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Abstract 

 

Non-invasive Modeling of Intracranial Hypertension from Physiological Channels 

Parisa Naraei 

Doctor of Philosophy, 2019 

Computer Science 

Ryerson University 

 

Intracranial pressure (ICP), the pressure within the cranium reflects three elements: 

cerebrospinal fluid, brain tissue and blood pressure. High ICP (above 20 mmHg) is called 

intracranial hypertension (ICH) which is due to the tumour, swelling or the internal bleeding of 

brain and may cause secondary damage to the brain. ICP is a crucial parameter in diagnosis of 

brain injuries. Two models which utilize machine learning techniques to anticipate ICH and assist 

in clinical decision making were developed in the present thesis. 

ICP can be monitored through the invasive techniques (i.e., inserting an intraventricular 

catheter through the skull). Despite the high accuracy, the episodes of ICH can also be manually 

identified only after placement of catheter which is accompanied by lots of technical difficulties. 

Furthermore, the ICP signal might not be available continuously or may include unwanted noise 

that could introduce more complication to the diagnosis and treatment procedure.  

Considering the difficulties of the invasive techniques, a non-invasive model, capable to 

predict the ICH helps to save time, estimate the missing ICPs, predict the ICP in advance and 

accelerate medical intervention. The present thesis introduces two machine learning models to 

resolve the current limitations: 1- Non-invasive prediction of ICP labels 10 minutes in advance 

where the status of ICP (normal / ICH) is predicted based on the two components extracted from 

the physiological signals such as mean arterial blood pressure and respiration rate. 2- Wavelet – 

clustering where a machine learning solution for ICP estimation using a hybrid wavelet clustering 

is proposed. The episodes of ICP and derived from ICP (such as cerebral perfusion pressure) are 

excluded from the second model.  
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The results indicated that a neural network gave the accuracy of 86.8% and the sensitivity 

of 94.4% (AUROC=0.86), higher than the benchmark (AUROC=0.81). The clustering approach, 

which was tested via classification using the labels demonstrated a mean squared error of 0.19 

mmHg. Clustering wavelet plots of correlated physiological signals with ICP and understanding 

changes of ICP from them, is experimented for the first time in this thesis. 
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1 Introduction 

1.1 Background of the research 

Traumatic brain injury (TBI) is the main reason for the secondary human brain injury and 

death on the world. Although, the primary injury in (TBI) patients is diagnosed using brain 

imaging, the secondary brain injury, which may also lead to the following long term and/or 

permanent brain impairment remain as the main risk [1] such as: cerebral hypoxia defined as low 

brain oxygen flow, brain herniation described as brain swelling that may result in brain 

compression in skull and cerebral ischemia defined as low blood level in brain [2].  

Any of these phenomena may aggravate the TBI patient condition and result in death [3]. The 

key parameter in understanding and prediction of the above problems and the secondary brain 

injury is ICP [4][5]. ICP is described as the pressure inside the intracranial cavity (skull) and is 

determined using the overall volume of brain tissue, blood and cerebrospinal fluid. ICP screening 

is a common practice in ICU units to monitor comatose TBI patients [6]. 

 

1.2 Problem statement with ICP collection 

 

The existing invasive technique is based on the insertion of a transducer or catheter into the 

skull and insertion of intra-parenchymal ICP monitor. This practice requires the insertion of the 

catheter into the patient’s brain [7]. Intra- or extra-cerebral hemorrhage usually terminates once 

the catheter is placed but skin stitches and bone wax might be possible if bleeding continues [8]. 

Although intracranial hemorrhage is rare, unenhanced CT scan of the head may be performed after 

the procedure if hemorrhage would be suspected. Infection is an uncommon but serious late 

complication which may adversely affect the outcome [8].  

Prediction of intracranial hypertension (ICH) and patient outcome (survival, vegetarian life, 

death) based on the current health status and clinical recordings is crucially important for 

physicians [2]. Considering the important negative side effect and complexities associated with 

the invasive ICP monitoring various research groups  have been looking into non-invasive 

approached [5][9]. Although the non-invasive techniques are not as accurate. Despite all the 
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progress and valuable findings in non-invasive techniques, neither of them has been broadly used 

in clinical practices [2][9].  

 

1.2.1 The existing gap in the literature  

 

The limitation on the available models in the state of the art literature is that the proposed 

solutions are mainly targeting the problem of ICP monitoring being reactive and as a result, 

predictive models are proposed. The general solutions proposed are including ICP history as well 

as different other clinical variables as the inputs of the models and predicting future ICP 

accordingly. The predictive models of ICP are highly dependent on the ICP signal and even though 

a number of body signals are included in the feature space (such as arterial blood pressure, oxygen 

saturation, etc.) to predict ICP future values, the cerebral signals (ICP and CPP) are included as 

well as the independent variables for modeling. The contribution of all of such models would be 

to help in “automation” of ICP analysis procedure with the current medical settings.  

What is yet to be discovered is whether a mapping could be defined between the routinely 

collected vital signals collected from the patients from the heart and respiration channels to 

cerebral channel showing the normal/intracranial hypertension behavior of ICP. On top of that a 

more fundamental question is yet to be answered which is whether a “structure” could be found in 

body signals to show patterns of changes of ICP. To achieve this goal, some fundamental questions 

are defined as the research questions in this thesis as disclosed in Sec 1.4. 

 

1.3 Non-invasive predicting of Intracranial Hypertension 

 

Monitoring of ICP in the current practice requires the intraventricular catheter to be inserted 

into the patient skull. It is direct and accurate but there are negative side effects. Insertion of the 

intraventricular catheter bolt has the risk of haemorrhage and the possibility of infection [4]. It is 

very desirable to have a sensitive and accurate predictive model to help anticipating the future ICP 

status, independent of ICP as the input. 
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The prediction systems are expected to predict the forthcoming rise in the ICP; however, it 

would be very desirable if the prediction could also be conducted non-invasively and help in 

managing and controlling the Traumatic Brain Injured (TBI). If available, the non-invasive 

predictive model of ICP, independent of the cerebral signals as the inputs, capable of forecasting 

normal versus intracranial hypertension states of the brain, few minutes in advance, could be an 

ideal decision support model to be integrated into the current medical setting.  

The present study showed that some of the different body channels such as distinct leads of 

heart and respiratory system (i.e., systolic and diastolic blood pressure) are correlated with the 

status of ICP and the signals are vital signals easy to collect and available from the patients. The 

present thesis shows that the correlations are not only through body organs such as coronary heart 

and respiratory system but also through different leads of heart and breathing systems.   

In this thesis, two non-invasive models are proposed. The first modelling is conducted using 

the components extracted from the most correlated body signals with ICP, in which ICP class label 

(normal/raised) is predicted. The second proposed model based on unsupervised learning 

investigates the possible structure in the correlating body signals with ICP and accordingly 3 

clusters are defined and labelled. In this thesis, the assumption to be hold for modeling would be 

having access to a window of biomedical signals as well as ICP, where the fluctuation of signal is 

showing both normal and raised episodes of ICP. In this thesis, the following research questions 

are investigated. 

1.4 Research questions 

 

The research questions that require to be answered would be as follows: 

•            Are there other body channels correlating with the status of ICP? 

•     Are these correlations significant? 

•     Are the correlated body signals able to show some patterns of changes of ICP? 

•     Is it possible to predict the future ICP value from correlating physiological signals? 

•     Is it possible to build a predictive model to have the clinical application? 
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 Is it possible to define a structure from correlating physiological signals with ICP 

and interpret those to understand possible status of ICP (normal, pre-raised- 

raised)? 

 

1.5 Objectives 

 

 To investigate the feasibility of modeling ICP from physiological channels: 

investigating the correlation between physiological features and Intracranial 

Pressure. 

 To investigate predictively of ICP from various channels and leads of heart such as 

Central Venous Pressure, Heart Rate, Pulse, Diastolic Arterial Blood Pressure, 

Respiration and Mean Arterial Blood Pressure. 

 To solve the multicollinearity problem detected in physiological data. 

 To conduct predictive modeling of ICP from correlated physiological signals with 

ICP. 

 To conduct clustering and finding structures from correlated physiological signals 

with ICP. 
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2 A review of Intracranial Pressure Signal Analysis and Machine Learning 

Inspired Techniques 

 

Various signal analysis techniques utilized to assess ICP and machine learning inspired 

approaches for ICP analysis are reviewed in this chapter. Generally, most of the studies in this 

field engage the time series modeling and forecasting; and the main models introduced in the 

present thesis work based on signal analysis and machine learning approaches. 

 

2.1 Intracranial Pressure (ICP) 

 

Intracranial pressure (ICP), also known as the internal skull pressure is a crucially 

important parameter that can influence the functioning and vital symptoms of brain. Several 

internal elements such as the brain tissue, cerebrospinal fluid (CSF) and blood pressure, as well as 

external factors such as sneezing, coughing, and movements can alter the ICP [10]. Alteration of 

ICP is often due to volume changes in one or more than one of the organs in the skull. ICP can be 

quantified in the unit of millimeters of mercury (mmHg), however there is some controversy about 

the normal and elevated ICP range among the clinicians. While many clinicians perceive ICP 

values in the range of 0-15 mmHg as regular [11], [10], [12], [13], ICP magnitudes in the range of 

20-25 mmHg is considered as elevated and patient need to receive therapeutic intervention [14]. 

Variations of ICP also depends on age. For instance, the normal range of ICP in infants and 

children is 1.5 to 6.0 mmHg and 3 to 7 mmHg, respectively [11], [15]. 

The critical ICP also known as intracranial hypertension is considered as the continually 

elevated ICP, usually over 20 mmHg [16]. Intracranial hypertension may lead to the secondary 

injuries and can result in death; thus needs to be prevented through medical intervention such as 

cerebrospinal fluid drain [2] [17]. 

Time is a crucial parameter in clinical intervention of TBI patients. Increased ICP is 

generally observed in wide range of patients suffering from brain related symptoms such as  

hydrocephalus, intracranial tumors, cerebral edema and etc. [8]. Sudden rise of ICP is a critical 

parameter that needs timely detection and intervention; i.e., it can result in a wide range of 
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problematic issues such as lowering cerebral perfusion pressure (CPP) or herniation of the 

brainstem which leads to serious neurological damages or death [3]. Stiver et al. [18] studied the 

variation of the severity of intracranial hypertension and the negative outcome of the intense head 

damage.  Patients’ response was observed to be critical while patient experiences elevated ICP and 

regular in patients with regular ICP [19]. This implies that due to elevated ICP, the TBI patients 

need to be monitored and receive medical intervention to reduce and control the ICP. Considering 

all these aspects, monitoring and recording ICP is an important element in assessing and medical 

intervention of TBI patients [20].  

There are various techniques of ICP monitoring such as invasive or direct ICP monitoring 

techniques including subdural, ventricular cannulation, epidural, and intra-parenchymal devices 

and non-invasive (or indirect) including optic nerve sheath diameter, lumbar puncture, visual 

evoked potentials, ultrasound and Doppler [21], [22], [23], [24], [25], [26], [27] and [28]. The ICP 

shown on bedside monitors is collected through the invasive ICP measurement method; i.e.,  a 

pressure transducer penetrated into the subdural, epidural, intra-parenchymal, or lateral ventricular 

space [10]. 

 

2.2 ICP analysis 

 

Traumatic brain injured (TBI) patients’ outcome depends on various factors such as ICP , 

as one of the most important ones and respiration, cardiac conditions, body temperature, 

oxygenation and blood pressure [14]. Considering the importance of these parameters in 

determining and predicting the patient response, comprehensive pathophysiology and clinical 

decision making for TBI patients, these elements and their correlation with ICP have traditionally 

been researched using waveform analysis [29] and [30]. Moreover, ICP waves have been analyzed 

to explore further prognostic and diagnostic information [10]. 

 Variations of biological signals was studied through nonlinear analysis and could be a 

helpful and reliable technique to explain ICP time series [30],[31],[32],[33]. Kim et al. [34] 

focused on noninvasive ICP (NICP) modeling and figured that Kernel spectral regression-based 

technique as a nonlinear mapping function enhances the efficacy of data mining framework for 
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NICP compared to linear techniques. The advantage of nonlinear ICP models is to achieve high 

curve-fitting functionality. 

The predicting models developed by Narotam et al. utilized regression analysis to correlate 

the oxygen level in brain tissue to other parameters such as brain temperature, CPP, ICP and 

pulmonary oxygenation [35]. The health conditions can be correlated through cohort analysis 

which demonstrates that the estimator of cerebral perfusion pressure (eCPP) is correlated with CPP 

(R= 0.851, p < 0.001) ± mean standard deviation of 4.02 ± 6.01 mm Hg, with less than 10 mmHg 

error in 83.3% of occasions [36]. It was figured that eCPP estimates low CPP (< 70 mm Hg) with 

area under the curve (AUROC) equal to 0.913 [36]. 

The linear modeling could also be applied to explain the correlation among ICP and other 

parameters such arterial blood pressure, cerebral blood flow velocity, brain temperature and etc. 

[37] and [34].  

 

2.3 Monre-Kellie doctrine 

 

Monro–Kellie doctrine hypothesized that the total brain volume, consisted of cerebrospinal 

fluid (CSF) and intracranial blood is constant [38]; meaning that an increase in one results in 

decrease in another. Alexander Monro studied the cranial cavity from physics point of view and 

discovered that  the volume of the blood circulating in cranium is hypothetically constant [39]. 

This doctrine explains the reason for many of the symptoms observed in TBI patients. For 

example, the elevated ICP in patients suffering from brain injury is due to the occupied volume by 

bleeding that results in modified CSF and/or blood. On the contrary, a decrease in brain volume 

will be filled by CSF and/or blood that can maintain the ICP [40].  
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2.4 Review of signal analysis approaches 

 

ICP is considered as a useful indicator of intracranial condition; thus, the following critical 

literature review focused on waveform analysis will give helpful insight about the previous studies 

and important considerations.  

 

2.4.1 Frequency analysis and time series analysis of ICP 

 

The ICP value demonstrated on bedside monitors is the average of ICP signals collected in 

short time spans. The standard deviation can also be calculated for similar time [41]. O’Phelan et 

al. investigated the ICP collected from several TBI patients and figured that ICP waves follow 

distinct patterns [42].  Bellotti et al. and Eide et al. studied the variations of elevated ICP in TBI 

patients before and after surgery [43],[44]. It was emphasized that decrease of mean ICP is the key 

element in clinical interventions of patients suffering from intracranial hypertension [45]. 

However, it was later discovered that the mean ICP is not an accurate indicator of dynamic 

characteristics of ICP [44]. Thus, the emphasis was shifted to detecting the pulses in ICP waveform 

for computing the mean wave value; which is a more reliable and precise method to indicate 

intracranial compliance [44], [46], [47],[10]. 

Fast Fourier Transform (FFT) is a method to represent signals in frequency domain which 

was broadly used in 80’s for extracting important parameters and better understanding of signals 

[48].  ICP signal is unpredictable to some extent and does not follow a complete sinusoid pattern.  

On the other side, using FFT method, it was assumed that the signal is stationary as there is only 

one peak in each cycle [48]. Due to the data reduction happening in the frequency-domain method 

by converting the signal from its time domain to frequency domain; FFT analysis is not appropriate 

method for ICP analysis as some important information of ICP signal revealing in time domain 

will be eliminated. 

Klingelhöfer et al. [49] studied 13 patients with almost equivalent medical condition for 

whom the other parameters that influence the transcranial Doppler results was also considered to 

be constant (r = 0.873; P < 0.001). They discovered that ICP and the magnitude of (mean systemic 
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arterial pressure * Pourcelot index over the mean flow velocity) were found to be closely correlated 

[49],[10]. 

Considering the shortcoming of frequency domain methods, the time domain is highly 

preferred for computation of pulse amplitudes [48]. Holm et al. assessed the harmonics frequency 

of ICP as well as fundamental frequencies to better understand the ICP signal [48]. In order to 

assess the volume of information obtained from the early waveform of the primary harmonics, 

Holm et al. showed the results on the maximum point of the original ICP [48],[10]. 

 

2.4.2 Brain compliance and pressure reactivity index 

 

Subordinate indices were found to be helpful in identify the threshold and commencement of 

intracranial disorder in 70s along with waveform analysis. In order to estimate the intracranial 

instant capacity, the joint point between ICP pulse amplitude and the linear slopes of baseline 

ICP [50] and plots of standard deviation regression and mean ICP slope variations [51] were 

considered to indicate the variations of intracranial dynamics. The mean wave amplitudes and 

mean values of ICP were used as secondary indices [10].  

Pressure reactivity index (PRx) was known to be required in efficient ICP analysis which also 

indicates the auto regulatory performance of the brain and cerebral perfusion pressure [10]. Barth 

et al [52], discovered the correlation between PRx, ABP waveform amplitudes and ICP pulse 

pressure. PRx results in a weak correlation with patient outcome in subarachnoid hemorrhage 

patients while associated with flow-related indices and oxygen. The correlation between ABP 

wave amplitude and patient outcome (survivors and non survivors as well as short-term and long-

term) was utilized to address the PRx-ICP limitations [10].  

Bajla et al. [53] proposed using  a sliding window technique to demonstrate retrospective ICP 

data in real time. The pressure-volume curve is equivalent to the Monro–Kellie rule explained in 

section 2.3 and was characterized with the amplitude regression and pressure (RAP) coefficient 

[54] known as a correlation factor between pulse waveform amplitude and ICP [44]. The reactivity 

of cerebrovascular pressure indicated the ability of muscle tone in arterioles walls and cerebral 

arteries to respond to variations in transmural pressure [55]; which is considered as a measure of 

neurological compensation [56],[10].  
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Czosnyka and Pickard introduced the pressure reactivity index (PRx) as a representation of 

mean ICP and correlation coefficient of arterial blood pressure (ABP) [57], which was found to 

a be a powerful tool in anticipating poor outcome in TBI patients and was investigated by other 

scholars as well [57], [55], [56]. Human brain is capable of preserving a fairly constant blood 

flow while experiencing alteration in perfusion pressure, which is known as autoregulation of 

cerebral blood flow [58][10].  

