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ZONE-BASED ACTIVE NOISE CONTROL FOR AN AIRCRAFT PASSENGER SEAT 

 

Wintta Ghebreiyesus 

Master of Applied Science, Aerospace Engineering, Ryerson University (2017) 

 

ABSTRACT 

The goal of this research is to improve zone-based local active noise control for an aircraft 

passenger seat using head tracking and virtual sensing methods. Broadband diffuse sound fields 

are analyzed in order to determine the level of attenuation around the passenger’s ears. The virtual 

sensing methods which were evaluated from literature include the virtual microphone technique, 

the forward difference prediction technique, and the adaptive LMS moving virtual microphone 

techniques. In addition to virtual sensing, a new methodology for integrating zone-based 

technologies with existing local ANC techniques has been developed. The virtual sensing 

simulation and head tracking measurements can be used to verify this methodology.   



   
 

iv 
 

ACKNOWLEDGEMENTS 

 

I would like to thank my advisor, Dr. Fengfeng (Jeff) Xi, who has been a source of inspiration and 

relentless guidance. His patience and advice towards this research are greatly appreciated.  

I am grateful to Primoz Cresnik, MASc, P.Eng and Peter Bradley, B.Tech. for their technical and 

manufacturing support. My sincere thanks also goes to my fellow lab mates Lin, Gabriel, Jasper, 

and Sana, whose constructive criticism and kind words have motivated this work.  

Lastly, I would like to express my deepest gratitude to my extremely supportive and loving family, 

who has always been there for me. 

 



   
 

v 
 

Table of Contents 

 

Author’s Declaration for Electronic Submission of a Thesis ........................................................................ ii 

Abstract ........................................................................................................................................................ iii 

Acknowledgements ...................................................................................................................................... iv 

List of Tables .............................................................................................................................................. vii 

List of Figures ............................................................................................................................................ viii 

Nomenclature ................................................................................................................................................ x 

1. Introduction ........................................................................................................................................... 1 

1.1. Background ................................................................................................................................... 1 

1.2. Scope ............................................................................................................................................. 3 

2. Literature Review .................................................................................................................................. 6 

2.1. Active noise control and noise measurement ................................................................................ 6 

2.2. Smart materials for noise vibration reduction ............................................................................... 9 

2.3. Modeling and simulation of near-field sound propagation ......................................................... 15 

2.4. Modeling and measurement of cabin noise distribution ............................................................. 19 

2.5. Passive noise isolation and sound absorbent materials ............................................................... 23 

2.6. Modeling human hearing range: frequency and amplitude ......................................................... 28 

2.7. Visual Object Detection .............................................................................................................. 33 

2.8. Image Registration ...................................................................................................................... 35 

2.9. Dummy Head for Room Acoustic Measurements ...................................................................... 37 

2.10. Summary of Literature Review ............................................................................................... 38 

3. Zone of Quiet (ZoQ) ........................................................................................................................... 39 

3.1. Concept ....................................................................................................................................... 39 

3.2. Performance Measure ................................................................................................................. 41 

3.2.1. Diffuse Sound Field ............................................................................................................ 41 

3.2.2. Near-field Broadband Active Sound Control ...................................................................... 43 

3.3. Feedforward Filtered-x LMS Control ......................................................................................... 48 

3.3.1. Single Channel Control (SISO) ........................................................................................... 48 

3.3.2. Multiple Channel Control (MIMO) .................................................................................... 51 

3.3.3. Virtual Microphones near Passenger’s Ears ....................................................................... 52 

3.4. Virtual Sensing Problem ............................................................................................................. 53 

3.5. Virtual Microphone Technique ................................................................................................... 55 

3.6. Adaptive LMS moving virtual microphone technique ................................................................ 56 



   
 

vi 
 

3.7. Forward Difference Prediction Technique .................................................................................. 59 

3.7.1. Two-microphone first-order pressure prediction ................................................................ 61 

3.7.2. Three-microphone second-order pressure prediction .......................................................... 62 

3.8. Integrated ANC System Building Blocks ................................................................................... 64 

3.8.1. MTF Transfer Function ....................................................................................................... 66 

3.8.2. STF Transfer Function ........................................................................................................ 67 

3.8.3. EC Transfer Function .......................................................................................................... 68 

3.8.4. Prediction Filter (PF) .......................................................................................................... 69 

3.9. Model .......................................................................................................................................... 70 

3.10. Results ..................................................................................................................................... 73 

3.11. Verification ............................................................................................................................. 75 

3.11.1. Practical Implementation .................................................................................................... 75 

3.11.2. Active/Passive Noise Control Experiment .......................................................................... 78 

3.11.3. Active Noise Control Experiment ....................................................................................... 86 

3.12. Summary ................................................................................................................................. 99 

4. Head Tracking ................................................................................................................................... 100 

4.1. Dummy Head Model ................................................................................................................. 100 

4.1.1. Creation of Humanistic Facial Features ............................................................................ 101 

4.1.2. HSV Scale and Masking Process ...................................................................................... 101 

4.2. Rotation Method ....................................................................................................................... 103 

4.2.1. Setup ................................................................................................................................. 103 

4.2.2. Calibration ......................................................................................................................... 105 

4.2.3. Rotation Results ................................................................................................................ 113 

4.3. Translation Method ................................................................................................................... 114 

4.3.1. Setup ................................................................................................................................. 115 

4.3.2. Translation and Rotation ................................................................................................... 116 

4.3.3. Results ............................................................................................................................... 118 

5. Conclusion ........................................................................................................................................ 120 

References ................................................................................................................................................. 121 

 



   
 

vii 
 

List of Tables 

Table 3.1  Final weights and normalised RMS errors of the adaptive virtual microphone vs. fixed weight 

virtual microphones for a virtual location of ‘2h’. ...................................................................................... 74 

Table 3.2  Final weights and normalised RMS errors of the adaptive virtual microphone vs. fixed weight 

virtual microphones for a desired virtual location of ‘4h’. ......................................................................... 74 

Table 4.1  Pixel Ranges for HSV Parameters. ......................................................................................... 102 

Table 4.2  Estimated Polynomial Equations for Each Facial Feature. ..................................................... 109 

Table 4.3  Calibration Results (Left Turn: 0 to 90°). ............................................................................... 110 

Table 4.4  Generated Angle Error (Left Turn: 0 to 90°). ......................................................................... 110 

Table 4.5  Average Angle Errors (Left Turn: 0 to 90°). ........................................................................... 111 

Table 4.6  Calibration Results (Right Turn: 0 to -90°). ............................................................................ 111 

Table 4.7  Generated Angle Error (Right Turn: 0 to -90°). ...................................................................... 112 

Table 4.8  Average Angle Errors (Right Turn: 0 to -90°). ....................................................................... 112 



   
 

viii 
 

List of Figures  

Fig. 1.1  Diagram of head tracking ANC framework. .................................................................................. 3 

Fig. 2.1  Smart foam set-up used in [1]. ..................................................................................................... 11 

Fig. 2.2  Cessna crown panels control setup [1]. ........................................................................................ 12 

Fig. 2.3  Schematic of control setup in [1]. ................................................................................................. 13 

Fig. 2.4  Comparison of piezoelectric material properties [22]. ................................................................. 14 

Fig. 2.5 Overview of source and directivity approach [39]. ....................................................................... 16 

Fig. 2.6  Left: Cabin panel with surface calculation points covered by array. Right: Speakers [24]. ........ 20 

Fig. 2.7  Sound power error vs. number of plane waves for measuring surface properties [24]. ............... 21 

Fig. 2.8  Left: Measured area (panel) around left window. Right: DLA during measurement [24]. .......... 22 

Fig. 2.9  Double-layer array (DLA) mounted with six IR LEDS [44]. ....................................................... 23 

Fig. 2.10  Diagram of ACLE (method for predicting acoustic indices in long enclosures) [30]. ............... 26 

Fig. 2.11  Cross-section of Hong Kong MTR KWF station showing measurement arrangements [30]. ... 27 

Fig. 2.12  Multichannel noise reduction and active noise control systems in cascade [59]. ....................... 30 

Fig. 2.13  Active noise control and noise reduction system in parallel [59]. .............................................. 31 

Fig. 2.14  Integrated multichannel active noise control and noise reduction system [59]. ......................... 31 

Fig. 2.15  Noise reduction performance comparison: with vs. without active noise control [59]. ............. 32 

Fig. 2.16  Adaboost features. Top row: Two features; Bottom row: Same features on training face [68]. 34 

Fig. 2.17  The image registration problem [36]. ......................................................................................... 36 

Fig. 3.1  Illustration of Zone of Quiet concept. .......................................................................................... 40 

Fig. 3.2  Visual representation of primary and secondary fields at the cancellation point 𝒙𝟎. ................... 43 

Fig. 3.3  Diagram of cancellation point 𝒙𝟎 and a position  𝒙𝟏 near it, relative to the secondary source. .. 47 

Fig. 3.4  10dB ZoQ reduction for 100mm dia. speaker adjustment w.r.t. distance 𝑟0 on-axis [15]. .......... 47 

Fig. 3.5  Block diagram of single channel Filtered-x LMS feedforward control system. .......................... 49 

Fig. 3.6  MIMO graphical representation of zone-based active noise control. ........................................... 52 

Fig. 3.7  ANC Comparison. (a): at a physical sensor; (b): at a virtual sensor [43]. .................................... 53 

Fig. 3.8  Block diagram of the virtual microphone technique. ................................................................... 55 

Fig. 3.9  Block diagram of the adaptive LMS moving virtual microphone technique. .............................. 57 

Fig. 3.10  Coordinate system for LMS moving virtual microphone technique with head tracking. ........... 59 

Fig. 3.11  First-order forward prediction. ................................................................................................... 60 

Fig. 3.12  Second-order forward prediction. ............................................................................................... 60 

Fig. 3.13  Integrated ANC Building Block diagram. .................................................................................. 65 

Fig. 3.14  ANC MTF Block diagram. ......................................................................................................... 66 

Fig. 3.15  ANC STF Block diagram. .......................................................................................................... 67 

Fig. 3.16  ANC EC Block diagram. ............................................................................................................ 68 

Fig. 3.17  ANC Prediction Filter Block diagram. ....................................................................................... 69 

Fig. 3.18  Representation of experiment setup. .......................................................................................... 70 

Fig. 3.19  SISO ANC setup (uncoupled ANC units near headrest). ........................................................... 72 

Fig. 3.20  MIMO ANC setup (coupled ANC units near headrest). ............................................................ 72 

Fig. 3.21  Plot of decreasing convergence coefficient used for simulation. ............................................... 73 

Fig. 3.22  Block diagram of MIMO control setup. ..................................................................................... 77 

Fig. 3.23  Block diagram of adaptive LMS method with passive noise control element. .......................... 79 

Fig. 3.24  Initial setup of Passive Noise Control. ....................................................................................... 80 

Fig. 3.25  Top: Front view of setup; Bottom: Top view of setup showing rotation about vertical axis. .... 80 

Fig. 3.26  Compressor used to generate experimental noise. ...................................................................... 81 

Fig. 3.27  Aluminum sheet curved panels for Passive Noise Control housing. .......................................... 81 



   
 

ix 
 

Fig. 3.28  Passive Noise Control setup with curved acoustic-grade foam wedges. .................................... 82 

Fig. 3.29  Close-up view of acoustic foam wedges. ................................................................................... 83 

Fig. 3.30  Noise Plot for Left Ear reference model. .................................................................................... 84 

Fig. 3.31  Noise plot for Right Ear reference model. .................................................................................. 84 

Fig. 3.32  Noise plot for Left Ear parallel ref model: without vs. with Passive Noise Control. ................. 85 

Fig. 3.33  Noise plot for Right Ear parallel ref model: without vs. with Passive Noise Control. ............... 85 

Fig. 3.34  Setup of TMS320C6713 DSK, multimedia speakers, and CCS software. ................................. 86 

Fig. 3.35  Plot of adaptive filter’s output converging to desired signal: 30 weights, beta 1e-10 ................ 90 

Fig. 3.36  Plot of adaptive filter’s output converging to desired signal: 60 weights, beta 1e-10 ................ 91 

Fig. 3.37  Plot of adaptive filter’s output converging to desired signal: 30 weights, beta 10 ..................... 91 

Fig. 3.38  Plot of adaptive filter’s error signal for the different betas: 30 weights ..................................... 92 

Fig. 3.39  Design of 150 Hz – centred bandpass filter using MATLAB’s filter design and analysis tool. 94 

Fig. 3.40  Design of 1 kHz – centred bandpass filter using MATLAB’s filter design and analysis tool. .. 95 

Fig. 3.41  MATLAB’s filter coefficient export to CCS IDE feature. ......................................................... 95 

Fig. 3.42  Spectrum plots of original fixed filter and adaptive filter outputs: beta 1e-13 ........................... 96 

Fig. 3.43  Plot of adaptive filter’s active noise reduction measured in dB. ................................................ 96 

Fig. 4.1  Acoustic Dummy from Binaural Enthusiast. .............................................................................. 100 

Fig. 4.2  Acoustic Dummy with facial feature stickers............................................................................. 101 

Fig. 4.3  Separated Colour Facial Feature Detection. ............................................................................... 103 

Fig. 4.4  Head-tracking setup with tripod, camera, and dummy placement. ............................................ 104 

Fig. 4.5  Dummy Head Rotation Schemes. Left Turn: 0 to +90°; Right Turn: 0 to -90°. ........................ 104 

Fig. 4.6 Cubic model for head angle direction. Left Turn: 0 to +90°; Right Turn: 0 to -90°. .................. 106 

Fig. 4.7  Quadratic model for determining head angles less than -35° using the nose. ............................ 106 

Fig. 4.8  Quadratic model for determining head angles greater than 35° using the nose. ........................ 107 

Fig. 4.9  Quadratic model for determining head angles greater than 0° using the right eye. .................... 107 

Fig. 4.10  Quadratic model for determining head angles less than 0° using the left eye. ......................... 108 

Fig. 4.11  Quadratic model for determining head angles greater than 35° using the right ear. ................ 108 

Fig. 4.12  Quadratic model for determining head angles less than -35° using the left ear. ...................... 109 

Fig. 4.13  Sample image of calibration results (Left Turn: 20°). .............................................................. 110 

Fig. 4.14  Legend for translation and rotation head-tracking flowchart. .................................................. 117 

Fig. 4.15  Translation and rotation head-tracking flowchart process diagram. ........................................ 117 

Fig. 4.16  Dummy head translation along y-axis versus pixel position. ................................................... 119 

Fig. 4.17  Dummy head angle versus pixel position. ................................................................................ 119 



   
 

x 
 

 Nomenclature  

 

𝐶𝑆𝑀 cross spectral matrix 

𝐹𝐹𝑇 Fast Fourier Transform 

𝐻𝑅𝑇𝐹 head-related transfer function 

𝑙2      width of boundary vertical to the boundary 𝑖 

𝑙3      distance between receiver and cross-section with 𝑃IN 

𝑃IN     input power 

𝑃S0,i power flow at the receiver caused by the boundary 𝑖 

𝑃𝑊𝐿 sound power level 

𝑆𝐻 spherical harmonic 

𝑆𝑃𝐿 sound pressure level 

𝑦 = 𝛼𝑖𝑙3/2𝑙2 

𝛼𝑖 absorption coefficients of the boundary 𝑖 

𝑠𝑖(y), 𝑐𝑖(y)     

− ∫ (𝑠𝑖𝑛𝑡/𝑡)𝑑𝑡,   − ∫ (𝑐𝑜𝑠𝑡/𝑡)𝑑𝑡,   

∞

𝑦

∞

𝑦

 

𝑇𝐿 transmission loss 

 

 

 

 

  



   
 

1 
 

1. Introduction 
 

1.1. Background 
 

There is a need for business jet cabin noise reduction research. The current methods for 

business aircraft cabin noise reduction or cancellation are not sufficient as passengers continue to 

be dissatisfied with loud flying environments. Generally, aircraft noise control can be classified as 

being environmental (outside of the aircraft) or cabin-related (inside of the aircraft). Cabin-related 

aircraft noise control can further be classified as being overall or zone-based. Most methods of 

business jet cabin noise cancellation occur outside the cabin and within the cabin trim or inner 

lining. Unfortunately, these methods do not target vibration-borne noise from the cabin itself or 

noise that propagates from inside of the cabin. In addition to this, the dominant sources of noise in 

an aircraft, which are the engine harmonic tones, still remain undamped by these noise reduction 

techniques. Noise reduction inside the cabin of a business jet is critical for providing passengers 

with optimal sound comfort. This thesis presents zone-based active noise control in a business 

aircraft passenger seat. This chapter is a brief overview of the subsequent chapters presented in 

this thesis. 

According to Guigou et al., Turbofans, propellers and turbulent boundary layers are some 

causes of noise fields which propagate sound waves through the fuselage and create extremely 

high sound levels inside the aircraft cabin [23]. Major noise sources originating from the airframe 

of an aircraft include horizontal stabilizers, spoiler, flaps, leading and trailing edge devices, the 

wings, landing gears, nacelles, and the fuselage. Aircraft engine noise sources include fan exhaust, 

turbine and core, and fan inlet. Both passive and active cabin noise control methods have been 

investigated in recent years.  
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Moreover, the concept of head-tracking for localized active noise control creates a quiet zone 

in close vicinity to a single passenger. The head-tracking system has a fast face detector. The 

applications of a fast face detector are diverse and include user interfaces, image databases, and 

teleconferencing [68]. Most head tracking technologies impose the use of physical and expensive 

head gear. This thesis will present a method that does not require the user to wear any equipment 

for both the head tracking and noise reduction. 

The work in the following chapters will attempt to solve this problem: How can a business jet 

passenger’s sound comfort be improved using zone-based active noise control in a seat? The main 

objective is to reduce business aircraft cabin noise levels near a passenger’s seat using an integrated 

active noise control (ANC) system. The system will consist of a headrest, microphone sensors, 

microcontroller, speakers, and a head-tracking device. Since no human participants will be used 

in the study, an acoustic dummy head will be the main subject. The following is a list of specific 

objectives of this research: 

 To assess overall sound pressure levels in business jet cabins 

 To analyse active noise control techniques near passenger’s head 

 To create a head tracking system while unrestricting passenger movement within personal 

space 

 To use the head tracking system to design a novel method for determining optimal ANC 

zone for passenger  
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1.2. Scope 
 

The purpose of this study is to improve zone-based active noise control for an aircraft 

passenger seat using virtual sensing and head tracking methods. The effects of head tracking on 

active noise control (ANC) localization will be studied in order to enhance personal sound comfort 

in aircraft cabins. Figure 1.1 below demonstrates the conceptual framework of the head tracking 

part of the study. The general process starts with the dummy head in a neutral front-facing 

configuration. The original pose of the smart structure is used for the first iteration of the ANC 

algorithm. Then, the dummy head is rotated or translated such that the head tracking subsystem is 

able to output a tracked posed to the ANC subsystem. The results from before and after head 

tracking are compared to determine the effects of head tracking on ANC localization. In this thesis, 

ANC localization represents an active noise cancelling technique that produces cancellation close 

to a user’s head regardless of its pose. 

 

Fig. 1.1  Diagram of head tracking ANC framework. 

 

The subject of this quantitative study is an acoustic dummy head that represents a human head 

and is used for the head tracking portion of the thesis. Since the dummy head is capable of housing 
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microphones, it can be used to validate the active noise control localization methodology in the 

future. The results of this study can be used for mock-up cabin testing with similar dummy heads 

and may not directly apply to human participants. More information about the dummy head subject 

can be found in Chapter 4. This work has used an extensive list of instrumentation including the 

National Instruments signal analyzer, the Texas Instruments digital signal processor, Arduino Uno 

microcontrollers, the Intel F200 camera motion sensing device, the Microsoft Kinect motion 

sensing device and the Thinkpad X1 Carbon PC. An assumption that was made was that the 

dummy head exhibited humanistic features such as eyes, ears, a nose, and a mouth. These features 

were exaggerated with multicolored-tape markers in order to use cascades for the head tracking. 

