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Abstract

Structural Classification of Proteins Using Image Based Machine
Learning

Daniel Franklin

Master of Science, Computer Science

Ryerson University, 2019

Classification of proteins is an important area of research that enables better grouping of

proteins either by their function, evolutionary similarities or in their structural makeup.

Structural classification is the area of research that this thesis focuses on. We use visual-

izations of proteins to build a machine learning class prediction model, that successfully

classifies proteins using the Structural Classification of Proteins (SCOP) framework.

SCOP is a well-researched classification with many approaches using a representation of

a proteins secondary structure in a linear chain of structures. This thesis uses a novel

approach of rendering a three dimensional visualization of the protein itself and then ap-

plying image based machine learning to determine a protein’s SCOP classification. The

resulting convolutional neural network (CNN) method has achieved average accuracies

in the range 78-87% on the 25PDB dataset, which is better than or equal to the existing

methods.
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Chapter 1

Introduction

My thesis is that image based classification of proteins can be used to predict the sec-

ondary structure class of proteins, as defined by the Structural Classification of Proteins

database (SCOP). The method introduced in this paper is a novel approach, not tied

by any other researchers, as far as I know. Proteins are an integral part of the basic

building blocks of life. Proteins perform many functions in our cells, such as reducing

the activation energy of a chemical reaction, facilitating the transportation of molecules

in and out of cell walls, and communicating adaptations needed to survive in a chang-

ing environment by stimulating other proteins to be manufactured. Many diseases are

the result of damage to proteins, where the damage hinders their ability to perform the

above functions. To combat these failures, prescription drugs and medical treatments

can be devised that will compensate for the inability of a protein to perform a particular

task. Research into how proteins work, their role in life process and how they may fail

that role is an important scientific challenge.

To aid in the understanding of a protein’s nature, research into classifying and catego-

rizing the ever growing number of different proteins is an important step. The Structural

Classification of Proteins (SCOP) is a simple four-class system for distinguishing a pro-

tein by the amount and location of both alpha helix and beta-pleated sheet secondary

protein structures in the protein. The SCOP classification allows a user to find proteins

of related class, since it forms grouping for searching. The goal of this paper is to ex-

plore the biological underpinnings of proteins, understand how machine learning can be

leveraged to solve a visual classification problem, and improve the current challenge of

protein classification using the SCOP classes.

A protein is composed of a chain of amino acids, of which the human cell has 20

different kinds. Each amino acid has a similar structure but they all have a unique side
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CHAPTER 1. INTRODUCTION

chain that dictates its properties. Ribonucleic Acid (RNA) is translated into an amino

acid chain by a cell’s ribosomes. The initial state of the protein is a linear chain of

amino acids, where each amino acid corresponds to a codon. A codon represents three

ribonucleotides in the RNA. Immediately following this translation stage, the chain of

amino acids starts to fold onto itself and create three dimensional structures of either

alpha-helix, beta-pleated sheets, or coils. In 1951 Linus Pauling and Robert Corey [1]

proposed these structures with the following definitions:

• The alpha helix, shown in Figure 1 below, is a rod like structure with a tightly

coiled backbone that forms the inner part of the rod, and the side groups extend

outward in a helical array.

• The beta-pleated sheet structure shown in Figure 2, has a fully extended strand

shape instead of a coiled shape. Each strand can be then joined to other strands

to form a sheet, where the strands can be parallel in direction to each other or

antiparallel to each other.

• The random coil structures are shown in grey in both Figures 1 and 2. They do not

have regular, periodic structures and are often found on outside of the proteins,

where they may interact with other proteins and molecules.

The SCOP classification consists of four classes, which are: (a) all-alpha helix, (b)

beta-sheet, (c) mixed alpha helix and beta-sheets and (d) segregated alpha-helix with

beta-sheet. These classes represent the four main structural compositions that a protein

may have.

Figure 1.1 depicts a protein from the all-alpha class, in literature the class may be

shortened to read as ‘a’ or ‘all-a’. The all-alpha class contains proteins with mostly alpha

secondary structures, but there may be a small amount of beta-sheet structures.

Figure 1.2 depicts a protein from the all-beta class may be read as ‘b’ or ‘all-b’,

and like the all-alpha class is a protein that consists mostly of beta-sheet secondary

structures, but may have a small amount of alpha-helix structures.

Figure 1.3 mixed alpha/beta class, shown in Figure 3 may be read as ‘c’ or ‘a/b’,

and consists of a protein with both alpha-helix and beta-sheet interspersed randomly

throughout the protein.

Figure 1.4 depicts a protein from the segregated alpha beta class, shown in Figure

4 may be read as ‘d’ or ‘a+b’, and consists of both alpha-helix and beta-sheet but they

are not interspersed. The two structures of alpha and beta are split across the protein

into two regions.

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Protein 1FLIA chain A, taken from the image produced by PV program.
The ribbon-like helices denote alpha-helices.
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CHAPTER 1. INTRODUCTION

Figure 1.2: Protein 1C28, taken from the image produced by PV program. The flat
ribbon-like arrows denote beta-strands and the arrows show its direction (direction in
the chain is from an amino group to carboxyl group).
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CHAPTER 1. INTRODUCTION

Figure 1.3: Protein 2R8BA chain A amino acid range 44-2466, taken from the image
produced by PV program. This protein is an example of class c.
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CHAPTER 1. INTRODUCTION

Figure 1.4: Protein 1ITP chain A, taken from the image produced by PV program. This
protein is an example of class d.
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The effort to apply bioinformatics and machine learning to improve the accuracy of

SCOP classification of proteins is a well-researched field. I have reviewed many inter-

esting and novel approaches to this problem which I present to you to consider. My

supervisor and I have also thought through the problem and have tried a number of

ideas and ultimately devised a method that uses image analysis of three dimensional vi-

sualizations of a protein’s secondary structure, like the images in Figures 1-4, to classify

them.

