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Abstract

A significant amount of time is spent by software developers in in-
vestigating bug reports. It is useful to indicate when a bug report will
be closed, since it would help software teams to prioritize their work.
Several studies of this problem have been conducted during the past
decade. Most of these studies have used the frequency of occurrence of
certain developer activities as input attributes in building their predic-
tion models. However, these approaches tend to ignore the temporal
nature of the occurrence of these activities.

In this thesis, a novel approach using Hidden Markov Models and
temporal sequences of developer activities is introduced. The approach
is empirically demonstrated using eight years of bug reports collected
from the Firefox project. The model correctly identifies bug reports
with expected bug fix times. The approach is also compared against the
frequency based classification approaches. The results indicate around
10% higher accuracy .
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Chapter 1

Introduction

Estimating bug fix time and identifying bugs that would require a long fix time
at early stages of the bug life cycle is useful in several areas of the software
quality process. Having advance knowledge of the time to fix bugs would allow
software quality teams to prioritize their work and improve the development
activities on bugs that would require more time [14],[17].

In 2011, Bhattacharya et al. [7] evaluated various univariate and multivari-
ate regression models to predict the time to fix bugs. They employed various
attributes in bug repositories used by prior researchers. They concluded that
the predictive power, of existing models for bug fix time predictions is only
between 30% to 49%.

The time to fix bugs has been studied by several research groups through-
out the past decade. Some studies focused on predicting bug fix time through
classification, for example classifying bug fix time into requires ’fast’/’slow’
[12],[31],[18] or classifying them into ’cheap’ and ’expensive’ [14] or employing
multi-classification using an equal-frequency binning algorithm [24]. Other
studies used regression techniques to predict bug fix time [2],[7]. Another
group of studies focused on assisting the bug triage effort by introducing rec-
ommendations for developer/reviewer assignments [5],[4],[16] or automatically
filtering out certain type of bugs [10],[26],[3],[15].

Most prior research has focused on the use of frequency of occurrence of
activities in bug repositories to build their models for time to fix bugs. These
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attributes include the number of copied developers, comments exchanged, de-
velopers involved, etc. The frequency based models ignore the temporal char-
acteristics of the activities in bug repositories. Let us consider this example
of a chain of activities in a bug repository. A junior developer fixes a bug and
sends the code patch to a senior developer for review. The senior developer
can approve the request, assign the bug to another developer, or write a com-
ment on the “whiteboard”. This sequence of events continues until the bug is
resolved.

Similarly, another evidence of temporal activities is the bug life cycle in a
bug management system. For example, Figure 1.1 shows the bug life cycle of
the Bugzilla system [20]. The bug report usually remains in an unconfirmed
state until an initial assessment (triage1) effort confirms that it requires in-
vestigation, or it can start from a new state provided the reporter confirms
it. Once confirmed, a bug is either assigned to a particular developer or made
publicly available so that any developer may volunteer to fix it. Once sta-
tus is reported as “resolved”, “verified” or “closed” the bug is considered to be
closed and an appropriate value is populated in the resolution attribute (e.g.,
fixed, duplicate, incomplete). One would assume from Figure 1.1 that a bug
would pass through many stages before getting to the resolved state. How-
ever, by taking a closer look at the data it was noted that many bugs actually
start as ’unconfirmed’ and move immediately into the state ’resolved’, without
passing through assignment state. For example, in the case of Mozilla Firefox
project in Bugzilla, when the status changes were tracked, it could be seen that
94.064% of bugs in unconfirmed state moved to resolved state, and 70.56% of
bugs in new state moved to resolved state. This indicates that these bugs
passed only through two states and that the status field is not indicative of
the true bug state. After discussing with Firefox developers, it was concluded
that there are many other states the bug report could be in, such as waiting
on reporter feedback, waiting on code review approval, development activities
being carried out, idle state, etc.

1triage : The process of determining the most important people or things from amongst
a large number that require attention: Oxford Dictionary
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Figure 1.1: The life cycle of a Bugzilla bug

Thus, there are temporal state activities of a bug, activities of developers
for a bug, and at the same time there are some hidden temporal activities
in bug repositories during each bug’s life cycle. Therefore, an approach to
predict the time to fix bugs is proposed based on the Hidden Markov Model
(HMM) [25]. HMM can model doubly stochastic processes in a system; that
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is, a visible stochastic process and a hidden stochastic process that exist in
system-bug repositories in the case of this study [11]. HMM was applied on
historical bug reports by first transforming bug report activities into temporal
activities, and then training HMM on those temporal activities. The new
(unknown) bug reports were classified into two categories: (a) bugs requiring
short time (fast) to fix; and (b) bugs requiring long time to fix (slow).

The experiments were performed on Mozilla Firefox project, which is a free
and open source web browser, developed for Windows, OS X, and Linux, with
a mobile version for Android. It has high popularity and a wide spread user
base of over 450 million users around the world [21]. The bug tracking system
for Mozilla Firefox is Bugzilla, which also has a wide user base. These systems
are also widely used in many other studies [12, 9] allowing for a comparison
to be provided with this approach on a well known dataset. This HMM based
approach was compared against the existing approaches that do not consider
temporal characteristics of bug life cycle; and it showed that the predictions
of this approach are approximately 10% more accurate.

1.1 Research Problem

The research problem is to develop a method to identify at an early stage the
bug reports that would require a long time to fix. The focus is to provide a
quality team with an early indication that there is a high probability that a
bug report will remain in their system for more than a certain time threshold,
for example two months, in order for them to assess the need to re-prioritize.

1.2 Contribution

There are three main contributions of this work:
1. A technique to create a temporal dataset of activities that occurred

during the life cycle of bugs in a bug repository.
2. A Firefox dataset of temporal activities, available on-line at:

https://googledrive.com/host/0B5TJwohpS9LzcHc3NldtdjZQRFk.
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3. An approach to predict the time to fix bugs using temporal activities
by using the Hidden Markov Model.

The framework and concepts presented in this thesis can easily be applied
to other industries. The framework is very flexible and can be applied by first
, identifying the key processes related to the problem and then extracting the
temporal activities related to these processes.

1.3 Thesis Outline

Chapter 2 contains related work and summaries of other research. Chapter 3 il-
lustrates this approach and model and provides an introduction to the concepts
of HMM theory used in this thesis. In Chapter 4, three experiment scenarios
are presented to illustrate the possibilities of using temporal sequences in the
predictive domain of time to fix a bug. In Chapter 5, comparisons are made
utilizing the same attributes as temporal sequences versus frequency counts; in
addition, this algorithm is compared with other algorithms. This is followed
by highlighting threats to validity in Chapter 6. Conclusions and intended
future work are summarized in Chapter 7.

Throughout the course of this thesis the terms "status" and "state" will
be used interchangeably, also HMM will be used to denote Hidden Markov
Models.
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Chapter 2

Related Work

In 2006 Kim et al. [17] studied the life span of bugs in ArgoUML and Post-
greSQL projects; they reported that the bug-fixing time had an approximate
median of 200 days. Due to the high cost of maintenance activities and high
volume of bug reports submitted, especially for many popular open source
systems, several research efforts have been conducted to predict the estimated
time needed to fix bugs. The efforts can be grouped into two categories. The
first group focuses on predicting the overall estimated time required to fix a
bug report. Mostly, the studies in this group employ classification or regres-
sion techniques. This group uses initial and post submission data as features.
The second group focuses on reducing the estimated time required to fix the
bug during the initial bug triage process. The studies in this group focus on
identifying and filtering certain bug reports or automatically assigning the bug
report to the best candidate developer, in an effort to reduce the overall bug
report fix time. These studies mainly use the initial attributes available with
the bug report (e.g., the description and summary of the bug report, the re-
port submitter details, and the time of submission) with the machine learning
algorithms to predict time to fix the bug report.
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2.1 Bug fix time estimation and prediction

There are several studies in the literature related to bug fix time estimation.
[2, 24, 14, 12, 18, 31].