This was an important assumption to make because if human participants are ever used for such a 

study, a similar method of creating several positive and negative images for cascade selection 

would have to be employed. 

The scope of this work entails research conducted in the department of aerospace’s 

manufacturing and robotics laboratory facility at Ryerson University. A miniature cabin mock-up 

was used for several of the experiments. The miniature cabin mock-up consists of a wooden, 

elevated floor housed in an extruded aluminum frame (floor and hollow sides for structural 

support). The Bombardier Global Express 5000 aircraft seat was securely mounted onto a marine 

swivel base, which was then secured to the floor via custom-made extruded aluminum mounts. 

The scope can be further explained in four main points as follows:  

• Analyze existing active noise control methods pertaining to passenger seat (i.e. headrest) 

• Develop methodology for zone-based integrated ANC system 

• Develop head tracking tool to improve ANC system 
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This thesis contains 5 chapters. Chapter 2 will discuss the literature review which was 

conducted. This review will go over existing noise control and head tracking algorithms and 

technologies. More specifically, Chapter 2 will look at the following topics: current research in 

cabin noise control, both overall cabin control and zone-based cabin control; active noise control 

and noise measurement; smart materials for noise vibration reduction; modeling and simulation of 

near-field sound propagation; modeling and measurement of cabin noise distribution; passive noise 

isolation and sound absorbent materials; modeling human hearing range; visual object detection; 

image registration; dummy head for room acoustic measurements. Chapter 3 will introduce the 

concept and effectiveness of Zone of Quiet (ZoQ). It will also discuss the filtered-x LMS algorithm 

as well as three virtual sensing methods: (1) virtual microphone technique, (3) forward difference 

prediction technique, and the (4) adaptive LMS moving virtual microphone technique. Chapter 3 

will also demonstrate the practical implementation of zone-based local ANC systems. Chapter 4 

will introduce the concept of using head tracking to improve the zone-of-quiet in addition to virtual 

sensing algorithms. Chapter 4 includes: the acoustic dummy head model; production of the 

model’s humanistic facial features; the HSV scale and masking processes; and the rotation and 

translation methods used to obtain the best head-tracking results. Finally Chapter 5 is the 

conclusion of the work and will also discuss future work on zone-based active noise control for 

aircraft passenger seats. 
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2. Literature Review 
 

This literature review consists of six miniature chapters which pertain to the broad field of 

active and passive noise control and reduction. These main themes include: active noise control 

and noise measurement, smart materials for noise and vibration, modeling and simulation of near-

field sound propagation, modeling and measurement of aircraft cabin distribution, and modeling 

human hearing range including frequency and amplitude. This report describes the methods and 

evidences reviewed from existing and published literary texts.  

 

2.1. Active noise control and noise measurement 
 

 The principle of active noise control is to create a zone of silence, and at the tympanic 

membrane, canceling the effect of noise leakage in a standard open-fitting hearing aid [59]. 

Adaptive filtering is one of many advanced processing techniques. In adaptive filtering, the filter 

coefficients are allowed to change in time. Consider an active noise control optimisation problem 

where noise is fed into a room and collected by a microphone. The noise is also fed to the adaptive 

filter which is designed to process the signal in exactly the same way as the room system. The 

error is essentially the difference between the microphone signal and the output of the adaptive 

filer. In theory, this error should be zero. If it is not zero, this error is used to update the adaptive 

filter, so it makes a better estimation next time. The adaptive filter is either a finite impulse 

response (FIR) or an infinite impulse response (IIR) filter. The major difference between the two 

is their corresponding filter coefficients. In a larger sense, this is similar to a numerical 

optimisation problem which can be tackled by a genetic algorithm (GA). However, in adaptive 

filtering the Least Mean Square (LMS) approach is more popular. This is important because in a 



   
 

7 
 

speech communication system, the intelligibility of the spoken messages must be maintained when 

threatened by noise. This noise may be created acoustically or electrically, or it may be the 

reverberant effects of a long system impulse response generating a signal which resembles noise 

(i.e. room reverberation). [34] Luckily, due to linearity consequences, such noise may be cancelled 

using signal processing techniques.  

 Consider an active noise control system. The speech signal 𝑠 is corrupted by the addition of 

the noise signal 𝑛 at the first summing node, generating the observable signal 𝑑 . At the second 

summing node, a signal 𝑦 is subtracted from 𝑑. Again, the error signal 𝑒 is the result of this 

subtraction. 

 If the signal 𝑦 is a copy of signal 𝑛, then the noise corruption on the signal 𝑠 is removed, 

𝑒 = 𝑠. 

 If 𝑦 is a reasonable approximation of 𝑛, then some of the noise contamination is removed, 

𝑒 ≈ 𝑠. 

 If 𝑦 is largely uncorrelated with 𝑛, then the second summing node represents an additional 

source of noise, further corrupting the speech component in 𝑒. 

The cancelling signal 𝑦 is derived by filtering operations (through the filter block 𝑊 which is an 

adaptive filter) on the reference signal 𝑥. All the signal variables and the filter responses are 

complex functions of frequency. Averaging of the mean squared error signal can be used to deal 

with the non-deterministic signal types.  This is done using the expected value operator E[|e|2]. 

The following assumptions pertain to the statistical relationship between the signals: 

(1) The noise 𝑛 is uncorrelated with the speech 𝑠. 
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(2) The reference 𝑥 is correlated with the noise 𝑛 (and so, by 1), is uncorrelated with the 

speech 𝑠. 

The mean square error will have a unique minimum value when the complex filter 𝑊 is correctly 

adjusted to 𝑊𝑜𝑝𝑡 which minimizes the error, which will be shown next. 𝑊𝑜𝑝𝑡, by definition, is the 

transfer function between the reference signal  𝑥 (interpreted as input) and the noise signal 

 𝑛 (interpreted as output). Another way of putting this is that the optimal configuration of the 

cancelling filter 𝑊𝑜𝑝𝑡, is the inverse of the filter relating  𝑛 (input) and  𝑥 (output). In the idealised 

case of perfect correlation between 𝑛 and 𝑥 of a simple noise canceller, the transfer function 𝑒/𝑠 is 

easily found to be 1. Consequently, the noise added at the first summing node is perfectly cancelled 

at the second summing node. The noise is attenuated by ∞ dB. In reality, this is never the case. In 

other words, in practice perfect performance cannot ever be achieved for many reasons such as: 

(1) Imperfect implementation of the cancelling filter. 

(2) Imperfect correlation between the noise 𝑛 and the reference 𝑥. 

The second reason will be analyzed. Imperfect correlation between 𝑛 and 𝑥 can be modelled by 

the system presented by Lecture Notes on the Mathematics of Acoustics [34]. The additional 

noise 𝑛2 represents those components of 𝑥 which are not correlated with 𝑛 (it can further be 

assumed that 𝑛2 is independent of 𝑠). The linear time invariant (LTI) transfer function relating the 

correlated components of 𝑥 to 𝑛 is relabelled 𝐻 for generality.  

 It should be noted that the introduction of the uncorrelated noise does not affect the phase of 

the optimal filter (defined by H-inverse), it only scales the optimal canceller gain by the coherence. 

It should also be noted that the coherence function is purely real. The attenuation of noise is a 

function of the coherence between the noise and reference signals (and the magnitude of the 
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transfer function 𝐻). The attenuation of noise increases as the coherence increases. However, the 

coherence function is bounded in magnitude: 0 < |𝛾𝑛,𝑥
2 | < 1). In order to produce sufficient levels 

of noise attenuation, high coherence between the reference and the noise signal to be cancelled 

must be present. However, this is difficult in practice. 

 

2.2. Smart materials for noise vibration reduction 
 

 For the past decade, more and more researchers are becoming interested in the reduction of 

sound and/or vibrations using hybrid active-passive techniques. The main goal of hybrid active-

passive devices for noise control is to increase performance at lower frequencies; however, some 

by-products include increased robustness, increased stability and decreased control spillover [20].  

According to Gentry et al., there are two general types of active-passive noise control approaches: 

the adaptive-passive and active-passive techniques [20]. The adaptive-passive methods are passive 

devices whose static properties are adapted or changed to optimize their performance [46]. 

Technologies involving smart structures have found their place in fields pertaining to actively-

controlled vibrations, noise, and deformations [42]. For aircraft, so-called smart skin is designed 

to reduce sound through passive absorption of acoustic foam and the active component which is 

the piezoelectric polymer called polyvinylidene fluoride (PVDF) [23].  The passive component is 

most effective at higher frequencies, while the active component is most effective at lower 

frequencies. Active control is facilitated at lower frequencies because the signal processing speed 

demand is less which requires fewer actuators and sensors [22]. Active control techniques can 

ameliorate sound reduction of passive sound-absorbing materials at low frequencies [10]. A smart 

structure consists of four main components: structural material, distributed actuators and sensors, 
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control strategies, and power conditioning electronics [42]. A special feature of smart materials is 

their capability to change their mechanical properties (viscosity, stiffness, shape) based on changes 

in temperature or an induced field (electric or magnetic). A distinct physical characteristic of the 

PVDF actuator is that it is engineered to be curved in order to couple the predominantly in-plain 

strain associated with the piezoelectric effect and the vertical motion needed to eventually radiate 

sound away from the foam’s surface [23]. The piezoelectric element translates an electrical input 

signal into a motion that radiates sound out of the surface of the smart foam element [22]. 

 The passive component is a sound-absorbing material called partially-reticulated polyurethane 

foam. Guigou and Fuller describe the passive foam as being able to dissipate incident acoustic 

wave energy through friction associated with the coupling of the liquid and solid phase of the foam 

itself [23]. It is an acoustic grade, open cell, flexible ester based urethane foam designed to provide 

maximum sound absorption per given thickness. For the active component in Guigou and Fuller’s 

research, a 28 μm Ag (silver-electroded) metallized PVDF film was employed and embedded in 

the foam [23]. This was chosen because it has an excellent tolerance of high voltage amplitudes 

required for actuator applications.  

 Guigou and Fuller’s research looks at an active-passive foam-PVDF smart skin which was 

mounted in the cockpit of the mid-size business jet Cessna Citation III located at VPI&SU [23]. 

The idea behind the active-passive surface coating is to cover the inner surface of the aircraft skin 

with adjacent independent active tiles. The fuselage crown panels are excited with a single speaker 

located external to the cockpit. The speaker is driven by a band-limited random excitation. A 

multiple-input-multiple-output (MIMO) feedforward Filtered-x LMS controller is used for error 

minimization of the error sensor signals provided by close-by microphones. Three different 

reference signals are used by the feedforward controller and are compared (compensated) to the 
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achievable interior noise attenuation. The main objective of the smart foam-PVDF skin is to reduce 

interior cabin noise. As can be seen in Figure 2.1, each smart skin element is composed of three 

active cells driven in phase, and then mounted on a fuselage panel. A similar LMS algorithm 

(feedforward) is applied to the smart foam application developed by Gentry et al. in to minimize 

the signal from a far-field error microphone [20], [45]. 

 

Fig. 2.1  Smart foam set-up used in [1]. 

 

 The general physicality of the control setup is four crown panels seen below in Figure 2.2. 

Each treated crown panel is associated with its own control channel (labelled in Figure 2.2 as 

channels C1 through C4). In addition, four error microphones were located at pilot’s ear level 

which was approximately 7 inches below the cockpit fuselage ribs. In order to simulate the 

excitation of flow separation and associated turbulence, band-limited and broadband random 

excitation of the crown panels was achieved by the use of a speaker mounted on the cockpit 

exterior. The disturbance speaker was located at the centre of treated area (1 inch from fuselage 

structure above top ribs). A traverse (-90° to 90°) consisting of 12 microphones (1-5 inches apart) 
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was used to assess control performance of planes located at pilot’s ear and shoulder level (7 and 

14 inches below cockpit ceiling).  

 

Fig. 2.2  Cessna crown panels control setup [1]. 

 

 The experiment was able to produce 108 SPLs in each of the aforementioned measurement 

planes. The global attenuation (global sound level) was determined as being the ratio of the sum 

of the 108 measured square pressures summed over the excitation frequency range, before and 

after control. The software control consisted of a MIMO feedforward Filtered-x LMS algorithm 

which was driven by a TMS320 digital signal processor (DSP). This algorithm was used to 

minimize the acoustic pressure at the error microphones. The controller had a sampling frequency 

of 2-8 kHz and 90 and 100 coefficient finite impulse response (FIR) filters were used for error and 

control paths respectively. All control results are presented in Guigou and Fuller’s paper [23]. 
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Fig. 2.3  Schematic of control setup in [1]. 

 

 The smart skin is composed of a cylindrically curved PVDF piezoelectric film embedded in 

partially reticulated polyurethane acoustic foam. For the research methods presented above, the 

foam-PVDF smart skin was mounted under the crown panels in the cockpit of a Cessna Citation 

III fuselage. The main objective was to conduct performance testing as each smart foam element 

(4 in total) was used to control the effective acoustic source of an individual fuselage panel. It was 

found that increasing the number of control channels (from 2 to 4: depicted as M1 and M4 and 

M1-M4 respectively in Figure 2.3) led to an increase in global attenuation. This is equivalent to 

extending the smart skin to control a larger number of fuselage panels. 

 The best means of providing control performance was using a microphone located close to the 

fuselage as a reference signal. For band-limited excitation (200 Hz bandwidth), up to 13 dB global 

passive/active attenuated was attained at the pilot’s ear level. When the excitation frequency 

bandwidth is increased to 800 Hz, the global passive/active attenuation is approximately 7 dB. 

PVDF and its copolymers can also induce electrostrictive (a dielectric material property caused by 

a slight displacement of ions in the crystal lattice upon being exposed to an external electric field) 
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strains of 2% when applying large alternating-current electric fields (200 kV/mm) [42]. Since 

PVDF can provide extremely high active strains with high operation frequencies, this type of 

electroactive polymer (EAP) could be used for several passive-active noise and vibration reduction 

tasks [42]. 

 The film PVDF is extremely lightweight and flexible when compared to other piezoelectric 

materials. Its flexibility permits it to be shaped into any form thus customized for each specific 

application. In this case, this feature led to the determination of the optimum PVDF contour to 

maximize its far-field radiation efficiency. Original PVDF actuator configurations were first 

suggested by Tibbets [64]. A major advantage in terms of convenience and cost of PVDF is that it 

can be bonded or glued using commercial adhesives. Lastly, the use of PVDF as the active smart 

foam component is its similar acoustic impedance to that of air. This is key because the closer the 

acoustic impedance of an actuator to that of the medium on which it operates (i.e. air, water) the 

more efficient the source sound radiation. Consequently, the actuator will require less control 

energy to operate. The nonlinear behaviour of smart foam is assessed using a measure known as 

harmonic distortion. It is a measure of the pressure amplitude distortion and refers to the deviation 

from correspondence between the acoustic output wave and the electrical input wave that is caused 

by nonlinear effects in the smart foam [7]. Figure 2.4 below is a property comparison table of 

PVDF versus a conventional piezoelectric ceramic material. [22] 

 

Fig. 2.4  Comparison of piezoelectric material properties [22]. 
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2.3. Modeling and simulation of near-field sound propagation 
 

        For near-field measurements, the measurements are made close to the noise-making object 

(usually at 1 m) on the surface of a similar shape to the object and corrections made for the effect 

of room reverberation and the near field. One suitable measurement locations (generally between 

5 and 16) are determined, the measured average sound pressure level value 𝐿𝑝 around the object is 

used to then determine the sound power level of the object using the equation from [25], 

where 𝐿𝑤 is the sound power level of the object, 𝑆 is the area of the test surface and ∆1 and  ∆2 are 

correction terms. In the near field of an object, sound propagation is not always normal to the 

randomly chosen measurement surface. It can be seen that the equation suggested by Hansen 

implicitly assumes propagation normal to the measurement surface [25]. This is why the correction 

factor ∆2 is introduced to compensate for possible tangential (non-normal) sound propagation. 

Values of ∆2 are given in Table 3.3 of Hansen’s work as a function of the ratio of the area of the 

measurement surface 𝑆 divided by the area of the smallest parallelepiped,  𝑆𝑚, which snugly 

encloses the source [25]. On the other hand, the correction factor ∆1 accounts for the absorption 

characteristics of the test room and can be determined from measurements on two test surfaces 

around the object. If measurements on two test surfaces are used, then ∆1 is given by another 

equation suggested by Hansen [25]. Where the subscripts 1 and 2 refer respectively to the 

measurement surfaces near and remote from the object.  

 Source directivity has a major impact on sound propagation and the acoustics of its immediate 

environments [67]. The research paper by Mehra et al. presents a method to model dynamic, data-

driven source and listener directivity for interactive wave-based sound propagation in virtual 

environments [39]. The experiment consisted of several spherical harmonic (SH) decompositions 
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of varying source directivity interactively and computations of the total sound field at the listener 

position as a weighted sum of precomputed SH sound fields. The general approach here was to, 

given a scene and a source position, precompute a set of pressure fields due to elementary SH 

sources using a frequency-domain wave-based sound propagation technique.  

 These pressure fields are then encoded in basis functions (e.g. multipoles) and stored for 

runtime use. With available runtime dynamic source directivity, a SH decomposition of the 

directivity is performed in order to obtain the corresponding SH coefficients. Next, the final 

pressure field is computed by combining (summation) the pressure fields due to SH sources 

determined at the listener positions weighted by the appropriate and previously-determined SH 

coefficients. Acoustic responses are processed for both ears at runtime by using a plane-wave 

decomposition and the head-related transfer function (HRTF)-based listener directivity. Lastly, to 

compute spatial sound, a dot product of SH coefficients of the HRTF and the plane wave 

decomposition of pressure field is performed. The general process of the complete approach is 

demonstrated in Figure 2.5 below. 

 

Fig. 2.5 Overview of source and directivity approach [39]. 
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 A HRTF describes the effect of the listener’s outer ear, head and body on incoming 

omnidirectional sound. Mehra et al. [39] and Ravni [5] performed detailed studies using several 

metrics including inter-aural time difference (ITD), inter-aural level difference (ILD) and inter-

aural time cross-correlation coefficient (IACC). These results demonstrated that a SH order of 1-

2 is insufficient for spatial perception of frequencies up to 1 kHz; a SH order of 3 is good for 

frequencies up to 2 kHz; and a SH order of 3-6 is good for frequencies up to 8 kHz. The concept 

is that higher SH orders result in better spatial resolution, but computation of their derivatives of 

pressure field for plane-wave decomposition is computationally expensive. This means that an 

appropriate trade-off between the SH order and performance-accuracy must be carefully 

considered. The general consensus from Mehra et al.’s work is that sound directivity becomes 

more prominent with increasing frequency [39]. Consequently, this requires higher-order SH basis 

functions. Future work consisted of the exploration of other basis functions such as wavelets to 

handle sharper directivities. The source formulation can handle both near- and far-field sound 

radiation by directional sources. Near-field directivity requires a set of dense measurements of 

complex frequency responses very close to the source at twice the Nyquist rate (which was not 

available at the time the paper was published). A final area for further exploration entails 

hybridization of wave-based techniques with geometric approaches to handle directional sources 

over the entire human-hearing frequency range.  

 Wave theory looks at the details associated with the cross-sectional variations in the sound 

pressure field. With diffraction, Kang tells us that two cases must be considered: highly absorbent 

materials wherein which all the energy of a plane wave is absorbed effectively after only two 

reflections; or relatively hard boundary materials wherein which the absolute sound field consists 

of a small perturbation of the rigid boundary case [31]. In the past, Mehra et al. have developed a 
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novel algorithm that accurately solves the wave equation for dynamics sources and listeners using 

a combination of precomputation methods and graphics processing unit (GPU-based) runtime 

evaluation [38]. Wave-based techniques, in general, can accurately perform sound propagation at 

all frequencies and can model all acoustic effects (including wave effects) [65, 57]. These 

techniques numerically solve the acoustic wave equation [52]. The research by Mehra et al. 

presented WAVE (Wave-based Acoustics for Virtual Environments), an interactive wave-based 

sound propagation system for efficiently generating accurate and realistic sound for virtual-reality 

(VR) applications [38]. Wave solvers are generally classified as frequency-domain and time-

domain methods. In frequency-domain approaches, a popular method is the finite element method 

(FEM) [63] and the boundary element (BEM) [14]. Of the time-domain approaches, the most-used 

method is the finite difference time domain (FDTD) method [62]. 

