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Abstract

A COMPUTER SIMULATOR FOR STEEL PLANT ELECTRICAL ARC
FURNACE REGULATOR

Behzad (George) Jorjani, MASc.
Department of Computer and Electrical Engineering
Ryerson University
Toronto, Ontario, Canada
Year 2006

The function of the simulator is to imitate the behavior of the regulator loop, which is the
main component of the Electrical Arc Furnace (EAF) control systems. In the past, the use of
artificial intelligence methods, and in particular, the Adaptive Neuro Fuzzy Inference System
(ANFIS) were successfully applied in the modeling and control of the EAF components
individually. This research expands the use of ANFIS in building the full closed loop
computer simulator for the three-phase regulator loop. The ANFIS models inputs and outputs
selected for this project were tried for the first time in this research. The simulator
components were trained and verified by the use of plant recorded data in the open loop
mode. The response of the closed loop simulator was tuned to follow the behavior of the
plant EAF. Therefore the simulator works independent of the plant data or operation
commands. The developed simulator, then, was used to measure the results of applying new

controls in EAF such as fuzzy controllers, without disturbing the actual plant process.
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Chapter 1

Introduction

The Electrical Arc Furnace (EAF) is the main equipment in the recycling process of steel
plants. EAF is usually among the highest electrical energy consumers in the power grid. The
rising cost of energy puts pressure on the steel industry to improve their processes and
conserve energy. A significant factor in energy consumption is optimizing the control
strategy in the EAF. Practicing poor control methods in the EAF could be quite costly, while
also damaging to people or equipment. Thus, in controlling the EAF, having a good
computer model provides a great advantage in verifying and tuning the proposed solutions in

the simulator environment.

The EAF includes many processes, and building the full simulation of the EAF to include all
the processes and auxiliary systems is a very difficult task. This research is an attempt to
build the MATLAB® -based computer simulator for the regulator loop of the EAF in Gerdau
Ameristeel Whitby (GAW). The regulator loop will be explained in detail throughout this
thesis. The regulator loop performance has a direct impact on the electrical consumption of
the EAF. Hence, it is selected to be the focus of this research and also the focus of many
other studies in the past. In this research, the ANFIS black box modeling method has been
used to model the behavior of the most important measured signals from the plant. For the
purpose of a quick implementation, the MATLAB® ANFIS GUI has been used to build the
fuzzy structures needed for the project. Additionally, the entire simulator has “been built in
MATLAB® Simulink®.



1.1 The Process of EAF

In this section, several technical terms are explained which are utilized throughout this
report. EAF is the main equipment in any steel plant that recycles used steel — also known as
scrap metals. It consists of a metal segmented body (shell) that is covered by the thick layer
of refractory. The shell is closed from the bottom and has a roof that could be raised, lowered
and swung by the use of hydraulic cylinders. As well, the entire furnace rests from one side
on the large hydraulic cylinder that could tilt the furnace close to 45 degrees. On the opposite
side of the tilt cylinder at the bottom of the EAF, there is a tap hole that serves to discharge
the molten steel into the ladle when the EAF is tilted. The EAF roof has three holes in a
triangular shape around its center to allow the graphite electrodes to ascend and descend. The
electrodes are moving up/down individually by the use of hydraulic cylinders. The graphite
electrodes are clamped into the arm connected to the power logs. The three power logs carry
the voltage from the transformer cable to the electrodes. All the mechanical elements of EAF ,

including the furnace shell, roof, electrode clamps, power logs and cables, are water-cooled.

The electricity from the power utility with the high voltage level of 230 KV is transferred
through the hydro grid into the plant. Then, the plant transformer brings the voltage level to
46 KV. Subsequently, another transformer close to the EAF, which is known as the Furnace-
Transformer, brings the voltage to the lower level of 200-1650 V. In order to vary the
voltage supply to the electrodes in different stages of melting, the furnace transformer always
comes with a mechanical tap changer. Depending on the transformer design, the tap change
could be done under load or off load. In the under load tap changing, due to the arcs, the tap
changes are usually high in maintenance. Nonetheless, they save time in the process of
melting. It takes anywhere between 300-1000 KVA of apparent power in the transformer to
melt one ton of scrap. The graphite electrodes carrying the three phase voltage into the scrap
pile are consumable material. There are three electrodes, one for each phase. The positions of
the electrodes are controlled by the use of the hydraulic cylinders. The control signals used
to adjust the direction and speed of the electrodes’ movements are the heart of the EAF

control system. The electrode movement controls the actual voltage (in the regulated current



system), as well as the electrical arc length between the electrodes and scrap pile. The flow of
the hydraulic fluid into and from the electrode cylinders is controlled by the use of the
proportional valves. The control signals sent to the hydraulic proportional valves of the three
phases come from the Regulator Loop. The regulator loop is explained with more details in
the next section. The schematic diagram from the power and control components of EAF is

illustrated in Fig. 1.
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Figure 1: The schematic diagram for the power components in EAF.

The scrap metals occupy more volume in comparison to liquid molten steel. Therefore, to
maximize the tonnage capacity of the EAF, the scrap metals are usually dumped into the
EAF in two batches. Each batch is known as a Charge. The idea is to melt the first Charge
and make room to receive more scrap metals in the second Charge. As weli, in the second

Charge, the chemistry of steel is made based on the desired steel grade, and then the batch



moves to the next process. One run of the molten steel with two or more charges is known as
a Heat. As a result of variations in metal scrap types and sizes, and the differences in the
mixed alloys, even the two Heats of steel made based on the same recipe are never identical
in terms of metallurgical properties. For this reason, each Heat will be tracked through the

rest of the steel-making and rolling process for quality control purposes.

Although electricity is the main form of energy for generating heat in the EAF, it is important
to know that chemical energy contributes significantly to the melting process. The chemical
energy comes from two different sources: Burners and oxidization reactions. The burners are
located around the furnace shell. The flame, which is the result of combusting natural gas,
would help melting the scrap metals around the burners. The flow of the gas and oxygen are
controlled by using the flow control valves. Another source of chemical energy is the heat
generated by oxidization reactions. The different impurities, carbon and lime, in the scrap
react with the oxygen in different temperatures and generate heat. The heat generated by the

burners and oxidization is known as Alternative Energy to electrical energy.

During the melting process, Carbon and other alloys are dumped into the EAF to create a
desired grade of steel. Carbon and oxygen are also injected into the EAF from the burners to
refine the impurities in a steel batch. By means of injecting oxygen and carbon, a layer
known as Foamy Slag is formed on top of the molten steel. Due to heat isolation and other
properties, forming the right thickness of Foamy Slag is a critical part of the process.
Although the formation of Foamy Slag and the Alternative Energy control are very
important, they are not the interest of this research. We hope to study those in future projects.

1.2 EAF Regulator Control

The rhain task of the control system inside the EAF is to position the electrodes in the
process of melting. This task in the EAF is performed by the part of the system that is
traditionally called the Regulator Loop. As previously mentioned, the arcs generated from



graphite electrodes carrying voltage (200-1200V) are the main source of the heat generation
in the EAF. In the EAF, which is installed in GAW with the use of Smart Predictive Load
Control (SPLC), the supply of current to the electrodes is regulated to be kept below the
adjustable high limit. Thus, the EAF could always work with the same transformer tap and a
constant voltage supply. On the other hand, the impedance inside the furnace and during the
meltdown is always variable. Since the current is always kept limited by the SPLC,
positioning the electrodes is the only way of achieving the voltage reference (set point). Each
electrode is utilized with a servo valve that could get a -/+10 V as a reference set-point.
Electrodes go up or down depending on the polarity of the voltage reference and with the
speed proportional to the magnitude of voltage reference. Fig. 2 shows the PI control
schematic for the regulator loop. The PI control in this case is a classic adaptive. This means
that the proportional and integral coefficients are changing slightly through the different
stages of the meltdown. The proportional and integral coefficients are stored in the lookup
table, and the meltdown percentage is used as the pointer to them.

Furthermore, the reference set-points for the current and voltage changes in different stage of
the melting process. The existing control system uses a lookup table, built based on the
experience of the power engineer of the plant. Again, the meltdown percentage is the pointer
to this lookup table. The meltdown percentage is calculated according to the total weight of
scrap charged into the furnace and the assumed KWh amount that it takes to melt every ton
of the scrap metal. Then, during the process, the actual KWh is measured and translated to
melt down percentage dynamically. Table 1 shows the example of the data in the regulator
program lookup table per phase. In this table every step is indicated by the number and also a
name.

At present, the set-points of the voltage and current for all of the phases are the same. With
the use of the new version of SPLC, in the near future, the control system would be able to
vary each phase current reference independently. Thus, the regulator is programmed to allow

individual reference set-points for each phase.
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Figure 2: The control schematic for the EAF regulator loop.
Table 1: The threephase voltage reference lookup table.
Phase1 Phase2 Phase3
Volts KAmps | Volts KAmps Volts KAmps
Step Step name Value Value | Value Value Value Value
0 Soft Start 200 49 200 49 200 49
1 Deep Bore in 450 53 450 53 450 53
2 | Meltdown 1 535 55 535 55 535 55
3 Meltdown 2 560 55 560 55 560 55
4 | Meltdown 3 540 55 540 55 540 55
5 | Refining 1 535 55 535 55 535 55
6 | Refining 2 535 55 535 55 535 55
7 | Manual Tap-out 530 55 530 55 530 55




1.3 Objective and motivations

The objective of this thesis is: to achieve the full closed loop simulator of the EAF regulator
loop in Matlab® Simulink® environment. The developed simulator serves as a trail platform

for evaluating the control improvement scenarios before they are tried in the real EAF.

The main motivations for this research are:
1- EAF is a major consumer of energy in the power grid. Therefore, every little
improvement in the process will translate to a substantial cost saving.
2- Experiment with the actual EAF is too risky and, if the modification has not been
evaluated properly, could be very costly and even dangerous for operation.
3- Building the simulator involves cascading the intelligent and conventional
components in the closed loop format. The use of such a platform could be expanded

in solving similar problems in future.

1.4 Previous Work

EAF, due to its significant potential of energy saving and its impact on power quality, has
been the subject of many research. At the beginning, and for the duration of this research, a
literature survey was conducted to discover the extent of these studies and defined the
contribution of this research.