In 2007 Panjer [24] explored the viability of using data mining tools on the
Eclipse Bugzilla database to model and predict the life cycle of Eclipse bugs
from October 2001 to March 2006. He employed multi-class classification using
an equal-frequency binning algorithm to set the threshold bins. Afterwards, he
used various machine learning algorithms, such as 0-R and 1-R, Naive Bayes,
Logistic regression,and Decision Trees to achieve a prediction performance of
34.5% .

In 2007, Hooimeijer et al. [14] presented a descriptive model of the bug
report quality. Their main focus was to investigate the triage time (inspection
time) of a bug report. They applied linear regression on 27,000 bug reports
from the Firefox project in an attempt to identify an optimal threshold value
by which the bug report may be classified as either “cheap” or “expensive”.

The work in this thesis is similar to the above two studies in terms of
setting thresholds for classification and targeting to identify bug reports that
would require longer time (slow). It differs in terms of size and scope of the
dataset used, approach, and algorithm.

In 2009, Anbalagan et al. [2] investigated the relationship between bug
fix time and number of participants in the bug fixing process. They carried
out their tests on 72,482 bug reports from the Ubuntu project. They found a
linear relationship between bug fix time and number of participants involved
in the bug fix. They developed a prediction model using ’linear regression’,
and one of the key findings in the work was that there is a strong linear re-
lationship (the correlation coefficient value is ≈ 0.92) between the number of
people participating in a bug report and the time it took to correct it. The
work in this thesis follows the same recommendations mentioned in Anbala-
gan et al. research by focusing on the human factor, but it differs by focusing
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on the levels of involvement and interactions between the participants rather
than than just using the number of participants or unique participants. In
particular, this work focuses on the temporal characteristics.

In 2010 Giger et al. [12] explored classifying bugs into “slow" and “fast"
based on the median of the total fix time. They used decision trees on six
open source datasets (including a small sample dataset of Firefox). First, they
used the median of 359 days as a threshold for classification, and reported
a precision of 0.609 and a recall of 0.732. Second, they followed this with a
series of tests including post-submission data where they reported a precision
of 0.751 and a recall of 0.748 against a median of 2784 days. The experiments
in this thesis are conducted on 86,444 bug reports of the Firefox project and
use a fixed time threshold of two months. In addition, bug reports marked as
enhancements are filtered out, and most importantly the temporal sequencing
of events are used as attributes rather than counts.

In 2012 Lamkanfi et al. [18] suggested filtering out bugs with very short
life cycles, they referred to them as conspicuous reports. They experimented
with ten different datasets, one of which was Firefox with 79,272 bug reports
covering the period July, 1999 to July, 2008. They used the median as a
threshold and reported a slight improvement on the prediction results if the
bugs with short life cycles are filtered out. For their experiments they applied
’Naive Bayes’ classifiers and used a median threshold of 2.7 days. In this thesis
work the recommendation of focusing on the human factor is adopted. Yet
this work differs in the threshold calculation, as bug reports closed on the
same date of submission (day 0 bugs from) are filtered out which effects the
threshold calculation. We also differ in temporal methodology of classification.

In 2013, Zhang et al. [31] experimented on three commercial software
projects from CA technologies. They explored the possibility of estimating
the number of bugs that would be fixed in the future using Markov models
and estimating the time required to fix the total number using ’Monte Carlo
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simulations’. They also proposed a classification model to classify bugs as slow
and fast using ’K-Nearest Neighbour’ against various thresholds related to the
median required for fix time. In their study the median of time required to fix
is not revealed, due to data sensitivity issues, thus they use a unit scale where
1 unit is equal to the median. For feature space they use summary, priority,
severity, submitter, owner, category and reporting source. The work presented
in this thesis is similar to their work in terms of classification using the me-
dian fix time as a threshold and the concept that similar bugs would require
similar fix time, yet it differs in terms of the overall approach and algorithm as
the algorithm used is HMMs instead of ’K-Nearest Neighbour’, also ’textual
similarity’ are not employed as they are computationally expensive.

2.2 Reducing bug triage time

Some researchers have focused on reducing the bug triage effort, which usually
happens during the first few days from the date of submission [10, 5, 15, 3, 26,
27].

Cubranic et al. [10] and Anvik et al. [5] investigated the possibility of
automating bug assignments through text categorization. In 2004 Cubranic
et al. [10], attempted to cut out the role of the person responsible for initial
triage, by automatically assigning bugs to developers based on text similarity.
The team experimented on Eclipse project and used a Naive Bayes classifier
and reported 30% correctly predicted assignments. Similarly, in 2006 Anvik
et al. [4] used SVM to recommend the best developer. In 2011, Anvik et al.
[5] further extended this previous work to cover five open source projects and
experimented with six machine learning algorithms. They reported a 70%-98%
precision once the recommender is implemented within the bug triage process
and the triage team are presented with 3 recommendations. The work in this
thesis differs from these studies in many aspects as the focus is on bug fix time
prediction after the reports have been triaged.

In 2008, Wang et al. [26] investigated both the natural language and the
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execution information of a bug report to determine the duplicate bug reports
automatically. They reported a detection rate of 67%-93% in comparison to
43%-72% using natural language alone. Similarly, Jalbert et al. [15] attempted
to identify duplicate reports, they experimented on a dataset of 29,000 bug
reports from the Mozilla project. Their model used bug report features (self-
reported severity, the relevant operating system, and the number of associated
patches/screenshots), textual semantics, and ’graph clustering’ to predict du-
plicate status. They reported that their system was able to filter out 8% of
duplicate reports. The work in this thesis differs in many aspects. First the
work does not focus on filtering out a certain type of report, rather on the
required time-to-fix. Second the attributes used in this work as input to the
classification algorithm are temporal sequences reflecting the level of interac-
tions that happen at an early stage of the bug report submission versus text
similarity attributes used in Jalbert et al. [15] work.

Weiss et al. [27] mined the bug database of the JBoss project, stored in the
JIRA issue tracking system [6]. They used Lucene, a text similarity measur-
ing engine, and kNN clustering to identify similarities of effort spent on bug
fixing. They estimated bug fixing effort for a new bug report. They reported
results with one hour error rate from the actual effort. In our study we do not
carry out any similarity analysis but we focus on the temporal activities of
the maintainers. Antoniol et al. [3] distinguished between requests for defect
fixing and other requests based on the text of the issues posted in bug tracking
systems.