 The Helmholtz equation is used to study sound wave propagation in the frequency domain. It 

does this by expressing sound wave propagation as a boundary value problem [39]. Where 𝑝(𝑥) is 

the complex-valued pressure field (sound field) at frequency 𝑣, 𝑤 = 2𝜋𝑣 is the angular frequency, 

𝛺 is the propagation domain, and 𝛻2 is the Laplacian operator. This equation can be solved using 

any frequency-domain, wave-based propagation technique including BEM, FEM, or equivalent 

source method (ESM). The linearity of the Helmholtz equation implies that the pressure field of a 

linear combination of sources is a linear combination of their respective pressure fields [52]. The 

boundary element method [35] is a numerical method used to solve the 3D Helmholtz equation 

which accurately models sound propagation in indoor and outdoor spaces. This technique converts 

the Helmholtz equation into the boundary integral equation, then solves for pressure and velocity 

on the boundary; thus the pressure at any point in the domain is resolved. Mehra et al.’s data is 

magnitude-only, averaged over the frequencies in each octave band, and for all octave bands within 
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the frequency range of the sound sources [39]. The SH order that was used is 𝐿 = 3 − 4 for the 

source representation. This resulted in errors less than 10-15%, which is reasonable and widely-

acceptable error threshold for auralization purposes in interactive applications [28, 40, 57]. The 

pressure fields produced by the two techniques used by Mehra et al. [39] agree within the error 

of < 5 𝑡𝑜 10%.   

 

2.4. Modeling and measurement of cabin noise distribution 
 

 A primary source of aircraft interior cabin noise is propeller noise and can be characterized 

by discrete tones at the fundamental blade passage frequency (BPF) of the engines and their 

subsequent harmonics [22]. In the business jet application addressed in the CREDO project, the 

primary noise source is the stochastic structural TBL excitation, which creates also a stochastic 

(diffuse) background sound field [24]. 

 One common area of noise research in aircraft and helicopter cabins is cabin panels. There are 

two perspectives of noise in an aircraft: radiated and absorbed intensity components on cabin 

panels [24, 44]. The research conducted by Hald et al. [24] presents two methods; one of measuring 

the surface absorption coefficient and the other of measuring the surface admittance. Both of these 

methods use what is called a dual layer array (DLA). The DLA is placed in positions close to the 

surfaces under investigation to sample the near-field sound pressure [44]. The theory presented by 

Hald et al. is that a surface segment such an aircraft cabin panel can radiate sound energy due to 

external forcing [24]. This in turn can cause the surface to vibrate and absorb sound energy from 

an incident sound field because of its finite surface acoustic impedance. In order to measure the 

total sound intensity 𝐼𝑡𝑜𝑡, the radiated sound intensity 𝐼𝑟𝑎𝑑 that would exist with no incident field 

and the sound intensity 𝐼𝑎𝑏𝑠 due to absorption are simply summated. 
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 Based on directionality, the radiated intensity 𝐼𝑟𝑎𝑑 is generally a positive value, while the 

absorption component 𝐼𝑎𝑏𝑠 is negative. This is typically why the total sound intensity is sometimes 

smaller in comparison to the radiated intensity (which can be high). From a noise perspective, the 

most useful factor is usually the total sound intensity, but the aforementioned components are 

important for energy-based modelling of an environment where the flow of energy from one 

subsystem to another becomes essential. These intensity components may be needed for calibration 

of said models of perhaps vehicle interior noise [44]. Figure 2.6 depicts a setup of three 

incoherently excited speakers to create an incident field similar to the field incident under for 

example flight conditions in an aircraft. The DLA measurement can provide the total and incident 

sound field components on the panel surface. The surface admittance can then be found as it is the 

ration between the normal velocity and the pressure of the total field on the surface. The principal 

components are averaged, and since (in this case) the absorbed intensity is equal to the total 

intensity, the absorption coefficient is calculated as the ration between the total and the incident 

intensities.  

 

Fig. 2.6  Left: Cabin panel with surface calculation points covered by array. Right: Speakers [24]. 
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 In the case of aircraft cabin applications, the surface property measurement is conducted on 

the ground, while the operational measurement is obviously conducted during flight. Both 

measurements are required for a fair and accurate set of calculation points on the panels. The 

energy method error is shown in Figure 2.7 for the cases of 2, 5, 16, and 144 plane waves used in 

the measurement of absorption coefficient. It is intuitive that 2 plane waves are not enough, while 

5 waves seem reasonable. For the 5-wave setup, one wave was situated at close to normal incidence 

and 4 distributed around, far off-axis. Again from Figure 2.7, it can be seen that the admittance 

method errors are larger at low frequencies (dotted black line). The five loudspeakers are also used 

to create the masking incident field that has to be suppressed in order to obtain the radiating 

intensity. 

 

Fig. 2.7  Sound power error vs. number of plane waves for measuring surface properties [24]. 

 

The test area is separated into two sections, as seen in Figure 2.8: the trim panel and the window 

itself. It should be noted that the test room was a reverberant room at ambient temperature of 20°C 

and the spectrum of excitation was not representative of true flight conditions. This means that the 

data presented here was not an accurate presentation of the reality.  
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Fig. 2.8  Left: Measured area (panel) around left window. Right: DLA during measurement [24]. 

 

There were three configurations that were considered during this test:  

1. Only TL noise: Reference free-field measurement 

2. Only loudspeakers: Allows for measurement of surface absorption coefficient and 

admittance across the area. 

3. TL noise and loudspeakers: In order to obtain radiated intensity in presence of 

background noise. 

 The DLA method and a normal intensity probe were used for sound intensity measurement of 

each configuration. Also, swept measurement of average intensity was performed with a two-

microphone sound intensity probe over 12 small areas roughly 5 cm from the panel: 11 on trim 

panel and 1 covering the window. The specific methodology consisted of a set of overlapping array 

positions which were measured across the test area at 1-2 cm distance. This is done in order to 

cover the investigated surfaces patch by patch [44]. A DLA created by Morkholt et al. [44] is 

depicted in Figure 2.9. The 2x8x8 element DLA was mounted on a xy-robot, but its position and 

orientation was measured by an InterSense IS-900 system integrated into the handle of the array.  
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 In the research conducted by Morkholt et al. [44], the method is described in more detail but 

the general process is explained here. The first step is to calculate the full cross spectral matrix 

(CSM) for all signals using Fast Fourier Transform (FFT). The frequency responses are corrected 

using the correction data from the individual microphones. Next, a principal decomposition (PCS) 

is conducted to determine the most incoherent components. Then, Statistically Optimized Near-

field Acoustical Holography (SONAH) was used to perform calculations across a mesh at the panel 

surface. The results for total intensities as well as estimations of the absorption coefficient and 

radiated intensities can be found in Hald et al.’s work [24]. The results for the measured DLA 

versus classic probe techniques are typically within 1 dB.  

 

Fig. 2.9  Double-layer array (DLA) mounted with six IR LEDS [44]. 

 

2.5. Passive noise isolation and sound absorbent materials 
 

 Porous materials have many applications, one of which is sound absorption. Porous materials 

come in many forms; they can be fibrous, cellular or granular. Fibrous materials can be in the form 

of mats, board or preformed elements manufactured of glass, mineral or organic fibers including 

felts and felted textiles. Interestingly, cellular materials include polymer foams of varying degrees 
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of rigidity. The high weight-specific stiffness, good crash-energy absorption ability, and fire-

resistance of porous metals makes them suitable for sound absorption panels in aircraft and 

automatic industries. Some examples of porous materials used for sound absorption include 

polyurethane foam, horse hair, glass wool, lead shot (3.8 mm), porous aluminum, gravel (7.5 mm), 

and porous concrete. [34] 

 In the case of long enclosures such as aircraft cabins, underground stations, and corridors, one 

dimension (length) is much greater than others. According to Kang, the most important factors of 

acoustic design of long enclosures are cross-sectional size and form, and absorption amount and 

arrangement. For low absorbent boundaries, as proved by Kang, increasing the cross-sectional size 

or area reduces the attenuation [31]. This is a result of the reduced number of reflections in a period 

of time for a larger section. This also means that the total energy in the whole section is less, 

although the attenuation of energy per unit area is greater. This can be expressed as a reduction in 

relative attenuation and an increase in the absolute attenuation with respect to PWL. A 

considerably practical method of predicting acoustic indices in long enclosures is physical scale 

modelling. The only limitation here is cost. However, loudspeaker directionality and other factors 

can be challenging to implement in the physical scale models. The model that will be reviewed 

consists of a basic geometry in order to roughly determine the acoustic indices of a single source 

using models stemming from existing theory or computer simulations. The general idea is that 

with the data from the single source, the acoustic indices of several other sources can be obtained 

simply by superimposing each source. 

 The inputs for the computer program called acoustics in long enclosures (ACLE) that was 

developed by Kang et al. [30] include geometry (dimensions, major obstructions), boundary 

conditions (absorption coefficient, absorber arrangements, diffuse situation, etc.), source 
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conditions (temporal and spatial distribution of sources, source directionality).  Additional inputs 

include ambient noise for a PA system (input can be the temporal and spatial distribution of noise), 

proposed language(s) for said PA system, and unit costs of acoustic treatments [30]. This particular 

paper presents research pertaining to public address (PA) systems in underground stations. The 

sources can be noise sources or loudspeakers as well as directional or omni-directional. The 

systematic diagram below depicts the flow of calculations for determination of reverberation 

(prolongation of sound) and SPL. The perceived reverberation at the receiver can be found from a 

decay curve or an energy response. Also, if the decay curve is almost linear, the reverberation can 

be found from the early decay time (EDT) or reverberation time (RT). 

 In the complicated cases, the aforementioned simplifications become inaccurate. For instance, 

the presence of diffusers along boundaries produce more sound attenuation and are known to 

decrease reverberation. Also, in reality, absorbers are strategically placed along the length of the 

enclosures and they too behave similarly to diffusers. The absorbers are generally placed evenly 

in order to obtain a higher attenuation. Corrections related to this situation need to be taken into 

consideration in ACLE. Kang et al. found that a ribbed diffuser and a Schroeder diffuser are 

appropriate for reducing sound attenuation for the model with a circular cross-section [30]. This 

means that corrections for the variations in diffuser-effectiveness with respect to absorption 

conditions in a long enclosure have been taken into account. The extra attenuation caused by 

Schroeder diffusers is higher. This is important because this type of diffuser has a lower absorption 

coefficient than model absorbers (possess high absorption coefficients), but it still manages to 

produce more sound energy loss. In comparison to a ribbed diffuser, the Schroeder diffuser causes 

significantly extra attenuation. The consensus is that the Schroeder diffuser has an optimal 

diffusing and attenuating characteristic as well as extra absorption.  
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Fig. 2.10  Diagram of ACLE (method for predicting acoustic indices in long enclosures) [30]. 

 

 The ACLE program also considers train noise and ventilation noise. The train noise is 

modelled as separate sound sources from the train model’s various sections. The prediction sub-

program is called train noise in stations (TNS) and is used to predict the temporal and spatial 

distribution of train noise in underground stations. Below is plan and cross-section of a real 

underground train station. It should be noted that the sound characteristics of the long enclosure 

determine the ideal reverberation and SPL locations and thus the receiver spacing. 
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Fig. 2.11  Cross-section of Hong Kong MTR KWF station showing measurement arrangements [30]. 

 

 The medium used by Hansen [25] explains the basic principles of sound propagation in porous 

media is characterized in dimensionless variables by a complex density, 𝜌𝑚, and complex 

compressibility,𝜅. These quantities are then used to define a complex impedance and propagation 

constant. The characteristic impedance of the porous material is expressed using the gas density, 𝜌, 

the gas speed of sound 𝑐, the complex density 𝜌𝑚, and complex compressibility, 𝜅 as described by 

Hansen [25], where 𝜔 = 2𝜋𝑓 is the angular frequency in radians per second (rad/s) of the sound 

wave. The quantities 𝜌𝑚 and 𝜅 can be determined using the procedure outlined in [8]. This 

particular method for fibrous porous materials yields results that are within 4% of the mean of 

published data. It also leads to the correct limits at both high and low values of the dimensionless 

frequency 𝜌𝑓/𝑅1 which are thoroughly defined by Bies [8]. 
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2.6. Modeling human hearing range: frequency and amplitude  
 

 The human auditory receives large directional cues from the minor differences in the sound 

received by the left and the right ear. These differences can be attributed to the scattering of sound 

around the human head and they are directly affected by the direction of incoming sound [38]. The 

minimum, healthy acoustic pressure audible to the young human ear is approximately 20 ×

10−6 Pa, or 2 × 10−10 atmospheres. The minimum audible level occurs at approximately 4 kHz 

and is a physical limit. This means that lower sound pressure levels would be audibly eliminated 

by thermal noise due to molecular motion in air. It becomes quite painful for the normal human 

ear to experience sound pressures of the order of 60 Pa or 6 × 10−4 atmospheres.  

 The A-weighted decibel scale is a sound level metric used to measure noise for the human ear 

which is typically more sensitive to sound at higher frequencies (especially between 1 and 4kHz). 

The A-weighted Equivalent Continuous Noise Level is achieved by A-weighting the noise 

(applying inverse of 40 dB curve equal-loudness curve for human ear at 1 kHz) and then averaging 

the sound pressure squared over a period of time. This kind of averaging is known as energy 

averaging. This noise level is used as a descriptor of both occupational and environmental noise 

and for an average over time, T [25]. During some cases, the sound pressure is averaged solely (no 

A-weighting) and it is known as the Equivalent Noise Level, 𝐿𝑒𝑞,𝑇 . Hearing loss is usually 

determined using pure tone audiometry (measurement of the range and sensitivity of a person's 

sense of hearing) in the frequency range from about 100 Hz to 8000 Hz. Essentially, hearing loss 

is considered to be the differences in sound pressure levels of a series of tones that are barely 

audible compared with reference sound pressure levels for the same series of tones. The two main 

causes of hearing loss are exposure to excessive noise and aging. Losses caused by excessive noise 

occur first in the frequency range from approximately 4000 Hz to 6000 Hz. This particular range 
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is known to be the range of greatest sensitivity of the human ear. At first, the loss occurs in the 

aforementioned range. However, according to Hansen [25], as the deterioration of hearing 

sensitivity increases, the maximum loss generally remains near 4000 Hz. Sufficient speech 

recognition usually requires a frequency range from 500 Hz to 2000 Hz. This is important because 

hearing loss pertains directly to this range. A hearing loss of 25 dB will allow speech to be barely 

understood, while a loss of 92 dB is regarded as total hearing loss. Secondly, if a person undergoes 

a hearing loss between 25 dB and 92 dB, that person’s hearing is said to be impaired. The degree 

of impairment is calculated as a percentage at the rate of 1.5 percentage points for each decibel 

loss greater than 25 dB.  

 The IEEE technical paper by Serizel et al. [59] presents integrated active noise control and 

noise reduction techniques for hearing aids for the purpose of eliminating secondary path effects 

of noise leakage through an open fitting. The use of a noise-reduction (NR) algorithm and an active 

noise control (ANC) system in a cascade form may be efficient as long as the so-called causality 

margin of said system is large enough. When the two subsystems are positioned in parallel and 

then integrated, this has found to be a more robust algorithm. In terms of active control, a Filtered-

x Multichannel Wiener Filter (MWF) is presented and applied to provide the ANC and integrate 

it with the NR. The paper also experimentally compares the cascaded scheme and the integrated 

scheme through the use of the aforementioned filter in a classic noise reduction framework (with 

active noise control). Here, the integrated scheme was found to provide the best performance. 

Since many hearing aids have open fittings, the noise leakage through the fittings is a major 

concern. One accurate way of eliminating the undesired noise leakage is to use active noise control 

[16, 32]. The Filtered-x version of the MWF algorithm (FxMWF) in both the cascaded and 

integrated cases has been investigated by Serizel et al. [60]. In a hearing aid, the location of the 
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noise cancellation is at the tympanic membrane, and in any ANC system, the secondary path is 

crucial for the algorithm. Since the introduction of said path can create several instabilities, it is 

suitable to use filtered-x algorithms [9, 11 and 69] based on the estimate of the secondary path 

(derivation produced by Serizel et al. [59]). 

 The experimental setup for all three algorithms (cascade, parallel, integrated) is described in 

great detail by Serizel et al. [59]. The simulations contained a mannequin head and torso with 

artificial ears and a two-microphone behind-the-ear (BTW) hearing aid. At the time of the research, 

hearing aids did not have ear canal microphones so the artificial ear eardrum microphone was used 

to generate the error signal. The tests were run on 22-s-long signals. The speech consisted of three 

sentences from the HINT database in combination with silence periods. The noise was a 16 kHz 

multitalker babble from Auditec [47]. 

 

Fig. 2.12  Multichannel noise reduction and active noise control systems in cascade [59]. 
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Fig. 2.13  Active noise control and noise reduction system in parallel [59]. 

 

 

Fig. 2.14  Integrated multichannel active noise control and noise reduction system [59]. 
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Fig. 2.15  Noise reduction performance comparison: with vs. without active noise control [59]. 

 

 It has been concluded by Serizel et al. [59] that open fittings in hearing aids cannot be ignored 

and can negatively affect the NR performance. In response, ANC can be used to reduce the impact 

of the noise leakage. ANC has been found to provide signal to noise (SNR) improvements between 

4 dB and 12 dB (varies with approach used). The general consensus is that a cascaded approach is 

not a realistic one because hearing aids have latency margins close to zero (cascaded technique 

uses high latency factor). For the integrated approach, the SNR improvement range is 

approximately 12 dB for low hearing gains (between 0 dB and 20 dB). This is the case only when 

the system is causal. However, when the system becomes non-causal, the integrated approach still 

has the upper-hand as it takes the secondary path into consideration in the speech enhancement 

and amplification process. This reduces the impact of the leakage on the output signal. Future work 

consisted of developing hearing aids with ear canal microphones. Consequently, the addition of 

said microphone might create concerns related to bone conduction to the ear canal microphone 

during user speech. 
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2.7. Visual Object Detection 
 

The second and third contributions of the paper by Viola and Jones [68] represent two 

similar learning algorithms. The first of which selects a small number of critical visual features 

from a larger set and produces highly efficient classifiers. The latter is a method for combining 

increasingly more complex classifiers in a cascade. The idea behind the cascade is to efficiently 

and selectively remove background regions of an image in order to allocate more time to compute 

reliable object-like regions. The simple classifier method uses a technique called AdaBoost to 

successfully discard a large number of Harr-like (digital image) features and concentrate on a small 

set of critical ones. The method for feature selection constrains a weak learner in order for the 

weak classifier to result in a single feature. This process is reiterated such that every new classifier 

inherently results in a feature selection. Adaboost enables this strong learning algorithm and puts 

hard bounds on the overall system performance of object detection by focusing on promising 

regions of the image. From a conceptual stand-of-point, it is possible to effectively determine 

where an object is inside of an image [68]. An important factor of measurement called the “false 

negative” determines the rate of the attentional or focusing process. In the field of face detection, 

it is feasible to obtain less than 1% false negatives and 40% false positives through the use of a 

classifier created from two Harr-like features. This filter results in a one half reduction of the 

number of locations where the final detector should be examined. The weak learning algorithm is 

constructed to choose only one rectangle which best divides the positive and negative examples. 