The process of visualizing the protein and capturing images leveraged an open source

JavaScript application to visualize proteins called PV [16]. I modified this application

to rotate a protein by 90 degrees in several directions, which creates six orthogonal

images, like viewing the six sides of a die. These six images were then used to train a

convolutional neural network using PyTorch that attained overall accuracies of 78-87%,

which potentially improves upon other methods reported in the literature that range

from 80% to to 85% (Table 2.2).

The proteins used in the training of the convolution neural network are from the

25PDB dataset which contains 1673 proteins which have a 25% or less similarity with

each other. Six images were generated for each protein. From these images, 6008 images

where used for training, 752 where used for validation, and another 752 where used for

testing. The images used to build, validate, and test the convolutional neural network

were randomly selected from the generated data.

1.1 Problem Background

At the time of writing this thesis The Protein Data Bank [18] houses 140,604 proteins,

all of which share varying degrees of similarity in structure, evolution and function. One

useful way of classifying a protein is by using the SCOP classification system, which is

based on a protein’s secondary structure composition. This thesis introduces a novel

approach using image analysis of a protein to build a machine learning model that can

automate the process of SCOP classification. Given a protein’s visualization, we utilize

a convolutional neural network to classify proteins according to the four SCOP classes.

1.2 Objectives and Proposed Methodology

1.3 Contributions

The main contributions in this dissertation are:

7



CHAPTER 1. INTRODUCTION

• Modification of an existing protein visualization program PV to produce orthogonal

visualizations of a protein

• Implementation of a convolutional neural network trained on protein images to

predict their SCOP classification.

1.4 Dissertation Outline

This dissertation is organized as follows:

• Chapter 2 presents background on the structured classification of proteins, as well

as previous work in classifications.

• Chapter 3 discusses the implementations of image generation and convolutional

neural network classification.

• Chapter 4 analyzes the accuracy of the implementation agains the reference datasets.

• Chapter 5 presents the conclusions from the above and suggests future work.

8



Chapter 2

Related Work

2.1 SCOP Classification

The Structural Classification of Proteins (SCOP) classification system comes from the

SCOP database, which is a database of proteins curated by four different methodologies,

one of which being by secondary structure distribution. The paper ‘SCOP: a Structural

Classification of Proteins database’ [14] outlines the classification as

• Family, based on the amino acid sequence with similarity greater then 30% or with

15% similarity but with similar functions and structures.

• Superfamily, low sequence similarity but with similar structures and/or functional

features.

• Common fold, when proteins ‘have the same major secondary structures in the

same arrangement and with the same topological connections’

• Class, relating to the secondary structure composition of the protein into one of

four groups [14].

– All-alpha, ‘those whose structure is essentially formed by alpha-helices’

– All-beta, ‘those whose structure is essentially formed by beta-sheets’

– Alpha/Beta, ‘those with alpha-helices and beta-strands’

– Alpha+Beta, ‘those in which alpha-helices and beta-strands are largely seg-

regated’

‘The classification of proteins in SCOP has been constructed by visual inspection and

comparison of structures.’[5] Research in computer science has worked on automating

the classification classification process using bioinformatics and machine learning.

9
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Dataset All-Alpha All-Beta Alpha/Beta Alpha + Beta Total Proteins

25PDB 443 443 346 441 1673
FC699 130 269 377 82 858
D1184 251 258 199 477 1185
D8244 1744 1929 2357 2214 8244

Table 2.1: Shows the distribution SCOP classes and total number of proteins.

2.2 Benchmark Protein Datasets

Four datasets were used in this paper, the 25PDB dataset [10] was used to train and test

with, while the FC699, D1184 and D8244 were used exclusively for testing the resulting

trained model. 25PDB is an ideal dataset to train with as the proteins contained in the

dataset have at most a 25% pairwise pairwise similarity. The FC699, D1185, and D8244

[23] are composed of proteins with 40% or less pairwise sequence similarity. Proteins

with less similarity provide a better training set for a machine learning with the resulting

model not being overtrained or overfitted.

Overfitting may occur when the training data does not have enough variability. Low

variability in the training data may result in high accuracies with that training data,

as the number of unique data samples would be very low. When trying to predict a

new sample with an overtrain model that has not been seen yet an overfitted prediction

model should perform poorly versus a model that has been trained with a diverse sample

set.

Table 2.1 describes the distribution of proteins by SCOP class in each database that

we used.

2.3 Results of using predicted secondary structures to pre-

dict SCOP Class

From the 2014 paper ‘Novel structure-driven features for accurate prediction of protein

structural class’ [8] several known accuracies to methods that predict secondary structure

are given. These results can be used as a benchmark for my results on the 25PDB dataset.

These methods do not use visualization of the protein to predict secondary structure,

but rather they use the secondary structure sequence of the protein to devise a method

to predict the SCOP classification.