The work presented in this thesis differs from the above researchers work in
many ways. First, the proposed prediction model is based on non-textual at-
tributes. Second, the use of the temporal sequences of the activities happening
during the triage process as input to the classifier algorithm versus frequency
counts which has not been accounted for in previous work. The goal of this
work is to provide an early indication of troublesome bug reports rather than
automatic filtering of certain types of bug reports.
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The approach and algorithm presented in this thesis builds on the key
findings of prior research in terms of the importance of the human factor in
the bug report fixing process. However, a novel approach of building temporal
sequences captured from the history logs reflective of key activities happening
at an early stage of the bug report submission. Further, using these temporal
sequences to learn HMM models as classifiers to predict the bug reports that
are expected to take a long time to fix has been introduced in this research for
the first time.
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Chapter 3

The Approach

BUGZILLA 
repository

Data Retrieval 
using REST API 

1.Data Preparation

Internet

The Firefox 
Temporal 

Defect Dataset 
FTDD

Extract  key  
observations 

Build Temporal 
Sequences 
Data Base 

Retrieving training 
temporal sequences

Retrieving testing 
Temporal Sequences

Build / Train 
classification 

HMMs

# of days <= 
Threshold 

HMM 1

# of days > 
Threshold 

HMM 2

2.Training

Models
3. Testing

Bug fix time classification  : > threshold     or   <= threshhold

Figure 3.1: The Approach

The approach adopted to address the research problem can be summa-
rized in three steps as illustrated in Figure 3.1. First, temporal sequences of
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developer activities are extracted from a bug repository, such as Bugzilla repos-
itory1. This step is described in detail in Section 3.1. Second, the temporal
sequences of activities of the resolved bugs are used to train Hidden Markov
Models (HMMs). Two HMMs are trained by separating resolved bugs into
two categories: (a) bugs with long time to fix (slow); and (b) bugs with short
time to fix (fast). Two types of bugs are separated by measuring the median
number of days taken by them for resolution. Bugs with the resolution time
more than the median number of days are assigned to the long-time (slow)
category and bugs with lesser resolution time than the median number of days
are assigned to the short-time (fast) category: one HMM is then trained on
each category. This step is further explained in Section 3.2. Third, the first
few temporal sequences of activities for the latest bugs are extracted and pass
them to the trained HMMs. The trained HMMs classify each bug into two
categories: slow and fast time to fix. The intuition is to identify the bugs that
are going to take longer time to fix in early stages of the life cycle of the bug,
and help managers in allocating resources to bugs. This step is explained in
detail in Section 3.3.

3.1 Extracting Temporal Sequences of Developer

Activities

The approach that was used to extract developer activities from a bug repos-
itory depends on the software quality process setup within an organization
and the features available in a bug repository (or bug tracking system). Nev-
ertheless, the same concepts can be easily adapted and extended to different
projects and bug tracking systems. For this study a period of eight years
(2006 - 2014) of Firefox project in the Bugzilla repository is covered. Firefox
project was chosen because of its widespread customer base, diversity of end
users, and popularity among the research community [26, 14, 19, 7, 16].

1https://www.bugzilla.org/
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New feature requests were excluded because they are not bugs and they
tend to follow a different development cycle. A sample history log is shown
in Figure 3.2. In this history log, the temporal activities that take place in
the bug repository while developers are fixing bugs can be observed. Figure
3.2 shows the ID (the bug ID), who (developers’ emails), when (time of the
activity), field name (type of activity), added (the new value of the type of
activity) and removed (the old value of the activity).

id	   who	   when	   field_name	   added	   removed	  

324056	  annie.sullivan@gmail.com	   2006-‐01-‐19T21:56:17Z	   flagtypes.name	  
review?
(bugs@bengoodger.com)	   	  	  

324056	  bugs@bengoodger.com	   2006-‐01-‐20T01:43:52Z	   flagtypes.name	   review+	  
review?
(bugs@bengoodger.com)	  

324056	  annie.sullivan@gmail.com	   2006-‐01-‐20T17:04:07Z	   status	   RESOLVED	   NEW	  
324056	  annie.sullivan@gmail.com	   2006-‐01-‐20T17:04:07Z	   resoluRon	   FIXED	   	  	  
324063	  gavin.sharp@gmail.com	   2006-‐01-‐19T23:05:08Z	   cc	   gavin.sharp@gmail.com	   	  	  

Figure 3.2: Sample history log

The criterion for selecting the temporal activities (as shown in Figure 3.2)
from the bug history logs is based on the level of involvement by developers and
bug reporters. All the activities that occur in a Bugzilla Firefox repositiroy
are listed in Table 3.1. These activities were divided into three categories:
involvement, communications, and bug condition. These are further explained
below.

Involvement

Involvement activities reflect the types of people involved in the life cycle of
the bug report. According to this rationale, focus was placed on extracting
certain key activities related to involvement, as described below.

Reporters: Several studies have indicated the importance of the reporter’s
experience. Hooimeijer et al. [14] called this variable “Reporter Reputation”,
while Zanetti et al. [30] confirmed this finding. The reporter’s experience
was captured by indicating their status as novice (N), intermediate (M) or
experienced (E) at the time of report creation (for details, see the description
of N,M,E in Table 3.1).
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Table 3.1: Observation Set
Observation Symbol Description
Reporting N Reporter has only reported one bug as of bug cre-

ation date.
M Reporter has reported more than one and less than

ten bugs prior to bug creation date.
E Reporter has reported more than ten bug reports

prior to bug creation date.
Assignment A Bug confirmed and assigned to a named developer.

R Bug confirmed and put to general mailbox for vol-
unteers to work on.

Copy C A certain person has been copied on the bug report.
D More than one person has been copied within one

hour on the bug report.
Review V Developer requested code review.

Y Response to code review.
S Developer requested super review.
H Response to super code review.

File Exchange F File exchanged between developers and reporters.
Comments exchange W Comment exchanged on whiteboard.
Milestone L A Milestone has been set for solution deployment.
Priority P Priority changed for bug report.
Severity Q Severity changed for bug report.
Resolution Z Bug reached status resolved.

Developers: Giger et al. [12] and Jeong et al. [16] used the developer
assigned to a bug as a key feature in their predictive models. Once received,
a bug report usually remains in an unconfirmed state until an initial assess-
ment (triage) effort confirms that it requires investigation, which changes its
state to confirmed. Note that, if a bug is reported by a person with authority
can − confirm, its starting state is immediately set to new (i.e., confirmed).
Once confirmed, a bug is either assigned to a particular developer or made
publicly available so that any developer can volunteer to fix it. These two
cases are distinguished in this thesis using the symbols A and R, respectively
(see Table 3.1 for details).
Expert involvement: Experts can be copied or referred to in order to ap-
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prove development changes. These observations are tracked by mining and
extracting information about notification activities and code reviews.

Carbon Copies (CC): Both Giger et al.[12] and Panjer et al.[24] used the CC
count generated at various time intervals as a key feature in their prediction
studies. Zanetti et al. [30] also employed CC activities to capture the social
network interactions between developers and reporters. In this work any CC
(i.e., notification activity) is denoted using the symbol C. If more than one
C occurs in an hour, this case is labeled with the symbol D. Such a high
frequency of notifications typically indicates important observations.

Code Review : Many researchers have extensively investigated code reviews.
For example, using the Firefox dataset, Jeong et al. [16] suggested an algorithm
for recommending suitable reviewers and attempted to predict levels of code
acceptance. In this work, information about code review requests is extracted
to classify them as normal and super reviews denoted by V and S, respectively.
Normal code reviews usually are assigned to the module owner, and super
code reviews to a set of senior developers who oversee significant architectural
refactoring and API changes (see [1] for details of the review process). These
observations indicate that bug fixing has neared completion and that the bug
owner awaits the reviewer’s decision (accept or reject). Responses to normal
and super reviews are also captured, denoted by Y and H, respectively, which
indicate that the waiting period is over. Super review requests and responses
have been captured at this level of detail for the first time in this thesis.

Communications

Communication between developers indicates active efforts and progress to-
ward resolving the bug. In this work, two communication observations are
captured: 1) file attachments exchanged among developers, reviewers, or re-
porters, denoted by F ; and 2) comments exchanged between developers, indi-
cating a discussion or exchange of information2, denoted by W .