Essentially, the weak learner’s criterion yields the misclassification of the minimum number of 

examples via the optimal threshold classification function. A weak classifier ℎ𝑗(𝑥) contains a 

feature 𝑓𝑗, a threshold 𝜃𝑗 and a parity 𝑝𝑗  which is the direction of the inequality sign. In this case, 

𝑥 represents a 24x24 pixel sub-window of an image. Since this is an increasingly complex process 
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with the addition of more features, the classification task yields progressively higher errors. For 

example, features selected in later rounds or iterations result in error rates between 0.4 and 0.5 

while features selected early on yield rates as low as between 0.1 and 0.3. 

The learning results yield a detection rate of 95% with a false positive rate of 1 in 14084 using 

a frontal face classifier built from 200 features. However, it is the case that the most intuitive 

method for bettering detection performance is also the most computationally expensive because of 

the continual addition of features. When the Adaboost technique uses rectangles, the initial 

rectangles used for the selection process are usually more useful and easier to analyze. More 

specifically, the first selected feature concentrates on the region of the eyes and their relative 

darkness with respect to the region of the nose and cheeks (see Figure 2.16 below). This feature is 

selected because it is a large region with respect to the detection sub-window. In addition, this 

feature is relatively impartial to the face’s size and location, which makes it easier to determine. 

The second feature selected concentrates on the region of the eyes and their relative darkness with 

respect to the region of the bridge of the nose. 

 

Fig. 2.16  Adaboost features. Top row: Two features; Bottom row: Same features on training face [68]. 

 

Viola and Jones’ [68] results for the number of features in the first five layers of the detector is 1, 

10, 25, 25, and 50 features respectively. As the layers continue from here, the number of features 

within each also grows. The total number of features in all the layers is 6061. The training process 
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contained 4916 training faces for each classifier in the cascade including their corresponding 

vertical mirror images. This resulted in a total of 9,832 training faces and 10,000 non-face sub-

windows per layer via the Adaboost training process. 

 

2.8. Image Registration 
 

 Image registration has many applications pertaining to computer vision such as image 

matching for stereo vision, pattern recognition, and motion analysis. The IJCAI paper by Lucas 

and Kanade [36] presents an image registration method that uses the spatial-intensity gradient of 

images to find a match (detection) via a Newton-Raphson type iteration.  The particular technique 

suggested by Lucas and Kanade [36] can handle rotation or similarly-related distortions of the 

images, making it extremely powerful. The technique involves random linear distortions of the 

image as well as rotation to make use of a stereo vision system which creates a greater 

understanding of stereo imaging. 

In order to solve the translational image registration problem, two functions F(x) and G(x) are 

used. These functions determine the respective pixel values at each location x in two consecutive 

images. In this case, x is simply a vector. The disparity vector h minimizes the difference between 

the functions of F(x + h) and G(x), for x in some region of interest R (see Figure 2.17 below). 

Typical measures of the difference between F(x + h) and G(x) are L1 norm, L2 norm, and the 

negative of the normalized correlation which can be determined from Lucas and Kanade’s work 

[36]. From these three measures, the L1 norm is commonly used because it is a relatively 

inexpensive approximation of the L2 norm.  
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Fig. 2.17  The image registration problem [36]. 

 

Normally, the image registering technique for two images finds the difference between the 

images at all exhaustive values of the disparity vector h. This is a tedious process and the 

computation time is 𝑂(𝑀2𝑁2), where the size of the picture is 𝑁 × 𝑁, and the region of possible 

h values is 𝑀 × 𝑀. The algorithm determines the order of searching the space of possible h values 

[36]. This is done by using an initial estimate of h and the spatial intensity gradient at each point 

of the image to update the current estimate of h. In this way, each current h estimate is matched or 

replaced by a better one. This process is repeated in a Newton-Raphson-like iteration approach. If 

and when the process converges, it will usually do so in 𝑂(𝑀2𝑙𝑜𝑔 𝑁) steps. The generalized 

registration algorithm can be used to determine depth information from stereo images.  

Depth information can be found from a stereo pair can be classified into four main areas: 

finding objects in the pictures, matching the objects in the two views, finding camera parameters, 

and calculating the distance between the camera and the objects [36]. In order to use the 

registration algorithm described above, the stereo vision systems must work at the pixel level since 

the technique uses pixel-level matching. Also, another important consideration is that several 

stereo vision systems are not concerned with the relative positions of the cameras which are never 

known to a high degree of accuracy. This means that the camera parameters in addition to the 

distances of the objects to the camera should be considered for any real applications. 
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2.9. Dummy Head for Room Acoustic Measurements  
 

The concept of using dummy or mannequin heads for room measurements of sound fields has 

been developed extensively over the years. The research conducted by Norcross et al. [48] looks 

at the errors produced using a dummy head for room acoustics measurements in auditoriums. The 

halls used in the study include Mechanics Hall in Worcester, Massachusetts, Massey Hall in 

Toronto, and John Aird Centre Recital Hall in Waterloo, Ontario. It was discussed that omni-

directional microphone impulses and binaural impulses are computer based measurement systems 

developed at the National Research Council of Canada (NRCC). Both these types of impulses 

create responses for a maximum length signal via a Fast Hadamard transform process. When the 

receiver of a sound source (for example, a dummy) is moved by only 30 cm, this can create a 

variation in early decay time (EDT) of 0.1 s at low frequencies and 0.05 s as high frequencies. At 

the higher frequencies, the head width adversely affects the wavelength, and so in this case, the 

directionality of the head becomes a factor of the aforementioned differences in EDT.  

In addition to this, the measurements made using the dummy head are the average of two 

positions that are 15 cm apart (spacing between left and right ear). The energies of the two ears 

were superimposed and it was found that the head is less directional at lower frequencies. This is 

an indication that the energy for the binaural case at lower frequencies should be twice of the omni-

directional microphone case. The dummy head was found to be more sensitive to sound originating 

from the side, which resulted in higher differences in relative level, G (level relative free field level 

at 10 m). Dummy head repositioning errors were about 1 dB for source/receiver differences of 30 

cm. These errors were halved (0.5 dB) at higher frequencies, however the directionality of the head 

remains a factor to consider. A suggestion from Norcross et al. [48] addresses the systematic 

differences arising from head directionality is to use an average correction. 
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2.10. Summary of Literature Review 
 

The various techniques, algorithms, and evidences introduced in this literature review have 

touched upon necessary aspects of noise control and reduction, head tracking and face detection, 

and dummy head applications for acoustic measurements. The most recurring themes were those 

pertaining to the combination or hybridization of active and passive means of control. Issues such 

as latency and accuracy of signals were reported. This also led to the discussion of several filters 

(mainly LMS-based) to alleviate these concerns. The cascade method for face detection was 

investigated, however its complexity requires the use of a large library of faces or images. After 

conducting this literature review, the general consensus was that active noise control systems are 

not extremely efficient due to the high level of signal processing required. A smart structure 

relating active noise control and head tracking is yet to be tested in great detail. Chapter 4 will look 

at viable head tracking methods for headrest active noise control betterment. 
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3. Zone of Quiet (ZoQ) 
 

A Zone of Quiet (ZoQ) is created when a user is isolated from the outside acoustical 

environment. One of the major goals of the ZoQ is to focus the noise control strictly within the 

local zone of quiet. From a practical standpoint, the ZoQ is limited by the spatial distribution of 

sound sources and the geometry of the desired location of cancellation. A common local ANC 

application of a ZoQ is a noise reducing headrest in a passenger seat, attenuating noise around the 

passenger’s ears. The physical microphone (located near the aircraft headrest) used to generate the 

error signal in the ANC scheme cannot be located inside a human ear. Active noise control permits 

the generation of a zone-of-quiet based on destructive interference. The size and shape of this 

zone-of-quiet depend on the type of the sound sources and the frequency components of the signal 

to be canceled [61].  

 

3.1. Concept 
 

The concept of zone-of-quiet can be used to define a design criterion, and in this case a mean 

squared error (MSE) criterion, at one particular point away from the physical microphone. Then a 

ZoQ-based approach can be used to derive a filter from the minimization of this MSE criterion to 

control the noise at the particular remote point. The research presented in this work predicts the 

spatial extent of zones-of-quiet at the error sensors when controlling pressure at a single secondary 

source in a pure tone diffused sound field. Minimization of sound pressure will produce noise 

cancellation of 10 dB from a secondary source over a spherical diameter of one-tenth of the 

acoustic wavelength, 𝜆, of a compact primary source. This is an indication that the spherical 

diameter of the predicted zone-of-quiet is never larger than one-tenth of an acoustic wavelength. 
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The virtual microphone technique, which will be discussed later, projects the zone-of-quiet away 

from the physical microphone and closer to the desired location (ear) using the assumption of equal 

primary pressure at the physical and virtual locations.  

A zone-of-quiet is defined by a sinc function, with the primary sound pressure level reduced 

by 10 dB over a sphere of diameter one tenth of the excitation wavelength, 𝜆 /10. The main benefit 

of the zone-of-quiet ANC technique versus conventional ANC methods for controlling the sound 

field in rooms is that the far field sound pressure level remains mostly unaffected, a typical increase 

of less than one dB [15]. Figure 3.1 below provides a rendered illustration of a person enclosed in 

a zone-of-quiet around his head and aircraft headrest area.   

 

 

Fig. 3.1  Illustration of Zone of Quiet concept. 
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3.2. Performance Measure 
 

Studies have shown that the 10 dB zone of quiet is extended to about one-tenth of an acoustic 

wavelength for pure tone diffuse fields [43]. However, in order to predict the performance of active 

headrests attenuating low-frequency tonal noise, the noise is broadband and not pure tone. For a 

broadband local ANC system a useful performance measure is the spatial extension of the overall 

sound attenuation which requires the analysis of broadband sound fields. Similar to zones of quiet 

for pure tone diffuse sound fields, spatial correlation of diffuse sound fields can be used to analyse 

broadband diffuse sound fields. This section and the next will introduce the diffuse sound field 

and spatial correlation for zones of quiet in broadband diffuse sound fields. It will be demonstrated 

that an initial approximation of a broadband zone of quiet is a ZoQ of tones at the mid-frequency 

of the broadband noise bandwidth. 

 

3.2.1. Diffuse Sound Field 

 

A diffuse sound field is one where sound pressure is the same throughout. A perfect diffuse 

field is almost unachievable, however, it is the model commonly used for reverberant sound field 

analysis. In these cases, the sound field is assumed to be sufficiently diffuse. This means that the 

field is diffuse above the Schroeder frequency. This is the frequency above which there exists at 

least three room acoustic modes within the 3 dB bandwidth of any one mode. For most enclosures, 

the Schroeder frequency is between 100 and 200 Hz. The equations presented in this section and 

in section 3.2.2 have been modified from Rafaely [55]. The pressure in a perfect diffuse field can 

be expressed as a function of space and time in spherical coordinates 𝐱 = (𝑥, 𝜃, 𝜙) as 
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                     𝑒(𝐱, 𝑡) = lim
𝑁→∞

1

𝑁
∑ 𝑒𝑛(𝐱, 𝑡)𝑁

𝑛=1                                          (3.1) 

where 𝑒(𝐱, 𝑡) is the total pressure at position 𝐱 and time 𝑡, 𝑁 is the number of plane waves which 

approaches infinity, and 𝑒𝑛 is the nth plane wave. The autocorrelation (where observations are not 

independent) in the pure tone diffuse field can be expressed using a sinc function as 

                 𝜌(∆𝐱, 𝑡) =
sinc (𝑘 ∆𝐱)

𝑘 ∆𝐱
                                           (3.2)     

 where 𝑘 is the wave number and 𝜌 is the correlation coefficient. The acoustic wave number, 𝑘, 

can be determined by dividing 2𝜋 times the natural frequency, 𝑓 (in Hz), by 𝑐, the speed of sound 

(in m/s). The correlation coefficient, 𝜌, can be defined in space and time (cross-correlation) 

assuming the sound field is stationary over both as 

           𝜌(∆𝐱, ∆𝑡) =
𝐸[𝑒(𝐱1 ,𝑡1)𝑒(𝐱0,𝑡0)]

𝐸[𝑒2]
                                           (3.3)     

where ∆𝐱 represents the distance between the two points, ∆𝑡 represents the time delay, 𝐸[ ∙ ] is the 

expectation operation which is determine by averaging several samples of diffuse sound fields, 

and 𝐸[𝑒2] is the variance of the pressure which is independent of 𝐱 and 𝑡 because of the assumption 

that the sound field is stationary over space and time. The introduction of a time delay makes 

Equation 3.3 applicable to broadband diffuse sound fields. Now that the diffuse sound field has 

been explained, the following section will show how to determine the autocorrelation for zones of 

quiet in broadband diffuse sound fields. 
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3.2.2. Near-field Broadband Active Sound Control 

 

Local active noise control in a diffuse sound field can be achieved by using a secondary source 

(often times a speaker) and canceling the total pressure in the near field of the source of noise. A 

theoretical model which addresses this approach models a monopole secondary source in a primary 

diffuse sound field. A derivation of the spatial extension of the zone of quiet in a broadband diffuse 

sound field for local active noise control will be presented. 

 The primary diffuse sound field is denoted by 𝑑(𝐱, 𝑡). When a secondary monopole source is 

placed at the origin of a spherical coordinate system 𝐱 = (𝑥, 𝜃, 𝜙), the resulting pressure is 

expressed as 𝑦(𝐱, 𝑡). The total pressure is found by superimposing the primary and secondary 

pressures as follows 

                     𝑒(𝐱, 𝑡) = 𝑑(𝐱, 𝑡) + 𝑦(𝐱, 𝑡)                                         (3.4) 

The pressure cancellation is assumed to be at a point 𝐱𝟎 = (𝑥0, 𝜃0, 𝜙0) such that  

                       𝑑(𝐱𝟎, 𝑡) + 𝑦(𝐱𝟎, 𝑡) = 0                                         (3.5) 

This shows that the primary and secondary fields are equal with opposite phase at the cancellation 

point 𝐱𝟎, Figure 3.2 below is a visual representation of this concept. 

 

Fig. 3.2  Visual representation of primary and secondary fields at the cancellation point 𝒙𝟎. 
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The position 𝐱𝟎 can now be assumed to be in the near field of the secondary source, such that 

the indirect secondary sound field caused by reflections is negligible. The reverberation distance 

is defined as the distance from the source at which the direct field dominates. The reverberation 

distance depends on the room volume and reverberation time (length of time required for sound to 

decay 60 dB from its original level). The size of the zone of quiet is directly related to the 

effectiveness of the primary pressure attenuation around the cancellation point. The averaged 

squared total pressure at position 𝐱𝟏 = (𝑥1, 𝜃1, 𝜙1) near the cancellation point using the 

expectation operation 𝐸[ ∙ ] over several samples of diffuse sound fields. The variance of the total 

pressure at point 𝐱𝟏 can now be determined using  

                          𝐸[𝑒2(𝐱𝟏, 𝑡)] = 𝐸[𝑑2(𝐱𝟏, 𝑡)2] + 𝐸[𝑦2(𝐱𝟏, 𝑡)] + 2𝐸[𝑑(𝐱𝟏, 𝑡 )𝑦(𝐱𝟏, 𝑡)]          (3.6) 

The variance of the total pressure at 𝐱𝟏 depends on the variance of the primary and secondary 

fields at the same point as well as on the correlation between the primary and secondary fields 

at 𝐱𝟏. If the diffuse primary field is assumed to be stationary such that the variance of the pressure 

the same for all 𝐱 and t, the following equality holds  

              𝐸[𝑑2(𝐱𝟏, 𝑡)] = 𝐸[𝑑2(𝐱, 𝑡)] = 𝐸[𝑑2]                (3.7) 

 The secondary source has been modelled as a monopole point source. Under some 

assumptions, the pressure produced by a monopole is similar to that produced by a piston in a 

baffle. Under one assumption, the source radius is significantly smaller than a wavelength 𝜆 and 

the source can be considered omni-directional. Under another assumption, only pressure further 

away than one source radius is considered for cancellation.  These assumptions are sufficient for 

practical local active noise control systems such as active headrests, so the monopole model can 

be used successfully to obtain the behaviour of such systems. The secondary sound field produced 
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by a monopole point source in the near field is assumed to generate spherical waves which 

propagate away from the source. The spherical waves also decay in amplitude. The secondary 

sound field can be expressed as 

                          𝑦(𝐱, 𝑡) =
𝜌0

4𝜋𝑟
𝑞̇ (𝑡 −

𝑥

𝑐
)                                         (3.8) 

which is now dependent only on the distance from the source 𝐱, with  𝑞 representing the source 

strength (volume velocity per unit volume) and 𝑞̇ its derivative with respect to time. The source 

strength 𝑞 can be determined from the surface area and the amplitude of vibration of the spherical 

monopole point source. The secondary pressure at 𝐱𝟏 can now be expressed in terms of the 

secondary pressure at  𝐱𝟎 using Equation 3.8 as 

                     𝑦(𝐱𝟏, 𝑡) =
𝑥0

𝑥1
𝑦 (𝐱𝟎, 𝑡 −

∆𝑥

𝑐
)                                         (3.9) 

where ∆𝑥 is the difference in the distances of the two points 𝑥1 and 𝑥0 to the source. The averaged 

squared secondary pressure at 𝑥1 can now be written using Equations 3.9, 3.7 and 3.5  as 

                                 𝐸[𝑒2(𝐱𝟏, 𝑡)] = (
𝑥0

𝑥1
)

2

𝐸[𝑑2]                 (3.10) 

The last term in Equation 3.6 can be expressed using Equations 3.9, 3.5, and 3.3 as 

             𝐸[𝑑(𝒙, 𝑡)𝑦(𝐱𝟏, 𝑡)] = −
𝑥0

𝑥1
𝜌 (∆x,

∆𝑥

𝑐
) 𝐸[𝑑2]       (3.11) 

 The variance of the total pressure at position 𝐱𝟏in Equation 3.6 can now be expressed in terms 

of the variance of the primary pressure by substituting Equations 3.11, 3.10 and 3.7 into Equation 

3.6 yielding 

               𝐸[𝑒2(𝐱𝟏, 𝑡)] = 𝐸[𝑑2] + (
𝑥0

𝑥1
)

2

𝐸[𝑑2] − 2
𝑥

𝑥1
𝜌 (∆𝐱,

∆𝑥

𝑐
) 𝐸[𝑑2]                (3.12) 
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The final expression for the sound attenuation  𝝐 at 𝐱𝟏 (measurement point) can now be obtained 

by dividing Equation 3.12 by the variance of the primary pressure. Assuming cancellation at 𝐱𝟎, 

this will yield  

       𝝐(𝐱𝟏, 𝐱𝟎) =
𝐸[𝑝2(𝐱𝟏,𝑡)]

𝐸[𝑑2]
= 1 + (

𝑥0

𝑥1
)

2

− 2
𝑥0

𝑥1
𝜌 (∆𝐱,

∆𝑥

𝑐
)  (3.13) 

where the sound attenuation in dB can be found by 10 log10𝝐. It should be noted that in Equation 

3.13, ∆𝐱 is the distance from 𝐱𝟏 to the cancellation point 𝐱𝟎, whereas ∆𝑥 is the difference between 

the distances of the two points  𝐱𝟏 and 𝐱𝟎 to the secondary source (refer to Figure 3.3). The cross-

correlation function in a diffuse field derived in the previous section, along with Equation 3.13 can 

be used to determine the zone of quiet with respect to the speaker or secondary source location. 

Generally, the size of the zone of quiet decreases at higher frequencies and at closer cancellation 

points, as can be seen in Figure 3.4. Figure 3.4 demonstrates the 10dB quiet zone size in mm with 

respect to frequencies between 0 and 100 Hz at different  𝐫𝟎 values (10, 100 and 200 mm). In this 

case,  𝐱𝟎 is equivalent to 𝐫𝟎, which was the variable Elliott [15] used to represent the cancellation 

point. As the distance from the speaker to the cancellation point,  𝑥0 is increased, the distance 

from 𝐱𝟏 to the cancellation point 𝐱𝟎 is also increased. This is a performance metric that can be 

used to determine the optimal zone of quiet. 



   
 

47 
 

 

Fig. 3.3  Diagram of cancellation point 𝒙𝟎 and a position  𝒙𝟏 near it, relative to the secondary source.  