Both conventional and Artificial Intelligent (AI) based system identification methods were
utilized in building the computer models for the components of the EAF. In the conventional
methods [1]-[5], the equivalent R-L circuits in combination with the current voltage (I-V)
characteristic curves of EAF, are generally put in use. Essentially, a set of dominating
equations is required to simulate the time response of the system [1]-[3]. As well, there have

been researches to model the thermodynamic relationship of the EAF [4]. The most
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significant disadvantage of the conventional models is their lack of adaptability with changes
in the process conditions. In the meantime, the EAF is a complex nonlinear system with
variable load during the melting process. Even certain process conditions vary (such as, scrap
type, refractory and electrode conditions) from batch to batch. As a result, adaptability of the
computer model is rather important. There have been assumptions as to how to deal with the
uncertainty and nonlinearity of the process for the majority of the mathematical models of the
EAF. While these assumptions might be tolerable for the models with specific study
purposes, typically the system becomes oversimplified for a general purpose EAF simulator.
Throughout the past two decades, the Al techniques, such as Neural Networks (NN), Fuzzy
Logics and Neuro Fuzzy systems, have been successfully applied in the modeling of the
industrial systems and processes. The process of EAF, due to its nonlinearity, uncertainty and
noisy environment, has been an attractive application for using the Al techniques [6]-[12].
Initially, King and Nyman proposed a feedforward NN to model the dynamics of EAF. The
proposed study focused on intelligent modeling and adjustment of input voltage and current.
It consisted of three layers, and utilized the previous five history states of current and voltage
as inputs to obtain the voltage in its current state. Their experiment was based on a single
phase small EAF. This model failed to take into account the important factor of interaction
between the phases in the actual three phase system.

A series of research has been conducted by Sadeghian and Lavers to apply Al techniques in
the modeling of EAF. To begin with, they used NN in the form of multi-layer Perceptron
and Radial Based Function (RBF) network to model the dynamic behavior of EAF voltage
[7]. In this research, the RBF is designated as an adequate solution because of its fast
learning and flexibility. Furthermore, the study conveyed that the increase in the number of
nodes would reduce the error but ultimately lead to an increased training time. Sadeghian and
Lavers conducted another research for the use of fuzzy systems and adaptive fuzzy systems |
as a natural replacement of RBF network [8], [9]. In these fuzzy systems, the suggested
inputs were current, the current derivative in respect to time, and the previous state of
voltage. The output of the fuzzy system was the new state of voltage. From this research,

Sadeghian and Lavers concluded that the fuzzy systems were trained faster; however,



because of their trial and error nature, they had less accuracy in comparison with RBF
network. Therefore, they provided an intermediate solution in using the Neuro-Fuzzy
structure to achieve both fast training @d reasonable accuracy. As well, Sadeghian and Laver
used the Recurrent Neuro Fuzzy systems as a prediction method for the voltage-current
characteristic of the EAF [10], [12]. The ANFIS structure employs the past history of input
variables, current and voltage, to predict the future state of these variables. The study
demonstrated, for a relatively extensive range of predictions for the system states, more
history states and fuzzy rules were required. Moreover, increasing either variable would
subsequently increase the training time.

There are also numerous studies in the applying of Al techniques in the control systems of
the EAF [13]-[15]. The AI techniques utilized in the EAF were inclusive of NN in the
regulator control [13]. As well, there was an attempt to replace the PID controller in the EAF
regulator with the Event-based NN and fuzzy controller [14]. In order to make use of these
intelligent controls in the fast response systems of the regulator control, fast data collection
and the implementation of the logic in the firmware level is necessary. As the technology of
embedded systems and faster data acquisitions progresses, we will see more of the Al
techniques used in power applications such as the EAF. Moreover, the mix of Al techniques
has been recently more successfully practiced [15] in control of the slower EAF sub-systems,
such as the formation of the foamy slag.

There are also several, commercially available, intelligent controllers for the regulator loop
of the EAF. The methodology and details of these conclusions were never revealed in any

scientific publication; therefore, the literature survey has excluded these solutions.



1.5

1.6

The Research Contribution

Data and process analysis of the EAF regulator loop in order to come up with the
main components of the systems.

Implementing the ANFIS models of the process variables involved in the regulator
loop with completely new set of inputs and outputs.

Adapting some of the conventional power calculation and closed loop control as they
are implemented in the real EAF.

Developing a sequence event generator to simulate the operator manual commands.
Integrating and verifying the entire system in MATLAB® Simulink® environment.
Implementing the fuzzy gain scheduling PID control, instead of the conventional gain

scheduling PI control in the EAF simulator, and measuring the improvement results.

Thesis Outline

The following chapters of this thesis are organized as:

Chapter 2 is a short description of some of the background theory used in this research. In
addition, at the end of this chapter MATLAB® ANFIS toolbox, which is widely used in the

implementation of this research, is explained.

Chapter 3 describes the data collection network used in this research, as well as the list of

most important data items collected in this study. Also, graphical reports and discussions

from the collected plant data illustrate some of efforts that were put in the system analysis

phase of this research.
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Chapter 4 explains the overview of the simulator, and provides more details regarding some

of the MATLAB® Simulink® blocks that were developed for this research.
Chapter 5 discusses the models’ verification process and summarizes the verification results
in the form of tables and graphs. Also in this section the results of using fuzzy gain

scheduling PID controller in the regulator control has been shown.

Chapter 6 concludes the contributions of this study and indicates the prospective work for

this research.
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Chapter 2

The Background Theory

In this chapter some of the theories and techniques used in this research are briefly reviewed.
In order to understand ANFIS, which is coming from bonding of fuzzy systems and neural
network, some background knowledge of both of these Al techniques are reviewed. Then in
order to understand the training methods used in ANFIS to minimize the errors of the
models, some basic concepts from optimization techniques are reminded. At the end of this
chapter the MATLAB® ANFIS tool box which is used in implementation of the models is
briefly explained.

The purpose of this chapter is not to explain these concepts in complete. It is just for the
review purposes and is written for somebody already familiar with these fields. Most of the
theories and the symbols presented in the formulas of this chapter have been captured from
[36]-[37]. As a practical example of fuzzy logics in section 2.2, the application of fuzzy
logic in gain scheduling of the PID controllers have been selected from [17]. The reason of
choosing this particular application is because of its use in this research. The suggested
| technique of gain scheduling was épplied in regulator loop and the results are illustrated in

Chapter 6.
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2.1 Fuzzy Logic

2.1.1 Fuzzy Sets

Fuzzy set is a term that is used in contrast with crisp set. A crisp set is based on the

traditional definition of the set that draws clear borders in the input space between the
members belonging to the set and the members excluded from the set. As an example R*,

R* = {x| x>0}, which are all the real numbers greater than or equal to zero constitute the
Crisp sets.
If we use X as a space of objects and x as a member of this space, a classic set of 4 could
be defined as 4 — X . In the space of X , we could define all the members of 4 as pairs such
as: (x,1) where x € 4 and a pair (x,0) wherex¢ 4.
If we start positioning numbers between 0 and 1 to show the partial belonging of some space
members of X to 4, we could define a new but very common sense concept — fuzzy set - as
it is shown by pairs like:

A={(xp, ()| xe X)

M
In these pairs, u,(x) is called Membership Function (MF) and maps the space of X,
denoted by universe of discourse, into membership value between 0 and 1.
Membership functions could have different shapes and even be custom-made to have the best
mapping for solving a particular problem. MATLAB® has the most popular membership
functions. Fig. 3 shows some of the most popular membership functions in MATLAB®. In

the whole of membership functions, the vertical axis is a number between 0 and 1.
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Figure 3: Example of membership functions.

2.1.2 Fuzzy Operations

By using fuzzy operations we could combine two or more fuzzy sets and conclude a new

fuzzy set. The most popular fuzzy operations are as follows. .

The union of two fuzzy sets 4 and B with the membership functions of u ,(x) and ug(x)

is a new fuzzy set C with the membership function of pc(x) as:

C=AUB=A.0R B where pc (%) =max(i4(x), 5 (x)) = (9 V 15 (%)

@)

Similarly, the intersection of two fuzzy sets A and B with the membership functions of

1 ,(x) and pp(x) is a new fuzzy set C with the membership function of puc (x) as:

14



C=ANB=A4.AND. B where pc(x) =min(u (), 15 (5)) = 114 () A 15()

€))
Also the complement of fuzzy set 4 with a membership function of u ,(x) is defined as:

A=—A=NOT. A= p3(x)=1-p4()

@
2.1.3 Fuzzy Rules and Reasoning

One of the main advantages of the fuzzy system is in its use of the linguistic values, which
are defined by fuzzy sets in the universe of discourse. The linguistic variables and values are
what we use in everyday conversation. The linguistic variable could take values such as: soft,
tall, fast, dark, poor, far, etc...

The purpose of fuzzy rules is to mimic the decision making process that the brain undergoes
with its existing knowledge. The fuzzy rules are the core of any fuzzy inference system,
which decodes the decision making process based on human expertise, science or scientific
observation. In its simplest form, the fuzzy rule looks like the following If, then phrase:

Ifxis Athenyis B,

where 4Aand B are linguistic values defined in universe of discourse of X and Y . The part
between ‘if’ and ‘then’ is called antecedent or premise and the part after ‘then’ is called
consequence or conclusion. In fuzzy reasoning, by applying the current input data to a set of
fuzzy rules we want to reach to a conclusion. Usually the inputs to a fuzzy system are non-

fuzzy or crisp and the output(s) are expected to be crisp, as well.
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2.1.4 Fuzzy Inference Systems

Fuzzy inference systems is a systematic way of using stored rules and membership functions
in calculating the output(s) of the fuzzy systems based on it’s current input(s). The most
popular fuzzy inference systems are Mamdani and Sugeno. Both of these systems are
common in most of the fuzzy inference process steps. In general, the rules in fuzzy systems
are nonlinearly mapping the fuzzy regions in premise parts (input space) to the fuzzy regions
specified in consequent parts (output space). The order of the rules in fuzzy system does not
matter. The system’s final output is calculated when all of the rules are applied. The effect of
a rule in the final output is called the weight of the rule. Unless specified otherwise by the
system designer, the effects of every rule in inference process are equal. In this case, some of
the rules with heavier weight could have more effect on calculating the overall system
output.