2These have been used in previous studies but as frequencies at certain time snapshot
[12, 24, 14].
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Bug Condition

In this work, four key events throughout the bug’s lifetime, which affect its
overall status and possibly indicate a change in the expected sizing or resolu-
tion type, are captured:

1) Change in severity: Severity usually is set by the reporter and is changed
infrequently by the triage or development team. Severity was changed for only
7% of bugs in the Firefox Bugzilla repository. Increased or decreased severity
influences the overall standing of the bug report. Changes in severity are
denoted by Q.

2) Change in priority: The triage or development team sets the priority.
Again, the priority was changed for only 7% of bugs in the Firefox Bugzilla
repository in order to more clearly indicate the assessment effort being carried
out and the condition of the bug. Although most studies have found that this
field has low predictive power and effect, it might produce different results
when put in the context of a temporal sequence. A change in priority is
denoted with the symbol P .

3) Milestone set : This indicates identifying a target release version for
deployment of the bug fix code. This observation is denoted with the symbol
L.

4) Resolution reached: This final activity in the sequence of observations
is denoted by Z.

Finally all the key activities are stored in a database; it is called “The
Firefox Temporal Defect Dataset (FTDD)” and it has been made publicly
available [13]. Thus, a bug report is transformed into a set of temporal activ-
ities as shown in Figure 3.3. The order of the symbols for a bug represent the
sequential order in which they occur in the bug repository and the meaning of
the symbols can be determined from the symbols in the Table 3.1.
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N,C,C	  
N,C,	  
N,C,C,C,	  
N,D,W,C,	  
E,C,W,P,W,P,C,A,A,W,V,A,Y,V,V,Y,V,Y,B,W,L	  
N,C,C,C,	  
N,C,W,C,W	  

Figure 3.3: Sample of temporal sequences each row represents a bug report

3.2 Training

As mentioned earlier in chapter 1, HMM can model doubly stochastic pro-
cesses in a system; that is, a visible stochastic process and a hidden stochastic
process that exist in system-bug repositories. Hidden Markov Model (HMM)
was introduced in the late 1960s and early 1970s [25]. HMM is a statistical
model that is based on two stochastic processes. The first stochastic process
is a Markov chain that is characterized by states and transition probabilities.
The states of the Markov chain are usually hidden in an HMM. The second
stochastic process represents observations that occur in a temporal order and
are associated with the states of the first stochastic process. Figure 3.4 il-
lustrates a simple (HMM). The components shown in Figure 3.4 represent an
HMM, and HMM can be summarized as follows [25]:

• Number of States (α) : α represents the number of states, and the in-
dividual states are represented as X = {X1 , . . . ,Xα }and the state at
time t as qt. In Figure 3.4, the number of states, α, is 3.

• Observations (β): β represents the number of observation symbols per
state. Individual observations can be denoted by O = {O1 , . . . ,Oβ }.
The observation symbols correspond to the physical output of the system
being modeled.

• State Transition Probability Distribution (G) : The transitions between
the α states are organized by a set of probabilities called the state tran-
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Figure 3.4: A Hidden Markov Model

sition probabilities. In this example g12, g23, g21 etc. denote the state
transition probabilities. The state transition probability distribution is
represented as {G} = gij, where gij is the probability when the state at
time t+ 1 is Xj and the state at time t is Xi. Formally, gij is defined as

gij = P [qt+1 = j|qt = i], 1 ≤ i, j ≤ α, (3.1)

where qt denotes the current state.

• Observation Symbol Probability Distribution (U): The observation sym-
bol probability distribution in a state j is denoted by U = {uj(k)} where
uj(k) is the probability that symbol Ok is observed in state Xj, and rep-
resented as:

uj(k) = P [Ok at t|qt = Xj], 1 ≤ j ≤ α, 1 ≤ k ≤ β, (3.2)
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where Ok denotes the kth observation symbol.

• Initial State Distribution (π): HMM needs to be initialized in the begin-
ning; the initial state distribution at t = 1 is given as

π = {πi}, π = P [q1 = Xi], and 1 ≤ i ≤ α,

where q1 represents the probability at time 1.

Thus, an HMM model λ, can be represented with the following compact
notation:

λ = (G,U, π).

The HMM models can be discrete or continuous. If the observations are
recorded at certain points in time, then we consider the model to be discrete.
If the observations are continuously measured, then a continuous probability
density function is used instead of a set of discrete probabilities. In our case,
we use the discrete model.
An example of an HMM model in our case could be comprehended from Figure
3.5.

In Figure 3.5, the actual states are hidden and the only things which are
truly visible are the observations (comments exchanged, code reviewed, etc.)
being emitted from the bug fixing processes (assessment, development, code
review, deployment, etc.). The processes (assessment, development, code re-
view, etc.) comprised of the set of tasks that need to be coordinated between
the developers and managers in order to fix (resolve) the bug. This task
co-ordination is visible through a set of observations (activities) in the bug
repository, such as comments exchanged, code reviewed, etc. The task co-
ordination can also result in the back and forth movement between processes,
such as development and code review, deployment and assessment, etc. This
task co-ordination is also visible in the bug repository through observations.
Thus, there exist hidden states in the bug fixing processes, and the observa-
tions can occur on each hidden states, causing the transitions from one state to
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Sub 
processes 

Observations (O) 

X3	  X1	   X2	   X4	   X5	  
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F: File 
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Change.   
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Reached 
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Stochastic 
Process 1 
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O1 O2 O3 O4 O5 O6 O7 

Assessment	   Code	  Review	  Development	   Deployment	  

Figure 3.5: HMM model for bug fix time classification

another. Therefore, this process can be modeled using Hidden Markov Model.

To build an HMM model, λ = (G,U, π), automatically from a sequence of
observations (activities in this case) O = {O1 ,...,Oβ}, it needs to be trained
on the sequences of observations [25]. In other words, the parameters G and
U must be learned from the sequences of observations, such that P[O|λ] gets
maximized. Baum-Welch algorithm (BW) is one of the most commonly used
algorithms for learning (or training) the parameters G and U [25]. It follows an
iterative procedure using the forward and backward algorithms to determine
the probabilities of parameters G and U from a sequence of observations. In
this work, BW algorithm has also been used to train HMM.
The sequences of observations for bug reports are retrieved from the bug
repository for training HMM. For example, a sequence of observations for
a bug report could be like: New Reporter, Carbon copy, Whiteboard com-
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ment exchanged, Carbon Copy, Whiteboard comment exchanged. According
to the shorter representation used here it would be a sequence of symbols
N,C,W,C,W. They are also shown in Table 3.1. Such sequences of observa-
tions for each bug report are extracted untill their final resolution. Two HMMs
are actually trained on these sequences of observations of bug reports. The
first HMM is trained on these observation sequences related to bug reports
that require a total number of days to fix the bug (reach a resolution) below
a certain threshold. The second HMM is trained on observation sequences re-
lated to bug reports that require the total time to fix the bug beyond a certain
threshold. The threshold is calculated based on the median number of days
required to reach a resolution. The approach of partitioning bugs has also
been adopted by earlier researchers in training a machine learning algorithm
[12]. The two HMMs are then used to determine the type of the HMM of the
new observation sequence of the latest bug report. The type of HMM deter-
mines the number of days the bug will take to resolve; i.e., above the median
or below the median. This is further discussed in the next section.