 

2.4.3 Entropy-based ICP trend analysis  

 

 Trend analysis is a useful technique applicable when there is a relation between variables, 

established based on the historical data. The shortcoming of trend analysis is that the historical 

data may not portray the realistic trend of the underlying trend perfectly; however, it can be 

replicated, updated, refined and checked, if needed [59]. The key challenge of this method is to 

detect the turning points, as it is difficult to identify them in real-time data, since they appear as 

the start point of new trends or deviation from the present trend. The accuracy of trend analysis 

for ICP relies on the historical ICP data available for the analysis which is often not present [2]. 

 Degree of irregularity/complexity in such methods, which can be utilized to evaluate the 

variability of biomedical signals, depends on the order of the elements in the time series [30]. 

Approximate Entropy (ApEn) is a technique to evaluate pattern generations and signal randomness 

and measure the regularity in any biomedical time-series data [60]. ApEn can also evaluate the 

time series to identify patterns and frequency of their occurrence [41]. One of the important 

advantages in using ApEn relies in its ability to look into the underlying patterns commonly 

ignored by other methodologies (i.e., statistical time-domain or spectral frequency analysis) 

[61],[10].  

 The Lemple-Ziv compression entropy, a nonparametric measure, was utilized for one 

dimensional signals to evaluate the signal complexity and frequency of occurrence in the given 

time interval [62], [63]. ApEn along with the Lempel–Ziv were used to evaluate the ICP signal 

variations in TBI patients and determine the relations with mean ICP in Lempel-Ziv compression 

entropy measure [64], [61][10]. Some other biomedical signals (i.e., arterial blood pressure and 
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heart rate) were also broadly utilized in entropy measure applications. Noticeable amount of 

research is still going on to predict and evaluate the complexity of ICP time series [62]. 

 

2.5 ICP morphology 

 

Lundberg studied the ICP waveforms and classified the ICP into three wave patterns as 

shown in Fig. 2.1. Lundberg labeled the ICP waveform observed in intracranial hypertension, i.e., 

an unexpected elevated ICP beyond 50 mmHg in 5 to 20 minutes, as wave type A [65]. Wave type 

A is an indicator of weak brain compliance [66]; which was also observed while a patient 

experiences low cerebral blood flow and cerebral perfusion pressure [45]. Low-frequency waves 

corresponding to ICP range of 10 to 20 mmHg accompanied with alteration in breathing is labeled 

as “Pressure pulse B waves” and ultimately, Lundberg called the ICP waves associated with 

respiratory and cardiac signals having 4 to 8 oscillations per minute as “Traube-Hering C waves”. 

 

 

 

Figure 2.1 ICP A Wave, B Wave and C Wave
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2.6 Wavelet analysis 

 

 Wavelet analysis was broadly applied for decomposition of ICP waveform and separation of 

its elements; which allows the non-stationary nature of the signal be considered in the analysis 

[43], [67], [41]. Analysis, explanation, and interpretation of ICP signals is usually associated with 

error. The present techniques have some shortcomings is identifying discrete ICP signal peaks of 

unbalanced waveform. Moreover, hardware connections and activities causing volume variations 

from any signal contribute in generating noise in ICP signals which can introduce error and make 

the ICP signal less reliable for medical intervention [68] [69]. To overcome this challenge, it is 

suggested by several scholars to identify the ICP peaks which give insight for better understanding 

and assessment of waveform and enhance the quality of ICP signal [63][70][71][72].  

 Tsui and his co-workers developed a neural network model using wavelet analysis for multi-

step ICP prediction [51]. Analysis of the variations in ICP sub-peaks, features related to ICP 

amplitude and also duration of the sub-peaks is also a practical method suggested in Ref. [71] 

which is of crucial important for clinical applications [10]. Kashif et al. [73] proposed a 

cerebrovascular function model which utilized the arterial blood pressure (ABP) waveform 

analysis and cerebral blood fellow velocity (CBFV) to estimate the model parameters. 

 Wavelet analysis is capable of reconstructing various linear and polynomial function shapes 

(i.e., rectangle, triangle, second order polynomials, etc.) [74] that is not possible using Fourier 

analysis. Wavelets analysis could consequently eliminate the ICP noise more efficiently compared 

to Fourier transformation filtering. Fig 2.2 demonstrates the non-stationary characteristic of a 

sample ICP within 1200 seconds. Fig 2.3 corresponds to the wavelet analysis of the same signal 

duration and as demonstrated, wavelet reflects a weak signal power within the first 400 s. As 

shown in Fig. 2.2, the signal peak occurs between t=550 to 620 seconds, which is also highlighted 

in red by wavelet analysis of Fig. 2.3. Signal level decreases between t=620s to t=820s and 

subsequent slight increases shown in Fig. 2.2, are highlighted in Fig. 2.3 using wavelet power 

levels varying between yellow and green, which is followed by the later peak around 1100 s. 
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Figure 2.2 a sample of ICP signal of a traumatic brain injured patient over an episode of 1200 

seconds 

 

Figure 2.3 wavelet power levels corresponding to the same patient in Fig. 2.2 
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2.6.1 Spectral analysis 

 

 The analysis of time series, also known as signal analysis, is a fundamental challenge for 

scientists [75].  

The spectral analysis works based on measurement of amplitude vs. frequency input signals [76]. 

In order to analyze the frequency domain of ICP one needs to realize the harmonics component of 

the ICP signal [34]; which are acquired via a mathematical transformation (e.g., FFT) that can 

separate and identify each waveform from the total spectrum, known as spectral analysis [77]. 

Spectrum and vector signal analyzers are applied for time series measurements [78].  FFT was 

applied for a long time to map the data from time to frequency domain to assess ICP signal and 

explain brain compliance [73] which was found to be more trustworthy compared with mean ICP 

analysis [41]. Spectral analysis is capable of analyzing wide range of frequency and bandwidth, 

though it is neither as appropriate for measuring transient events nor phase measurements 

compared to wavelets analysis [10], [79]. 

 

2.6.2 ICP fractal-based analysis 

 

Fractal analysis is a proper method to study the correlations in the ICP signal during long time 

periods. The term “fractal” which is widely used in neuroscience was first used by Mandelbrot to 

refer to the irregularity and complexity of features and objects [80]. Fractals are described by an 

interesting property known as the self-similarity; i.e., the subunits resembling the bigger scale 

structure [81]. In other words, the observed features at a superior enlargement level theoretically 

resemble the ones at a minor level. Considering this, the focus of fractal analysis is to determine the 

self-structure, self-similarity, and eventually pattern recognition of ICP waveform. Burr et al. [82] 

examined the possibility of applying detrended fluctuation analysis (DFA) to ICP signals collected 

from TBI patients and correlated the derived elements to patients outcome. They discovered that 

the DFA smaller intercept and scaling exponent are accompanied with the negative TBI patient 

outcome [10] [88].  

Fractal analysis has some advantages over the other techniques; i.e., this method is widely 

practical for signal analysis as it can identify similarities among different signal segments which 
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help improve the signal predictability. Moreover, the fractal pattern is preserved once a fractal 

object is projected to different dimension order. Furthermore, the expansion or contraction of the 

ICP signal will not change the shape of signal in any dimension. Despite the benefits of this 

methodology the relation between highly complex physiological responses and high fractal 

dimension requires further investigation [83]. 

 

2.7 Hidden Markov model 

 

Hidden Markov model (HMM) could be visualized as a finite state process, known as a relatively  

simple modeling method for sequential data [84]. Markov process is known as stochastic process 

that satisfies Markov property names as “memorylessness”. HMM is an appropriate option when 

the observational data is available but the transient states are unknown [84]. Despite the advantages 

of HMM in ICP analysis, it requires noticeable amount of data for training and also a priori 

information of the model topology [85]. 

 Rezek et al. [86] showed that HMM can be used together with some learning methods and 

utilized HMM to different biomedical signals such as the periodic breathing, electroencephalogram 

(EEG) and the RR-interval series.  Novak et al. [87] classified real ICP data by applying a clustering 

algorithm on continuous HMM and demonstrated that up to 80% accuracy performance could be 

obtained. Jordan et al. [88] investigated the time series model using a decision tree with Markov 

chronological structure to describe the use of HMM for time series analysis. 

 

2.8 Kalman filter  

 

A Kalman filter is a tool to obtain the parameter of interest from indirect and unclear 

observations[89]. Kalman filter processes the incoming data recursively and is capable of 

minimizing the mean square error of the predicated factors associated with Gaussian noise 

distribution [90]. Considering that the analysis of signals involves past, present and forthcoming 

signal values [91], Kalman filter only requires to keep the previous state and operate fast to predict 

the prospective values [92]. Kalman filter can also be applied on ICP waveform and analyze the 

information despite the existing entropy [93]. Kalman filter is a practical and optimal tool for 
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accurate modeling of various linear systems [94]. Kalman filter is also useful for online real-time 

processing that can be simply implemented.  

Nonlinear systems can also be processed using extended Kalman filter that linearizes the 

predictions and measurements of the average signal value [95]. Despite the advantages of the 

Kalman filter model, the ultimate error levels can be fairly high, once the model does not function 

accurately; therefore, user need to assess the advantages and error of this methodology while 

applying that for cases with few random variables [59]. 

Hu et al. utilized physiological variables (i.e., CBFV and ICP) to anticipate unseen ICP episodes 

using a nonlinear Kalman filter and coupling the estimators with the input and output configuration 

[96]. Aboy et al. utilized dual Kalman filter to develop a practical algorithm that applied ICP power 

spectral density collected from TBI patients [97].  Wan et al. developed a nonlinear technique 

named as dual extended Kalman filtering (EKF) and applied that on time domain to eliminate the 

noise from voice signal and proposed that for medical signal applications [98].  

  

2.9 Machine learning techniques 

 

The state of the art machine learning techniques applied on ICP will be reviewed in the present 

section. Machine learning methodologies enabled computers to enter smart level of self-learning 

[99] which is predicted to lead into significant improvement in medical intervention techniques. 

Majority of the methods and studies reviewed in this section focused on the ICP classification, 

clustering and prediction. 

 

2.9.1 Logistic regression and artificial neural networks  

 

Predictive models are generally constructed using realistic data from the past experience and are 

critical tools for medical diagnosis and prediction. An important step of predictive modeling is the 

required data preprocessing needed to be done prior to machine learning, which is sometime time 

consuming. Basically, the underlying patterns in the realistic data will be identified using the 

mathematical algorithms implemented using the knowledge of computer science [100]. 
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 Artificial neural network is a method of machine learning capable of predicting the future output 

signal based on the properties of the learned input signal which were recommended for medical 

applications since 80’s. Such a system is developed to recommend the most appropriate intervention 

based on the medical diagnosis [60]. Artificial neural networks for ICP prediction are developed to 

assess the behavior of ICP deterministic components and predict the output ICP signals [64][61]. 

The simple recurrent neural network, recommended for ICP prediction of patients with head injuries 

are capable of identifying critical deterministic components [101].  

Logistic regression utilizes a set of independent variables to anticipate limited outcome 

variables; implying that inaccurate selection of the independent variables results in extremely poor 

predictive values [102]. On the other hand, not only accurate independent observations are required 

for proper operation of logistic regression model, but the model may also overfit the training data 

[103]. Logistic regression model is capable of predicting two explanatory or dependent variables 

that can be either be ordinal, dichotomous or continuous [104]. The logistic regression model 

remained preferable compared to Chi squared distribution or Fischer's exact test of independence 

techniques [105]. 

Swiercz et al. [106] compared neural network and linear autoregressive for ICP prediction and 

discovered that although linear autoregressive model operates better for prediction of future ICP in 

time range of 2 to 3 minutes ahead, neural network perform better in the prediction of 5 minutes 

ahead or more [106]. Dreiseitl et al. [100], described the applicability of logistic regression and 

artificial neural network models for biomedical data classification and introduced the statistical 

pattern recognition as the mutual step in logistic regressions and artificial neural networks models. 

They also compared these two models with various other classification algorithms and showed how 

to construct and assess these two models.   

Fanelli et.al [107] developed a physiologic model to predict ICP signals based on regression 

correlation between ICP and ABP and CBFV and tested the model using 20 different datasets 

recorded from three sever care unit patients. They compared their predictions with invasive ICP 

recording and reported estimated ICP values with average error and standard deviation of -1.12 and 

5.56 mmHg, accordingly [107]. Guiza et al. [108] also developed a predictive model for ICP using 

logistic regression and evaluated their model using ten repetition of five-fold cross validation 

technique and obtained an acceptable discriminative ability utilizing relatively few body signals 
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[108]. These studies indicate that autoregressive model is a suitable method for prediction the ICP 

for the upcoming few minutes; however, neural networks predict the future ICP more accurately 

when it comes to ICP prediction for farther and longer time periods.  

Hűsser [2] developed a regressive analysis model ( for non-invasive prediction ) as well as SVM 

and ensemble extremely randomized tree utilizing ICP and physiological signals. Hűsser [2] utilized 

body signals in different time scales to introduce complex features and analyzed signals in multi 

scale time series. He trained and tested his models using MIMIC II dataset and BrainIT dataset, 

respectively; and reported an AUROC score of 81 utilizing 10-fold cross validation method on the 

classification method and an MSE of 3.84 mmHg on the regression model. 

The recent progress and advantages achieved by using neural networks, compared to preceding 

algorithms, attracted lots of attention and developed broad practical applications in medicine 

[46],[62]. While the old statistical techniques reached their inherent capability limits due to their 

shortcomings in modeling the non-linear dynamic process as reflected by ICP waveforms, neural 

networks were introduced a promising method for multi-step ICP prediction in studies conducted 

by Tsui et al. [51]. 

Compared to logistic regression modeling, artificial neural networks, operates significantly 

better in identifying nonlinearities among the dependent and independent variables, needs less 

training whilst having various training algorithms and works better in detecting the interaction 

among the independent variables [109]. Despite its advantages, artificial neural network also suffers 

from few shortcomings: i.e., expensive computational cost (extended computations), possibility of 

model overfitting, empirical nature of model development and black box characteristic [109].  

 

2.9.2 Support vector machines 

 

Support Vector Machines (SVM) known as the algorithmic application of statistical learning 

theory are utilized for constructing classifiers for feature space [110].  To classify features 

accurately SVM can generate a classifier for a known pattern classification problem. SVMs can 

construct efficient separating borders among data [111] [112]. SVM can construct a hyperplane or 

sets of hyperplanes in high or infinite dimensional space for classification, regression analysis or 

other tasks such as outlier detection. Support vector machines got more attraction in medicine 
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compared to other machine learning algorithms [100]. SVMs were broadly investigated and applied 

for classification and function approximation. 

Development of classifiers is generally through either of the following two approaches: 1- a 

parametric approach 2- Non-parametric approach. Parametric approach operates based on the 

assumption of data distributions whereas nonparametric approach does not need the data 

distribution to be assumed [113].  

SVMs and artificial neural networks are considered as nonparametric classifiers which can be 

trained utilizing sample data. Afterwards, classifiers determine the decision functions that 

determines to which class input belongs [114]. SVMs operate with a regularization parameter and 

the solutions converges to global minimum [115]. The most significant shortcoming of SVMs relies 

in selection of kernel [116]. Moreover, the training and testing size and speed is also another issue 

reported for this method [116]. Chen et al. [117] used SVM and integrated different sources of data 

such as injury scores, demographic data and CT image data to identify the correlated parameters 

affecting ICP and validated their model utilizing cross-validation for feature selection and tuning 

parameters. 

 

2.9.3 Naïve Bayes 

 

Naive Bayes classification method which has commonly been applied in medicine was 

developed as a technique to improve medical intervention decision. Naïve Bayes method is capable 

to handle cases where there is strong independence amongst the features and is developed based on 

application of Bayes theorem. Naïve Bayes model has been utilized by several researchers to predict 

patients’ outcome. Kazmierski et al. applied Naïve Bayes model for assessing cancer relapse 

subsequent to radiotherapy and reported an accuracy of 84% in classification and sensitivity of 80% 

[118].  

Klement and his co-workers developed a prediction model on CT imaging data using Naïve Bays 

technique and reported 82.8% sensitivity of the model [119]. Wei et al. also utilized Naïve Bayes 

technique to develop a model for patient outcome prediction from genome-wide measurements and 

reported the AUROC of 0.59 achieved by Naïve Bayes algorithm [120]. Despite its reliance on the 

assumption of strong input independencies, Naïve Bayes is a relatively popular method due to its 
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capability to estimate the model parameters using small amount of training data and easy 

implementation [121]. 

 

2.9.4 Decision tree 

 

 Decision tree is considered as a helpful decision making strategy utilized for research analysis. 

This technique is useful in showing the possibilities resulting from a series of decisions and picking 

the suitable one. Decision three is consisted of some branches, lead nodes and the root [122]. The 

base of decision tree is the root, which along with the leaf nodes embrace the criteria/questions that 

is to be met/answered; and the flow starting from the question to the answer is shown through the 

connecting arrows also called the leaf nodes [111].  

The J48 decision tree constructs an initial decision tree using the available training data to classify 

a new item; which was utilized by Galenao et al. to study the ICP signals and resulted in 73.33% 

accuracy [123]. Scalzo et al. [122] developed a highly randomized decision trees, utilizing ICP 

based morphological features, to classify TBI patients and predicted ICP signals accurately. The 

comparison conducted by Scalzo et al. demonstrated generalization performance using linear and 

nonlinear methods [122]. 

 Compared to other techniques, decision trees can be understood and implemented easier 

specifically in case of few decisions and outputs and generally is considered as a less complicated 

modeling method [124]. However, larger decision trees involving few dozens of nodes can possibly 

get complicated and less practical for decision-making.  

 The more decisions there are in a tree, the less accurate any expected outcomes are likely to be. 

The decision tree often predicts the expected consequences of each decision appropriately and 

assists to improve the optimum decision-making by weighting potential consequences of decisions. 

