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Abstract 

A mathematical regression model, referred to as a surrogate model as it was trained on a set of 

computer-simulated results, was developed to permit the rapid modelling of large commercial 

office buildings within a single climate zone. The model was developed using a large number of 

building features and their EnergyPlus simulated results. In previous building energy surrogate 

modelling, a research gap in selecting building features using statistical approaches was identified. 

This thesis investigates a feature selection method, including forward stepwise selection and least 

absolute shrinkage and selection operator (LASSO), to identify building features that, together, 

have the most significant impact on annual building energy use. The final model, with 23 features 

selected through this methodology, predicts annual building energy use at 11.3% error, on average.  
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1 Introduction 

It is widely acknowledged that to achieve the United Nations Paris Agreement on Climate Change 

[1] global targets, CO2 emissions related to buildings must be dramatically reduced. Fortunately, 

this sector has the largest potential to cost-effectively reduce energy use over the long-term [2]. 

As building owners, industry, municipalities and countries push towards reducing building energy 

consumption to meet aggressive goals, validated energy-use metrics will be important to inform 

decisions at each stage of the building design process. 

Buildings currently contribute significantly to the total greenhouse gas emissions in Toronto, 

Ontario, Canada including, but not limited to, on-site energy production, electricity generation, 

and embodied energy in materials used for construction and retrofits. A 2016 study completed by 

the City of Toronto found that 45% of Toronto’s greenhouse gas emissions were from buildings, 

with 88% of the emissions from natural gas and 12% from electricity [3]. In Canada, commercial 

buildings alone account for 14% of end-use energy consumption and 13% of carbon emissions [4]. 

In Toronto’s downtown core, an area designated as a 2030 District, of the 10,030 eGWh/year 

building energy use, 23% is associated with office buildings [5]. There is a significant opportunity 

to reduce Toronto’s new and existing buildings’ energy use, particularly commercial office 

buildings. 

Building energy simulation (BES) software is used in industry to generate reference models and 

simulate new and existing buildings. The model results are often used by building design teams to 

inform energy conservation measures and verify code and standard compliance. Using BES 

software in the earliest stages of building design can be time consuming and costly, and often of 

limited value due to the unavailability of detailed design information [6]. Simple and fast energy 
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use prediction tools are needed to evaluate and compare building design scenarios at the earliest 

design stages [7]. 

Supervised machine learning methods can be used to predict building energy use based on 

generated datasets of building attributes and energy use. When computer-simulated values are the 

variables an algorithm is being trained to predict, the supervised machine learned model is often 

referred to as a surrogate, meta, response surface or emulator model [8]. The goal of surrogate 

modelling, as defined by Forrester et al. [8], is to fit computer-simulated data to a surface in order 

to predict results from available data without the use of expensive code, permitting faster 

computation across the input domain. Using this definition, supervised machine learning 

algorithms are trained to fit input building features, as close as possible, to a surface defined by 

the building energy simulation target variable. The fit surface then becomes the surrogate and is 

used to predict the target variable for a set of input features within the trained design space (i.e. 

within the input feature ranges included in the dataset). The degree of error in the fit surface is 

evaluated on both the dataset used to fit the curve (training dataset) and on separate data not used 

in the model training (validation and test datasets). The surrogate model training and validation/test 

data behaviour is shown visually in Figure 1. 
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Figure 1 – Illustrative representation of a surrogate model (orange dashed and dotted curve) fit to 

training data (blue dashed curve). Adapted from: Mueller, 2014 [9] 

A notable gap in the literature is the selection of key input features for such surrogate models. 

Generally, feature selection has been based on expert knowledge. Zhao and Magoulés [10] stated 

that few previous studies have used learned models to select key building features.  

There are three categories of feature selection; filter, wrapper and embedded. Filter feature 

selection methods are independent of the learning algorithm and often ‘score’ each feature to the 

target variable. This score is used to determine which features are kept for model training. Filter 

methods often do not account for the relationship between features. Wrapper methods use subsets 

of the features to fit the model and compare model behaviour and performance for each subset. 

Common wrapper methods include forward stepwise selection where features are iteratively added 

to the model and backwards stepwise elimination where features are iteratively removed. 

Embedded methods use properties of specific learning algorithms to select features that best 

contribute to the model accuracy. 
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One method of embedded feature selection is the least absolute shrinkage and selection operator 

(LASSO), also referred to as L1 regularization. L1 regularization, LASSO, and L2 regularization, 

referred to as Ridge, apply a penalty term to the mean squared error cost function that shrinks the 

regression coefficients. When the two regularization terms are applied to the cost function, it is 

referred to as Elastic Net. LASSO uses the L1 norm penalty term,  𝜆∑ 𝛽(%)'(
%)*  and the Ridge uses 

the L2 norm penalty term, 𝜆∑ +𝛽(%)+(
%)*  [11]. The cost function for LASSO is shown in Equation 1 

and the Elastic Net cost function is shown in Equation 2. 

𝐶(𝛽) = *
(
∑ (𝑦(/) − ℎ2(𝑥(/)))'(
/)* + 𝜆∑ |+𝛽(%)+|(

%)*      (1) 

𝐶(𝛽) =
1
𝑛89𝑦(/) − ℎ2:𝑥(/);<

'
(

/)*

+ (%𝐿𝑎𝑠𝑠𝑜)𝜆8B+𝛽(%)+B
(

%)*

+ 

(1 −%𝐿𝑎𝑠𝑠𝑜)𝜆 ∑ 	𝛽(%)
'(

%)*   (2) 

The LASSO and Ridge regulators are represented graphically for two-variable regression in Figure 

2. The ellipse contours represent the mean squared error term in the cost function, with the black 

dot representing the minima. The blue circle for Ridge and diamond for LASSO represent the 

penalty term for each and vary in dimensions based on the l value. The b1 and b2 value with the 

penalty term become where the ellipse touches the circle or diamond. In LASSO, where the ellipse 

touches the diamond corner, the coefficient becomes zero (in Figure 2 b1 is equal to zero) [12]. 
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Figure 2 – Graphical representation of the LASSO (left) and Ridge (right) regulators. Adapted from: [12] 

The shrinkage parameter (l) is used to modify the shrinkage penalty applied to the cost function. 

Larger coefficient shrinkage is associated with a larger shrinkage parameter value which simplifies 

the hypothesis thereby reducing overfitting. When LASSO and Ridge are combined in Elastic Net 

regression, the feature selection benefit of LASSO is combined with the reduced over-fitting 

benefit of Ridge regression. 

No previous research was found in which wrapper and embedded feature selection methods were 

used together to select features for building energy surrogate models. Such feature selection can 

be used to inform archetype energy model design, code and standard requirements, as well as to 

develop assumptions for detailed building energy models. Selecting the most relevant feature set 

for predicting the target variable using a learning algorithm can have advantages for the overall 

performance of the model. These include removing irrelevant features from the model, reducing 

model overfitting, and reducing model run time. 

1.1 Research Objective 

The objective of this research was to evaluate where the research on surrogate modelling for 

building energy use prediction currently stands and address gaps identified regarding feature 

selection. Using Toronto, Ontario large office buildings as an example to test a feature selection 
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methodology, this research used wrapper and embedded feature selection methods and evaluated 

the impact to the model behaviour and performance.  

1.2 Research Questions 

This thesis will look to answer the following research questions: 

1. Can building energy simulation software (EnergyPlus) results using a set of varying model 

parameters be used to train machine-learned surrogate models that predict annual building 

energy use for Toronto, Ontario large office buildings within an accuracy that is acceptable 

to industry for early-stage design decisions? 

2. Can wrapper (forward stepwise selection) and embedded (LASSO regression) feature 

selection methods be used to simplify the annual energy prediction models and improve 

model accuracy? 

3. Does the surrogate model perform well for building model parameters representative of 

actual Toronto office buildings? 

1.3 Thesis Structure 

This thesis has been divided into four chapters. Chapter 2 is a summary of published literature in 

the building energy surrogate model field. It is a detailed comparison of previous building energy 

surrogate models, including the stages involved in dataset development, data preprocessing 

methods, learning algorithms tested and model evaluation metrics used. An analysis and discussion 

on gaps in current research shaped the approaches used for the surrogate model development 

described in Chapter 3 of this thesis.  

Chapter 3 describes and discusses the development of a building energy surrogate model for large 

office buildings in Toronto, Ontario, with a focus on input feature selection using wrapper and 

embedded feature selection methods. The final surrogate model is validated for a combination of 
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realistic building features extracted from a reference energy model for a downtown Toronto office 

tower prepared by a local engineering consulting firm. 

Chapter 4 provides a conclusion for the research completed and summarizes how future research 

could fill gaps in the field of building energy surrogate modelling. 
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2 Approaches to Building Energy Surrogate Modelling – A Summary of 

Previous Research 

As building energy surrogate modelling research increases in popularity, the evaluation and 

comparison of surrogate model development methods is essential. The studies performed to date 

followed a similar overall methodology, but the researchers’ decisions made at each step had an 

impact on the learning algorithm that performed best, the input feature selection and importance, 

and the overall accuracy of the model. This chapter contributes to the current discourse 

surrounding surrogate model development techniques for building energy prediction by 

summarizing these decisions and their impacts. Each step in the model development process and 

the most common methods used by researchers are presented. Next, the impact of methods to 

surrogate model behaviour are critically discussed and a summary of gaps in the current research 

are presented.  

2.1 Surrogate Model Development Summary 

The surrogate model development process for building energy use prediction used in previous 

studies followed a common path, illustrated in Figure 3. These studies typically began by 

presenting the surrogate model intent then selecting the building typology, climate and model 

prediction target variable(s) to guide the surrogate model development. Next, the building features 

and associated ranges, a simulation software and base model, a sampling plan, and the number of 

samples were selected. Finally, the simulations were run to develop the labelled dataset. This 

dataset was trained on one or more supervised machine learning algorithms and a final model 

selected based on model prediction metrics. Deliberate decisions on process and methodology 

were required at each step of the surrogate model development process. Researchers following the 

same decision path could compare the results and behaviour of their surrogate models. However, 
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as decisions differed between studies, the behaviour of the final surrogate model changed and 

could not be directly compared to another researcher’s model behaviour and results. This was 

especially true for decisions made at the dataset development stage. 

 

Figure 3 – Surrogate model development decision path.  

2.2 Surrogate Model Intent 

Many studies have discussed the advantages of using surrogate modelling as an early-stage design 

tool. Jacobs et al. [13] conducted a survey of design professionals and found that only a quarter of 

the respondents used computer-based methods, including energy simulation, to inform building 

form and orientation. Responding to this, Hygh et al. [14] were motivated to develop models that 

could be used by architects as a practical, early-stage design energy assessment tool for quick 

feedback on building attributes affecting early-stage design. Catalina et al. [15] presented building 

energy surrogate models as a middle ground between complex building energy simulation software 

that require detailed inputs, time and expertise, and simplified models that use one or a few 

variables to predict energy use, such as the degree day method [16].  

Model Training Dataset Development 

Surrogate Model 
Intent

Building Archetype 
and Simulation 

Software Selection

Location and Climate 
Selection

Building Features 
and Range Selection

Sampling Plan 
Selection

Target Variable 
Selection

Sample Set Size, 
Data Splitting and 
Cross Validation

Transformation of 
Input Features and 
Target Variable(s)

Combining Features

Feature 
Normalization

Feature 
Selection/Elimination

Training Algorithms

Model Performance 
Analysis



 2-10 

Focused on existing buildings, other researchers proposed using surrogate models for retrofit 

energy conservation measure evaluation. Motivated by the International Energy Agency’s 

Transition to Sustainable Buildings – Strategies and Opportunities to 2050 report [17] which stated 

that in 2050, 60% of the 2013 building stock will still exist in the United States, European Union 

and Russia, Tian et al. [18] proposed using surrogate modelling for existing building stock retrofit 

analysis. Chidiac et al. [19] used surrogate models to evaluate an existing building’s potential for 

energy consumption reduction through energy retrofit measures. 

Other researchers used surrogate modelling to focus on a single aspect of building design. Asl et 

al. [20],  Asadi et al. [21] and Catalina et al. [15] focused on the impacts of building form to 

building energy use. With the goal of informing design decisions using building form’s relation to 

energy use, Asl et al. [20] presented a tool that generated building forms based on site and building 

constraints and used surrogate models to predict the associated energy use. Asadi et al. [21] trained 

multiple multivariate linear regression models with differing building forms to evaluate how the 

feature significance differs between building forms. Catalina et al. [15] used varied building forms 

in their dataset and described the form with building shape factor (the ratio of the conditioned 

building volume to the building enclosure surface area). 

Some researchers have explored using surrogate modelling for urban-scale building energy models 

where creating detailed energy simulations for many buildings within an area would not be 

feasible. Tian and Choudhary [22] used surrogate modelling to develop a model representative of 

secondary school buildings in the greater London area. They used this model, along with historical 

data on annual energy use by London’s secondary schools, to evaluate the annual energy use 

impact of energy conservation measures implemented across schools. Mastrucci et al. [23] 

proposed using surrogate models to address the limitations of current archetype-based urban 
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building energy modelling in Europe, including building characteristics and occupancy variation 

adjustability. Nagpal et al. [24] proposed using surrogate models for large university campuses 

where exploration and prioritization of campus-wide building retrofits for energy conservation are 

a key priority. Instead of calibrating a detailed energy model simulation for each building on 

campus, which can take a significant amount of time and expertise, Nagpal et al. [24] proposed 

using a trained surrogate model to determine unknown building attributes when the measured 

building energy use is known.  

As the field develops, researchers have explored creative and innovative ways to use surrogate 

building energy models. Nagpal et al. [25] showed how surrogate models specific to individual 

buildings can be updated as building retrofits are completed and therefore used as a ‘living’ energy 

model. Carlo and Lamberts [26] used a multivariate linear regression surrogate model to predict 

commercial building annual electricity use intensity for Brazil’s voluntary commercial, public and 

service building energy labelling system. Melo et al. [27] built on Carlo and Lambert’s [26] 

research by adding features to the input matrix and highlighted that in a developing country such 

as Brazil, economic growth comes with increased energy use; therefore a tool developed using 

surrogate models can help governments minimize building energy consumption as the country 

develops.  

Instead of developing a surrogate model representative only of the building as a whole, Geyer and 

Singaravel [29] developed multiple building component-based surrogate models and linked them 

together. They proposed that by developing component-based models, there is more flexibility in 

applying the models to future scenarios and integrating them into building information modelling 

(BIM). Korolija et al. [30] trained surrogate models to predict annual energy input requirements 

for various heating, ventilation and air conditioning (HVAC) distribution systems with varying 
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simulation inputs related to building orientation, enclosure thermal performance, shading, and 

daylighting. Papadopouslos and Azar [31] integrated a building energy surrogate model with an 

agent-based modeling tool that modelled building occupants’ dynamic energy use behaviours. 

Their goal was to provide more flexibility in predicting monthly energy use in relation to 

occupancy and building operations behaviour. Wong et al. [32] used surrogate modelling to predict 

daily electricity use in a subtropical climate using daily weather and building enclosure features 

related specifically to daylighting.  

Using surrogate models within optimization algorithms has been of growing interest in this field. 

A surrogate model can increase the speed of an optimization routine where the energy use results 

of often thousands of combinations of building features must be determined in the search for the 

optimal combination(s) [8]. This chapter does not discuss optimization as it is its own field of 

research and the reader is instead directed to the review conducted by Nguyen et al. [33] 

summarizing research where building energy surrogate modelling was used with optimization. 

2.3 Building Archetype and Simulation Software Selection 

Researchers in this field have illustrated the usefulness of surrogate models for a variety of building 

archetypes. Figure 4 summarizes the surrogate model building archetypes used in the studies 

referenced in this chapter. A large office was defined as 12 or more storeys, medium offices as 3-

11 storeys, and a small office as one to two storeys [34]. A mid/high-rise residential building was 

defined as four or more storeys. A low-rise residential building was defined as one to three storeys 

and included single-family homes and low-rise multi-family homes. The ‘other’ category included 

buildings such as warehouses, retail, and schools. 
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Figure 4 – Division of building archetypes used in studies referenced in this chapter. Where the same 
dataset was used by several reserachers, such as the dataset developed by [35], the archetype used to 

create the dataset was counted only once. 

Researchers’ motivations for selecting one archetype over another varied. Many researchers 

simply chose a building type as a case study to illustrate their proposed surrogate model 

development methodology       [14, 19, 35, 36]. Other researchers targeted a specific building type 

to fulfill their surrogate model intent [18, 22, 24, 25]. Tian and Choudhary [22] discussed the need 

to develop building energy prediction models relevant to the urban scale for non-domestic 

buildings in the greater London, UK area, stating that data is widely available for the residential 

sector but not for the non-domestic sector. Tian et al. [18] used university/college campus 

buildings in the United States, as the real building attribute data for campus buildings was available 

to them.  

Each researcher developed or selected a base model that was modified for the simulated samples. 

The base model defined the assumptions that were carried through all simulations. Many 

researchers used previously developed reference models and standards for the base energy 

simulation model. Aijazi and Glicksman [36] used the American Society of Heating, Refrigeration 



 2-14 

and Air Conditioning Engineers (ASHRAE) Standards 90.1-2004 – Energy Standard for Buildings 

Except Low-Rise Residential Buildings and ASHRAE Standard 62.1-2004b – Ventilation for 

Acceptable Indoor Air Quality, for mid-rise apartment building enclosure and equipment model 

attributes. Hygh et al. [14] and Papadopoulos and Azar [31] used the U.S. Department of Energy 

(DOE) EnergyPlus Commercial Reference Models as the base energy simulation model. These 

models were developed in collaboration with Lawrence Berkeley National Laboratory (LBNL), 

Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory 

(NREL) and were created as baseline models for 15 building archetypes in three construction eras 

for all ASHRAE climate zones [34]. The commercial building model inputs were based on the 

U.S. Energy Information Administration 2012 Commercial Buildings Energy Consumption 

Survey (CBECS) data which represented 70% of the commercial buildings in the United States 

[37].  

Researchers with access to operational building information used this data to develop base models 

for their energy simulations. Lam et al. [38] used a survey of existing commercial buildings in 

Hong Kong to determine the common building parameters for large office buildings and developed 

a base model from this. Nagpal et al. [24] developed base EnergyPlus models for operational 

college campus buildings and validated the base models by comparing the simulation results to the 

measured building energy use. 

Several energy simulation software exist that will calculate the energy use based on user-defined 

inputs. The simulation software used to develop the dataset for the surrogate model varies by study. 

Figure 5 shows the relative proportions of the building energy simulation software used to develop 

datasets in the studies summarized in this chapter. The majority of researchers selected EnergyPlus 
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for its ability to streamline and automate the modification of the input data file (IDF) text file and 

because the simulation was based on first principles [14].  

 
Figure 5 – Breakdown of energy simulation software used by researchers referenced in this chapter. 
Where the same dataset was used by several reserachers, such as the dataset developed by [35], the 

software used to create the dataset was counted only once. 

2.4 Location and Climate Selection 

The selection of location, and associated weather file for the energy simulation, dictates the area 

for which the developed surrogate model can be used. Figure 6 shows the weather file locations 

used for the surrogate models referenced in this chapter. Where multiple weather files were used 

in a single study, the points on the map were highlighted in red, with each study represented by a 

unique symbol. Locations shown in blue represent studies where a single weather file was used. 

There is a large cluster of surrogate modelling research focused on buildings in the United States, 

Europe, Brazil and Hong Kong. As expected, this aligns with where the research is being 

conducted. The location selected will not only impact the weather file but also the type and range 

of input features for the model. For example, Lam et al. [38] developed a surrogate model specific 
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to Hong Kong, where the year-round hot-humid climate results in little need for heating, so features 

related to heating were excluded from the input feature set. 

 
Figure 6 – Surrogate model weather file locations for research referenced in this chapter. Where multiple 
weather files were used in a single study, the points are highlighted in red, with each study represented by 

a unique symbol. Locations shown in blue represent studies where a single weather file was used.  Map 
created in Google My Maps [39] 

Some researchers integrated multiple climates into their building energy surrogate model studies. 