In Mamdani fuzzy models, if the inputs are crisp, they apply to their associate membership
functions. The result is another value between 0-1. This step is called Fuzzification. In the
next step, all of the premises of the rules will be solved based on the defined Fuzzy
Operations (AND, OR, NOT). The result of fuzzy operation in each rule indicates the firing
strength of the rule. The firing strength (between 0-1) is used in the Implication Operation,
which is another operation to qualify the consequent MF. The result of the qualiﬁed MF in
consequents of the rules will then be combined in the Aggregation Operation. The result of
the aggregation operation is one overall output for the system. In most of fuzzy systems,
especially the fuzzy control system, the result should be in crisp logic. The last operation,

known as Defuzzification Operation, will conclude a crisp number from overall fuzzy output.

In order to visualize all of the steps in the fuzzy inference, simple fuzzy systems with two
inputs and one output are shown on Fig. 4. In this example, inputl is using three Gaussian
and Sigmoid MFs, input2 is using two trapezoidal MFs, and the output is using two
triangular MFs. The fuzzy operation is an AND (minimum) in all of the premises of the rules.

16



The implication operation is Minimum and aggregation operation is Maximum. The
defuzzification method is Centriod, which will be explained shortly. Based on the six rules
listed in Table2, by applying the crisp inputs of [2, 4] the crisp output of 5.03 has been

calculated. The nonlinear mapping of inputs into the output space is shown in Fig. 5.

i @z.”;‘c:!ia‘;ts
ot 122 gt hput_2=4 i3 .~.~41~i527¢!;agg¢ef§§w}
Output = 5.03
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Figure 4: Fuzzy inference process with two inputs and one output.
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Figure 5: The nonlinear mapping of input and output space.

Table 2: An example of fuzzy rules

Inputl Operation Input2 Output

In1 MF1 AND In2 MF1 Out_MF1
In1_MF1 AND In2 MF2 Out_MF1
In1 MF2 | AND In2 MF1 Out_MF2
In1 MF2 | AND In2 MF2 Out_MF1
Inl1_MF3 AND In2 MF1 Out_MF2
In1_MF3 AND In2 Mf2 Out_MF2

In Mamdani fuzzy models, the methods of fuzzy operations; implication, aggression and
defuzzification, are not limited to the use of methods in this example. Even
MATLAB®allows the programmers to design custom-made functions for every one of the
fuzzy inference steps, if they wish. Mamdani fuzzy model is the only one that has the

defuzzification in its process. The most common method of defuzzification is Centroid of
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Area (COA). For defuzzifying a fuzzy set A of a universe of discourse of Z in COA method
we have:

Jppa@)zds

COA =
IZ H4q (z) dz

)
There are also other popular methods of defuzzification such as: bisector of area, mean of
maximum, smallest/biggest of maximums [36]-[37].
Mamdani fuzzy model works well, when the set of rules could be built based on the
knowledge of experts or scientific observations. Sugeno Fuzzy Model is built to have more
flexibility in terms of building the rules automatically based on the recorded inputs and
outputs of the systems. In Sugeno fuzzy systems, the premise parts of rules are still fuzzy 1t;ut
the consequent parts are a function of the inputs:

if x is A and y is B then z = f(x,y)

where xand y are the systems inputs, 4 and B are fuzzy sets and z is usually a polynomial

function of the inputs. The order of polynomial indicates the order of Sugeno systems. If we
choose the order of polynomial as zero, a singleton function in the consequent of the rules,
Sugeno model then becomes a powerful modeling tool for nonlinear systems. A significant
advantage of Sugeno models in comparison with Mamdani is the avoidance of the time-
consuming process of defuzzification, since the consequent parts are already crisp. Usually,
the straightforward weight-averaging method is used to conclude the overall crisp output of

the system.

19




2.2 Fuzzy PID Controllers

Fuzzy systems have been applied in various domains. One of the most common applications
of fuzzy systems is in control systems. These types of controllers are typically known as
Fuzzy Controllers. The Proportional Integral Derivative (PID) controllers are the most
prevalent types of the linear closed loop controls. There has been extensive research in the
past two decades to employ fuzzy systems in the field of PID controllers [16]-[30]. The
application of fuzzy systems in PID controllers is referred to as fuzzy PID controllers. Fuzzy
controllers are used both in tuning the classical PID controller’s coefficients and as a
replacement for classical PID controllers. This section has summarized the fuzzy systems’
method utilized to tune the coefficients of the classic PID controllers, known as Gain
Scheduling [17]. Fuzzy PID Gain Scheduling is an example of the fuzzy controls. Due to its
potential for the future use in intelligent control of the EAF, it is selected as the practical
example of the fuzzy logic. Later on in Chapter 7, the results of implementing the fuzzy gain
scheduling PID in regulator loop of EAF are illustrated.

In fuzzy gain scheduling, the conventional PID controller and the fuzzy system work
interactively alongside each other. The conventional PID controller in continuous time

domain can be written as:
G.(s)=K L vk
= +—+K s
c\s P d
(6)
where, K p,Kl-,K 4 in sequence represent the coefficients for proportional, integral and

derivative parts.

In the discrete domain with the sample time ofTg, the controller output of u(k)can be

calculated as:
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u(k) = K pe(k) + K;Ts S e(i) +%Ae(k) .
' S

(M
where, e(k)denotes the error, the difference between the desired signal reference and the
actual process output. Furthermore, Ae(k)=e(k)—e(k—1) is the difference between the

error signals of the current sample versus the previous sample.
If we simplify the system by assuming a linear relationship among the integral and

derivative time constants with a coefficient of ¢ , then we can compile:

Iy =aly
2
K _Kp
aTd aKd

®)
where, T;and T, are the time constants for the integral and derivative parts. The function of

the fuzzy gain scheduler is to observe the variations in e(k) and Ae(k)signals and determine

the adjustment required onK ,,Kjanda . The changes suggested by the fuzzy gain
pBd

scheduler are based on the progressive response of the system. Using the PID gain scheduler
alongside the conventional PID, renders the PID controller adaptive to the dynamic changes
in process. The interaction between the conventional PID controller and fuzzy gain scheduler
are illustrated in Fig. 6.

Zhao and Isaka [17], as illustrated in Fig. 7, used triangular membership functions to fuzzify
e(k) and Ae(k) . In this fuzzification, the linguistic values of NB, NM, NS, ZO, PS, PM and
PB sequentially represent Negative Big, Negative Medium, Negative Small, Zero, Positive
Small, Positive Medium and Positive Big. A set of fuzzy rules illustrate the modifications in
e(k) and Ae(k) in the premise of the rules and suggest the appropriate changes on K p» Ka

and o based on the membership functions, as shown in Figs. 8 and 9. As we could observe

in Fig. 9, the membership functions suggested for o are singletons. In Fig. 8, the S and B
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represent the linguistic values of Small and Big and the membership functions are chosen
sigmoid.
The fuzzy rules for this system are summarized in the Table 3. Each element in this table

sequentially represents K 5, K; and o in the consequent of the rules based on the current

values of the premise values of e(k) and Ae(k). For example, if we refer to the element of

the table located at second row and the seventh column, we could interpret the fuzzy rule as

follows:
If e(k)is Negative Medium and Ae(k)is Positive Big
Then K pis Small and K yis Bigand a is 3.
e(k) R Fuzzy PID Gain
Ae( k).' Scheduler
1
Kp. Xi Kg
/ Actual
Reference Dlant
e(k) Conventional | Flant Outout .
iy *| PID Controller (Process) -
¢ ,

Figure 6: The Fuzzy Gain Scheduling PID Controller.

Zhao and Isaka demonstrated a better time response of fuzzy gain scheduling PID in

comparison with a well tuned classic PID [17].
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Figure 9: Singleton membership functions for linear coefficient to relate integral and
derivative time constants.

Table 3: PID Gain Scheduling rules

Ae(k) >
(k) NBE |NM |NS |ZO |PS |PM |PB
NB BS2 | BS2 |BS2 | BS2 |BS2 |BS.2 | BS2
NM SB3 |BB3 |BS2 |BS,2 |BS2 |BB3 |5.B3
NS S.B4 |5,B3 |BB3 |BsS2 |BB3 |55,3 |SB4
Z0 S.BS5 |5B4 |SB3 |BB3 |S5,3 |SB4 |S,B5
PS S.B4 |S5B3 |BB3 |BsS,2 |BB3 |S,B,3 |SB4
PM S.B3 |BB,3 |B52 |BS,2 |BS,2 |BB3 |S,B3
PB BS2 | BS2 |BS2 |BS2 |BS,2 |BS.2 |BS.2

24



2.3 Optimization

3.3.1 System Identification

System identification is about observing inputs and outputs of the system to identify the
relationship between the input and output in order to predict the output of the system at any
other applied inputs. The result of this identification could be in the form of parameterized

function such as:
y=f(u;0)

®)
where, yis the model output when the input vector of u applies to the system and @ is the
parameter vector. Tuning the model denotes adjusting the parameter vector of # to minimize
the errore, which is the difference between the actual output of the system ¥ and the model

output y.
e=Y-y

(10)
Usually, tuning the model requires many iterations, where in each iteration the error is
calculated and compared with the acceptable threshold. In order to minimize the error various

optimization techniques need to be utilized. Some of these techniques are discussed in this

chapter.

In order to use computers in system identification, first the system identification problems
have to be defined in matrix form. Later on in this chapter the derivative optimization
techniques are covered. Before we precede to the details of these optimization techniques,

~

let’s refresh with a few matrix derivative definitions.
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2.3.2 Least-Square Estimator

Later on in this chapter the Least-Square technique is used to estimate the parameters of the
ANFIS models. Therefore it is beneficial to have quick review of this technique. Assuming
that m data pairs have been collected to train the system, the pairs of inputs and outputs

could be shown as: {(y;,y;)i=1,...m}. The optimization goal is to minimize the model

error. If we deal with a linear system, the training data could be presented as the set of m

linear equations, if the system assumed to be linear on its parameters as:

Sy + fo(u)0 +-+ f,(1)0, = 1,
S1@w)by + fr(ug)0s +-+++ [ (u2)6, = y2

S )0 + fou)0p ++++ [ (u2)0y = Y-

11)
We could show the above set of linear equations as the matrix form of:

A0 =y

(12)
S1Quy)- fu(u1)

where A=|: :

fl(um)“'fn(um)

The i row could be show as aiT = [fl ;)5 S (U )]

It is necessary for the number of training data to be greater than or equal to the number of

pérameters (m=n). If A is square (m =n) and nonsingular, we could solve the equation:
0=A"1y

(13)

However, the equation has to be modified to accommodate the error vector of e to account

for noise and model errors:
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AO+e=y
(14)
Where e=y— A0

N
Rather than finding the exact solution to the set of equations, we want to find # =60 to

minimize the sum square error defined by:

E(6)= _%1 (i —al 6)°

(15)
A
The square error is minimized when OE(0) =0atf=40 -
. . N
Least Square Estimator (LSE) produces the minimum point of 8 =6 at:
A
AT40=4Ty
(16)
(for proof please see [36]).
N
If AT A4 is nonsingular, @ is unique and is given by:
A 4T -1 4T
0=(A4"4A) A"y
17)

If AT A4 is singular then the concept of generalized inverse can be utilized to find the

minimum.
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2.3.3 Gradient Based Optimization Method

The derivative based optimization methods are mostly based on the concept of gradient
decent techniques. The subject is briefly explained here.