Despite the several advantages of decision tree, one of the shortcomings is that the tree is developed 

based on expected outcomes [125] [115]. 
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2.9.5 Wavelet clustering techniques  

 

 Clustering is a technique to detect dense areas of data population and categorize them for further 

application in data mining and optimum information restoring. An optimum clustering method is 

ideally independent from data noise or outliers as well as neutral to the order of input data.   Wavelet 

clustering techniques is broadly utilized for anomaly diagnosis [126]. Wavelet transform and super 

paramagnetic clustering technique were utilized for unsupervised spike detection by Quiroga et al. 

[127]. 

  Ghosh-Dastidar and Adeli [128] used speech and volume data and developed a model utilizing 

statistical cluster analysis and wavelet-based signal analysis for incident detection. They trained the 

neural network for pattern detection using the clusters and reported a 100% successful incident 

detection rate during 35.6 seconds, associated with the false alarm rate of 0.3%.  Sheikholeslami et 

al. [129] proposed a clustering method based on wavelet transforms, to meet the characteristics of 

an optimum clustering mentioned at the beginning of this section named Wave-Cluster. They 

applied the clustering on the multiresolution characteristics of wavelets and demonstrated the 

efficiency of Wave-Cluster for analysis of time series [129]. Vlachos et al. developed a model for 

analysis of time series using k-means clustering with some changes, and named that the new model 

of k-means clustering set of rules for time series that operates based on the multiresolution property 

of wavelets [130].  

To predict the epileptic seizure from EEG signal, Geva and Kerem [131], proposed a novel 

identification method tested on 25 rats applying wavelet analysis to extract wavelet features and 

fuzzy clustering to cluster wavelet images. The methodology succeeded in identifying several states 

of interests such as “sleep”, “resting”, “alert and active wakefulness” as well as the seizure. 

In another study, an emotion recognition system proposed by Murugappan et al. [132] using 

discrete wavelet transform for feature extraction together with three statistical features extracted 

from EEG signal, the authors used fuzzy C-means clustering for emotion recognition. The study 

confirmed that wavelet based extracted features from EEG signal together with statistical features 

were able to conduct human emotion detection.  

In another study Xu et al [133], proposed clustering physiological signals to detect human 

stress level. In this study K-means clustering algorithm was used and the result indicated a 



22 
 

significant improvement when compared to approaches not using clustering. In another study by 

Faust et al. [134] a review of wavelet techniques used for seizure detection and epilepsy detection 

on EEG signal was conducted and the most effective method was introduced to be integration of 

wavelets , nonlinear dynamics and chaos theory together with neural networks for epilepsy 

diagnosis based on EEG signal. In another study by Melek et al. [135], systolic and diastolic blood 

pressure and heart rate as physiological signals have been used as time series data to enable trend 

detection with wavelet techniques, statistical, regression analysis and fuzzy clustering. Moreover 

Li et al.[136], experimented modeling of cardiovascular physiological signals based on wavelet 

transformations and adaptive Hermite decomposition functions, the authors reported that 

orthonormal wavelet transformations are computationally effective and adaptive wavelet basis 

functions are able to model cardiovascular physiological signals with certain cost of missing 

orthonormalities. 

In another study by Schwarz et al. [137], wavelet based clustering MRI modeling and data 

driven signal modelling of MRI have been compared and reviewed and the authors concluded that 

wavelet clustering is a suitable technique to distinguish patterns of pharmacologic MRI responses 

and the methods provides a good sensitivity when conducted on highly dynamic signals changes. 

Finally  wavelet based fuzzy clustering has been experimented by Chao et al. [138], for 

determining groups of similar patterns as a novel method having the advantages of being fully 

automated , adaptive to the diversity of physiological signals, effective visualization and less 

sensitive to noise and artifacts. The methodology was noted as a superior method in long-term 

polysomnography analysis. 

To the best knowledge of the author, there are no previous studies applying “clustering of the 

wavelet images of the correlated physiological signals with ICP to understand changes of ICP in 

traumatic brain injured patients” similar to the conducted unsupervised modeling in this thesis; 

and the preceding literature review was provided to discuss the different aspects and history of this 

technique. 
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2.10 Summary 

 

Clinicians need to investigate broad range of physiological parameters to diagnose the symptoms 

and pick the most appropriate treatment for brain injured patients. ICP waveform analysis is the 

most important step in medical intervention of patients with head injury. ICP analysis provides an 

exquisite insight into intracranial/cerebral dynamics, helpful to detect patients having low cerebral 

adaptive capacity; who may also suffer from intracranial hypertension that potentially results in 

permanent secondary brain injury.  

Considering the importance of intracranial hypertension, the intracranial pressure data recorded 

in various studies were utilized in modeling to predict the episodes of elevated ICP. However, many 

of these models are found to be expensive, invasive and difficult to maintain and yet not enough 

having predictive value which reflects the present demand in further modeling of ICP. This thesis 

performs further investigations for prediction of ICH noninvasively by including more channels 

and defining related predictive components from body signals.  

The purpose of the thesis would be to conduct modeling normal/Intracranial hypertension state 

of ICP based on correlated physiological signals with ICP in the feature space only and build a 

predictive model to map correlated body signals with ICP, which is missing in the literature. The 

ICP models developed in this thesis took medical considerations into account and also answered 

the fundamental question about the presence of a structure within body signals that could reveal the 

changes in ICP. 
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3. Methodology 

 

3.1 Introduction 

 

In this chapter, a number of significant correlations between some of the vital signals of the 

TBI patients and ICP are investigated using statistical and information gain analysis, which use 

the vital signals as potential predictors of ICP status. The scope of our proposed work is the 

application of data mining, statistical approaches and machine learning to find predictive features 

of ICP in physiological signals. Moreover, this chapter presents two methodologies (Classification 

and Clustering) for the aforementioned problems. 

 

3.2 MIMIC II waveform dataset 

 

 The public Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC) II database [139] 

contains multiple physiological signals as well as the time series of vital signals on the patients 

corresponding to 25,328 patients hospital stays. The data is collected at the Beth Israel Deaconess 

Medical Center located in Massachusetts. The target dataset of interest in this thesis is MIMIC II 

Waveform dataset, which contains samples of ICP signal. The recordings are all anonymized, and 

they are publicly available for the research purposes and incorporate recordings of various 

physiological signals, which contains arterial blood pressure (arterial, venous, and other), 

respiration and fingertip photoplethysmogram (PPG), etc. vital signal time series collected as 

numeric time series often includes respiration rate, Sp02, systolic, diastolic and mean arterial blood 

pressure, heart rate, etc.  

 The data collection frequency differs depending on vital signals time series to waveforms.  The 

numerical vital time series are collected at 1 HZ and the waveforms are collected at 125 HZ. The 

ICU staff has decided which signals need to be collected from the patients, however the majority 

of recording do have vital signal time series collected from the patients. Thus, records include 

samples of signals which have been considered clinically relevant during the time of treatment. In 

this study all of the records were filtered initially only based on availability of the column name 
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ICP signals and 218 patients are obtained and only 97 patients which contained ICP in at least 50% 

of the total recording time have been included in the analysis. The patient population have ICP 

recording in various time intervals, which has been clinically determined for how long ICP 

monitoring should be conducted for each patients.  

The waveform dataset has some matched dataset where some clinical data of the patients such 

as age, sex, duration of stay, etc. are found. The data is initially merged on patient ID to have a 

better picture of the patients for analysis. The clinical information of the patients having ICP 

monitoring is not broadly available. In more than 70% of the records of patients having ICP records 

as other vital time series, the “matched dataset” does not supply clinical information of those 

recordings suitable for this analysis. 

Individual statistics on the availability of signals in the selected 97 records are shown in Fig. 3.1 

and later demonstrated in table 4.4. The summary of different signals and their description on 

MIMIC II website is as follows [139]; Pulse, ST III, ST V, RESP un-calibrated respiration rate, 

estimated from thoracic impedance, ART arterial blood pressure (invasive, from the other radial 

artery), CPP cerebral perfusion pressure CVP central venous pressure, ICP intracranial pressure, 

BP blood pressure (systolic, diastolic, and mean), HR heart rate, PVC Rate , SpO2 oxygen 

saturation (from fingertip plethysmography) The following signals shown in Fig. 3.1 were available 

for the aforementioned 97 patients who have been based on the criteria of existence of ICP records 

in at least 50% of the total recording time. 
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Figure 3.1 Signal availability statistics for the MIMIC II data samples  

3.3 Permission of access 

 

MIMIC II waveform datasets are available publicly for researchers. On the other hand, 

accessing the BrainIT dataset required writing a proposal to be assessed. So a proposal was written 

and it was reviewed by 21 neurosurgeons who had created and maintained the database. Once the 

proposal received the permission, the physiological signals with extra clinical data available such 

as daily observations, demographics of the patients, ICU-monitoring, Lab results, Neurological 

status, other clinical events such as x-rays, physio, Doppler, operation, blood samples, etc. and the 

surgery results were granted access to.  

 

3.4 BrainIT dataset 

 

The BrainIT dataset [140] is gathered through many hospitals and across 22 clinics based in 

Europe. The collection consists of demographic information (static information such as age, 

gender etc.) as well as the physiological information. The demographic table is the master table 

and each patientID in it maps to one or more rows in each of the other tables. 
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 The physiological table has the most entries (>2 million rows) which has the data collected at 

1 HZ from 261 patients. The BrainIT dataset includes the following information [140]; Daily 

observations, Demographics, ICU-Monitoring, Lab-results, Neurological-Status, Other Clinical 

Events, ICP (mean, systolic, diastolic), Surgery Information, Physiological Information, Glasgow 

comma scale, History of previous neurological disfunction.  

As per the BrainIT core dataset operation manual, the data frequencies is described as follows; 

Once only, in which the demographic and clinical data was collected once for each traumatic 

injured patient, Periodic Time-series, collected through physiological monitoring at specified time 

intervals, Episodic time-series, in which the information was collected at different unpredictable 

time spots; i.e., blood gases, nursing comments, GCS scores (intensive care management), 

Episodic time-series, in which the information was collected at different unpredictable time spots; 

i.e., drug infusions, drug bolus’s, changes in ventilation settings (Secondary Insult Management). 

In this thesis, the physiological information and the ICP information are the desired information, 

which were used to evaluate the generalization ability of the non-invasive predictive model. 

 

3.5 Filtering the dataset 

 

The preliminary step utilized in data analysis was to collect the data sets, initially filtering 

based on availability of ICP signals. The filtered data approximately corresponds to 67 days of 

ICP signal measured at 125 Hz or 1 Hz and vital signals measured at 1 Hz and 86400 records were 

collected per day. The input samples included in this analysis are only dealing with ICP collected 

at 1 HZ.  In the initial pre-processing step intracranial hypertension is defined as an elevation of 

the ICP over 20 mmHg continuously elevated for the length of 30 minutes [57]. Once episodes of 

increased ICP are collected, the corresponding vital signals to those records are collected as well.  

In the next step, ICP recordings have received a label in such a way that ICP less than 20 

mmHg have received the “normal ICP” and ICP values greater or equal to 20 mmHg continuous 

for 30 minutes have received the “high ICP” label. Moreover, all of the records were scanned 

manually to ensure the patient ID is not redundant and different records belong to different patients 

and no two records correspond to the same patient for different reasons of hospitalization.  
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As part of the pre-processing, it was observed in the dataset, that the intracranial 

hypertension samples and normal samples were unbalanced on the MIMIC-II dataset, which was 

considered in training and evaluating the classifier. For this purpose, the class labeled balance 

setting was applied in the configuration of neural network as shown in configuration of neural 

networks in table 4.11. 

3.6 Data visualization  

 

Figure 3.2 demonstrates the scatterplots of mean ICP vs mean blood pressure before cleansing and 

noise removal which demonstrated a linear correlation. The mean blood pressure is the main 

channel of the study. In addition, Fig 3.3, demonstrates the parallel coordinates of correlating body 

signals with ICP in 500 samples. The figure shows the trend of normalized mean values of the 

correlating signals with ICP in different ranges. 

 

 

Figure 3.2 Scatterplot of Intracranial Pressure vs. Blood Pressure  
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Figure 3.3 Parallel Coordinates of Correlating Body Signals with ICP 

 

3.7 Information extraction 

 

To extract the episodes of intracranial hypertension in the chosen dataset, an algorithm was 

developed and coded in Python to return the increased ICP and its subset in the existing dataset 

(Appendix B). The medical definition of ICH and medical experts’ advice on ICP duration were 

considered for this purpose. Duration of the ICP hypertension was set to 30 minutes and the ICP 

threshold was defined to be => 20 mmHg. The algorithm in pseudocode is as follows: 

 

1. Define a threshold as ICP >= 20 mmHg  

2. Detect where ICP >=20 mmHg exists either 30 mins forward or 30 mins backwards, if true mark 

the line numbers in new column valid_highICP 

3. Else reset data array, and set previous ICP as false prev_data = False full_array = [] 

 

 

HR PULSE ABP Dias ABP Mean Respiratory ST III ST V

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N

o
rm

a
li

ze
d

 M
ea

n
 V

a
lu

e 
o

f 
S

ig
n

a
ls

 

(m
m

H
g

)

Correlated Signals with ICP

21<ICP<26 27<ICP<43 43<ICP<116



 

30 
 

3.8 Data cleaning 

 

The commonly observed low signal to noise fraction as well as unwanted artifact pollutions 

are some of the concerns in analysis of physiological signals. For example, sensors and the analog 

to digital converting devices may cause high-frequency noise in ICP signals [2],[141]. On the other 

hand, patient movement and coughing may cause low frequency noise. Moreover, an 

unconnected/detached sensor may continue to send signal for a limited period. To improve the 

quality of any signal, it is important to conduct artifact and noise removal [5]. 

The artifacts associated with ICP signals and other types of signals such as diastolic blood 

pressure, mean blood pressure, etc. were removed using the followings steps, as was generally 

suggested in ref [2] with some modifications.  

 Initially, it was evaluated either the recorded ICPs could be used or should have been 

discarded. To implement this step, the ICP signals with greater than 30% of absent or corrupted 

data points were tagged as “invalid”. Corrupted data points were defined as the abnormal data 

points that were beyond the physiological range. As the result, the patient population were reduced 

down to 91 people.  

The high frequency noise in ICP signals utilized in the present study were removed using the 

“Zero-phase digital filtering” implemented by Matlab’s filltfilt function. This filter could preserve 

features of any signals at the time they occurred in the presence of noise. Figure 3.4 illustrates an 

example of 392 seconds of original ICP magnitude plots and Fig 3.5 demonstrates the 

corresponding cleaned (filtered) ICP magnitude plot. 
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Figure 3.4 Original ICP magnitude plot 

 

Figure 3.5 Filtered ICP magnitude plot 

 

Multiple imputation methods [142] was used in the present research to fill in the missing records 

with attainable values according to the pattern of the data. Multiple imputation methods evaluate 

the pattern of records and based on likelihood (probability) of occurrence of the data, finds the best 

match and replace missing values. Replacement is executed through an iteration loop to discover 

the best fit. IBM SPSS Statistics version 22 [143] that supports multiple imputation methods was 

utilized for this purpose. 
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3.9 Finding correlation: Pearson correlation coefficient 

 

A Pearson correlation was used to determine the correlation among 11 biomedical signals and 

ICP values collected from 91 TBI patients having intracranial hypertension crisis on their first 12 

hours of hospitalization. Cerebral Perfusion Pressure (CPP) was excluded in this test because it was 

calculated directly from ICP as shown in Eq. (3.1) [57]. 

                               CPP = ABP-ICP                                                                 (3-1) 

Equation (3.2) shows the Pearson correlation.  

                         ρ(𝑥, 𝑦) = 𝐶ov (𝑋, 𝑌) / σ(X) σ(Y)                                       (3-2) 

Where σ is the standard deviation and Cov is the covariance between x and y. This coefficient is 

meaningful when x and y have a linear correlation which initially was investigated by plotting 

physiological signals versus ICP in this study. The other assumption to run Pearson correlation was 

additionally hold: Having intervals in the data. As a result, some significant correlations (p < .001) 

were achieved by applying this test. The correlation were found between Heart Rate, Pulse, Arterial 

Blood Pressure Diastolic (ABP Dias), Respiratory and ABP Mean, ECG segment level III and ECG 

segment level V with ICP as reported in section 4.3.  

 

 

3.10 Feature selection: Pearson correlation, information gain and PCA 

 

  For feature selection, 3 different techniques were experimented.  

•      Pearson Correlation: The requirement of running Pearson correlation were investigated, 

and the p values - the statistical significance of a hypothesis test - for features that correlate 

with ICP were determined and shown in section 4.3. 

 •    Information gain: To decide on the inclusion criteria of variables from which ICP could 

be modeled, it is important to examine information gain based on entropy to obtain how 

much information from each variable could be obtained with respect to the class labels of 

ICP.  
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 PCA: To overcome the problem of multi collinearity, a principal component analysis 

was conducted to decide on the attributes. PCA working based on the eigenvectors and 

eigenvalues reported 2 components that could be extracted from the features as shown in 

section 4.3. 

 

 The question of whether there is actually any correlation between body signals with ICP required 

the “correlation analysis” to be conducted initially to figure out which signals have bivariate 

correlation with ICP. Correlation is a method for investigating the relationship between two 

quantitative variables and Pearson’s correlation coefficient is a measure of the strength of the 

association of the two variables. Initially it was investigated for the linear/ non-linear association 

between the variables and the linear correlation was observed. The correlation coefficient would 

not be suitable to calculate if the relationship is not always linear. The closer the scatter of factors 

is to a straight line, the higher the power of association would be between the variables. Pearson 

correlation analysis was conducted in this analysis and the significance of the test (p values) are 

investigated. This analysis is done in IBM SPSS version 22 [143]. 