Hygh et al. [14]  evaluated the same building features and ranges with four climate files, and 

therefore trained a medium-sized office building surrogate model for each climate file. They found 

that the model for annual heating use prediction in the climate with the lowest heating degree day 

had the lowest accuracy. Aijazi and Glicksman [36] evaluated training a single surrogate model 

using simulations with multiple climate files by including annual heating degree days as an input 

feature to represent the climate differences. When they compared surrogate models developed for 

each climate to the multi-climate model, they found that the multi-climate model had lower 

accuracy. Catalina et al. [15] developed a model representative of 16 climates in France, 

representing climate with the input features climate coefficient, the difference between the heating 
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set-point temperature (a constant value for all simulations); and the monthly average sol-air 

temperature, a value calculated using monthly average outdoor temperature, horizontal global 

radiation, and exterior convection coefficient. Further research is required to determine if multiple 

climates can be included in a single surrogate model without significantly compromising the 

predictive performance of the model. 

2.5 Building Features and Range Selection 

There are several considerations that go into selecting the building features and associated ranges 

that form the input matrix. This step in the surrogate modelling process is of high importance as it 

impacts the design space for the final surrogate model, and the model behaviour. Tian and 

Choudhary [22] stated that building features impacting energy use are valuable for analysis and 

should be focused on. Tsanas and Xifara [35] followed this line of thought and selected building 

features based on expert knowledge and judgement of which building attributes had the largest 

impact to the target variable(s). With a goal of developing an early-stage design tool, Hygh et al. 

[14] selected building features that are typically known during early stage building design and are 

known to have a significant impact on annual total, heating and cooling energy, such as general 

building geometry, enclosure thermal performance and shading projection factor. Chidiac et al. 

[19] chose variables to reflect specific energy retrofit measures for existing office buildings, 

including lighting loads, daylight sensor integration, enclosure thermal performance and 

infiltration, and HVAC system efficiencies. 

Standards and guidelines were frequently used to guide the ranges selected for each building 

feature. Amiri et al. [40] used ASHRAE 90.1 to determine building envelope variable values for 

their discrete features. Papadopoulos and Azar [31] also used ASHRAE 90.1 to determine the 

ranges for indoor temperature setpoints and lighting and equipment electricity use densities. 
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Korolija et al. [30] determined values for temperature setpoints, fresh air ventilation, occupant 

density, and lighting and equipment loads from the ASHRAE Standard and Handbooks, European 

Standards, and Chartered Institution of Building Services Engineers (CIBSE) Guidebooks for their 

United Kingdom (UK)-based office building surrogate models. Tian and Choudhary [22] 

developed their base model for secondary schools in London using the UK Department for 

Education and Skills Briefing Framework for Secondary School Projects for the geometry, UK 

National Calculation Method for the scheduling, and CIBSE for the internal heat gains. 

Some researchers chose to use or build on previous researchers’ input features in order to compare 

their surrogate models. Roy et al. [41], Papadopoulos et al. [42], Castelli et al. [43], and Chou and 

Bui [44] used a dataset prepared and made publicly available by Tsanas and Xifara [35]. Al 

Gharably et al. [45] built on Hygh et al.’s [14] research and added non-rectangular building 

geometry to the model, keeping all other input variables, targets, sampling plans, and climates the 

same. Others used features that were unique when compared to other studies. Edwards et al. [46] 

used a large set of building attribute variables, totaling 156. The majority of these variables were 

related to building enclosure material properties. Melo et al. [27] combined U-value and thermal 

capacity values to create 11 unique features representing wall and roof types. Geyer and Singaravel 

[29] proposed using a construction-level component-based machine learning approach where the 

features were divided into construction elements to allow for flexibility of building energy 

surrogate models.  

Some researchers had access to real building feature datasets and used these as the feature sets for 

their building energy software simulations. Tian et al. [18] used building characteristics from 

University of Pennsylvania and Georgia Institute of Technology campus buildings to build an input 

dataset, and then used EnergyPlus to simulate the target values. 
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A summary of the feature categories used by researchers in their surrogate model development is 

in Figure 7. Further, a detailed summary of the features for the research referenced in Appendix A. 

 
Figure 7 – Percent of studies summarized in Appendix A using building input features 

2.6 Sampling Plan Selection 

Previous research studies used various methods when developing the datasets used to train learning 

algorithms and test models. Sangireddy et al. [28]  emphasized that the accuracy and validity of 

the surrogate model is highly dependent on the sampling plan selected. Different methods used to 

generate the input matrix have included: determining building attribute combinations from existing 

buildings [18]; generating sample sets within ranges of building parameters using uniform 

probability distribution Monte Carlo sampling [14, 21, 40] and Latin Hypercube Sampling (LHS) 

methods [24, 27, 31, 35]; and randomly generating geometry features using building modelling 

software plug-ins [20, 47].  

With Monte Carlo sampling using uniform probability distribution, the variable values are 

randomly selected from within the ranges for each sample. By contrast, Latin hypercube sampling 

extends the Latin square, a grid with one sample per row and column, to multi-dimensional space. 

One sample per axis-aligned hyperplane is generated, creating a matrix of space-filling, near-
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random selections where the values within the variable ranges are uniformly selected. Figure 8 

illustrates Monte Carlo and Latin hypercube sampling plans for two variables with 100 samples 

each. The Latin hypercube sampling plan distributes the samples through the entire design space 

whereas the Monte Carlo leaves gaps in the design space and creates random clusters of data points 

in some locations. Sacks et al. [48] presented a case for using space-filling sampling plans, such 

as Latin hypercube, instead of using random sampling plans for computer-generated data, stating 

that when error is systematic (as is the case in computer-simulated design) the experimental design 

should fill the design space. 

  
Figure 8 – Monte Carlo with uniform distribution of variables (left) – clustering shown in red circles.  

Latin Hypercube Sampling (right) 

Older studies were found to have created datasets based on a more traditional parametric study 

methodology. For each simulation, a single variable was modified, and the other parameters were 

kept in a base case condition. Lam et al. [38] used a combination of parametric and factorial dataset 

design. A univariate linear regression analysis was performed for each variable to determine the 

features most sensitive to the targeted annual electricity energy use. The most sensitive features 

were selected and divided into building load, HVAC system, and HVAC refrigeration plant. All 

combinations within those categories were simulated.  
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Wong et al. [32] used several building features affecting daylighting, each with a defined number 

of discrete perturbations. Each perturbation was simulated with the base case. To test the model 

trained using the parametric data, Wong et al. [32] randomly generated three samples of variables 

within the discrete perturbation ranges. With parametric sampling, the interactions between 

variables are not taken into account. If all interested parameters are changed in each sample, the 

simulation software behaviour of the interaction between two or more variables can be learned.  

One method of setting up the sampling plan to learn the interaction behaviours of the variables is 

by simulating all combinations of the discrete features. Tsanas and Xifara [35] simulated all 

combinations of the discrete perturbations for each of the building forms, glazing areas, and 

building orientations for a total of 768 simulations.  

Unique sampling plans were used by some researchers. Sangireddy et al. [28] used the k-means 

clustering algorithm to cluster all possible combinations of the discrete variables selected, a total 

of approximately 100,000 combinations. They increased the number of clusters until the cluster 

model sum of squared errors began to decrease less drastically. The sample from each cluster 

centre was selected to represent all samples within that cluster and together represented the overall 

domain space. This method reduced the dataset from approximately 100,000 samples representing 

all combinations of discrete variables to 200 samples (and therefore 200 clusters). Sangireddy et 

al.’s [28] sampling plan represented a subset of all combinations of the discrete variables chosen 

as they were proposing using the surrogate model in lieu of an exhaustive parametric analysis.  

2.7 Target Variable Selection 

Surrogate models can be trained to predict any of the energy simulation software results. Many 

researchers used annual and/or monthly total energy, heating and/or cooling energy use or intensity 

(energy use per floor area) as continuous model target variables. Figure 9 summarizes the building 
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energy targets researchers trained their surrogate models to predict. Some researchers trained 

several surrogate models in a single study to predict multiple target variables. 

 
Figure 9 – Summary of surrogate model building energy target variables for studies summarized 

in this chapter. 
Some researchers chose target variables other than building energy for their surrogate models. 

Ascione et al. [49]  and Chen et al. [50] used trained surrogate models to predict targets related to 

human comfort. Ascione et al. [49] trained a model to predict the percentage of annual discomfort 

hours, and Chen et al. [50] trained a model to predict ASHRAE55 comfort time and illuminance 

level. Tian et al. [51] proposed overheating risk and peak heating/cooling use as potential target 

variables, although they limited their models to annual heating, cooling, and CO2e emissions.  

A few researchers used subsets of building energy target variables. Chidiac et al. [19] separated 

the targets into end uses and developed surrogate models for annual lighting, equipment, pumps, 

fans, DHW, chiller, boiler, and electrical. The summed results of all the models provided the 

annual total energy use. Lam et al. [38] developed separate models for building loads, HVAC 

systems, and HVAC refrigeration plants. Edwards et al. [46] trained models on 90 of the 
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EnergyPlus simulation outputs. Instead of training 12 separate models for each month of the year, 

Papadopoulos and Azar [31] added 12 dummy variables to the input matrix, with the relevant 

month set to 1 and the remaining 11 variables set to 0. Wong et al.’s [32] model focused on 

daylighting and predicted daily cooling, heating and lighting electricity energy uses. 

Although not as common as using continuous variables for targets, some researchers have 

converted the building energy use target values into categories such that classification algorithms 

could be used for the prediction model. Chari and Christodoulou [52] converted the energy 

modelling results to Irish Dwellings Energy Assessment Procedure Building Energy Rating 

classifications [53] which combined annual energy use intensity and CO2 emissions to classify 

building energy performance into 13 categories. Tsanas and Xifara [35] discretized the continuous 

annual heating and cooling energy use so that classification algorithms could be used on the 

dataset. 

2.8 Sample Set Size, Data Splitting and Cross Validation 

The number of samples and ratio of samples per training, validation and test dataset was not 

consistent between studies. This is common for machine learning where there are general rules-

of-thumb but no defined methodology. This section provides a summary of the sample set sizes 

and the methods used to split the data into sets. 

Hygh et al. [14] started with a training set size of 16,000 samples and found through training a 

multivariate linear regression (MVR) model, the average percent error of the model reached a 

minimum between 500-1,000 samples. Aijazi and Glicksman [36] used training set sizes of 50 

samples to train more complex algorithms. Both researchers looked at similar sized buildings, in 

multiple US climate zones, but according to the Hygh et al. [14]  analysis, Aijazi and Glicksman 

[36] may have been using too small a training set size to achieve the most accurate models. 
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However, since Aijazi and Glicksman [36] used LHS and Hygh et al. [14]  used Monte Carlo, the 

sampling plan may have had an impact on the training size required.  

Melo et al. [27] evaluated the model accuracy with different numbers of training samples. They 

found that the maximum error decreased gradually as the number of training samples increased 

above approximately 13,000. Chen et al. [50] evaluated the multivariate linear regression 

coefficient values using different sized training sets, each developed with separate Latin hypercube 

sampling plans. Sample size increments from 100 to 10,000 were evaluated. Their results showed 

that with a small training set size, a larger number of input features were important.  

A few researchers developed multiple training and validation datasets using either k-fold cross 

validation [27, 35, 43, 54], and/or bootstrapping [50, 51] in order to evaluate the model variation. 

K-fold cross validation splits the training dataset into ‘K’ equal-sized sets. ‘K-1’ sets are combined 

and used as the training set and the remaining dataset is used as a validation set. This is completed 

‘k’ times so that each set is used as the validation set once. Bootstrapping, specifically 

bootstrapping with replacement, is defined as when each sample in the training set is randomly 

selected from the dataset and when it is selected remains in the original dataset. Therefore, a single 

sample may be selected multiple times. Using bootstrapping, multiple training and validation 

datasets can be made from a single dataset. Both strategies are used in surrogate modelling to fit 

the data subsets to multiple models. The model coefficient variation and predictive performances 

can be used to assess the stability of the model. From the studies referenced in Appendix A, 

approximately 20% used cross validation with either k-fold or bootstrapping.  

Tian and Choudhary [22] performed both cross-validation and bootstrapping with replacement on 

their dataset. They found that for multivariate linear regression, the validation set model predictive 

performance, using coefficient of determination, was lower than for the training dataset. 
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Conversely, when bootstrapping was used, the model predictive performance was the same for 

both the training and test dataset. In a later study, Tian et al. [51] tested varying bootstrapping with 

replacement sample sizes and plotted the standardized regression coefficients for each feature to 

evaluate at which bootstrapping size the values stabilize. Standardized regression coefficients are 

the coefficients/weights when the independent and dependent variable variances are standardized 

to 1.0. Aijazi and Glicksman [36] developed multiple training and validation datasets by creating 

10 datasets of 50 samples each from multiple Latin hypercube samples. From the 10 datasets, they 

randomly selected one as the training set and one as the validation set. They performed this 80 

times and calculated model predictive performance for each iteration thereby achieving a model 

error representative of the mean and standard deviation of the 80 iterations. 

2.9 Transformation of Input Features and Target Variable(s) 

Target variable transformation can improve the surrogate model behaviour and accuracy. In 

mathematical modelling, it is common to apply a non-linear transformation to the input features 

and/or target variable and evaluate how the model behaves. More specifically, in multivariate 

regression, it is assumed that the input variables are independent of one another and that the target 

variables are normally distributed. Target variable transformation is commonly completed to force 

the data into a normal distribution. One method to determine the appropriate target variable 

transformation is the Box-Cox method [55]. Using this method, a lambda (l) value is determined 

for Equation 3 that transforms the target variable values (y) into a normal distribution. Where the 

optimal l is 0, the transformation is logarithmic. 

𝑦′ = (EFG*)
H

 (3) 
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When comparing the model performance impact of transformed target variables, the model 

predictive performance can be evaluated in two ways: predictive performance compared to the 

transformed values, and predictive performance when the values are transformed back to the target 

variable units. The first evaluates how well the algorithm is fitting the transformed data and the 

second evaluates how good the transformed data and algorithm are at predicting the target variable 

compared to the building energy simulations. 

Tian et al. [18] quadratically transformed the annual heating and cooling energy use target 

variables and found an improved model performance for the learning algorithms evaluated. 

Robinson et al [54] and Melo et al. [27] performed a logarithmic transformation of the target 

variables. Melo et al. [27] applied the Box-Cox transformation method to determine which 

transformation of the annual cooling energy use target variable was most appropriate for their data 

set to reduce the skewed distribution and make distribution more normal. 

2.10 Combining Features 

Combining original input features into features that represent the whole building or an elevation 

has been shown to improve model prediction performance in previous research [14, 36, 56]. The 

impact to the energy use of an uncombined building feature, such as window-to-wall ratio per 

elevation and floor may individually be minor. However, when combined into the overall window-

to-wall ratio for the full above grade building wall area, it may have a larger impact on the annual 

energy use. Based on knowledge of how the input variables interact in the energy simulation 

software used, Hygh et al. [14] developed 63 additional variables using linear combinations of 27 

variables. Using knowledge of building parameter interactions, Signor et al. [56] improved the 

linear regression model performance by combining features to create new features more 

representative of the buildings as a whole. Aijazi and Glicksman [36]  used the equation for heat 
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flux through an exterior enclosure to justify creating additional terms where heating degree days 

is multiplied by roof, window and wall thermal transmittance and area. Wong et al. [32] combined 

glazing solar heat gain coefficient and visible transmittance with window-to-wall ratio for a 

daylighting-focused surrogate model in a cooling-dominated climate where the balance of interior 

daylighting and solar heat gain was critical for predicting electricity energy use. Asl et al. [20] 

used building geometry cross terms, such as interior floor area multiplied by interior floor height, 

in their model. Combining features can improve the usability of the surrogate model in early-stage 

design when the exact building shape has not been tested. The design team may not have decided 

on the exact building form and may want to explore, for example, how the wall areas, aspect ratio 

and window-to-wall ratio impact the annual energy use, knowing what the project specifications 

are for the conditioned floor area. 

It should be noted that when the original variables are linearly combined, they will have a high 

correlation to the original variables. In regression analysis, correlated inputs can lead to high 

variance values of the feature weights/coefficients [57]. Therefore, if the original variables are not 

removed from the model, the coefficients for the multivariate linear regression equation will not 

be stable and therefore cannot be accurately interpretable. According to Tian et al. [18], not many 

researchers have evaluated feature correlation in building energy modelling. It is also not clear if 

previous studies have addressed the issue of multicollinearity when adding terms that are 

combinations of two or more of their original features.  

2.11 Normalization 

It is common to normalize/standardize the input features before training a machine learning model 

[12]. If the input features are not normalized prior to training, this may lead to coefficients biased 
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by differing input feature magnitudes. Some also normalize the target variable [35] but this is not 

a necessary step. 

Instead of normalizing the input features, Hygh et al. [14] normalized the multivariate linear 

regression coefficients (standardized regression coefficients) in order to compare the coefficients 

in terms of sensitivity to the target variables. To do this, they multiplied each coefficient by the 

input variable’s standard deviation and divided by the standard deviation of the target. This means 

that the input features were not on the same scale when the model was trained and the magnitude 

of the feature value may have influenced the coefficient value. 

2.12 Feature Selection/Elimination 

A few researchers used feature selection and/or elimination methods in their studies. Lam et al. 

[38] evaluated the correlation of 62 input features to annual electricity energy use and selected 28 

features with the highest correlation. Ascione et al. [49] used the standardized rank regression 

coefficients for their annual heating and cooling energy use intensity model determined from a 

previous study completed by Mauro et al. [58] where the target was thermal energy demand. 

Variables with coefficient values lower than 0.05 were removed from the input feature matrix. 

Tian and Choudhary [22], Lam et al. [38] and Ascione et al. [49] each used the multivariate linear 

regression standardized coefficients to determine the input features with highest significance to 

the energy use target. Tian and Choudhary [22] selected four of the original seven features and 

Lam et al. [38] selected 28 of the original 62 input features with the highest coefficient values to 

train new MVR models with the feature subsets. Ascione et al. [49]  used trained model coefficients 

determined from a previous study by Mauro et al. [58] to remove input features with MVR 

coefficient values lower than 0.05 for training an artificial neural network model. 
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Tian and Choudhary [22] used the standardized coefficients from multivariate linear regression 

and the total variance contribution for each input variable from multivariate adaptive regression 

splines (MARS) to determine which input variables had the highest significance to annual heating 

energy intensity. They selected four of their original seven variables with the highest coefficient 

values (representing 93% of the model variance according to the MARS model) and trained a new 

multivariate linear regression model with the four input variables. Roy et al. [41] used Multivariate 

Adaptive Regression Splines to determine feature importance (degree of participation) of their 

input features and selected the features with high importance for use in an Extreme Learning 

Machine (ELM) model. They found that this ‘hybrid’ approach, with a subset of features produced 

a more accurate model for predicting heating and cooling energy use than using MARS and ELM, 

separately.  

Hygh et al. [14] used forward stepwise selection to select features that reduced model error. The 

results showed that a combination of adding expert knowledge-informed combined terms and 

feature selection through forward stepwise regression can improve model performance. Amiri et 

al. [40] used forward and backward stepwise regression to remove low significance variables from 

their input feature set.  

Edwards et al. [46] and Sangireddy et al. [28]  highlighted the benefits of embedded feature 

selection when using the L1 regulator, known as least absolute shrinkage and selection operator 

(LASSO), with multivariate regression. When the LASSO regulator is used, the coefficients for 

the input features with low or no significance to the target variable are driven to zero and therefore 

removed from the model.  
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2.13 Training Algorithms 

There is a large focus by researchers on determining the learning algorithms that perform best for 

building energy surrogate modelling. Aijazi and Glicksman [36] stated that the advantages and 

disadvantages of different learning algorithms are not well understood in the field. Some 

researchers test multiple algorithms to determine which performs best for their dataset. Other 

researchers test a single algorithm and evaluate its accuracy alone. Figure 10 summarizes learning 

algorithms tested in several of the articles referenced in Appendix A.  

 
Figure 10 – Breakdown of learning algorithms used for surrogate model development in studies 

referenced in Appendix A. 
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Figure 11 shows how many learning algorithms researchers used as a percentage of studies 

referenced in Appendix A. Of the studies where one algorithm was used, all the studies used either 

artificial neural networks (ANN) or multivariate linear regression (MVR). Many researchers who 

evaluated 2 or more learning algorithms also used MVR and/or ANN. 