10
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Method Class A Class B Class C Class D Overall

SCPRED [23] 93% 80% 74% 71% 80%
MODAS [13] 92% 84% 81% 68% 81%

RKS-PPSC [24] 93% 83% 86% 70% 83%
Kong and Zhang [8] 94% 87% 84% 74% 85%

Table 2.2: State-of-the-art prediction accuracies by SCOP class on 25PDB.

2.4 SCPRED

The SCPRED [9] method uses the predicted secondary structure to create statistical

features to predict class. The 25PDB file has fields for protein name, amino acid sequence,

predicted secondary structure, and SCOP class. For example, the protein 1A56 in the

25PDB has the amino acid chain:

• DADLAKKNNCIACHQVETKVVGPALKDIAAKYADKDDAATYLAGKIKG

GSSGVWGQIPMPPNVNVSDADAKALADWILTLK

with a predicted secondary structure:

• CHHHHHHCCCCCCCCCCCCCCCCCHHHHHHHCCCCCCHHHHHHHHHC

CCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHHCC

and SCOP class all-alpha. In this notation, amino acid residues participating in an

alpha helix structure are represented by H’s, coil is represented by C’s, and beta-sheet

by E’s. From the predicted secondary structure string, SCPRED creates features that

encompass some significant aspects of the protein’s structure. Nine features are then

fed into a support vector machine (SVM) to train a model that will predict a protein’s

SCOP classification.

The 9 features used are the following:

• CV(L–G), a count of the number of LxxxG motifs found in the amino acid sequence,

Leucine and Glycine are the amino acids respectively.

• NCount H6, normalized number of alpha helix segments built from at least 6 amino

acids

• NCount H8, normalized number of alpha helix segments built from at least 8 amino

acids

• CMV H1, composition moment vector

• NAvgSegH, normalized average length of alpha helix segments

11
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• NCount E5, normalized number of beta-sheet segments built from at least 5 amino

acids

• CV-E, percentage of beta-sheets (E characters) in a sequences of characters repre-

senting predicted secondary structure

• MaxSegE, length of the longest segment of beta-sheets

• NAvgSegE, normalized average length of beta-sheet segments

Note that the definitions above are paraphrased from Kurgan et al. [9]. The Last 8

are based on the predicted secondary structure. CV(L–G) is based on the amino acid

sequence.

2.5 MODAS

Modas, or ‘Modular prediction of protein structural classes from sequences of twilight-

zone identity with predicted sequence’ is a 2009 paper [13], where ‘twilight-zone’ ref-

erences ‘to over 95% of protein chains characterized by low, 20-25%, pairwise identity’

[13] in the dataset. This research trained an SVM based on features from five different

categories.

The categories of features used in MODAS [13] are:

1. Features derived from the amino acid sequence.

• 12 features were computed

2. Features derived from the position specific scoring matrix (PSSM), which is a ma-

trix built from the program PSI-PRED. PSI-PRED predicts the secondary struc-

ture from the amino acid sequence by using the Basic Local Alignment Search

Tool (BLAST) algorithm to find similar sequences with known secondary struc-

tures. The PSSM [6] is a matrix that compares one amino acid chain against others

and indicates how well conserved two chains are at any given position. This scoring

is done via a substitution matrix that scores the tendency of one amino acid to be

replaced by another.

• From the PSSM, 65 features were computed

3. Features based both on the PSSM and the predicted secondary structure.

• 179 features were computed

12
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Figure 2.1: Diagram of chaos game.

4. Reused the features from SCPRED, which were are derived from the predicted

secondary structure.

• 73 features were computed

5. ‘Novel features based on the predicted secondary structure which describe colloca-

tion of helical and strand segments’ [13]

• 50 features were computed

The feature set is too large to detail here, but an SVM was built for each SCOP

classification using a subset of these features based on their performance. The result is

a probability from each classifier that a protein matches the class of the SVM.

2.6 RKS-PPSC

The RKS-PPSC [24] method derived 24 features using three different methods. The

features were the used as input to a Fisher’s discriminant algorithm[12] to project a line to

the predicted class, there method therefore does not you SVM. The features are derived

using three methods after using a chaos game to transform the secondary structure

sequence into a time series. The Chaos Game plots the three secondary structures from

a given predicted secondary structure onto a three sided triangle inside a x-y graph.

Figure 2.1 of the Chaos game, where

‘For each letter of the given secondary structure sequence, we then plot a
point inside the triangle as follows. The first point is placed halfway between

13
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the centre of the triangle and the vertex of the triangle corresponding to the
first letter of the secondary structure sequence, and the i-th point is then
placed halfway between the (i - 1)-th point and the vertex corresponding to
the i-th letter. The obtained plot is called the Chaos Game Representation
of the secondary structure sequence.’ [24]

The rules from Figure 2.1 allows us to plot the secondary structure on the graph.

The graph is then used to create two time series based on the x and y values which are

used as input for driving features using the following methods.

1. Recurrence quantification analysis was used to derive 8 features, but how it was

done was omitted from the paper.

2. K-string based information entropy was used to calculate p(H) and p(E) which

represent the probability that either H or E will be present after a K length string

of secondary structures.

3. Segment-based analysis was used, which compresses down a given secondary string

to continuous strands of E’s or H’s, ignoring C’s. Thus, for example, CCEEHH

would become EH. After the compression phase, they calculate the probability of

two consecutive Hs, and the probability Pt = 1 - (probability of two consecutive

Hs) - (probability of two consecutive Es).