 The next analysis needed to be done to answer the question of “how much information could be 

extracted from the correlated signals with ICP with respect to the defined class labels of ICP”. This 

would be to choose the inputs conveying more information and disregard the inputs with very weak 

information with respect to the class labels. Information gain analyses the reduction in entropy of 

an input with respect to an output [144].  This study is interested to measure the amount of “change” 

that each of input signals provides to take ICP to a different state (Normal state / Intracranial 

hypertension state). The Entropy denotes the Shannon’s entropy concept as shown in formula 3-3. 

This analysis is done by using FSelector and RWekajars libraries in RStudio version 3.4.3 [145] as 

shown in (Appendix E). 

 

InfoGain(Class,Attribute) = Entropy(Class) - Entropy(Class | Attribute)                  (3-3) 
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3.11 Factor analysis 

 

Factor analysis is a data reduction technique. It takes a big set of variables and determines 

if the data could be reduced or summarized using a small set of variables and components  by 

looking into sets that have very strong inter-correlations within a set of variables which is 

challenging to do manually [146]. This is especially problematic when a set of variables are not 

small and one is interested to look for a pattern inside it. So, factor analysis supports overcoming 

this problem mathematically. This technique is suitable when the aim is to decrease a large number 

of correlated variables to a more efficient number, to measure a construct so that there is no 

redundancy in measuring, but rather measuring all aspects of that construct [146]. There are two 

main approaches to factor analysis: exploratory and confirmatory [147]. 

Exploratory factor analysis is used typically in early stages of research in which the aim is 

to develop the theory or to gather information about relationships among variables [147]. Once the 

confirmatory analysis is conducted, the aim is to confirm or test specific hypothesis that is 

developed regarding the fundamental structure of a set of variables [147]. Factor analysis is a 

generic terminology, which represents a couple of different but related techniques. Two related 

techniques that fall under the category of factor analysis are principal component analysis (PCA) 

and standard factor analysis [148]. 

Despite the remarkable similarities of these techniques, there are some important differences 

involved. In principal component analysis, the original variables are transformed into a smaller set 

of variables that have a linear correlation. The investigation, in this case would be to investigate the 

variance in all the variables [148]. In standard factor analysis, a mathematical model is utilized to 

estimate the factors. In this method, the shared variance would  replace with the total variance [147]. 

 

3.11.1 Factor rotation and interpretation 

 

Once the number of components is determined, the next step would be to interpret them. 

The rotated components would not change the underlying outcome and they present a pattern called 

“loadings” which simplifies the interpretation [149]. Principally, it has shown which variables batch 

together. There are two main approaches to the rotation which result in either uncorrelated or 
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correlated factor solution [150]. Uncorrelated rotations, lead to solutions that tend to be easier to 

interpret and report; However, they do require the assumption that the underlying constructs or 

items are independent [150]. On the other hand, the correlated approach permits the factors to be 

correlated but they are more difficult to interpret.  

In this thesis, the correlated approach is implemented since the body signals do have 

correlation among themselves. This was observed as the result of conducting Pearson correlation at 

the earlier stage of the research. Even though the investigation was initially conducted to find which 

of the body signals have bivariate correlation with ICP, it was observed that body signals show 

correlation between themselves, a problem known as multi-collinearity. A problem which had to 

be solved before the body signals could be fed as inputs to a predictive model.  The technique 

applied in this study is called “vary max” which attempts to minimize the number of variables that 

have high loading or high inter-correlation. The PCA analysis is implemented in IBM SPSS version 

22 [143]. 

 

3.12 Principal component analysis 

 

Component extraction defines the least number of items that could be used to best represent 

the interrelationships amongst those items [151]. There are various ways to extract this number of 

components and one of the most common extraction techniques is PCA. PCA determines the new 

axes to represent data onto a lower dimensional space [151]. It finds the eigenvectors of the 

covariance matrix of the data and then orders the eigenvectors such that the eigenvector with the 

largest eigenvalue appears in the first column of the eigenvector matrix and the eigenvector with 

the smallest eigenvalue appears in the last column [151]. The importance of this function is that one 

could define how many dimensions are required to reduce the data down to, by keeping the first N 

columns of eigenvectors which allows reducing the data down to N dimensions [151]. 
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3.12.1 Component matrix 

 

The component matrix shows the unrotated loading of each item for components. SPSS uses 

the Kaiser criterion that retains all the components with eigenvalues above 1 as the default [152]. 

In the present thesis, a 2-component-solution capable to explain the majority of variance in the 

dataset was developed.  

 

3.13 Proposed solution: supervised methodology 

 

Having completed the correlated feature selection, the present research focused on the ICP 

status prediction (normal vs intracranial hypertension status).  For this aim, the episodes of 

“intracranial hypertension” needed to be detected initially. These episodes are defined as the 

elevation of ICP over 20 mmHg that is continuous for 30 minutes [57] and they acted as a sliding 

window, which captured the episodes of the correlated physiological signals with ICP. This window 

is used to capture the start and the end time of the correlated physiological signals with ICP 

(originating from heart channel and respiration channel) that correspond to the same timing of 

“Intracranial hypertension state” as per the script in (Appendix B). This step is required to ensure 

intracranial hypertension episodes are detected.  

To be able to build a predictive model which could detect intracranial hypertension state’s 

pattern “before they occur” in the behavior of the signal, it is required to find the samples of normal 

behavior which are occurring prior to the intracranial hypertension state, so called “Pre-raised 

episodes”. It is ideal to predict the “intracranial hypertension episodes” from “pre-raised episodes 

of ICP” at the earliest. For this aim, the conducted study, investigated for finding patients having 

various time intervals of normal ICP pattern ( noted as t ), prior to intracranial hypertension pattern. 

Where “t” helps to find the right samples in the correlated features with ICP. This would be to 

provide samples for the neural network to be able to find the mapping between the two states in 

the maximum possible time intervals in which “intracranial hypertension state” could be modeled  

from “pre-raised episodes’.  
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The investigation was conducted for finding these episodes in different time intervals.  For 

this aim t=5, t= 10, t=15 and t= 20 minutes have been tried as demonstrated in Fig.3.6 and the 

result showed the maximum achievable time interval, in the available dataset, equals 10 minutes. 

 

 

Figure 3.6 Evaluating different time intervals from “pre-raised episodes” to “intracranial 

hypertension episodes” 

 

 This is the maximum available duration of time that sampling was feasible for modeling.  

The following pseudo code has been proposed and the script is presented in (Appendix F): 

 

1. Make a new column marking whenever ICP >= 20 mmHg  

2. Detect where ICP markers are continuous either 30 mins forward or 30 mins backwards, if true 

mark the line numbers in new column valid_high ICP 

3. Scan all lines, for each new patient mark first time valid_highICP is TRUE 

4. For each patient measure time between history start and first_valid_highICP 

5. Select patients with measured time >= 600 seconds. 

 

Having completed these steps, the correlated body signals with ICP received labels of 

“Normal” or “Intracranial hypertension”. So the time window of “10 minutes normal ICP before 
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intracranial hypertension” was detected and the correlated body signals with ICP in that time period 

received “Intracranial hypertension” label and the rest of the samples received “normal” label. 

 In the next phase, the PCA analysis is conducted. This step is important to ensure the feature 

space is containing uncorrelated inputs and the problem of multi-collinearity in feature space is 

resolved as explained in Sec 3.12.  Two components are extracted from the samples and they were 

fed to the feed forward neural network as inputs. The two PCA components corresponding to 91 

patient population (174,200 samples) as the input to the feed forward neural network. The output is 

a binary decision “Intracranial hypertension” versus “normal ICP”.  

 

Figure 3.7 demonstrates the proposed methodology for the non-invasive predictive model. 

 

   

  

 

 

 

Figure 3.7 Non-invasive predictive methodology diagram 

 

The last phase would be the implementation of a feed forward neural network for predicting 

the labels of normal ICP vs intracranial hypertension. The input to the neural networks would be 

two components of PCA and the output would be a binary decision (normal / intracranial 

hypertension). Neural networks are known for their ability of adaptive learning, real time operation 

and handling unexpected patterns/inputs [153]. For minimizing the loss function, the stochastic 

gradient descent is used as the trainer and optimizer of the model. Stochastic Gradient Descent 

[154] is a learning algorithm used as the optimization method to minimize the loss function with 

pair (𝑥(𝑖), 𝑦(𝑖)) from the training examples. In neural networks, this optimizer is often applied with 

backpropagation that is used for computing gradients by implementing a chain rule of derivatives 

as shown in the equation 3-4. 

Target samples in heart 

and respiration channel 

PCA 

Components 

Neural 

Network 
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    𝜃 =  𝜃 −  𝛼 𝛻𝜃  𝐽 [𝜃; 𝑥(𝑖), 𝑦(𝑖)]                                                                          (3-4) 

Where α is the learning rate and θ represents the weight. The architecture of the feed forward neural 

network is demonstrated in Fig 3.8 where the two inputs to the network are component 1 and 

component 2 obtained from the PCA analysis. The number of hidden layers are two and there are 

200 neurons in the first hidden layers and 150 neurons in the second hidden layer.  

 

Input layer ∉ 𝑅2  Hidden layer ∉ 𝑅200  Hidden layer ∉ 𝑅150  Output layer ∉ 𝑅1 

 

Figure 3.8 Architecture of the feed forward neural network 
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3.14 Proposed solution: unsupervised methodology 

 

  The hypothesis tested by the unsupervised modeling is that physiological signals could 

create clusters and show certain behaviors with respect to normal, pre-raised or raised ICP. It is 

expected that the normal behaviour of ICP form a bigger cluster and the pre-raised and raised form 

smaller ones. The idea generates from the fact that collecting the members of these clusters i.e. 

signals from the patients is less risky and the signals are routinely available and if possible , the 

physiological signals could provide indications of the status of ICP, when invasive monitoring is 

not available, unfeasible for patients or extra risky.  

  After showing the correlations of body signals with ICP in table 4.1. The thesis is interested 

to investigate whether the correlated physiological signals with ICP could create clusters and by 

analysing the members of the clusters, is it possible to understand changes of ICP? This 

methodology is designed to answer the last research question of the thesis: 

“Is it possible to define a structure from correlating body signals with ICP and interpret those to 

understand possible status of ICP (normal, pre-raised- raised)?” 

 The unsupervised methodology should investigate structures through body signals to reply to the 

aforementioned question and in this thesis, an initial investigation based on the correlation analysis 

of body signals with ICP was conducted. This modeling should be conducted unsupervised without 

revealing the existing labels in the dataset to the learning algorithm. 

 In the next step, samples are transformed with wavelet transformation, which can be shortened 

or elongated to capture various frequency patterns. As demonstrated in Fig 2.2 in comparison to 

Fig 2.3, wavelet transformation conveys information of time domain, frequency domain as well as 

wavelet power levels which reveals a comprehensive picture of the behavior of the signal. Wavelet 

transformation helps in ensuring that time and frequency of the signals are retained and maximum 

information of the signals are available. For this aim, wavelets were shifted through the signal along 

time axis and perform a transformation. For conducting this transformation, the Morelet wavelet 

has been implemented in R using WaveletComp library [152]. The input to wavelet transform 

function are episodes of normal, pre –raised and raised ICP and the output is the wavelet images of 

these episodes. For this analysis, the number of patient populations is 85 people. 
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To conduct the modelling initially 80% of the labels are disregarded in the dataset and the 

derived signal from ICP known as cerebral perfusion pressure is also omitted from the samples. 

20% of the samples (labeled data) are kept to be used later for external-validation of the cluster 

labels as the available ground truth. The 20% would be the unseen data which are not used in 

clustering phase but is later used for validating the labels assigned to each cluster. The labels in the 

unseen data are defined normal for: 5 = < ICP < 17; Pre-raised ICP for 17 =< ICP< 20 and 

intracranial hypertension for ICP >= 20 mmHg in this modelling. 

      The 80% samples (unlabelled data) were transformed to wavelet images and the K-means 

clustering has been chosen to cluster the sample space into 3 group (K = 3) based on the analysis 

conducted by elbow method (Fig 4.8). Later on, the labels explained in details in sec 4.5 were 

assigned to each cluster based on the correlation analysis initially conducted in this thesis. Every 

sample in each cluster got a label at this point.  

 To evaluate the labels and validating how accurately the methodology works, the last step 

would be training various classification models with the assigned labels of the clusters and test the 

classification model on the unseen (20%) labels. The conducted experiment revealed if there are 

learning algorithms that could show high performance on test result.  

 For this purpose, different classifiers were implemented based on Bernoulli naïve Bayes, 

Gaussian Naïve Bayes, Logistic regression, Multi-layer perceptron, Multinomial naïve Bayes, Extra 

tree, Perceptron, Random forest, Stochastic gradient descent’s algorithms to evaluate their 

performance. The result of the experiment is reported in table 4.17 and the best learning algorithms’ 

performance are shown in Fig 4.14 and Fig 4.15. The phases of the unsupervised methodology is 

shown in Fig 3.9. 

 

 

   v 

 

 

 

Figure 3.9 Clustering methodology diagram 
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4. Results and Analysis 

4.1 Introduction 

 

ICP monitoring is one of the most routinely carried out processes in neuro-critical care units 

to monitor patients having Traumatic Brain Injuries (TBI). The current medical standard of care 

using the insertion of a transducer or catheter is primarily based on an invasive technique which 

usually has certain risks.  

The methodology used in this research to address the problem of invasive and reactive 

detection of raised ICP was to predict the “intracranial hypertension” vs. “normal ICP” through 

extracted components from correlated body signals with ICP. The solution proposed was based on 

a feed forward neural network to predict normal vs. intracranial hypertension from body signals 

mainly through heart and respiration channels. The model is able to predict these states 10 minutes 

in advance. 

On the other hand, the second solution proposed was based on an unsupervised approach in 

which the most correlated signals with ICP were focused on and it recognized the changes of ICP 

from the most correlated signals with ICP through clustering. The wavelet clustering was 

conducted to ultimately lead to non-invasive estimating of ICP status (normal, pre-raised, raised) 

which was found to be primarily based on the amplitude and frequency modifications of the most 

correlated body signal with ICP. 

Both of the above methodologies became feasible as soon as some significant correlations 

between ICP and routinely monitored physiological signals in TBI patients were found. The result 

of the Pearson correlation test indicates that Heart Rate, Pulse, Diastolic Arterial Blood Pressure, 

Respiration, Mean Arterial Blood Pressure and ECG ST segment levels are significantly correlated 

with ICP so they have the possibility to be reliable predictors of intracranial hypertension (ICH).  

The predictability of these correlating signals with ICP was validated through information 

gain analysis as well and conducting PCA, the multi-collinearity of the input signals were solved. 

It was discovered that there was a possible predictive power in the vital signals being routinely 

monitored from TBI patients. 
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4.2 Result of Pearson correlation analysis and information gain 

 

The Pearson test demonstrated the bivariate correlations between input and output and also 

between the variables themselves. This test determined the correlation coefficient between the input 

(body signals) and the output (ICP) and the effect of other parameters would not be taken into 

account. The result of the test revealed that there were some significant correlations between several 

physiological signals and ICP. For interpretation of Pearson correlation results, one must know that 

the p-value is determined by the observed correlation and the sample size, so with a large enough 

sample size a very weak correlation could be significant, meaning that what is seen is likely real 

and not due to chance. On the contrary, with small sample sizes a very strong correlation could be 

achieved that is not statistically significant.  

As demonstrated in table 4.1 it was found that: 

 Heart rate and ICP were positively correlated (R = 0.47, p < 0.001) 

 Pulse and ICP were positively correlated (R = 0.44, p < 0.001,) 

 Respiratory rate and ICP were negatively correlated (R = - 0.78, p < 0.001) 

 ST III and ICP were positively correlated (R = 0.38, p < 0.001) 

 ABP diastolic and ICP were positively correlated (R = 0.451, p <0.001) 

 ABP mean and ICP were positively correlated (R = 0.45, p < 0.001) 

 ST V and ICP were negatively correlated (R = - 0.14, p<0.001) 

 

ABP systolic, PVC and SPO2 were proportional with ICP but the correlation was not significant. 

The Pearson correlation result shows the measure of strength of linear relationship among two 

variables [155]. 
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Table 4.1 The Result of Pearson’s Correlation 
IC

P
 

                                 

Heart rate 

Systolic 
arterial 

blood 

pressure 

Diastolic 

blood 
pressure 

Pulse 
Respiration 

rate 

Mean 
arterial 

blood 

pressure 

ECG 

Segment 
level III 

ECG 
segme

nt level 

V 

Sp02 

Premature 

ventricular 
contraction 

Correlation 

Coefficients 
0.47 0.33 0.45 0.44 -0.78 0.45 0.38 -0.14 0.28 0.72 

Significance 0.00 0.23 0.00 0.00 0.00 0.00 0.01 0.00 0.28 0.24 

R-Squared 0.22 0.11 0.20 0.20 0.62 0.20 0.15 -0.02 0.08 0.52 

 

Although the main focus was to identify the correlations between the inputs –body signals- 

and the output ICP, some multi-collinearity between the input variables were also detected in this 

research. Multi-collinearity decreases the learning rate of any machine-learning algorithm. To 

investigate and measure the amount of the information that each correlated body signal could 

provide with respect to ICP status, the information gain analysis was performed in the present 

research and the inter-collinearity problem was solved by conducting a PCA analysis. 

The findings are novel in terms of deeper investigation of different leads of heart and 

respiration system (such as ECG Segment level III and level V) which were not investigated in the 

literate before and excluding cerebral signals from the feature space in the modeling. Artificial 

neutral networks as the state of the art could learn the mapping from the heart channel and 

respiration channel to cerebral channel. 

 Table 4.2 demonstrates the result of information gain achieved from each physiological 

attributes and table 4.3 demonstrates information gain from clinical attributes. The measure is 

interpreted as the information of the class which could be given by the variable. The more the 

information, the higher possibility to include that variable in modeling. The result of information 

gain from physiological signals in table 4.2 could have a possible range between (0, log 7 ≈ 0.845).  
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 Based on the result shown in the table diastolic arterial blood pressure and mean arterial blood 

pressure provide the highest information with respect to normal vs. intracranial hypertension classes 

and ECG Segment Level V, respiration rate, heart rate, pulse and ECG Segment level III follows 

the ranking with respect to the amount of the information they can provide. However, the clinical 

attributes did not present a satisfactory result and they were not included in further analysis of ICP 

as shown in table 4.3.  