Nagpal et al. [24] used a tool developed by Mueller [9] to determine which learning algorithm 

performed best for their dataset. The tool trained the dataset using random forests and neural 

networks with 10 combinations of hyperparameters for each and provided the user with the model 

that produced the minimum error on the validation dataset. 

Aijazi and Glicksman [36] used surrogate modelling algorithms discussed in Forrester et al.’s [8] 

Engineering Design via Surrogate Modelling textbook, Radial Basis Functions and Kriging. Geyer 

and Singaravel [29] proposed using long short-term memory (LSTM) in the neural network model 

Figure 11 – From studies referenced in Appendix A, number of learning algorithms tested during surrogate 
model development. Right pie chart shows, for the studies where one algorithm was used, which algorithm 

was selected. 
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to store interactions of the input features that can be used for future surrogate models with different 

targets. 

The hyperparameter tuning techniques including the final model parameters used, were often not 

disclosed in the studies referenced in Appendix A. Therefore, the researchers may not have 

evaluated varying hyperparameter ranges and combinations. Instead, they used the parameters 

built into the algorithm package. Papadopoulos et al. [42] used a dataset prepared by Tsanas and 

Xifara [35] which was also used by Chou and Bui [44], Castelli et al. [43], and Roy et al. [41] to 

evaluate tree-based ensemble learning algorithms. Papadopoulos et al. [42] used an exhaustive grid 

search method to tune the algorithm hyperparameters. Their results showed that when systematic 

tuning of the hyperparameters was performed for random forests, the model performance 

significantly improved compared to Tsanas and Xifara’s [35] random forest model where 

hyperparameter tuning was not indicated as being performed and the hyperparameters used were 

not stated. 

Some learning algorithms produce models that allow for interpretability of the building feature 

sensitivity to the target, using analytical tools such as multivariate regression, decision trees, and 

in some cases neural nets. Researchers have drawn conclusions about the relative impact of the 

input features to the target for their specific dataset. This could be used to inform designers on 

which building attributes will have the largest and smallest impact on energy use.  

Many researchers have evaluated feature importance in a data pre-processing step by analyzing 

each variable’s correlation, using metrics such as the Pearson correlation coefficient, to the 

simulated result or following model training by analyzing the feature weights [14, 18, 35, 41, 42]. 

Tsanas and Xifara [35] used the weights assigned by the random forests learning algorithm to 

evaluate the input features’ importance to the target. Tsanas and Xifara [35] stressed that 
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evaluating the sensitivity of the input features to the target(s) using the associated weights in the 

trained model, does not determine the direct relationship between the input variable and the target, 

as is the case when evaluating correlation using the Pearson correlation coefficient or performing 

parametric studies. Instead, the weight values take into account both the relationship of the variable 

to the target, the relationship between the input variables, and the joint relationship of multiple 

input variables to the target.  

2.14 Model Performance Analysis 

There are several common model performance metrics used to determine the ability of the model 

to predict the target variable. These are often reported on the validation and test datasets, but it is 

also important to evaluate the model prediction performance for the training dataset and compare 

to the validation/test dataset to determine if the model is overfitting to the training dataset. Figure 

12 shows a breakdown of the model predictive performance metrics used in studies referenced in 

Appendix A. Most studies used more than one metric to evaluate model performance. 

 
Figure 12 – Breakdown of model predictive performance metrics used in studies referenced in Appendix 

A. Most studies used more than one metric to evaluate model performance. 
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Using multiple performance metrics can provide additional insights into the behaviour of the 

model. For example, root mean squared error (RMSE) and mean absolute error (MAE) are 

measurements of the average difference, or error, between the target variable and the model 

predicted value. As illustrated in Figure 13, absolute error is linear across the residual values 

whereas squared error is exponential. Therefore, RMSE places a higher weight on large errors 

compared to MAE.  

 
Figure 13 – Plot of squared error and absolute error for incremental residual values. Adapted from: [12] 

Chou and Bui [44] proposed using a metric to combine RMSE, MAE, MAPE and R2 that they 

referred to as the synthesis index (SI) (Equation 4). It incorporated the number of model 

performance metrics and the result of the performance measure, Pi. Not only did this average the 

performance metrics, it also accounted for variation of results from the k-folds cross-validation 

sets. 

𝑆𝐼 = *
K
∑ L MNGMN,PNQ

MN,PRSGMN,PNQ
TK

/)*  (4) 

Catalina et al. [15] used residual plots to confirm that their multivariate linear regression 

assumption that the residuals were normally distributed was accurate. Papadopoulos and Azar [31] 

plotted the model residuals on a histogram to check if the residual distribution was normal. 



 2-35 

Sangireddy et al. [28] showed the residual plots for both the training and testing datasets. The 

training set residual plot showed the residuals evenly distributed above and below the zero-residual 

line; however, the test set residual plot showed a non-symmetric distribution. They concluded that 

since the non-symmetric plot did not have a pattern or curve, the surrogate model was appropriate. 

A few researchers [27, 36] used model training time, alongside model accuracy metrics, when 

comparing models. Model training time can be used to compare algorithms, but the absolute time 

depends on parameters beyond the training set and algorithm, such as computer and algorithm 

package performance. Unless the goal is to continually train algorithms with incoming data (such 

as proposed by Geyer and Singaravel [29]), the algorithm training is a very small part of the overall 

surrogate modelling process. 

In summary, there are a variety of methods researchers have used at each stage of the building 

energy surrogate modelling process. The methodology decisions impacted the dataset and thereby 

effected the behaviour and predictive performance of the surrogate model. If the surrogate 

modelling development process differs between studies, the final surrogate model cannot be 

directly compared. 
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3 Building Energy Surrogate Modelling – A Feature Selection 
Methodology Using Wrapper and Embedded Techniques 

This study used building energy surrogate model development methodologies similar to previous 

work summarized in Chapter 2. An identified gap in the literature review was the selection of key 

input features for such surrogate models, which generally had been based on expert knowledge. 

Few previous studies used learned models to select key building features [10]. No previous 

research was found in which wrapper and embedded feature selection methods were used together 

to select features for building energy surrogate models. Such feature selection can be used to 

inform archetype energy model design, code and standard requirements, and assumptions for 

detailed building energy models. Selecting the most relevant feature set for predicting the output 

with a certain learning algorithm can have many advantages for the performance of the model 

including removing irrelevant features from the model, reducing model overfitting, and reducing 

model run time. The feature selection methods used in this research produced a surrogate building 

energy use model for predicting annual building energy use. The model can be used to quickly 

evaluate building energy use based on any combination of features within the model’s design 

space. This research therefore contributes to the field of building energy surrogate modelling by 

combining wrapper and embedded feature selection techniques and using them intentionally to 

select the features that together, best predict the simulated building energy use.  

Multivariate linear regression was used as a starting point for this research, consistent with the 

majority (63%) of the studies reviewed. Model prediction accuracy was evaluated for both 

untransformed and transformed input and target variables and the transformations that resulted in 

the model with the best fit and most uniform residual plot were used. A process of feature 

combination selection and embedded feature selection using least absolute shrinkage and selection 
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operator (LASSO) and Elastic Net was evaluated. This multiple step process to surrogate model 

development is unique to this research and provides a methodology for reducing a feature subset 

for simplified building energy predictions suitable to building design decisions during the early 

stages of design when building form, size, enclosure types and mechanical systems are being 

explored.  

3.1 Methodology 

Table 1 summarizes the different methods used at each step of the surrogate model development 

process. By clearly defining the surrogate model development process, the author intends to allow 

for other researchers in the field to quickly compare their models to the model described in this 

chapter. 

  



 3-38 

Table 1 – Summary of surrogate model development 
DA

TA
SE

T 
DE

VE
LO

PM
EN

T  

MODEL INTENT 

- Early stage design tool for new buildings and existing 
building retrofits 

- Evaluate the sensitivity of the input features to the target 
variable 

TARGET VARIABLE - Annual building energy use (annual heating + cooling + fan 
+ pump energy use) 

BUILDING ARCHETYPE Large office (6,570 m2 to 1,780,000 m2) 

LOCATION + CLIMATE 2016 Toronto City Centre, Ontario, Canada – CWEC weather file 
[59] 

ENERGY SIMULATION 
SOFTWARE 

EnergyPlus v 8.0.0.008 [60] 

STATISTICAL ANALYSIS AND 
MODELLING TOOL 

Python v 3.6.5 

BASE MODEL U.S. Department of Energy Large Office Commercial Reference 
Model – EnergyPlus v 7.2 [61] 

FEATURES + RANGES 

- 71 continuous variables 
- Representative of building geometry, enclosure 

performance, lighting and electrical power densities, 
heating ventilation and air conditioning system 
performance, and occupancy (refer to Table 2) 

SAMPLING PLAN - Latin hypercube sampling (LHS) – MATLAB [62] 
- 4,000 samples 

DA
TA

 P
RO

CE
SS

IN
G TRAIN/VALIDATION/TEST SPLIT 

- Training/validation and test random split (70%/15% and 
15%)  

- Training and validation split: random split, repeated 10 
times. 

- Random splitting completed with: 
sklearn.model_selection.train_test_split [63] 

FEATURE ENGINEERING 

- Input feature normalization (mean of zero, variance of 1) 
- Logarithmic transformation of input and target variables 

(Box-Cox method used to evaluate normal distribution of 
data) 

- Input feature combinations added using forward stepwise 
selection 

TR
AI

NE
D 

M
O

DE
L 

DE
VE

LO
PM

EN
T 

LEARNING ALGORITHMS + 
HYPERPARAMETER SELECTION 

 

Multivariate Regression 
(MVR) 

Gradient descent w/ mean 
squared error cost function 

Lasso (L) sklearn.linear_model.lasso [63] 
Elastic Net (EN) sklearn.linear_model.elasticnet 

[63] 

ERROR METRICS 

- Coefficient of determination (R2) 
- Root mean squared error (RMSE) + normalized RMSE 
- Mean absolute error (MAE) + normalized MAE 
- Mean absolute percent error (MAPE) 
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 Generating the Building Energy Dataset 

Figure 14 illustrates the workflow used to generate the large office building energy dataset. This 

study started with a set of 71 building attributes with ranges representative of high to low 

performing large office buildings in the Toronto, Ontario, Canada climate. 4,000 building design 

samples, filling the building attribute design space, were created. Building energy use for each 

sample were determined through building energy simulation software.  

 
Figure 14 – Workflow for generating building energy use dataset 

This study used the U.S. Department of Energy (DOE) Commercial Reference Model for large 

office buildings [61]. The large office reference model’s mechanical system was a central plant 

with chiller and boiler, and multi-zone variable air volume with reheat distribution system. The 

DOE selected this mechanical system for large office buildings based on the results of the U.S. 

CBECS, as reported by Pacific Northwest National Laboratory in their 2006 study [64]. 
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As illustrated in Figure 15, general model construction used in the DOE commercial reference 

model was maintained with a rectangular footprint, single ground and top floors, repeated 

basement and middle floors, and plenums on each the ground, middle and top floors. Each floor 

was made of a single core and four perimeter zones. Windows were represented as strips with the 

depth modified to suit the sample’s window-to-wall ratio. 

 
Figure 15 – Wireframe model illustrating modified building geometry 

The building floor plan design for the ground, top and repeated floors is illustrated in Figure 16. 

Each above-grade floor comprised four perimeter zones (one per elevation), and a core zone. The 

building orientation was represented as degrees clockwise from north and the building elevations 

were labelled clockwise. 
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Figure 16 – Illustration of above grade floor plans 

The 71 features selected fell into building geometry, building enclosure performance, air 

infiltration, internal loads, heating ventilation and air conditioning (HVAC) system performance, 

occupancy, and internal mass categories. The ranges of the 71 features were selected from a 

combination of the U.S. DOE Existing Commercial Reference Models [61], ANSI/ASHRAE/IES 

Standard 90.1 Prototype Building Models [65], and industry knowledge of low to high energy 

performance building attributes [66]. All building attributes that were modified within the DOE 

Commercial Reference Models [61] for the specific climate zone and construction era reference 

models were included in the input feature set. The selected 71 features and associated ranges are 

summarized in Table 2.  
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Table 2 – Building features and ranges used for dataset development. Integer features are marked with 
“(I)” 

 Feature Range Feature Range 

Building 
Geometry 

Number of Repeated Floors  8-80 (I) Basement/Repeated/Top Floor 
Height (m) 

3-5 

Number of Below Grade Floors  1-2 (I) Basement/Ground/Repeated/Top 
Floor Plenum Height (m) 

0.1-1 

Building Orientation (° from 
Elevation 1) 

0-90 Perimeter Zone Depth (m) 3-5 

Width/Depth (m) 20-150 Ground/Repeated/Top Floor 
Elevation 1/2/3/4 Window-to-
Wall Ratio (m2/m2) 

0.1-0.7 

Ground Floor Height (m) 3-10   

Building 
Enclosure 

Performance 

Whole Window U-Value Elevation 
1/2/3/4 (W/m2K) 

0.7-7 Opaque Wall RSI-Value Above 
Grade Elevation 1/2/3/4 (m2K/W) 

0.35-
5.5 

Window Solar Heat Gain 
Coefficient Elevation 1/2/3/4 

0.1-0.8 Below Grade Wall and Slab-on-
Grade RSI-Value (m2K/W) 

0.35-
3.5 

Window Visible Transmittance 
Elevation 1/2/3/4 

0.2-0.8 Roof RSI-Value (m2K/W) 0.35-7 

Air 
Infiltration 

Air Infiltration Rate – Ventilation 
System Off (m3/s/m2) 

0.0003
-0.002 

Air Infiltration Rate – Ventilation 
System On (% of off) 

0.2-0.6 

Internal 
Loads 

Basement/Ground/Repeated 
Perimeter/Repeated Core/Top 
Floor Light Power Density (W/m2) 

2-30 Basement/Core/Perimeter 
Equipment Power Density (W/m2) 

8-21 

Elevator Design Level (no. of 
elevators)  

6-30 (I)   

HVAC System 
Performance 

Boiler Efficiency (%) 0.6-
0.94 

Supply Air Temperature – Heating 
(°C)  

47-55 

Chiller COP (W/W) 3-7 Supply Air Temperature – Cooling 
(°C)   

12.7-
18 

Water Heater Efficiency (%) 0.6-
0.94 

Outside Air Rate (m2/s-person) 0.0012
5-
0.005 

Temperature Setpoint – Heating 
– Occupied (°C) 

18-
22.9 

Fan Efficiency (%) 0.5-
0.85 

Temperature Setpoint – Cooling – 
Occupied (°C) 

23-26 Fan Pressure Rise (Pa) 1017-
1390 

Temperature Setpoint – Heating 
– Setback (°C less than setpoint) 

0-6 Fan Motor Efficiency (%) 0.6-
0.95 

Temperature Setpoint – Cooling – 
Setback (°C more than setpoint) 

0-4   

Occupancy Maximum Occupant Density 
(m2/person) 

4.5-20 Basement Maximum Occupant 
Density (m2/person) 

30-40 

Internal Mass Internal Mass (Multiplier of 
Exterior Enclosure Surface Area) 

0.5-5   
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Many considerations were taken into account when selecting both the features and their ranges for 

the dataset generation. The goals were to select features that differed between large office buildings 

in Toronto, and were included by previous researchers in surrogate model development. The 

associated feature ranges were selected to include values typical of existing and new buildings in 

a Toronto climate.  

From the studies summarized in Appendix A, there were 39 features used by a minimum of 2 

researchers. All features except for roof and wall emissivity, shading, daylighting and scheduling 

were included, in some form, in the dataset for this study. Building enclosure emissivity was not 

included as Hygh et al.’s [14] results showed that it had little importance to the annual energy use 

prediction in cold climates. The impact of shading of adjacent buildings and other objects and 

shading elements integrated into the building enclosure was excluded from the dataset. Both 

shading and daylighting are typically not included in early-stage energy models completed in 

industry and are excluded from the DOE Commercial Reference Model for large office buildings. 

Lastly, scheduling was kept constant in the datasets as downtown Toronto large office buildings 

generally operate under the same schedule. It is common in large office building early-stage energy 

modelling for operation schedules to remain constant as the tenants occupying the building and 

their scheduling requirements may not yet be known. 

There were a few features included in this study that were not included in the studies referenced 

in Appendix A. Most importantly were heating and cooling temperature off-hour setbacks and 

supply air temperatures which, as shown in the results section, ended up having high importance 

to the annual building energy use. In addition, outside air rate was included in the feature set which, 

out of the studies summarized in Appendix A, only Nagpal et al. [24] had included outside air 

flowrate.  
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The building orientation range was 0-90 degrees from elevation 1 (refer to Figure 16) to allow for 

a building rotation. Since the properties of each elevation were modified independently, this 

allowed for modification of the elevations to suit which elevation was deemed north. 

The perimeter zone depth is typically defined by an energy modeler, typically based on the 

enclosure properties, and the interior layout and loads. A variation of 2 m in perimeter zone depth 

was included in the feature set to evaluate the impact of perimeter zone depth on the annual energy 

use. 

The window-to-wall ratio was kept to a maximum of 70% as the windows were only applied to 

floor height and not the mechanical plenum. This was the maximum window-to-wall ratio that 

could be applied so that any combination of floor and mechanical plenum height could be 

simulated. The windows were applied as a strip to the occupied height of the wall as transparent 

glazing is not typically installed at mechanical plenum locations. The windows spanned the width 

of the wall and the height varied to achieve the desired window-to-wall ratio. 

The range upper limit for lighting and electrical plug power densities was selected to be 30 W/m2 

and 21 W/m2, respectively, to allow for low efficiency lighting and task lighting, and information 

technology closets on each floor. 

Four sampling plans (parametric, full factorial, Monte Carlo, and Latin hypercube) were initially 

considered, but only Monte Carlo and Latin hypercube were deemed appropriate. Parametric 

sampling plans, where one building feature is modified in the energy simulation at a time, do not 

capture the behaviour of multiple building attributes interacting. Simulating all combinations using 

full factorial sampling was not feasible given the number of variables, even if the ranges 

summarized in Table 2 were discretized into bins. Latin hypercube was selected as the sampling 

strategy for this research due to its space-filling properties. 
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This study used 4,000 samples, representing random combinations of the values within the ranges 

set for the 71 input features. The Latin hypercube sample set for the 4,000 x 71 matrix of selections 

between 0 and 1 was generated using MATLAB’s lhsdesign [62]. By multiplying the Latin 

hypercube sampled values by the feature range standard deviation and adding the feature minimum 

values, the feature values for each of the 4,000 samples were generated. Features requiring integer 

values, such as number of storeys, were assigned the rounded value.  

The use of Latin hypercube sampling to generate the input matrix resulted in uniform distribution 

of samples for each input feature across the 4,000 samples. As an example, Figure 17 shows a 

histogram of boiler efficiency for the full data set. The histogram shows that the sample values are 

uniform across the feature range. 

 
Figure 17 – Histogram of boiler efficiency input variable for full dataset  

Minor changes to the DOE large office existing building commercial reference model [61] base 

model were made to facilitate surrogate model development. These included: changing the 

holidays and site data to represent Toronto, Canada; adding three additional window and wall types 

to allow for these features to be modified independently for each building elevation; and adding 

an insulation layer to the slab-on-grade construction. 
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As per the DOE Reference model for large office buildings used as the base model, the mechanical 

system was assumed to be a central plant with chiller and boiler, and multi-zone variable air 

volume with reheat distribution system. 

The 71 building features affected 1,756 EnergyPlus Input Data File (IDF) objects in the base 

model. To create IDFs for a range of building sizes, extensive IDF object transformation was 

required. The building geometry was represented in the IDF as x, y and z coordinates at each 

vertex. A geometry transformation script was prepared to transform the 25 geometry features to 

1,704 IDF objects.  

Using Eppy [67], a Python library developed for manipulating EnergyPlus IDFs, the base 

EnergyPlus IDF was modified by identifying the location of the 1,756 objects in the text file and 

replacing them with the values generated by the Latin hypercube sampling plan. This was 

automated to generate the 4,000 IDFs.  

The simulations were run using EnergyPlus v. 8.0.0.008 [60]. The 4,000 .idf files were divided 

into four batches and transferred to the system using Remote Desktop Protocol where a Powershell 

script ran the RunEPlus.bat [60] batch script on each individual file while assigning each process 

to one of the 4 available CPUs. The annual building energy use for each simulation was parsed 

from the output files using a Python script to create a simulated output matrix, as illustrated in 

Figure 18.  