2.7 Distance Based Features

In the paper, ‘Novel structure-driven features for accurate prediction of protein structural

class.’ [8], Kong and Zhang derive their features from the distance relationships between

the predicted secondary structures. This method hopes to extract information based on

the spatial, three-dimensional nature of proteins and their secondary structures. Some

27 different features are extracted and used to train an SVM. Please refer to the paper

itself to see the details of the features and how they are derived. As shown in Table 2.2,

the accuracy they achieved with their feature-based approach is 85% overall, which is a

little better than previous attempts of others.

2.8 Using Euler Angles to Rotate A Three-Dimensional

Body

The book ‘Advanced Animation and Rendering Techniques—Theory and Practice’ [22]

describes the Euler angle as the ‘most popular parametrization of orientation space’. The

14
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text [22] also states a ‘general rotation is a sequence of rotations round three mutually

orthogonal coordinate axes fixed in space.’

Rx(ψ) =

1 0 0

0 cosψ −sinψ
0 sinψ cosψ

 (2.1)

Ry(ψ) =

 cosψ 0 sinψ

0 1 0

−sinψ 0 cosψ

 (2.2)

Rz(ψ) =

cosψ sinψ 0

sinψ cosψ 0

0 0 1

 (2.3)

Equations (2.1) (2.2) (2.3) from [21] represents the three matrices to compute the

axis of rotation in the x, y and z plane.

By applying a matrix calculation on a three-dimensional body’s orientation by any

or all of the matrices of Figure 6 one can apply a rotation of a given angle. For example,

rotating a body 90 degrees in the x axes would require the calculation of Rx and multi-

plying the Rx matrix with the current orientation matrix, then updating the orientation

of the body with the new orientation that is a result of applying the 90 degree x rotation.

One can rotate the body in all three x, y, z directions by applying the Rx, Ry and Rz

matrices to the current orientation.

2.9 Motivation

During my research on this topic, I carried out a number of experiments where I used

features derived from the known or predicted secondary structure chain. Ultimately, I

concluded that the linear chain of predicted or observed secondary structure could not

accurately capture the relationships that differentiate class c from class d in the SCOP

classification. I hypothesized that I would have to take into account how a protein’s

secondary structure is folded in to a three-dimensional molecule.

2.10 Training SVM with 25PDB Features

The principle data used for this thesis is derived from the 25PDB dataset that can be

downloaded from the Biomine Kurgan Lab’s website [20]. The 25PDB.csv file contains

15
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the protein name, amino acid sequence, predicted secondary structure sequence and class.

Also available for download is the 25PDB.arff file which contains 9 features described in

Chapter 2 of this paper in the SCPRED section. Each protein found in the csv file has

a corresponding line in the arff file with the features data and SCOP class. This data

can then be used to create a supervised machine learning algorithm.

With the arff file it is easy to recreate the experiment to see how the features on

their own perform using a Support Vector Machine (SVM). I wrote a matlab program

and used the Weka GUI to test the accuracy of the SVM model based on the features,

and produced an accuracy between 74% and 80%. The results are as follows.

SVM accuracy: 80%
Kernel function: Linear
Multiclass method: One-vs-One
5-fold cross validation

a b c d classified as

408 2 13 20 a = a
8 360 15 60 b = b
14 6 250 76 c = c
29 47 47 318 d = d

Table 2.3: Results with Matlab using SVM one-vs-one.

SVM accuracy: 74%
Kernel function: Linear
Multiclass method: One-vs-All
5-fold cross validation

a b c d classified as

414 2 13 14 a = a
10 396 20 17 b = b
25 18 258 45 c = c
46 131 87 177 d = d

Table 2.4: Results with Matlab using SVM one-vs-all.

SVM accuracy: 78%
Kernel function: ploy
Multiclass method: One-vs-One
5-fold cross validation

a b c d classified as

411 2 9 21 a = a
8 364 11 60 b = b
18 3 229 96 c = c
34 50 51 306 d = d

Table 2.5: Results with Weka using SVM one-vs-one.

2.11 Brute Force

After looking at the problem for a while and understanding the nature of the SCOP

classification, the problem seemed trivial and that a brute force approach should be

possible. Given a string of secondary structures composed of zero or more coil, C, alpha-

helix H, and beta-sheets E, a simple calculation should determine the classification. I
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Classification A B C D

A 406 5 30 5
B 6 356 53 25
C 38 7 83 218
D 29 85 223 104

Table 2.6: Confusion matrix of results from brute force prediction of secondary structure.

implemented the following simple algorithm,

• If the string contains only characters C and H, then it belongs to the all-alpha (a).

• If it contained only C and E, then it is all-beta-sheet (b).

• If the string contains C, H and E characters, and the H regions and E regions

oscillate then it is a mixed class: a/b (c).

• If the string contains all three C, H and E regions, but the E and H regions to not

oscillate meaning either there is a number of E regions followed by H regions or H

regions followed by E regions then the class is segregated a+b (d).

The results of this approach were not satisfying, and in the strictest implementation

the accuracy was only 48%. Including rules such as considering a minimum length of E

and H regions to be approximately greater than 20% of the length of the overall string,

meaning if the string was 10 characters long then only regions of 2 or more Es, or two

or more Hs would be considered, increased the accuracy to 57%. The confusion matrix

for the brute force result are captured in Table 2.6.

The motivation behind this was that there may be small fragments of secondary

structure that were insignificant to determining class. The results matched up with the

literature that acknowledges the difficulty in distinguishing between c and d classes.

The poor results showed that there was some pattern to the secondary structure that

was difficult for the strict rules of brute force algorithm to account for, where in some

cases a protein should be classified as a mixed alpha+beta, but is instead classified as a

segregated alpha/beta.