Suppose we have an objective (cost) function of E defined on an n-dimensional input space
of @ as:

0:[91’...’9'1]7

(18)

In finding the minimum of, we choose an iterative descent method and in every iteration

step the 8, is determined by a step down from the current point 0, .,

next

In the direction vector d : |

0 0 +nd

next = “now

(19)
In this equation, 1 is called step size and indicates to what extent to proceed in the direction
of d . In order to achieve the local or global minimum, d and n has to satisfy the following
inequality:

E@@next) = E@now +1d) < E@now)
(20)

If the cost function E is a differentiable function, the first derivative of E is called gradient
denoted by g, as of:

T
def[ 6E(0) GE(O BE(8)
g(0)=VE®)) ={ aé,)’ 652) e ]

@1)
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We wish to find a value of 0,5y, that satisfies the following:

3E(0)

8next) = 79_ 0=0poxt = 0

(22)
In the gradient iterative techniques, we continue the algorithm until the objective function is
smaller than the predefined threshold or the computation times out. In order to move to the

direction of minimum, if d=-g(@) then d is the Steepest Decent direction at a local
point8,,,,. Therefore, using the steepest decent method, we could simply calculate the new

points based on:

O next =Onow —18(6)

(23)
2.4 Adaptive Networks

Adaptive network is a connection of cells or nodes. In this type of network each node
performs a parametric function on its inputs and passes the result for processing in other
nodes. The nodes are organized in layers. The output of one node is usually used as input of
another node in the next layer (feedforward network). The first layer connected to the inputs
is called the input layer and the last layer connected to the outputs is called output layer. The
layers in between are known as hidden layer. The nodes are usually identified with their
layer number and their corresponding order (top to bottom) in the layer.

Fig. 10 shows a typical adaptive network with three layers, two inputs, and two outputs.
Some of the functions have adjustable parameters and others are fixed. In this figure, the
circular nodes represent the parametric nodes and the square nodes are fixed. By adjusting
the parameters of the adjustable nodes in adaptive networks, we could achieve the desired
nonlinear mapping of the input space into the output space. The process of adjusting the
parameters of the adaptive network is called learning. There are two different methods of
learning for adaptive networks. If the desired adaptive outputs of networks are known for the
presented inputs, the learning method is called supervised learning (training). In contrast, the

unsupervised learning methods are used when the desired outputs are not known. In this
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research, we focus on one of the most popular methods of supervised learning known as
backpropagation. The backpropagation method is explained more in the next section.

As it is shown in Fig. 10, the output of each node is indicated with the index of layer number
and node number. The adaptive network is called Feedforward when the direction of the
connections between the nodes is forward, indicating that the output of each node in every
layer proceeds to the next layer in the network. If there is any feedback link existing in the
network (connections from right to left), the network is called recurrent. The Feedforward

adaptive networks are used in this research.

Layer 0 Layer 1 Layer 2 Layer 3

Figure 10: A typical feedforward adaptive network.

2.4.1 Backpropagation

Backpropagation is one of the most effective and popular methods of supervised learning for
adaptive networks. The idea of back propagation is to introduce a training data set with P
entries. For each one of these data entries, the desired output is indicated by the data set D.
For example, for pth input data (/< p<P) there is a dj representing the desired out put. If
we consider a multilayer feedforward network with L layers and use the index / for layer

number, where(! =0,1,--+,L) ,/=0 denotes the input layer and /=L the output layer. If
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there are N nodes in the final layer, the error when we introduce the p™ member of the input
vector can be calculated by the use of sum of squared error formula as:

N(L)

Ep= 2.(dg _xL,k)z-
k=1

24)
In this formula x 1 Tepresents the k* nodes output in the output layer of L when the p®

input has been fed to the network. In order to get the best performance from the Neural
Network, we have to minimize the error. Backpropagation utilizes the steepest descent
optimization method to minimize the error. The output of each node in the multilayer

network at the location of layer /and node i is a function f() of its inputs (the previous

layer outputs) and the parameters of its own function (e, B,7,...):
X = S (Fo s XN, @ B Y5 )

(25)
Therefore, when the parameters of one of these node functions (anywhere in the network) are
changed, it not only affects its own output but also the final output of the network in the last
layer. As a result, the measured error will also be changed.
In order to use the steepest decent method in minimizing the error, we must first obtain the
gradient vector. The method is referred to as backpropagation since the gradient vector
passes from the derivative of the output layer towards the input layer. In taking the
derivative, rather than ordinary partial derivative, we use ordered derivative with the symbol

+

of 9 . The ordered derivative of measured error E, with respect to the output layer of node

i in the layer / is defined by:

(26)
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.The reason for the use of ordered derivative is the fact that the ordinary partial derivative of

OE . .
a—xﬂ for all the middle layers (I # L) is zero. However, we know that the output of every
1,i

node in the middle layers affects the output of measured error indirectly. In calculating

theg; ; when (/ = L), it simply means for the output layere, ; = -2(d; —x, ;) . For the middle

(hidden) layers, whereby using the chain rule from basic calculus, we have:

+ +
e, . = 0 Ep _ N+ 0 Ep afl+l.m ) _ N(1+1)8 afl+l.m
Li = = - = I+lm A
0%y m=t  OXi41m 0%y, m=1 oxy
— ——— . “HF—‘
error signal errorsignal  P.derivativeof
atlayer/ atlayer/+] node functionlayer/+/

- @27
The above equation is the basic formula for backpropagation. It illustrates that we could
always start from the last vlayer, and propagate the error signals backward iteratively to the

desired layer. This equation in algorithmic form could also be shown as:

aEP —_ afn+l + Z € Ef;!_

g, =——=

- J
ox; 0x; icjsn = 0%
e —

Directeffectof  Indirect effect
x.onE
i Tp
(28)
The gradient vector is defined as the derivative of the error measured with respect to each
node function parameter. By applying the chain rule for the gradient vector, we have:

0*E, _0*Ep ¥ __ Vi
oa  ox,; oa " da

(29)
In this equation, a is the parameter of the i™ node at layer /. This method is used for online-

training; where the parameters of the adaptive network would be adjusted subsequent to

applying each member of the input vector.

For the training set of P, we can calculate gradient vector as:

32



otE _ §8+Ep
oa oa

p:
(30)
This equation is used for offline (batch) learning when the parameters of the adaptive

network are corrected once all the training data has been applied. With applying the steepest
descent, the steps of updating the parameter o is defined as:

o'E
Ao =—n——
T oa
(31
In this equation, nis the learning rate and can be calculated from:
pe k
OE o
1/%( Py
(32)

kis called the step size and illustrates how far we have moved along the gradient in each
iteration. In order to use backpropagation learning method, the adaptive network node

functions have to be piecewise differentiable, and requires to have feedforward structure.

2.5 ANFIS

Due to the adaptive network flexibilities, they are suitable as solutions to many linear and no-
linear problems. A specific case of adaptive network, which behaves similar to the fuzzy
systems, is the ANFIS structure. ANFIS employs the strength of both fuzzy systems in
knowledge presentation and adaptive networks in learning and adaptaﬁon. .

The following example captured from [36] illustrates the ANFIS structufe. Take into
consideration a simple Sugeno fuzzy system with two inputs and a single output with the

following two rules:
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Rulel: IfxisAj and y isBj, thenf; =p;x+qy+x

Rule2: If x is 4, and y isB;, thenf, =pyx+q,y+1,

Fig. 11 illustrates the equivalent five-layer ANFIS structure for this fuzzy system. In the first
layer, every node is adaptive and the output applies the A or B membership functions into the

inputs. Furthermore, the crisp inputs of x and y are fuzzified in this layer. In this example the

output of node 1 in layer 1 is:

Op1=Hyq ()
(33)
And similarly the output of the 4™ node in the first layer is:
O4 =Hp, »
(34)

Next, the second layer with the fixed nodes applies the product of all incoming signals to
calculate the firing strength of each rule. The operation in the nodes of this layer depends on

the T-norm method that is chosen. The output of the nodes in this layer can be shown as:

Og,i =w; = pg; (W)up, (x), i=1,2

(35)
The fixed nodes in the third layer perform the normalization to calculate the ratio of each

rule’s strength to the sum of all rules’ strength. The outputs of this layer could be shown as:

(36)
Subsequently, the adaptive nodes in the forth layer applies the consequent polynomials with

the coefficients of the normalized weight for the rule:

Oy = wif; =wi(pix+4;y +1;)

G7
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Finally, in the fifth layer, the summation of all the outputs from the forth layer is calculated
as the single output of the network:

2wifi

0=0s5; =X wif; =
ST Iw
1l

(38)

Wa T
X ¥y

1st Layer 2nd Layer 3rd Layer 4th Layer 5th Layer
Adaptive Nodes Fixed Nodes Fixed Nodes Adaptive Nodes Fixed Nodes
Premise Product of Normalized Consequent Summation
Parameters inputs for firing firing strengths Parameters gf the overall
The degree of strengihs of the Output
membership rules

Figure 11: An example of ANFIS general structure (Figure with slight modification has been
borrowed from [36]).

It is imperative to mention, there is a proved theorem that claims Radial Basis Function
Neﬁvork (RBFN) under certain conditions has an equivalent function of fuzzy structure. As a
result, any leaning method applicable in Neural Network could be practicéd in ANFIS
structure.
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Moreover, ANFIS is a zero-ordered Sugeno model with unlimited approximation power for
modeling the nonlinear systems. This property makes ANFIS a favorable tool for

nonparametric (black-box) modeling of nonlinear systems.
2.5.1 The Hybrid Learning Method

Although backpropagation is used widely as a learning method for adaptive networks, it is
slow in converging. The hybrid methods of backpropagation and LSE converges rapidly and
could be applied for nonlinear optimization. If the adaptive network has just one output, the
output has a linear relationship with some of the network parameters. In this method, these
parameters are separated and the LSE general formula is used to estimate them, as training
set are introduced. The combined method could also be used as an either off-line or on-line

learning method.