 

Table 4.2 Information gain analysis and attribute selection with respect to class labels of ICP 
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Table 4.3 Information Gain analysis from clinical attributes with respect to class labels of ICP and  

 

Clinical Attributes  Information Gain 

Daily-Fluid-Input 0.048 

Daily-Fluid-Output 0.048 

TC 0.036 

SaO2 0.031 

FiO2 0 

GCS-Eye 0 

GCS-Motor 0 

GCD-Verbal 0 

 

Table 4.4 Attributes and Their Descriptions  

Variables Description Type Range 

ABP Mean 
Mean Arterial blood pressure (invasive, 

from one of the radial arteries) 
Time Series 

41-107 

mmHg 

RESP Uncalibrated respiration waveform. Time Series 
13-31 

BPM 

HR Number of heartbeats per unit of time. Time Series 
57-76 

BPM 

Pulse 
The difference between systolic and 

diastolic blood pressure. 
Time Series 

56-73 

BPM 

ABP Diastolic Minimum arterial blood pressure. Time Series 
15-81 

mmHg 

ST III ECG ST segment level. Time Series -0.1-0.1 

ST V ECG ST segment level. Time Series 0.3-0.5 
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4.3 Result of principal component analysis 

 

In this section, the optimum number of principle components are investigated. For this aim, three 

tests are conducted to determine the efficiency of variance measurements based on:  

 

 Kaiser’s Criterion 

 Scree test 

 Parallel analysis 

The 3 tests served as the standard and popular tests for conducting dimensionality assessment 

operating based on the eigenvalues of the correlation matrix. The eigenvalues of 1.0 or greater were 

chosen to be included in these analyses.  

There were 3 basic steps in the performance of principal component analysis. These steps 

are based on the assumptions that must be hold to perform principal component analysis [156]. The 

first step was to assess the suitability of data for factor analysis as shown in table 4.5. There were 2 

parameters to be determined if a dataset was found suitable; 1- the sample size, 2- the strength of 

the relationship among the variables [156].  

The second step is the strength of inter correlation among the items. The standard approach 

to deal with this issue, requires items to have bivariate correlation of at least r => 0.30 [156]. On 

the other hand, in case there were only few correlations above this level, then factor analysis might 

not be appropriate. There were some statistical measures generated by SPSS in this study to help 

determine the appropriateness of the inter relationships. Bartlett’s test and Kaiser-Meyer-Olkin 

Measure of Sampling Adequacy (KMO) validated the appropriateness of the data for principal 

component analysis. To pass the suitability test, the p-value being used by the Bartlett’s test should 

be significant (p< 0.05).  

 Moreover, The KMO (measure of sampling adequacy) and Bartlet’s test as shown in table 

4.5 demonstrates two tests that indicate the suitability of the data for structure detection. 

The KMO is a statistic that specifies the proportion of variance in the variables that could be caused 

by the underlying factors. High values considered close to 1.0 usually indicate that a factor analysis 
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might be beneficial with the data. Values less than 0.50 indicate that the results of the factor analysis 

possibly are not very useful. The result of 0.69 demonstrates that the pass mark for factor analysis. 

Bartlett's test of sphericity conducts assessments on the hypothesis that the correlation 

matrix is an identity matrix, which would designate that the variables are unrelated and 

consequently unsuitable for structure detection. Small values considered to be less than 0.05 of the 

significance level specify that a factor analysis might be beneficial with the data. 

The KMO (ranging from 0 to 1) needed a minimum value of 0.6 for a good factor analysis. 

However, values greater than 0.6 are better options while values close to 1 were ideal [157] 

[158][159]. To verify if the dataset was suitable for factor analysis the KMO was investigated and 

reported in table 4.5. Where Df represents the degree of freedom and Sig. stands for significance 

of the test. The table illustrated the KMO measurement being close to 0.7.  In this case, the 

Bartlett’s test was also investigated to be significant with a p-value of 0.001. Based on the results, 

factor analysis was found to be appropriate for the present data. In the third step which was to 

determine the required number of factors, a tradeoff between efficiency and completeness in 

measuring the interested target was required.  

 

Table 4.5 KMO and Bartlett’s Test 
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In table 4.6, the principle component analysis extraction is demonstrated and it showed the PCA 

analysis capability to explain that proportion of the variance in each variable. The initial value of 

communalities in this analysis is 1 by definition. 

Table 4.6 Principal Component Extraction 

Communalities 

 Initial Extraction 

Heart rate 1.000 0.687 

Pulse 1.000 0.524 

Diastolic arterial blood 

pressure 

1.000 0.861 

Mean arterial blood 

pressure 

1.000 0.845 

Respiration rate 1.000 0.625 

ECG Segment level III 1.000 0.796 

ECG segment level V 1.000 0.712 

Extraction Method: Principal Component Analysis. 

 

The rotated component table (Pattern matrix) as shown in table 4.7 is the key matrix of interest. 

The research had interest to notice if the contribution of the seven correlated signals with ICP can 

be reduced to smaller number of contributing components and consequently conduct 

dimensionality reduction of the data. The pattern matrix showed that: 

 

 The variance of ECG segment level V, heart rate and pulse are strongly explained by 

component 1. 

 The variance of diastolic arterial blood pressure, mean arterial blood pressure and 

respiration rate are strongly explained by the variance of component 2. 

 ECG Segment level III is explained by both component 1 and component 2. 

 

The rotated four-factor solutions shown in the pattern matrix was optimal for component 1 and 2.  

This confirmed that the two-component solution is our best option. Components 1 and 2 were the 
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new base for expressing "normal ICP/Intracranial hypertension" in term of 2 components, with all 

the advantages of having a lower number of coefficients for a neural network model has -such as 

computational costs, speed, etc.- to predict ICP labels.  

Table 4.7 Pattern Matrix 

Components 

 1 2 

ECG Segment level III 0.816 -0.513 

ECG segment level V -0.808  

Heart rate 0.776  

Pulse 0.695  

Diastolic arterial blood 

pressure 
 0.871 

Mean arterial blood pressure  0.851 

Respiration rate  0.801 

Extraction Method: Principal Component Analysis. 

Rotation Method: Oblimin with Kaiser Normalization. 

Rotation converged in 10 iterations. 

 

As shown in table 4.8, the component table provided the result of the PCA before rotation. 

It demonstrated to extent to which each variable (pulse, ECG segment level V, heart rate, etc) are 

"loaded on the components". More specifically, it listed the correlation coefficients between 

physiological body signals and the components. The result shows that: 

 Mean arterial blood pressure correlates in the same direction with component 1 

(strongly) and component 2 (fairly).   

 Diastolic arterial blood pressure correlates in the same direction with component 1 

(strongly) and component 2 (fairly).   

 Heart rate correlates in the same direction with component 1 (strongly) and in 

opposite direction with component 2 (fairly). 
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 ECG Segment level V correlates in the opposite direction with component 1 

(strongly) and in same direction with Component 2 (fairly). 

 Pulse correlates in the same direction with component 1 (strongly) and in opposite 

direction with component 2 (fairly). 

 ECG Segment level III correlates in the opposite direction with component 2 

(strongly) and it is not correlated with component 1.  

 Respiration rate correlates in the same direction with component 1 and component 

2 (fairly). 

 

The component matrix table has been configured that loadings which has less than 0.4 to be 

suppressed in the result, this may case blank spaces for some of the loadings. 

 

Table 4.8 Component Matrix 

Component Matrix 

 
Component 

1 2 

Mean arterial blood 

pressure 
0.819 0.418 

Diastolic arterial blood 

pressure 
0.813 0.447 

Heart rate 0.746 -0.361 

ECG segment level V -0.737 0.411 

Pulse 0.630 -0.357 

ECG Segment level III  -0.856 

Respiration rate 0.500 0.612 

Extraction Method: Principal Component Analysis. 

2 components extracted. 
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Table 4.9 demonstrated the total variance explained by different number of components. The table 

demonstrated that 72.1% of the total variance can be explained by two components. The table also 

showed that only 2 components have eigenvalues above 1. This concludes that [160] the two 

dimensions in the component space explain 72.14% of the variance in the data. 

 

Table 4.9 Total Variance Explained 

Total Variance Explained 

C
o
m

p
o
n

en
t Initial Eigenvalues Extraction Sums of Squared Loadings 

Rotation 

Sums of 

Squared 

Loadings 

Total 

Percentage 

of 

Variance 

Cumulative 

percentage 
Total 

Percentage 

of 

Variance 

Cumulative 

percentage 
Total 

1 3.141 44.871 44.871 3.141 44.871 44.871 2.652 

2 1.909 27.274 72.145 1.909 27.274 72.145 2.592 

3 0.774 11.057 83.202     

4 0.486 6.947 90.149     

5 0.327 4.678 94.827     

6 0.279 3.992 98.819     

7 0.083 1.181 100.000     

Extraction Method: Principal Component Analysis. 

 

Finally, table 4.10 demonstrated the component correlation matrix.  
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Table 4.10 Component Correlation Matrix 

Component 1 2 

1 1.000 0.158 

2 0.158 1.000 

Extraction Method: Principal Component Analysis. 

Rotation Method: Oblimin with Kaiser Normalization. 

 

The Scree test is a graphical representation of optimal number of factors to retain and is 

shown in Fig 4.1. It involved plotting each of the features and then spotting the scatterplot to find 

a point at which the shape of the curve starts to change direction and becomes horizontal.  

The scree plot was investigated to detect a change or an elbow in the line graph. Merely 

components above the break or elbow are retained [161]. Accordingly, Fig 4.1 demonstrated a 

break after the third component as the rest of the components do not contain an eigenvalue above 

one. Therefore, compared to the rest of components, component 1 and 2 were found to explain 

much more of the variance compared to the remaining components. Therefore, from the graph only 

two components retained. 
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Figure 4.1 Scree Plot 

The third method to determine the extraction was the parallel analysis. Monte Carlo PCA 

[162] was used for Parallel Analysis in the present research. The program contained three variables 

that need to be defined: number of variable, subjects, and replication which are configured to be 

7, 120, and 100 respectively based on the specifications of the samples [163]. 

Parallel analysis was used as quality control checking as the gold standard by comparing 

the size of an eigenvalue collected from our own data and then compared to eigenvalues obtained 

from a randomly generated dataset of the same size and only the eigenvalues that exceeded the 

randomly generated eigenvalues were retained. It was found that this approach is remarkably more 

accurate than the Scree test or Kaiser’s Criterion, as the latter two methods tend to overestimate 

the number of components. 

Only the components that had an eigenvalue of =>1 were extracted. Once there are eigenvalues 

less than 1.00, it is not considered to be accurate since they demonstrate less variability as 
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compared to a single variable and should not be included for the analysis. Consequently, the result 

will end up with fewer factor in comparison to the original number of variables [164]. 

In the conducted test, Monte Carlo PCA generated a random set of eigenvalues that were 

then used and compared to the eigenvalues of the present data. It generated 100 sets of random 

data of the same size of the present data and calculated the average eigenvalues from the 100 

randomly generated samples. The eigenvalues that were obtained in the dataset are systematically 

compared with the corresponding first value produced by the Monte Carlo PCA program. All the 

components with values greater than the criterion value (in the parallel analysis) were retained. 

After iterating through the eigenvalues within the dataset and comparing them with the parallel 

analysis, component 1 and 2 were determined to be most influential. 

 

 The eigenvalues for components 1 and 2 were found to be greater than the eigenvalues 

from the parallel analysis. However, the eigenvalues for component 3, 4 and 5 were found to be 

smaller than those of the parallel analysis.  

 

The result of the 3 test were aligned and agreed with each other that the 2 component 

solution was the optimum number of components and the best solution and they were able to solve 

the multi-collinearity problem that exists in the physiological signal analysis that is usually 

neglected in the available signal analysis in the literature. This would also serve to optimize the 

performance of the neural network and the learning rate was expected to increase for the following 

reasons: 

1. Multi-collinearity is not negligible when conducting analysis on the variables 

originating from same sources. 

2. Multi-collinearity slows down the performance of any learning algorithm when 

conducted modeling through machine learning techniques. 

3. Dimensionality reduction provide by the PCA would serve the learning process and 

provides the reduces the computational cost.  
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4.4 Result of Prediction of Normal ICP vs. Intracranial Hypertension  

 

The inputs (correlated body signals with ICP) were selected based on the results of Pearson 

correlation coefficient test, information gain and the extracted PCA components were fed into an 

ANN, built with H2O library [165] in (R), in order to predict the class label of intracranial pressure. 

The specification of this library and its parameters were shown in table 4.11. The class label 

prediction varied between Intracranial Hypertension to Normal ICP. 

 

Table 4.11 The configuration of Neural Network 

 

After training various models with different tuning parameters [activation functions, 

number of hidden neurons and hidden layers, etc.] and comparing the results with respect to 

minimizing the error, increasing sensitivity, precision, accuracy and specificity and minimizing 

complexity; the top 5 models were picked. The specificity, accuracy, precision and sensitivity of 

the 5 best models are defined below and shown in Fig 4.2. Moreover, a sample of confusion matrix 

is shown in table 4.12. 
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Table 4.12 Sample Confusion Matrix 

 

The metric of accuracy (AC) is the ratio of the correctly predicted data to the total number of 

data as shown in Formula 4-1 [166]: 

                      𝐴𝐶 =
𝑎+𝑑

𝑎+𝑏+𝑐+𝑑
                 (4-1) 

 

The metric of sensitivity so called the true positive rate (TP) is the ratio of positive cases that 

were correctly identified as shown in formula 4-2 [166]: 

 𝑇𝑃 =
𝑑

𝑐+𝑑
             (4-2)

The measure of specificity so called the true negative rate (TN) is the proportion of negatives 

cases that were detected correctly as shown in formula 4-3 [166]: 

 𝑇𝑁 =
𝑎

𝑎+𝑏
       (4-3) 

Finally, the metric of precision (P) is the proportion of the predicted positive cases that were 

correct. Precision is shown in the formula 4-4 [166]: 

 𝑃 =
𝑑

𝑏+𝑑
  (4-4) 
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Figure 4.2 Predictive Model Performance with Respect to the Specificity, Accuracy, Precision 

and Sensitivity 

 

It is important to rely on the performance metrics based on the requirements for the 

practical applications. As a diagnostic model, the maximum weight on choosing the best model 

should be on the “sensitivity” metric even at the cost of losing some specificity. An idea diagnostic 

model should have a high sensitivity and a high specificity, however such models are rarely 

available and for ICP prediction it has been yet a long journey ahead for all of the proposed models 

to find their way into clinical practices [167]. 

 

In our best 5 models, the model 1 based on 200 neurons layer one and 150 neurons in layer 

two have similar sensitivity in comparison to model 2 however it has higher specificity, accuracy, 

and same precision. So we have chosen that one as the best model. Table 4.13 reports the 

performance of the top 5 models. 
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Table 4.13 Models Performance 

Experiments Model 1 Model 2 Model 3 Model 4 Model 5 

Number of hidden 

neurons in each layer 
200/150 300/150 300 400 100/150 

Specificity 80.0% 78.9% 70.0% 72.7% 69.6% 

Accuracy 86.8% 84.2% 76.3% 81.6% 78.9% 

Precision 81.0% 81.0% 71.4% 71.4% 66.7% 

Sensitivity 94.4% 89.5% 83.3% 93.8% 93.3% 

 

 

Tuning the parameters of ANN structure including the number of hidden layers, type of 

activation function, the percentage of training and testing data were achieved from trial and error 

method in order to find the best model that minimizes the error in the ANN. The structure of the 

neural network was chosen to be Multi-Layer Perceptron (MLP). This feed-forward supervised 

learning method with stochastic gradient descent optimizer was robust and able to solve complex 

problems efficiently. 

MLP used nonlinear activation functions. Various activation functions such as Tanh, 

Linear function, Sigmoid function and Rectified Linear (ReLu) were tried and the results obtained 

using rectified linear unit as activation function of hidden layers and sigmoid as the transfer 

function of the output layer were found to be the best. Testing different numbers of hidden layers 

with various numbers of units, the best model was generated from two hidden layers with 200 units 

in the first hidden layer and 150 units in the second one based on the result of accuracy, sensitivity, 

specificity and precision of the models and mean squared error as shown in Fig 4.2. 

For modeling, 70.3% of the dataset were used as train set and 29.7% as test set. Input and 

output variables were standardized to reduce the likelihood of the local minima problem and 

improve the training rate resulting in improving the performance of ANN. 

The neural network was validated with a 10-fold cross validation method. Fig 4.3-4.7 

demonstrated the false positive rate vs true positive rate of the neural network model based on 
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different number of neurons in the two hidden layers. The script written for this implementation is 

demonstrated in (Appendix C). 

Figure 4.3 False Positive Rate vs. True Positive Rate (model 300-150)  

 

Figure 4.4 False Positive Rate vs. True Positive Rate (model 400-400)  
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Figure 4.5 False Positive Rate vs. True Positive Rate (model 100-150)  

 

 

Figure 4.6 False Positive Rate vs. True Positive Rate (model 200-150)  
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Figure 4.7 False Positive Rate vs. True Positive Rate (model 300-300)  

 

When tested through BrainIT dataset for the generalization purposes, the model confirmed its 

generalization with quite similar performance. The model showed the mean squared error equal to 

0.0536 mmHg and with and the area under the curve (AUROC = 0.94). The generalization 

condition was tested versus 34727 total samples. The confusion matrix is demonstrated in 

(Appendix K). 

4.5 Result of Clustering Physiological Signals 

 

Clustering defined as the partitioning of similar data points into groups or subclasses was done 

in this research base on similarities of the waveforms. Two well-known applications of K-means 

clustering are pattern recognition and image processing. The implementation of K-means is 

explained below: 
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1. Placed K points into the space represented by wavelets that were clustered. These points 

represented initial group centroids. 

