(SD) rnechanism [1, 8], which will be discussed in detail in the next section of this chap­

ter. Specifically, for binary polymer solutions, two-phase separated regions consist of the 

polymer-rich and solvent-rich regions . It is very inrportant to stabilize the phase separated 

structure of a polyrner solution after the process of phase separation in order to utilize 

its morphological properties to the greatest effect. This is carried out by the process of 

crystallization, vitrification or gelation of the pol:yn1er-rich phase depending on the ~nd­

application of the polymer solution. After the structural stabilization: material transfonns 

into a porous membrane if the solvent is ren1oved frorn the rnateria1 either by solvent evap­

oration, extraction, or freeze drying. It can also be transfonned into a PDLC filrn if a low 

rnolecular weight liquid crystal (LC) is used as a solvent. There are t\vo very popular meth­

ods used for the initiation of the phase separation process for the fonnation of anisotropic 

polymeric rnaterials, na1nely the Thermal Induced Phase Separation (TIPS) rnethod and 

the Polyrnerization Ind,uced Phase Separation (PIPS) method [9 , 10, 11]. 

The structural anisotropy can be introduced by irnposing an external fluctuation, such as 

an electric field [12, 13], a shear flow [14, 15], a concentration gradient [16, 17, 18, 19], a 

ternperature gradient [20 , 21, 22], or a controlled chernical reaction [23, 24, 25, 26]. In the 

TIPS n1ethod, the phase separation process is initiated or induced by rapidly changing the 

ternperature of the solution, or by introducing the temperature gradient across a polyrner 

solution and in the PIPS method, as the narne suggests, the phase separation is induced 

by converting the reactive nronomer molecules into polyrner through the polymerization 

process. 
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1.2 Phase Separation Mechanisms 

Phase separation mechanisrn is usually driven by the therrnodynamics of the poly1ner so-

lution, but kinetic processes like nucleation and rnolecular diffusion often detern1ine the 

nature of the process. As rnentioned in the previous section, two distinct mechanisms are 

recognized in the phase separation process, the 1\lucleation and Growth (NG) mechanisrn 

and the Spinodal Deco,mposition (SD) n1echanis1n [5]. Figure L 1 shows a schematic of a 

typical phase diagrarn of a binary polyrner solution, which is a plot of te1nperature, T 

versus solvent concentration, c. The solid curve represents the binodal curve, often called 

Single Phase 
Region 

Binodal Curve 

\ 

Solvent Concentration, c 

Critical Point 

c c 

Figure 1.1: Schematic of a typical phase diagrarn of a binary polymer solution showing the 
binodal curve and the spinodal curve [ 1]. 
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as an equilibriurn curve and the dash-dot curve represents the spinodal curve. The phase 

diagrarn is asyrnrnetrical and it shows the upper critical solution temperature (UCST) 

behavior of a polyrner solution, which is typical of a binary polyrner solution. The area 

under the spinodal curve (shaded area in gray as shown in Figure 1.1) is called the spinodal 

or unstable region and the area under the binodal curve and outside the spinodal curve 

is called the rnetastable region (shaded area with fine dots as shown in Figure 1.1). The 

point, where the binodal and spinodal curves rneet each other, is called the critical point (a 

dark filled dot as shown in Figure 1.1) and the corresponding concentration and tempera­

ture at the point are called the critical concentration, Cc, and the critical ten1perature, Tc, 

respectively. The area, outside the binodal curve, represents the region of hmnogeneous 

single phase. 

If the systen1 requires an activation energy for the initiation of the ne\v phase, then the 

phase separation proceeds by the N'Ucleation and Growth (NG) n1echanisn1 [27]. This 

process usually occurs beneath the binodal curve in the metastable region of the phase 

diagram as shown in Figure 1.1. Alternatively, under the spinodal curve, the phase separa­

tion occurs without an activation barrier. This lack of activation barrier changes the nature 

of the process significantly, leading to the Spinodal Decornposihon (SD) nwchanisrn (27]. 

vVhich phase separation route the systen1 chooses depends on the size of the gap separat­

ing the binodal curve and the spinodal curve, the size of the activation barrier within the 

metastable region, whether nucleation sites are available, and the rapidity with which the 

systern crosses the phase boundary line. Such fa.ctors are often critical in PDLC systems 

or n1icroporous synthetic polymeric rnernbranes, as the nucleation and growth (NG) and 

the spinodal decon1position (SD) mechanisrns can lead to different types of poly1ner mor­

phologies in the final film as shown in Figure 1. 2. 

Figure 1.2 is a typical phase diagrarn (ternperature, T versus solvent concentration, c) of 
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Nucleation and Growth 

• • • • • • • • 

• • • • 
Tc ·-----·-·-·-·-·-·-·-·-·-·-

Spinodal Decomposition 

• • • • • 

Solvent Concentration, c 

• • • • • 
• • 

Figure 1.2: A typical phase diagran1 (temperature, T versus solvent concentration, c) of 
a binary polyrner solution showing different morphologies that can be obtained depending 
on the location of the quench point ( c, T) on the phase diagram [1 ]. 

a binary polymer solution showing different rnorphologies that can be obtained depending 

on the location of the quench point ( c, T) on the phase diagram. If the quench point ( c, T) 

of the polyn1er solution lies in the rnetastable region of the phase diagran1 , the phase sep-

a.ra.t ion occurs by the nucleation and growth (NG) rnechanisrn , which produces randmnly 

distributed droplet-type 1norphology that grows over tirne due to the increase in free en-

ergy of the solution. If the quench point ( cl T) of the polyrner solution lies in the spinodal 

region or unstable region of the phase diagrarn , the phase separation occurs by the SD 

mechanisrn due to existing infinitesirnal concentration fluctuations that drive or initiate 

the phase separation in the SD region and two kinds of Inorphologies are formed: the 
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droplet-type (off critical quench) and the interconnected-type (critical quench) as shown 

in Figure 1.2. Depending on the location of the quench point ( c, T), the droplet type 

structure has a continuous phase and dispersed phase as indicated by the reversal of black 

and whiteregions as shown in the SD structures in Figure 1.2. 

Figures 1.3 and 1.4 show the one-dirnensional spatial concentration profile of phase sep­

aration by NG and SD, respectively. In the rnetastable region of the phase diagi·arn, an 

increase in the free energy of the solution due to the sufficient increase in the concentra­

tion fluctuations in the polyn1er solution causes the phase separation to occur by the NG 

rnechaniSin. Consequently, phase separated droplet-type rnorphology develops and grows 

over tirne, where the direction of the diffusional flux is said to be do-vvnhill ( frorn higher 

concentration to lower concentration) as indicated by the downward arrows in Figure 1.3 

at time, t 1 (downhill diffusion - typical of NG). Pattern forrnation as a result of the phase 

separation b:y the NG mechanism is shown in Figure 1.3 during the times , t 2 and t3 , which 

is indicative of the developn1ent and growth of the phase separated regions or domains over 

the time. In the spinodal region or unstable region of the phase diagram, infinitesimal con­

centration fluctuations in the polyn1er solution are sufficient to drive or initiate the phase 

separation by the SD n1echanisn1. Thus, phase separation by the SD rnechanisn1 is a spon­

taneous process as there is no need of activation energy to overcome any energy barrier. 

The direction of the diffusional flux is said to be uphill ( fron1 low concentration to higher 

concentration) as indicated by the upward arrows in Figure 1.4 at tirne, t1 (uphill diffusion 

- typical of SD ). The phase separation process by the SD rnechanisrn is cmnprised of three 

stages: early stage, interrnediate stage and late stage (refer to Figure 1.4). The phase sep­

arated regions (droplet/interconnected morphology) grow over the tirne fron1 initial stage 

to intern1ediate stage and become larger and larger a.s time passes due to coarsening of the 

phase separated regions a.t the late stage of phase separation by SD. 
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Figure L3: A schernatic of one-diinensional spatial concentration profile of the phase sep­
aration by the 1Vucleation and Growth (NG) mechanisrn from the initial concentration 
fluctuations at tirne, t 1 to the developrnent and growth of dornain sizes at time, t 3 . cu and 
cL are the high and low equilibriurn concentrations on the binodal curve, respect ively and 
C0 is the initial average concentration of the polynwr solution [2, 3]. (t1 < t 2 < t3 ) 
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Figure 1.4: A schematic of one-dirnensional spatial concentration profile of the phase sep­
aration by the Spinodal Decompo8dion (SD) rnechanisrn frorn the initial concentration 
fluctuations at tirne, t 1 t o the developn1ent and growth of dornain sizes at tirne, t 3 . cu and 
cL are the high and low equilibrium concentrations on the binodal curve, respectively and 
C0 is the initial average concentration of the polyrner solution [1 , 2, 3]. (t1 < t 2 < t3 ) 
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ls3 Methods of Phase Separation 

There are several rnet.hods of polyrner phase separation available for manufacturing of the 

structural anisotropic materials, i.e. PDLC systems, microporous polyn1eric rnembranes 

etc. Out of these methods, Thermal-Indttced Phase Separat'ion (TIPS) and Polyrnerization­

Induced Phase Separation (PIPS) rnethods are the most con1rr1only used rnethods industri­

ally for the fonnation of above mentioned materials [27] and therefore, these two rnethods 

will be described. Other than these rrwthods, the Solvent-lnd'Uced Phase Separation (SIPS) 

method [27] is also used for the preparation of the above rnentioned polyn1eric composites 

rnaterials. 

1.3.1 Thermal-Induced Phase Separation (TIPS) Method 

PDLC films and rnicroporous synthetic (polymeric) mernbranes are produced by this 

nwthod, which relies on therrr1ally driven phase separation process called Therrnal-Indttced 

Phase Separation (TIPS) [27]. In the TIPS rnethods, a polymer solution is rapidly cooled 

(quenched) (in case of the UCST solutions) or heated (in case of LCST solutions) in such 

a way that the conditions of the polyrner solution falls in the spinodal region of the phase 

cliagrarn frorn its initial homogeneous single phase condition, and consequently, it causes 

the phase separated regions to fonn within the solution. Polymer solutions undergoing 

TIPS via the spinodal dec01nposition (SD) n1echanisrn rnay develop a droplet-type mor­

phology (co < Cc and c0 > cc) or interconnected-type structure ( c0 = cc) depending on the 

initial concentration, (c0 ) [28, 4]. Critical (off-critical) initial concentrations result in the 

interconnected-type structure (droplet-type rnorphology). Functional polyrneric materials 

norrnally require the droplet-type morphology that develops and evolves during the early 

and intennediate stages of SD before significant droplet coarsening occurs in the late stage 

of SD. Application of a temperature gradient [22] or a concentration gradient [19] causes an 

anisotropic droplet-type morphology to forrn, where the droplet size varies along the gradi-
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ent direction, but is uniform within the plane norn1al to the gradient direction. Therefore, 

it is important to have an understanding of the 1norphological development and evolu­

tion during the thenna.l-induced phase separation (TIPS) rnethocl by the SD rnechanism 

in polyrner systen1s in order to control the ma.nufacturing process of functional polymeric 

materials, since product perforrnance largely depends on the rnorphology and droplet size 

in the polymeric materials. 

Figure 1..5 illustrates the TIPS method of phase separation by the SD rnechanisrn in a 

polyrner solution. Selection of the quench temperature, T1 and initial average concentra­

tion, c0 of the polyrner solution depends on the end use of the polyrneric phase separated 

1nicro-structures to be forn1ed. As sho·wn in Figure 1.5, three distinct routes or process 

paths of the TIPS method via the SD rnecha.nisrn describe two different resultant mor­

phologies: the droplet-type morphologies and the interconnected-type structures. In the 

case of the critical quench (route B in which initial average concentration, c0 is chosen to 

be the the critical concentration, Cc of the solution in the phase diagrarn.), the resultant 

morphology is of interconnected-type structures, and in the case of the off-critical quench 

(route A or C in which initial average concentration of the solution, c0 is chosen to be 

less than or greater than the critical concentration, Cc of the solution, respectively.), the 

droplet-type rnorphology results [4]. The black regions represent the solvent-rich regions 

and the white regions represent the polymer-rich regions. The TIPS rnethod via the SD 

mecha.nisrn, following the route A, is the most widely and extensively used for the rnanu­

fa.cturing of the functional polyrneric rna.terials, such as PDLC and rnicroporous synthetic 

n1ernbranes industrially. Other process routes have also been studied during the course of 

this research thesis. 

10 



A B c 
~ ~-~---------- - ------------- - ------------------------------- - -----------------·--------A-·--- · -·-----·-----·------~----------·-B 

Tr -------------·-

Solvent Concentration, c cc 

Figure 1.5: A sche1natic of the phase diagram showing the phase separation by TIPS 
1nethod via the SD mecha.nisrn, which involves the quenching of a homogeneous single 
phase polyn1er solution at an average initial concentration, c0 (open circles) frorn its initial 
ternperature, Ti to the final ten1pera.ture, T1. In the case of the critical quench (route 
B), the resultant morphology is of interconnected-type structures~ and in the case of the 
off-critical quench (route A or C), the droplet type rnorphology results. Cc represents the 
critical concentration of the polyrner solution [2]. 

1.3.2 Polymerization-Induced Phase Separation (PIPS) method 

The polyrnerization-induced phase separation (PIPS) method has proved to be the rnost 

useful in fonning the durable filrns with good electro-optical properties, though it is rnore 

c01nplex process than the conventional thermal-induced phase separation (TIPS) rnethod 

as it involves both the process of phase separation or de-rnixing as well as the process 

of polymerization sirnultaneously [11 , 29]. Unlike the TIPS 1nethod, the PIPS method is 

usually irreversible as the crosslinking between the polyrner chains is easily accomplished. 
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Because of this crosslinking, the polyrner rnatrix in the resulting film can be quite durable, 

leading to an excellent stability of the PDLC device properties. It is usually quite easy 

to change the chernical nature of the matrix in PIPS systems. The inherent flexibility in 

the polymerization process rnakes a wide variety of starting n1aterials both possible and 

readily available. In PIPS rnethods, as the nmne in1plies, the phase separation is induced by 

converting the reactive rnonomer into the polyrner through the process of polymerization. 

In the PIPS method, first of all, a homogeneous single phase solution is prepared by 

n1ixing reactive rnonomers and non-reactive solvent at an initial average concentration, c0 

and initial tern perature, ~. This point on the phase diagrmn is called the C'Ure point (black 

dot in Figure 1.6). Thus, the PIPS process starts with stable single-phase hmnogeneous 

mixture. The reactive monmners are then allowed to polyrnerize either by photo-initiation 

or therrnal-initiation process. As the polyrnerization proceeds, the n1olecular weight of 

the polyrner increases along with the solute degree of polyrnerization. As a result, the 

equilibrium curves , i.e. binodal and spinodal curves , of the polymer on the phase diagrarn 

shifts towards the higher solvent concentration and temperature (refer to Figure 1.6). One 

concern regarding PIPS systems is that it can be tricky to achieve uniforrn properties across 

a cell, or create n1any devices with exactly same properties. 

The phase separation process is sensitive to temperature, light intensity (in photo-cured 

systerns), the presence of in1purities, the solubility characteristics and rnolecular weight 

of the starting rnaterials. Variations in the phase separation process can lead to different 

rnatrix morphologies, which in turn affect the perforrnance of the functional polyrneric 

materials. Great care rnust be taken in PIPS systems to achieve reproducible and unifonn 

devices. 
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Figure 1.6: A typical phase diagram showing characteristic properties of the PIPS rnethod. 
As the solute (polyrner) degree of poly1nerization, N2 increases, the phase diagrarn shifts 
upward (in the direction of the arrow). The phase separation begins as soon as the cure 
point (black dot) enters the unstable region or spinodal region of the phase diagram [4, 2] . 
(tl < t2 < t3) 

lo4 The Phenomenon of Ludwig-Soret Effect 

A ternperature gradient applied to a liquid rnixture not only causes a heat flux, but also 

gives rise to a diffusion current of the constituent cornponents. The resulting separation 

of the con1ponents causes the fonnation of a concentration gradient parallel or antipara.l-

lel ':vith respect to the te1nperature gradient. This cross-effect between temperature and 

concentration is known a.s L·udwig-Soret e.ffect or therrnal diffus·ion [30 , 31]. Corn pared 

to other transport properties, therrnal diffusion has not been rnuch studied by con1puter 

simulations for TIPS n1ethods of phase separation in polymer solutions under ten1perature 



gradient. During the last decade, however, a couple of different sirnulation 1nethods have 

been applied to a few systems, aiming both at detern1ination of numerical values of the 

Soret coefficient and at a better understanding of the phenornenon. Since its discovery by 

Ludwig (1856) and the first systernatic investigations in liquid n1ixture by Soret (1879), 

the effect has been subject to experimental and theoretical studies. They observed a direct 

thennodiffusion in which a difference of a solute concentration (and thus , the rnatter flow) 

is caused by a ternperature gradient. In particular, they found that the change in concen­

tration occurs in a tube , which is filled with an initially hornogeneous salt solution and has 

both ends kept at different temperatures. For instance, they showed that for a solution of 

sodiurn chloride (NaCl), the salt concentration at the heated end of tube decreases , while 

at the cold end, it increases [31). Furthermore, the effect is widely used in several industrial 

processes , such as separation of isotopes, polyrner characterization, separation of products 

in a porous catalyst in chernical reactors, condensing a vapour rnixture on a cold surface, 

and water injection in oil reservoir. All of these industrial processes have in con1n1on that 

they involve a rnixture subject to a te1nperature gradient. This research thesis attempts to 

investigate and understand the effect of the thern1al diffusion on the overall TIPS method 

of phase separation in a binary polyrner solution under the influence of the externally irn­

posed te1nperature gradient across the san1ple numerically and analyzes the morphological 

and statistical aspects of the polyn1er phase separation. 
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LIT RATUR EVIEW 

This chapter provides the literature review on the subject of the polyrner phase separation 

in regards to its industrial applications and also in regards to the n1ethods used to carry 

out the polyn1er phase separation process. This research work is limited to polymer phase 

separation n1ethod of thermal-induced phase separation (TIPS) via the SD n1echanisrn, as 

it is one of the n1ost \videly used methods for the forn1a.tion of many functional polymeric 

materials, such as poly1ner dispersed liquid crystal (PDLC) filn1s, n1icroporous polymeric 

1ne1nbranes & foa.rns etc. This chapter also presents the literature review on the subject 

of thermal diffusion phenomenon in polyrner solutions under a non-uniforn1 te1nperature 

field. 