           U
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Figure 18 – Input and target variable matrix/vector form 

4,000 EnergyPlus 
Simulations Input Variable 

Matrix 
Target Variable 
Vector 
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The annual building energy use, used as the target variable in this study, represented the building 

energy use and did not include the simulated direct energy use governed by the tenant energy loads. 

For this study, the simulated lighting, interior electricity, and domestic hot water energy use were 

not included in the annual building energy use target variable. The behaviours of the light and 

electrical plug power density input features were captured in the surrogate model based on their 

impact to the building heating and cooling systems. As illustrated in Figure 19, the annual building 

energy use (i.e. the target variable) is the sum of the annual heating, cooling, fan and pump energy. 

 

 
 

Figure 19 – Breakdown of annual building energy use target variable 

 Feature Selection and Trained Model Development 

The full data set was randomly divided into 2 sets; training/validation and testing. A random seed 

number was applied to the random split so that the dataset would be consistently randomly split 

into the same sets using the Python function sklearn.model_selection.train_test_split [63]. Of the 

total 4,000 samples, the training/validation set was 85% (3,400 samples) and testing set was 15% 

(600 samples).  

The training/validation set was further split into a training set of 2,800 samples (70% of the full 

dataset) and validation set of 600 samples (15% of the full dataset) using random splitting. The 

Annual Building 
Energy Use (GJ)

Annual Heating 
Energy (GJ)

Annual Cooling 
Energy (GJ)

Annual Fan and 
Pump Energy (GJ)

EnergyPlus Simulated 
Energy Use: 
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training/validation dataset was sampled 10 times with a random split of data to create 10 training 

and validation sets. Random seed values 0 through 9 were used for the splitting so that the 10 

training and validation datasets would be consistent for the full study. Where the mean and 

standard deviation model performance metrics are presented, the 10 training and validation sets 

were used. Where a single model performance metric and model performance graphs are presented 

in the results section, the training and validation datasets using random seed 0 was used. The 

Python function, sklearn.model_selection.train_test_split [63], was again used for the random 

split. 

For each model training iteration, the training set was used to train the regression model, and the 

validation set was used to select the appropriate feature and target transformations, select features 

in the forward stepwise regression, and tune the learning algorithm parameters. Once the highest 

performing model was selected, the test set was used to evaluate the performance of the final 

model. 

The input matrices for each training set were normalized so that the features were centered with a 

mean of zero and a variance of 1.0. Rescaling the input matrix causes the features to be on a similar 

scale and thereby reduces the risk of the model inaccurately assigning importance to the input 

feature values. This also allows for gradient descent to converge in less steps. The validation and 

test data sets were normalized with the associated training set mean and standard deviation. 

This study evaluated Box-Cox, exponential, quadratic, squared-root and squared transformations 

of the target variables and compared the model performance for each. The probability distributions 

for the transformed target variables were analyzed to confirm normal distribution. The model 

residual plots for the transformed target variables were analyzed to confirm non-skewed 

distribution. The Box-Cox, exponential (log), and quadratic target variable transformations 
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produced models with the greatest fit. Therefore, these target variable transformations, in 

combination with logarithmic transformation of the input features, were evaluated and compared 

in more detail. Multivariate regression using gradient descent with a mean squared error cost 

function was used for the data transformation evaluation. Alpha values of 0.001, 0.01 and 0.1 were 

evaluated. The cost, 𝐶(𝛽), at each iteration was plotted to confirm that the cost reached zero, and 

therefore reached the minima, within the number of iterations performed. The remainder of the 

analysis in this study used the transformed input and target variables selected from this step. 

Forward stepwise selection, a wrapper feature selection technique, was used to select combined 

features that, when added to the input feature set, improved the surrogate model performance. In 

this study additional combined features were developed to represent linear combinations of several 

of the original 71 features. A summary of the combined features is presented in Table 3. 

The combined features were added to the model one at a time starting with the variables with 

highest absolute Pearson correlation coefficient to the transformed annual energy use and with a 

two-tailed p-value less than 0.005. As each combined feature was added, the original features in 

the combined feature were removed from the model. The model accuracy was evaluated at each 

step. Combined features that either improved or maintained (within 2 decimal points) the accuracy 

of the model were kept in the feature set.  
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Table 3 – Combined Features. Calculations are in Appendix B. 

 Combined Features 

Building Geometry 

Conditioned Floor Area 
(m2) 

Above-Grade Building 
Enclosure Surface Area – 
including roof (m2) 

Overall Above Grade 
Vertical Enclosure 
Window-to-Wall Ratio 

Overall Building Height 
(m) 

Enclosure Surface Area 
to Volume Ratio (m2/m3) 

Opaque Wall Area – 
Elevation 1 (m2) 

Above Grade Building 
Height (m) 

Aspect Ratio – Depth to 
Width (m/m) 

Opaque Wall Area – 
Elevation 2 (m2) 

Weighted Average Floor 
Height (m) 

Above Grade Window-to-
Wall Ratio – Elevation 1 

Opaque Wall Area – 
Elevation 3 (m2) 

Weighted Average 
Plenum Height (m) 

Above Grade Window-to-
Wall Ratio – Elevation 2 

Opaque Wall Area – 
Elevation 4 (m2) 

Conditioned Volume (m3) Above Grade Window-to-
Wall Ratio – Elevation 3  

Overall Enclosure Surface 
Area – including roof and 
below grade (m2) 

Above Grade Window-to-
Wall Ratio – Elevation 4  

Enclosure Performance 

Area Weighted Wall and 
Window U-Value – 
Elevation 1 (W/m2K) 

Overall Area Weighted 
Wall and Window U-
Value (including below 
grade walls) (W/m2K) 

Overall Area Weighted 
Glazing Solar Heat Gain 
Coefficient 

Area Weighted Wall and 
Window U-Value – 
Elevation 2 (W/m2K) 

Overall Enclosure Area 
Weighted U-Value 
(W/m2K) 

Overall Area Weighted 
Glazing Visible 
Transmittance 

Area Weighted Wall and 
Window U-Value – 
Elevation 3 (W/m2K) 

  

Area Weighted Wall and 
Window U-Value – 
Elevation 4 (W/m2K) 

  

Internal Loads Area Weighted Lighting 
Power Density (W/m2) 

Area Weighted Electrical 
Plug Power Density 
(W/m2) 

Area Weighted 
Occupancy Density 
(person/m2) 

 

Next, a process was completed to evaluate whether additional building features could be removed 

from the model without significantly compromising the model accuracy. This was done to simplify 

the model, leading to less inputs required for the surrogate model end-user and the potential for 

lower model overfitting. This step was completed using an embedded feature selection technique 

called least absolute shrinkage and selection operator (LASSO). A range of shrinkage parameters 

(l) along with combining LASSO with a similar regularization term, called Ridge, into a method 
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called Elastic Net were evaluated to determine the optimal set of building features and model 

parameters based on the model performance. This step determined the final surrogate model. 

The final surrogate model was evaluated using the remaining 600 samples, referred to as the test 

dataset. The test dataset was used to evaluate how the model performed on samples not seen at any 

stage of the model development process. Since the intent of the surrogate model was to predict 

annual building energy use in GigaJoules (GJ), and not in transformed GJ, the test dataset was 

transformed back before evaluating the model prediction accuracy.  

3.2 Results 

The 4,000-sample dataset was developed by generating random samples within the design space 

using Latin hypercube and then simulating in EnergyPlus to determine the annual building energy 

use. As a first step, the dataset was evaluated by comparing the simulated annual energy use to 

published real building energy use data for Canadian office buildings to validate that the sample 

set captured the range of building energy use expected for real operational performance.  

The results of the statistical analysis leading to the final surrogate model development are 

summarized in this section. Figure 20 illustrates the steps to developing the final surrogate model. 

This figure is used throughout the results section to highlight the stage of the surrogate 

development process being evaluated and discussed. 

Figure 20 – Surrogate model training process 

A training set (2,800 samples) was used at each step of the analysis to fit the data to the model. A 

validation set (600 samples), comprised of samples not included in the training dataset, was used 

to evaluate the model. For steps where multiple strategies were compared, ten training and 
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validation sets were used so that the mean and standard deviation of the model performance could 

be evaluated and compared. These ten datasets were kept consistent using random seed numbers 

to split the dataset. Initially, multivariate linear regression was used to evaluate how the data fit to 

a linear model. Subsequently, the data was transformed using common transformation techniques 

and the transformed data was fit to a multivariate regression model. The transformation with the 

best fit was selected and carried through the remainder of the analysis. Since several of the 71 

building features used described portions of the building, such as lighting power density for the 

basement, ground floor, repeated floors core and perimeter, and top floor, these building features 

were combined to describe each building attribute for the entire building. To evaluate if the 

combined feature improved the model performance, the combined features were added to the 

model, one at a time, in order of the highest correlation to the annual building energy use, in GJ. 

The original building features used to calculate the combined feature were removed from the 

dataset. If the combined feature improved or maintained the model performance, it was kept in the 

model and the associated original features removed. The result of this forward stepwise feature 

selection process was evaluated by comparing the model performance to the model performance 

with the original 71 variables. 

After the optimal set of combined features were added, embedded feature selection using the L1 

regulator was carried out. Both LASSO and Elastic Net were evaluated and compared to evaluate 

how each performs on the data sets and to determine the optimal shrinkage parameter value.  

The final selected surrogate model’s predictions compared to the EnergyPlus simulations were 

evaluated using the re-transformed data so that all predictions were in annual building energy use 

units (GJ). 
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 Energy Modeling Data 

The feature ranges selected for the simulations were developed to encompass building attributes 

applicable to high and low performing large office buildings in Toronto. The simulated building 

energy use resulted in annual energy use intensity (EUI) ranges of 0.33 to 2.69 GJ/m2 for a range 

of conditioned floor area between 6,570 to 1,780,000 m2. A histogram of the annual EUIs is shown 

in Figure 21 and a breakdown of the annual EUIs by end-use is shown in Figure 22 for the full 

dataset. For the majority of the samples simulated, the annual heating energy and annual lighting 

and electrical plug electricity demands made up a significant portion of the overall annual energy 

use. The annual heating energy was the most significant portion of the annual building energy use 

on average but also has the largest variation across the 4,000 data points. Compared to average 

commercial building data for Canada, this large heating energy use across the sample set was 

representative of existing buildings in Canada [4]. The cooling energy contributes little to the 

overall annual energy use, with almost all samples having an annual cooling energy use intensity 

less than 10% of the total annual energy use intensity.  

 
Figure 21 – Histogram plot of annual energy use intensity for full dataset 
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Figure 22 – Breakdown of energy use intensity as a percentage of the annual site energy use intensity for 
the full dataset. Boxplot shows the data within the first to third interquartile ranges with the outliers not 

shown. 

According to the 2014 Natural Resources Canada Survey of Commercial and Institutional Energy 

Use [68], the average annual EUI for non-medical office buildings between 4,646 and 18,580 m2 

was 1.16 GJ/m2 and over 18,580 m2 in Canada was 1.09 GJ/m2. The 2009 Geared for Change 

Report – Energy Efficiency in Canada’s Commercial Building Sector [4], reported that the average 

annual EUI for all Canadian commercial buildings constructed pre-1920 to 2004 ranged from 1.3-

1.8 GJ/m2. Based on the dataset of 450 commercial office buildings in Canada used for the 2019 

Sidewalk Labs Canadian Commercial Office Buildings Study: Analysis of Energy Use and 

Performance report [66], the average annual EUI for Canadian commercial office buildings was 

1.06 GJ/m2. The Sidewalk Labs report also presented a normalized EUI value that standardizes for 

weather, vacancy, occupant density and exceptional loads like data centres and retail. The average 

annual EUI reported using the normalized values was 0.85 GJ/m2.  

Comparing the EUIs for the simulated dataset used in this study to available EUI data for 

commercial office buildings indicated that the majority of the samples simulated had lower energy 

use per conditioned floor area than the national average and were therefore higher performing. 



 3-55 

This is explained by the use of Latin hypercube sampling, which resulted in the generation of 

models using any combination of building features within the specified ranges, which in this case 

resulted in a sample set that had higher average performance than Canadian existing buildings. 

The goal of the dataset generation was not to create a set of simulations that were representative 

of commercial office buildings in Toronto but to generate samples that represent the design space 

so that actual combinations of building features can be interpolated. The ability of the surrogate 

model to predict energy use for building feature combinations of an actual Toronto commercial 

office building is explored in Section 3.3. 

For this study, a surrogate prediction model for annual building energy use was developed. The 

lighting and electrical plug annual energy use, along with domestic hot water, were not included 

in the annual building energy use target variable to be predicted by the surrogate model. Figure 23 

shows a boxplot of the annual energy use included in the target variable as a percent of the annual 

building energy use. Taking a subset of the total annual energy use was done to remove energy use 

that was directly related to building occupant behaviours and annual energy use that could be 

calculated linearly by the building features. For example, the energy use associated with lighting 

is calculated in EnergyPlus using the light power density for the schedules, multiplied by the 

building floor area. This relationship can be fit using a linear model. By removing these end-use 

energy uses from the model, only the more complex relationship between the building features and 

the annual heating, cooling, fan and pump energy was determined. In Section 3.4, the developed 

surrogate model is compared to the surrogate model presented in [69] that predicted annual energy 

use for all end-uses. 
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Figure 23 – Breakdown of annual energy use (GJ) as a percentage of the annual building energy use for 
the full dataset. Boxplot shows the data within the first to third interquartile ranges with the outliers not 

shown. 

 Multivariate Linear Regression with Original Feature Set 

Multivariate linear regression was used to analyze how the data fit to a linear model. This is a 

common first step for many surrogate modelling researchers as the resulting model can inform if 

the data has a linear behaviour and produces a model that is easily interpretable.  

When the training dataset with 71 features was fit to a multivariate linear regression model, the 

model had poor performance on both the training and validation data, as summarized in Table 4. 

Further, as shown in the predicted (surrogate model) vs. actual (EnergyPlus simulated) (Figure 25) 

and residual (Figure 26) plots for the validation dataset, there was clear evidence of non-linearity 

or missing features in the data as evidenced by the non-random inverted-U shape in both plots and 

particularly the residual plot. The residual plot shows the model predicted target versus the 

difference between the EnergyPlus simulated and surrogate model predicted target values. Ideally, 
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Figure 24 – Surrogate model training process – Multivariate linear regression 
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the datapoints on a residual plot are evenly distributed above and below the line of zero-residual 

for the full range of model predicted values. The linear model performed best in the mid-range of 

the annual building energy use but had significantly reduced accuracy in the low and high ranges, 

with negative energy use predictions at the low energy use range. The negative energy use 

predictions are indicative of the model underpredicting the annual building energy use. This type 

of model behaviour can indicate either that the input features are not adequately describing the 

behaviour of the data across the full design space and/or that there are non-linear relationships 

between the input and target that are not captured in the multivariate linear regression model.  

Table 4 – Results of multivariate linear regression model with original feature set 

 R2 RMSE MAE 

Annual Building 
Energy Use (GJ) 

Training 0.768 46121.109 30366.171 

Validation 0.745 48631.631 30883.871 

 

 
Figure 25 – Predicted (surrogate model) vs. actual (EnergyPlus simulated) annual building energy use 

for the validation dataset using the multivariate linear regression model 
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Figure 26 – Annual building energy use residual plot for using multivariate linear regression model 

showing non-linear behaviour 

 Transforming Input Features and Target Variable 

Since the data exhibited non-linear behaviour when fit using multivariate linear regression, several 

transformations of the input features and the target variable were analyzed. Transformations of the 

input features and target variable were completed separately and together and the transformations 

that resulted in the best model prediction performance, fit using multivariate regression, were 

selected. 

 

 

 

Several common input feature and target variable transformations were evaluated as summarized 

in Table 5. The coefficient of determination, R2, for the multivariate regression models for each 

transformation was calculated and the transformations with the highest R2 values from each of the 

target variable and input feature transformations were identified for further analysis. The target 

variable transformations bolded and highlighted in blue and the input feature transformations 
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Figure 27 – Surrogate model training process – input feature and target variable transformations 
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bolded and highlighted in orange in Table 5 led to the highest model prediction accuracy and were 

therefore further analyzed. 

Table 5 – Summary of input and target variable transformations. Transformations with the highest model 
performance are bolded and highlighted in blue and orange for target and input features, respectively. 

Variable Transformation Transformation Equation Training R2 Validation R2 

Target 

Quadratic 𝑦/a = b𝑦/  0.9134 0.9080 

Squared 𝑦/a = 𝑦/' 0.417 0.385 

Reciprocal 𝑦/a =
1
𝑦/

 0.648 0.638 

Exponential 𝑦/a = log	(𝑦/) 0.953 0.954 

Box-Cox 𝑦/a =
(𝑦/H − 1)

𝜆  0.958 0.949 

Input 
Logarithmic 𝑥/a = log	(𝑥/) 0.730 0.701 

Squared 𝑥/a = 𝑥/' 0.742 0.734 

Of the target variable transformations evaluated, the quadratic, exponential and Box-Cox 

transformations (highlighted in blue) performed well. The model prediction results for the 

quadratic transformation showed that although the transformation reduced the skewing of the 

predicted annual building energy use at the high and low ends (Figure 28) compared to the 

untransformed model (Figure 25 and Figure 26), the residual plot showed a non-uniform inverted 

U-shape (Figure 29).  
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Figure 28 – Predicted (surrogate model) vs. actual (EnergyPlus simulated) quadratic transformed annual 

building energy use for the validation dataset 

 
Figure 29 – Quadratic transformed annual building energy use residual plot for multivariate regression 

model 
Figure 30 shows the histograms of the annual building energy use for the untransformed and 

exponential and Box-Cox transformed target variable. The exponential transformation shifts the 

data so that it is more normally distributed. The Box-Cox transformation, as it is intended to do, 

shifts the data so that it is normally distributed. Multivariate regression is based on the assumption 

that the target variable is normally distributed so transforming the data to achieve normal 

distribution, is essential to the performance of the model. The lambda, l, value for the Box-Cox 
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transformation is 0.1019 +/- 0.0056 using the 10 training datasets. When lambda is zero, the Box-

Cox transformation is logarithmic. This explains the target variable distribution similarities 

between the exponential and Box-Cox transformations. 

   

Figure 30 – Histograms of original, exponential transformed, and Box-Cox transformed target 
variables 

 

The Box-Cox and exponential transformed target variables both showed significantly less skewing 

on the residual plots (Figure 31 and Figure 32 respectively). The Box-Cox transformed target 

variable model residual plot, Figure 31, showed that there was still minor skewing at the high and 

low ends of the target variable. By contrast, the exponential transformed target variable model 

residual plot, Figure 32, showed the predicted target values fit well with the actual target values 

across the full design space. It also showed that the residuals are generally uniformly distributed 

above and below the zero-residual line across the full design space. This is the ideal behaviour of 

the model prediction. 
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Figure 31 – Box-Cox transformed annual building energy use residual plot for multivariate regression 

model 

 
Figure 32 – Exponential (log) transformed annual building energy use residual plot for multivariate 

regression model 

The exponential and Box-Cox target variable transformations and the logarithmic and squared 

input feature transformations were compared and evaluated in more detail to determine the 

transformation(s) that produced a multivariate regression model with the best fit. The average 

coefficient of determination, normalized root mean squared error, normalized mean absolute error, 

and their respective standard deviations across the ten training and validation datasets for the 

transformations are shown in Table 6. As the values and ranges of the transformed targets were 

 

 

Predicted Box-Cox Transformed 
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different for Box-Cox and exponential transformations, the transformed target variables were 

normalized prior to training the model to have a mean of zero and a standard deviation of 1.0 so 

that RMSE and MAE metrics could be used to compare the models.  