In many applications, the supply of data for training and testing will be
limited [8]. In order to build good models, using as much as possible of the
available data for training is required to avoid over-fitting [8] [28] for such
cases. As the data size used in this research is fairly large 63,000 bug reports,
the problem of over-fitting does not apply. Thus the choice of %60 of the data
for training and 40% for testing is reasonable, and will avoid any variance
changes. This is applied to all the experiments carried out in this thesis.

3.3 Testing

This approach focuses on classifying the the new unresolved bug report into
one of two types: the report will take a long time (slow) to fix; or the report will
take a short time (fast) to fix. In order to achieve this observation sequences,
O = {O1, O2, O3, ...On}, of the latest bug reports are retrieved, and passed
onto two HMM models, λ1 and λ2, trained earlier on the resolved bugs. Then
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the probability that the observations are generated by one of the two models
is determined; i.e., P{O|λ1} and P{O|λ2} are determined using the forward
algorithm [25]. The maximum of P{O|λ1 } or P{O|λ2 } is determined and the
new unresolved bug report is assigned the type of bug reports that the selected
HMM represents. Only the first few observations are selected, O, for a new
bug report. For example, we select the number of observations occurring a)
only on day 1 of the bug report or b) first five observations and pass them to
HMMs to identify the time a bug report is going to consume – i.e., greater
than the median number of days or less than the median number of days.

3.4 Evaluation criteria

In order to evaluate this approach, the bug repository dataset is divided into
two parts: (a) bug reports for training; and (b) bug reports for testing. Ap-
proximately 60% of the resolved bug reports are used in the training set, and
40% of the resolved bug reports in the test set. The known resolution time of
the bug reports in the test set allows for the performance of the HMMs to be
evaluated.

The performance of the classifier is measured by first using a confusion
matrix and then determining the precision, recall, F-measure, and accuracy of
the classifiers. The confusion matrix stores correct and incorrect predictions
made by classifiers [28]. For example, if a bug is classified by HMMs as requir-
ing a long time to fix (slow) and it is truly taking a long time to fix (slow),
then the classification is a true positive (TP). If a bug is classified as slow and
it is not actually slow, then the classification is a false positive (FP). If a bug
is classified as requiring a short time to fix (fast) and it is actually in the slow
class, then the classification is false negative (FN). Finally, if it is classified as
fast and it is actually in the fast class, then the classification is true negative
(TN). Table 3.2 summarizes these four possible outcomes.

Using the values stored in the confusion matrix, the precision, recall, F-
measure, and accuracy metrics are calculated for the bugs reports to evaluate
the performance of these HMM models [28].
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Table 3.2: Confusion Matrix
Predicted
slow fast

Actual slow TP FP
fast FN TN

Precision: Precision is the fraction of retrieved instances that are relevant,
and it is calculated as [28]:

Precision = TP/(TP + FP ). (3.3)

Recall : Recall, also known as sensitivity, is the fraction of relevant instances
that are retrieved, and it is calculated as [28]:

Recall = TP/(TP + FN). (3.4)

Accuracy: Accuracy reflects the percentage of correctly classified bugs to the
total number of bugs. It is computed as follows [28]:

Accuracy = (TP + TN)/(TP + TN + FN + FP ). (3.5)

F-measure: F-measure, also known as F-score or F1 score, can be interpreted
as a weighted average of the precision and recall. It actually measures the
weighted harmonic mean of the precision and recall, where F-measure reaches
its best value at 1 and worst score at 0. It is defined as [28]:

F −measure = 2 ∗ Precision ∗Recall/Precision+Recall. (3.6)
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Chapter 4

Experiments

In this chapter, the application of the approach explained earlier in Chapter
3 is demonstrated in the form of three different experiments. In the first ex-
periment, demonstration on the ability of the classification model to identify
slow bug reports based on retrieving various fixed-length temporal sequences
of activities for bugs from the test set is executed. In the second experiment,
demonstration on the ability of the classification model to identify slow bug
reports based on retrieving various temporal sequences within the first week
of the bug report submission from the test set, is executed. In the third ex-
periment, temporal sequences related to bugs of previous years are used for
training and temporal sequences of bugs of future years are used for testing.
The third experiment is the most likely one to be used in a real life scenario.
At the begging some initial statistics for the dataset are provided, and then
all the experiments and their respective results are explained .

4.1 Dataset: Firefox Bugzilla Project

As mentioned previously in Section 3.1, bugs opened within the eight year
period (2006-2014), stored in the Firefox Bugzilla project were used. During
this eight year period, 116,099 bug reports, related to the Firefox project, were
submitted to the Bugzilla repository system. Of these reports, 5,986 were sub-
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mitted as new feature requests and were not considered in these experiments.
The histories of all bug reports that had reached a status of “resolved" were
extracted. In total, 86,444 of the 110,113 bug reports have been resolved.
This analysis indicates that there are 23,669 reports that have not reached
a resolution, some dating back to 2006. These figures are illustrated in the
first five columns of Table 4.1. The sixth column in Table 4.1 indicates the
number of reports resolved per year excluding all reports closed on submission
date, 26.7% of the total submitted bug reports get closed on date the of sub-
mission. In the seventh column in Table 4.1, the median of numbers of days
required for resolution in each year are shown. The median for the number
of days required to resolve decreases as time passes. This observation might
give an initial impression that the bug process fix time is more efficient than
previous years. However the percent of total resolved bugs, illustrated in the
last column of Table 4.1, decreases over time. This observation means that
many of the reported bugs are resolved in subsequent years, and when the re-
maining bug reports will be resolved the median will increase too. On further
investigation of columns seven and eight from Table 4.1, it can be seen that
caution is required in selecting the dataset range, as the last two or three years
might not give the full picture of remaining bugs in the systems. For example,
the median number of days for resolution required for year 2014 is 7 days,
which seems very optimistic. However, it only covers 47.22% of the bug re-
ports, because the rest of the bug reports tend to remain open for future years.

Taking a closer look at the bug reports closed on date of submission, i.e.,
total resolution time is 0 days, this result is displayed In Table 4.2. It is noted
that only 6.98% are closed with a resolution value of fixed, while the rest are
marked with a resolution of duplicate, invalid, worksforme, wontfix, or incom-
plete. This result is a reflection of the bug triage effort required during the
first week of submission, and, as stated earlier, several studies have worked on
addressing this area by suggesting machine learning algorithms that would au-
tomatically filter out duplicate reports [15, 26, 22, 23] or automatically assign
developers to bug reports [5, 10, 4]. This result is also a reflection of the nature
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Table 4.1: Number of bugs resolved by Year
Year Total bug

reports
submitted

No. of
new

feature
requests

No.of
bug

reports

No.of
resolved
bugs

No. of
bugs

resolved
excluding

bugs resolved
on creation
date (day 0)

Median
No. of
days till
resolu-
tion

% of re-
solved
bug

reports

2006 11,571 809 10,762 10,531 7,125 179 97.85%
2007 9,962 662 9,300 8,918 6,526 194 95.89%
2008 16,070 1,012 15,058 14,114 10,557 230 93.73%
2009 11,967 659 11,308 10,290 7,538 203 91.00%
2010 14,402 861 13,541 10,633 7,854 97 78.52%
2011 12,381 720 11,661 8,362 5,834 28 71.71%
2012 11,609 441 11,168 7,024 4,659 10 62.89%
2013 12,485 449 12,036 8,508 6,974 17 70.69%
2014 15,652 373 15,279 8,064 6,283 7 52.78%
Totals 116,099 5,986 110,113 86,444 63,350 78.50%

of the reporters as most of these reports are reported by novice reporters see
Section 3.1.