 

 

Fig. 3.4  10dB ZoQ reduction for 100mm dia. speaker adjustment w.r.t. distance 𝑟0 on-axis [15]. 
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3.3. Feedforward Filtered-x LMS Control 
 

The general purpose of a feedforward control system is to reduce the levels of a disturbance 

through the addition of a secondary control signal that is determined by a computational algorithm. 

This algorithm is often tasked with minimizing sound radiation from structures when used in active 

noise control applications. One such feedforward control algorithm is the Filtered-x LMS 

algorithm, a modified version of the least-mean-square (LMS) algorithm commonly used for signal 

cancellation.  

 

3.3.1. Single Channel Control (SISO) 

 

The simplest form of active noise control is Single Input Single Output (SISO). Figure 3.5 is 

a block diagram of a single input single output (SISO) filtered-x LMS control system. The plant 

output e(n), or error signal, can be defined as  

  𝑒(𝑛) = 𝑑(𝑛) + 𝑦(𝑛)                                                 (3.14) 

where y(n) is the plant response to the control input (which is a speaker), d(n) is the plant response 

to the disturbance input, and n is the time step, in relation to Equation 3.5. However, here the error 

signal is not assumed to be equal to zero because it is a direct measurement. The plant response to 

the control input y(n), in Equation 3.14 can be rewritten as  

                                                         𝑒(𝑛) = 𝑑(𝑛) + 𝑇𝑐𝑒(𝑧)𝑢(𝑛)                                      (3.15) 

where 𝑇𝑐𝑒(𝑧) is the z-transform of the transfer function between the system response y(n) and the 

controller output u(n).  
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Fig. 3.5  Block diagram of single channel Filtered-x LMS feedforward control system. 

 

The output signal from the controller, u(n), is obtained from the adaptive Finite Impulse 

Response (FIR) filter represented as W(z). The adaptive FIR filter is widely used in control 

algorithms and is fundamental component used in the implementation of many control algorithms 

and is unaffected by signal impulse (zero impulse response) after convergence of its coefficients. 

A FIR filter’s output is the weighted sum of previous inputs, such that 

                                      𝑦(𝑛) = ∑ 𝑊𝑖(𝑛)𝑥(𝑛 − 𝑖)𝐼−1
𝑖=0                                               (3.16) 

where 𝑊𝑖(𝑛) is the ith filter coefficient and I is the filter order. The output signal from the 

controller, 𝑢(𝑛), can be expressed as 

  𝑢(𝑛) = 𝑊(𝑧)𝑥(𝑛)                                                  (3.17) 

In order for the adjusted plant input signal u(n) to minimize the plant response e(n), a cost function 

has to be determined.  
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It is characterized by a quadratic function of the filter coefficients. The LMS algorithm uses the 

gradient descent method as an adaptation criterion for adjusting the filter coefficients 𝑊𝑖 (𝑖 =

0, … , 𝐼 − 1) so that the minimum mean-square error is found. The adaptation equation for the 

weights is 

                                             𝑊𝑖(𝑛 + 1) = 𝑊𝑖(𝑛) − 𝜇
𝜕𝐶

𝜕𝑊𝑖
                   (3.18) 

where 𝜇 is the convergence coefficient and controls the step size or rate of convergence in the 

minimization process. The update process is known as system identification. The update equation 

or control law for the filter coefficients can now be determined, 

                                 𝑊𝑖(𝑛 + 1) = 𝑊𝑖(𝑛) − 2𝜇𝑥̂(𝑛 − 𝑖)𝑒(𝑛)                         (3.19) 

 The convergence coefficient 𝜇 controls the step size of the LMS algorithm during iteration 

towards the global minimum of the quadratic cost function. As the convergence coefficient 𝜇 

increases, the time for convergence decreases. Large 𝜇 values can, however, cause the algorithm 

to become unstable where the control inputs increase without bounds. The stability of the LMS 

algorithm can be monitored using the following expression which contains the input 

autocorrelation matrix R (signal correlation over time): 

                                                    0 < 𝜇 <
1

𝑇𝑟𝑎𝑐𝑒[𝑅]
                                            (3.20) 

The autocorrelation matrix R can be determined in Matlab using the convolution between the 

reference signal and the reversed version of the conjugate of the signal. A general rule of thumb, 

is that the convergence coefficient, 𝜇, be set to a large value initially and then later decreased. This 

is done so that convergence is reached, but also so that the cost function is able to find the minimum 

value. 
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3.3.2. Multiple Channel Control (MIMO) 

 

It may not always be possible to obtain global noise control with the introduction of a single 

error sensor and secondary source. Often the primary disturbance or the radiated sound field is 

such that it requires the introduction of multiple sources and error sensors to achieve global control 

or control over a large volume. The filtered-x LMS algorithm has been developed for use with 

multiple secondary control sources and error sensors. This type of control system is known as a 

multiple-input-multiple-output or MIMO system. The modified update equation for each control 

filter coefficient with L actuators and M sensors is 

                           𝑊𝑙𝑖(𝑛 + 1) = 𝑊𝑙𝑖(𝑛) − 2𝜇 ∑ 𝑥̂𝑚𝑙(𝑛 − 𝑖)𝑒𝑚(𝑛)𝑀
𝑚=1                         (3.21) 

where 𝑥̂𝑚𝑙(𝑛) is the reference signal filtered with a model of the system path from the lth actuator 

and the mth  error sensor at sample n. It should be noted that Equation 3.21 is equivalent to the 

SISO system of Equation 3.19 when 𝐿 = 𝑀 = 1. Moreover, the level of control that can be 

obtained by a control system also depends on the quality of the reference signal used to capture 

the dynamics of the disturbance. For a spatially incoherent disturbance, as provided by a turbulent 

boundary layer, multiple references (K) may be required to achieve adequate control levels. The 

multiple-channel controller now contains MK finite impulse response filters each updated by the 

control algorithm. The zone of quiet is also affected by a MIMO system, such that two individual 

zones of quiet (one on either side of the head) can be coupled to yield a larger and more localised 

zone of quiet around the passenger’s head. Figure 3.6 demonstrates a MIMO zone-based active 

noise control system around a head. A similar graphical setup to Figure 3.3 is used to illustrate that 

the combined zone of quiet would change with respect to the changing and coupled distances from 

the speakers to the cancellation points on either side of the head. A more detailed representation 
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using the adaptive LMS moving virtual microphone method and head tracking is presented in 

Figure 3.10. 

 

Fig. 3.6  MIMO graphical representation of zone-based active noise control. 

 

3.3.3. Virtual Microphones near Passenger’s Ears 

 

One of the challenges for active noise cancelling applications is to create quiet zones at the 

locations of virtual sensors (such as the passenger’s ears). When only the pressure is estimated at 

a remote location the transducer is referred to as a “virtual microphone” [12]. A common issue 

with virtual sensors is that the desired location of attenuation is not spatially fixed in some cases. 

For example, if the virtual sensor is situated near the passenger’s ears it will have to be relocated 

when the passenger moves his head. A comparison of active noise control at a physical sensor and 
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at a virtual sensor is demonstrated in Figure 3.7 below. The performance of a local active headrest 

system using the virtual microphone arrangement has been experimentally analyzed by several 

authors [18, 19, 26, 50, 51, 54, and 56]. According to Garcia-Bonito et al. [18, 19], below 500 Hz, 

the 10 dB zone of quiet generated at the virtual microphone extends approximately 8 cm forward 

and 10 cm side to side. During their experiments, the virtual microphones were located 2 cm from 

the ears of a mannequin and 10 cm from the physical microphones. Minimizing both pressure and 

pressure gradient along a single axis can also significantly increase the noise reduction and ZoQ 

along the axis of pressure gradient measurement [43].  

 

Fig. 3.7  ANC Comparison. (a): at a physical sensor; (b): at a virtual sensor [43]. 

 

3.4. Virtual Sensing Problem 
 

The virtual sensing problem and notation presented here will be used for the virtual 

microphone technique which was developed by Daniel Moreau et al. [43]. The physical 

microphones will be denoted as 𝑀, the spatially fixed virtual microphones as 𝑀𝑣, and the 

secondary sources (speakers) as 𝐿. The vector of total pressures at the 𝑀 physical 

microphones, 𝐞(𝑛), is defined as 

                                              𝒆(𝑛) = [ 𝑒𝑝1(𝑛)  𝑒𝑝2(𝑛)  …   𝑒𝑀(𝑛) ]
𝑇
                           (3.22) 
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The total pressures at the 𝑀 physical microphones, 𝐞(𝑛), is the sum of the sound fields produced 

by the primary and secondary sound sources at the physical microphone locations and can be 

expressed as  

                                           𝒆(𝑛) = 𝒅(𝑛) + 𝒚(𝑛) = 𝒅(𝑛) + 𝑻𝑐𝑒𝒖(𝑛)                           (3.23) 

 

where 𝐝(n) is the vector of primary pressures at the 𝑀 physical microphones, 𝐲(n) is the vector 

of the secondary pressures at the 𝑀 physical microphones, 𝐓𝑐𝑒 is the matrix of size 𝑀 × 𝐿 whose 

elements are the transfer functions between the secondary sources and the physical microphones, 

𝐮(𝑛) is the vector of the control sequence (output signal from controller) and n is the time step. 

Similarly, the vector of total pressures at the 𝑀𝑣 spatially fixed virtual locations, 𝐞𝑣(𝑛), is 

defined as 

                                              𝒆𝑣(𝑛) = [ 𝑒𝑣1(𝑛)  𝑒𝑣2(𝑛)  …   𝑒𝑣𝑀𝑣
(𝑛) ]

𝑇
                           (3.24) 

 

The total pressures at the 𝑀𝑣 virtual microphones, 𝐞𝑣(𝑛), is the sum of the sound fields produced 

by the primary and secondary sound sources at the virtual locations and can be expressed as  

                                          𝒆𝑣(𝑛) = 𝒅𝑣(𝑛) + 𝒚𝑣(𝑛) = 𝒅𝑣(𝑛) + 𝑻𝑣𝑒𝒖(𝑛)                           (3.25) 

 

where 𝐝𝑣(𝑛) is the vector of the primary pressures at the 𝑀𝑣 virtual microphones, 𝐲𝑣(n) is the 

vector of the secondary pressures at the 𝑀𝑣 virtual locations and 𝐓𝑣𝑒 is the matrix of size 𝑀𝑣 × 𝐿 

whose elements are the transfer functions between the secondary sources and the virtual 

microphones. A virtual sensing technique aims at estimating the pressures, 𝐞𝑣(𝑛), at the spatially 

fixed virtual locations using the physical error signals, 𝐞(𝑛). The estimated pressures are 



   
 

55 
 

minimised (instead of the physical error pressures) with the ANC system to create zone of quiet at 

the virtual locations. 

 

3.5. Virtual Microphone Technique 
 

The virtual microphone technique was the first ANC virtual sensing method. This technique 

used the assumption of equal primary sound pressure at the physical and virtual microphone 

locations. Figure 3.8  below is a block diagram of the virtual microphone technique. This method 

can be carried out using equal numbers of physical and virtual microphones (𝑀𝑣 = 𝑀). The 

microphones are located in 𝑀𝑣 pairs, with one physical microphone and one virtual microphone 

in each pair. The primary sound pressure is assumed to be equal at the physical and virtual 

microphones in each pair such that  𝐝𝑣(𝑛) = 𝐝(𝑛). This assumption is valid only if the primary 

sound field does not change drastically between the physical and virtual microphones in each pair. 

 

Fig. 3.8  Block diagram of the virtual microphone technique. 
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An initial identification process is required for the virtual microphone technique, where the 

matrices of the transfer functions 𝐓̂𝑐𝑒 and 𝐓̂𝑣𝑒, are modelled as matrices of FIR filters. Once this 

preliminary stage is accomplished, the microphones at the virtual locations are removed. 

Estimates, 𝐞̂v(n), of the total error signals at the virtual locations can be expressed as 

                                                  𝒆̂𝑣(𝑛) = 𝒆(𝑛) − (𝑻̂𝑐𝑒 − 𝑻̂𝑣𝑒)𝒖(𝑛)                                       (3.26) 

 

In a pure tone diffuse sound field and at low frequencies, the zone of quiet created at a virtual 

microphone using the virtual microphone technique is similar to that achieved by directly 

minimising the measured pressure of a physical microphone at the virtual location. However, at 

frequencies above 500 Hz, the 10 dB zone of quiet is significantly smaller when using virtual 

microphones compared to physical microphones at the same locations. This is because the equal 

primary pressure (at the physical and virtual microphone locations) assumption holds less as the 

wavelength decreases. A reason for the differences in the zone of quiet generated by minimising 

the physical and virtual microphone signals is that the physical microphone is drastically closer to 

the secondary source (speaker) than the virtual microphone. Consequently, the virtual plant 

inherits a longer delay, which decreases the level of attenuation. 

 

3.6. Adaptive LMS moving virtual microphone technique 
 

 The adaptive LMS moving virtual microphone technique developed by Daniel Moreau et al. 

[43] employs the adaptive LMS virtual microphone technique to estimate the virtual error signals 

at the moving virtual locations. The adaptive LMS moving virtual microphone technique 
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determines estimates of the virtual error signals, 𝐞̂𝑣(n), at the moving virtual locations, xv (n). A 

block diagram of the adaptive LMS moving virtual microphone technique is shown in Figure 3.9. 

 In this moving virtual sensing algorithm, the adaptive LMS virtual microphone technique is 

first used to obtain estimates of the virtual error signals,  𝐞̂̅𝑣(n) at the spatially fixed virtual 

locations 𝐱̅𝑣. The primary component of the physical error signals is first calculated using the 

matrix of physical secondary transfer functions 𝐓̂𝑐𝑒 and is given as 

                                 𝐝̂(𝑛) =  𝐞(𝑛) − 𝐲̂(𝑛) = 𝐞(𝑛) − 𝐓̂𝑐𝑒𝒖(𝑛)                           (3.27) 

Matrices of the primary and secondary weights, 𝐰̅ and 𝐰̅𝑒, of size 𝑀 × 𝑀̅𝑣, at the 𝑀̅𝑣 spatially 

fixed virtual locations, 𝐱̅𝑣, are then estimated separately. Estimates,  𝐞̂̅𝑣(n), of the total virtual error 

signals at the spatially fixed virtual locations, 𝐱̅𝑣, can then be calculated as  

                                        𝐞̂̅𝑣(𝑛) =  𝐝̅̂
𝑣(𝑛) +   𝐲̂̅𝑣(𝑛) =  𝐰̅𝑇𝐝̂(𝑛) + 𝐰̅𝑒

𝑇𝐲̂(𝑛)                             (3.28) 

Figure 3.9 estimates, 𝐞̂𝑣(n), of the virtual error signals at the moving virtual locations, 𝐱𝑣(𝑛), are 

now obtained by spatially interpolating the virtual error signals,  𝐞̂̅𝑣(n), at the spatially fixed virtual 

locations, 𝐱̅𝑣. 

 

Fig. 3.9  Block diagram of the adaptive LMS moving virtual microphone technique. 
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 The performance of the adaptive LMS moving virtual microphone technique has been 

investigated extensively by Moreau et al. [43]. In one of their studies, the virtual microphone was 

moved sinusoidally between a virtual distance of 𝑣 = 2 cm and 12 cm in a time frame of 10 

seconds. Experimental results have shown that further applying the feedforward control approach 

to this technique yields up to an additional 18 dB of attenuation at the moving virtual location 

compared to minimising the error signal at a fixed physical microphone at virtual distance 𝑣 = 0 

m or a fixed virtual microphone at virtual distance of 2 cm. In lieu with head tracking, the adaptive 

LMS moving virtual microphone technique can be used to create the optimal zone of quiet around 

an aircraft passenger’s head. Referring to Figure 3.3, the zone of quiet representation can be 

modified to include the adaptive LMS moving virtual microphone elements. This can be done to 

create a local coordinate system for each ear of the passenger as its tracked using the head-tracking 

tool developed in this work. This modified representation of the zone of quiet can be seen in Figure 

3.10 below. The cancellation point 𝐱𝟎 now becomes 𝐱̅𝑣𝑟 and 𝐱̅𝑣𝑙, the spatially fixed virtual 

microphone locations for the right and left ear, respectively. These fixed microphone locations are 

interpolated to yield the moving virtual microphone locations for the right and left ear, 𝐱𝑣𝑟and  𝐱𝑣𝑙, 

respectively. No matter if the head is rotated or translated about any axis, this coordinate system 

can be used to relate the moving virtual locations to the physical microphone locations near the 

right and left ears,  𝐱1 and  𝐱2, respectively which will be needed to determine the error, 𝐞̂𝑣. 
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Fig. 3.10  Coordinate system for LMS moving virtual microphone technique with head tracking. 

 

3.7. Forward Difference Prediction Technique 
 

For the purpose of this analysis, only first order and second-order virtual microphone methods 

will be explored. A first-order and a second order forward difference extrapolation virtual 

microphone are known to have 2 and 3 physical microphones, respectively, associated with their 

design. This will be explained after their corresponding derivations. The reasoning behind fitting 

a straight line or a curve between pressures measured at fixed locations is that the spatial rate of 

change of the sound pressure between the locations is small at low frequencies. This makes it 

highly predictable. The locations should be relatively closely spaced (with respect to the 

wavelength of the sound) regardless of the surrounding environment. The fitted straight line or 

curve can then be used to estimate the pressures at other locations via interpolation or extrapolation 

depending on the location of the observer. The equations that will be used in the following 

derivations use extrapolation since it is desired that the observer be remote from the physical 

sensors. It should be noted that the symbols which will be used to denote pressure can be related 
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to the previous symbols used for the virtual microphone methods. For example, the pressure at the 

virtual location for the forward difference prediction method is 𝑝𝑥, which is equivalent to ev and 

similarly 𝑝1 is equivalent to 𝑒1. 

 

Fig. 3.11  First-order forward prediction. 

 

 

Fig. 3.12  Second-order forward prediction. 
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3.7.1. Two-microphone first-order pressure prediction 

 

The pressure at location 𝑥 (see Figure 3.11) can be determined by the first-order finite 

difference estimate from two remote microphones. The remote microphones are separated by a 

distance of 2ℎ. The pressure at location 𝑥 can be found by measuring pressures 𝑝1 and 𝑝2 at two 

microphone locations by applying: 

          𝑝 = (
𝑑𝑝

𝑑𝑥
) 𝑥 + 𝑐,   where  

𝑑𝑝

𝑑𝑥
 is constant                            (3.29) 

 

   𝑝𝑥 =
(𝑝2−𝑝1)

2ℎ
𝑥 + 𝑝2                   (3.30)  

 

So now, if the separation distance 𝑥 between the observer and the nearest sensor is equal to ℎ then 

Equation 3.30 becomes: 

               𝑝𝑥 =
1

2
(3𝑝2 − 𝑝1)                   (3.31) 

Similarly, if the separate distance is increased to 2ℎ then: 

                  𝑝𝑥 = 2𝑝2 − 𝑝1                                   (3.32) 

It is worth noting that when the separation distance 𝑥 = 0, or if 𝑥 = −2ℎ that Equation 3.30 

reduces to 𝑝𝑥 = 𝑝2 or 𝑝1 respectively. 
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3.7.2. Three-microphone second-order pressure prediction 

 

The rate of change of the pressure gradient can be estimated by placing a third microphone 

between the other two physical microphones and the virtual locations. This three-microphone 

second-order method allows a more accurate prediction of the pressure at the virtual locations (see 

Figure 3.12). In this case, the second derivative of the pressure gradient change,
𝑑2𝑝

𝑑𝑥2 , is constant. 