2.12 Machine Learning with Visualization

The problem of determining rules that are not obvious to a human’s intuition makes for

a good fit for a machine learning approach, training machine learning algorithms with

exemplars of the classes allowing the model to learn the appropriate relationship rules
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to produce the correct prediction. The question then involved what data to train with?

While the feature approach had been tried many times, I wanted to work directly with

the data and see if a model could be built from the source material, either the secondary

string itself, or from a visualization of the protein.

The visualization of a protein as the data for training was appealing because the

visualization encompasses the three-dimensional locations of the secondary structures.

It isn’t apparent from the linear chain of C, E, and H where one particular H strand

would be located in the actual protein. A secondary structure string which appears to

be segregated, with some Hs followed by some Es, may actually have some regions that

fold into itself and result in a mix of H structures and E structures.

To capture images a number of protein visualization programs were tried: JMol,

JSMol, and ultimately the choice of the PV application was introduced to capture an

image of the protein. PV is built using JavaScript, with which I am familiar, and gives

a web frontend which I thought could be leveraged to host the eventual result of the

classification on the web.

Initially, the image capturing was implemented in such a way as to extract the best

orientation of the protein. The best visualization of the protein involved counting the

structures that were visible given the current rotation of the protein and attempting to

maximize the number of different structures. The two structures alpha-helix and beta-

sheets are each assigned a colour, and for each image the number of pixels corresponding

to each type of structure was counted and multiplied together. The heuristic measure of

goodness of a visualization that I implemented was:

• Count the alpha red pixels, countRed

• Count the beta blue pixels, countBlue

• Measure = max(countRed, countBlue, countRed * countBlue)

With the measure heuristic, it was then possible to build a hill climbing algorithm that

would search the possible orientations of the protein. By maximizing the measure I was

able to find the orientation that displays the greatest amount of secondary structures.

This best-image approach was later abandoned in favour of a brute force method.

Realizing that using several orientations for visualizations of each protein might be better

than using a single ‘best’ orientation which might not be ideal anyway, I instead generated

a number of images from each protein, letting the learning algorithm extract meaning

from the images. We chose to generate six images per protein, which I detail in the

implementation data generation section of this paper.
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2.13 Image Prediction With Machine Learning

This thesis employs image analysis to learn how to classify an image of a protein. Con-

volutional neural networks (CNN) are an ideal choice, as they are designed to accept

the large volume of pixel data contained in an image. CNN’s take a three-dimensional

vector, or tensor, consisting of the resolution of the image, currently I use a 512 x 512

image, by the colour resolution RGB values as the depth. The resulting tensor has 512

x 512 x 3 = 786,432 values, which would be very large as the input for a neural network.

The CNN will reduce the size of the neural network down to a more reasonable input

to a neural network, during each layering. The deeper the network the more higher level

features like secondary structures may be learned [11]. The basic algorithm of a CNN

as described in [2] is to utilize a sliding filter along the three-dimensional tensor, one

colour dimension at a time. This filter is a two dimensional array, typically 3 x 3 which

pans across the image. Each filter is then a small fragment of the image, and they are

collectively returned from the convolutional layer. The result from the convolutional

layer is then then passes to a pooling layer which will downsample the values in the filter

and transform the 3 x 3 into a 2 x 2 filter, which would reduce the overall size of the

tensor. The tensor will be processed by a number of CNN layers until eventually the

output is fed into a linear layer of a neural network to output the classification.
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Experimental Design

In this chapter, I describe my approach to solving the problem, along with potential

weaknesses of my approach.

The implementation to classify proteins based on the SCOP classification entails

three main software processes.

• Generation of data, in the form of images of proteins

• Processing the generated data to prepare it for training

• Training a convolutional neural network to classify the png images of proteins

3.1 Generation of Data

The generation of data is performed with the utilization of a JavaScript/Python protein

visualization program called PV [16], which has freely available source code. PV is

capable of downloading a PDB file associated with a given protein, from the Protein

Data Bank website [18] and visualizing it in a web browser. I augmented the JavaScript-

based web browser client to enable the extraction of images and the rotation of the

visualization.

3.1.1 Client Implementation

The client side is responsible for rendering a protein, rotating it 90 degrees six times ex-

posing the proteins orthogonal views. I wrote code to capture image data corresponding

to the perspectives of each die’s face and to send the data to the server to save it as

proteinName1...6.png.
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Figure 3.1: Protein 1O50 chain A range 1-1451, with an orientation of [0, 0, 0].

Figures 3.1 to 3.6 are examples of the output of the image generation phase, taken

of protein ‘1O50’.

The client then requests the next protein to process and the loop repeats until no

new protein is available.

The identifiers of the proteins listed in the dataset files have three components: the

protein name as a four character string, an optional selected chain, and an optional index

indicating a selected range into the chain. Examples of proteins found in the 25PDB file

are 1A6M and 1AIPH:3-53.

• Protein 1A6M will be rendered by the PV program without modification since the

underscore ‘ ’ after the four letter identifier means ‘use the full protein’, through

the load commands:

var go = viewer.cartoon(’structure’, s, //load the cartoon structure of the PDB file

after removing unwanted elements described by the optional chain name and indexes

21



CHAPTER 3. EXPERIMENTAL DESIGN

Figure 3.2: Protein 1O50 chain A range 1-1451, with an orientation of [90, 0, 0].
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Figure 3.3: Protein 1O50 chain A range 1-1451, with an orientation of [180, 0, 0].
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Figure 3.4: Protein 1O50 chain A range 1-1451, with an orientation of [270, 0, 0].
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Figure 3.5: Protein 1O50 chain A range 1-1451, with an orientation of [0, 90, 0].