2 .. 1 Tl1ermal-Indttced Phase Separation Method 

Thern1al-inducecl phase separation (TIPS) has been the n1ost widely used n1ethod for for­

mation of the polymeric anisotropic functional rnaterials, such as polyrner dispersed liquid 

crystal (PDLC) devices as well the n1icroporous synthetic rnaterials (i.e. rnernbranes, foan1s 

etc) since its invention by Castro in early 1980s [32]. There have been several numerical 

studies carried out for the investigation of the thern1ally-induced phase separation (TIPS) 

rnethod of phase separation in polyn1er solutions, specially by Chan and Rey [28, 33] in the 

last decade. 
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Lee et al [22] developed a t\vo-dirnensional rnathernatical rnodel describing the thernral­

induced phase separation (TIPS) phenomenon via the spinodal decomposition (SD) nrecha­

nism in polynrer solutions using the non-linear Cahn-Hilliard theory and the Flory-Huggins 

theory under an externally imposed spatial ternperature gradient. The nurnerical results, in 

forrn of the spatial concentration profiles and patterns, indicated that isotropic morphology 

resulted from a unifornr quench (no ternperature gradients), while anisotropic rnorphology 

fon11ed in case of a non-unifonn quench (in presence of ternpera.ture gradient) . The n1or­

phological analysis of the shape factor showed that the forrnation of droplet shape was 

independent of the spatial temperature gradient. Tran et al [34, 35] presented the conlpu­

tational stud)r of the rnorphology development and evolution during the thennal-induced 

phase separation phenomenon via SD n1echanisrn for a sym1netric polyn1er blend in order 

to understand and control the morphology formation and evolution in the polyrner blends 

to fabricate functional polynreric cornposite nraterials with predefined material properties 

and characteristics. The non-linear Cahn-Hilliard and the Flory-Huggins theories were 

used to n1odel the TIPS method of phase separation via SD rnechanisn1. Their sinlula.­

tion results indicated that the n1aximum light-scattering intensity increased exponentially 

during the early stage and early part of the intennediate stage and then slowed down 

during the later part of intern1ediate stage and late stage of the SD through the structure 

factor calculations. The sirnulation results also showed that the dinrensionless diffusion 

coefficient n1ight be 1nanipulated to control the formation and evolution of the morphology 

during the SD to custonrize the functional polyn1eric materials' properties and character­

istics. Jiang and Chan [19] presented the nurnerical results of rnathenratical rnodel that 

described the two-din1ensional TIPS phenonrenon via SD rnechanisn1 in polyrner solution 

with linear concentration gradient (non-uniform quenches) and the com paris on with the 

conventional TIPS process (uniform quench). Unlike the conventional TIPS process ( uni­

fornl quench), the morphological development in the polyrner solution vvas found to be a 

graded size distribution, i.e. anisotropic structures, for the case of non-uniform quench (in 
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presence of linear initial concentration gradient) in their c01nputational study. Apart from 

above referred general computational studies, there has also been significant amount of 

experin1ental as well as son1e numerical or cornputational studies perforrned in regards to 

the specific applications, i.e. fonnation of PDLC filrns, rnicroporous synthetic n1ernbranes 

etc., which will be illustrated in following subsections. 

2.1.1 Polymer Dispersed Liquid Crystal (PDLC) Films 

Polyn1er-dispersed liquid crystal (PDLC) cornposites have been the subject of research 

for many years due to their applications in electro-optical devices, such as flat panel dis­

plays, switchable windows etc [11). A PDLC filrn is composed of a polyn1er binder and a 

larger nurnber of liquid crystal (LC) rnicrodroplets or dornains dispersed in it. Con1monly 

· used materials for the formation of PDLC filrns are polymethyl methacrylate (Pl\!Il\1A) 

and polyvinylforrnal (PVF) as polyn1eric rnatrix and 4-cyano-4-pentyl biphenyl (5CB) liq­

uid crystals dispersed in it. A simple and the rnost comn1on rnethod for preparation of 

PDLC filrns is to exploit phase separation mechanisn1 by the thermally-induced phase sep­

aration (TIPS) rnethod. Thern1ally-induced phase separation (TIPS) process is useful in 

situations, where the polyrneric n1alarial ernployed is readily melted. In this n1ethod, the 

liquid crystal is usually dissolved in a polyrner melt, yielding a homogeneous solution. A 

thin filrn is then produced and rnaterial is cooled to induce phase separation followed by 

solidification. Other rnethods of phase separation for preparation of PDLC filrns include 

the solvent-induced phase separation (SIPS) and polyrnerization-induced phase separation 

(PIPS). 

The pivotal work for studying the n1orphological control and structural analysis in prepa­

ration of PDLC film started in the late 1980s [36, 37, 38]. Since then, there has been a 

continuous research work going on in the area of modification and irnprovement of the 

properties of PDLC fihns for better perfonnance. West [36] successfully studied and inves-
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tigated TIPS rnethod of phase separation for preparation of PDLC films using the ther­

rnoplastic polyrner-LC systern of Epon 828 and t-butylarnine. It was dernonstrated that 

the rate of cooling of the polyn1er melts affected the resulting droplet morphology. Rapid 

cooling resulted in smaller dimneter and rnore LC rernaining in the binder, whereas the 

slower cooling resulted in larger droplets, which was because slower cooling allowed more 

tirne for phase separation, droplet growth and droplet coalescence. Under terrestrial con­

ditions, gravitational forces can strongly influence the particle sizes and their distribution 

via sedirnentation and coalescence, thereby rnaking it difficult to study the irnportance of 

the intrinsic parameters, which control the process of TIPS for fornration of PDLC filrns. 

Jin et al [39) analyzed the TIPS process and detennined the critical paran1eters, which 

controlled the phase separation and the subsequent growth of the liquid crystal droplets in 

the PDLC systems under rnicrogravity. In their study, the effect of cooling rate was inves­

tigated on droplet sizes in the TIPS process both experin1entally and in sirnulation under 

rnicrogravity environrnents, and found that, in both cases, a faster cooling rate yielded 

srnaller droplets and irnproved the unifonnity of their dispersions in the polymer binder. 

However, the sin1ulation results indicated that surface interaction energy played a rnajor 

role in setting up surface barriers, which hindered the growth. Their sirnulations results 

were found be in good agreen1ent with the experimental results as far as final droplet sizes 

were concerned. Teixeira and l\1ulder [40] developed a model of polyrner-dispersed liquid 

crystal (PDLC) formation by the thennally-induced phase separation (TIPS) via spinodal 

decomposition (SD) mechanism for the systern consisted of thennoplastic polyrner-LC rnix­

ture using the cell dynarnical systerns (CDS) rnethod of Oono and Puri, suitably rnodified 

to describe a continuous ternperature quench. Like others, the finalrnorphology of PDLC 

was found to be dependent on the quench rate. Chan [4) modelled and simulated the 

forrnation of PDLC films via TIPS as well as PIPS rnethod of phase separation via the SD 

nrechanisrn using the non-linear Cahn-Hilliard (C-H) theory and the Flory-Huggins (F-H) 

theory. The nurnerical rnethod of Galerkin finite elernent was used to solve the linearized 
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fourth-order Cahn-Hilliard ( C-H) equation in his study. The sirnulation results indicated 

that the droplet size decreased with increas ing the diffusion coefficient, and eventually 

resulted in higher droplet density, vvhereas the droplet size increased with decreasing the 

diffusion coefficient and eventually resulted in lesser droplet density for the TIPS method 

of phase separation. Sirnilarly, a higher quench (shallow quench) temperature resulted in 

srnaller droplet size and high(~r droplet density, whereas a lo\ver quench tern perature (deep 

quench) resulted in bigger droplet size and corresponding lower droplet density. Fron1 

these siinulation findings, it was concluded that the droplet size and density of the PDLC 

con1posites were dependent on the diffusion coefficient and quench ternperature of the 

phase separating solution or system. Vv'hitehead and Gill [41] experirnentally studied and 

investigated the formation of PDLC filn1s via TIPS rnethod using scanning electron mi­

croscopy (SElVI ) for a system consisted of thiol-ene based pre-polyrner and LC conrponents 

such as 4-pentyl-4-cya.nobiphenyl (K15) , 4-heptyl-4-cyanobiphenyl (K21) and 4-octyloxy-4-

cyanobiphenyl (IVI24). Their SElVI results indicated that PDLC droplet size decreased with 

increasing cure ternperature above the phase separation temperature for the respective liq­

uid crystal pre-polyrner mixture, whereas the PDLC droplet size increased \Vith increasing 

liquid crystal conrposition in the liquid crystal pre-polyrner mixtures cured at a constant 

ternperature above the therrnal phase separation ternperature. Based on these findings , it 

·was concluded that a careful choice of cure temperature and the an1ount of liquid crys­

tal were required to n1anipulate the PDLC rnorphology and thus, PDLC electro-optical 

properties. 

2.1.2 l\1icroporous Synthetic Membranes 

lVIicroporous synthetic n1en1branes are prepared by a variety of rnethods, including sin­

tering of ceramic, graphite, metal or crystalline polyrner powders; stretching of extruded 

homogeneous polyolefin or polytetrafluoroethylene (PTFE) filrns ; track etching of horno-
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geneous polycarbonate or polyester films; and phase inversion solution casting of variety of 

polyrners [42). While each of these rnernbrane preparation n1ethods have their own advan­

tages, the therrnally-induced phase separation (TIPS) rnethod is perhaps the rnost versatile 

and the sin1plest one for fonnation of the rnicroporous polyrneric rnaterials , such as mem­

branes , foarns etc [43, 44]. TIPS has been used for fornwtion of the rnicroporous polyn1eric 

membranes of controlled pore characteristics frmn a variety of crystalline and thenno­

plastic polymers, including polyolefins, condensation and oxidation polyrners, copolyrners, 

and blends [32, 20, 21, 45). Comrnercially available TIPS polypropylene n1ernbranes have 

proved useful in cross-flow rnicrofiltration (46, 47] and plasmapheresis [48] and also have 

been investigated for possible use in rnernbrane distillation [49). Other uses of n1icroporous 

TIPS men1branes include separators in electrochemical cells, synthetic leather, "breath­

able" rainwear and diapers, as well as surgical dressings and bandages. 

In its sin1plest form, the TIPS process is n1ade up. of following steps: 

1. A single phase hornogeneous polymer solution is formed by n1elt-blending a poly­

rner with a high boiling, low n1olecular weight liquid or solid referred to as diluent 

(solvent) . 

2. The solution is then cast into the desired shape. 

3. The cast solution is cooled to induced the phase separation and solidification of the 

polyrner. 

4. The solvent is then rernoved either by solvent evaporation process or solvent extrac­

tion process to produce a rnicroporous structure. 

TIPS rnethod is distinguished frorn the fan1iliar non-solvent-induced phase inversion method 

of n1ernbrane preparation in at least one important aspect . In TIPS rnethocl, the single 

phase homogeneous solution, frmn which the n1en1brane is fonnecl, is converted to a two 
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phase rnixture via the ren1oval of thern1al energy rather than by the slower exchange of 

non-solvent for solvent . TIPS rnethod of n1icroporous n1embrane preparation has several 

advantages over other methods of membrane preparation, which include the following: 

• The TIPS process is applicable to a wide range of polyrners, including the poly­

mers that, because of poor solubility, could not be formed into rnernbranes via the 

traditional non-solvent-induced phase inversion. In this regards , one of the distinct 

advantages of TIPS n1ethod is its ability to prepare n1en1branes frorn semi-crystalline 

polyrners. 

• TIPS rnethod is capable of producing a variety of rnicrostructures [42,50 ,32,45 ,20,21] 

and because of its versatility, it is the rnost popular and useful methods for the 

fonnation of variety of rnicrostructural rnaterials. 

• TIPS method is capable of producing relatively thick isotropic microporous structures 

suitable for controlled release. Fonnation of anisotropic n1icroporous structure is also 

possible, if a therrnal gradient is induced in step 3 of the men1brane preparation 

procedure outline above [20, 21]. 

• As the phase separation by TIPS method is thennally induced rather than non­

solvent exchange induced, it involves fewer variables, which need to be controlled, 

and as a result, the desired n1icroporous membranes with a controlled characteristics 

can be produced with a great ease. 

Following the four step procedure outlined above, the microporous polyrneric rnernbranes 

can be formed via solid-solid phase separation or via liquid-liquid phase separation with 

subsequent solidification of the polyn1eric systern. There has been a great arnount of exper­

irnental research work carried out for the betterment of the properties of these rnicroporous 

polymeric mernbranes formed by TIPS n1ethod for last two decades or so. 
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Lloyd et al [.50] studied the fonnati.on of rnicroporous crystalline polyn1er rnen1branes 

via thennally-induced solid-liquid phase separation of polyrner-solvent n1ixture experi­

rnentally. In their work, the thennally-induced solid-liquid phase separation process was 

studied in terrns of the solution thern1odyna.rnics of binary rnixture and the crystalliza­

tion kinetics. The polyrneric n1aterials, investigated by then1 for the rnembrane forma­

tion1 were polypropylene, high density polyethylene, polychlorotrifluoroethylene, poly( 4-

nlethyl-1-pentene) and poly(vinylidene fluoride) etc. Lloyd et al [.51] also studied nlicrop­

orous rnembrane forn1ation via thennally-induced liquid-liquid phase separation of isotac­

tic polypropylene- n, n-bis ( 2-hydroxyethyl) tallowrnine rnixture experimentally, of course 

and in their work, they successfully dernonstrated that rnicroporous rnernbranes could be 

produced by liquid-liquid phase separation followed by solidification of the polynwr or 

by solid-liquid phase separation. Kirn et al [52] exan1ined the role of diluent mobility and 

crystallization temperature in the formation of synthetic membranes via thermally-induced 

solid-liquid phase separation method in the systems of isotactic polypropylene/n-alkane 

and isotactic polypropylene/ n-fatty acid systerns. Kirn and Lloyd [53] a1so experinlen­

tally investigated the effect of therrnodyna.rnic interactions on the structure of isotactic 

polypropylene membranes. On the other hand, Chiang and Lloyd [54] investigated the 

effect of dissolution temperature and polyrner concentration on the nucleation density and 

subsequently, on the structure of n1embranes rnade by the solid-liquid TIPS process. They 

realized that the phase separation proceeded via the nucleation and growth (NG) mech­

anisn1 to yield the droplet-type rnorphology (connnon in NG quench), when the rate of 

cooling was slow. On the other hand, they also observed the phase separation to proceed 

via the spinodal decomposition (SD) mechanisn1, when the rate of cooling was faster and 

obtained the interconnected-type structure for critical quench of the polymer solution ( typ­

ical of SD quench). 

There has also been several experilnental studies carried out for the investigation of the 

22 



effect of various process paran1eters on the properties and structure of the rnicroporous 

rnembranes forn1ation by the liquid-liquid TIPS process. Grahan1 and rvicHugh [55] stud­

ied the kinetics of liquid-liquid TIPS rnethod of phase separation and crystallization dur­

ing thennal quenching of a polypropylene copolyrner in anisole solution using srnall angle 

light scattering (SALS), differential scanning calorimetry (DSC) and scanning electron 

n1icroscopy (SElVI), and they realized the cessation of dmnain growth, when the solution 

temperature crossed the crystallization ternperature. l\1atsuymna et al [56, 16] studied 

the effect of the cooling rate and the quench ternperature on the membrane structures 

forn1ed via liquid-liquid TIPS method and successfully created anisotropic or asymrnetric 

rnernbrane structures for the systern of isotactic polypropylene (iPP) and diphenyl ether 

(DPE) by allowing the melted solution to evaporate from one side, thereby creating a poly­

iller concentration gradient in the smnple before the cooling or quenching. These kinds 

of the anisotropic rnernbranes structures, with gradation in pore size, are highly desir­

able for the some n1icrofiltration (l\~IF) and/ or ultrafiltration (UF) application. Corn pared 

with isotropic rnembranes with similar retention, anisotropic rnernbranes show significant 

irnprovement in permeability and throughput. In a further study of the properties and 

structural control of 1nicroporous rnernbrane, l\ilatsuyama et al [56, 17, 57, 58, 59] also stud­

ied the liquid-liquid as well as solid-liquid TIPS nwthod of rnernbrane forn1ation for various 

polyrneric systerns in order to investigate the effect of various pararneters, such as polymer 

rnolecular weight [58], diluent [57] and diluent evaporation rate or cooling rate [.56, 17], 

extraction and drying [.59] . 