This constant can be integrated to obtain the relationship between the pressure at the virtual 

location and the measured pressures at the three physical microphone locations as follows: 

𝑝𝑥 = ∬
𝑑2𝑝

𝑑𝑥2
. (𝑑𝑥)(𝑑𝑥) 

          𝑝𝑥 = ∬ 𝑘1. (𝑑𝑥)(𝑑𝑥)                                 

          𝑝𝑥 = ∫(𝑘1𝑥 + 𝑘2) . (𝑑𝑥)                                 

                      𝑝𝑥 =
𝑘1𝑥2

2
+ 𝑘2𝑥 + 𝑘3                                      (3.33) 

Now using the location of each of the three microphones at 𝑥3 = 0, 𝑥2 = −ℎ and 𝑥1 = −2ℎ, the 

constants of integration 𝑘1, 𝑘2 and 𝑘3 can be found by applying above Equation 3.33. This yields: 

                                        [

𝑝3

𝑝2

 𝑝1 
] = [

1
  1  
 1 

0
−ℎ
 −ℎ 

0
  ℎ2/2 

 2ℎ2 

] [

𝑘3

𝑘2

 𝑘1 
]                                    (3.34) 

Solving the above system provides the integration constants, which can now be substituted into 

Equation 3.33 to obtain the pressure at a separation distance 𝑥 as follows: 

   𝑝𝑥 = (
𝑝1−2𝑝2+𝑝3 

ℎ2 )
𝑥2

2
+ (

𝑝1−4𝑝2+3𝑝3 

2ℎ
) 𝑥 +  𝑝3                          (3.35) 
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However, a more useful equation for the pressure at the location 𝑥 can be determined by grouping 

together like terms to yield the weighting factors for each physical microphone as follows: 

     𝑝𝑥 =
𝑥(𝑥+ℎ)

2ℎ2
𝑝1 +

𝑥(𝑥+2ℎ)

−ℎ2
𝑝2 +  

(𝑥+2ℎ)(𝑥+ℎ)

2ℎ2
𝑝3                          (3.36) 

So now, if the separation distance 𝑥 between the observer and the nearest sensor is equal to ℎ then 

Equation 3.36 becomes: 

              𝑝𝑥 = 𝑝1 + 3(𝑝3 − 𝑝2)                  (3.37) 

Similarly, if the separate distance is increased to 2ℎ then: 

                         𝑝𝑥 = 𝑝1 − 2(𝑝2 − 𝑝1) + 6(𝑝3 − 𝑝2)                            (3.38) 

Again, it is worth noting that when the separation distance 𝑥 = 0, or 𝑥 = −ℎ, or 𝑥 = −2ℎ that 

Equation 3.36 reduces to 𝑝𝑥 = 𝑝3, 𝑝2 or 𝑝1 respectively. Now with adequate head tracking 

methods which will be discussed in Chapter 4, the adaptive LMS moving virtual microphone 

technique can be implemented for the active headrest system.  
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3.8. Integrated ANC System Building Blocks 
 

Zone-based ANC technologies are currently being used by several world-wide markets 

including but not limited to home armchairs, train seats, vehicle interiors and aircraft interiors. The 

purpose of such technologies is to obtain environmental noise and in turn to create a zone of quiet. 

This can be achieved by capturing the physical characteristics of the unwanted noise field using a 

multichannel algorithm. This technique allows for sound field control via a loudspeakers array. A 

widely-used ZoQ ANC technology provides up to 14 dB of active noise reduction from a range of 

100-1500 Hz. The benefit of the technology is that it delivers active noise cancellation without the 

need to wear a headset.  

Before any zone-based ANC technology is implemented in an aircraft passenger seat, a 

theoretical approach must be taken in order to find the optimal locations for sensors and secondary 

sources. The ZoQ technology uses four main transfer functions for local control: 

 MTF – Transfer function between the reference sensors and the errors sensors   

 STF – Transfer function between the speaker input and the error sensors    

 EC – Transfer function between the speaker input and the reference sensors 

 PF – Prediction Filter that is used to predict future sampling data from the reference 

microphone 

This technology measures the transfer functions between the desired locations of maximum 

reduction and the error sensor locations in order to create the appropriate control algorithms. The 

method that will be presented in this work uses up to five microphones to estimate the sound 

pressure level at a remote location using a forward-difference prediction method. Similar to the 
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ZoQ technology, the simulation uses a prediction filter to predict the sound pressure levels using 

the physical reference microphones. 

 

Fig. 3.13  Integrated ANC Building Block diagram. 
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3.8.1. MTF Transfer Function  

 

The MTF is the transfer function between the reference sensors and error sensors. It is used to 

perform the Virtual Microphone Method. The system is capable of using 8 reference sensors, four 

of which can be microphones, and the other four are accelerometers. In some cases, it may be 

beneficial to use only 8 accelerometers. The system typically consists of 4 physical error sensors, 

which are microphones. In the case that an active/passive approach is used, the reference signals 

pass through a passive element before determining the plant response to the disturbance input, 

d(n). Once a perfect electrical model (filter) of the acoustic medium between the reference sensors 

and the error sensors exists, the reference sensors signal can be fed to the model. This will result 

in an estimation of the undesired noise at the error sensors location. The MTF is estimated by 

applying the adaptive filter technique to the reference sensors and the error sensors. The input x(n) 

is connected to the reference sensors, and the input d(n) is connected to the error sensors. 

Generally-speaking, the reference sensors are accelerometers and the error sensors are 

microphones. 

 

Fig. 3.14  ANC MTF Block diagram. 
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3.8.2. STF Transfer Function 

 

The STF is the transfer function between the speaker input and the error sensors. It is mostly 

used to perform the Virtual Microphone Method. The system requires 4 outputs for the speakers. 

There are usually 8 reference sensors, 4 of which are microphones and 4 are accelerometers. It is 

also common to use 8 reference accelerometers to accurately capture the primary sound field. STF 

training uses the ZoQ relationship depicted in Figure 3.4 between the speaker and cancellation 

point, 𝐱𝟎 (virtual microphone location) is used. For a desired bandwidth (frequency range of 

cancellation) and the distance between the speaker and cancellation point, an optimal zone of quiet 

and electrical filter are determined. Once a perfect electrical model (filter) of the acoustic medium 

between the speaker and the error sensors exists, the speaker input signal can be fed to the model. 

This will result in an estimation of the reductive noise at the error sensors location. The STF is 

estimated by applying the adaptive filter technique to the speaker input and the error sensors, as 

the speaker is fed with white noise via a signal generator. The input x(n) is connected to the speaker 

(which connects to the signal generator), and the input d(n) is connected to the error sensors. 

 

Fig. 3.15  ANC STF Block diagram. 



   
 

68 
 

3.8.3. EC Transfer Function 

 

 The EC is the transfer function between the speaker input and the reference sensors. It is used 

to perform the Echo-Cancellation Method. Once a perfect electrical model (filter) of the acoustic 

medium between the speaker and the reference sensors exists, the speaker input signal can be fed 

to the model. This will result in an estimation of the reductive signal at the reference sensors 

location. This estimated signal is subtracted from the reference sensors signal to obtain and 

estimation of the undesired noise. Sometimes one speaker produces higher energy than the other 

speakers. The system has built-in speaker stability settings which can be used to address this 

concern. The EC is estimated by applying the adaptive filter technique to the speaker input and the 

reference sensors, while feeding the speaker with white noise through an intrinsic signal generator. 

The EC transfer function acts as a balance between the STF transfer function. This means that 

there is a compromise between the size of the 10 dB zone of quiet and the speaker sound quality 

which is reflected and recorded by the error sensors. The input x(n) is connected to the speaker 

(which connects to signal generator), and the input d(n) is connected to the reference sensors. 

 

Fig. 3.16  ANC EC Block diagram. 
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3.8.4. Prediction Filter (PF) 

 

PF represents the prediction filter that is used to predict future sampling data from the 

reference sensors, in order to shorten the delay of the system and to reduce the overall size of the 

system. PF can be calculated by using MTF, STF, and the signals of the reference sensors and the 

error sensors that were recorded during the MTF estimation. This indicates that PF is computed 

after the MTF and the STF have been determined. The PF is an important aspect in the active noise 

control performance of this system. The quality of the PF depends on the bandwitch of the noise 

to be reduced and the predictability of the signal. ANC performance is enhanced if the frequency-

band of the noise to be reduced is narrower. Signal predictability is critical because two signals 

with the same bandwidth can be different in their mathematical models, resulting in different ANC 

performance. There are 3 types of prediction filters available: (1) High, (2) Middle, and (3) Low. 

Each one is for a different situation or application. For example, the system can be designed to 

store 3 filters for 3 difference noise sources or 3 different passenger head configurations (desired 

heights, angles, etc.). The user has the ability to switch between the filter types offline.  

 

Fig. 3.17  ANC Prediction Filter Block diagram. 
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3.9. Model 
 

The simulation uses Matlab’s SIMULINK and consists of 5 equally-spaced microphones. The 

microphones are identical and precisely equally-spaced in order to create the same time delays and 

frequency responses for the noise cancellation. The source was located at the end of the duct (right-

side of cabin). The total distance covered by the microphones was 2ℎ = 0.05m with the fifth 

microphone being the furthest from the source at a distance of 1m. The cabin was modelled as a 

rectangular duct for simplicity in determining the cabin’ axial acoustic modes. In reality, the cabin 

consists of complex wall and seating geometries. The duct length of 5.6873 m, height of 1.91 m, 

and width of 2.49 m are approximately equal to that of the cabin entertainment zone length, height 

and width of the Global 7000 business jet.  

 
Fig. 3.18  Representation of experiment setup. 
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The Simulink system model was excited with broadband noise up to 300 Hz to simulate 

engine-induced and airframe-induced cabin noise. The Simulink signal generator function block 

was used to generate a sine waveform at a frequency of 300 Hz. An 8th-order Butterworth low-

pass filter was used to shape the frequency spectrum. The model also contains the disturbance or 

additional noise Simulink block to understand the effect of uncorrelated noise on the adaption 

process. The simulation is only modeling a single SISO system, primarily the one closest to the 

primary source (right side of cabin). In future work, Figure 3.20 below of the MIMO setup will be 

implemented, which uses the hardware from two SISO systems to model a localized and consistent 

zone of quiet around the passenger’s ears. Modeling two separate single unit ANC setups (one for 

each ear of the passenger) was not practical because a MIMO approach will always yield better 

results in this case. The difference between the right and left sides of the cabin is that for the first 

case, there is a greater distance between the passenger and the primary source of noise. For the 

latter case, there is a small distance between the passenger and the primary source (if it were 

relocated to the left side of the cabin). Also, the assumption here is that the passenger seat is closer 

to the left side of the cabin particularly close to the window and cabin trim. The MIMO 

implementation would factor in the various types of sound pressure reflections with respect to the 

room walls and linings as well as the windows, floor, and ceiling. This would also require an 

elaborate acoustic finite element model of the cabin interior in order to visualize the natural modes 

of vibration and points of dominant pressures. 
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Fig. 3.19  SISO ANC setup (uncoupled ANC units near headrest). 

  

 

Fig. 3.20  MIMO ANC setup (coupled ANC units near headrest). 
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3.10. Results 
 

In order to produce the results below, a logarithmically decreasing convergence coefficient, 

𝜇, was used (see Figure 3.21). Initially, the value of 𝜇 was 2.5e-08 at time zero and decreased to 

2.5e-11 at the final simulation time of 0.5 seconds. The altering of the convergence coefficient was 

to ensure that convergence was reached in a short amount of time in order to yield accurate weight 

results. The final weights along with the corresponding normalised RMS errors for the ‘2h’ and 

‘4h’ virtual locations are presented in Tables 3.1 and 3.2 below. These errors are the estimates of 

the sound pressures or desired signals of cancellation at the virtual location x. In comparing the 

errors amongst the virtual sensing methods for both virtual locations, the 5-microphone quadratic 

forward difference prediction sensor yielded the best results. As expected, all virtual sensors 

yielded significantly more accurate estimates than the closest physical microphone (microphone 

5). For the adaptive LMS method, it seems beneficial to use more than 2 microphones, however 

additional sensors for the second and third order forward difference configurations do not have an 

effect on the system performance. Future work will include the adaptive LMS moving virtual 

microphone technique.  

 

Fig. 3.21  Plot of decreasing convergence coefficient used for simulation. 
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Table 3.1  Final weights and normalised RMS errors of the adaptive virtual microphone vs. fixed weight virtual 

microphones for a virtual location of ‘2h’. 

Virtual Sensing 

Method 

 

Number of 

Mics 

Weights RMS 

Error 

1 2 3 4 5 
 

Adaptive 

 

2 -0.1215 - - - -0.1554 0.0497 

3 -0.1514 - -0.1742 - -0.1966 0.0479 

5 0.1932 0.2114 0.2273 0.2407 0.2509 0.0449 

Fixed – Closest Mic 1 - - - - 1 0.2652 

Fixed – Linear 

 

2 -2 - - - 3 0.0352 

3 -2.17 - 0.33 - 2.83 0.0395 

5 -1.8 -0.8 0.2 1.2 2.2 0.0395 

Fixed – Quadratic 

 

3 10 - -24 - 15 0.0199 

5 12.2 -7.8 -13.8 -5.8 16.2 0.0199 

 

 

Table 3.2  Final weights and normalised RMS errors of the adaptive virtual microphone vs. fixed weight virtual 

microphones for a desired virtual location of ‘4h’. 

Virtual Sensing 

Method 

 

Number of 

Mics 

Weights RMS 

Error 

1 2 3 4 5 
 

Adaptive 

 

2 -0.1039 - - - -0.1665 0.0509 

3 -0.1385 - -0.1777 - -0.2163 0.0497 

5 0.2037 0.2116 0.2173 0.2205 0.2211 0.0469 

Fixed – Closest Mic 1 - - - - 1 0.3437 

Fixed – Linear 

 

2 -2 - - - 3 0.0484 

3 -2.17 - 0.33 - 2.83 0.0424 

5 -1.8 -0.8 0.2 1.2 2.2 0.0424 

Fixed – Quadratic 

 

3 10 - -24 - 15 0.0198 

5 12.2 -7.8 -13.8 -5.8 16.2 0.0198 
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3.11. Verification 

 

3.11.1. Practical Implementation 

 

The zone-based MIMO ANC experiment will implement the filtered-x LMS algorithm. The 

Texas Instruments TMS320C6713 DSP was selected as a suitable controller to satisfy the control 

requirements. The DSP uses C code to determine the control parameters for the hardware 

configurations. The following is a methodology first suggested by Jason R. Griffin [22] which can 

be implemented on the controller. 

1. Select the number of reference sensors, error sensors, and actuators to be used in the 

experiment. 

2. Select the sampling frequency, system ID coefficients, and control path coefficients. The 

system ID coefficients are the number of FIR filter coefficients that are used to build the 

model of the plant 𝑇̂𝑐𝑒(𝑧), through which the reference signal 𝑥(𝑛) is filtered. The control 

path coefficients are the number of coefficients present in the adaptive FIR filter 𝑊(𝑧) 

that are updated by the LMS algorithm to generate the secondary control signal. 

3. Set the system coupling. A fully coupled system will model the control paths from a 

speaker to each of the error sensors, whereas an uncoupled system will model the control 

path from an actuator to a single error sensor. Typically the control results are best when 

the system is fully coupled. 

4. The controller builds the plant models 𝑇̂𝑐𝑒(𝑧), or a matrix of transfer functions, by 

sequentially driving each speaker and measuring the response at all of the error 
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microphones (for example, 𝑇̂𝑐𝑒(𝑧) will be a 4 x 4 matrix if a system has 4 reference 

sensosrs and 4 speakers). 

5. The controller then drives the speakers such that the error signals are minimized. The user 

can control the rate of convergence by adjusting the magnitude of the convergence 

coefficient 𝜇. 

6. The user can monitor the error signals and adaptive filter coefficients to access when 

maximum control is achieved. Also, the level of the control signals and reference signals 

can be monitored to assure that the signals do not clip. 

7. A Control ON/OFF button can be toggled so that the control performance can be 

monitored and acquired using a data acquisition system. 

Figure 3.22 is a block diagram of the physical implementation of the integrated ANC control 

system. The A/D (analog-to-digital converters) and D/A (digital-to-analog converters) are 

actually embedded in the TMS320C6713 controller, so no additional hardware is required. All 

the control channels must use low-pass filters in order to avoid aliasing (distortion or 

misidentification of desired signals) and high frequency noise. The reference sensors 𝑥𝐾 are 

mounted on the physical system in order to provide the controller with signals which yield the 

disturbance characteristics. The reference sensors are usually accelerometers for vibrating 

structures and depending on the amplitudes of vibration, the signals may need amplification 

before being fed to the controller. The error sensors 𝑒𝑀 measure the superposition of the 

radiated sound field created by the disturbance and the secondary sound field created by the 

controller-driven speakers.  

The controller uses the error signals and the filtered references 𝑥̂𝑀𝐿(𝑛) to adapt a set of 

control filters that drive the speakers. The error sensors are microphones in ANC applications 
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since the objective is to reduce radiated sound. The filtered-x LMS controller first controls the 

dominant portion of disturbance spectrum (noise). The signals at the error sensors then start to 

adapt the controller, so their measured response can be filtered to target a particular bandwidth 

(see Figure 3.22 below with two back-to-back low-pass and high-pass filters for the error 

microphones) however, the signals at the error sensors adapt the controller, so their measured 

response can be filtered to target a particular bandwidth. The speaker signals 𝑢𝐿 generated by 

the controller also require amplification because the input and output limit of the DSP are + 

5.0 volts. All of the error sensors, speakers, amplifiers and filters used in the sound field 

measurement and generation of control signals are components of the plant model. The 

following section will look at the ANC experiment using the controller and internally-

generated signals. The physical implementation is not in the scope of this work. 

 

Fig. 3.22  Block diagram of MIMO control setup. 
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3.11.2. Active/Passive Noise Control Experiment 

 

Referring to Equation 3.5, if the primary source pressure, d, is zero, then there is little need 

for the introduction of a secondary source pressure, y, into the control system. The primary source 

pressure, d can be driven to zero or close to it by employing conventional active/passive noise 

control methods. Initially, a smart-foam active/passive approach was to be used for noise control. 

The difference between this and conventional active noise control is that the active actuation uses 

piezoelectric films underneath the acoustic foam. The films are composed of polyvinylidene 

fluoride (PVDF) which is a highly reactive thermoplastic. This material is capable of generating 

an electric charge when excited. Similar to changing the location of the virtual microphones in the 

virtual microphone technique, the contour of the PVDF film can be changed to minimize the sound 

pressure error between the primary and secondary sources. The active element of this smart foam 

method was not implemented, because the application to the headrest and passenger seat was found 

to be intrusive to the overall personal passenger comfort experience. Figure 3.23 below 

demonstrates the use of the smart foam between the reference signal, x(n), and the primary source 

pressure response, d(n). The reference signal is usually obtained from accelerometers, but 

microphones can be used as well. In the passive control experiment which was conducted, electret 

microphones were used to obtain the reference signals on either side of the head. 
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Fig. 3.23  Block diagram of adaptive LMS method with passive noise control element. 

 

Two foam blocks were fixed to the sides of the headrest, wherein the microphones and 

necessary wiring were embedded safely and securely (see Figure 3.24). For the first reference 

model configuration the microphones were placed at 90 degrees from each, and both microphones 

were facing forward for the second configuration. This was done to ensure the concept of SPL 

omni-directionality of the microphones. These two cases are referred to perpendicular microphone 

setup and parallel microphone setup, respectively. The seat system was rotated 360 degrees 

(counter-clockwise) at 45 degree increments. The starting or reference position is 0 degrees which 

corresponds to a forward-facing setting similar to a normal flight condition. A diagram of the noise 

reference model setup is provided in Figure 3.25. 
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Fig. 3.24  Initial setup of Passive Noise Control. 

 

 

Fig. 3.25  Top: Front view of setup; Bottom: Top view of setup showing rotation about vertical axis. 

 

A horizontal Campbell Hausfeld 3-Gallon air compressor was used to generate the noise near 

the seat (see Figure 3.26 below). The air compressor was situated on the right side of the seat 

directly behind a padded vertical panel and metal grid-frame. The initial tests were conducted 
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during 20 second time frames. This noise source was fixed, while the seat system was rotated or 

swiveled about the vertical or z-axis.  