Table 6 – Summary of input and target variable transformation model performance (selected 
transformations in bold italics) 

ANNUAL BUILDING ENERGY 
USE 

TARGET TRANSFORMATION 

EXPONENTIAL BOX-COX 

Training Validation Training Validation 

MEAN SD MEAN SD MEAN SD MEAN SD 

IN
PU

T 
TR

AN
SF

O
RM

AT
IO

N
 ORIGINAL 

R2 0.9539 0.0008 0.9516 0.0038 0.9570 0.0007 0.9542 0.0037 

NRMSE 0.2147 0.0018 0.2250 0.0112 0.2074 0.0018 0.2192 0.0104 

NMAE 0.1703 0.0014 0.1781 0.0088 0.1634 0.0014 0.1727 0.0074 

LOG 

R2 0.9666 0.0005 0.9643 0.0027 0.9619 0.0006 0.9585 0.0026 

NRMSE 0.1827 0.0015 0.1908 0.0106 0.1954 0.0018 0.2006 0.0061 

NMAE 0.1411 0.0009 0.1474 0.0073 0.1512 0.0010 0.1552 0.0032 

SQUARED 

R2 0.8763 0.0020 0.8705 0.0103 0.8846 0.0021 0.8802 0.0093 

NRMSE 0.3517 0.0028 0.3596 0.0143 0.3396 0.0031 0.3436 0.0103 

NMAE 0.2811 0.0024 0.2859 0.0127 0.2711 0.0025 0.2742 0.0072 

 

The results show that the logarithmic transformed input variables along with the exponential 

transformed target variable resulted in the highest performing model for all model prediction 

evaluation metrics evaluated. The model with logarithmic transformed input variables along with 

the Box-Cox transformed target variable performance is close in model performance. However, 

due to the slight skewing of the Box-Cox transformed residual plot shown in Figure 31, the 

logarithmic input variable transformation with the exponential target variable transformation was 

selected and applied to the data for the remainder of the study. 
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 Adding Combined Feature Terms Using Forward Stepwise Selection 

Many of the original 71 features were broken out to describe portions of the building that generally 

have different conditions in real constructed large office buildings. The initial goals of developing 

the dataset using this method were to allow the user of the surrogate model to modify the building 

attribute per area and to determine if the feature significance and model behaviour differs when 

the building attributes are separated by area as multiple features. For example, a designer may 

decide to improve the enclosure on a single elevation differently from the others such as selecting 

window glazing coatings with differing solar heat gain coefficients depending on the building 

elevation. However, having many features describing the same item for different parts of the 

building may lead to the features being removed from the model as they are not as important as if 

the item is looked at for the full building. This step evaluated if the model benefited from these 

features being separate or combined. 

 
 
 

 
As the combined feature terms were added to the model, one at a time, in order of the highest 

Pearson correlation coefficient (and with an associated two-tailed p-value less than 0.005), the 

original features used to calculate the added combined feature were removed from the model. The 

equations along with the original input features used to calculate each combined feature are 

summarized in Appendix B. R2, RMSE and MAE were calculated at each forward selection step 

for the training and validation datasets and if the error evaluation metrics indicated an improved 

or maintained (within 2 decimal points) model prediction for each the training and validation data 

sets, the combined feature was kept in the model.  

Multivariate Linear 
Regression

Input Feature and 
Target Variable 

Transformations

Combined 
Feature Forward 

Stepwise 
Selection

LASSO and Elastic 
Net Feature 

Selection

Final Model 
Evaluation

Figure 33 – Surrogate model training process – combined feature forward stepwise selection  
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Table 8 summarizes the combined features in order of the highest to lowest Pearson correlation 

coefficient, and therefore the order added to the model using forward stepwise selection, and 

whether the combined feature was kept in the model following forward stepwise selection. 

The optimal model used 22 combined features (calculated from 48 of the original features) and 23 

of the original features. This method of adding terms to linearly combine the original features 

reduced the input matrix feature size from 71 to 45 and did not compromise the model accuracy. 

On the contrary, the combined features increased the coefficient of determination, and decreased 

the RMSE and MAE on the training and validation sets as summarized in Table 7. 

Table 7 - Model performance before forward stepwise selection, using the original 71 features, and 
following forward stepwise selection 

Model 
Performance 

Metric 
Dataset Original 71 Features 

Following Forward Stepwise 
Selection – 22 Combined Features 

and 23 Original Features 

R2 
Training 0.9666 +/- 0.0005 0.9721 +/- 0.0005 

Validation 0.9643 +/- 0.0027 0.9710 +/- 0.0022 

RMSE 
Training 0.0689 +/- 0.0004 0.0615 +/- 0.0004 

Validation 0.0689 +/- 0.0019 0.0620 +/- 0.0018 

MAE 
Training 0.0519 +/- 0.0002 0.0474 +/- 0.0003 

Validation 0.0533 +/- 0.0009 0.04780 +/- 0.0012 

 

The predicted versus actual data plot for the validation dataset and the residual plot for both the 

training and validation datasets are shown in Figure 34 and Figure 35, respectively. The residuals 

fall within a narrower band following forward stepwise selection indicating that the model is better 

at predicting the target throughout the design space. 
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Table 8 – Combined features in order of highest to lowest Pearson correlation coefficient. Last column 
indicates whether the combined feature was kept in the model. 

 

Combined Feature 
Pearson 

Correlation 
Coefficient 

Two-Tailed 
P-Value 

Kept 
in 

Model 

Overall Building Enclosure Surface Area – Including Roof and Slab-on-
Grade (m2) 0.74288498 0 

 

Above Grade Building Enclosure Surface Area – Including Roof (m2) 0.74242409 0 P 

Conditioned Volume (m3) 0.72173672 0 P 

Conditioned Floor Area (m2) 0.70863331 0 P 
Opaque Wall Area – Elevation 4 (m2) 0.56160455 1.60E-232  
Opaque Wall Area – Elevation 2 (m2) 0.54850059 9.78E-220  
Overall Building Height (m) 0.54462322 4.63E-216 P 

Above Grade Building Height (m) 0.54435992 8.19E-216  
Opaque Wall Area – Elevation 1 (m2) 0.53036274 5.98E-203 P 
Opaque Wall Area – Elevation 3 (m2) 0.52810868 6.20E-201 P 
Enclosure Surface Area to Volume Ratio (m2/m3) -0.4598175 1.56E-146 P 
Overall Enclosure Area Weighted U-Value (W/m2K) 0.15995443 1.66E-17 P 
Overall Area Weighted Wall and Window U-Value (including below 
grade walls) (W/m2K) 0.12510145 3.08E-11 

P 

Overall Above Grade Vertical Enclosure Window-to-Wall Ratio 0.12190721 9.67E-11 P 
Overall Area Weighted Glazing Solar Heat Gain Coefficient 0.1206095 1.53E-10 P 

Area Weighted Electrical Plug Power Density (W/m2) -0.1178068 4.03E-10 P 
Weighted Average Floor Height (m) 0.10524917 2.37E-08 P 
Area Weighted Wall and Window U-Value (includes below grade 
walls) – Elevation 1 (W/m2K) 0.10032451 1.04E-07 P 

Area Weighted Wall and Window U-Value (includes below grade 
walls) – Elevation 3 (W/m2K) 0.08899543 2.40E-06 P 

Overall Area Weighted Glazing Visible Transmittance 0.08802812 3.09E-06 P 
Area Weighted Wall and Window U-Value (includes below grade 
walls) – Elevation 4 (W/m2K) 0.07592115 5.79E-05 P 

Above Grade Window-to-Wall Ratio – Elevation 1 0.07458394 7.80E-05 P 
Area Weighted Wall and Window U-Value (includes below grade 
walls) – Elevation 2 (W/m2K) 0.06922872 0.00024637 P 

Area Weighted Occupancy Density (person/m2) -0.0673763 0.00036016 P 
Above Grade Window-to-Wall Ratio – Elevation 3 0.06182926 0.00106274 P 
Above Grade Window-to-Wall Ratio – Elevation 2 0.06165244 0.00109855 P 
Aspect Ratio – Depth to Width (m/m) -0.0452357 0.01667462  

Area Weighted Light Power Density (W/m2) 0.04522417 0.01670241  

Above Grade Window-to-Wall Ratio – Elevation 4 0.03950961 0.0365698  
Weighted Average Plenum Height (m) 0.00326965 0.86270102  
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Figure 34 – Predicted (surrogate model) vs. actual (EnergyPlus simulated) for the multivariate 

regression model following forward stepwise selection. Target is log transformed annual building energy 
use and data presented is from the validation dataset. 

 
Figure 35 – Exponential (Log) transformed annual building energy use residual plot for multivariate 

regression model following forward stepwise selection 

 Embedded Feature Selection Using LASSO and Elastic Net Regulators 

The LASSO (L1 regulator) and Elastic Net (L1 and L2 regulators) embedded feature selection 

methods were used to determine if any of the 45 features in the model following forward stepwise 

selection could be removed without compromising the accuracy of the model. Both methods were 

evaluated by testing a range of l values, which resulted in varying feature subset sizes, feature 
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coefficients, and model accuracies. 100% LASSO, 75% LASSO and 25% Ridge, 50% LASSO 

and Ridge, 25% LASSO and 75% Ridge, and 100% Ridge were evaluated for a range of l values.  

Figure 37 shows the LASSO, Elastic Nets and Ridge regression models’ coefficient of 

determination, R2, on the validation data as l values were varied. The figure shows that when 

fewer than 20 features were included in the model, the 100% LASSO model performed 

significantly better than the other models and as more features were included in the model, the 

model accuracy converged. At 23 features, the model performance reached a plateau when over 

50% LASSO was used. The model performance gradually increased as more features were 

included in the model but the model performance difference between 23 features and 45 features 

on the validation dataset was 0.005 for each R2, RMSE and MAE. Such minor increase in model 

performance was not worth the added complexity of 22 additional features, which may lead to 

overfitting and will require the model end-user to determine and input more information about the 

building they intend to model. The LASSO, 100% L1 regulator, model was selected for its higher 

performance with a lower number of features and its slightly higher performance at 23 features.  
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Figure 36 – Surrogate model training process – LASSO and Elastic Net feature selection 
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Figure 37 – Model coefficient of determination as the number of features in each the LASSO and Elastic 

Net models change. The selected number of features is shown by the dashed line. 

Insight into the behaviour of the dataset and final model can be gained by evaluating the order in 

which the features were removed from the model, as shown in Figure 38. The features highlighted 

in red identify the features removed. 

Interestingly, the outside air rate, the amount of ventilation provided per person, was removed 

from the model early on. Outside air rate is often thought of as contributing significantly to energy 

use as the outdoor air must be conditioned before it is supplied to the spaces. Nagpal et al. [24] 

was the only other study which included outdoor air flowrate as an input feature and they did not 

present the ranking or values of the coefficients (since it was not the focus of their study). 

Therefore, the comparison of this result to another study could not be completed. 

The temperature setpoints are all kept in the model. However, the supply air temperature for 

heating was removed early and the supply air temperature for cooling remained in the model. This 

is likely due to the additional latent energy required to cool air versus heat air. 
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 Figure 38 – Features removed from model (highlighted in red) as penalty weight, l, increases 
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The feature set selected, and associated coefficients, for the final model are summarized in Table 

9. These features are listed in order of importance based on their coefficient weight values for the 

LASSO model. The same 23 features were selected for each of the LASSO and Elastic Net models 

tested. The order of feature importance was not the same, however, and is also summarized in 

Table 9. The LASSO model coefficients presented in Table 9 are the mean and standard deviation 

(SD) values for the ten training sets. The low standard deviation values are an indication that the 

coefficients are stable and not significantly changing between different training sets. Some of the 

standard deviations are significantly higher than others. All features with higher standard 

deviations are combined features and include: above grade building enclosure surface area, 

volume, conditioned floor area, overall enclosure area weighted U-value, overall building height, 

and overall area weighted wall and window U-value (including below grade). A higher coefficient 

standard deviation can be an indicator of collinearity or multicollinearity between the variables. 

Collinearity is not an issue for the performance behaviour of the model but can impact the feature 

importance interpretation for these features. This behaviour is further explored later in this section. 

It is interesting to observe that the above-grade building enclosure surface area had almost twice 

the coefficient value as the next most important feature. Also, both the temperature setpoints and 

setbacks for heating and cooling had a high significance to the annual building energy use 

prediction. This is consistent with the findings of Hoyt et al. [70] who found that increasing the 

cooling set point to 25 from 22.2 reduced the annual cooling energy use by 29% and decreasing 

the heating set point to 20 from 21.1 reduced the annual heating energy use by 34% in medium 

office buildings across multiple climates.  
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Table 9 – Features selected for final LASSO model in order of coefficient values. The order of feature 
importance for the Elastic Net models where 23 features were selected is presented. * indicates a 
combined feature 

Feature 

Coefficient Order of Feature Importance MEAN SD 
Lasso 

L1 – 100% 
EN 

L1 – 75% 
EN 

L1 – 50% 
EN 

L1 – 25% 
Above-Grade Building Enclosure Surface 
Area – including roof (m2)* 0.204 0.0063 1 1 1 1 

Temperature Setpoint - Heating 
Occupied (°C) 0.105 0.0005 2 2 2 2 

Supply Air Temperature Cooling (°C) 0.069 0.0005 3 3 3 4 
Infiltration Rate - Ventilation System Off 
(m3/s/m2) 0.059 0.0003 4 4 5 5 

Conditioned Volume (m3)* 0.054 0.0047 5 5 4 6 
Temperature Setpoint - Cooling 
Occupied (°C) 

-0.051 0.0007 6 6 6 3 

Temperature Setpoint - Heating Setback 
(°C less than heating setpoint)  

-0.049 0.0005 7 7 7 8 

Conditioned Floor Area (m2)* 0.033 0.0026 8 8 8 7 
Boiler Efficiency (%) -0.032 0.0006 9 9 10 10 
Overall Enclosure Area Weighted U-
Value (W/m2K)* 0.030 0.0022 10 12 11 14 

Above Grade Window-to-Wall Ratio – 
Elevation 1* -0.028 0.0008 11 11 12 12 

Overall Above Grade Vertical Enclosure 
Window-to-Wall Ratio* 0.026 0.0007 12 13 13 11 

Overall Building Height (m)* 0.026 0.0022 13 10 9 9 
Overall Area Weighted Glazing Solar 
Heat Gain Coefficient* 0.025 0.0005 14 14 14 13 

Temperature Setpoint - Cooling Setback 
(°C more than cooling setpoint) 0.019 0.0004 15 15 15 15 

Chiller COP (W/W) -0.013 0.0005 16 17 17 16 
Core Light Power Density (W/m2) 0.012 0.0004 17 16 16 17 
Overall Area Weighted Wall and 
Window U-Value (including below grade 
walls) (W/m2K)* 

0.008 0.0024 18 18 18 18 

Fan Efficiency (%) -0.005 0.0005 19 19 19 19 
Area Weighted Occupancy Density 
(person/m2)* -0.005 0.0005 20 20 20 20 

Area Weighted Electrical Plug Power 
Density (W/m2)* -0.001 0.0003 21 22 22 21 

Building Orientation (degrees from 
Elevation 1) 0.001 0.0005 22 23 23 23 

Above Grade Window-to-Wall Ratio – 
Elevation 2* 0.001 0.0006 23 21 21 22 
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The order of feature importance did not stay consistent throughout the embedded feature selection 

process, particularly for the combined features. Figure 39 shows how the model coefficient values 

change for a selection of combined features as l was increased.  

The conditioned floor area had the highest coefficient weight when most of the features were 

included in the model but as the number of features decreased, the coefficient value for the 

condition floor area decreased significantly and the above grade building enclosure surface area 

significantly increased. This indicated that these two features were likely highly correlated. This 

was confirmed by determining that the Pearson correlation coefficient was 0.91, indicating high 

correlation between the two features. Where the model performance declined at fewer than 23 

features, the coefficient weight of the above grade building enclosure surface area significantly 

increased meaning that this feature was primarily contributing to the prediction of the target 

variable. 

 
Figure 39 – Change in coefficient values for a selection of input features as the shrinkage parameter (l) 

was changed for LASSO 
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The correlation of the combined features to one another was evaluated using the Pearson 

correlation coefficient. Figure 40 shows a heatmap of the combined feature correlations for the 

optimal LASSO model features selected. The squares highlighted in dark red and dark blue show 

two input features that are highly positively or negatively correlated, respectively. 

To further explore the impact of the collinear features to the behaviour and prediction accuracy of 

the model, the highly collinear features were removed as shown by the blue lines in Figure 40. 

 
Figure 40 – ‘Heatmap’ showing the Pearson correlation coefficient of the combined features. The blue 
lines on the y-axis indicate the features removed in order to eliminate highly collinear input features. 
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The LASSO model was trained using a reduced input feature set of 32 features, with 13 of the 

combined features removed due to collinearity. A range of l values were used to determine the 

optimal LASSO model for this dataset and illustrate how the model performances compare to the 

LASSO models with correlated features. 

As shown in Figure 41, the models with correlated features removed have a slightly lower 

coefficient of determination compared to the LASSO models with correlated features. Similarly, 

the optimal point for model accuracy and number of features is at 23 features. At 23 features the 

LASSO model with correlated features removed had a coefficient of determination, R2, of 0.006 

less on the training and validation datasets than the optimal LASSO model when the correlated 

features were included. This indicated that the behaviour of the removed correlated combined 

features was largely captured by the remaining features. 

 
Figure 41 – Model coefficient of determination as the number of features in each the LASSO with 
correlated features (green circle) and LASSO with correlated combined features removed (purple 

triangle) models change. The selected number of features for both methods is shown by the dashed line. 
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In Table 10, the selected features for the LASSO model where the highly correlated combined 

features were removed is presented in order of coefficient value. The weight distributed between 

combined features describing the building geometry was concentrated on the enclosure surface 

area, significantly increasing the significance of this feature. There is risk in doing this as the 

above-grade building enclosure surface area may describe the building geometry when all samples 

have a similar rectangular, repeated floor form but if the intent is to use this surrogate model for 

real buildings where building geometry varies, relying only on the enclosure surface area may lead 

to surrogate model performance issues. This behaviour and its impact was excluded from this study 

but is important for further research in this field as simplified geometry building archetypes are 

often used as the base energy simulation models for dataset development. 

After the removal of highly correlated features, the high significance features selected for each 

feature set were similar; one interesting observation was that the overall area weighted glazing 

solar heat gain coefficient was of higher importance than the overall enclosure area weighted U-

value when the highly correlated features were removed. This behaviour was likely attributed to 

the high collinearity between these the combined features.  
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Table 10 – Features in order of absolute coefficient values following highly correlated combined feature 
removal. Combined features shown with * 

1 Above Grade Building Enclosure Surface Area – 
including roof (m2)* 13 Above Grade Window-to-Wall Ratio – 

Elevation 2* 

2 Temperature Setpoint – Heating Occupied (°C) 14 Overall Area Weighted Glazing Visible 
Transmittance* 

3 Supply Air Temperature Cooling (°C) 15 Fan Efficiency (%) 

4 Infiltration Rate - Ventilation System Off (m3/s/m2) 16 Area Weighted Electrical Plug Power 
Density (W/m2)* 

5 Temperature Setpoint - Cooling Occupied (°C) 17 Above Grade Window-to-Wall Ratio – 
Elevation 3* 

6 Temperature Setpoint - Heating Setback (°C less 
than heating setpoint)  18 Area Weighted Occupancy Density 

(person/m2)* 
7 Boiler Efficiency (%) 19 Weighted Average Floor Height (m) 

8 Overall Area Weighted Glazing Solar Heat Gain 
Coefficient* 20 Building Orientation (degrees from 

Elevation 1) 

9 Overall Enclosure Area Weighted U-Value 
(W/m2K)* 21 Fan Pressure Rise (Pa) 

10 Temperature Setpoint - Cooling Setback (°C more 
than cooling setpoint) 22 Outside Air Rate (m2/s-person) 

11 Core Light Power Density (W/m2) 23 Ground Floor Perimeter Light Power 
Density (W/m2) 

12 Chiller COP (W/W)   

For the purposes of drawing conclusions from the feature significance, the LASSO model with 

highly correlated input features removed was used. However, due to its higher prediction 

accuracy and ability to consider multiple aspects of building geometry such as building enclosure 

surface area, conditioned volume and floor area, and overall building height, the LASSO model 

trained using the 45 input features (22 combined features and 23 original features) was selected 

as the final model. 

 Final Model Evaluation 

The final model was evaluated for prediction accuracy using the test dataset.   

 
 
 

Multivariate Linear 
Regression

Input Feature and 
Target Variable 

Transformations

Combined 
Feature Forward 

Stepwise 
Selection

LASSO and Elastic 
Net Feature 

Selection

Final Model 
Evaluation

Figure 42 – Surrogate model training progress – final model evaluation 
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Table 11 summarizes the model prediction results (mean and standard deviation) of the final 

selected model on the transformed training, validation and test set. The similar model predictive 

behaviour on the three datasets indicates that the model is not overfitting the training data. The test 

dataset surrogate model predicted values versus the EnergyPlus simulated log transformed value 

is shown in  Figure 43. 