Other than above rnentioned experimental studies, rru:my nu1nerical studies have also been 

perforrned for the investigation of the forn1ation and structural analysis of the 1nicroporous 

polyrneric rnembranes. lVIany of these studies have revealed the fact that the spinodal de­

composition (SD) rnechanisrn plays the 1nost important role in the TIPS nrethod of phase 

separation during the forrnation of the 1nicroporous menrbranes. Caneba and Soong [21] 
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were perhaps the first ones who rnodelled and simulated the conventional thennal inver­

sion rnethod of liquid-liquid phase separation for formation of the anisotropic membranes 

using the Flory-Huggins (F-H) theory for the polyn1er solution therrnodynarnics and the 

linearized Cahn-Hilliard theory for the spinodal decomposition (SD) n1echanisrn. In their 

findings, it was observed that the growth period was relatively short con1pared with in­

duction and coarsening tirnes . In addition, it was also realized that the induction period 

increased with the phase separation ternperature. They concluded fron1 their rnodelling 

and silnulation work that the linear theory could adequately predict the relevant pore sizes 

of thermal-cast rnernbranes . 

On the other hand , Barton et al [60] used a n1odel based on the non-linear Cahn-Hilliard 

theory to sirnulate the structure fonnation in thermally quenched polyrner solution in tht\ 

vicinity of a glass transition, which was found to be in excellent agreernent with their 

experirnental work done on the phase separation dynmnics in the Pl\!ll\!IA/ cyclohexanol 

systern. It was concluded that the non-linear Cahn-Hilliard theory for SD n1echanisrn 

could be ernployed for prediction of the rnicroporous structural development during the 

early stage as well as the late stage of SD. Barton and l'vlcHugh [61] also portrayed the 

used of droplet growth rate data, obtained frmn the light scattering rneasuren1ents and/ or 

spinodal decmnposition calculations, to rnodel the evolution of pore size gradients in so­

lutions undergoing ten1perature-induced phase inversion and demonstrated the effects of 

quench ternperature on the transient and final pore size distribution in the quenched films 

(rnernbranes). Grahan1 et al [62] used the small-angle light scattering (SALS) and scanning 

electron microscopy (SElVI) to study the rnorphology developrnent in P:NilVIA membranes 

fonned by the TIPS rnethod of phase separation. Their nurnerical analysis of the early 

tin1e behavior of the scattered intensity in terms of Cahn-Hilliard theory established the 

spinodal decornposition (SD) mechanisrn as the rnechanisrn of phase separation for the 

conditions studied. l\!Iatsuyanra et al [6:3] perfonned kinetic studies of thermally-induced 
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phase separation (TIPS) method of n1icroporous mernbranes formation for polyn1er-diluent 

systern composed of polypropylene/nwthyl salicylate. Their results showed a good fit with 

the linear Cahn-Hilliard theory of the spinodal decomposition (SD) rnechanism. 

2 .. 2 Thermal Diffusion Phenomenon in Polymers 

Isothern1al static and dynarnical properties of polyrner blends/solution have been all well 

established [8, 64], but not many non-isothermal studies on phase separating polyrners in 

the presence of a non-uni.forn1 temperature field have been carried out so far. Although , 

there have been smne experimental [65, 66, 67] as well as nun1erical [68, 22] studies reported 

in the literature on the phase separating polyn1er solutions and/ or polyrner blends under 

the influence of externally applied temperature gradient in recent tin1es. None of these 

studies have taken into account the Luclwig-Soret effect, which leads to the n1ass flux as a 

result of externally applied temperature gradient across the polyrner solution/blend. 

Krekhov et al [69, 70] theoretically investigated the phase separation phenomena for poly­

mer blends by rnodeling and sitnulating the coupled equations of heat and the extended 

Cahn-Hilliard equation incorporating the Ludwig-Soret effect or therrnal diffusion phe­

nornenon in presence of spatial periodic temperature rnodulations for the critical polyn1er 

blendjn1ixture. Their si1nulations produced a periodic kink-type patterns formation in 

the polymer sarnple dmnain. It was also determined, in one-dimension as well as two­

dimensions, the critical forcing arnplitude necessary to produce a periodic stripe pattern 

frorn s1nall randon1 initial conditions, which depended weakly on wave nurnber. It was also 

demonstrated from their experirnental work that long-living spatial variation patterns with 

lifetin1es of rnany hours could be written into polyrner blend in the vicinity of its critical 

point by local laser heating. Reasonable agreen1ent was demonstrated between their ex­

periinental and theoretical work. Enge and Kohler [71, 72] employed a holographic grating 
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technique for the measurernent of diffusion and, for the first tirne, thermal diffusion prop­

erties of a critical polyrner blend of poly( dirnethyl siloxane) (PDlVIS) and poly( ethylrnethyl 

siloxane) (PEl\18). Experinwntal results showed that the Ludwig-Soret effect played an 

essential role in phase separating polyn1er systems subjected to temperature gradient. It 

was also concluded from their work that even srnall ternperature differences could cause 

substantial cornposition changes, which could not be neglected in the treatrnent of non­

isothermal phase separation. Rauch and Kohler [73 , 7 4] investigated n1a.ss and thermal 

diffusion in polystyrene (PS) /toluene solutions over the whole concentration range from 

dilute to concentrated. The collective rnass diffusion, therrnal diffusion and Soret coef­

ficients were detennined for the PS/toluene solution by a transient holographic grating 

technique and photon correlation spectroscopy. It was realized that the Soret coefficient, 

which was given by ratio of thermal diffusion to collective mass diffusion, was insensitive to 

the glass transition and followed the scaling law in the serni-dilute to concentrated polyn1er 

solutions without glass transition. 

de Gans et al [75] presented the results on the thennodiffusion of poly( ethylene oxide) 

(PEO) in ethanol/water rnixture using the Ther·mal Diffusion Forced Rayleigh Scattering 

(TDFRS) technique. In these TDFRS experiinents, the PEO was found to migrate to­

wards the region of lower ternperature in water-rich solvent mixture. This is typical for 

polyn1er solutions and corresponds to a positive Soret coefficient of PEO. In solvent-rich 

rnixtures, however, the polyn1er was found to rnigrate towards the higher temperatures, 

corresponding to a negative Soret coefficient of a polymer in solution. Thus, frorn these 

experimental findings, polymer n10lecules were found to rnove into the direction of the ther­

n1odynan1ically favored preferentially solvating solvent shell cornposition. A sirnple lattice 

model for the polymer solvent system was presented and Soret coefficients were calculated 

with statistical n1echanics 1nethods, which were found to be in good agreement with their 

experiinental results. 
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2.3 Thesis Objectives 

As rnentioned earlier, our previous work by Lee et al nurnerically studied the TIPS n1ethod 

of phase separation in polyn1er solutions under temperature gradient (22]. In their study: 

the thennal diffusion phenomenon Vilas not taken into consideration. Some researchers 

around the world pointed out that the Ludwig-Soret effect or the therrnal diffusion phe­

nomenon could not be neglected while studying polyrner solutions under a ternperature 

gradient, as it also contributes to the overall phase separation mechanism in polymer so­

lutions. Therefore, the n1ain objective of this research thesis is to study the Ludwig-Soret 

effect (Thennal Diffusion) on the thennal-induced phase separation (TIPS) rnethod via 

the SD mechanism in polymer solutions vvith an externally imposed spatial tmnperature 

gradient through rnathen1atical n1oclelling and computer sin1ulations. An ernphasis has 

been placed specifically on the understanding of the influence of the therrnal-diffusion phe­

nornenon on the overall process of phase separation (TIPS in this case) under the spinodal 

or unstable region of the phase diagrarn in a binary polyrner solution. The sequential 

objectives of the research thesis are as follow: 

1. To develop a n1athernatica.l rnodel (one dirnensional as well as two dimensional) , 

which describes the overall process of phase separation (i.e. TIPS via SD only) in 

a binary polymer solution sarnple involving therrnal diffusion phenornenon (Ludwig­

Soret effect) under an externally irnposed spatial linear tern perature gradient . The 

binary polymer solution san1ple is well suited for the TIPS method, as it is one of the 

rnost comn1only used n1ethods for the fabrication of functional anisotropic polymeric 

rnaterials, i.e. PDLC films, rnicro-porous synthetic rnembranes etc. The theories, 

which will be taken into account during the developrnent of the rnathen1aticalrnodel 

for the research thesis : are the non-linear Cahn-HiUiard theory describing the TIPS 

method via the SD mechanisn1, Flory- Huggins theory describing the thennodynamics 

of polyn1er solutions, and theory of Ludwig-Soret effect describing the therrnal diffu-
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sion phenornenon prevailing in a polyrner solution under a non-unifonn ternperature 

field. 

2. To irnplernent, solve and validate a one-dimensional rnodel as specified and developed 

in the above rnentioned objective 1 for the TIPS rnethod involving the thennal diffu­

sion phenomenon. An ernphasis is placed on the understanding of the influence of the 

thennal diffusion phenomenon on the overall phase separation rnechanisrn (TIPS via 

SD) in binary polymer solutions under an externally imposed spatial linear tenrper­

ature gradient by cornparing the spatial structural profile (i.e. spatial concentration 

profile), obtained with and without thennal diffusion phenomenon. 

3. To in1plernent, solve and validate a two-dirnensional rnodel as specified and devel­

oped in the above rnentioned objective 1 for the TIPS rnethod involving the thermal 

diffusion phenon1enon. Again, an ernphasis is placed on the understanding of the 

influence of the thermal diffusion phenornenon on the overall phase separation mech­

anisrn (TIPS via SD) in binary polyrner solutions under an externally imposed spatial 

linear ten1perature gradient by analyzing the structural morphologies obtained with 

and without thermal diffusion phenomenon. 
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CHAPTER 3 

MODEL DEVELOP E T 

This chapter presents the theoretical background for development of mathernatical rnodel 

of the phenonwna of TIPS method of phase separation by the spinodal decon1position (SD) 

mechanism involving thermal diffusion phenmnenon under the influence of an externally 

imposed spatial linear tern perature gradient. As mentioned in the previous chapter, the 

TIPS method of phase separation by the spinodal decmnposition (SD) mechanism is the 

rnost widely used n1echanisn1 for the fabrication of the functional polyn1eric materials , 

such as PDLC and rnicroporous synthetic rnernbrane. This research thesis primarily con­

centrates on the TIPS rnethod of phase separation by the spinodal decomposition (SD) 

n1echanisn1. Spinodal clecornposition (SD) rnechanism is best described by the well-known 

non-linear Cahn-Hilliard (C-H) theory, which will be described later in the chapter. This 

chapter also describes the theory of Ludwig-Soret effect, as it best describes the thern1al 

diffusion phenornenon prevailing during the TIPS method of phase separation in a polymer 

solution under the influence of an externally irnposed temperature gradienL 

3.1 Thermodynamics in Polymer Solutions 

As mentioned earlier, the understanding of the thermodynarnics in polyrner solutions is 

very vital in order to study the phase equilibria, and consequently, the phase separation 

phenomena in binary polyrner solutions, especially under the influence of externally ap­

plied ten1perature gradient across the sarnple. The phase equilibria of a binary polymer 
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solution can be very well described by the Flory-Huggins (F-H) theory. Therefore, the 

Flory-Huggins theory will be discussed in the chapter , as it describes the free energy of 

mixing for a binary polyrner solution. And also, the construction of the phase diagran1 of 

a binary polymer solution using the Flory-Huggins theory will be illustrated later in the 

chapter. 

T'he fundarnental therrnodynarnic equation to describe the systerns, such as polymer rnix­

ture relates the Gibbs free energy of mixing, ~GM to the enthalpy of n1ixing, !j._HA1 and 

the entropy of n1ixing, jj._SAr under constant ternperature and pressure. 

(3.1) 

A hornogeneous solution is obtained, when the Gibbs free energ:y of rnixing, jj._GA1 < 0, i.e. 

when the Gibbs free energy of solution, G12 is lower than the Gibbs free energies of the 

constituent components of the rnixture in pure state, G1 and G2 . 

(3.2) 

3.1.1 The Flory-Huggins Theory 

One of the rnost well-known expression for the free energy of n1ixing, jj._GA1 of a polyrner 

solution is the Flory-Huggins (F-H) theory [5, 76), which is based on the two dimensional 

statistical lattice rnodel. This lattice 1nodel is used to characterize the possible arrange­

ments of the cmnponents ' segn1ents in the polyrner rnixtures. Polyrner solutions are consid­

ered as the irregular nonideal solutions , in which both !j._HAI and f::l.SM deviate from their 

ideal values. To understand the behavior of polyrners in solution rnore fully, the knowledge 

of enthalpic and entropic contributions to .6..GA1 is essential. 
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For a systen1 in a given state, the entropic contributions, also referred to as the corn-

binatorial contributions, are related to the nurnber of distinguishable arrangements the 

components in that state can adopt. These entropic contributions can be expressed by fol-

lowing equation derived from the Boltzrnann's law ofentropy based on the two dirnensional 

statistical lattice model for the polymer solutions as follows [5]: 

tiS'M =- kB [~Inc+ (l- c) Jn(l- c)] 
u IV 1 ~TV2 

where, kB is the Boltzmann's constant, IV1 and N2 are the nurnber of molecules or degree 

of polyrneriza.tion of the cornponent 1 (solvent) and 2 (solute), respectively; c is the con-

centration of the cornponent 1 (solvent in this case) in terms of its volume fraction in the 

mixture; and u is the volume of the cell or segm.ent. 

The enthalpic contributions~ also referred to as non-com,binatorial contributions, are due 

to the interactions of polymer molecules with solvent rnolecules, and are rnuch harder to 

quantify. The derivation of D.SM frorn the lattice theory has been made on the assurnption 

that no heat or energy change occurs on rnixing. This is an uncornmon situation as ex-

perimental experience suggests that the energy change is finite. The theory of the regular 

solution is utilized in order to obtain the expression for D.H1
VI, where this change in energy 

is assumed to arise from the formation of new solvent-polymer interactions on mixing, 

which replace sorne of the solvent-solvent and polymer-polyrner interactions present in the 

pure solvent and pure polyrner cornponents, respectively. Thus, based on the lattice model 

for the polyn1er solutions , the expression for the enthalpic contributions can be presented 

as follows [5]: 

•1. kBT ( ) D..HJV. = --xc 1 - c 
Ll 

(3.4) 

where, Tis the ten1perature, and xis the Flory-Huggins interaction pararneter, which is an 

important feature of the poly1ner solution theory. The Flory-Huggins interaction paran1eter 
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is zero for athennal solutions, positive for endotherrnic and negative for exothennic mixing. 

Now, combining Equations (3.3) and (3 .4) into Equation (3.1) to give the expression for 

the Gibbs free energy of rnixing, 6.GM or the Flory-Huggins free energy, .f(c) as follows [5]: 

kBT [ c ( 1 -c) .. l f(c) = - 7\Tlnc + N ln(1- c)+ xc(1- c) 
v lVl 2 

(3.5) 

3.1.2 Phase Equilibria and Phase Diagram 

The Flory-Huggins theory can be used to predict the equilibriun1 behavior of two liquid 

phases , when both contain amorphous polymer and one or two solvents. Consider a two-

cornponent syste1n consisting of a cornponent 1 (solvent) and cmnponent 2 (polyrner). 

Complete rniscibility occurs, when the Gibbs free energy of rnixing, t::..GA1 is less than the 

Gibbs free energies of the con1ponents, and the solution maintains its homogeneity only 

as long as ~GM rernains less than the Gibbs free energy of any two possible coexisting 

phases. 

Figure 3.1 represents a schematic diagrarn of the Gibbs free energy of mixing, t:.GM as 

a function of the solvent concentration (top half), showing the transition frmn a system 

miscible in all proportions at a ten1perature, T1 through the critical temperature, Tc to 

partially miscible systems at ten1peratures, T2 to T4 . The contact points for the comrnon 

tangents drawn to the rninima of the Gibbs free energy curve for ternperature, T4 are 

shown projected onto the tern perature-concentration plane to fonn the binodal (cloud 

point) curve , whereas projection of the inflexion points forn1s the spinodal curve, and the 

area under the spinodal curve represents the heterogeneous two-phase region, where there 

is limited solubility of component 2 (polyn1er) in cmnponent 1 (solvent) and vice versa, 

depending on the location of the quench point ( c, T) [5]. This is also called a clo·ud point 

c'urve. As the ten1perature is increased, the lirnit of this two-phase coexistence contracts, 
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Figure 3.1: A Schen1atic diagrmn of the Gibbs free energy of rr1ixing as a function of the 
solvent concentration (top half) and typical schematic syrnrnetrical phase diagrarn for a 
binary solution (bottmn half) showing the rnetastable region (dotted area) and unstable 
spinodal region (gray shaded area) . The contact points for the cmnmon tangents drawn 
to the rninin1a are shown projected onto the te1nperature-concentration plane to forrr1 the 
binodal (cloud point) curve, whereas projection of the inflexion points forms the spinodal 
curve. The upper diagran1 shows the different Gibbs free energy curves corresponding to 
the ten1peratures T1 to T4 (T1 > T2 > T3 > T4) [5]. 

until eventually, they coalesce to produce a hon1ogeneous one phase mixture at T~, the 

critical .soltdion ternperatv,re. The crit ical solution temperature is an irnportant quantity, 

and can be accurately defined in terms of the chernical potential. It represents the point 

at which the inflexion points on tht: curve n1erge, and so it is the temperature where the 

first, second and third derivatives of the Gibbs free energy with respect to the solvent 

concentration are zero. 
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The phase diagram in Figure 3.1 can also be fonned numerically using the Flory-Huggins 

Equation (3.5) [77]. In order to deterrnine the equilibriun1 (binoclal curve) composition, 

the Flory-Huggins (F-H) free energy Equation (3.5) and its first derivative with respect to 

cmnposition are used to find the chen1ical potential of each cornponent in their respective 

phases. Following are the equations of the chen1ical potential of each component in their 

respective phases [77] : 

(3.6) 

t k B T [· t ( 1 ) . . t - t ')] Clf11 = -- lnc + 1 - -r-,- (1- c)+ xN1(l- c) ~ 
v l'\qJV2 

(3.7) 

(3.8) 

(3.9) 

Equations (3.6) to (3.9) give the chemical potentials of cornponents 1 and 2 of the rnixture in 

the two equilibriurn phases (i.e. t and t) . But, chen1ical potential is sarne everywhere in the 

two phases for con1ponents 1 and 2 (i.e. for con1ponent 1, p.1 = 
1
LLi) at the equilibriurn [77]. 