25



CHAPTER 3. EXPERIMENTAL DESIGN

Figure 3.6: Protein 1O50 chain A range 1-1451, with an orientation of [0, 270, 0].

color : pv.color.ssSuccession(), showRelated : ’1’, ); // set the orientation and colour

of the different secondary structures var rotation = pv.viewpoint.principalAxes(go);

viewer.setRotation(rotation); viewer.forEach(function(go) go.colorBy(pv.color.bySS());

); viewer.autoZoom();

• The effect of the above commands will load a given protein as a cartoon rendering

by the PV’s viewer class. Where cartoon displays the secondary structures depicted

in Figures 1-4 and 7-12.

• Protein 1AIPH:3-53 needs modification before it can be visualized, since after the

first four letters identifying the protein, there is an ‘H’ meaning ‘use only the H-

chain’, and then a numerical range, meaning ‘use only residues 3 to 53’. Thus,

1AIPH:3-53 represents a small fragment of the 1AIP protein. Programatically all

chains other then the H chain are removed from the structure, and also the indexes

that don’t fall within the range 3-53 are removed. After that, the structure can

be loaded and rendered by the PV viewer class in cartoon style that isolates the

region of the protein to be viewed.

The PV program was then modified to perform rotation of the protein in 90 de-
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gree increments using Euler angles with the following six orientations: [0,0,0], [90,0,0],

[180,0,0], [270,0,0], [0,90,0], [0, 270, 0] JavaScript has a single thread design, which re-

quires my program to toggle between the UI code and the image rotation code. I use

the setInterval function for this which will call a designated function periodically. This

interval execution of a function is used to perform state changes to the visual model,

while interleaving image capture work.

loop() {

if (this.index == this.nextIndex) {

//increment the next index

++this.nextIndex;

//record the image

this.model.sendToServer(this.protein);

} else if (this.index < this.moves.length) {

//calculate next move

var currentMove = this.moves[this.index];

//move the model to the next orientation

this.model.rotate(currentMove[0], currentMove, currentMove[2]);

//increment next move

this.index = this.nextIndex

} else {

//protein images captured end loop and get next protein

clearInterval(this.loopId);

this.callBackFunction();

}

}

The set interval will call the loop function 13 times:

• 6 times when the index variable is equal to the nextIndex – in this phase the protein

has been rotated and an image is sent to the server.

• 6 times when the index is less then the moves array size – in this phase the protein

is rotated to the next move,

• Finally, when all rotations of the protein 3D model have been made, the function

loops by calling helper function to get the next protein.
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3.1.2 Server Implementation

The backend server is written in python and is responsible for parsing the protein dataset

to determine which proteins have not been generated, in png format. The program does

so by comparing the set of proteins to be rendered in a dataset, after it has been parsed,

to the proteins already persisted, as png found in the designated folder location by the

proteins predicted class. The python server then accepts POST requests by the client

to save a protein’s image as a png into the appropriate class folder (a, b, c or d).

The dataset files (25PDB.csv, D1185.xls, D8244.xls, and FC699.cvs) list each protein

and which SCOP classification it represents. The client requests the next protein, and

if not loaded, the python code loads all names of all the proteins already captured as

images. Along with the known image file, the dataset file is parsed, with a file format

of: proteinName, amino acid sequence, secondary structure sequence, class [a, b, c, d].

I am only interested in the proteinName and the class, so index 0 and 3 of the comma

delimited list. To derive the next protein simply loop over the dataset proteins, and if

it is not in the known protein list and return it to the client.

3.2 Processing the Data

The protein images have been generated from any one of the datasets [25PDB, D1185,

D8244, and FC699] and are now organized by class in folders named

• allAlpha

• allBeta

• mixedAlphaBeta

• segregatedAlphaBeta

In order to start building the training phase three activities must take place.

1. Some of the proteins listed in the dataset files do not have a corresponding PDB

entry and result in an empty image which is manually removed from the folder.

2. The datasets do not have equal numbers of proteins per class and to prevent over-

sampling, the lowest number of samples in one of the four classes is used. For

the 25PDB dataset there are 1673 proteins, of which there are 443 ‘a’ classified

proteins, 443 ‘b’ classified proteins, 347 ‘c’ classified proteins, and 440 ‘d’ classified

proteins. This means that at most only 347 proteins can be used, and after step 1

of pruning bad images, only 312 proteins from each class could be used.
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3. The last phase consists of sorting the iamge files into training, validating and

testing buckets. I use 80% of the images to train, 10% to validate, and 10% to test.

The end result will be a folder structure in the form of proteinImages

• Training

– allAlpha

– allBeta

– mixedAlphaBeta

– segregatedAlphaBeta

• Validating

– allAlpha

– allBeta

– mixedAlphaBeta

– segregatedAlphaBeta

• Testing

– allAlpha

– allBeta

– mixedAlphaBeta

– segregatedAlphaBeta

3.3 Training the CNN

Classification of proteins involves training a convolutional neural network (CNN) to

predict the SCOP classification. The CNN is implemented in python using the PyTorch

[15] framework for machine learning, which will build a prediction model from the known

image examples for each SCOP classification to both train and test.

