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ABSTRACT

Previous studies in transportaiion equilibrium have focused on models in which travel
demands were functions of travel time in the current time period. Most of these models
are single-period models, neglecting the time lag effect. However, the time lag effect can
be a very important factor, especially in long-term transportation planning. In this thesis,
the geometric distributed lag (GDL) structure used in energy equilibrium models is
applied to the multi-period transportation equilibrium models. Because it may be difficult
to obtain the equilibrium solutions of such models by general iterative methods directly,
such as the projection method or the relaxation method. General iterative methods are
modified and implemented by GAMS (general Algebraic Modeling System). Final, a
small scale transportation equilibrium model is solved by modified iterative method,

illustrating the procedure of modeling and equilibrium seeking.
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LIST OF NOTATIONS

L the set of links

P the set of paths

R the set of origin nodes

S the set of destination nodes

I the set of original and destination pairs

/i flow on link /

¢ travel time on link /

X, flow on path p

C, travel time on path p

d, travel demand on O-D pair i

u; travel disutility on O-D pair i

d,,  link to path indicator

r;, marginal travel time on link /

uA ; marginal travel disutility on O-D pair i
CA » marginal travel time on path p

t time period

¥ flow on link / at period ¢
x$ flow on path p at period ¢

(t) - .
C, travel time on path p at period ¢
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a® travel demand on O-D pair i at period ¢

u® travel disutility on O-D pair i at period ¢
B matrix for the travel disutility elasticity
E matrix for the time lag elasticity

BY matrix for inflated travel disutility elasticity at period ¢
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CHAPTER 1

INTRODUCTION

With the explosion of urbanization, traveling has become embedded into our daily lives.
As a result, transportation has become increasingly important to our daily routine. Not
only do transportation engineers need to plan the whole urban transportation system, but
ordinary people also need to plan their own trips ahead of traveling. Regardless of who
does the planning, both an individual and a transportation engineer have the same goal in
mind: to lessen road traffic trouble caused by mass transportation. Actions between
drivers and engineers’ decisions and road congestion problems could be modeled as shifts
in transportation equilibrium positions. The equilibrium models of transportation
networks, which employ mathematical methods, are widely utilized in the realm of

transportation planning and regional development.

In transportation equilibrium problem, much attention has been focused on those models
in which travel demands can be functions of the travel time in the current time period.
However, most of these single-period models, neglecting the time lag effect (Sheffi,
1985, Nagurney, 1999). In the real world, the time lag effect can be a very important
factor, especially in long-run transportation equilibrium problem analysis. The analysts

and transportation engineers may wish to present the time lag effect in response of travel

' Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



demands to travel time. For example, the travel demand in this year on some paths
depended to a great extent on historical data, such as the locations of residences or the

residents’ places of work, and these location decisions were influenced by the travel time

when the decisions were made.

The geometric distributed lag (GDL) equilibrium approach (Dhrymes, 1981) has been
applied in the energy field (Wu and Fuller, 1995). It has proved to be useful especially in
long-run energy planning and environment management (Chung, Wu and Fuller, 1997).
In order to provide a tool that can describe the time lag effect to analyze the effect of past
travel time on current demands, The GDL demand need to be introduced into the multi-
period transportation equilibrium models. The current GDL equilibrium approach
requires to be further modified in order to analyze long-term urban transportation
equilibrium networks. In this thesis, the GDL equilibrium approach will be used to

provide alternations cases under two distinct conditions, i.e., system-optimization and

user-optimization.

In the energy GDL equilibrium models, the demand is represented by a function of the
prices in the current time period, but also price in previous time periods based on the
GDL structure, and the supply is a cost-minimizing linear process sub-model. It is
motivated by Daniel and Goldberg (1981). Convergence of projection independence
evaluation system (PIES) algorithm (Ahn and Hogan, 1982) as applied to the GDL
equilibrium models has been explored both theoretically and empirically by Wu and

Fuller (1991). Because it can be difficult to compute the solution of the GDL equilibrium

L
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models by the PIES algorithm directly, the decoupling algorithm was developed by Wu
and Fuller (1996). In this thesis, the decoupled principle i.e., to decouple the inter-period
price links, as applied in the GDL energy equilibrium models needs to be modified when
applied to urban transportation networks, considering the time lag effect. The modified
iterative methods, called decoupled projection method and decoupled relaxation method

are employed to solve transportation equilibrium models with GDL demand.