Therefore, following two equations are obtained by equating Equation (3.6) with (3.7) and 

(3.8 ) with (3.9), 

(3.11) 

Now, these two Equations (3.10) and (3.11) are solved simultaneously for values of ct and 

c+ to construct the binodal curve, which represents the coexisting phases in equilibriurn. 

The spinodal curve is obtained by taking the second derivative of the Flory-Huggins (F-H) 
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free energy equation and setting it equal to zero as shown below. 

( 
' 2 ( -'1\[2 - 1 ) . ) 1 1- c) - 1 - . . (1- c + --. - = 0 
" 2x.rv2 · · 2x N2 

(3.12) 

Above equation is a quadratic equation, and is solved for values of composition, c to 

construct the spinodal curve. Note tha.t the Flory-Huggins interaction pararneter, x is 

needed in order to evaluate Equations (3.10) to (3.12). It is commonly considered to be 

the function of temperature and is expressed as follows [5, 77, 76]: 

X= 0.5- ·1/J ( 1-;) (3.13) 

where,~, is the dirnensionless entropy of dilution paranleter, and e is the theta ternperature, 

which is defined as follows: 

Theta te·mperature, 8 of a dilute polyrner solution is the temperatv,re at which 

the poly·mer solution behaves as ·if it · were an ideal solution [5]. 

The theta ten1perature, ()is a well-defined state of a polyrner solution at which the excluded 

vohune effects are elin1inated, and the polyrner coil is in an unperturbed condition. Above 

the theta tern perature, expansion of the polyrner coil takes place, caused by the interactions 

with solvent, whereas below e, the polymer segrnents attract one another, coils tend to 

collapse, and eventual phase separation occurs [5] . 

The intersection of the binodal curve and spinodal curve represents the critical point. It 

is calculated by setting the second derivative equal to the third derivative of the Flory-

Huggins free energy equation. The properties of the critical points are as sho\vn below: 

(:3.14) 
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Xc = ~ (1 + ~)
2 

2 vN2 
(3.15) 

;c = ~ + 0~/J ( ~ + 2~2) (3.16) 

where, Cc represents the critical concentration of the solvent, Xc is the critical value of 

Flory's interaction pararneter, and Tc is the critical ternperature. 

3 .. 2 The Cahn-Hilliard Theory 

The theory of phase separation in hornogeneous single phase solution by spinodal decom-

position was first given by J.vV. Cahn back in 1956 [78]. lVIost of the studies for the 

kinetics of phase separation were lirnited to rnetals and glasses, but for last two decades or 

so, the study of the kinetics of phase separation has been extended to polyrner solutions 

and blends [79] as well. The non-linear Cahn-Hilliard equation, describing the spinodal 

decornposition process ~ was derived fron1 continuity equation of mass, which relates the 

inter-diffusional flux to the driving force of phase separation, i.e. the gradient in chemical 

potential. 

The continuity equation is expressed as follows: 

ac 
--::- = -\7. J at (3.17) 

where, c is the concentration of solvent in terms of volume fraction, and J is the inter-

diffusional flux of the component (i.e. solvent). The kinetics of the initial stage of phase . -

separation can be obtained sirnply by solving the diffusion equation, in which the inter-

diffusional flux is related to the gradient in chernical potential by following equation. 

(3.18) 
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where, Af is the 1nobility, which is defined by the ratio of the negative of inter-diffusional 

flux and the gradient in chernical potential. 1\!Iobility is considered to be the function of 

concentration, which will be discussed later in the chapter. p 1 and p.2 are the che1nical 

potentials of the cmnponent 1 (solvent) and 2 (polymer) of the binary polyn1er solution, 

respectively. For simple thermodynmnics considerations, mobility, lvf must be positive 

if diffusion, which results spontaneously clue to the gradient in chernical potential in the 

solution, is to result in decrease in the free energy of the syste1n. Now, consider an inho-

mogeneous binary polymer solution, whose concentration, c differs slightly from its average 

initial concentration, c0 everywhere with infinitesirnally small concentration gradients. Its 

total free energy of n1ixing can be given by following expression [78] : 

F = j [!(c)+ ~<('Vc)2 ] dV (3.19) 

Here, f(c) is the Flory-Huggins free energy density of hornogeneous solution of concen­

tration, c whereas K(\7 c)2 represents the changes in the free energy of the solution due 

to concentration gradients. K is a gradient energy coefficient, and it has been assunwd to 

be a positive constant. The variational derivative of Equation (3.19) gives the che1nical 

potential difference tt2 - p 1 as expressed below ['78]. 

_ 8F _ 8f(c) ') 2 /I2 - /1·1 - T - ~ - -..K'V c 
uc uc 

(3.20) 

Combining Equations (3.18) and (~).20), we get the net inter-diffusional flux of the binary 

polyn1er solution related to the total free energy as expressed below: 

- r a f( c) " l J = - J\1\ll-·. ·-- 2K\:,JL·c 
De 

(3.21) 
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Silnilarly, cornbining Equations (3.17) and (3.21), it gives non-linear Cahn-Hilliard equation 

as shown below: 

(3.22) 

At very early tirnes , the concentration fluctuations are very Sinall, and Equation (3.22) 

can be linearized about the average initial concentration, c0 assurning constant 1\1 and K, 

resulting in following expression for SD [4]. 

ac [ ( . a f ( c) l , 2 ) ] - = \7 · \7 J\1 - , - - 2K\7 C at ac 
co 

(3 .23) 

The general solution of the above Equation (3.23) can be given by 1rwking use of the Fourier 

series as shown below [4]: 

c(r, t) = c0 + L A(k, t) eikr 
k 

A(k, t) = A(k, O)eR(k) t 

(3.24) 

(3.25) 

(3.26) 

where, k is the wave vector, and is given by k = 21r / >.. (>..is the wavelength for fluctuation); 

and R(k) is the arnplification factor. However, the linearized C-H Equation (3.23) is not 

valid for intermediate and late stages of the phase separation by SD. 

3~3 Mutual and Self-Diffusion Coefficients 

lVIutual diffusion process accounts for the relaxation of the thennal fluctuations in concen-

tration of the binary solution. It describes the rnixing of the con1ponents in the n1ixture 
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through the n1utual diffusion coefficient, D given by following equation: 

D=QA (3.27) 

where, Q is the thennodynamic factor related to the static correlation function of concen-

tration fluctuations , and A is a kinetic factor presun1ed to be expressible in tenns of the 

self-diffusion coefficients of the components of the solution. The thennodynamic factor, Q 

is expressed as follows [80]: 

(3.28) 

where: Jv~1 and JV2 are the degree of polyrnerization of the con1ponent 1 and 2 in the binary 

solution, and c and (1 - c) are the volurne fractions of the cornponent 1 and 2 in the 

binary solution. However, as far as the analytical forrn of A is concerned, there exists two 

contradictory theories, namely slow rnode theory and fast mode theory, which take into 

account the self-diffusion coefficients of the individual conrponent of the solution. 

The slow mode result is obtained with the randorn-phase approximation under the condi-

tion of rnicroscopic incompressibility and on the other hand , the fast mode result is obtained 

by ignoring the clynarnic correlations between the velocities of different particles [80] . Both 

these results are expressed as shown below: 

1 
(3.29) 

A slow 

(3.30) 

where, D 1 and D2 are the respective self-diffusion coefficients of the cornponents 1 and 2 

in the binary polyrner solution. ~v1utual or inter-diffusion coefficient corresponding to the 

slow rnode theory and the fast rnode theory can be expressed as following in terms of the 
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self-diffusion coefficients [80]. 

Slow 1\!Iode: 

Fast J\1ode: 

From Equations (3.31) and (3.32) , we can see that, for the case where one species is 

diffusing much faster than the other (i.e. D 1 >> D 2 ) , Equation (3.31) predicts that the 

interdiffusion is controlled by the slow diffusing cornponent , i.e. D:::::::: D 2 [N2 (1-c)/N1c+ 1] 

(slow n1ode theory), while Equation (3.32) predicts that the interdiffusion is controlled by 

the fast diffusing con1ponent in the rnixture, i.e. D:::::::: D 1(1- c) 2 [1 + 1V1c/1V2(1- c)] (fast 

n1ode theory). Thus, the mutual diffusion or interdiffusion process is dependent upon the 

self-diffusion coefficients of the individual cmnponents of the solution. There are several 

models or theories available, which help in deterrnination of the self-diffusion coefficients 

of the constituent cornponents of the solution, i.e. the spring-and-bead n1odel, the Rouse 

theory, the Kirkwood-Risen1an theory and the reptation theory [81]. This research thesis 

n1akes use of the Rouse theory based on the spring-and-bead rnodel to detern1ine the self-

diffusion coefficient, as it best describes the slow diffusion rnechanism behavior by the low 

rnolecular weight polyrner solutions such as the ones considered in this work, and therefore, 

only Rouse theory will be described briefly. 

Based on the spring-and-bead model , the Rouse theory assumes that there are no hydro-

dynamic interactions between the polyrner segrnents, and therefore, the solvent rnolecules 

are able to move freely through the polymer coil. However, the presence of the solvent 

rnolecules in the polyrner coils inhibits the movernent of polyrner segrnents, i.e. there ex-

ists the molecular friction. l\!Ioreover, this theory is applicable to the systerns having short 

polyrner chains with no entanglernent effect , which is true for N2 < 200. Keeping in rnind 

all these assurnptions, the self-diffusion coefficient, derived frorn the Rouse theory, can be 
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expressed as follo\vs [81,82]. 

knT 
D i = -- for i = 1, 2 

lvi~i 
(3.33) 

where, Di is the self-diffusion coefficient of the cornponent i, i.e. D 1 for solvent and 

D 2 for polyrner, derived from the Rouse theory, kB is the Boltzmann's constant, T is 

the ten1perature, 1Vi is the degree of polymerization (or rnunber of seg1nents) of the ith 

component in the solution, and ~i is the frictional coefficient of the ith component per 

segment in the solution. 

3 .. 4 Concentration Dependent Mobility 

The n1obility is a rneasure of rate at which the concentration of the n1ixture is dispersed , 

and is known to be a function of concentration as mentioned earlier. The slow rnode theory 

states that the mobility, A1 is related to the self-mobilities of the constituent components, 

1\111 (i.e. for solvent) and Jv12 (i.e. for polyrner) as: 

1 1 1 
- = -+ -
1vf A11 A/2 

(3.34) 

The individual rnobility of the constituent cornponents can be expressed in tenus of the 

respective self-diffusion coefficient as: 

fori= 1, 2 (3.3.5) 

where, ci is the concentration of the component i, i.e. c1 = c and c2 = (1 - c). Now, 

substituting the values of the respective self-diffusion coefficients fron1 Equation (3.33) and 

the respective second derivatives of the Flory-Huggins (F-H) free energy equation from 

Equation (~3..5) into Equation (3 .3.5) to obtain the respective rnobilities of the constituent 
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cmnponents 1 (solvent) and 2 (polymer): 

vc 
1\Jl =-

6 

Af2 = v(l- c) 
~2 

(3.36) 

(3.:37) 

The Rouse theory based on the spring-and-bead model, which describes the rnotion of the 

polyrner chain as spring and bead, can be observed in the concentrated polyn1er solution 

[81,83]. Since, we are rnodeling concentrated solutions containing short polyrner chains with 

no entanglements and hydrodynamics effects, the Rouse model may be used to express the 

self-diffusion coefficients. The following expression is obtained for the total rnobility by 

cmnbining Equations (3.34), (3.36) and (3.37), and assurning no interaction between the 

two con1ponents (i.e. 6 = ~2 = ~). 

Af = vc(l- c) 
~ 

3 .. 5 The Ludwig-Soret Effect 

(3.38) 

In this section, the phenon1enon of the L·udwig-Soret elfect or ther,mal diffusion, which 

arises in a mixture if both the concentrations, and the ten1pera.ture are non-unifonn over the 

system, will be studied. For the derivation of the equation of the thern1al diffusion, consider 

the n1ulti-component isotropic fluids in which viscous phenomena may be neglected, and 

no external forces are present. Under these conditions, the pressure is unifonn over the 

system if it is assun1ed that rnechanical equilibrium is rapidly established. The entropy 
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production can be expressed as [30]: 

CY = - J' . \IT _ ~ lt. {\7(Jlz- Mn) }r,p 
q T 2 L..-t T 

l=l 

(3.39) 

where, CY represents the entropy production in the polymer solution; J~ is a coefficient 

related to heat flow; 11 represents a coefficient related to diffusivity of zth con1ponent , 

(l = 1, 2, 3, ... , (n -1)). vVith the help of Gibbs-Duhem equation 

n 

( T and p constant) (3.40) 

Using Equation (3.40) to elirninate Jln frorn Equation (3.39), it gives 

-- !'. \IT- ~ 4 . (\7 Mrn}r,p 
(J - < q T2 ~ -" lrn T (3.41) 

l,m-=1 

h A 
~ Cm 

w ere lm = ()zrn + --
Cn 

(l , rn = 1, 2,3 , ... n -1) (3.42) 

The gradients of the chernical potential can also be expressed in tenns of the concentration 

gradients as expressed below: 

n-l 

(\7Jlrn)T,p = L JL~ni \7 Ci 
i= l 

(rn = 1, 2, 3, ... , n - 1) (3.43) 

Where, the matriX elernentS t-l~i are abbreviation fOr the derivatiVeS ( af-lm! 8e,i)T,p,cj (j ::/=- i). 