In the ANFIS structure, we have two types of adjustable parameters for premise (membership
functions) and consequent (the first degree polynomial) of the fuzzy rules. Considering the
premise parameters to be constant, the final single output of the ANFIS structure is a linear
function of the consequent parameters. In the previous Sugeno ANFIS structure with two

inputs, a single output, and two rules, a linear relationship can be illustrated as:

f= ;1(P1x+¢11J’+r1)+V7’2(P2x+42y+r2)
=(w1x) py + W1)gq1 + (W) + (w2x) pa + (W2y)qp + (w2)r

(39)

Consequently, we can establish iteratively a learning system that utilizes the LSE in the
forward passes to estimate the consequent linear parameters. Subsequently, Gradient descent
(backpropagation) could be used in the backward pass to adjust the premise parameters. The
advantage of combining the two methods is that the algorithm will converge more rapidly by

the use of LSE, in comparison with the exclusive use of backpropagation.
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As Jang has discussed [36], the ANFIS learning algorithm is dependent on the volume of
data and computation restriction. In cases where we have significant amount of data, tuning
the premise parameters is recommended. On the other hand, when we have a rather trivial
size of data with only few fuzzy rules from human expert, tuning the membership functions

is not such a good idea.

2.5.2 C-Means Clustering

When we deal with relatively large input data set, clustering helps to save computation time
and provide a better chance for algorithms to converge. In general, clustering creates several
groups in the input space and appoints a member of each group as a representative or the
center. One of the most popular clustering methods is called C-Means (or K-means). It is
most often used as an off-line clustering method or rather, as a means of pre-processing a
batch of data before the final processing in speech recognition, image processing, and black-
box modeling.

In C-Mean algorithm, the collection of nvectors X j»J=1--,n partitions into
C groups Gj,i =1,---,C. The representative of each partition or group has the minimum
distance from all of the other members of the group. Ifthe C; represents a cluster center, the

cost function could be shown as:

C (9 C 2
J=3J;i=Y| XdX-C)|=X| X|xx-Ci
i=1 i=1 k,xkeGi i=1 k,xkeGl.

(40)
In this equation, d(...) is not an actual function, rather only represents the general measured

distance. While, in the latter part of the equation, Euclidean distance is specifically used.
Initially, the centers of the clusters C;,i=1,---,C are selected randomly. Then, we form a
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membership matrix ofU, where the members in the conventional C-Mean algorithm are

either zeros or ones.

u =1 if"Xj —C,-“ZS"XJ-—CK 2, foreachk #1i,

uj; =0 otherwise.
(41)
When u; ; is one, it signifies that the jth element of vector X ; belongs to groupi. In other
words, when u; ; is one, C; is the closest center among all of the centers to the data point
of X ;. Since in the conventional C-Mean algorithm each member of U matrix is either one

or zero and each data element belongs to one and only one group, the following properties

are obvious.

C
Zuif =1’Vj = l,---,n

i=1

(42)
Cn
2 2uj=n
i=1j=1
(43)
Therefore, the optimum center of C; in each of the iteration can be calculated from:
1
Ci= Gl XX
i k,xk GGi
(44)

where |G;| (is the size of G;) = > -
The algorithm could continue until the cost function is less than the accéptable threshold.
Because the centers are selected randomly at the beginning, the algorithm may need to be

repeated several times for better results.

Moreover, C-Mean clustering has been implemented as Fuzzy C-Means Clustering (FCM) as

opposed to conventional C-Means. In this method, each member belongs to a cluster (group)
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with a degree of membership between 0-1. Therefore, the componehts of the U matrix are

numbers between 0-1. In this approach, each data member hence belongs to multiple clusters

with different membership degree.

2.6

MATLAB® ANFIS Toolbox

MATLAB® has a built in GUI for ANFIS data modeling. This toolbox is easy to use but has

certain restrictions.

It only supports single output models. ~
The fuzzy system has to be first or zero order Sugeno type.

All of the output functions must be the same type (either linear or constant).

The defuzzification method only accepts weight averaging.

All of the rules’ weights are one and hence cannot discriminate amongst the rules.

It is restricted to predefined membership functions and user defined functions cannot

be accepted.

Fig. 12 illustrates MATLAB® ANFIS GUL The steps to build an ANFIS model are
grouped in GUI at the bottom menus from left to the right. These steps are:

Importing the data from the workspace or disk;

Generating the fuzzy inference system for the imported data;

Training the ANFIS model; and

Finally, validating the model to plot its output versus the trained or another set of

data.
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-} Anfis Editor: Untitled

A0 T S B 4

Figure 12: MATLAB® ANFIS GUL

The data loaded into the ANFIS GUI could be utilized either for training or the validation of
the model. It may also be used for checking to avoid over fitting the model during the
training. If there is a saved fuzzy structure, as long as it complies with the MATLAB®
ANFIS toolbox, it could be called into this GUI for further training or test. As well, an
ANFIS structure could be built automatically by the toolbox based on the loaded data.

Once data is loaded, we have two options for the toolbox to generate a new ANFIS structure;
the Grade partitioning or sub-clustering. In Grade Partitioning, the default number of

membership functions is three per input. Membership functions could be selected from any

40



of Triangular, trapezoidal, Gaussian, generalized bell, sigmoid, or pblynomial curves types.
The default is generally set at Triangular. In this step, the default number of the input
membership functions and their types could be changed from the default values.
Furthermore, the output membership functions are selectable between constant or linear type
(zero or first degree Sugeno type). If we choose to use Sub-clustering, the Range of
Influence, Squash Factor, and Accept and Reject Ratio could be either defined by the user or
remain as the default values.

After generating the fuzzy structure, the trained data will be used to teach the model the
indicated error tolerance and the number of training rounds (epochs). The optimization
method is also selectable amongst the simple backpropagation and the hybrid of
backpropagation and the least square. In the training step, the system adjusts the number,
type, and parameters of the membership functions to optimize the output error. As well, the
rules are automatically generated by the system. Ultimately, the output of the model could
be plotted with the training or test data on the same graph and the average error will be
shown at the bottom of the screen. Fig. 13 illustrates a typical Fuzzy Inference System (FIS)
structure view in ANFIS GUIL The structure consists of the inputs, input membership
functions, the rules, the output membership functions, and the output. The rule viewer could
be employed to graphically observe the response of the ANFIS on particular input vectors.
Fig. 14 shows an example of this response in ANFIS GUI
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Figure 13: The typical FIS structure generated by MATLAB® ANFIS toolbox.
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Figure 14: The FIS rule viewer generated by MATLAB® ANFIS toolbox.
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Chapter 3

Data Collection

All of the data used in this study has been collected from the EAF in GAW. In this section,
the structure of the data acquisition will first be discussed, followed by the list of the
significant data used for this analysis. Initially in this research, to understand the process and
correlation of the data, the analyses were done on the collected data. In the last section of this

chapter, some of the analyses are illustrated with graphs.

3.1 Data Acquisition System

In EAF of GAW, multiple Modicon type Programmable Logic Controllers (PLCs) are
responsible for controling the EAF processes and operations. In the Fall of 2004, a PC-
based data acquisition system (iba™ ) was installed in the network with the PLCs to collect
the data for this project and other power analysis in EAF. This PC-based data acquisition
system is capable of collecting the data through Ethernet TCP/IP. The sample time to collect
the data on each group of signals could be adjusted from one ms to hrs. In the first phase of
the project, since most of the power data was already filtered and averaged in the PLCs, the
decision was made to start with one sec sample time. The sample time in this case was
selected experimental. Because the earlier version of the Modicon PLCs cannot
communicate through Ethernet TCP/IP, they are all networked together and to the newer
version of Modicon PLC (Quantum series) through Modbus Plus protocol. The Quantum
PLC then uses its Ethernet TCP/IP port to connect to the PC-based data accjuisifion PC. In
fact, in this network architecture, the Quantum PLC is used just as a gateway to convert the
data between Modbus Plus and TCP/IP protocols. Fig. 15 shows the general overview of the
data collection network installed in GAW.
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Figure 15: The data acquisition system network diagram.

3.2 Collected Data Items

In the data collection phase of this research, more than one hundred signals have been
collected. Among all of these, Table 4 lists the most crucial signals and their corresponding

units. The signals’ names are the same as the variable names for the signals in the simulator

program.

Naming convention: In order to identify each one of the phases in both side of the EAF

transformer, the three phases are named 1B, 2A and 3C. This naming convention is used

through out this report.



Table 4: The important collected plant signals.

NO | Signal Name Unit Description
1 Kwh KWH Electrical Energy Consumption
2 MD Percentage % Meltdown percentage in each charge of the EAF
3 AltEn KWH Alternative form of energy generate heat from
combustion in the burners and material oxidization
4 PhiB Volt Volt Measured voltage of phase 1B in secondary side of the
EAF transformer
5 Ph2A_Volt Volt Measured voltage of phase 2A in secondary side of the
EAF transformer
6 Ph3C_Voit Volt Measured voltage of phase 3C in secondary side of the
EAF transformer
7 Ph1B KA KAmp Measured active current of phase 1B in the secondary |~
side of the EAF transformer
8 Ph2A_KA KAmp Measured active current of phase 2A in the secondary
side of the EAF transformer
9 Ph3C_KA KAmp Measured active current of phase 3C in the secondary
side of the EAF transformer
10 | Ph1B Ref Volt PLC voltage reference for phase 1B
11 | Ph2A Ref Volt PLC voltage reference for phase 2A
12 | Ph3C Ref Volt PLC voltage reference for phase 3C
13 | PhiB_Reg Integer-Count PLC regulator output goes to proportional valve of the
(0 _4095) electrode in phase 1B
14 | Ph2A Reg Integer-Count PLC regulator output goes to proportional valve of the
(0 4095) electrode in phase 2A
15 | Ph3C_Reg Integer-Count PLC regulator output goes to proportional valve of the
(0_4095) electrode in phase 3C
16 | PhlB_Pos Integer-Count The actual position of the electrode in phase 1B read
(0 4095) from position encoder
17 | Ph2A_Pos Integer-Count The actual position of the electrode in phase 2A read
(0 _4095) from position encoder
18 | Ph3C_Pos Integer-Count The actual position of the electrode in phase 3C read
(0_4095) from position encoder
19 | PhlB Re KA KAmp The measured reactive current for phase 1B
20 | Ph2A Re KA KAmp The measured reactive current for phase 2A
21 | Ph3C Re KA KAmp The measured reactive current for phase 3C
22 | Phi1B MW _ MW The active power measured for phase 1B
23 | Ph2A MW MW The active power measured for phase 2A
24 | Ph3C MW MW The active power measured for phase 3C
25 | PhlB On No Unit Binary(0/1) | Current flowing into the phase 1B
26 | Ph2A On No Unit Binary(0/1) | Current flowing into the phase 2A
27 | Ph3C On No Unit Binary(0/1) | Current flowing into the phase 3C
28 | PhiB Cos No unit, 0-1 The calculated COS o for phase 1B (Power Factor)
29 | Ph2A Cos No unit, 0-1 The calculated COS ¢ for phase 2A (Power Factor)
30 [ Ph3C Cos No unit, 0-1

The calculated COS o for phase 3C (Power Factor)
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3.3 The Process Analysis Based on the Collected Data

In this section, we will review several snapshots of graphs captured from the data acquisition

system to better understand the process and data correlations.
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Figure 16: Energy consumption during the melting process.