Table 11 – Final model performance on the log transformed training, validation and test datasets 

 Training Validation Testing 

R2 0.9683 +/- 0.0004 0.9674 +/- 0.0021 0.9695 +/- 0.0001 

RMSE 0.0656 +/- 0.0003 0.0658 +/- 0.0014 0.0628 +/- 0.0002 

MAE 0.0509 +/- 0.0002 0.0511 +/- 0.0009 0.0495 +/- 0.0002 

 

To evaluate how the surrogate model performs when predicting annual building energy use in 

GigaJoules, the surrogate model predicted values were re-transformed using Equation 5 and 

compared to the EnergyPlus simulated target values.  

𝑦f = 10(2hihj2kikj2lilj⋯j2QiQ) (5) 

Figure 44 shows the test dataset re-transformed predicted values against the EnergyPlus simulated 

annual building energy use values in GJ. The data generally fits well with some spreading in the 

higher annual building energy use ranges where there is less data for the model to train on. Figure 

45 shows the test dataset re-transformed residual plot and Figure 46 and Figure 47 show the test 

dataset percent error. 

s shown in the Box and Whisker plot in Figure 47, the model under and over predicts the total 

energy use uniformly, with a median percent error on the test data close to zero. Half of the test 

samples were predicted by the trained regression within approximately 9% of the EnergyPlus 

simulated annual building energy use. There are a few outlying data points with prediction percent 

error in the 38-50% range. These data points fall in the lower range of annual building energy use 
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values where a small difference between the predicted and actual energy use can cause a high 

percent error. This is shown in the predicted annual building energy use versus percent error plot 

(Figure 46) where the higher percent errors are in the low and mid ranges of the predicted annual 

energy use values. The selected model has an average percent error of 11.38 +/- 0.05% and a R2-

score of 0.9304 +/- 0.0007 on the re-transformed test data set. 

 

Figure 43 - Predicted (surrogate model) vs. actual 
(EnergyPlus simulated) log transformed annual 
building energy use for test dataset 

 

Figure 44 – Predicted (surrogate model) vs. actual 
(EnergyPlus simulated) annual building energy 
use in GJ for test dataset 

 
Figure 45 – Residual plot for predicted (surrogate model) annual building energy use in GJ for test 

dataset 
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Figure 46 – Predicted annual building energy 
use in GJ vs. percent error for test dataset 

Figure 47 – Distribution of the test dataset percent 
error. Boxplot shows the data within the first to 

third interquartile ranges and the outliers 

To confirm that the dataset size used was appropriate for the study performed, the test dataset 

average percent error was calculated on the re-transformed data at decreasing training set sizes as 

shown in Figure 48. The graph shows that below a training set size of 1,000 training samples, the 

multivariate regression with L1 LASSO regulator model accuracy decreases significantly. 

Therefore, the training set size of 2,800 selected for this study was appropriate and could have 

been decreased to reduce computer simulation and model training time.  

  
Figure 48 – Impact of training sample size on the mean absolute percent error of the test dataset 

 Predicted Annual  
Building Energy Use (GJ) 
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3.3 Model Validation Using Downtown Toronto Reference Model 

Since the surrogate model was trained on samples that were a random combination of the building 

features within the defined ranges, the ability of the surrogate model to predict annual building 

energy use for a realistic combination of feature values had not been evaluated through the test 

dataset. To validate the surrogate model an eQuest Model National Energy Code for Buildings 

(MNECB) reference model for a large commercial office tower in downtown Toronto, Ontario 

was used. The model, referred to herein as Building A, was a 41-storey tower with 5 levels of 

parking below grade.  

eQuest is a building energy modelling simulation tool that uses DOE-2 software to run building 

energy use simulations. Comparing the surrogate model to annual energy use simulated in the 

eQuest models was challenging as there were several factors that caused error including, but not 

limited to, the simulated energy use difference between DOE-2 and EnergyPlus; the error when 

simplified reference models are used; the error associated with building attributes that remained 

constant through all samples but vary from the base EnergyPlus model in the eQuest models 

provided; and the error of the surrogate model itself for a realistic combination of feature values. 

These can be significant: in a comparison of eQuest and EnergyPlus for a medium size office 

building archetype, Rallapalli  [71] found that the annual pump energy use was 57% higher and 

the annual natural gas energy use was 94% higher for the eQuest model compared to EnergyPlus.  

The eQuest model simulated results could not be readily compared to the surrogate model results 

to validate the surrogate model. To isolate the error between the surrogate model and the 

EnergyPlus simulation, the building features from the Building A eQuest model were extracted 

and those features used in the DOE commercial reference model for large office buildings base 

model. This involved simplifying the building geometry. Building A had building geometry 
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similar to the surrogate reference model geometry. The number of storeys were kept the same as 

were the repeated floors width and depth and the floor heights.  

The prediction error for the surrogate model prediction compared to the EnergyPlus simulated 

value was 14%. 

3.4 Impact of Lighting and Plug Loads on Model Accuracy 

A previous study [69] used the same original 71 input features and EnergyPlus simulations to 

predict annual total site energy use, a target variable that included all energy uses simulated by 

EnergyPlus, including heating, cooling, lighting, electrical, domestic hot water, pump, and fan 

energy uses and the same input feature and target variable transformation was used as was 

discussed previously. Combined features were similarly added to the feature set using a forward 

stepwise selection methodology. LASSO, and Elastic Net with 50% L1 regulator and 50% L2 

regulator were evaluated on the training dataset and Elastic Net was found to have the highest 

model prediction performance on the re-transformed target data. The final model performance on 

the re-transformed target variable test dataset (20% of the 4,000 samples) was R2 of 0.98 and the 

mean absolute percent error was 6.49%, with half the test data predictions falling between +/- 5% 

MAPE. Therefore, predicting annual total site energy use had a higher accuracy in comparison to 

the target variable presented in this chapter, annual building energy use. This improved model 

performance was due to the inclusion of the lighting and electrical plug energy uses that are linearly 

correlated with the lighting and electrical power densities and building floor area. As shown in 

Table 12, the lighting and electrical plug power densities were within the top most important 

features for predicting the annual total site energy use. 
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Table 12 – Features in order of absolute coefficient values for both the annual total site energy use 
surrogate model developed in [69] and the annual building energy use surrogate model (excluding 
lighting and plug energy use) presented in this chapter. Combined features shown with *. 

# Annual Total Site Energy Use (GJ) Target [69] Annual Building Energy Use (GJ) Target 

1 Conditioned Floor Area (m2)* Above Grade Building Enclosure Surface Area – 
including roof (m2)* 

2 Above Grade Building Enclosure Surface Area 
(m2)* Temperature Setpoint – Heating Occupied (°C) 

3 Area Weighted Light Power Density (W/m2)* Supply Air Temperature Cooling (°C) 

4 Temperature Setpoint – Heating Occupied (°C) 
Infiltration Rate - Ventilation System Off 
(m3/s/m2) 

5 Supply Air Temperature Cooling (°C) Conditioned Volume (m3)* 

6 Area Weighted Electrical Plug Power Density 
(W/m2)* Temperature Setpoint - Cooling Occupied (°C) 

7 Infiltration Rate – Ventilation System Off 
(m3/s/m2) 

Temperature Setpoint - Heating Setback (°C less 
than heating setpoint)  

8 Temperature Setpoint – Cooling Occupied (°C) Conditioned Floor Area (m2)* 

9 Temperature Setpoint – Heating Setback 
Setback (°C less than cooling setpoint) Boiler Efficiency (%) 

10 Overall Enclosure Area Weighted U-Value 
(W/m2K)* 

Overall Enclosure Area Weighted U-Value 
(W/m2K)* 

11 Conditioned Volume (m3)* Above Grade Window-to-Wall Ratio – Elevation 
1* 

12 Boiler Efficiency (%) Overall Above Grade Vertical Enclosure Window-
to-Wall Ratio* 

13 Overall Above Grade Vertical Enclosure 
Window-to-Wall Ratio* Overall Building Height (m)* 

14 Window Area Weighted Window Solar Heat 
Gain Coefficient* 

Overall Area Weighted Glazing Solar Heat Gain 
Coefficient* 

15 Temperature Setpoint – Cooling Setback 
Setback (°C more than cooling setpoint)  

Temperature Setpoint - Cooling Setback (°C 
more than cooling setpoint)  

16 Opaque Wall Area – Elevation 2 (m2)* Chiller COP (W/W) 
17 Opaque Wall Area – Elevation 4 (m2)* Core Light Power Density (W/m2) 

18 Chiller COP (W/W) Overall Area Weighted Wall and Window U-
Value (including below grade walls) (W/m2K)* 

19 Elevator Design Level (no. of elevators) Fan Efficiency (%) 
20 Area Weighted Occupancy Density (person/m2)* Area Weighted Occupancy Density (person/m2)* 

21 Fan Efficiency (%) Area Weighted Electrical Plug Power Density 
(W/m2)* 

22 Building Orientation (degrees from Elevation 1) Building Orientation (degrees from Elevation 1) 

23 Fan Pressure Rise (Pa) Above Grade Window-to-Wall Ratio – Elevation 
2* 

24 Outside Air Rate (m2/s-person)  

25 Infiltration Rate – Ventilation System On (% of 
off)  
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The features selected and order of significance were compared for the two models with different 

target variables. Beyond the obvious differences of internal occupant-driven loads, the features 

selected and their relative order of importance from this analysis were similar. The improved 

model performance when lighting and electrical energy uses were included in the model was 

interesting to observe when evaluating the surrogate models developed by other researchers. As 

summarized in Chapter 2, annual total site energy use was a common target variable used by 

previous researchers, with 30% of the research included in Chapter 2 using this as a target. 

3.5 Surrogate Model Findings 

This study developed, tested and evaluated a method for reducing the surrogate model input feature 

matrix size used to predict annual building energy use. The goals were to introduce a method to 

reduce the feature subset each time a surrogate model is developed, and evaluate the features 

selected for the specific dataset. The surrogate model developed not only predicts annual building 

energy use for any combination of the features (within the initial feature ranges simulated) but the 

feature significance can be interpreted to better understand the key attributes of a building that 

impact the energy use. The study focused on the large office building archetype in Toronto, ON 

but the methodology presented can be applied to different building archetypes and climates.  

This study showed that combining features in the original feature set, such as electrical power 

density for basement, core and perimeter, improved or maintained the model predictive 

performance. Further, for predicting annual building energy use for large office buildings in 

Toronto, these features did not need to be separated by area and instead, in the future, could be 

averaged and represented as a single feature from the onset. This would simplify the sample set 

EnergyPlus IDF creation and could eliminate the step of combined feature selection. The combined 
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feature selection step proved to be the most intensive part of the data analysis: it was an iterative 

process that would be challenging to automate.  

Amongst the goals with this study was the evaluation of surrogate model behaviour and 

performance using a large number of features with wide ranges. Some of the high and low ends of 

the ranges selected were outside of the normal boundaries for high-rise commercial office 

buildings in Toronto, both new and existing. This may have impacted the surrogate model 

behaviour. Future work could include the same features with narrower feature ranges, particularly 

for building geometry to evaluate the behaviour and predictive performance of the model. 

4 Discussion and Conclusions 
This thesis provided an overview of surrogate modelling for building energy prediction and 

methods used by researchers in the field. Through the literature review, a gap was identified in the 

current building energy surrogate modelling research for selecting a subset of features that have 

the most important impact on the target variable. To address this gap, a feature selection 

methodology was presented that reduced the feature subset size without impacting the model 

predictive performance.  

The study presented in Chapter 3 used a large office building archetype in Toronto to explore and 

analyze the data processing step of feature selection. Initially, 71 features were selected for 

variation in the dataset. Many of these initial features were combined into combined features and 

added to the surrogate model in a forward stepwise methodology. Where the combined features 

improved or maintained the model prediction performance, they were included in the model, and 

the original features were removed. Further, embedded feature selection using the L1, LASSO 

regulator was used to remove features that had little importance in the prediction of the target 

variable.  
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4.1 Key Findings 

The final model included 11 of the original features used to develop the sample sets, plus 12 linear 

combinations of the original features. The final model with 45 features had a coefficient of 

determination (R2) on the validation dataset of 0.9674 +/- 0.0021, compared to the surrogate model 

for the original 71 features, which had a R2 of 0.9643 +/- 0.0027 on the validation set. Therefore, 

the surrogate model, following combined feature addition and LASSO feature selection, performed 

the same as (within error) as the surrogate model with all features included. The final model 

predicted annual building energy use (the sum of annual heating, cooling, pump and fan energy 

uses) to an average error of 11.4% on the test dataset, with half the test datapoints within +/-9% 

error and outlying data points approximately 40% error. This is acceptable for model energy use 

prediction in an early stage design tool. 

To evaluate the performance of a realistic building feature set using the surrogate model, a 

combination of features from the energy reference model for a newly constructed downtown 

Toronto, Ontario large office tower was used. The surrogate model prediction was compared to 

the features simulated using the EnergyPlus base model used to generate the dataset. The predicted 

annual energy use result from the surrogate model was 14% higher than the EnergyPlus model 

result. This falls just outside the first interquartile range of error on the test dataset and therefore 

indicates that this realistic combination of building features is within the design space of the model. 

In an interesting outcome of this study, the building geometry description features in the final 

model were not specific to the shape of the building or the interior zoning. As a result, building 

geometry terms describing the whole building would allow for flexibility when using this model 

as an early-stage design tool because exact geometry is not required. The user of the surrogate 

model would be able to explore design options based on features such as conditioned floor area 
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and volume rather than heights of individual floors and mechanical plenums. Further research is 

required to determine if the model can apply to buildings that deviate from the DOE Large Office 

Commercial Reference Model’s rectangular form.  

The impact of including a wide range of building geometry would bring value to the field. In this 

study, the conditioned floor area ranged from 6,570 to 1,780,000 m2 for the full dataset to reflect 

the full range of “large” office building sizes. This resulted in the building geometry having a 

weight almost twice as large as the next most important feature. Narrowing the building size ranges 

by separating large buildings into further size categories and keeping the building geometry 

constant for all samples would provide insight into the impact of geometry on the surrogate model 

behaviour and the feature importance. Future research exploring the impact of including varying 

building geometry in the feature set is recommended. On one hand, including geometry makes the 

surrogate model, as a tool, more useful. However, it may impact the ability of the model to 

differentiate between energy conservation methods on a building where the geometry will be kept 

constant. 

None of the comparable surrogate modelling studies reviewed included temperature setback for 

both heating and cooling in the model feature set. However, temperature setpoints and setbacks 

were among the features of highest significance. This shows that the setpoint has an important 

impact on annual energy use. Using off-hour temperature setbacks is a common easy-to-implement 

energy saving strategy used by commercial office building owners to reduce their building energy 

consumption. It is a low or no cost method, and if implemented appropriately, can have little or no 

impact on tenant comfort. Including this feature in the surrogate model for office buildings is 

therefore important to exploring energy conservation methods. 
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The study focused on multivariate regression and did not include complex learning algorithms, 

such as artificial neural networks and random forest, which have been used by other researchers 

in this field. The goal of this study was not to test several different learning algorithms and select 

the best one. Instead, the intent was to focus on a process that allows for analysis of selected feature 

behaviour from the dataset. Future research could evaluate if the feature selection methodology 

presented improves surrogate model prediction accuracy if implemented before training using a 

more complex algorithm.  

4.2 Future Research 

From the review of previous research in the field of building energy surrogate modelling, 

summarized in Chapter 2 several areas were identified where future research can be advantageous 

to the further development of this field. The accuracy analysis required for the surrogate modelling 

intent is often not discussed in the presentation of surrogate model development. As this field of 

research continues to move forward and surrogate models are integrated into industry-used tools 

for predicting building energy use and other metrics, development of approved metrics for the 

surrogate model prediction accuracy will be essential. 

Further research into multi-climate surrogate models including the range of climate conditions that 

can be included in a single model, and the input variables used to describe climate, are research 

areas that could be thoroughly explored. There is a significant advantage to training multi-climate 

models, particularly where these models are transformed into industry tools. Rather than 

developing a surrogate model for each city or region, a surrogate model that is usable for multiple 

climates can expedite the process.  

To develop a methodology for developing surrogate models for several building archetypes in 

multiple climates, automation of the full process would be advantageous. Mueller [9] developed 
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an automated surrogate model training program using artificial neural networks and random forests 

that tested combinations of hyperparameters and selected the model with the highest performance. 

This was used by Nagpal et al. [24] in their building energy surrogate modelling study. Extending 

this type of automation to dataset developing, energy model simulation, and data pre-processing 

would be of value in integrating surrogate modelling into an industry tool. 

The impact of the method used to develop the sample set and sampling plan has not been 

thoroughly evaluated in the context of building energy surrogate modelling. As this step is 

completed in the early stages of surrogate modelling development and influences the dataset used 

to train the surrogate models, the sampling plan impact cannot be compared between studies. There 

is an opportunity to compare and evaluate, in detail, multiple commonly used sampling plans by 

keeping all other factors of the experiment constant. 

The mechanical systems for surrogate models are generally constant, with some studies including 

varying equipment efficiencies as features. This is limiting when the surrogate model is being used 

as an early-stage design tool for new or existing buildings, as differing mechanical systems are 

often explored during this phase. There is an opportunity to explore using multiple mechanical 

systems in a single surrogate model. 

While some datasets are available that used simulation software that is now-obsolete (e.g. [33]), 

there is benefit for researchers to share their datasets developed using current building energy 

modelling software commonly used in industry. Benefits of sharing datasets are minimizing the 

amount of simulations required to analyze the impact of the selected features and associated ranges 

on surrogate model behaviour and performance, and eliminating variation in datasets used between 

studies.  
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There is a large focus in previous research on the highest performing algorithms for building 

energy surrogate modelling. There is a risk in placing such focus on the last step of a complex 

process because these algorithms are highly dependent on the input datasets and thus such 

conclusions will not be valid across the studies. This is evident from the lack of consensus across 

the literature. There is an opportunity to shift this focus and perform detailed comparisons on 

earlier stages of the process within dataset development and data processing as well as to look 

further into feature selection methodologies and use surrogate modelling to evaluate building 

feature importance to the variable being used as the target, such as monthly or annual energy use. 

Another current research gap is the lack of discussion and analysis on how well building energy 

surrogate models compared to detailed energy models created for real buildings. While some 

researchers developed a base model using real buildings, for example [24], many studies use 

existing archetype models as a base model. Comparing surrogate models to detailed energy models 

may show a different behaviour than comparing reference models to detailed energy models. 

As a general comment, it was observed that there is inconsistent reporting of information within 

the literature critical to interpreting results and enabling study repeatability. This missing 

information includes, but is not limited to, the versions of energy simulation software and 

statistical analysis programs and packages used, the hyperparameters used for each learning 

algorithm, and how the hyperparameters were determined. Thorough documentation is important 

in order to learn for future work and compare to completed studies.  

As this field continues to grow and surrogate models are integrated into other workflows, such as 

optimization, there are opportunities to focus on each stage of the full process. We as researchers 

can shape the way the data is formed and test and compare methods to creating datasets that will 

best meet the needs of the surrogate model.  



 

 

 

 

 

 

 

 

Appendix A – Summary of Surrogate Models Presented in Studies 
Referenced in Chapter 2



Reference Wong et al. Tsanas and 
Xifara

Tian, Choudhary 
et al.

Tian, Song et al. Tian and 
Choudhary

Aijazi and 
Glicksman

Hygh et al. Nagpal et al. 
(2018)

Asl et al. Chidiac et al. Catalina et al.