Using Equations (3.42) and (3.4:3) , the phenornenologica.l equations for the fluxes and the 

thermodynarnic forces, which appear in Equation (3.41), are now 

(3.44) 
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nr n-1 ( c n ) 
v '"""" . J1rnj v Cj, 

Ji = - Liq · T 2 - L-t Liz · Azrn · T (i = 1, 2, 3, ... n - 1) (:3.45) 
l,rn ,j=l 

with Onsager's relations, 

(i,l = 1, 2,3, ... ,n-l) (3.46) 

The coefficients, Lqq in Equation (3.44) and Liz in Equation (3.45), are related to the heat 

conductivity and diffusivity of the cmnponents of the rnixture respectively. The coefficients 

Li.q in Equation (3.45) are characteristics for the phenomenon of thern1al diffusion, i.e. a 

flow of matter (flux) caused by the temperature gradient. It is usually called Ludwig-Soret 

efFect in liquids. A reciprocal phenon1ena, viz. a heat flow caused by the concentration 

gradient also exists, as it is clear frorn Equation (3.44). This effect is called the Dltjour 

effect and its magnitude depends on the coefficient Lql· 

In a closed reservoir with applied ternperature gradient , the concentration gradient will 

build up until, in a final stationary state, the diffusion fio-vv Equation (:3.45) vanishes. The 

concentration gradients are given by: 

vT_ Ln-1 (JL~lj \7 Cj )r,p 
0=-L· ·-- L ·z·Az · -~--tq T2 1 m T ('i = 1, 2, 3, ... n- 1) (3.47) 

l ,m,j=l , 

n-1 ( c n ' nr 
L . J1mj v Cj)T,p v 

L ·z· 4t · = -L· ·-1 L m T 7q T2 (i = 1, 2, 3, ... n- 1) (3.48) 
l,rn,j=1 

n-1 
\1 Cj __ ~ ~ A -1 . ( c) -1 . -1 . L . 
\lT - T ~ ml {l jm Lu tq 

rn,l;i=l 

(j = 1, 2, 3, ... ,n-1) (3.49) 

where , the reciprocal n1atrix of Equation (3.42) is given by [30] 

4-1 .\ 
.. ml = Uml- Cz (rn , l = 1,2,3, ... ,n -l) (3.50) 
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Let us now consider , in sornewhat more detail, the case of a binary solution (n = 2) . Then 

it follows fron1 Equation ( 3.42) that 

(3.51) 

and the phenomenological Equations (3.44) and (3.45) becon1e: 

, 'VT ··· Mt1 J = -L ·- ~ £1 · -.. - · · \?c1 
q .· qq T 2 q c

2
T (3.52) 

(3.53) 

with the Onsager's relation 

(3.54) 

and the inequalities which follows fron1 the fact that the entropy source strength is positive 

definite [30] 

(3 .. 55) 

Instead of the pheno1nenological coefficients occurring in Equations (3.52) and (3.53), the 

following set of coefficients can be introduced: 

L~ , 
rp = T 2 (heat conductivity) (3 .. 56) 

D" = Lql (Dufour coefficient) 
c2T2 

(3.57) 

D' = Llq (therrnal diffusion coefficient) 
c1c2T2 (3.58) 

D __ L11Jltt 
c2T 

(ordinary diffusion coefficient) (3.59) 

The cross effect phenon1ena of therrnal diffusion and Dufour effect are now given by the 

coefficients D' and D" respectively. \Vith the use of the above rnentioned definitions from 
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Equations (3 .56) to (3.59), Equations 3.52 and 3.53 can take the following forms: 

(3.60) 

(3.61) 

Thus, Equations (3 .60) and (3.61) are representative of the cross phenornena of Dvfmtr 

ejJect (heat flow or flux caused by the concentration gradient) and therrnal diffusion or 

Ludwig-Soret effect (mass flow or flux caused by the tern perature gradient) respectively. It 

can be observed from Equation (3.61) that it consists of two parts, nainely thern1al diffusion 

part ( D' c1 c2 · \JT) and ordinary diffusion part ( D · 'V cl). Now, the ordinary diffusion term 

can also be written in terms of the chemical potential difference and rnobility [78]. Equation 

3.61 takes the following fonn: 

(using equation (3.42)) (3.62) 

where, rnobility JVI = L 11 /(c2T), D' is thermal diffusion coefficient, c1 and c2 are the 

respective concentration of cornponent 1 and 2, and p 1 and fL 2 are the respective chemical 

potentials of the component 1 and 2 in the binary solution. 
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CHA ER 4 

GOVERNING EQUATIO SAN 

METHOD OF SOLUTIONS 

This chapter describes the rnodel development for the TIPS method of phase separation 

involving the thennal diffusion phenomena under the externally imposed spatial tempera­

ture gradient in the binary poly1ner solution. Figure 4.1 shows a flowchart of rnathernatical 

rnodelling and cmnputational sinnllation procedures utilized in order to accon1plish the ob­

jectives of the research thesis. As per Section 2.3, the first and the forernost objective of 

this thesis is to develop the matheinatical rnodel based on the available theories, such as 

the non-linear Cahn-Hilliard theory, Flory-Huggins theory and Ltulwig-Soret theory, which 

altogether best describe the TIPS method of the phase separation in a binary polyrner 

solution as well as the thennal diffusion phenomenon under an externally irnposed spatial 

linear ternperature gradient. The ternperature gradient, which is assurned to be linear 

along the axis (i.e. ~c or y - axis) in the polyn1er solution, will be defined later in this 

chapter. Also mobility, A1 which is assurned to be function of concentration of solution, 

will be defined. The n1odel is then solved using the appropriate cornputational methods 

(i.e. numerical n1ethods) and cornputer programn1ing language. Finally, the nun1erical re­

sults obtained frmn the cornputer simulation of the matherrw.tical rnodel are analyzed and 

presented in such a manner that they can be validated with the published experimental 

and/or numerical results if any. 
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Physical Phenomena or Processes: 
F 01111ation of structural anisotropic 

materials via Thermal-Induced 
Phase Separation (TIPS) rnethod in 
polymer solution by SD mechanism 

under the spatial temperature 
gradient in the presence of Thermal 

Diffusion phenmnenon. 

Published 
Results 

Model 
Validation 

Analysis of 
Cmnputer Results 

Scientific Visualization: 
3-D Surface Plots, Contour Plots 

Morphological Analysis, 
Statistical Analysis 

Development 

Implementation 

Computer 
Sirnulation 

Objective listed in Section 1.5 

Non-linear Cahn-Hilliard Theory 
Flory-Huggins Theory 
Ludwig-Soret Themy 
Spatial Temperature Gradient 
Arbitrary Boundary Conditions 

Galerkin Finite Element Method 
Hermitian Bicubic Basis Function 
Euler Predictor-Corrector l'vlethod 
Time Step Controller 

2 GHz Intel Core Duo Processor 
and/or 
Opteron 2.2 GHz @ SHARCNET 
High Performance Computing 

Figure 4.1: A flowchart of rnathen1atical modelling and computational sirnulation proce­
dures for the accomplislnnent of the objectives of the research thesis. 
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In this thesis, the following steps \vere followed for the computational n1odelling and sin1-

ulation of the TIPS n1ethod of the phase separation in the polymer solution involving the 

thermal diffusion phenon1enon. 

1. Specify the independent and the dependent variables of the rnathernatical model. 

The independent variables include time and space, where as the dependent variable 

include the solvent concentration for the TIPS n1ethocl involving the thern1al diffusion 

phenomenon. 

2. Derive the governing tin1e-dependent partial differential equation to describe the 

TIPS rnethod of phase separation via the SD mechanism in a binary polyrner solution 

with an externally irnposed spatial linear ternperature gradient along with thermal 

diffusion phenomenon for the forn1ation of the functional anisotropic n1aterials taking 

into account above rnentioned independent and dependent variables. The non-linear 

Cahn-Hilliard theory, the Flory-Huggins theory and Ludwig-Soret theory are used for 

derivation of the governing equation for the overall process of the phase separation 

in the binary polymer solution. 

3. Derive the appropriate boundary conditions for the study of the process of the phase 

separation (TIPS) in polyrner solution for the formation of the structural anisotropic 

polyrneric materials. The boundary conditions used in the derivation of the governing 

equation are the zero rnass flux and the natural boundary conditions. 

4. N ondin1ensionalize the governing equation and boundary conditions obtained in steps 

2 and 3, that describe the fonnation of the structural anisotropic polymeric materials 

by the TIPS method of phase separation via the SD 1nechanism involving the thennal 

diffusion under the influence of an externally in1posed spatial linear tmnperature 

gradient in binary polymer solutions and the dilnensionless parmneters obtained are 

listed. 
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5. Develop the Galer kin finite elen1ent n1ethod forn1ulations of the dirnensionless govern-

ing equation and boundary conditions obtained in step 4, that describe the fonnation 

of the structural anisotropic polyrneric n1aterials via the TIPS rnethocl of phase sepa-

ration via. the SD rnechanisrn involving the thennal diffusion under the influence of an 

externally irnposecl spatia1 linear ternperature gradient in binary polyrner solutions. 

Galerkin finite elen1ent n1ethod fonnulations include the derivation of equations of 

the weighted residual vector and the jacobian matrix. 

6. Implernent and solve the Galerkin finite element method fonnulations obtained in 

step 5 by choosing the appropriate dirnensionless pararneter values and with the 

help of the cmnputer prograrnming language, such as FORTRAN 77. Investigate the 

influence of the parameters that affect the fonnation of the structural anisotropic 

polymeric rnaterials via the TIPS rnethod of phase separation via the SD 1nechanisn1 

involving the thennal diffusion under the influence of an externally irnposed spatial 

linear temperature gradient in binary polyrner solutions. 

7. Analyze the con1putational shnulation output obtained in step 6 using the scientific 

visualization rnethods. i.e. 3-D surface plots and contour plots and the n1orphological 

analysis. 

8. Validate the sinnllation results using the published expt~rin1Emtal and/or con1puta­

tional (nurnerical) results if any. 

4 .. 1 Generalized Governing Equation 

The continuity equation for n1ass flow is expressed as: 

De -. __, 
- = -v·J at 
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where cis the concentration of solvent in terrr1s of the volurne fraction: and J is the rnass 

flux caused by corr1bined phenorrwna of non-fickian diffusion (uphill-diffusion) and thern1al 

diffusion under an externally imposed spatial temperature gradient in a binary polymer 

solution. Under this conditions, the the rnass flux, J is expressed as below: 

J = -Af(c) · v(p,2 - 1-~ 1 )- Dlc(l- c)· \JT (from Equation (3.62)) (4.2) 

where, Af (c) is the concentration dependent n1obility, J.ll and p 2 are the respective chernical 

potentials of the con1ponent 1 (solvent) and cornponent 2 (polyrner) in the solution, and Dl 

is the coefficient of thern1al diffusion. Above Equation ( 4.2) is composed of of two parts: 

part one represents the TIPS nwthod of phase separation by SD n1echanisrn, and part two 

represents the Lndw,ig-SoTet effect or therrnal diffusion phenornenon in the solution under 

the influence of the temperature gradient. 

Substituting the value of J fron1 Equation ( 4.2) in Equation (4.1), 

De [ . ) . . 1 ( ) J ot = \7 · J\;J ( c · \1 (/12 - JLr) + D c 1 - c · vT (4.3) 

And also, substituting the value of (p.2 - 111 ) frorn Equation (3.20) in Equation (4.3), it 

becomes 

De [ , (a f (c) . . . 2 ) ]· . [ . I ( ) ] ot = v · Af(c) · \1 De· - 2rt.v c + \7 · D c 1 - c . V'T ( 4.4) 

where, f(c) represents the Flory-Huggins (F-H) free energy, and K is gradient energy coeffi-

cient for a polyrner solution. In Equation ( 4.4), the first ternr, on right hand side, represents 

the non-linear Ca.hn-Hilliard theory describing the phase separation in a polyn1er solution 

by the spinodal decon1position (SD) mecha.nisrn, and the second term represents the phe-

nornenon of thennal diffusion arising due to an externally in1posed spatial tenrperature 
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gradient across a polyn1er solution sample. Thus, Equation ( 4.4) presents the overall pro­

cess ofthennal-induced phase separation (TIPS) by the SD mechanisrn involving thermal 

diffusion phenornenon in a binary polymer solution under the tmnperature gradient, and 

therefore , it forn1s the iinportant base of this research work. 

The Flory-Huggins (F-H) free energy, f(c) term in Equation (4.4) can be given as: 

( . kBT [ c (1 -c) . ( ) ( . ] f c) = --;;- N
1 

ln c + N
2 

· ln 1 - c + xc 1 - c) (see Equation (3.5)) (4.5) 

where, kB is Boltzmann's constant , T is a ternperature, v is a cell volurne, .Ll\[1 and .1V2 are 

the respective degree of polymerization of component 1 and 2, and xis Flory's interaction 

paranwter. 

The Flory's interaction parameter, x is known to be the function of temperature and is 

expressed as the following (refer to Subsection 3 .1. 2): 

(4.6) 

where, 'l/J is the dirnensionless entropy of dilution parameter, and () is the theta temperature 

4sl.l Spatial Temperature Gradient 

In this research work, a linear spatial temperature gradient, sirnilar to what Lee et al [22] 

adopted in their work, has been assurned to exist along a binary polymer solution sample. 

Following is the expression for an externally irnposed spatial linear temperature gradient 

across a binary polymer solution samples, which is assurned to exist along the :r:-direction 
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in the sarnple. 

(4.7) 

where, T(:T) is the spatial ternperature, and T1 and T2 are the lower and upper limits of 

the linear ternperature gradient corresponding to the positions x 1 and :r2 on the :r-axis. 

For the one-dirnensional study, the linear ternperature gradient is assurned to exist along 

the study don1ain of length L during the phase separation phenmnena, whereas for the 

two-dilnensional study, the linear spatial ternperature gradient is assurned to exist only 

along the ~r-direction of a square computational domain with the din1ension L x L (i .e. 

0 :::;; :r :::;; L and 0 :::;; y :::;; L). It irnplies that there is no temperature gradient along the 

y-axis in the two dirnensional study (i.e. 8T(y)j8y = 0). 

4.1.2 Concentration Dependent Mobility 

Unlike the conventional nurnerical studies of the Cahn-Hilliard ( C-H) equation, the mo-

bility, 1\1 has been assumed to be the function of concentration of the components in the 

solution (refer to Section (3.4)). Either the slow mode theory or the fast rnode theory can 

be em.ployed to calculate the total mobility of polymer solution. The slow rnode theory 

has been used in this research work, as it better represents the slow diffusion behavior 

exhibited by a polyrner solution. According the slow rnode theory and in absence of the 

entanglement effects, the total mobility can be expressed as: 

111 
= vc(l - c) 

~ 
(4.8) 

where, v is volurne of the segrnent, and ~ is the frictional coefficient per segment of con-

stituent components in the solution. 
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Now, substituting the value off( c) frorn Equation ( 4.5) along with its derivatives in Equa­

tion (4.4) , and then on sin1plification, Equation ( 4.4) reduces to 

De 
Dt 

ks · vA1(c) [·n·r ( 1 1. lnc ln(l - c) ( ··)) (. .. ·)TnT· ax v - - -- + -- - + X 1 - 2c + 1 - 2c v --
v JVr 1V2 .~.rvr IV2 · · DT 

+ \!c. T (~c + N2(11- c) -2x) l + kB. ~1(c) [r(\1c)2 (M~ + N2(1~ c)2) 
2 ( 1 1 ln c ln(1 -c) ·. ) ax 

+ \7 T iVr - 1V2 + 1Vr - JV2 + X ( 1 - 2c) - 4\1 c . T 0 \JT 0 DT 

(

. C) ) ( 1 1 ) , 2 ox + T. 'V~c + 2vc. \JT -- + - 2x + 2(1- 2c) 0 (vT) 0 
-, • 

.Lrvrc "'rv2(1- c) . 8T 

a2x] + (1 - 2c) 0 T · (vT 0 \IT+ T 0 v 2T) 0 DT
2 

- 2r;: 0 vA1(c) · \73c- 2r;: ·A!( c)· \74c 

+ D' · (1- 2c) · vc · \JT + D' · c · (1- c)· \l2T (4.9) 

Substituting Equations (4.6), (4.7), (4.8) and their derivatives in Equation (4.9), and then 

further sin1plifying it, we get 

ac 
at 

ks [(3- 4c + (1 - 2c) lnc) _ (1 -4c + (1- 2c) ln(l- c)) + 4(c _ c2)(2V) _ 1) 
~ Nr JV2 

7/J + ~] vc · \lT + ksT [~ 1 
+ +. -2x(l - 2c)] (\7c) 2

- ( 2~v) (1- 2c)vc · \7;3c 
2 ~ 1Vr 1V2 ~.,. 

ksT [(1- c) c ( 2 )] n 2 .· (2Kv) ( 2 )'r74 + -- + --~ - 2x c - c v c - - c - c v c 
~ 1Vr lv2 . ~ . 

+ D' (1- 2c)vc · \lT (4.10) 

Above Equation (4.10) is the generalized governing equation for the TIPS method of phase 

separation by the SD rnechanisn1 in a binary polyrner solution involving the therrnal dif-

fusion phenornenon under an externally irnposed spatial linear ternperature gradient. 

Based on Equation (4.10), the governing equation for the one-dilnensional study can be 
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expressed as: 

ac 
at 

and sirnilarly, the governing equation for the two dimensional study can be written as: 

ac 
at 

The governing Equations (4.10) , (4.11) and (4.12) are then non-dirnensionalized using the 

scaling relationships presented in Appendix A. The parameters with superscripted asterisk 

represent the di1nensionless variables. Therefore, the din1ensionless form of the generalized 

governing Equation (4.10) is 

oc* * [(3-4c*+(l-2c*)lnc*) (1-4c*+(1-2c*)ln(l-c*)) . . * *2 
8t* D 1V1 - JV

2 
+ 4( c - c ) 

(2 1/; - 1)- '1/J + ~] V"c* · \l*T' + D'T' [~~ + ~2 - 2x(1- 2c')] (\l*c*)2 

(1- 2c*)v*c* · \7*
3 

c* + D*T* [(
1 ~ c') + ~; - 2x(c' - c*')] \7*

2 
c* 

.. 1 1'12 

( 
2 ) 4 . '* ( . ' ( ' c* - c* .· \7* c" + D 1- 2c*)\7*c" · \7*T* 4.13) 
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the dimensionless forn1 of the one-dirnensional governing Equation {4.11) is · given as: 

oc* 

8t* 
D* [ c- 4c* + ~1- 2c*) Inc*) _ c- 4c* + (l~V~c*)In(l- c*)) + 4(c* _ c*') 

1] ( 8c*) (T*- T*) [,_J . 1 l ( 8 :*) (21/J - 1)- ~~ + :- -r - . 
2 1 + D*T* - ·-·· .. +-- 2x(1- 2c*) _c_ 

2 8:r* x2 - ::ri 1V1 JV2 · · 8x* 

(· ~c*.) +D*T* [(1-c') + c* -2x(c*-c*')] (82~~:)· - (1 '-'-2c*)(8c*) 
ox* 1V1 .1.V2 . 8:r* ·. o:r* 

( 83c:) - ( c* - c*z) ( ;]4.c:) + n'* (1 - 2c*) ( 8c*) ·(T; -Tt) ( 4.14) 
ox* o:r* O;T* :r2 - X1 

and sirnilarly, dirr1ensionless form of the two-dimensional governingEquation (4.12) is writ-

ten as shown below: 

oc* 

8t* 
D* [ ( 3 - 4c* + ( 1 - 2c*) ln c*) _ ( 1 - 4c* + ( 1 - 2c*) ln ( 1 - c*)) . ( * _ *2) 

Nr 1V2 + 4 c c 

(27/) - 1)- r~) +- - 2 1 + D"'T* - +-- 2x(l - 2c*) 1] ( oc* ) ( T* - T* ·) . [ -1 1 ] 
. . . 2 ox* ,r2 - ::ri N1 1V2 ' 

(
.De* oc.* 8c* oc*) *· * [(1- c*) c*. ·. * *2] (82

c* 8
2
c*) ~·-0 +:::,) ·-

8
. +D T N +T\T -2x(c -c) ~+-0 2 u x * · ::r* uy y* 1 Jv2 u:T* y* 

( 
EJc* o;3 c* oc* o3 c* oc* o3 c* 8c* 83 c* ) 

(1 -2c*) -·--, + - · +-· " +-.- · -
OJ.:* ox*·~ ox* a~r*oy*2 oy* D:r*- oy* oy* 8y*3

. 