In Fig. 16(a) illustrates meltdown percentage, Fig. 16(b) shows the electrical energy (Kwh)
on and Fig. 16(c) represents the alternative energy (Kwh). The meltdown percentage includes
both electrical and chemical energy. The total energy (Kwh) to melt down every ton of metal
scrap is a known number. Based on the measured scrap weight dumped in the EAF and the
measured consumed energy (Kwh), the meltdown percentage is calculated. Fig. 16 also
shows the two Heats in a row with each of them having two Charges of the scrap dump. The
meltdown percentage for the first Charge initiates at zero and progresses to 100. By reaching

100 percent meltdown, the first charge concludes. Following a short delay, the crane dumps
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more scrap metal into the EAF and the melting process resumes. As we could see from this
figure, the KWh, as a result of the meltdown percentage in the second charge, rapidly reaches
100 percent. The reason for this is that, in the second charge, the EAF is already carrying a
high volume of molten steel. With a close inspection of Fig. 16, it is also obvious that the
melting process will continue even after reaching meltdown level of 100 percent. This is due
to the fact that subsequent to the 100 percent meltdown, the power is still consumed by
electrodes and burners to refine and reach the desired metallurgical property of steel. This
stage of the melting process is called the refining stage.

Furthermore, it can be concluded from Fig. 16 that the chemical (alternative) energy in the
refining stage is not increasing as rapidly. This is because the steel is already molten and the
burners’ flame cannot be as effective in the process. Nevertheless, a substantial part of the
chemical energy contribution comes from the oxidization, which is more active in the

refining stage as a result of the extra oxygen injected into the molten batch.

In Fig. 17(a) demonstrates the meltdown percentage, Fig. 17(b) represents the voltage
feedback, and Fig.17(c) shows the voltage reference. The graphs cover two Charges of a
Heat. By first observation of these graphs, it is apparent that the voltage reference profile
changes in various stages of the melting process (based on the meltdown percentage). The
voltage feedback attempts to follow the reference with lots of spikes, with its ability
dependent on how good the regulator loop controls the electrodes. The function of the
regulator loop was explained in Chapter 1. It can also be observed from this graph that the
voltage reference profile is slightly different between the two charges. This profile is from a

lookup table and was again explained in Chapter 1.
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Figure 17: Voltage signals’ behaviors during the melting process.

In Fig. 18(a) shows the power factor, Fig. 18(b) represents the active current (KA), Fig.18(c)
illustrates the reactive current (KA). The graph is for the period of two Charges of a Heat.
The first observation from this graph indicates that at the beginning of both Charges, the
reactive power is at its maximum level and as the melting progresses it decreases
significantly. This is because, the nature of the scrap metals at the beginning, it is more
inductive but as the scrap is melted, it becomes more resistant load. It is also illustrated in
this graph that the power factor for the majority of the process remains above 0.9. There are
other components in the power circuit, such as capacitor banks, to assure the high power

factor and avoid forced penalties from hydro due to poor power factor.
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Figure 18: Current and power factor signals behaviors during the melting process.

Fig. 19(a) illustrates the meltdown percentage, Fig. 19(b) shows the regulator output and Fig.
19(c) illustrates the electrode’s actual position. Once again, the graph covers the two Charges
of one Heat. The unit for regulator output is 12 bits integer number (0-4095), equivalent to
+/-10 Volt reference for the proportional valves. The proportional valves control the flow of
the hydraulic and, as a result, the movement of the electrodes. As well, attached to each
electrode mass, there is a position encoder to track the movement of the electrodes. As
observed in this graph, the electrodes are moving free at the beginning of the movement. The
feedback quickly follows the reference and subsequently slows down once the electrodes
come in contact with scrap. Further, the movement depends on the difference between the
voltage reference and voltage feedback (the phase voltage error). The regulatdr controls the
up or down movement of electrodes according to the phase voltage error. The arc length will

follow as the distance between the electrodes and scrap will change as well.
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Figure 19: The graph of the electrode movement during the melting process.
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Chapter 4

The Simulator Structure and Implementation

This chapter discusses the implementation of the simulator components in MATLAB®
Simulink® environment. In the first section, the structure and the roles of each component
are described. The following sections explain more details in regards to implementing each
component. The snapshots from some of the Simulink® blocks, which are developed in this
project, are presented to explain each of the components. Please note that the snapshots

illustrate part of the logic and were not meant to be used as program printout.

4.1 The Overview of the Structure and Components

Fig. 20 is an overview of the components and their interconnection in the simulator for one
of the phases. The same structure repeats for the remaining two phases. The most vital part of
the simulator is the section that the measured signals from the plant. This section utilizes
three individual models for measured active current, reactive current, and voltage. These
models have been built and trained outside of Simulink® by the use of MATLAB® fuzzy
toolbox. The outputs of these components are used to calculate the active power consumption

in the phase.

The summation of power consumed in this phase with the power consumption of the other
two phases, results in the overall power consumption. The consumed electrical power is an
indicator for progress of melﬁng. Therefore, it has been applied as a pointer in the lookup
table for capturing the voltage reference and PI coefficient in every stage of the melting. The
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regulator loop, which is a classic adaptive PI controller, uses the voltage error as its input and
transmits a reference to position the electrode. The two components for the regulator PI
control loop and the total power consumption are simply classic control and calculation
routines. The classic control components of the simulator were programmed to be quite
similar to their implementation in the PLC program. The regulator output and voltage
reference of each phase are used as inputs in all ANFIS models.

The EAF sequential event simulator uses the total three-phase power consumption and the
simulator clock to generate the main events involved in the melting process. In the following

sections, some more details of each component in the simulator are discussed.

4.2 Measured Values ANFIS Models

The ANFIS blocks were generated and trained outside of Simulink® by the use of
MATLAB® ANFIS toolbox. For the training of these models eight batches of data (each
batch representing one complete Heat, about one hour) were used. ANFIS models for active
current, reactive current, and voltage feedback all utilize the voltage reference and regulator
output for the same phase as their inputs. Fig. 21 illustrates an overview of these blocks in
Simulink®. As apparent in this figure, the reactive current ANFIS model, in addition to the
voltage reference and regulator output, also uses the active current of the same phase as an
input. The complete details of these models as well as the block diagrams showing their

inputs and outputs are shown in Appendix A.
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Figure 20: Components of the simulator for one of the phases and their interconnections.
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Figs. 22, 23 and 24 are snapshots from the inside of these blocks. As could be observed from
each of these blocks, the FIS block is the core of each intelligent simulator component. As
well, in all of the ANFIS models, the pervious state of the output is used as the input of the
current state. Another common factor among all of these models is the high and low limit
check. If the output of the model is progressing above or below the set limits, it would be
limited to the permitted maximum value. The values of the high and low limit have been

captured from the practical plant data.
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Figure 21: ANFIS models for EAF measured signals.
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Figure 23: Phase 1B measured reactive current ANFIS model.

55




Ph1B_Ref
Ph1B_Reg JXX\ D ¢ :2 ot <= 2)

n A
Ph1B_Volt » Min on el
AL Ph1B ANFIS Validity check for low limit w0
Voltage Memo! . Voltage n
feedbgck delayry Multiplexer Fdbk Model —
from last Overwrire with
simulation i Min. limit allowed
scan time Mt(ut »= u2)
GO b2
pr—— Max Py e T A
Ph1B_Volt| Validity check for high limit IR
Active current PhiB_volt
ANFIS model Overwite with
validated output »{ut Max. limit allowed
P u2 )
>l A

Model output in the valid range nQ)

ANFIS
model output is valid

Figure 24: PhaselB measured voltage ANFIS model.

4.3 The Simulated Regulator Control

The present regulator controller in the EAF of GAW uses a PI controller. The coefficients of
the PI vary in different stages of the meltdown. These coefficients are captured from the
lookup table. In this fashion, we could call the control classic adaptive PI control. Fig. 25
illustrates an overview of the regulator loop block. It uses the voltage reference and voltage

feedback of the phase to generate the voltage error. The voltage error, then, is applied to the
PI controller. The total power consumption and current feedback are used to detect the

different stages of meltdown and switch the PI coefficients and voltage reference from one

set to the other.
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Figure 26: Phase 1B regulator PI controller.
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Fig. 26 is an illustrations of the inside view of the PI controller. As apparent, the error before
applying the PI controller is normalized and limited in the acceptable range. As well, the
output of the PI controller is clamped and scaled. The values to normalize and clamp the
voltage error are retrieved from the lookup table and the parameters slightly vary in every
stage of the melting. The output of the PI controller is scaled in 12 bit number (0-4095). In
real control systems in plant, these values are forwarded to the analog cards to generate a
control voltage (-/+10V) to the proportional valves. The values control the flow of the
hydraulic fluid into/from the cylinders, which the electrodes are resting on, and cause the

electrodes to move vertically.
4.4 Power Consumption Calculation

In Fig. 27, the Simulink® block to calculate the power factors for each one the phases is

illustrated. The calculation within the block is based on the basic power equation of:

Iactpha,e

PF phase = COS¢o phase =

12 + 2
AClphase  reAClppgse

(45)
In Eq. (45), PF represents the power factor for each of the phases orCOS¢,I,, and

I,0qct TEDresent the active and reactive current.
Fig. 28 shows another power calculation block which simply uses the power factor and
calculates each one the phase’s real power (active power) based on:

Freal phase Vin phase I et phase PFppgse

(46)
In Eq. (46), P represents the power and ¥y represents the voltage of the line to ground for
the phase. Ultimately, the total power is calculated by adding the power of all the three
phases.