[32] [35] [18] [51] [22] [36] [14] [24] [20] [19] [15]

Other Researchers Using Same Dataset Roy et al [41]

Papadopoulos 
et al. [42]

Castelli et al [43]

Chou and Bui 
[44]

Al Gharably et 
al. [45] (added 
wall area per 
elevation and 
roof area to 
feature set)

Nagpal et al. 
(2019) [25]

LOCATION(S) HONG KONG
ATHENS, 
GREECE

UNIVERSITY OF 
PENNSYLVANIA

GEORGIA 
INSTITUTE OF 
TECHNOLOGY

LONDON, UK LONDON, UK
RALEIGH, 
BOSTON, 
DULUTH

MIAMI, 
WINSTON-

SALEM, 
MINNEAPOLIS, 
ALBUQUERQUE

MIT
MIAMI, 

CHICAGO, SAN 
FRANCISCO

OTTAWA, 
EDMONTON, 
VANCOUVER

FRANCE (16 
MAJOR CITIES 
INCLUDING 

PARIS, 
MARSEILLE, 
CHAMBERY, 

STRASBOURG)

BUILDING TYPE LARGE OFFICE RESIDENTIAL
CAMPUS 

BUILDINGS 
MEDIUM SIZE 

OFFICE
SECONDARY 

SCHOOL

MEDIUM MULTI-
UNIT 

RESIDENTIAL
MEDIUM OFFICE

UNIVERSITY 
ACADEMIC, 

LABORATORY, 
AND RESIDENCE

MEDIUM SIZED 
BUILDING (DOES 

NOT SPECIFY 
USE)

MEDIUM OFFICE
RESIDENTIAL 

SINGLE-FAMILY 
HOUSE

TARGET VARIABLE(S)

DAILY 
ELECTRICITY 

LOAD 
(COOLING, 
HEATING, 
LIGHTING, 

TOTAL)

ANNUAL 
COOLING LOAD

ANNUAL 
HEATING LOAD

ANNUAL 
COOLING LOAD

ANNUAL 
HEATING LOAD

ANNUAL 
COOLING LOAD

ANNUAL 
HEATING LOAD

ANNUAL 
CARBON 
EMISSION 

(CO2e)

ANNUAL 
NATURAL GAS 
USE INTENSITY

ANNUAL 
ELECTRICITY USE 

INTENSITY

ANNUAL TOTAL 
LOAD

ANNUAL 
COOLING LOAD

ANNUAL 
HEATING LOAD

ANNUAL TOTAL 
LOAD

ANNUAL 
COOLING LOAD

ANNUAL 
HEATING LOAD

ANNUAL 
ENERGY USE 

INTENSITY

ANNUAL 
ENERGY USE 

INTENSITY

ANNUAL 
HEATING LOAD

ANNUAL 
COOLING LOAD
ANNUAL FAN, 
PUMP, OTHER 

LOADS
MONTHLY 

TOTAL LOAD

ANNUAL TOTAL 
LOAD

MONTHLY 
TOTAL LOAD

HYPOTHETICAL/REAL INPUT DATA H H R H H H H R H H H

ENERGY SIMULATION SOFTWARE ENERGYPLUS ECOTECT

ENERGY 
PERFORMANCE 

STANDARD 
CALCULATION 

TOOLKIT 
(EPSCT)

ENERGYPLUS V 
8.1

ENERGYPLUS ENERGYPLUS ENERGYPLUS ENERGYPLUS DOE 2.2 ENERGYPLUS TRNSYS

DISCRETE /CONTINUOUS VARIABLES D D N/A C C C C C ? D D

Building Orientation X X X X
Building Footprint Area X

Total Conditioned Floor Area X X X
Building Volume

Total Height X X
Compactness Ratio (Area/Volume) X X

Aspect Ratio (length/depth) X
Number of Storeys X

Building Depth
Building Width

Perimeter Zone Depth X
Floor Height X

Total Enclosure Surface Area X
Roof Area X X X
Wall Area X X X

Window Area X X X
Below Grade Area X

Window-to-Floor Ratio X
Window-to-Wall Ratio X X X X X X X

Enclosure Thermal Transmittance X
Window Thermal Transmittance X X X X X X X

Window Visible Transmittance X X
Window SHGC  X X X X X

Glazing/Fenestration Type X
Wall Thermal Transmittance X X X X X X X

Wall Specific Heat
Wall Emissivity/Absorptance
Roof Thermal Transmittance X X X X X X X
Roof Emissivity/Absorptance X

Slab-on-Grade Thermal Transmittance X
Shading Projection Factor X

Fenestration Shading X X
Air Infiltration Rate X X X X

Window Leakage X
Perimeter Outside Air Flowrate X

Core Outside Air Flowrate X
Lighting Power Density X X X X X X

Daylighting X X X

Equipment Power Density X X X X X

Elevator Load X

Heating Efficiency X X X X
Cooling Efficiency X X X

Domestic Hot Water Type
Fresh Air Ventilation X X X X

Heating Temperature Setpoint X X X
Cooling Temperature Setpoint X

Unoccupied Temperature Setpoint
Service Hot Water Usage X

Economizer Cycle X
Occupancy Occupant Density X X X

Internal Thermal Capacity
Building Enclosure Thermal Capacity

Building Mass X
Occupancy Schedule X X X

Average Weekday Occupant X X

Total Lighting Hours X

Average  Weekly Lighting X X

Outside Air Flowrate Schedule X

Total Equipment Hours X

Average Weekly Equipment X X

HDD X
Monthly Mean Outdoor Drybulb T X
Monthly Average Global Radiation X

Building Geometry

Climate

Building Enclosure 
Performance

Internal Loads

Scheduling

Air Infiltration

Internal Mass

HVAC Systems



Reference

Other Researchers Using Same Dataset

LOCATION(S)

BUILDING TYPE

TARGET VARIABLE(S)

HYPOTHETICAL/REAL INPUT DATA

ENERGY SIMULATION SOFTWARE

DISCRETE /CONTINUOUS VARIABLES

Building Orientation
Building Footprint Area

Total Conditioned Floor Area
Building Volume

Total Height
Compactness Ratio (Area/Volume)

Aspect Ratio (length/depth)
Number of Storeys

Building Depth
Building Width

Perimeter Zone Depth
Floor Height

Total Enclosure Surface Area
Roof Area
Wall Area

Window Area
Below Grade Area

Window-to-Floor Ratio
Window-to-Wall Ratio

Enclosure Thermal Transmittance
Window Thermal Transmittance

Window Visible Transmittance
Window SHGC  

Glazing/Fenestration Type
Wall Thermal Transmittance

Wall Specific Heat
Wall Emissivity/Absorptance
Roof Thermal Transmittance
Roof Emissivity/Absorptance

Slab-on-Grade Thermal Transmittance
Shading Projection Factor

Fenestration Shading 
Air Infiltration Rate

Window Leakage
Perimeter Outside Air Flowrate

Core Outside Air Flowrate
Lighting Power Density

Daylighting

Equipment Power Density

Elevator Load

Heating Efficiency
Cooling Efficiency

Domestic Hot Water Type
Fresh Air Ventilation

Heating Temperature Setpoint
Cooling Temperature Setpoint

Unoccupied Temperature Setpoint
Service Hot Water Usage

Economizer Cycle
Occupancy Occupant Density

Internal Thermal Capacity
Building Enclosure Thermal Capacity

Building Mass
Occupancy Schedule

Average Weekday Occupant

Total Lighting Hours

Average  Weekly Lighting

Outside Air Flowrate Schedule

Total Equipment Hours

Average Weekly Equipment 

HDD
Monthly Mean Outdoor Drybulb T
Monthly Average Global Radiation

Building Geometry

Climate

Building Enclosure 
Performance

Internal Loads

Scheduling

Air Infiltration

Internal Mass

HVAC Systems

Sangireddy et al. Papadopoulos 
and Azar

Singaravel et al. Melo et al. Carlo and 
Lamberts

Chari and 
Christodoulou

Amiri et al. Asasi et al. Lam et al. Ascione et al. Chen et al.

[28] [31] [77] [27] [26] [52] [40] [21] [38] [49] [50]

JAIPUR, 
HYDERABAD 

INDIA
ABU DHABI BRUSSELS

FLORIANPOLIS, 
BRAZIL

FLORIANPOLIS, 
BRAZIL

IRELAND
SAN JOSE AND 

BILLINGS
HOUSTON, 

TEXAS
HONG KONG NAPLES HONG KONG

SMALL OFFICE MEDIUM OFFICE SMALL OFFICE MEDIUM OFFICE LARGE OFFICE
RESIDENTIAL 

HOUSE
SMALL OFFICE SMALL OFFICE LARGE OFFICE SMALL OFFICE

HIGH RISE 
RESIDENTIAL

ANNUAL 
ENERGY USE 

INTENSITY

MONTHLY 
TOTAL LOAD

MONTHLY 
COOLING LOAD

MONTHLY 
HEATING LOAD

ANNUAL 
COOLING LOAD

ANNUAL 
ELECTRICITY USE 

INTENSITY

BUILDING 
ENERGY RATING 

(BER)

ANNUAL TOTAL 
LOAD

ANNUAL 
ENERGY USE 

INTENSITY

ANNUAL 
ELECTRICITY 

LOAD

ANNUAL 
HEATING LOAD 

INTENSITY
ANNUAL 

COOLING LOAD 
INTENSITY
ANNUAL 

DISCOMFORT 
HOURS

ILLUMINANCE 
LEVEL

AIR CHANGE 
RATE

ASHRAE55 
COMFORT TIME

H H H H H H H H H H H

ENERGYPLUS ENERGYPLUS ENERGYPLUS ENERGYPLUS ENERGYPLUS IRELAND DEAP DOE 2.2 DOE 2.2 DOE 2.1 ENERGYPLUS ENERGYPLUS

D C D D D D D D C c

X X X X X X X X

X X
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X
X

X X X
X
X

X X X

X
X
X

X
X X X X X X

X
X X X X X X

X X X X X X
X X

X X X X X X X X X
X

X X X X
X X X X X X X

X X X
X X X X

X
X X X X

X X X X X X

X X X X X X

X X X X X

X X X X
X X X

X
X

X X
X X
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Appendix B – Calculation of Combined Features
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 COMBINED 
FEATURE 

ORIGINAL FEATURES USED TO CALCULATE COMBINED 
FEATURE EQUATION 

Building 
Geometry 

CFA Conditioned 
Floor Area (m2) 

- Width [W] 
- Depth [D] 
- Number of Below Grade Floors [B] 
- Number of Repeated Floors [S] 

𝐶𝐹𝐴 = 𝑊 ∗ 𝐷 ∗ (𝐵 + 𝑆 + 2) 

H Overall Building 
Height (m) 

- Number of Below Grade Floors [B] 
- Number of Repeated Floors [S] 
- Basement Height [BH] 
- Ground Floor Height [GH] 
- Ground Floor Plenum Height [GPH] 
- Repeated Floor Height [RH] 
- Repeated Floor Plenum Height [RPH] 
- Top Floor Height [TH] 
- Top Floor Plenum Height [TPH] 

𝐻 = (𝐵 ∗ 𝐵𝐻) + 𝐺𝐻 + 𝐺𝑃𝐻 + (𝑆 ∗ 𝑅𝐻) + (𝑆 ∗ 𝑅𝑃𝐻) + 𝑇𝐻
+ 𝑇𝑃𝐻 

HAG Above Grade 
Building Height 
(m) 

- Number of Repeated Floors [S] 
- Ground Floor Height [GH] 
- Ground Floor Plenum Height [GPH] 
- Repeated Floor Height [RH] 
- Repeated Floor Plenum Height [RPH] 
- Top Floor Height [TH] 
- Top Floor Plenum Height [TPH] 

𝐻𝐴𝐺 = 𝐺𝐻 + 𝐺𝑃𝐻 + (𝑆 ∗ 𝑅𝐻) + (𝑆 ∗ 𝑅𝑃𝐻) + 𝑇𝐻 + 𝑇𝑃𝐻 

FH Weighted 
Average Floor 
Height (m) 

- Number of Below Grade Floors [B] 
- Number of Repeated Floors [S] 
- Basement Height [BH] 
- Ground Floor Height [GH] 
- Repeated Floor Height [RH] 
- Top Floor Height [TH] 

𝐹𝐻 = ((𝐵 ∗ 𝐵𝐻) + (𝑆 ∗ 𝑅𝐻) + 𝐺𝐻 + 𝑇𝐻)/(𝑆 + 𝐵 + 2) 

PH Weighted 
Average Plenum 
Height (m) 

- Number of Repeated Floors [S] 
- Ground Floor Plenum Height [GPH] 
- Repeated Floor Plenum Height [RPH] 
- Top Floor Plenum Height [TPH] 

𝑃𝐻 = ((𝑆 ∗ 𝑅𝑃𝐻) + 𝐺𝑃𝐻 + 𝑇𝑃𝐻)/(𝑆 + 2) 
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 COMBINED 

FEATURE 
ORIGINAL FEATURES USED TO CALCULATE COMBINED 

FEATURE 
EQUATION 

Building 
Geometry 

V Conditioned 
Volume (m3) 

- Width [W] 
- Depth [D] 
- Number of Below Grade Floors [B] 
- Number of Repeated Floors [S] 
- Basement Height [BH] 
- Ground Floor Height [GH] 
- Ground Floor Plenum Height [GPH] 
- Repeated Floor Height [RH] 
- Repeated Floor Plenum Height [RPH] 
- Top Floor Height [TH] 
- Top Floor Plenum Height [TPH] 

𝑉 = 𝑊 ∗ 𝐷 ∗ 𝐻 

OSA Overall 
Enclosure 
Surface Area – 
including roof 
and below 
grade (m2) 

- Width [W] 
- Depth [D] 
- Number of Below Grade Floors [B] 
- Number of Repeated Floors [S] 
- Basement Height [BH] 
- Ground Floor Height [GH] 
- Ground Floor Plenum Height [GPH] 
- Repeated Floor Height [RH] 
- Repeated Floor Plenum Height [RPH] 
- Top Floor Height [TH] 
- Top Floor Plenum Height [TPH] 

𝑂𝑆𝐴 = (𝐻 ∗𝑊 ∗ 2) + (𝐻 ∗ 𝐷 ∗ 2) + (𝑊 ∗ 𝐷) 

ESA Above-Grade 
Building 
Enclosure 
Surface Area – 
including roof 
(m2) 

- Width [W] 
- Depth [D] 
- Number of Repeated Floors [S] 
- Ground Floor Height [GH] 
- Ground Floor Plenum Height [GPH] 
- Repeated Floor Height [RH] 
- Repeated Floor Plenum Height [RPH] 
- Top Floor Height [TH] 
- Top Floor Plenum Height [TPH] 

𝐸𝑆𝐴 = (𝐻𝐴𝐺 ∗𝑊 ∗ 2) + (𝐻𝐴𝐺 ∗ 𝐷 ∗ 2) + (𝑊 ∗ 𝐷) 
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 COMBINED 
FEATURE 

ORIGINAL FEATURES USED TO CALCULATE COMBINED 
FEATURE 

EQUATION 

Building 
Geometry 

ESA:V Enclosure 
Surface Area to 
Volume Ratio 
(m2/m3) 

- Width [W] 
- Depth [D] 
- Number of Below Grade Floors [B] 
- Number of Repeated Floors [S] 
- Basement Height [BH] 
- Ground Floor Height [GH] 
- Ground Floor Plenum Height [GPH] 
- Repeated Floor Height [RH] 
- Repeated Floor Plenum Height [RPH] 
- Top Floor Height [TH] 
- Top Floor Plenum Height [TPH] 

𝐸𝑆𝐴: 𝑉 = 𝐸𝑆𝐴/𝑉 

AR Aspect Ratio – 
Depth to Width 
(m/m) 

- Width [W] 
- Depth [D] 𝐴𝑅 = 𝐷/𝑊 

WWR1 Above Grade 
Window-to-Wall 
Ratio – 
Elevation 1  

- Width [W] 
- Number of Repeated Floors [S] 
- Ground Floor Height [GH] 
- Ground Floor Plenum Height [GPH] 
- Repeated Floor Height [RH] 
- Repeated Floor Plenum Height [RPH] 
- Top Floor Height [TH] 
- Top Floor Plenum Height [TPH] 
- Ground Floor WWR – Elevation 1 [GWWR1] 
- Repeated Floor WWR – Elevation 1 [RWWR1] 
- Top Floor WWR – Elevation 1 [TWWR1] 

𝑊𝑊𝑅1 =
9∗((:;99<=∗(;>?;@>)A?:<99<=∗B∗(<>?<@>)A?:C99<=∗(C>?C@>)A)

9∗>D;
  

WWR2 Above Grade 
Window-to-Wall 
Ratio – 
Elevation 2 

- Depth [D] 
- Number of Repeated Floors [S] 
- Ground Floor Height [GH] 
- Ground Floor Plenum Height [GPH] 
- Repeated Floor Height [RH] 
- Repeated Floor Plenum Height [RPH] 
- Top Floor Height [TH] 
- Top Floor Plenum Height [TPH] 
- Ground Floor WWR – Elevation 1 [GWWR2] 
- Repeated Floor WWR – Elevation 1 [RWWR2] 
- Top Floor WWR – Elevation 1 [TWWR2] 

𝑊𝑊𝑅2 =
E∗((:;99<F∗(;>?;@>)A?:<99<F∗B∗(<>?<@>)A?:C99<F∗(C>?C@>)A)

E∗>D;
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 COMBINED 
FEATURE 

ORIGINAL FEATURES USED TO CALCULATE 
COMBINED FEATURE 

EQUATION 

Building 
Geometry 

WWR3 Above Grade 
Window-to-Wall 
Ratio – 
Elevation 3 

- Width [W] 
- Number of Repeated Floors [S] 
- Ground Floor Height [GH] 
- Ground Floor Plenum Height [GPH] 
- Repeated Floor Height [RH] 
- Repeated Floor Plenum Height [RPH] 
- Top Floor Height [TH] 
- Top Floor Plenum Height [TPH] 
- Ground Floor WWR – Elevation 1 [GWWR3] 
- Repeated Floor WWR – Elevation 1 [RWWR3] 
- Top Floor WWR – Elevation 1 [TWWR3] 

𝑊𝑊𝑅2 =
𝑊 ∗ ((:𝐺𝑊𝑊𝑅3 ∗ (𝐺𝐻 + 𝐺𝑃𝐻)A + :𝑅𝑊𝑊𝑅3 ∗ 𝑆 ∗ (𝑅𝐻 + 𝑅𝑃𝐻)A + :𝑇𝑊𝑊𝑅3 ∗ (𝑇𝐻 + 𝑇𝑃𝐻)A)

𝑊 ∗ 𝐻𝐴𝐺  

WWR4 Above Grade 
Window-to-Wall 
Ratio – 
Elevation 4 

- Depth [D] 
- Number of Repeated Floors [S] 
- Ground Floor Height [GH] 
- Ground Floor Plenum Height [GPH] 
- Repeated Floor Height [RH] 
- Repeated Floor Plenum Height [RPH] 
- Top Floor Height [TH] 
- Top Floor Plenum Height [TPH] 
- Ground Floor WWR – Elevation 1 [GWWR4] 
- Repeated Floor WWR – Elevation 1 [RWWR4] 
- Top Floor WWR – Elevation 1 [TWWR4] 

𝑊𝑊𝑅2 =
𝐷 ∗ ((:𝐺𝑊𝑊𝑅4 ∗ (𝐺𝐻 + 𝐺𝑃𝐻)A + :𝑅𝑊𝑊𝑅4 ∗ 𝑆 ∗ (𝑅𝐻 + 𝑅𝑃𝐻)A + :𝑇𝑊𝑊𝑅4 ∗ (𝑇𝐻 + 𝑇𝑃𝐻)A)

𝐷 ∗ 𝐻𝐴𝐺  
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 COMBINED 
FEATURE 

ORIGINAL FEATURES USED TO CALCULATE COMBINED 
FEATURE 

EQUATION 

Building 
Geometry 

WWR Overall Above 
Grade Vertical 
Enclosure 
Window-to-Wall 
Ratio 

- Width [W] 
- Depth [D] 
- Number of Repeated Floors [S] 
- Ground Floor Height [GH] 
- Ground Floor Plenum Height [GPH] 
- Repeated Floor Height [RH] 
- Repeated Floor Plenum Height [RPH] 
- Top Floor Height [TH] 
- Top Floor Plenum Height [TPH] 
- Ground Floor WWR – Elevation 1 [GWWR1] 
- Ground Floor WWR – Elevation 2 [GWWR2] 
- Ground Floor WWR – Elevation 3 [GWWR3] 
- Ground Floor WWR – Elevation 4 [GWWR4] 
- Repeated Floor WWR – Elevation 1 [RWWR1] 
- Repeated Floor WWR – Elevation 2 [RWWR2] 
- Repeated Floor WWR – Elevation 3 [RWWR3] 
- Repeated Floor WWR – Elevation 4 [RWWR4] 
- Top Floor WWR – Elevation 1 [TWWR1] 
- Top Floor WWR – Elevation 2 [TWWR2] 
- Top Floor WWR – Elevation 3 [TWWR3] 
- Top Floor WWR – Elevation 4 [TWWR4] 