Table 4.2: Resolution of bugs closed on submission date
Resolution No. of bugs %

DUPLICATE 12,553 54.36%
FIXED 1,612 6.98%

INCOMPLETE 625 2.71%
INVALID 6,433 27.86%
WONTFIX 533 2.31%

WORKSFORME 1,338 5.79%

Total 23,094

Table 4.3 reflects the median number of days required to reach a reso-
lution. The first row shows the full dataset and the second row shows the
statistics in case the reports closed on the date of submission are excluded –
i.e., day 0 reports. The median of the number of days increases from 9 days
to 53 days around 2 months, if the bug reports closed on the submission date
are excluded. This result also makes the classification more viable for time
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estimates. Therefore, focus is placed on the bug reports that have recorded
actions one day after submission. This fact is also in line with Lamkanfi et
al. [18] findings that the fix times, as reported in open source systems, are
heavily skewed with a significant amount of reports registering fix times less
than a few minutes; i.e., day 0. Also after excluding the bug reports that are
closed on the date of submission, the median number of days (53) required for
fixing is similar to the (55) median days used by Hooimeijer et al. [14] for the
classification of bugs as cheap and expensive for Firefox dataset. Accordingly,
two month time interval, closest to the 53 days of median resolution, is a good
threshold to separate bug reports into two categories for training the Hidden
Markov Models.

Table 4.3: Statistics for Bug Resolutions
Resolution Min 1st Qu. Median Mean 3rd Qu. Max

Resolution of all bug reports 0 0 9 166.7 191 2,497
Resolution of bug reports

excluding day 0
1 5 53 227.4 346 2,497

4.2 Experiment 1: Using Fixed Length Tempo-

ral Sequence of Activities for Classification

This experiment begins with partitioning the dataset into two parts of 60%
(training set) and 40% (test set). Two HMMs are trained on the training set
by partitioning it further into bugs with resolution times less than the median
number of days and greater than the median number of days. This approach
is already explained in Section 3.1.

After training HMMs, the 40% test set is used to simulate the scenario of
having two, three, four, five and six activities of an unresolved bug report in a
bug repository and using HMMs to predict the (slow or fast) time to fix bugs.
In Table 4.4 the median number of days required for two to six activities to
occur for bug reports is illustrated. Table 4.4 also shows the median number of
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days required to actually resolve those bug reports. For example, the median
number of days for the second activity to occur is two days, implying that 50%
of the bug reports by the second day of submission have at least two activities.
On the other hand, the median number of days required to resolve these bug
reports was 60 days, implying that 50% of these defect reports required more
than two months to resolve. Thus, there is room for the predictive model to
predict the time to fix bug reports.

Table 4.4: Median of activities versus median of resolution per bug report
No. of activities Median of No. of

days for activity to
occur

Median for No. of
days till bug
resolution

2 2 60
3 6 63
4 8 44
5 9 35
6 12 33

In HMM, the number of hidden states are user defined. This means that
the best number of hidden states when training HMM must be determined.
Therefore, two HMMs were trained with the different number of hidden states
(5, 10, and 15) to determine the best number of hidden states.

In Table 4.5, precision, recall, F-measure, and accuracy for the results are
shown, when HMMs are trained with different number of hidden states and
tested with different number of activities. First, it can be seen that the overall
accuracy and other measures are not effected significantly by the number of
hidden states. Second, it can be seen note that as the number of activities
(observations) increase, the precision decreases and the recall increases. This
means that the model can easily predict the time to fix bugs (as slow or fast)
with more activities. The recall improvement is due to the fact that the bugs
requiring short-time (fast) get closed.
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From this case experiment, it can be concluded that when this approach is
applied to the first three to four initial activities happening on the bug report,
it achieves good prediction results. This implies that implementing this model
in a real life scenario would result in providing the quality teams with an early
indication of an expected slow time report.

The experiments were further carried out by looking at the reports sub-
mitted by novice reporters as previously explained in Table 3.1 versus reports
submitted by moderate and experienced reporters as previously explained in
Table 3.1(see Section 3.1). For the threshold, the median number of days
required to resolve for each reporter segment were calculated. The median
number of days to resolve for bugs reported by novice, first timers, was 74
days; while the median number of days till resolution for bugs initiated by
moderate and experienced reporters was 34 days. The results for novice re-
porters were in line with overall results presented in this experiment, due to
the fact that 63% of bug reports were initialed by novice reporters. As for
experienced reporters, the overall accuracy dropped by 3% due to the low
threshold of 34 days used for this test.
The experiments and comparisons are continued using a threshold of two
months, which is closest to the median number of days of the dataset.

4.3 Experiment 2: Using the First Week’s Ac-

tivities to Predict the Time to Fix Bugs

In this experiment, several HMMs were trained again, as in Experiment 1
(Section 4.2), for different numbers of states (5, 10, and 15) on two types
of bugs (bugs with slow time and fast time to fix). In the case of testing, a
scenario of extracting temporal sequences of activities at certain points in time
in the first week of submission of bug reports was simulated. In particular, the
temporal activities on the first day (day 0 ) of submission, on the third day
(day 3 ), and on the seventh day of the first week (day 7 ) were extracted from
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Table 4.5: Test results for fixed length temporal sequences
No. of activities No. of hidden states Precision Recall F-measure Accuracy

5 90.39% 61.89% 73.47% 67.37%
2 10 91.38% 61.35% 73.41% 66.91%

15 91.17% 61.43% 73.40% 66.96%
5 87.58% 67.52% 76.25% 72.72%

3 10 86.91% 67.72% 76.12% 72.74%
15 86.84% 67.98% 76.26% 72.97%
5 76.92% 71.53% 74.12% 73.15%

4 10 75.62% 71.74% 73.63% 72.92%
15 77.12% 71.58% 74.25% 73.25%
5 69.24% 74.83% 71.92% 72.97%

5 10 68.89% 75.15% 71.88% 73.06%
15 69.15% 75.10% 72.00% 73.11%
5 61.52% 76.12% 68.04% 71.11%

6 10 61.25% 76.34% 67.97% 71.13%
15 61.03% 76.55% 67.91% 71.17%

the bugs in the test set. This is illustrated in Figure 4.1. The day 0 seemed
to be the most important day and for this experiment as the triage efforts
actually happen on day 0. In this case, the length of the temporal sequences
vary for each bugs, because they depend on the progress on each bug report.
Also, those bug reports from the test set which did not have any sequences
recorded on the specific day chosen for the experiment or which have been
resolved up until that day had to be excluded.

t : time 
(days) 

t0 :  
Day 0 

t3 :  
Day 3 

t7 :  
Day 7 

Figure 4.1: Time points at which we extract test samples

In Table 4.6 the results of this experiment are illustrated with only the best
number of states for HMM (i.e., 5 states) for the sake of brevity. It can be seen
that the overall F-measure for day 0 is 66.11%, and it only slightly improves
on day 3 and day 7. All the measures tend to follow the same pattern, except
for precision, which increase dramatically as time passes to reach a value of
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81.07% on day 7. The improvement in precision rate can be attributed to the
fact that some reports requiring short-time are closed because the number of
reports in the test sample drops by 659 reports which are closed between day
0 and day 7.