+P

Pr eal o101 = Pr eal phaselB real phase2 A4 +B'eal phase3C

@7
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Figure 27: Power factors calculation block.
In order to apply the total real power as the indicator of the meltdown progress, the value is
reset at the end of each charge. As well, to obtain the total real power closer to the behavior
of the meltdown percentage, a residual gain is defined to replace the effect of the alterative
(chemical) energy. The residual gain modifies following the 100 percent meltdown in the
second charge. This is because, in the actual process, the generated heat from burners is less

effective in the meltdown process after achieving 100 percent meltdown.
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Figure 28: Active power calculation.

4.5 The Discrete Event Generator

The purpose of the discrete event simulator is to simulate the sequence of the events that
initiate and control the progression of melting. In the event sequencer, an internal variable
known as state has been used to store different stages of the meltdown. The remaining parts
of the simulator use the state value to synchronize their activities. In Fig. 29, an overview of

the decision making process based on the simulator state variable is shown.

60



The state variable’s initial value is zero, which translates waiting time between the Heats. In
state zero, all three electrodes are retracted at the top. Also, in this state, the voltage and
current are zero and the regulator loop is inactive. Subsequent to a defined time delay
(approximately 8 Minutes), the state automatically converts to one. In state one, the
electrodes are forced to retreat down, and the voltage and current for all three phases are
reported with initial non-zero values. In this state, the melting process is initiated for a short
period of time, then allowing the ANFIS models to take over the system. In the actual
process, this state implies that the operator would request to close the vacuumed breaker
switch. By closing the switch, the secondary of the EAF transformer connects to the
electrodes and, consequently, lowers the electrodes. State one is rather brief and lasts for
approximately 10 seconds. Following this time delay, the state variable will be set to two. In
state two, the ANFIS models used to simulate the feedback values for three phases as well as
the regulator PI controllers are active. The regulator PI controller and voltage reference use
the total real power consumption as the pointer in their lookup table. The lookup tables are
slightly dissimilar between first and second charges. The voltage reference lookup table
presentation in Simulink® for the first and second charges is shown in Figs. 30 and 31. When
the total real power consumption in the Charge passes a predefined threshold, this state
concludes. State two ends in the total MW that represents 100 percent meltdown for the first
Charge. For the second Charge, this state will extend longer to provide time for mixing the
alloys and purification. If it is the first Charge, and according to the power consumption the
meltdown is completed, the state changes to three. In the third state, the electrodes will
retract for the new scrap dump and begin the second Charge by changing the state variable
set back to two. If the Charge number is at two when the second state concludes, the state
variable resets to zero and Charge number to one. It indicates that one simulation cycle has
concluded and the simulator initiates the next Heat.

The timing as well as the initial values for this event sequencer have been captured from
actual data and intend for the simulator to perform comparable to the actual process. This

process is repeated periodically for the duration of time that the simulation is in operation. In

61




this stage, random factors are not introduced into the system. This signifies that everything is
assumed to follow a normal automatic batch melting process, which could be true for more
than 50 percent of the batches. Of course, in the real process, there are occasions when

operators interrupt the automatic process for various reasons, which have been excluded from

the interest of this study.
Plot-a
4 T T T T R} L 1
Gap between
2 5 | Initalization charges Gep
,3 for charge 1 between
n Heats
52- — I
= Regulator active in charge 1 Regulator active in charge 2
Et1r -
* Initialization
ol ) . for charge 2 . ‘ i
500 1000 1500 2000 2500 3000 3500
Time-Sec
Plot-b
3 T T T T T 1 L
— o . (Charge2ofthcHeat
s -
o
% Charge 1 of the Heat _
G 1
1 1 ! ! 1 1 1
500 1000 1500 2000 2500 3000 3500
Time-Sec

Figure 29: Sequential event simulator.
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Chapter 5

Model Verification, Results and Discussions

5.1 Model Verification Procedure

The simulator has been verified in two different steps. The first step was focused to verify
each individual component of the simulator (open loop verification). In this step the plant
recorded data was used, and the event sequencer component of the simulator was disabled to
synchronize the simulator with the plant data. In the second step, the simulator was
disconnected from the plant data and the event sequencer was enabled to initiate and control
the process (closed loop verification). In this step, also the behavior of the system was

observed and recorded. The results and errors are illustrated in the next sections of this
chapter.
52 Verification Process for the Simulator Components

One batch of data (the complete Heat, about one hour) among the eight batches of data that
ANFIS model had been trained on, was fed to the simulator. The plant data was used as input
to the ANFIS models and regulator PI controller. Then, the simulator output for active
current, reactive current, voltage and regulator output were compared with the associated
values from the plant. The errors were calculated in both average and Root Mean Square
(RMS) format. The average error was calculated with adding the errors of each input
samples, divided by the number of samples.

In the second step, a set of data (the complete Heat, about one hour) that ANFIS models had

never seen during the training (verification data) was selected. Then the model verification

process was repeated on this set and the errors again were measured.
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The summary of errors for each of the ANFIS models, as well as regulator output for all three
phases are tabulated. Tables 5 and 6 show, these errors for the set of training and verification

(unseen) data, respectively.

Table 5: The error summary for the set of the training data

Model Output Average Error % RMS Error %
Active Current Feedback for Phase 1B 2.6 6.8
Active Current Feedback for Phase 2A 2.1 4.7
Active Current Feedback for Phase 3C 24 7.6
Reactive Current Feedback for Phase 1B 44 9
Reactive Current Feedback for Phase 2A 4 8.2
Reactive Current Feedback for Phase 3C 4.8 11.3
Voltage Feedback for Phase 1B 29 7.4
Voltage Feedback for Phase 2A 4.1 11.8
Voltage Feedback for Phase 3C 3.2 8.2
Regulator Output for Phase 1B 2.8 6.5
Regulator Output for Phase 2A 32 73
Regulator Output for Phase 3C 3 59

Table 6: The error summary for the set of the verification data

Model Output Average Error % RMS Error %
Active Current Feedback for Phase 1B 2.6 6.7
Active Current Feedback for Phase 2A 25 6.4
Active Current Feedback for Phase 3C 22 7.4
Reactive Current Feedback for Phase 1B 44 9.8
Reactive Current Feedback for Phase 2A 52 10.2
Reactive Current Feedback for Phase 3C 4.6 11.1
Voltage Feedback for Phase 1B 29 7.4
Voltage Feedback for Phase 2A 4.8 14.1
Voltage Feedback for Phase 3C 31 9.6
Regulator Output for Phase 1B 2.8 7.6
Regulator Output for Phase 2A 3.2 8.3
Regulator Output for Phase 3C 2.9 7.6
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Figs. 32 and 33 illustrate bar graphs to visually compare the calculated errors tabulated in
Tables 5 and 6. These figures show an acceptable level of error among both training and
verification data for ANFIS models. We could also observe that results of the verification
data are comparable with the training data. Therefore we could conclude training. In the next

section, the model output and plant data have been plotted together for the set of verification

data.
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Figure 32: Model verification average error bar graphs.
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Figure 33: Model verification, RMS error bar graphs.

53 Model Outputs Graphs

Figures 34, 35, 36, and 37 illustrate the result of running the simulation on a set of the
verification data together with the actual plant recorded data for a period of one Heat (one
complete melting batch about an hour). All of these graphs indicate a very close behavior
from the simulator. Generally, all of the ANFIS models perform in the same level of the plant
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signals, only smoother. Smoothness of the ANFIS models could be explained with the fact
that data clustering were used in generating their ANFIS structure.
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Figure 34: Active current, model output and plant measured value graphs.
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800

Voltage Feedback Model

i

I
500

1
1000 1500 2000

1
2500

1
3000
Time-Sec

-

Voltage Feedback Actual

ni
500

1000 1500 2000

2500

1
3000
Time-Sec

Figure 36: Phase voltage, model output and plant measured value graphs.



Regulator Output Model

5000 T T T T
400 -
0 B
+ 3000 -
3
o] §
O 2000} MW’L,LWWM MM"M h-ﬁw—wmmm—— 4
1000f 4
0 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500
Time-Sec
Regulator Output Actual

5000 1] T T 1 T L)

4000 4
= 3000 l -
[] 1
8 Jonol MM,MWMMMMN -

10001 _ 4

0 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500
Time-Sec

Figure 37: Regulator output, model output and plant measured value graphs.

5.4 The Closed Loop Simulator Graphs

In previous sections, the results of verification for each simulator component with the use of
the plant’s recorded data were illustrated. In this section, verification results for the entire
simulator are presented. In this procedure, the plant’s data was disconnected and the event
sequencer module was used to control the batch process. The meltdown percentage signal
from the plant was utilized to adjust all of the timings and a number of the gains.
Subsequently, the simulator has been completely disconnected from the plant data and run
for the desired time. The result illustrates the components of the simulator functioning almost

perfectly under control of the sequential event simulator. The final result has been repeated

as the simulator clock runs to its stop.
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Fig. 38 illustrates the results of the simulation for a period of two hours. In this figure, Fig.
38(a) shows the internal state number for the simulator. As we could observe, the state
number transforms from zero, time between the Heats, to one where Electrodes are forced
down for a very short time (10 sec). It then proceeds to state two when the regulator is
enabled for the first Charge. Then state three represents the time between Charges. Finally, it
arrives back at state two once again to melt the second Charge. In Fig. 38(b) demonstrates the
Charge number altering between 1 and 2 in every Heat. Fig. 38(c) in this figure shows the
voltage reference generated from the lookup table and its profile as the melting process
completes various stages. Fig. 38(d) illustrates the total real electrical power consumption
based on the simulator calculation. This value is used as the pointer for all of the simulator
lookup tables. Again, it must be emphasized that all of the lookup table’s values, initial

values, and timings in the simulator have been adjusted based on the real plant’s data.
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Figure 38: The closed loop simulator results without using the plant data.
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5.5 Replacing the Classic Adaptive PI Controller with a Fuzzy Gain
Scheduling PID

After achieving the ANFIS models for individual components of EAF regulator and also the
full simulator of the regulator, logically the next step is to try the simulator platform in
control improvements of the EAF. The process of control improvement and energy saving in
EAF of GAW needs to be done in joint effort between the research team and the process
engineers of the plant. Here to just prove the effectiveness of the simulator in control
development effort, an attempt was made to replace classic adaptive PI controller of the
regulator loop (explained in section 1.2) with fuzzy Gain Scheduling (GS) PID controller
(explained in section 2.2).