This thesis is organized as follows. Chapter 2 contains a literature review and some
background material on equilibrium models and various equilibrium-seeking algorithms.
Chapter 3 provides a mathematical presentation of single-period transportation
equilibrium models. In chapter 4, based on the single-period models, GDL demand is
introduced into multi-period transportation equilibrium models, considering the time lag
effect. In chapter 5, an exponential structure is utilized in the demand function, and then
solution algorithms are provided for the multi-period transportation equilibrium models
with time lag demand. In chapter 6, a numerical example is solved by usjng the

decoupled relaxation algorithm. Finally, the summary and conclusions are presented in

chapter 7.

| Reproduced with permission of the copyright owner. Further reareduction prohibited without permission.
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CHAPTER 2

BASIC CONCEPTS AND LITERATURE REVIEW

2.1 Market Equilibrium and Market Equilibrium Models

The equilibrium concept was first introduced in market fields (Thompson and Thore
1992). The application of this equilibrium concept in a market environment can be seen
as a classical market equilibrium model. In a market equilibrium model, a commodity in
the market is influenced by two sides of the market, the suppliers and the consumers. The
supplier’s behavior of pr’oduction can be described by a supply function, and the users’
behavior of consumption can be captured by a demand function. The price of goods will

be automatically regulated by the market until they reach an equilibrium state in which

the market is said to clear.

The supply function expresses the amount of goods that the suppliers produce according
to the current market price. As the price increases, it becomes a more profitable product
and the quantity supplied increases. The demand function describes the aggregate
behavior of consumers by relating the amount of product consumed to its price. As the
price increases, the amount of consumer decreases. When the price of production equals

the price of consumption, the market achieves clearance.

1 4
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Figure 2.1 depicts simple supply and demand functions for a certain product. When the
entire quantity product is consumed, the market clears at the point where the two curves
intersect. This point (P*, Q¥) is known as equilibrium point, where P* is equilibrium
price and O* is equilibrium production quantity. If the price is higher than P¥*,
production will be higher than consumption, as shown in Figurer 2.1 b, such a balance
cannot be kept because not all of the product sells. This will result in growing inventory.
Prices will eventually fall and consumptions will increase accordingly. If price is lower
than P*, the quantity demanded is higher than the production. Such a situation is again
unstable, since producers will try to increase price in order to capture the consumers’
willingness to pay more. This will lead to higher production and lower demand. In other
words, if the price is lower or higher than P*, market forces will tend to push the price to
its “market clearing” level. At this point, the price will be stable and the point (P*, Q%)

will be the corresponding equilibrium point.

5
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Figure 2.1: Demand / supply equilibrium
(a) market-equilibrium quantity and price;

(b) price too high; (c) price too low (Sheffi, 1985)

Following Ahn and Hogan (1982), the general type of market equilibrium models can be

defined as:
Supply side:
Min C'Z
St. 4Z=Q v)
ZeW
Demand side: 2.1

Q=04(P)
Equilibrium condition:

P=V

i 6

Reproduced with nermission of the convriaht owner. Further renroduction prohibited without nermission.



[ e

In model (2.1), ¥ 'is an optimal dual variable vector (shadow price vector), corresponding

¢ v emne

to the demand requirement constraints 4 Z = Q, C is a cost vector for the supply
activities, Z is a production activity level vector, W is a polyhedral production constraint
set which includes resourr= availability, material balance and other system constraints,

and Qy () is the demand function relating demand vector Q to the price vector P.

Under the competitive market assumption, the elements of a shadow price vector ¥ can
be regarded as the supply prices, representing the marginal cost of meeting an additional
unit of demand. As a result, a set of optimal solutions V'* (or P*) and Q* become
equilibrium price and demand vectors, respectively. An accompanying optimal value of

the objective function Z* represents an equilibrium production profile of the supply

activities.