I used two designs of the CNN: one that has two layers of convolution and one

that uses five, each with a pooling and rectifier phase. I didn’t find that the accuracy

improved with more CNN layers, but many papers [7] have stated the case that deeper

CNNs perform better. After the convolution the outputs are passed into a 2-layer neural

network which outputs the predicted class label.
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Training starts with dataloaders, one for each dataset: training, validation and testing

datasets. I took 80% of the original data to train with, and 10% for validation and 10%

for testing. By holding back 20% of data, I can confirm that the CNN has not been

overfitted to the training data. During training the images are fed into the forward

function to derive the outputs, which are then fed into a loss function with the labels to

be used to perform the backward pass that updates the parameters.

To prepare for the backward pass an optimization step is performed using an Adam[7]

algorithm for stochastic optimization that reevaluates the model and returns the loss.

The loss is calculated using a CrossEntropyLoss function which is computed by the

function (3.1) from [17]

loss(x, class) = −log
(
exp(x[class])∑

j exp(x[j])

)
= −x[class] + log(

∑
j

exp(x[j])) (3.1)

where the inputs to the loss function are variables x and class,

• The variable x is a tensor and the result of the CNN predicting the class of a set

of image files, in my case the size of the set or batch is 32. The variable x contains

the image’s probability for each classification, where the values range from 0 to 1

• The variable class is the known classification for each of the images, which is used

to compare the predicted with the actual values.

The loss is also averaged over the number of images predicted in this batch run, in my

case 32 instances.

The ‘backward’ function is then called to compute the gradients which minimized

the loss function in weight space [19] and then the ‘step’ function is used to update the

CNN with the next parameters. The basic implementation of training a neural network

is as follows:

//set gradiants to zero

optimizer.zero_grad()

//forward pass compute the output using the CNN net

outputs = net(inputs)

//calculate the loss

loss_size = loss(outputs, labels)

//calculate the gradients

loss_size.backward()
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//update the CNN with the new gradients

optimizer.step()

The above implementation will result in loading the images for training a CNN

through a dataset image folder data loader:

train_data = torchvision.datasets.ImageFolder(root=TRAN_DATA_PATH,

transform=TRANSFORM_IMG)

train_data_loader = data.DataLoader(train_data, batch_size=32,

shuffle=True, num_workers=4)

The image folder TRAN DATA PATH takes the path to images, which will result

discovery of classes that will be used, as this method expects the root folder to contain

subfolders for each class. During loading a transformation is applied to the images in

the folder, which converts the image to a tensor, I also resize the image to a uniform 512

X 512 resolution and the images are randomly selected when shuffle is true.

The work to predict the classification occurs in the forward function which performs

the following tasks:

1. The 2D convolution layers apply a convolution over the tensor, the images are

converted into a 3 * 512 * 512 tensor, the depth 3 represents. The possible colours

red, green and blue as 0-255 values.

• The convolutional pass is configured with a kernel size of 3 and a stride of 1

and a padding of 1

– The three layers of 512X 512 values are iterated over using a kernel with

a 3 X 3 window that slides over the 2D tensor moving with a stride of 1

pixel.

2. Each convolution pass has the RELU and pooling function applied to the outputs

• maxPool2d( F.relu( Conv2d ( tensor(image) ) )

– The F.relu applies a rectified linear unit function element-wise

– maxPool2d applies a 2D max pooling over the input with a 2 * 2 kernel

and a stride of 2

3. The result of the 2 Convolutional Neural Network layers is converted from a 64*

128 * 128 tensor into a 1 * 1048576 array which can then be passed to the first

neural network layer that converts the inputs into 64 outputs that are finally passed

into the last neural network that outputs to 4 values one for each class label.
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3.4 Running the application

To generate the images the modified PV application was run on an IMac, after which

on the same machine the images were processed. The convolutional neural network was

then trained and tested in three different environments, an IMac, a Linux based laptop

and on Google’s Colaboratory environment which is an online execution environment.
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Results

4.1 Best Image

The first approach I took I call ‘best images’ which used the canvas to extract the pixels

and determine which orientation of the protein has the highest contrast. Contrast was

calculated by multiplying the beta-sheet coloured pixels by the alpha helix coloured

pixels, or 1 if either are 0. This method of image generation resulted in 1100 training

images, 275 image samples for each class.

I built a 2-layer convolutional neural network with a 2-layer neural network, which

had the following accuracies:

• Training: 97% with 1100 images

• Validation: 76% with 160 images

• Testing: 76% with 160 images

4.2 Multiple Image

In the next experiment, using the ‘multiple orientation approach’, I trained the CNN

based on the same 25PDB dataset but instead of a best image I generated 6 images

per protein. These images are generated from 90 degree rotation algorithm using 3-

dimensional rendering of a protein. This method does not have any opinion on the

quality of the image and instead emphasized the importance of generating images that

exemplify the SCOP class. Again, I used 80% of the data from 25PDB to train, 10%

to test, and 10% to validate, with the same 2-layer CNN. This approach produced the

results shown in Table 4.1.

33



CHAPTER 4. RESULTS

Dataset Number of
Images

Accuracy
of A%

Accuracy
of B%

Accuracy
of C%

Accuracy
of D%

Overall
Accuracy
%

25PDB
training

5972 100 100 100 100 100

25PDB
validating

760 88 88 82 67 81

25PDB
testing

748 81 81 78 69 78

FC699
testing

5001 48 64 91 58 74

D1185
testing

6861 78 58 78 22 51

D8244
testing

48493 82 78 37 73 66

Table 4.1: Results of model with 2 convolutional layers.