Table 4.6: Test results for first week temporal sequences
No. of reports in test day precision recall F-measure accuracy

10,551 0 76.17% 58.40% 66.11% 60.95%
10,535 3 80.80% 58.44% 67.83% 61.67%
9,892 7 81.07% 57.65% 67.38% 60.75%

It can be concluded from the results of this experiment the viability of this
approach when applied as early as date of submission. The initial activities
happening during the first week of submission give a good indicator of the
overall expected time required to resolve the bug report.
The results of (day 3), 80.8% precision and 67.83% F-measure are better than
random guessing and expert opinion.
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4.4 Experiment 3: Using Bug Reports of Prior

Years to Predict the “Time-to-Fix” for Bug

Reports of Future Years

Table 4.7 illustrates the details of training and testing datasets for all the eight
experiments.

Table 4.7: Training and Testing by Year
Training Testing

Experiment Year No. of reports Year No. of reports No. of reports
used for testing

1 2006 7,125 2007 6,526 2,527
2 2007 6,526 2008 10,557 3,075
3 2008 10,557 2009 7,538 2,166
4 2009 7,538 2010 7,854 2,721
5 2010 7,854 2011 5,834 2,255
6 2011 5,834 2012 4,659 2,288
7 2012 4,659 2013 6,974 3’494
8 2013 6,974 2014 6,283 2,761

In this experiment, the two HMMs are trained using data from the pre-
vious year and tested using the data from the next year, starting from 2006
and ending in 2014. Equation 4.1 illustrates the train-test set pairs of datasets
that are used for training and testing. Assuming that the current year is being
predicted at time t, then the training would be done on the previous year data
time t− 1. Eight experiments were actually performed to cover the eight year
period: first HMMs are trained on the temporal sequences of bug reports sub-
mitted during year 2006 and tested using temporal sequences of bug reports
from year 2007, second they are trained on the temporal sequences of the bug
reports of 2007 and then tested on the temporal sequences of the bug reports
2008, and the experiments are continued in this manner until year 2014. Dur-
ing testing, the same approach as in Experiment 1 (Section 4.2) was followed
by using the first four activities of bug reports for prediction, the reason for
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Figure 4.2: Accuracy and F-measure year on year

this is the best results were achieved using four activities (observations).

(training yaer t−1 , testing year t) (4.1)

Table 4.8 illustrate the results of this experiment. Our model achieves an
overall accuracy of 75.23% and F-measure of 77.11% with a precision of 83.43%
and a recall of 75.44% for year 2007. In this experiment, we experimented with
the best hidden states (i.e., 5) HMMs.

Table 4.8: Results of year on year prediction
Iteration Year Precision Re-call F-measure Accuracy

1 2007 71.97% 75.44% 73.66% 74.27%
2 2008 83.43% 71.68% 77.11% 75.23%
3 2009 66.41% 79.66% 72.44% 74.73%
4 2010 55.11% 72.75% 62.71% 67.23%
5 2011 55.84% 64.14% 59.70% 62.31%
6 2012 69.62% 66.37% 67.95% 67.17%
7 2013 70.01% 68.33% 69.16% 68.78%
8 2014 82.98% 66.65% 73.93% 70.73%

It can also be noted that both the accuracy and F-measure for 2010 and
2011 suddenly drops. The drops are due to a change in the maintenance
processes that occurred in the Firefox organization during those years and re-
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sulted in the variations in developer activities for bug reports. However, once
the processes stabilized, the accuracy improved again. This result is shown in
Figure 4.2 and Table 4.8.

Examining Table 4.8 (excluding iterations 4,5,6 during which the processes
changed) the results clearly indicate high levels of precision (70.01% - 83.43%),
re-call (66.65% - 79.66%), F-measure (69.16% - 73.93%) and accuracy (68.78%
- 74.73%) being achieved. From an implementation point of view, most likely
the this scenario of (train,test) pairs would be implemented as most companies
would assess previous years performance and consider it as base for planning
for next years targets.
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Chapter 5

Comparisons and Discussion

In the past, researchers have used a variety of classification algorithms to clas-
sify bugs into slow-fast resolution times. For example, Lamkanfi et al. [18]
used Naive Bayes, Giger et al. used decision trees [12], Panjer et al. [24] used
Naive Bayes, decision trees, logistic regression, 0-R and 1-R, Hooimeijer et al.
used linear regression [14] and Zhang et al. [31] used K nearest neighbour on
the bug repositories to classify bug reports into “slow-to-fix” and “fast-to-fix”.

However, there are several differences between the approaches mentioned
above and the approach presented in this thesis, as follows:

• The thresholds, nature, and scope of the datasets used in each study are
different from ours (see Section 2).

• Each study has used a different set of attributes, such as date of bug sub-
mission, operating system, and text from the summary. These attributes
are not used in our models.

• The amount of post submission data used also varies according to each
study.

• The researchers have used frequencies of activities that occur in bug re-
ports for classification rather than the temporal characteristics of activ-
ities. To clarify further, consider we have a temporal sequence of obser-
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vations with the following value: “NCCCWYDCVDY”. In our approach,
HMM would learn the temporal relationships between these activities
by determining their conditional probabilities. In other approaches, the
classification algorithms would use the frequencies of these activities for
every bug report to train the model. In the case of above example, the
variety of classification algorithms, mentioned above, would use the fol-
lowing activities and their frequencies for training without considering
their order: “N(1),C(4),W(1),Y(2),D(1),V(1)”.

The Firefox 
Temporal 

Defect Dataset 
FTDD

Retrieving training 
temporal sequences

Retrieving testing 
Temporal Sequences

Build / Train 
classification HMMs

# of days <= 
Threshold 

HMM 1

# of days > 
Threshold 

HMM 2

Training

Models

 Testing

Bug fix time classification  : > threshold     or   <= threshhold

Convert to count 
frequencies testing files

Convert to count 
frequencies training files

Naive Bayes J48

Models

Figure 5.1: Experimental design for comparison with other algorithms

It is not possible to directly compare the approach presented in this thesis
with the ones in the literature due to the above reasons. However, for the sake
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of comparison, two of the most popular algorithms used by researchers are
selected: Naive Bayes and C4.5 [28]. C4.5 and Naive Bayes are trained on the
same dataset used in this study in a similar manner as HMM; i.e., training is
done on 60% of the bug reports and testing is done on 40% of the bug reports.
To compare this study’s approach, two HMMs are trained with 5 hidden states
one with temporal sequences related to bug reports that required more than
60 days and the other with temporal sequences related to bug reports that
required equal or less than 60 days. All three algorithms, HMM, Naive Bayes
and C4.5 (J48) are tested by using the activities that occurred on the first
day (day 0) for the bug report in the test set. The intuition is to compare
the accuracy on the first day of bug report submission. In particular, the
intuition of the comparison is: (a) to compare temporal sequences of activities
against the frequency counts of attributes; and (b) to compare HMM against
the other frequency based algorithms on bug reports. The experimental design
for comparison is illustrated in Figure 5.1.

The extracted bug reports for training are summarized in Table 5.1. As
noted from the table, the training sample is large and balanced. Any resolution
activity (observation) is filtered out; i.e., symbol Z is not included in our
training samples.