The classical market equilibrium model of Ahn and Hogan (1982) has been applied
widely in energy and environmental fields. In 1988, Murphy et al applied partial
equilibrium models containing a large number of constraints to build an Intermediate
Future Forecast System (IFFS) and forecasted integrated energy markets for the US.
Energy Information Administration (EIA). IFFS has been demonstrated to be a very
useful tool to predict and measure the impacts of new energy policy to the energy
markets. Since the 1960s, mathematical models began to be used to certain problems of

environment quality control for resource management and policy analysis. Equilibrium

7

[ LY

. Renroduced with nermissian of the convriaht owner. Further renroduction nrohihited without nermission.



models were applied in the environmental quality control field to analyze environmental

quality polity and describe economic and environment impacts (Greenberg, 1995).

2.2 Basic Concepts for Transportation Equilibrium Models

Like in market equilibrium, the concept of equilibrium can also be presented in the
transportation equilibrium models (Sheffi, 1985). In this section some basic concepts for

transportation equilibrium models will be reviewed.

In a transportation network of an urban area, normally there is heavy traffic during rush

hours on most streets, intersections and transit lines. One of the major problems which
transportation engineers and urban planners face is to predict the impact of given

transportation scenarios to the whole transportation system.

Consider a congested segment of an urban network as an example. In order to reduce

- congestion, one main solution is to consider opening a new road to the network.
However, the new roa‘d may bring a new congestion problem if more and more users
choose the new road than originally anticipated. When congestion arises again, users may
choose to go back to the old road according to current flow distributed in system. After a
short period, the drivers become familiar with the new network and know which route is

better for them. Finally, the traffic on all roads reaches a stabilized point or equilibrium

status.

i ..‘\-,
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2.2.1 Travel Time Function and Travel Demand Function

Similar to the supply function and demand function in the market equilibrium models,
there are correspouding travel time function and travel demand function in urban

transportation equilibrium models to represent time and travel demands (Sheffi, 1985).

In an urban transportation network, assume there are a few origin and destination pairs
(O-D pair) of interest. For each O-D pair, there are a few different paths that people can
choose. The system can be modeled and studies to see what flows distribution will make
the traveling system optimal where all travelers could spend as little time as possible. On
a given O-D pair, if all travelers took the quickest path, congestion would develop on this
path. As a result, the travel time on this path might increase to a point where it is no
longer the minimum travel-time on this path. Some of these drivers would then change to
a different path. The alternative paths can be congested too, and so on. The situation can
be analyzed by two functions: 1. Time function which describes how the level of travel
time being affected by the transportation flows; 2. Demand function, which describes

how the traffic volume on a road being affected by the travel time spent on this O-D pair.

Usually the travel impedance associated with the links on a path can include many
components, reflecting travel time, safety, travel cost, stability of flow, and others.
Among those factors, the travel time is naturalized in this thesis. In other words, the

demand function is described by the travel time spent on the links under current flow

status.
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If variable demand instead of assuming fixed travel demand between every O-D pair is
considered, the demand may be influenced by the level of service on the network such as
travel time. In order to take this phenomenon into consideration, the demand between

every O-D pair may be a function of minimum travel time among all paths between this

O-D pair; this can be referred to as travel disutility.

The demand function can be expected to be monotonically decreasing in the O-D travel
time. Usually the demand is bounded by the total population between this O-D pairin a

certain period.
2.2.2 System-optimization versus User-optimization

Wardrop (1952) explicitly recognized alternative_ possible behaviors of users of
transportation networks and stated two principles. First, the travel time of all routes
actually used is equal, and less than those which would be experienced by a single
vehicle on any unused route. Second, the average travel time for éll users is minimal.

In 1969, Dafermos and Sparrow coined the terms user-optimized (UO) and system-
optimized (SO) in transportation equilibrium models to distinguish between two distinct
situations. In the first situation, users act uniiaterally in selecting their quickest routes. In

the latter problem, users select routes according to what is optimal for the whole system.

L 10
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System-optimization problem is also known as traffic assignment from the system level,
namely because it assigns the O-D travel demand to make the total travel time spent in
this system minimum. The capacity of each path on every O-D pair must also be known.
The objective is to minimize the total users travel time. An equilibrium status will be
reached when the marginal total travel time on all the used paths connecting a given
original and destination pair is equal to or less than the travel time required on any

unused path.