2. Assigned each wavelets to the group that was closer to the centroid. 

3. As soon as all wavelets were assigned, calculated the positions of the K centroids again.  

4. Followed the above process of grouping until the centroids no longer moved which 

produced a separation of the wavelets into groups from which the target metric for 

minimization could be calculated. 

Considering that the K-means method depended on the K value, it was crucial to determine its 

value. The elbow method was used to determine the optimum number of K value. The Elbow 

method is a method of validation and interpretation of reliability within cluster analysis designed 

to support finding the suitable number of clusters in a dataset [168]. 

Fig 4.8 demonstrated that 3 clusters could reduce the error remarkably; however greater number 

of clusters does not change the error significantly and hence K was set as 3.  

 

 

 

Figure 4.8. Elbow Method to Find the Optimum Number of K 
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 The clusters were labeled as follows: 

 Cluster 0: Labeled as normal ICP. Most of the patients were in normal condition as 

the heart rate (HR) was within the normal range (60-100bpm) and the respiratory 

rate of the patient was also in normal range (12-30/min), these samples are labeled 

normal. They are defined as normal ICP. 

 

 Cluster 1: Labeled as pre-raised ICP. In most cases the HR was within normal range 

but there was an increase in the ABP values indicating that the patients could 

potentially be in ICP pre-raised condition. Due to certain rise in the heart rate and 

increase in the respiratory rate of the patient, it is concluded that the patients are in 

pre-raised ICP condition [169] knowing that the increase of arterial blood pressure 

(mean, systolic and diastolic pressure) and respiration rate, is accompanied by the 

moderate rise in ICP and ICP could be in its high threshold [170].  

 Cluster 2:  Labeled as Intracranial Hypertension. It was analyzed that as the 

respiration rate started to decrease abruptly, ICP could be in its very raised value 

[171]. 

Tables 4.14 - 4.16 showed the patients’ condition recorded for cluster 1-3, respectively. 

 

4.6 Statistical report on the clustering result 

 

 Statistical summary was defined as the information such as mean, median, mode, minimum 

value, maximum value, range, standard deviation etc. that gives insight about the wavelet data 

sample categorized into each cluster to provide an insight on which ranges of signals have become 

members of each cluster.   
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Table 4.14 Patients’ Condition Corresponding to Cluster 0 (Gained the normal label: 48 

members)  

Biomedical 

Signals 

Minimum Maximum Mean Median Mode Std. 

Deviation 

Variance 

HR 65 76 71.81 70 71 2.389 5.71 

Pulse 60 71 66.94 69 70 2.137 4.57 

ABP Dias 12 61 52.05 53 52 3.93 15.45 

ABP Mean 38 76 68.65 70 70 6.61 43.7 

Respiratory 13 30 18.01 17 15 3.40 11.57 

ST III -0.1 0 -0.02 0 0 0.031 0.001 

ST V 0.2 0.4 0.24 0.2 0.2 0.085 0.0073 

 

Table 4.15 Patients’ Condition Corresponding to Cluster 1 (Gained the label of pre-raised ICP: 15 

members)  

Biomedical 

Signals 

Minimum Maximum Mean Median Mode Std. 

Deviation 

Variance 

 

HR 55 73 60.7      60 55 4.48 20.09 

Pulse 56 71 65.31 67 70 4.91 24.13 

ABP Dias 34 63 58.85 61 62 8.73 76.38 

ABP Mean 56 84 64.68 61 62 8.011 64.18 

Respiratory 26 30 27.27 27 27 1.333 1.779 

ST III -0.1 0 -0.017 0 0 0.031 0.001 

ST V 0.3 0.5 0.478 0.4 0.5 0.031 0.001 

 

Table 4.16 Patients’ Condition Corresponding to cluster 2 (gained the label of intracranial 

hypertension: 21 members) 

Biomedical 

Signals 

Minimum Maximum Mean Median Mode Std. 

Deviation 

Variance 

 

HR 67 75 72.17 72 71 1.467 2.155 

Pulse 67 71 71.36 73 69 1.135 1.29 

ABP Dias 43 80 72.51 74 74 6.238 38.92 

ABP Mean  90 102 93.16 98 95 3.937 15.5 

Respiratory  14 17 15.73 19 14 0.326 0.106 

ST III  0 0.1 0.011 0 0 0.01 0.0001 

ST V  0.5 0.7 0.05845 0.2 0.5 0.063 0.004 



 

66 
 

 

 

4.7 Evaluation of Clustering Labels with Classification 

 

The clustering result were evaluated by classification on the 20% unseen data with 

available labels. As demonstrated in Fig 4.9. It was noticed that the accuracy of the perceptron and 

multinomial logistic regression are the two highest among all. 

 

Figure 4.9 the Accuracy of Classification of the Clustering Result 
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Figure 4.10 demonstrated sensitivity of different classes 0, 1 and 2 as labeled normal, 

pre-raised and raised. It is observed that the sensitivity of multinomial logistic regression and 

Perceptron are approximately the same and sensitivity is well distributed among three different 

classes. 

 

Figure 4.10 Sensitivity of Classification of the Clustering Result 

 

Figure 4.11 demonstrated of the comparison between the precision of different classes for 

various algorithms which showed that the precision of multinomial logistic regression and 

perceptron classifier were greater. Precision would be the answer to “what percentage of 

prediction of the desired label is correct” in this thesis. 
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Figure 4.11 Precision of Classification of the Clustering Result 

 

Specificity of various classifier for the three different classes is shown in Fig 4.12. Specificity was 

defined as a measure of how good the algorithm performed in detecting values that do not belong 

to a class. The mean squared errors of the algorithms was demonstrated in Fig 4.13.   
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Figure 4.12 Specificity of Classification of the Clustering Result 
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Figure 4.13 Mean Squared Error of Classification of the Clustering Result 
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Table 4.17 the Evaluation of the Implemented Classifiers on the Labels 

A
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Accuracy 14.28 50 71.4 42.8 59 42.8 71.4 50 50 

MSE 0.57 0.33 0.19 0.43 0.33 0.38 0.19 0.33 0.33 

Sensitivity 

Class 0 
33.3 83.3 66.6 100 83.33 66.6 66.6 66.6 83.33 

Sensitivity 
Class 1 

0 66.6 66.6 0 66.6 66.6 66.6 66.6 66.6 

Sensitivity 
Class 2 

0 0 80 0 0 0 80 20 0 

Specificity 

Class 0 
25 25 87.5 0 37.5 25 87.5 37.5 25 

Specificity 

Class 1 
72.7 100 100 100 81.81 90.9 100 90.9 100 

Specificity 
class 2 

72.7 88.8 66.6 100 100 88.8 66.6 88.88 88.8 

Precision 

Class 0 

25 45.45 80 42.8 50 40 80 44.4 45.45 

Precision 

Class 1 

0 100 1 0 50 66.6 100 66.6 100 

Precision 

Class 2 

0 0 57.14 0 0 0 57.1 50 0 

 

The ROC curves of the best models – multinomial logistic regression – and Perceptron 

classifier are demonstrated in Fig 4.14 and 4.15 respectively. 
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Figure 4.14 ROC of Different Classes Obtained by Multinomial Logistic Regression  

 

In the classification based on clustering result, 3 labels were defined as normal ICP or class 

0, Pre-raised ICP or class 1 and intracranial hypertension or class 2.  The ROC curve generated as 

shown in Fig 4.14 – Fig 4.15 are using the one vs all strategy, as ROC curve are meant for binary 

classification. In the 3 ROC curves with each representing the 3 different classes are observed. 

The ROC curve is a graph of true positive rate vs false positive rate. The True positive rate 

answers the question of “how many values belonging to a particular class were identified truly as 

member of that class”. False positive rate answers the question of “whether a particular class was 

truly identified as a member of a particular class when in fact it was a member of another class.” 

In Fig 4.14, the graph of true positive rate vs false positive rate of class with labels 0, 1, 2 

are demonstrated. From the graph it is observed that class 2 has the worst graph since it crosses 

the 0.5 threshold easily and it could be concluded that the class 2 had the lowest accuracy when it 

comes to one vs all classification. Also the AUC of class 2 being the lowest proves that its accuracy 

is lowest when using multinomial logistic regression. ROC curves of class 1 started out promising 
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but went dangerously close to 0.5 which meant that there was certain classification wherein the 

class 1’s that were misclassified. ROC curve of class 0 was the best and also had the highest 

accuracy in all the three classes. 

 

Figure 4.15 ROC of Different Classes Obtained by Perceptron Classifier 

 

Figure 4.15 demonstrated the TP vs FP rates of all the 3 classes when using perceptron 

algorithm. From the graph it could be observed that class 2 had the lowest accuracy as it touches 

the 0.5 random guess line. Moreover, the AUC of class 2 was the lowest among all the 3 classes 

which could also mean that class 2 had the lowest accuracy among all the 3. Class 0 also 

demonstrated to be the second AUC area; however, it also went dangerously close to 0.5 which 

could be interpreted that, some values might have been incorrectly classified. ROC curve of class 

1 was the best and also had the highest accuracy in all the three classes. 
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4.8 Medical Application 

 

In practice, physicians would opt for predictive model with near to 100% sensitivity at the cost 

of specificity and accuracy. This would be highly important to consider when conducting 

modeling. To integrate the model into clinical practice, the results need to be tested in a prospective 

study to be compared with invasive ICP monitoring. If enough clinical evidence is obtained to 

justify and support the usage of the predictive model in clinical practice, such algorithm can be 

applied to any patient with acute brain injury (e.g. trauma, stroke, hemorrhage, etc) who is not 

candidate for emergent surgical intervention or ventricular drain placement. Such patients would 

undergo monitoring with the predictive model in ICU setting and whenever the model alarms a 

possible rise in ICP (high sensitivity), an invasive ICP monitoring can be placed to confirm the 

diagnosis (high specificity) and treat the patient accordingly. 

 This model could prevent the universal placement of ICP monitoring in all patients suspicious 

for developing ICP crisis and prevent catheter complications (e.g. intracerebral hemorrhage, 

infection, etc.). The predictive model is not expected to function as a sole source of decision 

making for treatment plan and noting that the physiological signals / vital time series  are routinely 

available and getting collected from the traumatic brain injured patients and those signals are not 

hazardous or complicated to get collected for the patients, modeling ICP changes from the 

available body signals is cost-effective and such models could be integrated into a decision support 

system in future after passing the requirements mentioned above. 

 

4.9 Discussion 

 

The predictive model of the present research was compared with the result of the model 

proposed by Guiza et al. [108] that was developed based on mean arterial pressure, cerebral 

perfusion pressure and mean arterial pressure time series, collected using invasive technique, to 

forecast future ICP signals. Despite the relatively successful outcomes, their model could not work 

towards non-invasive prediction due to including ICP and CPP history in feature space. 

Comparison of the predicted values of AUROC scores on the ICP forecasting problem between 
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the present model and that of Guiza et al. demonstrated that the proposed model in this study is 

performing better as shown in table 4.18. 

The proposed model of this study was also compared with the model developed by Hu et 

al. [71] which was primarily based on the 24 MOCAIP (Morphological clustering) metrics which 

characterized the form of the ICP pulse. Comparison of the results between the present model, that 

of Guiza et al. [108] and Hu et al.[71] at t = 10 minutes shown in table 4.18. 

Comparison between the predictions of this study compared with Hüser et al.’s model [2] 

shown in table 4.18 illustrated that the proposed model in this study has increased AUROC metric 

by 5 percent. It is highly important to note that the 5 percent improvement of AUROC metric is 

achieved without including ICP and CPP (cerebral signal) as features in the non-invasive 

predictive model of this study. The proposed study has find mapping between heart channel and 

respiration channel to cerebral channel by two components extracted from the correlated body 

signals with ICP and being able to map them to normal ICP / Intracranial hypertension status using 

the state of the art deep learning model.  However, in Hüser’s predictive model the future status of 

ICP was predicted by its history and the methodology by that study use ensemble extremely 

randomized decision tree and SVM.  

Hüser et al. [2], [5] also developed a non-invasive predictive ICP model with the same 

input space excluding ICP and CPP to predict the current exact value of intracranial hypertension 

mean via a supervised regressive model as explained in chapter 2. Hüser et al. conducted 10 fold 

cross-validation and figured a mean absolute error of 3.84 mmHg. The author reported that the 

exact current mean ICP was not achieved in his experiments. 

Kashif et al. [73] developed a technique to estimate the current ICP. Their model utilized 

ABP (in 60 beat time intervals) and Transcranial Doppler readings of cerebral blood flow velocity. 

Evaluation of their model using the data collected from 37 TBI patients showed the error of 1.5 

mmHg ± 5.9 mmHg variance. However, the positive point about their model was that it did not 

require a calibration. 

The studies by Hüser et al [2] and Kashif et.al [73] conducted analysis on mean ICP 

prediction including the features from ICP or CPP values in the predictive model . These models 
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could serve as “automation” of the current setting and the models are dependent of ICP signal as 

the input.  

The experiments conducted by them are only comparable to the first model proposed in 

this research. The second proposed model in this research have conducted an unsupervised 

approach to cluster correlating body signals with ICP. This would be to evaluate the possibility of 

such structures through body signals and whether the information regarding status of ICP could be 

found. So K-means clustering result based on the optimum number of K versus the sum of the 

squared error resulted in 3 clusters. Each cluster received a label based on the members grouped 

in each cluster and the comparison between changes of members in different clusters. The result 

was evaluated with various supervised approaches and the best learning model based on perceptron 

reported an overall MSE equal to 0.19. The “normal” label received an AUROC score of 0.77, the 

“pre-raised” label received an AUROC of 0.82 and the “Intracranial hypertension” states received 

an AUROC of 0.73.   

 

Table 4.18 Comparison with the literature 

 

Model AUROC 

Non-invasive proposed model 0.86 

Invasive Guiza et al. model  0.78 

Invasive Hüser et al.  model  0.81 

Invasive Hu et al. model  0.74 
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4.10 Summary 

 

Prediction of non-invasive ICP is crucially important in the management of TBI patients. The 

present study evaluated the efficacy of statistical and machine learning approaches (deep learning 

and K-means clustering) in prediction and clustering of the intracranial hypertension status in TBI 

patients with respect to the vital physiological signals. This study has potentially significant 

clinical value in making intracranial hypertension prediction, focusing on components extracted 

from the physiological signals as a reliable and novel biomarker of intracranial hypertension. 

The present research found significant correlations between ICP and a number of the collected 

biomedical vital signals from TBI patients capable to predict status of ICP for the upcoming 10 

minutes. The second proposed model based on an unsupervised approach recognized the status of 

ICP (normal / pre-raised / raised) and was evaluated by a supervised approach.  
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5 Conclusion 

 

5.1. Summary of Findings 

 

The principle findings of the present thesis could be summarized as follows: 

 

i. The proposed non-invasive predictive model can be used to help answering the very 

common question of the medical doctors which is “Whether the ICP monitoring bolt 

should be placed for the patient or not”. The non-invasive predictive model is able to 

predict the status of ICP, 10 minutes in advance without including history of ICP as the 

input. In other words, the future status of ICP is not modelled from its previous history; 

instead, it is modelled from the 2 components extracted from the other body signals. 

The ICP monitoring bolt could be placed only after the high ICP suspicion is warned. 

ii. The first proposed machine learning model for non-invasive prediction of ICP were 

trained and tested successfully using correlated body signals with ICP. The model was 

tested using 10-fold cross validation of MIMIC II waveform database as well as the 

BrainIT database. It demonstrated the AUROC of 0.86. This model was trained with 

available ICP labels and did not include the history of ICP or any sub derived signals 

from ICP such as CPP in feature engineering.  

iii. The second proposed modelling was conducted with the purpose of finding structure 

in the correlated body signals with ICP. They were clustered and labelled. The acquired 

labels were validated through classification algorithms. The perceptron classifier 

demonstrated the AUROC of 0.82 for the acquired label of “Pre-raised ICP”, AUROC 

of 0.77 for the acquired label of “Normal ICP” and AUROC of 0.73 for the acquired 

label of “Intracranial Hypertension/ raised ICP”.  

iv.  Three labels of normal, pre raised and raised ICP were defined allowing to detect status 

of ICP from physiological channels. 

v. The present study utilized statistical, principal component analysis and machine 

learning methodology to conduct deep investigation through body signals such as 
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different leads of heart and reparation system and to find correlation with ICP and 

anticipate ICP via predictive modeling.  

vi. The predictive modelling of the present study is able to anticipate the forthcoming 

status of ICP up to 10 minutes in advance (without including the history of ICP in the 

feature space). This is a critical finding which can help accelerate the medical decision 

making and prevent from the fatal gap between diagnosis and decision making stages. 

vii. Modelling ICP from routinely collected physiological channels is feasible and cost 

effective and more importantly a lifesaving technique. The proposed forecasting model 

provides time for clinicians to make appropriate decision and avoid secondary brain 

damage observed in traumatic brain injured patients  

viii. It was found that while the heart and respiration systems have remarkable relation with 

ICP, interpreted as “associations”; other parameters such as tumors, stroke, seizures, 

infections etc. may have a “causality” relationship with ICP. This fact, makes any 

clinical study very hard to analyze. 

 

5.2 Contributions 

 

The main contributions are:  

 Finding correlations between body signals through different leads of heart ( such as ECG 

segment III and IV) and respiration system with ICP and extracting two components from 

them for modelling ICP. 

 Building a non-invasive forecasting model for prediction of intracranial hypertension status 

with a horizon of t = 10 minutes, with the sensitivity of 94.4 through a two-component 

solution from the correlated body signals with ICP. 

 A non-invasive ICP status detection model based on clustering, labelling and evaluating 

via classification algorithms. The best accuracy of labelling result was demonstrated by the 

perceptron algorithm as discussed in summary of findings.  

 A detailed evaluation of the importance of different physiological and clinical features with 

respect to ICP. 
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 Parallel visualization of body signals corresponding to changes of ICP. 
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Approach to Detect Intracranial Hypertension “, in Proc. Of the IEEE International 

Humanitarian Technology Conference (IHTC), pp.21-25, Oct 2017. 