𝑊𝑊𝑅 = 99<=∗9∗>D;?99<F∗E∗>D;?99<I∗9∗>D;?99<J∗E∗>D;
F∗(9?E)∗>D;

 

WA1 Opaque Wall 
Area – Elevation 
1 (m2) 

- Width [W] 
- Number of Repeated Floors [S] 
- Ground Floor Height [GH] 
- Ground Floor Plenum Height [GPH] 
- Repeated Floor Height [RH] 
- Repeated Floor Plenum Height [RPH] 
- Top Floor Height [TH] 
- Top Floor Plenum Height [TPH] 
- Ground Floor WWR – Elevation 1 [GWWR1] 
- Repeated Floor WWR – Elevation 1 [RWWR1] 
- Top Floor WWR – Elevation 1 [TWWR1] 

𝑊𝐴1 = (1 −𝑊𝑊𝑅1) ∗𝑊 ∗ 𝐻𝐴𝐺 
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 COMBINED 
FEATURE 

ORIGINAL FEATURES USED TO CALCULATE COMBINED 
FEATURE 

EQUATION 

Building 
Geometry 

WA2 Opaque Wall 
Area – Elevation 
2 (m2) 

- Depth [D] 
- Number of Repeated Floors [S] 
- Ground Floor Height [GH] 
- Ground Floor Plenum Height [GPH] 
- Repeated Floor Height [RH] 
- Repeated Floor Plenum Height [RPH] 
- Top Floor Height [TH] 
- Top Floor Plenum Height [TPH] 
- Ground Floor WWR – Elevation 2 [GWWR2] 
- Repeated Floor WWR – Elevation 2 [RWWR2] 
- Top Floor WWR – Elevation 2 [TWWR2] 

𝑊𝐴2 = (1 −𝑊𝑊𝑅2) ∗ 𝐷 ∗ 𝐻𝐴𝐺 

WA3 Opaque Wall 
Area – Elevation 
3 (m2) 

- Width [W] 
- Number of Repeated Floors [S] 
- Ground Floor Height [GH] 
- Ground Floor Plenum Height [GPH] 
- Repeated Floor Height [RH] 
- Repeated Floor Plenum Height [RPH] 
- Top Floor Height [TH] 
- Top Floor Plenum Height [TPH] 
- Ground Floor WWR – Elevation 3 [GWWR3] 
- Repeated Floor WWR – Elevation 3 [RWWR3] 
- Top Floor WWR – Elevation 3 [TWWR3] 

𝑊𝐴3 = (1 −𝑊𝑊𝑅3) ∗𝑊 ∗ 𝐻𝐴𝐺 

WA4 Opaque Wall 
Area – Elevation 
4 (m2) 

- Depth [D] 
- Number of Repeated Floors [S] 
- Ground Floor Height [GH] 
- Ground Floor Plenum Height [GPH] 
- Repeated Floor Height [RH] 
- Repeated Floor Plenum Height [RPH] 
- Top Floor Height [TH] 
- Top Floor Plenum Height [TPH] 
- Ground Floor WWR – Elevation 4 [GWWR4] 
- Repeated Floor WWR – Elevation 4 [RWWR4] 
- Top Floor WWR – Elevation 4 [TWWR4] 

𝑊𝐴4 = (1 −𝑊𝑊𝑅4) ∗ 𝐷 ∗ 𝐻𝐴𝐺 
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 COMBINED 
FEATURE 

ORIGINAL FEATURES USED TO CALCULATE 
COMBINED FEATURE 

EQUATION 

Enclosure 
Performance 

OWU1 Area Weighted 
Wall and 
Window U-
Value (includes 
below grade 
walls) – 
Elevation 1 
(m2K/W) 

- Width [W] 
- Number of Below Grade Floors [B] 
- Number of Repeated Floors [S] 
- Basement Height [BH] 
- Ground Floor Height [GH] 
- Ground Floor Plenum Height [GPH] 
- Repeated Floor Height [RH] 
- Repeated Floor Plenum Height [RPH] 
- Top Floor Height [TH] 
- Top Floor Plenum Height [TPH] 
- Ground Floor WWR – Elevation 1 [GWWR1] 
- Repeated Floor WWR – Elevation 1 [RWWR1] 
- Top Floor WWR – Elevation 1 [TWWR1] 
- Window U-Value – Elevation 1 [WU1] 
- Wall RSI – Elevation 1 [WR1] 
- Below Grade Wall RSI [BWR] 

𝑂𝑊𝑈1 = ((𝑊 ∗ 𝐵 ∗ 𝐵𝐻 ∗ 1/𝐵𝑊𝑅)
+ (𝑊 ∗ (𝐻𝐴𝐺) ∗ 𝑊𝑊𝑅1 ∗𝑊𝑈1)
+ (𝑊 ∗ (𝐻𝐴𝐺) ∗ (1 −𝑊𝑊𝑅1) ∗ 1/𝑊𝑅1))
/(𝑊 ∗ 𝐻) 

OWU2 Area Weighted 
Wall and 
Window U-
Value – 
Elevation 2 
(m2K/W) 

- Depth [D] 
- Number of Below Grade Floors [B] 
- Number of Repeated Floors [S] 
- Basement Height [BH] 
- Ground Floor Height [GH] 
- Ground Floor Plenum Height [GPH] 
- Repeated Floor Height [RH] 
- Repeated Floor Plenum Height [RPH] 
- Top Floor Height [TH] 
- Top Floor Plenum Height [TPH] 
- Ground Floor WWR – Elevation 2 [GWWR2] 
- Repeated Floor WWR – Elevation 2 [RWWR2] 
- Top Floor WWR – Elevation 2 [TWWR2] 
- Window U-Value – Elevation 2 [WU2] 
- Wall RSI – Elevation 2 [WR2] 
- Below Grade Wall RSI [BWR] 

𝑂𝑊𝑈2 = (M𝐷 ∗ 𝐵 ∗ 𝐵𝐻 ∗
1

𝐵𝑊𝑅N
+ (𝐷 ∗ (𝐻𝐴𝐺) ∗ 𝑊𝑊𝑅2 ∗𝑊𝑈2)

+ M𝐷 ∗ (𝐻𝐴𝐺) ∗ (1 −𝑊𝑊𝑅2) ∗
1

𝑊𝑅2N)/(𝐷
∗ 𝐻) 
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 COMBINED 
FEATURE 

ORIGINAL FEATURES USED TO CALCULATE 
COMBINED FEATURE 

EQUATION 

Enclosure 
Performance 

OWU3 Area Weighted 
Wall and 
Window U-
Value – 
Elevation 3 
(m2K/W) 

- Width [W] 
- Number of Below Grade Floors [B] 
- Number of Repeated Floors [S] 
- Basement Height [BH] 
- Ground Floor Height [GH] 
- Ground Floor Plenum Height [GPH] 
- Repeated Floor Height [RH] 
- Repeated Floor Plenum Height [RPH] 
- Top Floor Height [TH] 
- Top Floor Plenum Height [TPH] 
- Ground Floor WWR – Elevation 3 [GWWR3] 
- Repeated Floor WWR – Elevation 3 [RWWR3] 
- Top Floor WWR – Elevation 3 [TWWR3] 
- Window U-Value – Elevation 3 [WU31] 
- Wall RSI – Elevation 3 [WR3] 
- Below Grade Wall RSI [BWR] 

𝑂𝑊𝑈3 = ((𝑊 ∗ 𝐵 ∗ 𝐵𝐻 ∗ 1/𝐵𝑊𝑅)
+ (𝑊 ∗ (𝐻𝐴𝐺) ∗ 𝑊𝑊𝑅3 ∗𝑊𝑈3)
+ (𝑊 ∗ (𝐻𝐴𝐺) ∗ (1 −𝑊𝑊𝑅3) ∗ 1/𝑊𝑅3))
/(𝑊 ∗ 𝐻) 

OWU4 Area Weighted 
Wall and 
Window U-
Value – 
Elevation 4 
(m2K/W) 

- Depth [D] 
- Number of Below Grade Floors [B] 
- Number of Repeated Floors [S] 
- Basement Height [BH] 
- Ground Floor Height [GH] 
- Ground Floor Plenum Height [GPH] 
- Repeated Floor Height [RH] 
- Repeated Floor Plenum Height [RPH] 
- Top Floor Height [TH] 
- Top Floor Plenum Height [TPH] 
- Ground Floor WWR – Elevation 4 [GWWR4] 
- Repeated Floor WWR – Elevation 4 [RWWR4] 
- Top Floor WWR – Elevation 4 [TWWR4] 
- Window U-Value – Elevation 4 [WU4] 
- Wall RSI – Elevation 1 [WR4] 
- Below Grade Wall RSI [BWR] 

𝑂𝑊𝑈4 = (M𝐷 ∗ 𝐵 ∗ 𝐵𝐻 ∗
1

𝐵𝑊𝑅N
+ (𝐷 ∗ (𝐻𝐴𝐺) ∗ 𝑊𝑊𝑅4 ∗𝑊𝑈4)

+ M𝐷 ∗ (𝐻𝐴𝐺) ∗ (1 −𝑊𝑊𝑅4) ∗
1

𝑊𝑅4N)/(𝐷
∗ 𝐻) 
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 COMBINED 
FEATURE 

ORIGINAL FEATURES USED TO CALCULATE COMBINED 
FEATURE 

EQUATION 

Enclosure 
Performance 

OWU Overall Area 
Weighted Wall 
and Window U-
Value (including 
below grade 
walls) (m2K/W) 

All features included in OWR1, OWR2, OWR3 and 
OWR4 

𝑂𝑊𝑈 = ((𝑂𝑊𝑈1 ∗𝑊 ∗ 𝐻) + (𝑂𝑊𝑈2 ∗ 𝐷 ∗ 𝐻)
+ (𝑂𝑊𝑈3 ∗𝑊 ∗ 𝐻) + (𝑂𝑊𝑈4 ∗ 𝐷 ∗ 𝐻))/(2
∗ (𝑊 + 𝐷) ∗ 𝐻) 

OEU Overall 
Enclosure Area 
Weighted U-
Value (m2K/W) 

All features included in OWR1, OWR2, OWR3 and 
OWR4 
- Slab on Grade RSI Value [SR] 
- Roof RSI Value [RR] 

𝑂𝐸𝑈 = ((𝑂𝑊𝑈 ∗ 2 ∗ (𝑊 + 𝐷) ∗ 𝐻) + M
1
𝑆𝑅 ∗𝑊 ∗ 𝐷N + (

1
𝑅𝑅

∗𝑊 ∗ 𝐷))/(2 ∗ (𝑊 + 𝐷) ∗ 𝐻 + 2 ∗𝑊 ∗ 𝐷) 

SHGC Overall Area 
Weighted 
Glazing Solar 
Heat Gain 
Coefficient  

All features included in WWR1, WWR2, WWR3 and 
WWR4 
- Glazing Solar Heat Gain Coefficient – Elevation 1 

[SHGC1] 
- Glazing Solar Heat Gain Coefficient – Elevation 2 

[SHGC2] 
- Glazing Solar Heat Gain Coefficient – Elevation 3 

[SHGC3] 
- Glazing Solar Heat Gain Coefficient – Elevation 4 

[SHGC4] 

𝑆𝐻𝐺𝐶 = ((𝑊 ∗ 𝐻𝐴𝐺 ∗𝑊𝑊𝑅1 ∗ 𝑆𝐻𝐺𝐶1)
+ (𝐷 ∗ 𝐻𝐴𝐺 ∗𝑊𝑊𝑅2 ∗ 𝑆𝐻𝐺𝐶2)
+ (𝑊 ∗ 𝐻𝐴𝐺 ∗𝑊𝑊𝑅3 ∗ 𝑆𝐻𝐺𝐶3) + (𝐷 ∗ 𝐻𝐴𝐺
∗𝑊𝑊𝑅4 ∗ 𝑆𝐻𝐺𝐶4))/(2 ∗ (𝑊 + 𝐷) ∗ 𝐻𝐴𝐺) 

VT Overall Area 
Weighted 
Glazing Visible 
Transmittance 

All features included in WWR1, WWR2, WWR3 and 
WWR4 
- Glazing Visible Transmittance – Elevation 1 [VT1] 
- Glazing Visible Transmittance – Elevation 2 [VT2] 
- Glazing Visible Transmittance – Elevation 3 [VT3] 
- Glazing Visible Transmittance – Elevation 4 [VT4] 

𝑉𝑇 = ((𝑊 ∗ 𝐻𝐴𝐺 ∗𝑊𝑊𝑅1 ∗ 𝑉𝑇1)
+ (𝐷 ∗ 𝐻𝐴𝐺 ∗𝑊𝑊𝑅2 ∗ 𝑉𝑇2)
+ (𝑊 ∗ 𝐻𝐴𝐺 ∗𝑊𝑊𝑅3 ∗ 𝑉𝑇3) + (𝐷 ∗ 𝐻𝐴𝐺
∗𝑊𝑊𝑅4 ∗ 𝑉𝑇4))/(2 ∗ (𝑊 + 𝐷) ∗ 𝐻𝐴𝐺) 

Internal 
Load 

LPD Area Weighted 
Lighting Power 
Density (W/m2) 

- Width [W] 
- Depth [D] 
- Number of Below Grade Floors [B] 
- Number of Repeated Floors [S] 
- Perimeter Zone Depth [PD] 
- Basement LPD [BLPD] 
- Ground Floor Perimeter LPD [GPLPD] 
- Repeated Floor Perimeter LPD [RPLPD] 

𝑃𝐸𝑅𝐼𝑀𝐸𝑇𝐸𝑅	𝑍𝑂𝑁𝐸	𝐴𝑅𝐸𝐴	𝑃𝐸𝑅	𝐹𝐿𝑂𝑂𝑅	[𝑃𝑍𝐴]
= 𝑊 ∗ 𝐷 − ((𝑊 − 𝑃𝐷 ∗ 2) ∗ (𝐷 − 𝑃𝐷 ∗ 2)) 

 
𝐶𝑂𝑅𝐸	𝐴𝑅𝐸𝐴	𝑃𝐸𝑅	𝐹𝐿𝑂𝑂𝑅	[𝐶𝐴]

= (𝑊 − 𝑃𝐷 ∗ 2) ∗ (𝐷 − 𝑃𝐷 ∗ 2) 
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- Top Floor Perimeter LPD [TPLPD] 
- Core LPD [CLPD] 

𝐿𝑃𝐷 = ((𝐶𝐴 ∗ (𝑆 + 2) ∗ 𝐶𝐿𝑃𝐷) + (𝑊 ∗ 𝐷 ∗ 𝐵 ∗ 𝐵𝐿𝑃𝐷)
+ (𝑃𝑍𝐴 ∗ 𝐺𝑃𝐿𝑃𝐷) + (𝑃𝑍𝐴 ∗ 𝑆 ∗ 𝑅𝑃𝐿𝑃𝐷)
+ (𝑃𝑍𝐴 ∗ 𝑇𝑃𝐿𝑃𝐷))/𝐶𝐹𝐴 

 
 
 

 COMBINED 
FEATURE 

ORIGINAL FEATURES USED TO CALCULATE 
COMBINED FEATURE 

EQUATION 

Internal 
Load 

EPD Area Weighted 
Electrical Plug 
Power Density 
(W/m2) 

- Width [W] 
- Depth [D] 
- Number of Below Grade Floors [B] 
- Number of Repeated Floors [S] 
- Perimeter Zone Depth [PD] 
- Basement Plug Power Density [BPD] 
- Perimeter Plug Power Density [PPD] 
- Core Plug Power Density [CPD] 

𝐸𝑃𝐷 = ((𝐶𝐴 ∗ (𝑆 + 2) ∗ 𝐶𝑃𝐷) + (𝑊 ∗ 𝐷 ∗ 𝐵 ∗ 𝐵𝑃𝐷)
+ (𝑃𝑍𝐴 ∗ (𝑆 + 2) ∗ 𝑃𝑃𝐷))/𝐶𝐹𝐴 

OD Area Weighted 
Occupancy 
Density 
(person/m2) 

- Width [W] 
- Depth [D] 
- Number of Below Grade Floors [B] 
- Number of Repeated Floors [S] 
- Perimeter Zone Depth [PD] 
- Basement Occupancy Density [BOD] 
- Maximum Occupancy Density [MOD] 

𝑂𝐷 = ((𝑊 ∗ 𝐷 ∗ (𝑆 + 2) ∗ 𝑀𝑂𝐷) + (𝑊 ∗ 𝐷 ∗ 𝐵 ∗ 𝐵𝑂𝐷))/𝐶𝐹𝐴 
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Glossary 

TERM DEFINITION 

Annual Building Energy Use 
In this study, annual building energy use is the sum of the 
annual heating, cooling, pump and fan energy uses generated 
by the EnergyPlus simulation 

Annual Total Site Energy Use 
In this study, annual total site energy use is the sum of all 
annual energy uses affecting the building. It therefore does not 
include the energy use related to items external to the building, 
such as exterior lighting. 

Base Model 
The EnergyPlus input data file (IDF) used as the IDF on which 
all samples are based. Any inputs that are not modified through 
the features varied between samples will be consistant for all 
samples in the dataset. 

Box-Cox  Method used to transform data into a normal distribution [58] 

Combined Feature A feature calculated by combining, in a linear equation, two or 
more of the original 71 features.  

Elastic Net Both the L1 (LASSO) and L2 (Ridge) regulators are applied to 
the cost function. 

Embedded Feature Selection 
Embedded methods use properties of specific learning 
algorithms to select features that best contribute to the model 
accuracy. 

Feature Set Combination of the input features 

Filter Feature Selection 

Filter feature selection methods are independent of the learning 
algorithm and often ‘score’ each feature to the target variable. 
This score is used to determine which features are kept for 
model training. Filter methods often do not account for the 
relationship between features.  

Hyperparameter In relation to the learning algorithm, the hyperparameter(s) are 
the terms within the algorithm that can be modified (or tuned). 

Input Data File (IDF) The text file EnergyPlus uses to run the simulation. 

Input Feature 
The variable(s) describing the target variable. In this study, the 
input features are the building attributes that were modified in 
each sample. 

Latin Hypercube Sampling 
(LHS) 

A sampling plan that extends the Latin square, a grid with one 
sample per row and column, to multi-dimensional space. The 
sampling plan distributes the samples through the entire design 
space  
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TERM DEFINITION 

Least Absolute Shrinkage and 
Selection Operator (LASSO) 

Referred to also as the L1 regulator, LASSO applies a penalty 
term to the cost function that shrinks the regression 
coefficients, some down to a value of zero, thereby removing it 
from the model 

Normalization Method of standardizing dataset so that the range of the input 
features are on the same scale 

Pearson Correlation Coefficient 

A coefficient describing the linear relationship between two 
variables. When the coefficient value is 1 or -1, the relationship 
between the two variables is positively or negatively linear, 
respectively. A coefficient of 0 indicates no linear relationship 
between the variables. 

Random Seed 
A value assigned to the random splitting of data. A random 
seed of the same value will split the data in the same way each 
time it is run. 

Ridge  
Similar to LASSO, Ridge, also referred to as the L2 regulator, 
applies a penalty term to the cost function that reduces the 
regression coefficients down to values close to zero 

Surrogate, meta, response 
surface, emulator model 

Fitting computer-simulated data to a surface in order to predict 
results from the available data without the use of the expensive 
code [8]. 

Target Variable 
The variable the learning algorithm is being trained to predict. 
In this study, annual building energy use was the target 
variable. 

Test Dataset 
A subset of the overall dataset that is held out of the training 
and validation datasets and is used to evaluate the accuracy of 
the model to predict data not previously seen. 

Training Dataset A subset of the overall dataset that is used to fit the data to a 
surface. 

Validation Dataset 
A subset of the overall dataset that is used to evaluate the 
trained model on a set of data not used to fit the model. This 
dataset is used to evaluate and compare the model at the stages 
to final model development. 

Wrapper Feature Selection 

Wrapper methods use subsets of the features to fit the model 
and compare model behaviour and performance for each 
subset. Common wrapper methods include forward stepwise 
selection where features are iteratively added to the model and 
backwards stepwise elimination where features are iteratively 
removed.  
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