Table 5.1: Bug Reports for Training
Period for resolution Total No. of bug reports No. of bug

reports used
for training

% of bug
reports used
for training to

total
1 to 60 days 32,663 19,598 51.56%

greater than 60 days 30,687 18,412 48.44%
Total 63,350 38,010

All of the remaining samples in the test dataset that have at least one
activity are used for testing. Any reports that were closed on the day of sub-
mission are excluded. The experiment is repeated six times. Each time we
use a different random sample for training. The number of bug reports used
for training bug is maintained at 38,010 as indicated in Table 5.1. Table 5.2,
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Table 5.2: No. of Bug Reports for Testing
Iteration Fast

(resolu-
tion <=
60 days)

Slow
(resolu-

tion
>60days)

Total

1 5377 5174 10,551
2 5,395 5,199 10,594
3 5,439 5,248 10,687
4 5,326 5,197 10,523
5 5,267 5,198 10,465
6 5,287 5,216 10,503

Table 5.3: Results
Iteration Algorithm Precision Re-call Accuracy F-measure

HMM 76.169% 58.395% 60.951% 66.108%
1 Naïve Bayes 56.60% 5.70% 51.62% 10.40%

C 4.5 56.60% 5.70% 50.07% 10.40%
HMM 73.360% 59.733% 61.954% 65.849%

2 Naïve Bayes 58.20% 6.20% 51.78% 11.20%
C 4.5 42.50% 6.30% 49.82% 11.00%
HMM 76.467% 58.918% 61.574% 66.555%

3 Naïve Bayes 53.50% 7.40% 51.37% 13.00%
C 4.5 46.40% 8.00% 50.28% 13.60%
HMM 77.699% 58.357% 61.127% 66.653%

4 Naïve Bayes 55.70% 7.00% 51.33% 12.50%
C 4.5 44.30% 7.60% 49.64% 12.90%
HMM 64.275% 59.285% 60.066% 61.679%

5 Naïve Bayes 53.10% 5.70% 50.71% 11.60%
C 4.5 44.00% 8.00% 49.24% 13.00%
HMM 76.841% 58.500% 61.165% 66.428%

6 Naïve Bayes 54.40% 6.20% 50.83% 11.10%
C 4.5 44.70% 6.60% 49.56% 11.50%
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illustrates our final test sample counts, used for each of the six experiments.

Table 5.3 summarizes the results of the comparison between Naive Bayes,
C4.5 decision tree, and HMM. It can be seen that HMM outperforms both
C4.5 and Naive Bayes. A Wilcoxon signed rank test to measure the signifi-
cance of the difference in results between HMM and Naive Bayes, and HMM
and C4.5) is further carried out. The choice of using the Wilcoxon signed rank
test is because we are not certain that the data distribution is normal or not.
The null hypothesis is that there is no significant difference in the results of
HMM and Naive Bayes, and HMM and C4.5 decision tree. The significance
level (alpha) was set to be 0.05. The test, in both the cases (HMM and Naive
Bayes, and HMM and C4.5), revealed a Z-score of 2.201 and a two sided p
value of 0.028. This indicates that the difference is statistically significant as
p is less than 0.05 and accordingly null hypothesis is rejected.

This comparison experiment shows that the use of temporal activities pro-
vides better results than “use-of-frequency” based activities. Thus the ap-
proach to transform activities in bug reports into temporal activities can im-
prove the prediction results. As a consequence the prediction outcome can
facilitate managers in predicting time to fix bugs in a better manner than
other techniques.
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Chapter 6

Threats to Validity

In this chapter, certain threats to the validity of this research process are de-
scribed. Threats are classified into four groups: conclusion validity, internal
validity, construct validity, and external validity [29].

A threat to conclusion validity may arise due to random selection of the train-
ing and testing data. 60% of the data was randomly chosen for training the
model and the remaining 40% was selected for testing the model. It is possible
that with the selection of a different 60% the results might differ. However,
this threat is mitigated by repeating the experiments through different exper-
iments where in each experiment a different random sample is selected. In
addition, 10-fold cross validation is used in the comparison experiment for
Naive Bayes and C4.5. Also in Section 4.4, year to year training and testing
is used, where the experiments are repeated eight times.
Another threat to conclusion validity may exist in terms of over fitting of
HMM for a particular test set. However, this threat is mitigated by repeating
the comparison experiments six times with different randomly selected train-
ing and testing sets. This threat is also mitigated by the selection of different
number of states for HMM, which actually repeated the experiment for a dif-
ferent combination of states of HMM. Also the dataset used in this research is
large and usually HMM suffers from over-fitting when dataset is small. Thus
the chances of occurrence of over-fitting are negligible.
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A threat to internal validity may exist in the implementation because an incor-
rect implementation can influence the output. For example, Perl scripts were
written to retrieve the data, Python scripts were written to build the activity
symbols and SQL scripts were written to extract the temporal sequences of
activities. In this investigation, this threat is mitigated by manually investi-
gating the outputs. Another threat exists when activities are not present in
a bug report and that bug report takes a long time to fix. In such cases the
bug report will not be predicted by this approach as requiring slow resolution
time.
A threat to construct validity exists because the bug repository data is relied
on to retrieve and build a full picture of the bug life cycle. However, the bug
repository does not capture all software engineering activities and communica-
tions. This is a common issue in bug tracking repositories. Another threat to
construct validity relates to the heuristic assumption for reporter experience
in this study: the bug reporters are tracked and labeled based on the reporter
ID as it appears in the dataset. There might be cases for which the same
reporter has two reporter IDs. some of these cases were noted while observing
the e-mail addresses of reporters. A mitigation technique that was used is
manually inspecting the list of e-mail addresses versus reporter ID and noting
an overall uniqueness between both.
A threat to external validity is that the project that was chosen is an open
source project and the results might not be readily applicable to a commer-
cial project. In commercial projects, the bug maintenance process is usually
carried out by internal employees or outsourced to third parties under a ser-
vice level agreement (SLA). In Open source projects, the bug maintenance
process is usually managed by the project core team and they rely heavily on
the involvement of volunteers to carry out the maintenance activities. Despite
minor difference, there are more similarities and the concept that is presented
here can be easily mapped to any organizational process. Another threat to
external validity is that these experiments only cover the bug reports from a
single project, the same results may not apply on other open source projects.
However, the framework and concepts can easily be applied to other projects.
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Chapter 7

Conclusions & Future Work

In this thesis, a novel approach for identifying the time to fix bug reports was
presented. Our approach considers the temporal sequences of developer activ-
ities rather than frequency of developer activities used by previous approaches
[14, 12, 24]. We provide a framework for extraction of temporal sequences of
developer activities from the bug repository. We also train the Hidden Markov
Model for classification of bug reports as: (a) bugs requiring slow resolution
time, and (b) bugs requiring fast resolution time (see Section 3).

HMM was compared against Naive Bayes and C4.5 algorithms. HMM
achieved around 10% higher accuracy and 55% higher F-measure. Therefore,
HMM-based temporal classification of the time to fix bug report is better than
the existing techniques. The software quality teams would be able to have an
early indication of an anticipated troublesome bug reports by applying this
approach and can prioritize their work.

These results are very promising and the field needs further research and
experiments to calibrate and create more accurate models. This dataset has
been shared through the Mining Software Repositories (MSR) 2015 conference
for other researchers in this field to use [13]. There are several ways to improve
or extend this current research: First, future plans include conducting the
same experiments on different open source projects and commercial datasets.
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Second, this research focused on using the temporal sequences for classifying
the bug fix time, it is worth using the same attributes for the purpose of
predicting the expected outcome of the final resolution (such as invalid bug,
wontfix bug and duplicate bug). Third, focus in this thesis was on the temporal
sequences related to developers interactions and reporter experience. It might
be worth investigating the effect of combing the other traditional attributes
such as date of opening, size of summary filed, etc. and using the combined
set as inputs to the classification algorithm. Fourth, incorporating human
factors that affect the process into the algorithms. Such work would require
understanding the factors and measuring these factors that affect decision
making such as biases and then mathematically modeling them.
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