 

5.4 Future Work 

 

The primary results obtained in this research is very promising. In future the predictive model 

should be tested in multiple large-scale studies to confirm their sensitivity and reliability to be 

incorporated into the clinical settings. This would be to achieve the top most future goal and to 

build a decision support tool that could be incorporated to the current clinical settings to help 

neurosurgeons in the surgery decision making.  

It should be noted that when conducting forecasting modeling in clinical setup, the emphasis 

on “Sensitivity” of the model is higher than the accuracy. Since gathering the data from patients 

with specific characteristic under the same condition is a time consuming task, reliable biomedical 

data sets are generally very limited and this presents a common challenge in analysis of 
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physiological data sets.  As ICP is very predictive of the patient outcome, a good future direction 

would be to associate the findings of this thesis with patient outcome and predicting Glasgow 

Coma Scale of patients. In addition, a recurrent neural network could be a good solution to infer 

insights into the wavelet images. 

  



 

82 
 

Appendix  

 

Appendix A. Wavelet Plots: samples of pre-raised ICH 

 

#Description: Appendix A, demonstrates samples of pre-raised ICP in body signals. Together with 

“normal” samples and “ICH” samples, they are provided as the input to K-means clustering 

algorithm.
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Appendix B. Extraction of the raised episodes of ICP 

 

#Description: Appendix B, contains the script used to generate parsed files and extract ICH 

episodes in the correlated signals with ICP. 

 

from datetime import datetime 

 

file_name = 's7.csv' 

# open the csv file 

file = open(file_name, 'r') 

 

# create a parsed file 

parsed_file = open('parsed ' + file_name, 'w') 

# extract the header and the units 

header = file.readline() 
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units = file.readline() 

FMT = '%H:%M:%S' 

# threshold of ICP 

ICP_THRESHOLD = 20 

 

# minutes of data to capture when ICP > ICP_TRHESHOLD 

TIME_REQUIRED = 30 

 

# determine the column which contains ICP 

icp_column = header.split(',').index("'ICP'") 

 

# array to hold total data 

full_array = [] 

 

# keep track to see if the last ICP was above ICP_THRESHOLD 

prev_data = False 

 

# keep track of start/stop time of each stage where ICP > ICP_THRESHOLD 

start_time = '' 

stop_time = ''  

 

# loop through every line in the file 

for f in file: 

    split_data = f.split(',') 

 

    # grab ICP value 

    icp_data =  split_data[icp_column] 

     

    # make sure ICP is valid 

    if icp_data == '-': 

        continue 
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    # check if ICP is above the threshold 

    if int(icp_data) >= ICP_THRESHOLD: 

        # keep track of time 

        stop_time = split_data[0] 

 

        # set current time to start time if this is a new ICP > threshold 

        if start_time == '' or not prev_data: 

            start_time = split_data[0] 

         

        # append this line of data to the full array 

        full_array.append(f) 

         

        # calculate how much time of ICP > threshold we have so far 

        tdelta = datetime.strptime(stop_time[2:10] , FMT) - datetime.strptime(start_time[2:10], 

FMT) 

         

        # If the minutes is greater than time threshold, save data in new file 

        if int(str(tdelta)[2:4]) >= TIME_REQUIRED: 

             

            # save data in new file 

            for data in full_array: 

                parsed_file.write(data) 

            break 

        # indicate previous value was ICP 

        prev_data = True 

         

    # if ICP does not meet threshold, reset data array, and set previous ICP as false 

    else: 

        prev_data = False 
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        full_array = [] 

 

Appendix C. Implementation of the predictive model 

 

#Description: Appendix C, contains the script used to implement the neural network model using 

h2o library in R. 

 

library(h2o) 

h2o.init()  

df=h2o.importFile("data.csv") 

df=df[c('FAC1_1','FAC2_1','ICP')] 

df[,3]=as.factor(df[,3]); 

is.na(data.frame(FAC1_1=NaN,FAC2_1=NaN,ICP=NaN)) 

df=na.omit(df) 

summary(df) 

df[,1]=(df[,1]-min(df[,1]))/(max(df[,1])-min(df[,1])) 

df[,2]=(df[,2]-min(df[,2]))/(max(df[,2])-min(df[,2])) 

min(df['FAC1_1']) 

mean(df) 

summary(df,exact_quantiles = TRUE) 

splits <- h2o.splitFrame(df,0.8)     

train <- h2o.assign(splits[[1]], "train.hex")    

test <- h2o.assign(splits[[2]], "test.hex")  

ann=h2o.deeplearning( 

    training_frame=train, 

    x=c('FAC1_1','FAC2_1'), 

    y=c("ICP"), 

    hidden=c(200,150), 

    nfolds=10, 
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    activation='RectifierWithDropout', 

    balance_classes=TRUE, 

    class_sampling_factors = c(1.5, 1), 

    standardize=TRUE) 

h2o.confusionMatrix(ann) 

predict=h2o.predict(object = ann,newdata = 

test[c('FAC1_1','FAC2_1')],exact_quantiles=TRUE) 

head(predict) 

perf=h2o.performance(ann,newdata = test) 

plot(ann) 

plot(ann, timestep = "epochs", metric = "rmse") 

plot(ann,timestep = "epochs",metric = "classification_error") 

 

 

Appendix D. Sample result of PCA (Fact 1 and Fact 2 as Inputs to Neural Network) 

 

#Description: Appendix D, demonstrates a sample data file in which Fact 1 and Fact 2 are the two 

components extracted from HR, Pulse, ST V, ST III, Abp dias and Abp mean and Resp. 

Moreover, Fact 1 and Fact 2 are the inputs to Neural network to predict ICH. 

 

 

HR X.PULSE ST.V X.ABP.Dias X.ABP.Mean X.RESP STIII FAC1_1 FAC2_1 ICH 

51 51 154 66 94 12 100 -1.41896 0.71344 True 

51 51 154 66 94 12 100 -1.41896 0.71344 True 

51 51 154 66 94 12 100 -1.41896 0.71344 True 

51 51 154 66 94 12 100 -1.41896 0.71344 True 

50 51 154 66 94 12 100 -1.44126 0.72368 True 

50 51 154 66 94 12 100 -1.44126 0.72368 True 

50 51 154 66 94 12 100 -1.44126 0.72368 True 

51 51 154 66 94 12 100 -1.41896 0.71344 True 

51 51 154 66 94 12 100 -1.41896 0.71344 True 

51 51 154 66 94 12 100 -1.41896 0.71344 True 

51 51 154 66 94 12 100 -1.41896 0.71344 True 

51 51 154 66 94 12 100 -1.41896 0.71344 False 
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51 51 154 66 94 13 100 -1.38479 0.69883 False 

51 51 154 67 95 13 100 -1.33834 0.82341 False 

51 51 155 67 95 13 100 -1.34703 0.89265 False 

51 51 155 67 95 13 100 -1.34703 0.89265 False 

51 51 155 67 95 12 100 -1.3812 0.90727 False 

51 51 156 67 96 12 100 -1.37187 1.07154 False 

51 51 156 68 96 12 100 -1.34345 1.10109 False 

51 51 156 68 96 12 100 -1.34345 1.10109 False 

51 51 156 68 96 12 100 -1.34345 1.10109 False 

 

 

 

Appendix E. Information Gain Code in R 

 

#Description: Appendix E, contains the script in R to conduct information gain analysis in the 

clinical attributes. 

 

install.packages("FSelector") 

library(FSelector) 

install.packages("RWekajars") 

library(RWekajars) 

library(FSelector) 

Daily_Observations2A <- information.gain(Patient_Id~., Daily_Observations2) 

View(Daily_Observations2A) 

 

 

str(Daily_Observations2A) 

str(Daily_Observations2) 

 

 

 

#Info Gain 

 

library(RWekajars) 

library(FSelector) 

 

totalA <- information.gain(ICPm~., total) 

totalA <- information.gain(ICPm~., totalE) 

totalA <-information.gain(ICPm~., totalF) 

totalI <- information.gain(ICPm~., totalH) 

 

========================================================= 
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Result: 

 

 

 

Appendix F. Selecting patients with normal lead before episodes of highICP (Checking for 

5, 10, 15 and 20 minutes’ lead samples) 

 

#Description: Appendix F, demonstrates the script written in R to find the maximum available 

lead time detectable in normal samples that are followed by episodes of highICP right after. 

 

# Marking first high ICP for each ID 

marks <- c() 

for(i in unique(df_new$Patient_Id)){ 

  marks <- c(marks,min(which(df_new$Patient_Id == i & df_new$highICP == "High"))) 

} 

marks <- as.integer(marks) 

df_new[,9] <- c(1:nrow(df_new)) 

df_new<-as.data.frame.data.frame(df_new) 

df_new$firstHigh <- ifelse(as.list(df_new[,9]) %in% marks,"First", NA) 

timeLead <- 300 
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unique(df_new$Patient_Id) 

lead5 <- as.data.frame(matrix(ncol = 3, nrow = length(unique(df_new$Patient_Id)))) 

lead5[,1] <- unique(df_new$Patient_Id) 

for(i in unique(df_new$Patient_Id)){ 

  lead5[lead5$V1 == i,2] <- min(which(df_new$Patient_Id == i)) 

  lead5[lead5$V1 == i,3] <- ifelse(length(which(df_new$Patient_Id == i & df_new$firstHigh == 

"First")) == 0, 

                               NA, which(df_new$Patient_Id == i & df_new$firstHigh == "First")) 

}   

lead5[,4] <- lead5[,3] - lead5[,2] 

lead5$able5min <- ifelse(lead5[,4]>360,"Able", "Unable") 

lead5$able10min <- ifelse(lead5[,4]>660,"Able", "Unable") 

lead5$able15min <- ifelse(lead5[,4]>960,"Able", "Unable") 

lead5$able20min <- ifelse(lead5[,4]>1260,"Able", "Unable") 

colnames(lead5)<-

c("Patient_Id","minIndex","maxIndex","able5min","able10min","able15min","able20min") 

write.csv(lead5,"output.csv") 

 

Appendix G. K-means Clustering on Wavelet plots 

 

Description: Appendix G, demonstrates the script written in Python to conduct K-means 

clustering on the wavelet plots. 

 

# In[1]: 

import os 

import sklearn 

import pandas as pd 

import numpy as np 

from PIL import Image 

from sklearn.cluster import KMeans 
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import cv2 

from sklearn.metrics import silhouette_samples, silhouette_score 

import matplotlib.pyplot as plt 

import pyximport; pyximport.install() 

from matplotlib.pylab import rcParams 

rcParams['figure.figsize'] = 15, 6 

import matplotlib.cm as cm 

# In[141]: 

DATA_URL=os.path.join("Dataset") 

SORTED_DATA_URL=os.path.join("SortedProjectImages"); 

# In[120]: 

RESULT_URL=os.path.join("kmeansV2Result") 

# In[3]: 

signals=["pulse","heartRate","resp","pvc","spo2","abp","abpDias","abpSys","st3","st5"] 

# In[4]: 

patientNumbers=os.listdir(DATA_URL) 

# In[5]: 

n_cluster=3 

 

NUM_SIGNAL=10; 

IMAGE_SIZE=224; 

IMAGE_DIM=3; 

len(patientNumbers) 

# # Gathering the data 

# In[104]: 

data=[] 

label=[] 

fileNames=[]; 
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for num in patientNumbers: 

    baseUrl=os.path.join(DATA_URL,num); 

    temp=[] 

    for signal in signals: 

        tempFileName=signal+"_"+num+".png"; 

        if(os.path.exists(os.path.join(baseUrl,tempFileName))==True): 

            image=cv2.imread(os.path.join(os.path.join(baseUrl,tempFileName))) 

            fileNames.append(tempFileName) 

            data.append(image.flatten()) 

            label.append(num) 

# In[105]: 

len(data) 

# In[106]: 

data=np.array(data) 

# In[107]: 

data.shape 

# # doing k-means 

# In[112]: 

 

KmeansClustering=KMeans(n_clusters=3, init='k-means++', n_init=100, max_iter=3000) 

# In[113]: 

KmeansClustering.fit(data) 

# In[114]: 

output_labels=KmeansClustering.labels_ 

# # Creating Cluster Result Folder 

# In[135]: 

os.mkdir(os.path.join(RESULT_URL,"cluster_0")) 

os.mkdir(os.path.join(RESULT_URL,"cluster_1")) 
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os.mkdir(os.path.join(RESULT_URL,"cluster_2")) 

# In[140]: 

for i in range(len(output_labels)): 

    movedFolderName=""; 

    if(output_labels[i]==0): 

        movedFolderName=os.path.join(RESULT_URL,"cluster_0") 

    elif(output_labels[i]==1): 

        movedFolderName=os.path.join(RESULT_URL,"cluster_1") 

    elif(output_labels[i]==2): 

        movedFolderName=os.path.join(RESULT_URL,"cluster_2") 

    else: 

        break; 

    image=Image.open(os.path.join(DATA_URL,label[i],fileNames[i])); 

    image.save(os.path.join(movedFolderName,image.filename.split("\\")[-1])); 

    image.close() 

# In[143]: 

for i in range(len(output_labels)): 

    movedFolderName=""; 

    if(output_labels[i]==0): 

        movedFolderName=os.path.join(RESULT_URL,"cluster_0") 

    elif(output_labels[i]==1): 

        movedFolderName=os.path.join(RESULT_URL,"cluster_1") 

    elif(output_labels[i]==2): 

        movedFolderName=os.path.join(RESULT_URL,"cluster_2") 

    else: 

        break; 

   

image=Image.open(os.path.join(SORTED_DATA_URL,"wavelet",fileNames[i].split("_")[0],lab

el[i]+".png")) 



 

95 
 

    image.save(os.path.join(movedFolderName,fileNames[i])) 

    image.close(); 

 

Appendix H. Classification of K-means Result 

 

#Description: Appendix H, demonstrates the script written in Python to conduct classification on 

the K-means result. 

 

# In[1]: 

get_ipython().magic('load_ext Cython') 

# In[2]: 

import os 

import numpy as np 

import pandas as pd 

# In[3]: 

import cv2 

# In[4]: 

from sklearn.model_selection import train_test_split 

# In[5]: 

from sklearn.linear_model import LogisticRegression 

# In[6]: 

 

from sklearn.linear_model import SGDClassifier 

# In[7]: 

from sklearn.linear_model import Perceptron 

# In[8]: 

from sklearn.neural_network import MLPClassifier 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.ensemble import ExtraTreesClassifier 
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# In[9]: 

from sklearn.naive_bayes import BernoulliNB 

from sklearn.naive_bayes import GaussianNB 

from sklearn.naive_bayes import MultinomialNB 

# In[10]: 

from sklearn.feature_selection import RFE 

from sklearn.feature_selection import SelectKBest 

from sklearn.feature_selection import chi2 

from sklearn.decomposition import PCA 

# In[296]: 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import classification_report 

from sklearn.metrics import roc_auc_score 

from sklearn.metrics import recall_score 

from sklearn.metrics import precision_score 

from sklearn.metrics import f1_score 

from sklearn.metrics import roc_curve 

# In[322]: 

from itertools import cycle 

# In[151]: 

from sklearn.preprocessing import label_binarize 

# In[50]: 

import matplotlib.pyplot as plt 

# In[501]: 

from pylab import rcParams 

rcParams['figure.figsize'] = 30, 20 

rcParams.update({'font.size': 30}) 

# In[244]: 
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import pyximport; pyximport.install() 

# In[11]: 

signals=["pulse","heartRate","resp","pvc","spo2","abp","abpDias","abpSys","st3","st5"] 

# In[12]: 

DATA_URL="Dataset" 

K_LABELS="k_result.csv" 

# In[13]: 

IMAGE_HEIGHT=224; 

IMAGE_WIDTH=224; 

IMAGE_DIM=3; 

# In[14]: 

# Classifying result obtained from kmeans affinity matrix in clustering 

# In[16]: 

k_data=pd.read_csv(K_LABELS,header=None) 

k_data.set_index(0,inplace=True) 

k_data=k_data.to_dict()[1] 

# In[17]: 

def dataGathering(data_dict,data_folder,signals,image_height,image_width,image_dim): 

    labels=[]; 

    keys=[]; 

    data=[]; 

    for key,value in data_dict.items(): 

#         print("key="+str(key)); 

#         print(type(str(key))) 

        labels.append(value); 

        keys.append(key); 

        base_url=os.path.join(data_folder,str(key)); 

        temp=[]; 
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        for signal in signals: 

            tempFileName=signal+"_"+str(key)+".png"; 

            if(os.path.exists(os.path.join(base_url,tempFileName))==True): 

#                 print("FOUND="+signal); 

                temp.append(cv2.imread(os.path.join(base_url,tempFileName)).flatten()); 

            else: 

                temp.append(np.zeros(image_height*image_width*image_dim)) 

    

        data.append(np.array(temp).flatten());  

    return data,keys,labels 

# In[19]: 

k_data,k_patientNums,k_labels=dataGathering(k_data,DATA_URL,signals,IMAGE_HEIGHT,I

MAGE_WIDTH,IMAGE_DIM) 

# In[20]: 

k_data=np.array(k_data) 

k_data.shape 

# In[275]: 

def performLogisticRegression(Xtrain,ytrain,Xtest,ytest): 

    logistic=LogisticRegression(n_jobs=-1,multi_class="multinomial",solver='lbfgs') 

    logistic.fit(Xtrain,ytrain) 

    y_pred=logistic.predict(Xtest); 

    y_decision=logistic.decision_function(Xtest) 

    return np.mean(y_pred==ytest),y_pred,y_decision 

# In[276]: 

def performSGDClassifier(Xtrain,ytrain,Xtest,ytest): 

    sgd=SGDClassifier(loss='modified_huber'); 

    sgd.fit(Xtrain,ytrain,); 

    y_pred=sgd.predict(Xtest) 

    y_decision=sgd.decision_function(Xtest) 
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    return np.mean(y_pred==ytest),y_pred,y_decision 