 

Fig. 3.26  Compressor used to generate experimental noise. 

 

For ease of installation, the parallel microphone configuration was used for demonstrating the 

extent of passive noise control. A semi-enclosed enclosure was built around the headrest and 

microphones. Two adjustable semi-rigid arms were fixed to wooden blocks and secured to the 

headrest. The other end of the arms were attached to thin curved sheets of aluminum via nuts and 

bolts. This setup is pictured in Figure 3.27 below. 

  

Fig. 3.27  Aluminum sheet curved panels for Passive Noise Control housing. 
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In order to provide adequate passive noise control in the immediate environment around the 

headrest, acoustic-grade foam wedges were implemented. The 2” (thick) x 2” (wide) Auralex 

Studiofoam® Wedges are meant to acoustically treat small areas such as vocal booths and control 

rooms. The anechoic wedge cut maximizes sound absorption while properly reducing standing 

waves (see figure 3.29). Each section was secured to the inside of the aluminum panels using 3M™ 

Supper 77™ Multipurpose Spray Adhesive. Similar to the noise reference model cases, the seat 

system was rotated 360 degrees (counter-clockwise) at 45 degree increments. The starting or 

reference position is 0 degrees which corresponds to a forward-facing setting similar to a normal 

flight condition. Images of the passive noise control setup are provided in figure 3.28 below. 

 

Fig. 3.28  Passive Noise Control setup with curved acoustic-grade foam wedges. 
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Fig. 3.29  Close-up view of acoustic foam wedges. 

 

The omni-directionality results for the perpendicular and parallel microphone cases 

determined that the microphone angular anchor points do not make a significant difference in 

measuring the sound pressure level of the surrounding environment. The sound level plots for the 

left and right ears for the perpendicular and parallel microphone configurations in Figures 3.30 

and 3.31 validate this assumption. The means of the differences for the left ear and right ear 

reference model plots are approixmately 3 dB and 2 dB, respectively. The passive noise control 

results yielded decibel reductions of up to 14 decibels, however the average of the results were 5 

dB of reduction for the left ear and 8 dB of reduction for the right ear (see Figures 3.32 and 3.33). 

This was expected for passive noise control methods, which is why active noise control techniques 

were investigated next. 

 



   
 

84 
 

 

Fig. 3.30  Noise Plot for Left Ear reference model. 

 

 

Fig. 3.31  Noise plot for Right Ear reference model. 
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Fig. 3.32  Noise plot for Left Ear parallel ref model: without vs. with Passive Noise Control. 

 

 

Fig. 3.33  Noise plot for Right Ear parallel ref model: without vs. with Passive Noise Control. 
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3.11.3. Active Noise Control Experiment 

 

 The Texas Instruments TMS320C6713 DSP starter kit or DSK (refer to Figure 3.34) along 

with its audio interfaces, Line Out and Headphone Out, have been used to generate different 

waveforms and audio tones. Using its affiliated CCS software (Code Composer Studio), the 

TMS320C6713 DSP starter kit is a powerful tool that is not restricted by predefined signals, but 

can generate any desired signal by modifying the C-based source code. Some of the different 

features that have been tested include waveform generation, multitoned waveform generation, and 

pseudo random noise sequence generation. A highly relevant type of waveform generation is sine 

wave generation because it can be used to describe the behaviour of periodic, dominant anti-noise 

waves. On the other hand, multitoned waveform generation can be used to represent N1 & N2 

aircraft engine tones. These topics are continually being investigated because CCS uses what is 

known as GEL (General Extension Language). GEL is an interpretive language, like C, which 

permits variable changes such as gain. Additionally, the variable values can be altered while the 

processor is running. 

 

Fig. 3.34  Setup of TMS320C6713 DSK, multimedia speakers, and CCS software. 
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Adaptation Process using Adaptive Filter 

 

The coefficients of an adaptive filter are updated to reflect the changes in the input signal, 

output signal, or system parameters. An adaptive filter is different from a fixed filter in the sense 

that it can self-learn the signal characteristics and any slow signal or system changes. A basic 

adaptive filter structure consists of the adaptive filter’s output 𝑦 which is compared (or subtracted 

from) a desired signal 𝑑 to calculate an error signal 𝑒, which is used as feedback to the adaptive 

filter. This is the least-mean-square (LMS) algorithm with a linear combiner (FIR filter). 

here 𝑤𝑘(𝑛) represents 𝑁 weights for a given time 𝑛. In order to determine the effectiveness of the 

adaptive filter, the error signal is used as the main performance measure. This error signal 𝑒(𝑛) is 

the result of the difference between the desired signal 𝑑(𝑛) and the adaptive filter’s output 𝑦(𝑛). 

The minimization of the mean squared error function is used to adjust the weights or 

coefficients 𝑤𝑘(𝑛). The mean squared error function is 𝐸[𝑒2(𝑛)], where the expected value is 

denoted by 𝐸. The gradient of the mean squared error function is required, because there are 𝑘 

weights or coefficients. However, an estimate can be determined using the gradient 𝑒2(𝑛) instead.  

The reference input to the adaptive filter is 𝑥(𝑛), and the rate of convergence or adaptation 

(adaptive step size) is represented by β.  

 During each time interval 𝑛, each weight or coefficient 𝑤𝑘(𝑛) is replaced by a new 

coefficient 𝑤𝑘(𝑛 + 1). However, if the error signal 𝑒(𝑛) is zero, the weight is not updated. The 

filter’s output 𝑦(𝑛) and error signal 𝑒(𝑛) are also updated for a specific time 𝑛. After all of these 

updates occur for a specific time 𝑛, a new sample is extracted from the ADC, and the whole 

adaptation process is repeated for a different 𝑛. The linear combiner or finite-impulse response 

(FIR) filter is a common and useful adaptive filter structure partly because of its adjustability. The 
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coefficients of non-adaptive infinite-impulse/frequency-selective response (IIR) filters are fixed, 

whereas the coefficients of FIR filters can be altered using changes in signal environment such as 

the input signal. Adaptive IIR filters can also be used, however since their poles can be updated 

during the adaptive process to values outside of the unit circle, these filters can be somewhat 

unstable. The following steps are used for the LMS adaptation process using the adaptive filter 

structure: 

1. Obtain a new sample for each, the desired signal 𝑑(𝑛), and the reference input to the 

adaptive filter 𝑥(𝑛), which represents a noise signal. 

2. Determine the adaptive FIR filter’s output 𝑦(𝑛). 

3. Determine the error signal 𝑒(𝑛). 

4. Update each weight or coefficient 𝑤𝑘(𝑛). 

5. Update the input data samples for the next time 𝑛, with a data move scheme used in Chapter 

4 of [13]. The data move scheme does exactly that – it moves the data instead of a pointer. 

6. Repeat the adaptive process (steps 1 through 5) for the next output sample point. 

There are two main differences with this adaptive filter structure: the desired signal 𝑑 is 

corrupted by uncorrelated additive noise 𝑛, the input to the adaptive filter is a noise 𝑛′ that is 

correlated with the additive noise 𝑛. The reference noise input 𝑛′ could come from the same source 

as 𝑛 but is altered by the surrounding environment. The adaptive filter’s output 𝑦 is adapted to the 

noise 𝑛 (approaches 𝑛 with time). In this case, the error signal 𝑒 approaches the desired signal 𝑑. 

Similar to the general adaptive filter structure, the overall adaptive filter output is this error signal 

and not the adaptive filter’s output 𝑦. There are other variants of the LMS algorithm such as the 

sign-error, sign-data, and the sign-sign LMS algorithms. However the TMS320C6713 Texas 

Instruments digit signal processor (controller) works fastest for the basic LMS algorithm. The 
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execution speed for the DSP using these variants is slower because of additional decision-type 

instructions required for testing conditions involving the sign of the error signal or the data sample. 

 

Adaptive Filter for Noise Cancellation 

 

N1 and N2 are aircraft jet engine RPMs or rotational speeds. These speeds have associated 

engine tones which sound at 40 – 100 Hz and 100 – 200 Hz respectively. In a business jet aircraft, 

these tones are generally the main sources of noise and the target for this active noise cancellation 

research. The first step in selecting the frequency range for cancellation was to start with a 

narrowband of a low-frequency tone. For demonstration purposes, the LMS algorithm was used to 

cancel an undesirable sinusoidal tone of 312 Hz frequency. A desired sine wave of 1500 Hz with 

an undesired sine wave noise of 312 Hz was one of two inputs to the adaptive filter structure. A 

reference cosine wave signal of 312 Hz (which is only correlated with the additive or undesired 

sine wave) is the second input to the adaptive filter structure. The FIR filter itself contains 30 

coefficients. At each time interval 𝑛, the output of the adaptive filter is calculated and all the 

weights or coefficients are adjusted. The overall output of the adaptive filter is the error signal 

𝐸 which in this case is the difference between the desired signal and additive noise 

denoted 𝑑𝑝𝑙𝑢𝑠𝑛, and the adaptive filter’s output, 𝑦(𝑛). 

Although the TMS320C6713 digital signal processor (controller) is used for this 

demonstration, all two of the input signals to the adaptive filter have been generated from a lookup 

table using MATLAB. There are three signals that were generated: the desired sine signal of 1500 

Hz, the additive sine wave noise of 312 Hz, and the reference cosine signal of 312 Hz. These 

lookup tables were used to provide the DSP with the following two files: 1. 𝑑𝑝𝑙𝑢𝑠𝑛, sine(1500 
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Hz)  + sine(312 Hz); 2. 𝑟𝑒𝑓𝑛𝑜𝑖𝑠𝑒, cosine(312 Hz). The constant 𝑏𝑒𝑡𝑎 is used to represent the rate 

of convergence of the adaptive filter output. The following four plots in Figures 3.35 through 3.38 

demonstrate the undesired 312 Hz sinusoidal signal being slowly reduced over time, while the 

desired 1500 Hz is preserved. As part of the filter design process, different numbers of weights as 

well as different betas were experimented with in order to determine the ideal adaptive filter. The 

convergence rate beta can be increased for a faster rate of cancellation, however if it is too high 

then the output becomes unobservable. In Figure 3.37, the beta used was 10 which was several 

orders of magnitude higher than the first two cases. It can be seen that the output quickly converges 

to the desired sinusoidal signal. Figure 3.38 shows the error plots of the two convergence rates 

with 30 weights. The difference, in this case, between the two plots is on the order of milliseconds. 

 

 

Fig. 3.35  Plot of adaptive filter’s output converging to desired signal: 30 weights, beta 1e-10 
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Fig. 3.36  Plot of adaptive filter’s output converging to desired signal: 60 weights, beta 1e-10 

 

 

Fig. 3.37  Plot of adaptive filter’s output converging to desired signal: 30 weights, beta 10 
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Fig. 3.38  Plot of adaptive filter’s error signal for the different betas: 30 weights 

 

Adaptive Weighted FIR for System Identification of Fixed FIR 

 

The adaptive LMS method uses a fixed FIR bandpass filter with 55 coefficients centered at 

150 Hz, which models the known fixed bandpass filter. It also used an adaptive FIR bandpass filter 

with 60 coefficients centered at 1 kHz. This adaptive FIR bandpass filter models the fixed unknown 

FIR bandpass filter that the adaptive scheme will try to identify. The coefficients of the FIR filters 

are determined using MATLAB’s Filter Design & Analysis (FDA) Tool. Images of the MATLAB 

FDA tool windows used in the design of the two filters are provided in Figures 3.39 and 3.40 

below. The filter coefficients are then exported to Code Composer Studio IDE header files (see 

Figure 3.41). The filter coefficients are extracted from the header files and stored in .cof CCS 

executable files. The first file with the fixed filter coefficients centered at 150 Hz is used in the 

main CCS program adaptIDFIR.c to initialize the weights of the adaptive FIR filter with the 



   
 

93 
 

weights of the known fixed filter. The program adaptIDFIR.c is a modified version of that 

provided in the TMS320C6713 digital signal processor starter kit or DSK.  

Also provided in this DSK is a pseudorandom noise sequence noise_gen.h, which becomes 

the input to both the fixed and adaptive FIR filters. The noise input signal is referred to as a training 

signal. The error in this case is the feedback error signal which represents the difference between 

the outputs. The adaptation process is complete when the error is minimized. The two output 

variables are the output of the fixed unknown FIR filter fir_out and the output of the adaptive FIR 

filter adaptfir_out. Initially, during the first few iterations of running the program, the filter output 

exactly matches the known filter’s output centered at 150 kHz. However, within milliseconds, the 

adaptive filter’s output gradually converges or adapts to the desired filter centered at 1 kHz. Again, 

increasing the convergence rate beta was found to accelerate the adaptation process. The chosen 

weights or filter coefficients, 50 and 60 for the modelled known and unknown filters respectively, 

were found to successfully meet the noise cancellation requirements.  

The spectrum of the adaptive filter’s output can be seen in Figure 3.42. The original or fixed 

filter centered at 1 kHz is also in the figure and is represented by dashed lines. When comparing 

the two spectrums, it can be seen that the adaptive filter contains less of the known fixed filter 

centered at 1 kHz and significantly more of the unknown fixed filter centered at 150 Hz. The error 

or difference between the known fixed filter and adaptive filter outputs is plotted in Figure 3.43. 

The error is measured in decibels and has a maximum value of approximately 33 dB and a mean 

of 17 dB. This error represents the overall active noise reduction and falls within acceptable ANR 

ranges which are generally between 15 and 20 dB for state-of-the-art noise-cancelling 

technologies. For the desired frequency range of 40 to 200 Hz, the noise reduction is greater than 

15 dB and peaks at 200 Hz. However, it should be noted that the reference noise signal and fixed 
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filters were internal signals to the DSP. This means that a real or external application case may 

result in a slight degradation of the adaptation scheme. Factors to consider are the environmental 

uncorrelated and unpredictable noise as well as the complexity of the filters, which will require a 

faster and more powerful DSP than the TMS320C6713. 

 

 

Fig. 3.39  Design of 150 Hz – centred bandpass filter using MATLAB’s filter design and analysis tool. 
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Fig. 3.40  Design of 1 kHz – centred bandpass filter using MATLAB’s filter design and analysis tool. 

 

 

Fig. 3.41  MATLAB’s filter coefficient export to CCS IDE feature. 
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Fig. 3.42  Spectrum plots of original fixed filter and adaptive filter outputs: beta 1e-13 

 

 

Fig. 3.43  Plot of adaptive filter’s active noise reduction measured in dB. 
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Data Acquisition 

 

The electret microphone amplifier MAX4466 with adjustable gain was used for audio 

sampling. The gain can be modified from 25x to 125x and this allows the output to range from 

200 𝑚𝑉𝑝𝑝 and up to1 𝑉𝑝𝑝. The default value is a power gain of 25 times (approximately 28 dB) 

the power amplification of the input. The output pin can be connected directly to the Mic In jack 

on the TMS320C6713 board. An external power supply is used to power the sensor with up to            

5 V. The best operating voltage for the quietest setting (least amount of noise) is 2.4 V. 

The TMS320C6713 digital signal processor has a 16-bit analog-to-digital converter (ADC). 

The data is stored in the registers as Uint16 which means 16-bit unsigned integers. A 16-bit ADC 

will need a maximum value of 216 for calibration and measurement functions. The maximum 

output voltage is created when the digital input word is equal to 2𝑁 − 1, which occurs when all 16 

bits are equal to 1. The reference voltage 𝑉𝑟𝑒𝑓 refers to the step voltage or the voltage required to 

switch a single bit from 0 to 1. In order to convert these values into decibels, a voltage gain formula 

which incorporates the sensor’s sensitivity or transfer factor as well as its gain value will be used. 

The sensitivity or transfer factor demonstrates the use of microphones – conversion of sound 

pressure (Pa) to audio voltage (mV or V). The MAX4466 microphone sensor has a sensitivity of  

-44 dB and a corresponding transfer factor of 6.3096 mV/Pa. International standards have set 

94 dB sound pressure level as the reference SPL equal to 1 Pa and this is usually denoted 

as 94 dB re. The symbol ′re′ is an indication of said reference. 

𝐿𝑒𝑞 represents the equivalent continuous noise level. It is the most common method used to 

describe time-varying sound levels. This results in a single decibel value which considers the total 

sound energy over the desired period of time. The first step in calculating the equivalent 

http://www.acoustic-glossary.co.uk/sound-energy.htm
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continuous noise level 𝐿𝑒𝑞, is determining the output voltage. The output voltage denoted by 

𝑉𝑜𝑢𝑡 is found by dividing the digital-to-analog or DAC output of the TMS320C6713 DSP by the 

product of the maximum number of bits and the reference voltage 𝑉𝑟𝑒𝑓 (see Equation 3.39 below). 

The reference voltage 𝑉𝑟𝑒𝑓 was found to be 25 percent of the maximum voltage  𝑉𝑚𝑎𝑥  (see 

Equations 3.40 and 3.41 below). 

                    𝑉𝑜𝑢𝑡 =
𝐷𝐴𝐶𝑜𝑢𝑡

2𝑁∙𝑉𝑟𝑒𝑓
                                                       (3.39) 

                                                                    𝑉𝑜𝑢𝑡 =
𝐷𝐴𝐶𝑜𝑢𝑡

216∙0.25𝑉𝑚𝑎𝑥
                                                 (3.40) 

                              𝑉𝑜𝑢𝑡 =
𝐷𝐴𝐶𝑜𝑢𝑡

65,536∙0.25∙5
                             (3.41) 

                          𝑉𝑜𝑢𝑡 =
𝐷𝐴𝐶𝑜𝑢𝑡

81,920
        (3.42) 

Once the output voltage 𝑉𝑜𝑢𝑡 has been computed, the equivalent continuous noise level 𝐿𝑒𝑞 can be 

readily determined. The equation for calculating  𝐿𝑒𝑞 is presented in Equation 3.43. The first part 

of the equation determines the power change from the sensor, while the second two terms 

incorporate the sensor’s sensitivity as well the reference dB level. The last term subtracts the power 

gain of the adjustable-gain sensor, which according to Equation 3.44 is approximately 28 dB. The 

final equation for quantifying the equivalent continuous noise level 𝐿𝑒𝑞 is presented in Equation 

3.45 below. 

              𝐿𝑒𝑞 = 20𝑙𝑜𝑔 (
𝐷𝐴𝐶𝑜𝑢𝑡

81,920∙0.0063096
) − 44 + 94 − 20𝑙𝑜𝑔(25)       (3.43) 

𝐿𝑒𝑞 = 20𝑙𝑜𝑔 (
𝑉𝑜𝑢𝑡

516.88243
) + 50 − 27.95880      (3.44) 

            𝐿𝑒𝑞 = 20𝑙𝑜𝑔(0.0019347 ∙ 𝑉𝑜𝑢𝑡) + 22.0412                 (3.45) 
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3.12. Summary 
 

 The quiet bubble technology which was discussed earlier is one of the most advanced in its 

field, however it only uses fixed virtual sensor locations. A significant limitation of this ANC 

technology is that the transfer function parameters can only be set once during the calibration and 

initial setup stage. This means that if a passenger turns their head, a different transfer function may 

be needed to capture the change in the sound field from the speakers to the error sensors (STF) or 

from the speakers to the reference sensors (EC). The disadvantage of this technique is that it is not 

reliably robust enough to changes in the acoustic environment. In order to deliver such a system, 

a head tracking algorithm in lieu with forward-difference prediction must be used to constantly 

update the prediction filter with a changing virtual sensor-to-observer distance. This will allow for 

the creation of a zone of quiet which is localised to the passenger’s head movement. Similar to this 

technology, the following simulation only uses a LMS-based virtual sensing method, however it 

has the potential to include moving virtual sensors. Chapter 4 will look at viable head tracking 

methods for zone of quiet-based virtual sensors. 
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4. Head Tracking  
 

4.1. Dummy Head Model 
 

An acoustic dummy head was purchased from Binuaral Enthusiast to model the human head 

and its rotation about the vertical axis. The purpose of the following experiments is to detect and 

track the head angle with respect to the frontal view (head facing straight forward). The fiberglass 

dummy is threaded on the bottom, so it was easily secured to an MDF plate which sits onto a 

custom protractor. This assembly is secured to an aluminum strut later and is free to rotate between 

two nuts. At the centre of the neck of the dummy, a copper-wire needle is secured in order to 

physically position the head at given angles between -90 to 90 degrees. The dummy head is also 

equipped with silicone ears which contain ear canals. This is resourceful because it has allowed 

for the installation of two microphones in the ears.  