( c* - c*2) ( a?4c: + 2 a a:~· ' + [)?4~:) + D''" (1 - 2c*) (a?c ... *) (T2 -T,') ( 4.15) 
x* ::r"' y* y* . · 2·* x2 - x1 

The dimensionless governing Equations (4.14) and ( 4.15) are then solved nurnerically using 

the Galerkin finite elernent m.ethod, \~.rhich is discussed later in the chapter. 

4 .. 2 Auxiliary Equatio11s 

As n1entioned earlier, the infinitesimal concentration fluctuations are always present in the 

polyrner solution initially even in the single-phase region. These infinitesimal concentration 

fluctuations are sufficient to drive the process of phase separation by the spinodal decompo-

sition (SD) 1nechanis1n. Therefore , the expression of the dirr1ensionless initial concentration 
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can be given as: 

c*(t* = 0) = c~ + <Sc*(t* = 0) ( 4.16) 

where, c0 is the dirnensionless initial concentration , and 8c* ( t* = 0) represents any devi-

a.tion from the average initial concentration c0 or the infinitesimally sn1a.ll concentration 

fluctuations, which rnay be present in the solution. Chan and Rey [28] used the l\'fonte 

Carlo sirnulations incorporated with the linearization approxirnation and the equipartition 

theorem in their work for the developn1ent of the expression for the initial condition for 

the phase separation in polyrner solution. 

4.2.1 Boundary Conditions 

In order to solve Equations ( 4.14) and ( 4.15) nurnerically, two kinds of boundary conditions 

are taken into consideration: the zero n1ass flux boundary conditions and the natural 

boundary condition. 

The zero 1nass flux boundary condition refers to the system in which it is assumed 

that there is no exchange of n1ass with its surrounding. It is obtained by setting 

Equation ( 3. 21) equal to zero [ 84]. For one-dirnensional study, the dimensionless 

form of the zero mass flux boundary condition can be expressed as follows [28]: 

83c* 
--3 =0 
a~r* 

for t* > 0, and ;x:* = 0 & ::r* = 1 ( 4.17) 

and si1nilarly, the di1nensionless forn1 of the zero n1ass flux boundary conditions for 

the two-dimensional study is given as: 

EJ3 c* 83c* + ----:- = 0 
ox* 3 ox* oy*

2 for t* > 0, and x* = 0 & x* = 1 ( 4.18) 
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83 c* 83c* 
~+a 2a . = o oy* :r:* y* 

for t* > 0, and y* = 0 & y* = 1 (4.19) 

The natural boundary condition is obtained from the variational analysis, and is ex-

pressed in generalized fonn as [85]: 

('Vc)·n=O (4.20) 

where, n is the outward unit normal to a bounding surface. The dirnensionless natural 

boundary condition for the one-dimensional study is given as: 

oc* 
- = 0 
8:r:* 

for t* > 0, and x* = 0 & ~r* = 1 ( 4.21) 

In addition to Equation ( 4.21), the dirnensionless natural boundary condition for 

two-dimensional study in y-direction is 

oc* 
-- =0 
[)y* 

for t* > 0, and y* = 0 & y* = 1 

4 .. 3 Method of Solution 

( 4.22) 

As the governing equation derived in the study is a non-linear fourth order partial differ-

ential equation, the nurnerical rnethod of finite elen1ent ( Galerk'in finite element m.ethod 

to be specific) is ernployed to solve it. In the finite elernent rnethod, the dornain is di-

vided into subdomains cmnmonly referred to as finite ele·rnents [86]. These subdomains 

or elements are called the fundan1ental building block of the finite elernent rnethod. The 

Galerkin finite elernent n1ethod for the two-dimensional problern is described briefly in the 

following subsection, and also described are the first order irnplicit Euler predictor-corrector 

1nethod (for tirne integration) and an adaptive t-ime-.step control mechanisrn to reduce the 
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computational tirne while maintaining accuracy of the nun1erical solution. 

4.3.1 Galerkin Finite Element Method 

Consider a general non-linear partial differential equation with appropriate initial and 

boundary condition as shown below: 

Lu(·)- f = 0 (4.23) 

where, L is a co~efficient of function u(·)~ and f is an arbitrary constant. Let tta. be the 

approxirnate solution of the above mentioned partial differential Equation ( 4.23) and can 

given by following expression: 
N 

'Ua(·) = L 11j · r/Jj( ·) ( 4.24) 
j=l 

where, 11j represents the set of unknown coefficients; ¢j represents the set of linearly in-

dependent functions, which are chosen to be polynornials that satisfy certain boundary 

conditions irnposed on the given equation; and N is the nurnber of nodes in the spatial 

discretization of the cmnputational domain. Substitution of u0 from Equation ( 4.24) into 

Equation (4.23) results in the residual R(·) as given below. 

LtLa ( ·) - f = R( ·) # 0 ( 4.25) 

Here, the objective is to find the set of undetennined coefficients u.i such that the residual 

is rninirnized in some sense. A straightforward scheme would be to set the double integral 

of R( ·) to zero for two- dirnensional case to yield the residual vector Fi. 

Fi = J { R(·) · wi(·)dA = J { R(·) · ¢i(-)dA = 0 
jA }A 

(where i = 1, 2, 3, ... , 1V) (4.26) 



where, ?.Dis represent the weighting functions. For Galerkin finite element n1ethod, the 

weighting functions are chosen to be the basis functions, ¢is (i.e. Hermitian bicubic basis 

function to be specific). Equation (4.26) yields a set of N independent sirnultaneous equa-

ticms, which can be solved simultaneously with the use of both Newton-Raphson iterative 

n1ethod and first-order irnplicit Euler predictor-corrector n1ethod. 

The Hermitian bicubic basis functions are the appropriate choice for the basis functions for 

solution of the two-diinensional fourth-order partial differential equations such as the one 

represented by the governing Equation (4.13). The approximate solution in tv.ro din1ensions 

is given by 

( 4.27) 
IV · • • ) , ' . 8u j I avj I 01Lj 

1J { 0

) = "'""'. (1ln' 0 ¢' Q + -- 0 (p' 1 + - 0 

(J)n' 2 + --- 0 dJ' ') 
a\ · ~ J J, [h: · J, O?.J 'J, O.r:8y 'J,· 

j=l • . 

Equation (4.24) can also be expressed as shown below by consolidating the coefficients 

together as Uj and by consolidating the Hermitian bicubic basis functions together as <I> j. 

4N 

ua(·) =I.: uj . <Pj (4.28) 
j=l 

where, 

{ .J = 1, 5, 9, 13, ... , (4.LV- 3) } uj = llk, <Pj = </Jk,O for 
k = 1,2,3,4, ... ,JV 

( 4.29) 

U· 
8v,k 

<Pj ¢k,l for { .J 2, 6, 10, 14, ... , (41V - 2) } = --
' = J 8:r k 1, 2, 3, 4, ... , ~N 

(4.30) 

U· 
01lk 

<P· ¢k,2 for { .J 3, 7, 11, 15, ... , (4JV- 1) } = --
' = J 8y J 

k 1,2,3,4, ... ,1V 
( 4.31) 
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for { j = 4,8,12,1. 6, ... ,41V} 
k = 1,2, 3, 4, ... ,N 

(4.32) 

The weighted residual of the dirnensionless governing Equation (4.1:3) is expressed as fol-

lows: 

[
1 

[
1 [~c: _ D* { (3- 4c* + (lr - 2c*) ln c* ) _ (1- 4c* + (1 ~ r2c*) ln(1- c*)) 

J o J o at j\j 1 l'v 2 

+ 4( * *
2
)(') ' 1' ' 

1
} 't/* * 't!*T* D*T* { -

1 1 
2 (1 2 *) } c - c ' ... .'lj) - ) - '7j) + - v c . v - -T + - - X - c 

2 1Vl 1\12 

(\7*c*)2 + (1 - 2c* )\7*c* · \7*
3
c* + (c*- c*

2
)V*

4
c* - n'*(1- 2c* )v*c* · \l*T* 

D*T* { (
1

- c*) + c* - 2x(c* - c*
2
)} \7*

2 
c*] <pid:r* dy* , (i = 1~ 2, 3, ... , N)(4.33) 

JV1 1V2 

where, 
4N 

c* = L cj. <pj 
j=l 

( 4.34) 

and V * = (8/Dx*)z + (8/Dy*)] for two-dirnensional study. Equation (4.34) is equivalent 

to Equation ( 4.28). The fourth-order partial derivative tern1 in Equation ( 4.33) can be 

reduced to lower order by using the divergence theorem 

( 4.35) 

where, a is a scalar, (3 is a vector, and Sis the boundary of the domain A. 

4.3.2 Euler's Predictor-Corrector Method 

This subsection briefly describes the first-order in1plicit Euler predictor-corrector rnethod , 

which is employed for tirne integration of the governing equations. A fundamental source 

of error in Euler 's rnethod is that the derivative at the beginning of the interval is assumed 

to apply across the entire interval. One rnethod to solve the estin1ate of the slope involves 
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the detennination of two derivatives for the interval, one at the initial point and one at 

the end point. The two derivatives are then averaged to obtain an improved estin1ate of 

the slope for the entire interval. This 1nethod is also called H ev:n 18 1nethod, and is depicted 

graphically in Figure 4.1 in which Figure ?? describes the predictor method (also called 

Eulerjs forward rnethod), and Figure?? describes the corrector ·method (also called Euler's 

backward ·method). 

Now, the slope at the beginning of an interval y~ 

y 

Slope =f(xi+I, Y0i+I) 

1:, Exact 
Curve 

---------------------------- -------~-~--~~> 
X. 1 

(a) Predictor 

X 

:Zli + f (Xi, Yi) is used to extrapolate 

Exact 
Curve 

---------- _________ J.__ ____ ~-- ------~ 

X 

(b) Corrector 

Figure 4.2: The first order implicit Euler's Predictor-Corrector rnethod [6] 

linearly to YI~ v 

(4.36) 

where, v?+ 1 represents the intennediate prediction, and his the step-size (i.e. h = xi+l -xi)· 

Equation ( 4.36) is called a Pred·ictor eqv.atiorL It provides an estirnate of Y?+l that allows 
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the calculation of an slope at the end of the interval: 

Y~+l = !( :.ri+I, u?+I) ( 4.37) 

Two slope Equations (4.36) and ( 4.37) can be con1bined to obtain an average slope for the 

interval: 
I I 

I Yi + Yi+l 
fj = ----

2 
f( :ri, Yi) + J( ~ri+l, Y2+1) 

2 
( 4.38) 

This average slope is then used to extrapolate linearly frorn y1 to Yi+l using Euler's rnethod 

[6]. 

( 4.39) 

which is called a Corrector equation. Note that because Equation ( 4.39) has Yi+l on the 

both sides of the equal sign, it can be applied in an iterative fashion. That is , an old 

estin1ate can be used repeatedly to provide an irnproved estirnate of Yi+l· It should be 

understood that this iterative process does not necessarily converge on the true answer , 

but will converge on an estirnate with a finite truncation error, Ea, as demonstrated by 

following expression. 
j j-1 

leal = Yi+l ~ Yi+l X 100% 
Yi+l 

(4.40) 

where, y{;t and y{+1 are the results frmn the prior and the present iteration of the corrector, 

respectively. 

4.3.3 Time Step-Size Control 

There are ways to estirnate the local truncation error (LTE) , and it can be used to adjust 

the step-size. In general, the strategy is to increase the step-size, if the error is s1nall and 

decrease it, if the error is large. Press et al. have suggested the following criterion to 
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accomplish this [87]: 

I 
.6-new Ia 

hne'ID = hpresent ;\ 
U present 

(4.41) 

where, hpresent and hnew are the present and the new step sizes, respectively. ~present is the 

cornputed present accuracy, ~new is the desired accuracy, and n· is a. constant power that 

is equal to 0.2, when the step-size is increased (that is, when L':lpresent :=:; .6.new) and 0.25, 

when the step-size is decreased ( .6-present > .6.new) . 

Constant Step-Size: In general , experiences indicate that an optimal step-size should be 

srnall enough to ensure convergence -vvithin three iterations of corrector. In addition, 

it rnust be srnall enough to yield a sufficiently small truncation error. At the same 

time, the step-size should be as large as possible to rninin1ize runtirne cost and round-

off errors. As \vith other methods for ODEs, the only practical way to assess the 

rnagnitucle of the global error is to cornpare the results for the sarne problem but 

with a halved step-size. 

Adaptive Step-Size: It is also called variable step-size. Two criteria are typically used 

to decide whether a change in step-size is warranted. First, if Equation 4.40 is greater 

than some prespecified error criterion, the step-size is decreased. Second, the step-size 

is chosen so that the convergence criterion of the corrector is satisfied in two to three 

iterations. The criterion is intended to account for the trade-off between the rate of 

convergence and the total number of steps in the calculation. }or srnaller step-size, 

the convergence will be rnore rapid, but more steps are required . For larger step-size, 

the convergence is slower, but fewer steps result. Experience suggested that the total 

steps will be rninimized if step-size is chosen so that · the corrector converges within 

two to three iterations. Therefore, if over two (or three) iterations are required, the 

step size is decreased and if less less than two (or three) iterations a.re required, the 

step-size is increased. 
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Finally, the set of Equations (4.33) are solved for the unknown coefficients , CJ . Since 

this is a set of non-linear tirne dependent ordinary differential equations for cj ' they a.re 

solved silnultaneously with a Newton-Raphson iterative n1ethod. The Jacobian matrix of 

partial derivatives is determined frorn Jii = DFd 8CJ , and the convergence is assurned to 

occur, when the length of the vector of the difference between two successive cmnputed 

solution vector is less than 10-6 . The finite difference rnethod is used to discretize tin1e, 

and a first-order in1plicit Euler 's predictor-corrector 1nethod is used for tilne integration. 

In order to n1inirnize the cmnputational tirne without losing the accuracy at the same time, 

an adaptive time step controller suggested by Finlayson (88] is employed. As far as the 

size of nwsh is concerned, a rnesh of 32 x 32 nodes is ernployed in this cmnputational 

study. Since each node contains four variables (refer to Equation (4.27)) , the resultant 

J a.cobian matrix is of size 4096 x 4096, i.e. a whopping 17 rnillion ( approx.) entries in this 

matrix alone. In addition, other 1nesh sizes used in this cmnputational study are 21 x 21 

and 35 x 3.~. The nu1nerical results of this cmnputational study were obtained frorn the 

simulations performed on SHARCNET High Perforrnance co·mpv.ting Facility (CPU: 4 x 

Opteron 1@2.2 GHz & RAIVI: 4.0 GB). 
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CH T 5 

RESULTS I USSION 

This chapter presents and discusses the sirnulation results obtained by solving the two­

dirnensional mathernatical n1odel (see Equation (4.15)) representing the phase separation 

mechanis1n (i.e. TIPS via SD) in binary polyn1er solutions under an externally irnposed 

spatial linear ten1perature gradient and also involving the therrnal diffusion phenmnenon. 

This chapter has been divided into the following three sections, which will help us under­

stand and analyze the potential outcornes of the research thesis. 

1. The Structures and Patterns Fonnation 

2. The Time Evolution of the Dimensionless Structure Fa.etor 

3. The Transition Tirne from the Early Stage to the Intermediate Stage 

5el The Str"Ltctures and Patterns Formatio11 

Figure 5.1 shows an asymrnetric phase diagram of a binary polymer solution used in this 

study. The phase diagrarn is a plot of dirnensionless ternperature, T* versus din1ensionless 

solvent concentration, c* and it has been constructed following the procedure outlined 

by Kurata (77] ; the procedure is briefly discussed in Subsection 3.1.2, and the parameter 

values used in the calculation are given in Table B.l in Appendix B. The solid curve 

represents the binodal curve, and the dashed curve is the spinodal curve. In addition, 

the three intervals AB, CD, and EF in the unstable region indicate the locations in the 
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phase diagram for which sitnulation results will be presented and discussed in this chapter. 

These three intervals represent the overall depth of an externally imposed linear spatial 

temperature gradient across a polytner solution used in the sirnula.tion of the TIPS method 

of phase separation. Locations of these three intervals in the phase diagrarn highlight the 

rnain difference in SD pattern forrnation phenmnena. The intervals AB and EF are at 

off-critical concentrations, (c~ < <) and (c~ > c~), respectively, whereas the interval CD is 

at critical concentration, ( c0 = c~). Table 5.1 lists the phase diagrmn coordinates ( c0, T*) 

of these three intervals, which represent the initial conditions used in the sin1ulations. 