In order to adapt the fuzzy GS PID explained in sec 2.2 with regulator simulator, first the
range of the signals of the error and error changes were evaluated. In the case of the PID
controller in the regulator loop, the error signal (e(k)) is the difference between the voltage
reference and the voltage feedback for the phase. Also the changes in error signal (Ae(k)) is
the difference of the error in the current sample and pervious sample (e(k) —e(k —1)). After
finding the range of changes in signals e(k) and Ae(k), the triangle membership functions of
those signals was scaled accordingly (Fig. 7). In addition the coefficients of proportional,
integral and derivatives were normalized between zero to one. With keeping the rules as they
are listed in Table 3, the regulator outputs from classic adaptive PI and fuzzy GS PID
controllers were compared. Fig. 39 shows this comparison for phase 1B. Fig. 39(a) shows
the regulator output using classic adaptive PI and Fig. 39(b) shows the regulator output
utilizing the fuzzy GS PID. Also Fig. 39(c) is showing the voltage reference profile to
appreciate the smoothness of the fuzzy GS PID in step changes of reference. As it was
expected, the fuzzy GS PID is achieving the steady state level with much less overshoot and
undershoot levels and with faster raising time. The smoothness of the electrode movement

signals will also reduce the electrode consumption and lower the possibilities of the electrode

break downs.
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In another attempt to investigate the use of fuzzy GS PID in conserving energy, the regulator
with fuzzy GS PID controllers were adapted into the full simulator for all three phases. With
keeping the same thresholds to start and finish the Heats, the time of melting compared
between the regulator with classic adaptive PI and fuzzy GS PID. Fig. 40 shows the total of
38 sec (or approximately 2% saving) in the melting time. This saving is achieved even
without extra effort of fine tuning the fuzzy GS PID. This phase of the research was done to
prove the usefulness of the simulator in designing and implementing modifications in

supervisory control systems of the EAF.
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Figure 39: Comparing the regulator output with classic PI and GS Fuzzy PID controller.
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Figure 40: Comparing total melting time between regulator uses a classic PI and GS Fuzzy
PID controller.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This research demonstrates the capability of ANFIS as a black box modeling method for the
electrical measured signal in the regulator loop of EAF with a new set of inputs and outputs.
Considering the nonlinearity and complexity of the process, the black box modeling, by use
of ANFIS, assists in modeling a system which is mathematically ill defined. The integrated
simulator, along with the developed sequential event generator and conventional control

modules, indicate a performance, close to the actual melting batch process.

By concluding this research, a full closed loop computer simulator of the EAF regulator was
developed in MATLAB® Simulink® environment. The simulator for the EAF regulator
control is a closed loop system, which functions independently of the plant data and does not
require manual operation. Also, it was demonstrated in the simulator that fuzzy gain
scheduling PID control could perform better than conventional gain scheduling PI controller
in the regulator loop. Although the data for this study was collected from GAW steel plant,
the majority of the research concepts and techniques can be generalized or adapted to other

electrical arc furnaces or similar systems.
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6.2 Future Work

The objective of this study was to provide a platform in attempting various control systems
improvement in the off-line simulator. At this time, by successfully building this platform,
the immediate potential improvement would be to undertake intelligent control in generating
the adaptive voltage reference and PI coefficients for the regulator control. The intelligent
controller in format of Fuzzy, Neural or Nero-Fuzzy could essentially replace the lookup
table and result in a more robust and adaptive system. Furthermore, since the source of the
lookup tables in the existing system is the expertise of the process engineer, intelligent
methods such as fuzzy controllers should be a rather suitable solution in expanding this

expertise in an automated decision making system.

Moving ahead, the addition of the simulation of alternative energy generation from the
burners and oxidization is a further potential direction for this research to consider. The
alternative energy in the EAF is highly nonlinear as well and ANFIS could be undertaken to
model their behaviors. By including these components, we could obtain a full energy
consumption model or simulator of the EAF. The simulator may then be used to optimize
energy consumption with electrical and chemical forms. Since the electrical and chemical
energy interact with each other, building this full simulator will be quite constructive in

capturing the optimum reference points for electrical and combustion systems in the duration

of the melting process.
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Appendix A:

ANFIS models inputs, outputs and parameters

a- Active current ANFIS model

Voltage Reference

Regulator Output

Active Current History

Active Current

~
7

Delay

N

The format of the listed FIS parameters are the output of MATLAB ® ‘showfis ()’

function:
Name Ph1BcurrentFdbk
Type sugeno

Inputs/Outputs  [3 1]
NumlInputMFs [3 3 3]
NumOutputMFs 3
NumRules 3
AndMethod prod
OrMethod probor
ImpMethod min
AggMethod max
DefuzzMethod  wtaver
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InLabels

OutLabels
InRange

OutRange
InMFLabels

OutMFLabels
InMFTypes
OutMFTypes

InMFParams

inl

in2

in3

outl

[200 560]
[854 4054]
[0 609]

[0 609]
inlmfl
inlmf2
inlmf3
in2mfl
in2mf2
in2mf3
in3mfl
in3mf2
in3mf3
outlmfl-outmf3

gaussmf
linear

[63.63 540 0 0]
[63.64 200 0 0]
[63.64 200 0 0]
[565.7 2048 0 0]
[565.7 4048 0 0]
[565.7 2039 0 0]
[107.7 539 0 0]
[107.7 0.00952 0 0]
[107.6 -0.008692 0 0]
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OutMFParams
Rule Antecedent
Rule Consequent
Rule Weigth

Rule Connection

[0.01088 0.006218 0.6664 164.5]
[-10.75 0.02656 0.161 2043]
[0.02368 -0.0183 1.009 32]
[111]

[222]

[333]

1

2

P ek ek e peed e D

b- Reactive current ANFIS model

Active Current

Voltage Reference

Regulator Output

Reactive Current

N5
T

o

Reactive Current History

Delay

N

Name

Type
Inputs/Outputs
NumInputMFs

Ph1B_Reactive KA
sugeno

[41]

[3333]
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NumOutputMFs 3

NumRules
AndMethod
OrMethod
ImpMethod
AggMethod
DefuzzMethod
InLabels

OutLabels
InRange

OutRang
InMFLabels

OutMFLabels
InMF Types
OutMFTypes

InMFParams

3

prod
probor
min

max
wtaver
inl

in2

in3

in4

outl

[0 640]
[200 560]
[207 4007]
[11104]
[11104]
in1mfl
inlmf2
inlmf3
in2mfl
in2mf2
in2mf3
in3mfl
in3mf2
in3mf3
in4mfl
in4dmf2
in4mf3
outlmfl-outmf3

gaussmf

linear

[113.1 554 0 0]

[113.1 3.898¢-006 0 0]
[113.1 -0.004694 0 0]
[63.69 546 0 0]

[63.64 200 0 0]

[63.64 200 0 0]

[671.8 2131 0 0]
[671.8 3978 0 0]
[671.8 1965 0 0]
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OutMFParams

Rule Antecedent

Rule Consequent

Rule Weigth

Rule Connection

[195 135 0 0]

[195 1.999 0 0]

[195 1.998 0 0]

[-0.3809 -0.401 0.1021 0.7954 240.4]
[-0.01175 -63.94 -0.02555 0.8065 1.289¢+004]
[-0.05789 2.212 -0.03692 1.041 -368.9]
[1111]

[2222]

[3333]

ke ek e et = D DN
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c- Voltage feedback ANFIS model

Voltage Feedback

Voltage Reference
Regulator Output
Voltage Feedback History
Name Ph1BvoltFdbk
Type sugeno
Inputs/Outputs  [3 1]
NumlInputMFs  [3 3 3]
NumOutputMFs 27
NumRules 27
AndMethod prod
OrMethod probor
ImpMethod min
AggMethod max
DefuzzMethod  wtaver
InLabels inputl
input2
input3
OutLabels output
InRange [200 560]
[207 4007]
[4 1229]
OutRange [4 1229]

Delay

87




InMFLabels

OutMFLabels
InMFTypes
OutMFTypes

InMFParams

inlmfl
inlmf2
inlmf3
in2mfl
in2mf2
in2mf3
in3mfl
in3mf2
in3mf3

outlmfl —outlmf27

gaussmf
linear

[76.44 200 0 0]
[76.44 380 0 0]
[76.44 560 0 0]
[806.9 207 0 0]
[806.9 2107 0 0]
[806.9 4007 0 0]
[260.1 4 0 0]
[260.1 616.5 0 0]
[260.1 1229 0 0]
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OutMFParams  [71.8 0.3743 -6.489 -1.913e+004]
[32.19 1.421 -21.01 -4443]
[-230.5 -38.01 284.6 38.27]
[-2.621 -3.824 6.808 8483]
[-15.94 0.6997 19.1 -5825]
[-554.7 -21.99 219.2 1878]
[64.79 1.704 -10.34 -3848]
[94.03 -3.345 -16.25 -5589]
[1361 -125.3 -287.3 125]

[412.9 -103.1 461.9 -1.046e+004]
[-671.9 1.247 474.7 1.014e+004]
[4008 377.4 -4599 242.2]
[-57.910.02 -36.26 3411]
[65.72 0.6859 -70.28 5705]
[1776 195.2 -1645 -846.9]
[512.1 -91.89 25.48 1.002e+004]
[-471 48.29 41.62 1.856e+004]
[-1.446e+004 1991 3171 204.4]
[-728.7 213.7 199.9 -1.141e+004]
[52.82 -13.76 -7.474 1.81e+004]
[-2419 -40.75 1777 3799]
[49.08 3.64 7.175 -4.059e+004]
[12.09 3.027 7.292 -1.809e+004]
[246.4 -45.36 -28.71 -1.384e+004]
[-61.93 -7.866 12.3 5.672e+004]
[-202.8 -0.7476 18.63 1.063e+005]
[1041 6.821 -1067 386.6]

‘Rule Antecedent [11 1]
[112]
[113]
[121]
[122]
[123]
[131]
[132]
[133]
[211]
[212]
[213]
[221]
[222]
[223]
[231]
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[232]
[233]
[311]
[312]
[313]
[321]
[322]
[323]
[331]
[332]
[333]
Rule Consequent 1 ...27

Rule Weigth 1
Rule Connection 1
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