 

Fig. 4.1  Acoustic Dummy from Binaural Enthusiast. 
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4.1.1. Creation of Humanistic Facial Features 

 

Each feature (eyes, nose, ears, and mouth) were stickered using pieces of various solid colours 

of electrical tape. The eyes are represented by blue rectangles, the right and left ears by white 

rectangles, the nose by a yellow rectangle, and the mouth by a green rectangle. This colour masking 

technique was created in order to isolate the individual facial features from the face itself as well 

as the surrounding environment (i.e. headrest, surrounding room). Each piece of tape represents a 

particular facial feature and is matched to its corresponding parameters which include hue, 

saturation, and value or intensity HSV. The significance of the HSV scale to the head-tracking task 

will be explained next. 

 

Fig. 4.2  Acoustic Dummy with facial feature stickers. 

 

4.1.2. HSV Scale and Masking Process 

 

The HSV scale is representative of the purpose of RGB, however it organizes the geometry in 

such a way so that it becomes more meaningful in comparison to its Cartesian or cube counterpart. 

The HSV scale is a cylindrical system where the hue is represented by the angle around the central 
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vertical axis, which is the azimuth or theta coordinate. The saturation is represented by the distance 

from this vertical axis which is the radial coordinate, and the value is represented by the distance 

along the axis which is the height coordinate. The value parameter is sometimes referred to as 

lightness or brightness. Table 4.1 below demonstrates the use of the HSV parameters and their 

corresponding lower and upper bound pixel values for each facial feature. 

Table 4.1  Pixel Ranges for HSV Parameters. 

HSV Bounds HSV Parameters ([Hue, Saturation, Value]) 

Eyes Nose Mouth Ears 

Lower Limit [103, 168, 54] [33, 53, 131] [78, 152, 57] [82, 23, 200] 

Upper Limit [114, 255, 153] [46, 253, 235] [96, 255, 147] [112, 69, 240] 

 

The first step of the masking process is to represent the selected feature as a binary one which 

shows up on the display as white. On the other hand, all of the negatives or non-selected regions 

that do not fall into the HSV classification or range are binary zeroes and show up on the display 

as black. The secondary step in the masking process is to combine the ones and zeroes from each 

mask (one mask per facial feature) into a matrix format. This information is then displayed on a 

computer monitor or screen in the form of a white and black image. The final step is to combine 

the original RGB image with the masked image to create a display of the detected and coloured 

facial features. A sample of this combined RGB and masked image can be seen in Figure 4.3 

below. 
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Fig. 4.3  Separated Colour Facial Feature Detection. 

 

4.2. Rotation Method 
 

4.2.1. Setup 

 The dummy assembly was fixed to an aluminum strut which was then secured to the seatback 

of a Bombardier Global Express 5000 aircraft seat. Directly in front of the seat, a camera tripod 

was mounted onto a desk to create a suitable and approximately-frontal field of view for the 

dummy head and the seatback. The Intel RealSense Camera F200 is mounted atop the tripod. The 

distance from the tripod to the nose of the dummy is 138 cm. Also, the distance from the floor to 

the top of the camera is 180 cm (see Figure 4.4 below).The F200 camera connects to a PC via a 

USB 3.0 port and cable.  
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Fig. 4.4  Head-tracking setup with tripod, camera, and dummy placement. 

 

 Next, the dummy head is calibrated for each side or direction of rotation from the central or 

forward-facing view. Counter-clockwise rotation of up to 90 degrees is considered positive, 

whereas a clockwise rotation of up to 90 degrees is considered negative. This can be seen in Figure 

4.5 below. For calibration purposes, the head is rotated in 5 degree increments from 0 to 90 degrees 

and similarly from 0 to -90 degrees. The visibility or the lack thereof of facial features will be 

discussed for the two aforementioned calibration cases. 

 

Fig. 4.5  Dummy Head Rotation Schemes. Left Turn: 0 to +90°; Right Turn: 0 to -90°. 



   
 

105 
 

4.2.2. Calibration 

 

 The process of calibration for the dummy head rotation consists of obtaining pixel 

measurements for given and known angles of rotation. These values were tabulated and several 

polynomial models were fit to the data. The equations for the models are tabulated in Table 4.2. It 

can be seen that each feature is not necessarily plotted for all test angles. The reason for this is that 

each feature is not visible for certain angle ranges. For the left turn case, the right eye is visible 

between 0 and 70 degrees, the nose between 0 and 80 degrees, the mouth between 0 and 60 degrees, 

and the right ear between 35 and 90 degrees. The left ear is completely invisible for the left turn 

case, which is a valid observation. Another important factor of consideration is the accuracy of the 

facial feature when it is visible. This is determined when the polynomial models were fit to the 

calibration data and validated using Python code and the Intel RealSense Camera F200 DSK 

software. The validation data can be seen in Tables 4.3 and 4.6 and associated errors in Tables 4.4, 

4.5, 4.7, and 4.8. 

 Figure 4.6 below is used to determine which section the head angle is in. For example, if the 

pixel value is roughly less than 300 then the head has been rotated anywhere between 0 and -90 

degrees. These results have been modeled using a cubic function. This model is in accordance with 

the head angle sweep as it crosses the origin – representing the forward-facing reference position. 
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Fig. 4.6 Cubic model for head angle direction. Left Turn: 0 to +90°; Right Turn: 0 to -90°. 

 

 

Fig. 4.7  Quadratic model for determining head angles less than -35° using the nose. 
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Fig. 4.8  Quadratic model for determining head angles greater than 35° using the nose. 

 

 

Fig. 4.9  Quadratic model for determining head angles greater than 0° using the right eye. 
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Fig. 4.10  Quadratic model for determining head angles less than 0° using the left eye. 

 

 

Fig. 4.11  Quadratic model for determining head angles greater than 35° using the right ear. 
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Fig. 4.12  Quadratic model for determining head angles less than -35° using the left ear. 

 

Table 4.2  Estimated Polynomial Equations for Each Facial Feature. 

Angle Range Feature Estimated Equations 

Find Left/Right Nose angle = 5.9077e-06*(pixel)^3 - 0.005307*(pixel)^2 + 1.858*pixel - 243.532  

35 to -35 Nose same as above 

< -35 Nose angle = -0.0008467*(pixel)^2 + 0.7683*(pixel) - 158.29    

> 35 Nose angle = 0.001800*(pixel)^2 - 0.9838*pixel + 134.2948 

> 0 Right Eye angle = 0.000834*(pixel)^2 - 0.1908*pixel - 8.88629 

< 0 Left Eye angle = 0.0007575*(pixel)^2 + 0.7917*pixel -186.4473 

> 35 Right Ear angle = -0.000235*(pixel)^2 + 0.6826*pixel - 120.45 

< -35 Left Ear angle = 0.0003015*(pixel)^2 + 0.2933*pixel - 181.5046 

 

In Figure 4.13 below, it can be seen that when the dummy head is rotated to 20 degrees, the 

models are used to estimate the angle. All four facial features are visible in this case, however only 

the right eye and nose models are used (averaged) to generate the best angle estimation.  
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Fig. 4.13  Sample image of calibration results (Left Turn: 20°). 

 

Table 4.3  Calibration Results (Left Turn: 0 to 90°). 

Actual Angle ( ° ) Generated Angle ( ° ) 

  Right Eye Left Eye Nose Mouth Right Ear Left Ear 

90 - - * - 90.2 - 
80 - - * - 80.3 - 

70 67.6 - * - 69.6 - 
60 59.7 - 61.00 - 59.4 - 

50 52.1 - 53.00 51.20 50 - 

40 42.2 - 42.00 42.60 40.6 - 
30 28.5 - 30.00 32.20 - - 

20 20.8 - 20.00 22.20 - - 
10 9.6 - 9.00 11.20 - - 

0 1.5 - 0.00 2.60 - - 
" - " Feature not available 
" * " Feature not accurate 

 

Table 4.4  Generated Angle Error (Left Turn: 0 to 90°). 

Actual Angle ( ° ) 

  

Generated Angle Error ( ° ) 

Right Eye Left Eye Nose Mouth Right Ear Left Ear 

90 - - - - 0.2 - 

80 - - - - 0.3 - 

70 -2.4 - - - -0.4 - 
60 -0.3 - 1.00 - -0.6 - 

50 2.1 - 3.00 1.2 0 - 
40 2.2 - 2.00 2.6 0.6 - 

30 -1.5 - 0.00 2.2 - - 
20 0.8 - 0.00 2.2 - - 

10 -0.4 - -1.00 1.2 - - 

0 1.5 - 0.00 2.6 - - 
" - " Feature not available 
" * " Feature not accurate 
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Table 4.5  Average Angle Errors (Left Turn: 0 to 90°). 

Actual Angle ( ° ) Average ( ° ) Error ( ° ) MSE ( ° ) 

90 90.2 0.2 0.04 

80 80.3 0.3 0.09 
70 69.6 -0.4 0.16 

60 59.4 -0.6 0.36 
50 50.0 0.0 0.00 

40 40.6 0.6 0.36 

30 29.3 -0.8 0.56 
20 20.4 0.4 0.16 

10 9.3 -0.7 0.49 
0 0.8 0.8 0.56 

 Left Turn RMSE 0.53 

 

Table 4.6  Calibration Results (Right Turn: 0 to -90°). 

Actual Angle ( ° ) Generated Angle ( ° ) 

  Right Eye Left Eye Nose Mouth Right Ear Left Ear 

0 1.5 - 0.00 2.60 - - 

-10 - -9.8 -9.00 -9.70 - - 
-20 - -19.9 -

20.00 

-20.60 - - 

-30 - -29.8 -

30.00 

-31.30 - - 

-40 - -38.4 -

40.00 

-39.7 - -39.3 
-50 - -50.3 -

52.00 

-52.7 - -50.4 

-60 - -61.4 -61 -61.8 - -60.2 
-70 - -71.1 * - - -69.7 

-80 - -78.6 * - - -79.9 
-90 - - * - - -89.8 

" - " Feature not available 
" * " Feature not accurate 
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Table 4.7  Generated Angle Error (Right Turn: 0 to -90°). 

Actual Angle ( ° ) 

  

Generated Angle Error ( ° ) 

Right Eye Left Eye Nose Mouth Right Ear Left Ear 

0 1.5 - 0.00 2.6 - - 

-10 - 0.2 1.00 0.3 - - 
-20 - 0.1 0.00 -0.6 - - 

-30 - 0.2 0.00 -1.3 - - 
-40 - 1.6 0.00 0.3 - 0.7 

-50 - -0.3 -2.00 -2.7 - -0.4 
-60 - -1.4 -1.00 -1.8 - -0.2 

-70 - -1.1 - - - 0.3 

-80 - 1.4 - - - 0.1 
-90 - - - - - 0.2 

" - " Feature not available 

" * " Feature not accurate 

 

Table 4.8  Average Angle Errors (Right Turn: 0 to -90°). 

Actual Angle ( ° ) Average ( ° ) Error ( ° ) MSE ( ° ) 

0 0.8 0.8 0.56 
-10 -9.4 0.6 0.36 

-20 -20.0 0.1 0.00 
-30 -29.9 0.1 0.01 

-40 -39.3 0.7 0.49 

-50 -50.4 -0.4 0.16 
-60 -60.2 -0.2 0.04 

-70 -69.7 0.3 0.09 
-80 -79.9 0.1 0.01 

-90 -89.8 0.2 0.04 
 Right Turn RMSE 0.42 

 Total RMSE 0.46 
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4.2.3. Rotation Results 

 

Based on the validation analysis, it can be concluded that for the left turn case, when going 

from 0 to 35 degrees the combination of the right eye and nose models yield the best results. In 

addition, when going from 35 to 90 degrees solely using the right ear yields the best results within 

this range. For the right turn case, when going from 0 to -35 degrees the combination of the left 

eye and nose models yield the best results within this range. Again for the right turn case, when 

going from -35 to -90 degrees solely using the left ear yields the best results within this range. This 

means that the mouth resulted in the highest errors and was found to be insufficient in accurately 

tracking the angle for the whole range of -90 through 90 degrees. The root mean square error for 

the left turn case (0 to 90°), was determined to be 0.53°. Similarly, the root mean square error for 

the right turn case (0 to -90°), was determined to be 0.42°. The overall root mean square error for 

an angle sweep from -90 to 90° was found to be 0.46°. These results are impressive, however this 

method can be improved by using a 3D ellipsoidal model. The continuation of this work is the 

tracking and determination of the head angle for rotation about other axes, as well as translations.  
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4.3. Translation Method 
 

The purpose of the translation analysis is to detect the position of the head for small head 

movements. An example of such movements is when a person is sitting in a chair. If the positions 

of the head and major facial features can be determined, then the head rotation schemes developed 

earlier can be implemented with ease. Generally, when the dummy head is translated along the y-

axis or sideways, the 2d size of the head remains approximately constant. For the translation 

analysis, three sets of cascades were initially created. One set from 0 to 15 degrees, another from 

15 to 35, and the last one from 30 to 45.  

The first step in the creation of these cascades was to produce a set of positive images for each 

of the angles previously specified: 0, 15, 30, and 45. These sets of positive images were created 

using 10-second videos, where three frames were saved every second. Through trial-and-error, the 

ideal number of positive images was found to be 50 images per set. The size of the positive images 

was 25 x 35 pixels. Next, 4 sets of negative images were produced (for 0, 15, 30, and 45 degrees), 

where the size of the images varied because it was irrelevant to the cascading process. An 

important factor for the training process was the ratio 1 to 10 of positive to negative images. If this 

criteria is not met, the training can go wrong. This can result in an increased level of difficulty in 

detecting a face in a single frame. Over 600 negative images were obtained in a similar manner to 

the positive images. 
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4.3.1. Setup 

 

 After the positive and negative image sets have been created, the training process could be 

started. A difficult part in the training process is selecting the right number of stages. Typically, 

stages greater than 25 are considered computationally complex and expensive. The training 

process can be considered as a training tree. The first stage contains a simple training step. As each 

stage is developed, the process becomes more and more complex. Stages 1 through 5 contain 1, 

10, 25, 25, and 50 features respectively. These features are the combination of edges, lines, and 

rectangles (refer to visual object detection section in Literature Review). Through this exhaustive 

selection process, the final number of training stages was chosen to be 10. 

In order to calibrate the translation, a ruler was created using red tape. The right-leg of the 

tripod was positioned at 15 cm on the taped red marker. This position was used as the origin for 

the translation. The tripod was translated 5 cm in each direction along the y axis, in 0.5 cm 

increments. Alignment of the tripod legs was crucial in determining the true accuracy of the 

translation and rotation. The error in translation was found to be +/- 0.2 cm, which is acceptable. 

Ambient lighting was a great concern in 2D tracking analysis, whether it be for rotation or 

translation. The face pixel values may need to be constantly recalibrated if the lighting in the 

immediate or surrounding environment changes. This can be challenging because it is time 

consuming and inefficient. An IR projector and sensor with a range of at least 2 m would be ideal 

for better face detection and an increased depth field. The Intel RealSense Camera F200 has a 

range of 0.8 m which, based on the geometry of the current tripod and seat setup, is not enough to 

completely detect the face. This is why the Microsoft (MS) Kinect was investigated next. The MS 
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Kinect is a widely used and non-expensive line-of-motion sensing device. It has an admirable 

range of up to 4 m.  

 

4.3.2. Translation and Rotation 

 

Figures 4.14 and 4.15 demonstrate the process used to develop an integrated rotation and 

translation system for tracking the dummy head using the MS Kinect. In plain words, the first step 

is to capture the frame and then to obtain a window near the headrest. The size of the window for 

positive images (images of the face) is 25 x 35 pixels. Then the window is converted to a grayscale 

image. Then the Python program makes a decision to obtain the face from the window if it is 

detected, or to select another cascade to search for the face until it is found.  A cascade is a special 

classifier that is trained using sets of positive and negative images. After the training process, the 

cascade becomes an object detector and in this case a face detector. Once the face has been 

selected, the translation and rotation schemes can be applied. The most computationally-

challenging part is detecting the face. In order to determine the translated distance, the position of 

the face’s centroid is calculated and then fed into a predetermine translation equation to finally 

output the translated distance in centimetres. The head rotation angle determination process begins 

with storing the selected face in HSV format, which uses cylindrical coordinates to express colour 

in terms of hue, saturation, and value. Then the centroids of the nose and ears are stored separately. 

Similar to the translation scheme, the various centroid values are fed into predetermined rotation 

equations, and averaged. This whole process is then repeated for the next frame of the live video 

feed. 
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Fig. 4.14  Legend for translation and rotation head-tracking flowchart. 

 

 

Fig. 4.15  Translation and rotation head-tracking flowchart process diagram. 
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4.3.3. Results 

 

Sufficient prediction intervals of 0.5 cm for translation and 5 degrees for rotation were 

selected. At 17 degrees, there is a pixel range gap about 10 pixels wide, as can be seen by the red 

circled regions in Figure 4.17. The two cascades used for determining the yaw angle converge to 

the 17 degree output mark, so if the pixel value falls into this region on the graph, the angle is 

assumed to be 17. The equations for translation and rotation are also presented in Figures 4.16 and 

4.17, respectively. It can be seen that the translation equation is first order, while the rotation 

equations are second and third order. Originally, translation using the Intel F200 camera yielded 

results within +/- 0.2 cm from the true values. When the MS Kinect was employed, the error 

decreased almost tenfold with results within +/- 3 mm. With only 2 cascades (0 to 17 degrees and 

17 to 40 degrees), the final rotation results were within +/- 0.2 degrees. These results are sufficient, 

however, when 6 degree-of-motion tracking is implemented, it will be much more difficult to 

reproduce similar outcomes along each axis of rotation and translation. 
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Fig. 4.16  Dummy head translation along y-axis versus pixel position. 

 

 

 

Fig. 4.17  Dummy head angle versus pixel position. 
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5. Conclusion 
 

This research has aimed to improve zone-based local active noise control for an aircraft 

passenger seat using head tracking and virtual sensing methods. The main contributions of this 

work include the development of a zone-based integrated ANC system for an aircraft cabin seat 

which can be used with any virtual sensing method, the creation of a simulation tool in Matlab for 

determining the location of virtual sensors for ideal ZoQ, and the development of a head tracking 

tool which interfaces with Python programming language and MS Kinect. The zones of quiet for 

broadband diffused sound fields have been derived theoretically. The near-field zone of quiet was 

improved by developing a new method to combine zone-based technologies with existing local 

ANC virtual sensing techniques. The virtual sensing methods which were reviewed include virtual 

microphone technique, the forward difference prediction technique, and the adaptive LMS moving 

virtual microphone techniques. A detailed simulation of virtual sensing methods for an aircraft 

passenger using adaptive LMS and the forward difference prediction technique was generated. The 

results of the simulation showed that the desired virtual microphone location is 10 cm from the 

closest microphone in the array and that the quadratic forward difference prediction technique 

yielded the lowest RMS errors of 0.0198. Moreover, a head tracking scheme, which utilizes HSV 

parameters and face cascading methods for an acoustic dummy head, was developed in order to 

improve the near-field zone of quiet for broadband noise near an aircraft passenger seat. The head 

tracking measurements proved that the translation of the head could be tracked within +/- 0.2 cm, 

whereas the head rotation angle could be matched to the closest degree which is acceptable. The 

theory and methods developed in this work will aid in the accurate prediction of broadband zones 

of quiet for various MIMO local ANC configurations, which is suggested for future work. 
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