# In[277]: 

def performPerceptron(Xtrain,ytrain,Xtest,ytest): 

    percep=Perceptron(); 

    percep.fit(Xtrain,ytrain) 

    y_pred=percep.predict(Xtest) 

    y_decision=percep.decision_function(Xtest) 

    return np.mean(y_pred==ytest),y_pred,y_decision 

# In[461]: 

def performRandomForestClassifier(Xtrain,ytrain,Xtest,ytest): 

    randomForest=RandomForestClassifier(n_jobs=-1) 

    randomForest.fit(Xtrain,ytrain) 

    y_pred=randomForest.predict(Xtest) 

    y_decision=randomForest.predict_proba(Xtest) 

    return np.mean(y_pred==ytest),y_pred,label_binarize(y_pred,classes=[0,1,2]) 

def performExtraTreeClassifier(Xtrain,ytrain,Xtest,ytest): 

    extraTree=ExtraTreesClassifier(n_jobs=-1) 

    extraTree.fit(Xtrain,ytrain) 

    y_pred=extraTree.predict(Xtest) 

    y_decision=extraTree.predict_proba(Xtest) 

    return np.mean(y_pred==ytest),y_pred,label_binarize(y_pred,classes=[0,1,2]) 

# In[462]: 

 

def performGaussianNB(Xtrain,ytrain,Xtest,ytest): 

    gaussianNB=GaussianNB(); 

    gaussianNB.fit(Xtrain,ytrain); 

    y_pred=gaussianNB.predict(Xtest) 

    y_decision=gaussianNB.predict_proba(Xtest) 



 

100 
 

    return np.mean(y_pred==ytest),y_pred,y_decision 

def performMultinomailNB(Xtrain,ytrain,Xtest,ytest): 

    pNb=MultinomialNB(); 

    pNb.fit(Xtrain,ytrain); 

    y_pred=pNb.predict(Xtest) 

    y_decision=pNb.predict_proba(Xtest) 

    return np.mean(y_pred==ytest),y_pred,y_decision 

def performBernouliNB(Xtrain,ytrain,Xtest,ytest): 

    bernouliNB=BernoulliNB() 

    bernouliNB.fit(Xtrain,ytrain) 

    y_pred=bernouliNB.predict(Xtest) 

    y_decision=bernouliNB.predict_proba(Xtest) 

    return np.mean(y_pred==ytest),y_pred,y_decision 

# In[463]: 

def performMLPClassifier(Xtrain,ytrain,Xtest,ytest): 

    mlpClassifier=nn=MLPClassifier(activation="logistic”, solver="sgd") 

    mlpClassifier.fit(Xtrain,ytrain) 

    y_pred=mlpClassifier.predict(Xtest) 

    y_decision=mlpClassifier.predict_proba(Xtest) 

    return np.mean(y_pred==ytest),y_pred,y_decision 

# In[464]: 

def startClassification(data,labels): 

    result_dict={}; 

    result_pred_dict={} 

    result_decision_dict={} 

    X_train, X_test, y_train, y_test = train_test_split(data, labels, 

test_size=0.25,random_state=42); 

  _,X_test_temp,_,y_test_temp=train_test_split(X_train,y_train,test_size=0.25,random_state=42) 

    X_test=np.concatenate([X_test,X_test_temp]); 
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    y_test=y_test+y_test_temp; 

    

result_dict['Logistic'],result_pred_dict['Logistic'],result_decision_dict['Logistic']=performLogisti

cRegression(X_train,y_train,X_test,y_test) 

    

result_dict['stochastic'],result_pred_dict['stochastic'],result_decision_dict['stochastic']=performS

GDClassifier(X_train,y_train,X_test,y_test) 

    

result_dict['perceptron'],result_pred_dict['perceptron'],result_decision_dict['perceptron']=perform

Perceptron(X_train,y_train,X_test,y_test) 

    

result_dict['randomForest'],result_pred_dict['randomForest'],result_decision_dict['randomForest'

]=performRandomForestClassifier(X_train,y_train,X_test,y_test) 

    

result_dict['extraTree'],result_pred_dict['extraTree'],result_decision_dict['extraTree']=performEx

traTreeClassifier(X_train,y_train,X_test,y_test) 

    

result_dict['GaussianNB'],result_pred_dict['GaussianNB'],result_decision_dict['GaussianNB']=p

erformGaussianNB(X_train,y_train,X_test,y_test) 

    

result_dict['MultinomialNB'],result_pred_dict['MultinomialNB'],result_decision_dict['Multinomi

alNB']=performMultinomailNB(X_train,y_train,X_test,y_test) 

    

result_dict['BernouliNB'],result_pred_dict['BernouliNB'],result_decision_dict['BernouliNB']=per

formBernouliNB(X_train,y_train,X_test,y_test) 

    

result_dict['MLP'],result_pred_dict['MLP'],result_decision_dict['MLP']=performMLPClassifier(

X_train,y_train,X_test,y_test) 

    return result_dict,result_pred_dict,result_decision_dict,y_test; 

# In[466]: 

k_result=startClassification(k_data,k_labels) 

# In[469]: 

kConfusionMatrix={} 

kFScore={} 
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kRecall={} 

kPrecision={} 

kReportFile=open("kClassificationReport.txt","w") 

for key,value in k_result[0].items(): 

    kRecall[key]={} 

    report=classification_report(k_result[3],k_result[1][key]) 

    kConfusionMatrix[key]=confusion_matrix(k_result[3],k_result[1][key]) 

    temp=recall_score(k_result[3],k_result[1][key],average=None) 

    kPrecision[key]=precision_score(g_result[3],g_result[1][key],average=None) 

    kFScore[key]=f1_score(k_result[3],k_result[1][key],average=None) 

    kRecall[key][0]=temp[0] 

    kRecall[key][1]=temp[1] 

    kRecall[key][2]=temp[2] 

    kReportFile.write("\t\t"+key+"\n") 

    kReportFile.write(report) 

    kReportFile.write("\n\n\n") 

kReportFile.close() 

# In[470]: 

def drawSimpleBarGraph(data_dict,columns,xLabel,yLabel,title,saveFigName): 

    temp=pd.DataFrame(data_dict,columns=None) 

    temp=temp.transpose() 

    temp.column=columns 

    temp.plot(kind="bar",x=temp.index,y=temp.columns) 

    plt.xlabel(xLabel) 

    plt.ylabel(yLabel) 

    plt.title(title) 

    plt.savefig(saveFigName) 

    plt.close() 
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# In[503]: 

drawSimpleBarGraph([k_result[0]],['Accuracy'],"Method","Accuracy","Accuracy","kAccuracy.p

ng") 

# In[477]: 

drawSimpleBarGraph(kRecall,['Class 0','Class 1','Class 

2'],"Method","Sensitivity","Sensitivity","kRecall.png") 

drawSimpleBarGraph(kPrecision,['Class 0','Class 1','Class 

2'],"Method","precision","Precision","kPrecision.png") 

drawSimpleBarGraph(kFScore,['Class 0','Class 1','Class 2'],"Method","F1 Score","F1 

Score","kFScore.png") 

# In[486]: 

def draw_roc_curve(algorithm,prob,labels,num_class,saveFigName): 

    binarize_lab=label_binarize(labels,classes=[0,1,2]) 

    auc_score=[]; 

    for i in range(num_class): 

        fpr[i],tpr[i],_=roc_curve(binarize_lab[:,i],prob[:,i]) 

        auc_score.append(roc_auc_score(binarize_lab[:,i],prob[:,i])) 

    plt.close() 

    colors = cycle(['aqua', 'darkorange', 'cornflowerblue']) 

    for i,color in zip(range(num_class),colors): 

        plt.plot(fpr[i],tpr[i],color=color,label="label='ROC curve of class {0} (area = 

{1:0.2f})".format(i, auc_score[i])) 

    plt.legend(loc="best") 

    plt.plot([0, 1], [0, 1], 'k--', ) 

    plt.xlim([0.0, 1.0]) 

    plt.ylim([0.0, 1.05]) 

    plt.xlabel('False Positive Rate') 

    plt.ylabel('True Positive Rate') 

    plt.title(' Receiver operating characteristic of '+algorithm) 

    plt.savefig(saveFigName) 
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# In[489]: 

draw_roc_curve("Logistic Regression",k_result[2]['Logistic'],k_result[3],3,"k_LogisticROC") 

draw_roc_curve("SGD CLassifier",k_result[2]['stochastic'],k_result[3],3,"k_Stochatic_ROC") 

draw_roc_curve("perceptron 

CLassifier",k_result[2]['perceptron'],k_result[3],3,"k_Perceptron_ROC") 

draw_roc_curve("MultiLayerPerceptron",k_result[2]['MLP'],k_result[3],3,"k_MLP_ROC") 

draw_roc_curve("BernouliNB 

CLassifier",k_result[2]['BernouliNB'],k_result[3],3,"k_BernouliNB_ROC") 

draw_roc_curve("GaussianNB 

CLassifier",k_result[2]['GaussianNB'],k_result[3],3,"k_GaussianNB_ROC") 

draw_roc_curve("MultinomialNB 

CLassifier",k_result[2]['MultinomialNB'],k_result[3],3,"k_MultinomialNB_ROC") 

 

  
  

Appendix I. Creating Wavelet-plots 

 

library(WaveletComp) 

df=read.csv("data.csv") 

unique_patients=unique(df$Patient_Id) 

dirname="plots" 

icp_check=as.data.frame(matrix(ncol = 7,nrow = length(unique(df$Patient_Id)))) 

colnames(icp_check)=c('Patient_Id','initial','firstHigh','endOfHigh','highPeriod','raiseCheck','pre

RaisedStartIndex') 

icp_check[,1]=unique(df$Patient_Id) 

i=1; 

for(patient in unique_patients){ 

    

icp_check[min(which(icp_check$Patient_Id==patient)),2]=min(which(df$Patient_Id==patient)) 

    icp_check[min(which(icp_check$Patient_Id==patient)),3]=min(which(df$Patient_Id==patient 

& df$ICPm>19)) 
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icp_check[min(which(icp_check$Patient_Id==patient)),4]=max(which(df$Patient_Id==patient 

& df$ICPm>19)) 

} 

icp_check[,5]=icp_check[,4]-icp_check[,3] 

icp_check[,6]=ifelse(icp_check[,5]>1800,"raised","normal") 

head(icp_check) 

icp_check[,7]=icp_check[,3]-600 

colnames(icp_check)=c('Patient_Id','initial','firstHigh','endOfHigh','highPeriod','raiseCheck','pre

RaisedStartIndex') 

head(icp_check) 

impCol=colnames(df)[3:14] 

normal_df=icp_check[icp_check$raiseCheck=="normal",] 

head(normal_df) 

 

#Drawing normal plot 

 

dirType='normal'; 

for(patient in normal_df[,1]){ 

    dir.create(paste(dirname,toString(patient),sep="/"),showWarnings = "False") 

    dir.create(paste(dirname,toString(patient),dirType,sep="/"),showWarnings = "False") 

#     dir.create(paste(dirname,dir)) 

    for(col in impCol){ 

#         print(patient) 

        

if(any(is.na(df[normal_df[normal_df$Patient_Id==patient,]['initial'][,]:normal_df[normal_df$Pat

ient_Id==patient,]['firstHigh'][,],][col]))==TRUE){ 

             

        } 

        else 

if(nrow(unique(df[normal_df[normal_df$Patient_Id==patient,]['initial'][,]:normal_df[normal_df$

Patient_Id==patient,]['firstHigh'][,],][col]))==1){ 
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        } 

        else{ 

            print(patient) 

            print(col) 

            png(paste(paste(dirname,toString(patient),dirType,col,sep="/"),'.png')) 

            

plot(df[normal_df[normal_df$Patient_Id==patient,]['initial'][,]:normal_df[normal_df$Patient_Id

==patient,]['firstHigh'][,],][col][,],type='l',xlab="time",ylab="col") 

            dev.off() 

            png(paste(paste(dirname,toString(patient),dirType,col,sep="/"),'_wavelet.png')) 

            

x=analyze.wavelet(df[normal_df[normal_df$Patient_Id==patient,]['initial'][,]:normal_df[normal

_df$Patient_Id==patient,]['firstHigh'][,],][col], 

                 loess.span = 0, dt = 1, dj= 1/10, lowerPeriod = 2, upperPeriod = 100, make.pval = T, 

n.sim = 1) 

            wt.image(x, color.key = "interval", main = "wavelet power spectrum", 

                         legend.params = list(lab = "wavelet power levels"), 

                            periodlab = col) 

            dev.off() 

        } 

    } 

} 

 

raised_df=icp_check[icp_check$raiseCheck=='raised',] 

 

#Drawing raised plot 

 

dirType='raised'; 

for(patient in raised_df[,1]){ 
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#     dir.create(paste(dirname,dir)) 

    for(col in impCol){ 

        print(patient) 

        

if(any(is.na(df[raised_df[raised_df$Patient_Id==patient,]['firstHigh'][,]:raised_df[raised_df$Pati

ent_Id==patient,]['endOfHigh'][,],][col]))==TRUE){ 

             

        } 

        else 

if(nrow(unique(df[raised_df[raised_df$Patient_Id==patient,]['firstHigh'][,]:raised_df[raised_df$

Patient_Id==patient,]['endOfHigh'][,],][col]))==1){ 

             

        } 

        else{ 

            print(patient) 

            print(col) 

            dir.create(paste(dirname,toString(patient),sep="/"),showWarnings = "False") 

            dir.create(paste(dirname,toString(patient),dirType,sep="/"),showWarnings = "False") 

            png(paste(paste(dirname,toString(patient),dirType,col,sep="/"),'.png')) 

            

plot(df[raised_df[raised_df$Patient_Id==patient,]['firstHigh'][,]:raised_df[raised_df$Patient_Id=

=patient,]['endOfHigh'][,],][col][,],type='l',xlab="time",ylab="col") 

            dev.off() 

            png(paste(paste(dirname,toString(patient),dirType,col,sep="/"),'_wavelet.png')) 

            

x=analyze.wavelet(df[raised_df[raised_df$Patient_Id==patient,]['firstHigh'][,]:raised_df[raised_

df$Patient_Id==patient,]['endOfHigh'][,],][col], 

                 loess.span = 0, dt = 1, dj= 1/10, lowerPeriod = 2,                           upperPeriod = 100, 

make.pval = T, n.sim = 1) 

            wt.image(x, color.key = "interval", main = "wavelet power spectrum", 

                         legend.params = list(lab = "wavelet power levels"), 

                            periodlab = col) 

            dev.off() 
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        } 

    } 

} 

 

head(icp_check) 

pre_raised_df=icp_check[icp_check$preRaisedStartIndex>0,] 

head(pre_raised_df) 

 

#Drawing pre-raised plot 

 

dirType='pre-raised'; 

for(patient in pre_raised_df[,1]){ 

#     dir.create(paste(dirname,dir)) 

    for(col in impCol){ 

        print(patient) 

       

if(any(is.na(df[pre_raised_df[pre_raised_df$Patient_Id==patient,]['preRaisedStartIndex'][,]:pre_r

aised_df[pre_raised_df$Patient_Id==patient,]['firstHigh'][,],][col]))==TRUE){ 

             

        } 

        else 

if(nrow(unique(df[pre_raised_df[pre_raised_df$Patient_Id==patient,]['preRaisedStartIndex'][,]:p

re_raised_df[pre_raised_df$Patient_Id==patient,]['firstHigh'][,],][col]))==1){ 

             

        } 

        else{ 

#             print(patient) 

#             print(col) 

#             dir.create(paste(dirname,toString(patient),sep="/"),showWarnings = "False") 

            dir.create(paste(dirname,toString(patient),dirType,sep="/"),showWarnings = "False") 

            png(paste(paste(dirname,toString(patient),dirType,col,sep="/"),'.png')) 
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plot(df[pre_raised_df[pre_raised_df$Patient_Id==patient,]['preRaisedStartIndex'][,]:pre_raised_d

f[pre_raised_df$Patient_Id==patient,]['firstHigh'][,],][col][,],type='l',xlab="time",ylab="col") 

            dev.off() 

            png(paste(paste(dirname,toString(patient),dirType,col,sep="/"),'_wavelet.png')) 

            

x=analyze.wavelet(df[pre_raised_df[pre_raised_df$Patient_Id==patient,]['preRaisedStartIndex'][

,]:pre_raised_df[pre_raised_df$Patient_Id==patient,]['firstHigh'][,],][col], 

                 loess.span = 0, dt = 1, dj= 1/10, lowerPeriod = 2,  upperPeriod = 100, make.pval = T, 

n.sim = 1) 

            wt.image(x, color.key = "interval", main = "wavelet power spectrum", 

                         legend.params = list(lab = "wavelet power levels"), 

                            periodlab = col) 

            dev.off() 

        } 

    } 

} 

Appendix J. Performance of the best trained model in MIMIC II Waveform database ( 2 

hidden layers 200/150) 

 

H2OBinomialMetrics: deep learning 

 

MSE:  0.2135 

RMSE:  0.46207 

LogLoss:  2.2190 

Mean Per-Class Error:  0.2168 

AUC:  0.8627 

Gini:  0.7254 

 

Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold: 

                0                  1                  Error               Rate 

0           68764        27505              0.285   =    27504/96268 

1           9168          68763              0.117   =    9168/77931 

Totals   77932        96268              0.21     =    36673/174200 
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Appendix K. Performance of the best trained model ( 2 hidden layers 200/150) on BrainIT 

database 

H2OBinomialMetrics: deep learning 

 

MSE:  0.05364 

RMSE:  0.23160   

LogLoss:  0.1905 

Mean Per-Class Error:  0.0936 

AUC:  0.9402 

Gini:  0.8804 

 

Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold: 

             0               1                Error                            Rate 

0         4795        1050             0.179641        =      1050/5845 

1         223         28659            0.007721        =      223/28882 

Totals 5018       29709            0.036657        =      1273/34727 

 

 

Appendix L. Multi-Roc plot 
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