0.80 

0.75 

// '\ 
0.70 \ 

I \ 
I \ 

*h 0.65 I \ 
I A CE \ 

I I I I \ 
0.60 I \ 

I B DF \ 
I \ 

0.55 I \ 
I \ 

I \ 
0.50 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
* c 

Figure 5.1: An asyn1metric phase diagram for a binary poly1ner solution calculated frorn 
the Flory-Huggins theory using .1V1 = 1, & N2 = 10. The solid curve is the binodal curve, 
and the dashed curve is the spinodal curve. The c* coordinates of the initial conditions 
used in the sin1ulations are: 0.6 for interval A .. B (off-critical quench), 0. 7597 for interval 
CD (critical quench) and 0. 8 for interval EF (off-critical quench). Intervals AB, CD, and 
EF represent the overall depth of the spatial linear ternperature gradient irnposed on the 
polyrner solution san1ple. 
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Table 5.1: Parameter values of the selected initial conditions (see Figure 5.1) 

Interval cO T,* 1 T.* 2 

AB 0.6 0.6 0.62 

CD 0.7597 0.6 0.62 

EF 0.8 0.6 0.62 

Note that Table 5.1 represents a srnall sarnple of nurnerous sirnulations perfonned for the 

study of the phase separated structures and the pattern forrnation during the overall phase 

separation process (TIPS via SD) involving the therrnal diffusion phenornenon in binary 

polyrner solutions under an externally imposed spatial linear temperature gradient. The 

results, based on these sirnulation cases, are reflective of all the simulations performed for 

this study, and also, these results are sufficient to fulfil the objectives of the thesis. Figure 

5.2 shows the time evolution of the dirnensionless spatial concentration profile, c*(1:*, y*) 

(first column) and patterns (second column) fonned during the phase separation phenorn­

ena (TIPS via SD) involving thennal diffusion under an externally imposed spatial linear 

tern perature gradient corresponding to interval AB in the phase diagran1 (see Figure 5.1), 

using a dimensionless diffusion coefficient, D* = 8 x 10~) and a dirnensionless thern1al dif­

fusion coefficient, D'* = 1.0 x HJ5 . The din1ensionless tin1es are: t* = 5.38 x 10-5 (first 

row), t* = 6.87 x 10-5 (second row), and t* = 8.01 x 10-5 (third rovv·). The black regions 

(white regions) in patterns represent solute-rich regions (solvent-rich regions) with c* < c~ 

(c* > c~), where c~ = 0.7597 denotes the dimensionless critical concentration of the solvent. 

This sirnulation represents pattern formation via the SD rnechanism for a non-unifonn off-

critical quench case with a dirnensionless initial average concentration, c0 = 0.60, and the 

resultant rnorphology is of droplet-type. The phase separated structures consist of droplets 

of solvent dispersed unifonnly in the solute (i.e. polyrner) n1ediurn. 
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Figure 5.2: Spatial concentration profiles, c*(:r*, y*) (first colurnn) and patterns (second 
column) corresponding to the interval AB (refer to Figure 5.1) for D* = 8 x 103 and 
D'* = 1.0 x 105 at the following dirnensionless times, t*: 5.38 x lO~.s (first row), 6.87 x 10-5 

(second row) and 8.Cn x 10-5 (third row). The black regions (white regions) in patterns 
represent solute-rich regions (solvent-rich regions) with c* < c~ (c* > c~), where c~ = 0.7597 
denotes the dirnensionless critical concentration. The figure corresponds to a non-unifonn 
off-critical quench case with c~ = 0.60, and the resultant pattern is of droplet-type. 
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Figure 5.3 shows the tirne evolution of the din1ensionless spatial concentration profile, 

c*(x*, y*) (first colun1n) and patterns (second column) forrned during the phase separation 

phenon1ena (TIPS via SD) involving thermal diffusion under an externally irnposed spatial 

linear temperature gradient corresponding to interval CD in the phase diagram (see Figure 

5.1), using a din1ensionless diffusion coefficient D* = 8 x 103 and a dirnensionless ther­

rnal diffusion coefficient, D'"' = 1.0 x 105 . The dirnensionless times are: t* = 2.98 x 10-5 

(first row) , t* = 3.44 x 10-5 (second row), and t* = 6.93 x 10-5 (third row). The black 

regions (white regions) in patterns represent solute-rich regions (solvent-rich regions) with 

c* < c; ( c* > c:). This sirnulation represents pattern forrnation via the SD n1echanisrn 

for a non-uniform critical quench case with a dimensionless initial average concentration, 

c~ = 0.7597, and theresultant rnorphology is of transient interconnected-type structures. 

Figure 5.4 shows the tin1e evolution of the dimensionless spatial concentration profile 

c*(x*, y*) (first colurnn) and patterns (second colurnn) forn1ed during the phase separa­

tion (TIPS via SD) phenomena involving therrnal diffusion under an externally imposed 

spatial linear teinperature gradient corresponding to interval EF in the phase diagrarn (see 

Figure 5.1), using a dirnensionless diffusion coefficient, D* = 8 x 103 and a dimensionless 

therrnal difi'usion coefficient , D'" = 1.0 x 105 . The dimensionless tirnes are: t* = 6.68 x: 10-5 

(first row) , t* = 7.86 x 10-·5 (second row), and t* = 10.58 x 10- 5 (third row). The black 

regions (white regions) in patterns represent solute-rich regions (solvent-rich regions) with 

c* < c~ ( c* > c~). This sirnulation also represents pattern fonnation via the SD rnechanisrn 

for a non-unifonn off-critical quench case with a dirnensionless initial average concentra­

tion, c~ = 0.80, and the resultant morphology is again of droplet-type. But, unlike the 

simulation results corresponding to the interval AB, the phase separated structures, fornred 

in the sitnulation corresponding to the interval EF, consist of droplets of solute (i.e. poly­

mer) dispersed uniforrnly in the solvent rnediurn (reversal of black and white regions, refer 

to Figures 5.2 and 5.4). 
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Figure .5.3: Spatial concentration profiles) c*(x*, y*) (first colurnn) and patterns (second 
colurnn) corresponding to the interval CD (refer to Figure 5.1) forD* = 8 x 103 and D '* = 
1.0 x 105 at the following dirnensionless times, t*: 2.98 x 10-5 (first row), 3.44 x 1()-·5 (second 
row) and 6.93 x 10-5 (third row). The black regions (vvhite regions) in patterns represent 
solute-rich regions (solvfmt-rich regions) with c* < c; (c* > c;), where c~ = 0.7597 denotes 
the dirnensionless critical concentration. The figure corresponds to a. non-unifonn critical 
quench case with c~ = 0. 7597, and the resultant pattern is of transient interconnected-type 
structures. 
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Figure 5.4: Spatial concentration profiles, (:r*, y*) (first cohnnn) and patterns (second 
column) corresponding to the interval EF (refer to Figure 5.1) for D* = 8 x 103 and 
D'* = 1.0 x 105 at the following dimensionless times, t;*: 6.68 x 10-5 (first row), 7.86 x 10·-5 

(second row) and 10.58 x 10-5 (third row) . The black regions (-vvhite regions) in patterns 
represent solute-rich regions (solvent-rich regions) with c* < c~ (c* > c~), where c; = 0.7597 
denotes the dhnensionless critical concentration. The figure corresponds to a non-uniforrn 
critical quench case with c0 = 0.80, and the resultant pattern is of droplet-type. 
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Now, analyzing the sirnulation results presented by Figures 5.2, 5.3 and 5.4, it can be de­

picted that during the phase separation n1echanisrn of TIPS via SD involving the thermal 

diffusion phenornenon under an externally irnposed spatial linear temperature gradient for 

non-unifonn off-critical quench cases (intervals AB and EF in Figure 5.1), theresultant 

pattern or 1norphology fonnation is of droplet-type, whereas for a non-uniforn1 critical 

quench case (interval CD in Figure 5.1} , the resultant pattern or n1orphology formation is 

of interconnected-type structures. It should be noted that the pattern or rnorphology for­

rnations in the simulation cases studies in this work, are anisotropic in nature, which is clue 

to the fact that the phase separation is induced by non-uniform (under spatial linear tem­

perature gradient) quenching of the polymer solution. The shnulation results describing 

the fonnation of droplet-type rnorphology at intervals AB (Figure 5.2) and EF (Figure 5.:3) 

(off-critical non-uniforn1 quench cases) and the formation of the interconnected-type struc­

tures at interval CD (Figure 5.4) {critical non-uniform quench case) are consistent with 

the experi1nental results presented by Kyu et al [89] and Tanaka et al [90). In addition~ 

these results are also in good agreernent with the nu1nerical results presented by Copetti 

and Elliott [91], Chakrabarti [92], Brown and Chakrabarti (93), Chan and Rey [28, 33], and 

Jiang and Chan [1 9). l\:Ioreover, analyzing the spatial concentration profiles and patterns 

in Figures .5.2 , 5.:3 and .5.4, it is interesting to note that the initiation of the phase sepa­

ration phenornena begins at the low ternperature region of the polyrner solution sample at 

early times, and the phase separated regions grow over tin1e increasingly from the region, 

~r:* = 0 to :r* = 1 to occupy the entire solution sarnple area. This kind of n1orphological 

developrnent is due to the externally imposed spatial linear ten1perature gradient across 

the polyrner solution smnple, which induces the effect of differential quench along the :c* ­

direction. At low ternperature region, i.e. close to x* = 0, srnall droplets are fonned 

initially at early stage clue to the deep quench effect and become larger at later tirnes clue 

to coarsening in the late stage, whereas at the high ternperature region, i.e. close to :r* = 1, 

fairly large droplets are formed initially at early stage due to the shallow quench effect, 
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and that is why the resultant pattern or n1orphology forrnation is of anisotropic in nature. 

And also, since the droplets are fonned at different tirnes due to the difference in quench 

depth across the polyrner solution sarnple in x* -direction, the droplets will undergo the 

thre(~ stages (i.e. the early stage, the intermediate stage and the late stage, refer to Figure 

1.4) of SD at different tirnes [22]. But, after certain period of time of phase separation, the 

droplets size in both low and high ternperature regions becornes apparently uniforn1, as it 

is evident frmn Figures 5.2 and 5.4. These anisotropic rnorphological results are in good 

agreement with the experimental results presented by lVIatsuyama et al [16 , 56] and nu­

merical results presented by Lee et al [22]. Other important phenmnenon, which could be 

contributing to the above n1entioned n1orphological developrnent, is the thennal diffusion 

phenon1enon or Ludwig-Soret effect . As discussed earlier, a spatial ten1perature gradient 

applied to a fluid mixture generally induces net rnass flows across the n1ixture, which leads 

to the fonnation of concentration gradients at rnicroscopic level in the mixture. This cross 

effect between ternperature and concentration gradient is known as Ludwig-Soret effect 

or thermal diffusion phenon1enon. These rnicroscopically induced concentration gradients 

also increase the total free energy of the solution sufficiently to enhance the phase sepa­

ration process in a polyrner solution by the spinodal decornposition (SD) rnechanism, as 

the initial conditions of the solutions are rnaintained such that the quench interval of the 

solution always lies in the spinodal region of the phase diagram (see Figure 5.1 and Table 

5.1). 

Apparently, it is very difficult to visualize the effect of the thennal-diffusion on the overall 

phase separation mechanism in a polyrner solution, as there are no visual differences in 

the pattern or rnorphological development with or without consideration of the thermal­

diffusion phenmnenon at microscopic level. Therefore, in order to identify the effect of 

the thennal diffusion phenomenon on the overall phase separation rnechanism (TIPS via 

SD) in a polyrner solution n1icroscopically, the tirne evolution of the dirnensionless struc-
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ture factor and the dimensionless transition tilne can be utilized, which will help us better 

understand the characteristics of the phase separation mechanisn1 in a polyn1er solution. 

5.2 Time Evolution of Dimensionless Structure Factor 

The dirnensionless structure factor is an in1portant parmneter used to characterize the 

developn1ent of phase separated don1ains by the SD n1echanisrn in polymer solutions or 

blends, and it helps relate the nurnerical results and experirnental studies perfonned on the 

phase separation rnechanisn1 in poly1ner solutions. Therefore, the tin1e evolution of the two­

phase structures, such as ones produced during the phase separation process in the polymer 

systems studied in this work, can also be quantified using the dirnensionless structure 

factor , S*(k*, t*). Before, we jump onto the dirnensionless structure factor calculation, it is 

very important to understand the relationship between the dirnensionless structure factor, 

S*(k*, t*) and the scattered light intensity, I 8 in the s1nall angle light scattering (SALS) 

experinwnts, which are carried out to study the extent of phase separation in polyrner 

solutions or blends. lVIatherna.tically, the relationship between the scattered light intensity, 

Is in srnall angle light scattering (SALS) experirnents and the dimensionless structure 

factor , S* (k*, t*) in the numerical study for the phase separation meehanisrn in polymer 

solutions or blends is of following forrn [91 , 94] . 

Is(q ,t) ex S*(k*,t*) = IA*(k* ,t*) j2 fork*= q (.5.1) 

\Nhere, Is is the scattered light intensity, q is the scattering wave vector or wave nurnber , 

8* (k*, t*) is the dirnensionless structure factor, k* is the two-dimensional position vector , 

and A* (k* , t*) is the magnitude of the Fourier transfonn of the concentration fluctuations 

in the system. Thus, experiinental light scattering data is directly proportional to the di­

Inensionless structure factor and a detailed discussion of the development of this expression 
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(Equation (5.1)) can be found elsewhere [94]. The following sumrnarizes the characteristics 

of the early stage to the intennecliate stage of phase separation by the SD rnechanisrn in 

relation to the light scattering data obtained from the SALS experirnents [7]. 

Early Stage: According to the linear Cahn theory [78] in the early stage of SD, Is can 

be related with tirne t as: 

I 8 (q, t) ex I 8 (q, t = 0) exp [2R(q)t] (5.2) 

where, R( q) is a growth rate of the concentration fluctuation. \Nave nurnber, q is 

given by following expression: 

(47r·n) . (e) q = To Sln 2 (5.3) 

Here, n is the solution refractive index, and .\0 is the wavelength of light in vacuo. 

R(q) can be correlated to q as: 

(5.4) 

where, Dapp is the apparent diffusion coefficient, and qm is the wave nurnber of 

rnaxirnum scattered light intensity. Equation (5.2) in1plies that the scattered light 

intensity, Is grows exponentially during the early stage of the phase separation by the 

SD mechanisrn and the growth rate of the concentration fluctuation, R(q) is weakly 

non-linear as can be observed from Equation (5.4). Therefore, a plot of natural log 

of the scattered light intensity given by Equation (5.2) should produce a straight line 

for the early stage of phase separation by the SD nrechanism. 

Inter1nediate Stage: During the intermediate stage of the phase separation by the SD 

nrechanism, the scattered light intensity continues to increase, but at a slower rate 
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than in the early stage of phase separation by the SD rnecha.nisn1. And also, in the 

intennediate stage, the wave nurnber q decreases and the wavelength .X increases, 

which is due the fact that q ex * (see Equation (5.3)). 

A typical plot of the scattered light intensityj Is versus the wave number, q in the early 

to the beginning of the intennediate stages for phase separation by the SD rnechanisn1 is 

shown in Figure 5.5. 

Increasing time, t 

Wave number, q 

Figure 5.5: Typical light scattering profiles showing the time evolution of phase separation 
by the SD mechanism in the early stage to the beginning of the intern1ediate stage in the 
small angle light scattering (SALS) experilnent. Each profile represents scattered light 
intensity at certain tirne, t. The scattered light intensity, 18 is increasing with tirne, while 
the wave nun1ber, q remains constant, which is typical characteristic of the early stage of 
SD [7]. 

Thus, in sumn1a.ry, the dirnensionless structure factor, S*(k*, t*) and the dirnensionless wave 

(position) vector, k* closely resmnble the scattered light intensity, 18 (q, t) and wave nurnber, 

q in the small angle light scattering (SALS) experiments perfonned for the phase separation 

studies in polyn1er mixtures , respectively (refer to Equation (5.1)). The dimensionless 
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structure factor , S*(k*, t*) is calculated sirnply by taking the squares of the magnitude of 

the Fourier transforrn, A* (k*, t*) of the concentration fluctuations in the systern. Therefore, 

from Equation ( 5.1), the dilnensionless structure factor can be expressed as: 

2 

S'(k*,t*) = \A*(k', t*)\
2 

= ~~ (cm,n - co)exp (~i (rnk, +nky)) (5.5) 
m=U n = O 

where, Cm,n is the concentration of solvent at node, (rn, n), c0 is the mean solvent concen-

tration , and k* is the two-dirnensional position vector, (kx, ky) in Fourier space. In order to 

calculate the din1ensionless structure factor , 8* (k*, t*), a sn1all computer prograrn written 

in NIATLAB R2007a was used to detennine the Fast Fourier Transforn1 (FFT), A*(k*, t*) 

of the simulation results (sarnple data) at a specific tin1e, t* and then taking the square of 

this FFT results yields the dirnensionless structure factor. Table 5.2 lists the dirnension-

less parameters used in four simulation ca'3es considered for the investigation of the effect 

thermal diffusion phenon1enon during the phase separation rnechanisn1 in binary polyrner 

solutions under an externally in1posed spatial linear ten1perature gradient. 

Table 5.2: Dimensionless n1aterial parameters used in the siinulation study of the investi­
gation of the effect of thermal diffusion phenmnenon on TIPS via the SD mechanism under 
an externally irnposed spatial linear ternperature gradient in binary polymer solutions. 