In the next experiment, I made a 5-layer convolutional neural network by adding 3

additional convolutional layers to the 2-layer CNN from above. This CNN has the same

two fully-connected layers after the convolutional layers used in the first experiment, and

it was trained and tested with the same data from the 25PDB dataset as the previous

experiment.

The accuracies in Table 4.1 and 4.2 represent one run from the training and testing

of a machine learning CNN. A run involves retraining a CNN with the 25PDB dataset

and then using the resulting model to predict the different dataset images to produce an

overall accuracy. Each run takes approximately eight hours to complete. These results

varied by 2-3% from the shown values, and each 2-layer and 5-layer convolutional neural

network was run about 10 times each. Most tests were made purely with the 25PDB

dataset, as I only found the other three datasets later in the development process. The

D8244 dataset was always tested on its own model from 25PDB training, and the FC699

and D1185 datasets where tested on the same model from 25PDB training, mainly for

memory and timing as D8244 has a high number of images to classify.
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Dataset Total Im-
ages

Accuracy
of A%

Accuracy
of B%

Accuracy
of C%

Accuracy
of D%

Overall
Accuracy
%

25PDB
training

5972 99 93 94 89 94

25PDB
validating

760 95 84 85 84 87

25PDB
testing

748 88 83 78 74 80

FC699
testing

5001 53 56 91 69 73

D1185
testing

6861 83 54 79 27 53

D8244
testing

48493 86 65 61 61 67

Table 4.2: Results of model with 5 convolutional layers.
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Conclusion

5.1 Contributions

Overall the work described in this thesis has demonstrated a novel approach using protein

images to address the well-researched problem of predicting SCOP classification. The

results are comparable with the best known methods (see Table 2.2). Results from

my approach might be improved by overtraining on the C and D classes, that is by

rebalancing the training data to favour those images, which are typically the harder to

classify.

The application on the whole was designed to be interactive. Since the application is

written in JavaScript, we could host a site where a user can enter a protein’s name, see the

image, view it being rotated and then get feedback on its predicted SCOP classification.

This may be of interest to the general public as well as the research community.

In general this work allowed me to explore a number of research areas required to solve

a real world problem: (1) generating data, (2) understanding and building a JavaScript

programming model, (2) updating an existing program, (3) learning PyTorch and (4)

understanding how to build a machine learning model with CNN, using all its different

properties, which can be more fully explored.

5.1.1 Availability of my code

The code for this project has been checked into the following git repository [3]

• The file ssCNN5Layer512.py is of main interest and contains

– The definition of two python CNN classes CNN5Layer and CNN where the

layers of the convolution neural network is defined and a forward propagation
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function that connects the layers together.

∗ Note, I switch between the two depending on the run I am executing.

– The computeAccuracy function is where I calculate the accuracy and output

total accuracy, accuracy per class and the confusion matrix per class, how

many were right and what incorrect class was selected.

– The function trainNet is the main loop where the CNN learns to predict the

correct classes.

The git repository [4] hosts the modified/forked PV application.

My three contributions that modified the PV application to capture protein images

were, 1) to add a class to parse protein dataset files, 2) to render the protein described

by the dataset file, and 3) to produce orthogonal images of the protein.

The parser was implemented Python and can be found in the file proteinPicker.py,

which is in the ProteinClassification folder. The proteinPicker.py file also stores the

relationship between which protein belongs to which class, which is used to save an

image in its appropriate classification folder.

The p3Serve2, also implemented in Python is the main method for the PV application

which serves the static HTML and JavaScript files to the client. The p3Serve2 program

was further modified to provide a POST method for the client to call to save an image

give the image data and protein name. Also the p3Serve2 program has a GET method

that the client uses to fetch the next protein that has not been image captured so far.

The two next contributions to the PV application were implemented in JavaScript

and the additions where made in the ’js’ folder, adding files ImageGenerator.js, FiniteIt-

erateSearch.js and PVModel.js.

The new JavaScript files allow the client to load a given proteins PDB file from the

Protein Databank website [18], processing the file to match the scope of the protein

eliminating chains and isolating to indexed section of a chain specified by the dataset.

The FiniteIterateSearch.js file will then rotate the visualized program and send back to

the server the orthogonal images to be persisted on the server.

5.1.2 General Remarks

The results of the CNN approach performed well against the 25PDB dataset with a

best accuracy of 87%, but the model performed poorly on the two benchmark datasets

D1185 and D8244 with accuracies ranging from 51% to 67%. Including images from

these datasets into the training phase would likely produce an overall improvement to
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their specific scores. I did not include them, because the proteins in D1185 and D8244

have a higher similarity of 40% as oppose to the lower similarity of 25% in 25PDB.

Including more similar proteins may result in overtraining on those similar proteins with

a resulting loss of accuracy when trying to predict the class of a new protein that is not

in any of the four datasets. Nevertheless, this should be tried to verify my assumption.

5.1.3 Future Work

An improvement on the current system would be in developing a classification model

that is capable of continuously learning as new proteins are discovered. Continuous

learning would mean that an interface could be provided to expert users to spot check

the model with new proteins. This would allow a user to add interesting proteins to the

overall training, first seeing if the model was correct and if not, there could be a means

of indicating the true class. I trained both a 2-layer and 5-layer CNN, but trying a range

of different CNN compositions could lead to better overall model accuracy.
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