Dhnensionless Par ameters 
Case 

n'* Nt N2 cO D* 1/J T* T.* 1 2 

1 1 10 0.55 8.0 X 103 0 1.0 0.60 0.62 

2 1 10 0.55 8.0 X 103 1.0 X 105 1.0 0.60 0.62 

3 1 10 0.55 8.0 X 10~3 3.0 X 105 1.0 0. 60 0.62 

4 1 10 0.55 8.0 X 103 5.0 X 105 1.0 0.60 0.62 
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Table 5.2 represents a srnall san1ple of nurnerous sirnulations performed in this study for 

the investigation of the effect of thern1al diffusion phenon1enon or the Ludwig-Soret effect 

on the overall phase separation rnechanism in binary polyrner solutions and the results, 

based on these sin1ulations, are sufficient to fulfil the objectives of the thesis. Figures 5.6, 

5.7, 5.8 and 5.9 sho-vv the ti1ne evolution of the dimensionless structure factor (plot of struc­

ture factor , S*(k* , t*) vs wave vector , k*) for the sirnulations corresponding to the thermal 

diffusion coefficients: n'·· = 0 (Case 1), D'* = 1.0 x 105 (Case 2), D'* = 3.0 x 105 (Case 3) 

and D'* = 5.0 x 105 (Case 4), respectively (refer to Table .5.2 for other parameter values). 
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Figure 5.6: The tirne evolution of the dirnensionless structure factor, S*(k*, t*) for the 
sirnulation corresponding to the thernral diffusion coefficient, D'* = 0 (refer to case 1 in 
Table 5.2 for other pararneter values). 

Referring to these Figures 5.6 to 5.9, it can be observed that the value of the dimension-

less structure factor increases exponentially with tirne during the early stage of the phase 

separation by the SD rnechanisrn and reaches rnaximurn as it approaches beginning of the 
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Figure 5.7: The tin1e evolution of the dirnensionless structure factor, S*(k*, t*) for the 
sin1ulation corresponding to the thern1al diffusion coefficient, D'* = 1.0 x 105 (refer to case 
2 in Table 5.2 for other pararneter values). 
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Figure 5.8: The tin1e evolution of the dirnensionless structure factor, S*(k*, t*) for the 
simulation corresponding to the thermal diffusion coefficient, D'" = 3.0 x 105 (refer to case 
3 in Table 5. 2 for other parameter values). 
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Figure 5.9: The tirne evolution of the dirnensionless structure factor , 8* (k*, t*) for the 
sirnulation corresponding to the thennaldiffusion coefficient, D'* = .5 .0 x 105 (refer to case 
4 in Table 5.2 for other parameter values) . 

intennecliate stage. It is also interesting to note that the wave vector remains constant in 

all the four cases shown during the phase separation process in the early to the beginning 

of the intern1ediate stages, which is quite normal trend during the early stage of the phase 

separation mechanisrn [7] and is consistence with the results reported in the experirnen-

tal [62, 63] as well as numerical [34] works. It can also be noted that as n1agnitude of the 

dirnensionless therrnal diffusion coefficient increases, the tin1e to reach the maximum struc-

ture factor S*(k;n, t*) decreases, i.e the phase separation rnechanis1n proceeds at a faster 

rate. Thus, it can be concluded from these findings that the thermal diffusion phenomenon 

does have some sort of the i1npact on the extent of phase separation mechanism as it speeds 

up the overall phase separation process at 1nicroscopic level, but not significantly. 

81 



5~3 The Transition Time fron1 the Early Stage to the 

Intermediate Stage 

Another important characteristic paran1eter, called the dinwnsionless transition time, t; , 

can also be used to characterize the extent of polymer phase separation process by the SD 

rnechanism. It will also help us analyze the effect of the dirnensionless thennal diffusion 

coefficient, D'* on the overall process of polyrner phase separation (i.e. TIPS) by the SD 

mechanism. As discussed in Chapter 1, the overall phase separation process by the SD 

rnechanisrn is cornprised of three stages: the early stage, the interrnediate stage, and the 

late stage. The transition tin1e basically represents the din1ensionless time of transition 

between the early stage and the intennediate stage of the phase separation process by SD. 

Figure 5.10 shows a plot of the natural log of the dimensionless ma.ximurn structure fac­

tor, S*(k~7, , t*) versus the dirnensionless tirne, t* for a non-uniform quench case of polyrner 

phase separation n1echanisrn (TIPS via SD) in polymer solutions. This curve is typical of 

the spinodal decomposition (SD) rnechanisn1, since there is an exponential growth initially 

at early stage, and then it slows down when it enters the intern1ediate stage of the phase 

separation mechanisnL The intersection of the tvvo straight lines drawn on each side of 

the curve represents the transition point between the early and the intennediate stages of 

the SD rnechanisn1 and the dimensionless time indicated by the downward arrow gives the 

dirnensionless transition time, t; (refer to Figure 5.10). Table 5.3 lists the calculated values 

of the dilnensionless transition tirne, t; corresponding to the sirnulation cases listed in Ta­

ble 5.2 with respect to the different thern1al diffusion coefficients. It can be observed from 

these results that as the value of the dimensionless therrnal diffusion coefficient increases, 

the value of dirnensionless transition time decreases very little in magnitude comparatively, 

which is again indicative of the fact that the thennal diffusion phenon1enon or the Ludwig­

Soret effect does have sorne influence on the phase separation n1echanisrn (TIPS via SD) 
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in polyrner solutions, as the phase separation process proceeds at relatively faster rate in 

presence of the thern1al diffusion phenomenon in polymer solutions under an externally 

irnposed spatial linear ten1perature gradient. 
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Figure 5.10: A sen1ilog plot of the tilne evolution of the dilnensionless n1aximum structure 
factor, S* (k~ 1 , t*) versus the dirnensionless tirne, t* for a non-unifon11 quench case of poly­
nler phase separation rnechanisn1 (TIPS via SD) in polyrner solutions. This curve is typical 
of the spinodal decon1position (SD) nwchanisrn, since there is an exponential growth ini­
tially at early stage, and then it slows down when it enters the intern1ediate stage of the 
phase separation mechanisrn. 

In sumrnary, the pattern or rnorphology forrnation during the polynwr phase separation 

mechanism (TIPS via SD) in polyrner solutions involving the therrnal diffusion phenornenon 

under an externally irnposed spatial linear temperature gradient is of droplet-type in cases 

of non-uniforrn off-critical quench , i.e. ( c0 < c~ and c0 > c~) , and of interconnected-type 

structures in case of non-uniform critical quench, i.e. (c0 = c~). And also, it is interesting 
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Table 5.3: Transition tirne, t;' corresponding to the sirnulation cases listed in Table 5.2. 

Case D'"' t* x 1o-s t 

Case 1 0 10.0061 

Case 2 1.0 X 105 9.9858 

Case 3 3.0 X 105 9.9045 

Case 4 5.0 X 1()5 9.6850 

to note that both the rnorphologies, the droplet-type as well as the interconnected-type 

structures are of anisotropic in nature as the phase separation is induced by non-uniforn1 

(under tern perature gradient) quenching of the polymer solution. These results are consis-

tent with the experimental as well as the numerical results reported in the literature (refer 

to Section 5.1). As far as the effect of thern1al diffusion on the pattern or rnorphology 

forrnation concerned, there are no visual rnorphological differences · during the phase sepa-

ration rnechanisrn with or without the consideration of the thennal diffusion phenomenon. 

On the other hand, at n1icroscopic leveL the thennal diffusion phenornenon or the Ludwig­

Soret effect has very little or negligible effect on the phase separation rnechanisn1 (TIPS 

via SD) in polymer solutions under non-uniform tern perature field in the early to the in-

termediate stages of the SD as expected, which is evident frmn the studies of the time 

evolution of the dirnensionless structure factor (refer to Section 5.2) and the dimensionless 

transition tilne (refer to Section 5.3). 
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CHAPTER 6 

CONCLUSIONS 

Thermal-induced phase separation (TIPS) nwthod is one the n1ost widely used rnethods 

for the rnanufacturing of the functional polymeric rnaterials, i.e. PDLC fihns for electro­

optical devices, rnicroporous synthetic rnen1branes, etc. Also, the induced temperature 

gradient for producing the structural anisotropy in the polymer filn1s. A rigorous rnathe­

matical n1odel, representing the phase separation mechanisrn, i.e. TIPS via the spinodal 

decomposition (SD) mechanisrn, and also involving the thennal diffusion phenomenon in 

binary polyrner solutions under an externally irnposed spatial linear ternperature gradient, 

was developed and solved successfully. The rnathematical rnodel is composed of the non­

linear Cahn-Hilliard theory describing the dynarnic behavior of the spinodal decornposition 

(SD) mechanisrn, the Flory-Huggins (F-H) theory describing thennodynan1ics of polyrner 

solutions, the slow n1ode theory and Rouse law for diffusion phenornena in polymer solu­

tions, and the theory of Ludwig-Soret effect describing the thennal diffusion phenornenon 

in polyn1er solutions under the influence of an externally imposed spatial ternperature gra­

dient. The mathernatical model wac; solved using the rnunerical methods of Galerkin finite 

elen1ents with Hermitian bicubic interpolants and finite differences, respectively for spatial 

and ten1pora.l discretizations. The first-order in1plicit Euler predictor-corrector method was 

used for time integration; and the tirne steps were controlled using an adaptive time-step 

control n1echanisn1 on the local truncation error and tolerance in such a rnanner that a 

given accuracy was always n1aintained. 
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The rnathematical n1odel was successfully irnplemented to study the Lud\vig-Soret effect 

in the phase separation rnechanisn1 (TIPS via SD) involving the therrnal diffusion phe­

nomenon in binary polymer solutions under an externally irnposed spatial linear tempera­

ture gradient in one-din1ension as well in two-dirnensions, although only two-din1ensiona.l 

simulation results have been presented and discussed in this work. In order to investigate 

the effect of therrnal diffusion phenmnenon on the phase separation rnechanisrn (TIPS via 

SD), two kinds of the quench rnethods (i.e. uniform and non-unifonn) to induce the phase 

separation in single phase hon1ogeneous polyrner solutions , were studied for cornparison. 

For uniforrn quench, a single phase hon1ogeneous polymer solution is quenched to a temper­

ature, which is uniform everywhere in the solution, i.e. no ternperature gradients. vVhereas, 

for non-uniforn1 quench, polyn1er solution is quenched in such a way that a spatial terrlper­

ature gradient is formed in the solution. The sirnulation results represented by the pattern 

or morphology formation during the phase separation process of TIPS via SD in a binary 

polymer solution involving the thern1al diffusion phenornenon under an externally imposed 

spatial linear ternperature gradient indicated that non-uniform off-critical quenching of the 

polyrner solution produced the droplet-type morphology, whereas a non-uniform critical 

quenching of the polymer solution produced the transient interconnected-type structures, 

which are of anisotropic in nature. These simulation results describing the formation of 

the droplet-type n1orphologies (off-critical quench) and the interconnected-type structures 

(critical quench) were consistent with the ones reported in the literature. And also, the 

externally irnposed spatial linear temperature gradient contributed to the formation of 

the anisotropic n1orphological structures, which were also found to be consistent with the 

experirr1ental as well as nurnerical results presented in the literature. As far as the effect 

of thermal diffusion phenmnenon on the phase separation rnechanisrr1 (TIPS via SD) was 

concerned, it was very difficult to identify the effect of thennal diffusion on the pattern 

forrnation during the phase separation process, as there were no visual differences in the 

patterns fonnation with or without the consideration of therrnal diffusion phenon1enon. 
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Therefore, in order to investigate the influence of the thermal diffusion phenomenon on 

the phase separation mechanism in polymer solutions at n1icroscopic level, the time evo­

lution of the dirnensionless structure factor and the transition time were analyzed. The 

dimensionless structure factor was calculated by taking the squares of the magnitude of 

the Fourier Transfonn of the concentration fluctuations in the polyrner solution. For that 

a small computer progra.rn written in rviATLAB R2007a was used to calculate the Fast 

Fourier Transfonn (FFT) of the simulation results (sample data) at specific time, and the 

squares of these FFT results yielded the dimensionless structure factor. It was evident 

from the tin1e evolution of the dimensionless structure factor and the transition tirne that 

the thennal diffusion phenomena actually had very little or negligible influence on the 

phase separation rnechaniSin (TIPS via SD) during the early to the intermediate stages of 

SD, although it assisted the phase separation rnechanisn1 at microscopic level in polymer 

solution by speeding up the process smnewhat. 
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CH 7 

RECO Tl NS 

This chapter provides recornrnendations for future work, which could be carried out based 

on this sirnulation study. This study, for investigation of the effect of thermal diffusion 

phenomenon or the Ludwig-Soret effect in the phase separation nwchanisrn (TIPS via SD) 

in polyn1er solutions under non-uniform ten1perature field, was carried out using computa­

tional technique. The governing mathen1atical rnodel was solved using nun1erical n1ethods 

of Galerkin finite element and finite differences, respectively for space and temporal dis­

cretizations, also ernploying Ne-vvton-Raphson iterative n1echanisrn. The cmnputational 

tirne taken by each sin1ulation was from 20 hrs to 28 hrs (average). One of the reconlmen­

dation for future work would be to try to solve the mathematical n1odel using acmnmercial 

software such as COI\!ISOL nmltiphysics, which might help reduce the cmnputational tirrw 

significantly, and at the sa1ne tin1e 1 smaller mesh sizes could also be employed with it. 

Another recomrnendation would be to try and solve the mathematical rnodel using the 

deeper quenching of the polymer solutions in the unstable region of the pha-,e diagrmn, 

and also using the larger temperature gradient across the polymer solution sarnple for more 

analysis. 
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APPE IX A 

DIMENSIONLESS GOV NIN 

EQU IONS 

The dimensionless governing equation, and initial and boundary conditions are obtained 

using the. following scaling relations: 

Dimensionless space: 

Dimensionless temperature: 

Din1ensionless concentration: 

Din1ensionless time: 

* X 
X =-

L 

Dimensionless diffusion coefficient: 

and 

T* = T 
e 

c* = c 

* 2VK,t 
t = ~£4 

D* = kB8L
2 

2VK, 
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* y y = -
L 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 



Din1ensionless thermal diffusion coefficient: 

'" D' BE,L2 

D = ---
2vl"-

(A.6) 

where the superscripted asterisks denote dimensionless variables. Consequently, the di-

n1ensionless governing equation is expressed a_-; follows: 

ac* 

at* 
D* [ c- 4c' + ~1- 2c') Inc*) _ e- 4c* + (1 ~'V:c*) ln(l- c')) + 4(c* _ c'') 

(2,P- 1) -1/' + ~] V*c* · \J*T* + D'T' [ :;~ + ~2 - 2x(l- 2c*)] (V'c*)2 

(1- 2c*)\7*c* · \7*
3 c* + D*T* [(

1
- c*) + c* - 2x(c*- c*

2
)] \7~2 

c* 
N1 1V2 

( c* - c*
2

) \7*
4 
c* + D'* (1 - 2c*) \7* c* · \7*T* (A. 7) 

In addition, the dimensionless initial and boundary conditions are: 

* ( * * t* 0) * + 5 * ( * * t* 0') c x , y , , = = c0 ( c ;r , y , , = 

ac* = 0 
ax* 

oc* 
-=0 
ay* 

at t* > 0, a.nd x* = 0 and x* = 1 

at t* > 0, and y* = 0 and y* = 1 

at t* > 0, and ::c* = 0 and 1::* = 1 

at t* > 0, and y* = 0 and y* = 1 
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(A.11) 

(A.12) 



APPE IX B 

ESTIMATION OF ORDER OF 

MAG I UDE 

Order of rnagnitude estimate for the dimensionless diffusion coefficient, D * and dimen­

sionless thermal diffusion coefficient, D'"' can be obtained using the typical pararneter val-

ues listed in Table B.l for polymer systerns (i.e. polystyrene-polyvinyhnethylether blend, 

polystyrene-cyclohexane and polystyrene-toluene solutions) in the early and the intenne-

diate stages of the spinodal decornposition and the following expressions: 

k ()£2 D* = _B __ 

n'* 

2un, 

D' ()~£2 

21/K. 

(B.l) 

(B.2) 

where k8 is Boltzrnann's constant, n, is a positive constant related to interfacial constant, u 

is the volume of a cell or a segrnent, ()is the theta ternperature, ~is the frictional coefficient, 

D' is the thennal diffusion coefficient , and Lis the length of the geometry, which is 5 x 10-6 

in this study. 
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Para1neter 

1/J 

T (K) 

g (K) 

X 

L (m x 10-6 ) 

v (rn3 segrnent-1 x 10-27 ) 

kB (.J K- 1 x 10-23 ) 

r~ ( J m - 1 x 10-7 ) 

D (n12 s-1 x 10-10 ) 

D' (m2 s- 1 K- 1 x lo-n) 

Table B.l: Paran1eter values 

Value 

1 

10 

1 

298 

300 

1.1667 

0.7597 

0.7319 

0.8662 

5 

1 

1.3806504 

1 

1.21 

0.92 

100 

Reference 

This Study 

This Study 

[4] 

This Study 

[76:5] 

[4] 

[4] 

[4] 

[4] 

This Study 
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Universal Constant 

[96] 

[97] 

[97] 