Comparing to system-optimization model, user-optimization is to optimize from
individual user’s view, under the condition of knowing the travel time and the number of
users in each path for all the O-D pairs. It tries to find an optimal path with minimal
travel time from origin to destination. A stable condition is reached only when no traveler
can improve individually his travel time by unilaterally changing his route. In other
words, the travel time on each used path is same and equal to or less than the travel time

on any unused path.

2.3 Solution Algorithms for Equilibrium Models

Since the computable equilibrium models are used widely in management and decision-
making, such as transportation network flow assignraent, decision making for optimal
routes choosing , and even currently most concerned environment pollution problems
caused by cars’ emissions, etc (Nagurney, 2000), much work has been done to develop

various solution techniques for calculation of the equilibrium models. In this section,
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some previous work on solution algorithms will be reviewed for solving equilibrium

models.

2.3.1 Economic Surplus Maximization Approach

Economic surplus maximization algorithm is a popular method in solving equilibrium
models. This idea is originated with Samuelson (1947), and widely used (Takayama and
Judge, 1971). It is from an optimization’s angle to model the original problem, in order to
maximize the total producers and consumers surplus. When the surplus is maximized, an
equilibrium solution also reached. In other words, an equilibrium problem can be

transferred into an optimization problem. The competitive equilibrium problem is closely

related to the surplus problems, which can be solved by an economic surplus

maximization approach that is equivalent to solve a nonlinear optimization problem.

To illustrate this method, the single product and single-period equilibrium model is
examined. Figure 2.2 shows the basic idea of the computational technique for the

economic surplus maximization approach to the competitive equilibrium model.

P
F S

Figure 2.2: Consumers’ plus producer’s surplus

,\ .
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In Figure 2.2, if the quantity purchased and produced is Q. The area below the demand
curve (D) from 0 to Q! is usually interpreted as the total value to consumers of an
amount Q/. Further, the area below the supply curve (S) is the total cost of supplying an
amount QI, because the supply curve is essentially the marginal cost curve fer all
producers aggregated together. So the shaded area 4 (Q!) is the zrea under the demand
curve (up to demand quantity Q7 minus the total cost (the area under the supply curve),
which is the value of a function called “consumers’ plus producers’ surplus”. As Q
moves form QI to the right, the shaded area becomes larger, until Q passes Q* - then
moving to the right makes negative additions to the area. As a result, we know that the

shaded area 4 (Q) is maximized at the equilibrium point Q*.

Economic surplus maximization approach can be applied in one commodity and one
period. It even can be extended to cover the multi-period competitive equilibrium model.
Samuelson(1947) and Takayama and Judge(1971) stated that it can also be generalized to
the multi-commodity and multi-period competitive equilibrium case if certain conditions
are satisfied, namely the demand functions satisfy the integrability condition . This
condition is equivalent to the symmetry of the demand function’s (a vector valued
function of prices) Jacobian matrix, or the price of those commodities do not interact with
each other in the demand functions. Samuelson (1947) and Takayama and Judge (1971)
also reported that their models assume the symmetry of cross-price effects, satisfying the

integrability condition.

13
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However, in the presence of many known examples of asymmetrical cross, such as price
effects in demand functions, this condition could not be expected to hold. As a result, the

i convenient equivalence between the competitive equilibrium problem and the economic
i
l surpfus maximization problem is not available in multi-commodity and multi-period

competitive equilibrium case.
2.3.2 General Iterative Approach

In equilibrium model calculation, once the urban transportation equilibrium optimized
flow pattern is established according to two types’ equilibrium (system-optimization and
user-optimization), transportation equilibrium problems can be solved by general iterative

approach (Nagurney, 1999).

As we mentioned before, in a system-optimization, users are allocated among the routes
to minimize the total time in the system. In a user-optimization problem, each user of a
network system seeks his/her optimal travel paths until equilibrium is reached, in which
no user can decrease his/her time of travel by unilateral changing routes. In the particular
situation of the transportation equilibrium problem under certain symmetry assumptions
on time and travel disutility function, an algorithm called projection method is effective
in solving this kind of problems (Bertsekas and Gafni, 1982). The projection method
divides the original problem into smaller components, which are equivalent to quadratic

programming problems. Usually, quadratic programming problems are much easier to

14
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solve as compared to some nonlinear optimization problems, especially in cases where

hundreds of decision variables are involved.

The projection method in computation of single-period transportation network
equilibrium can be represented as follows:
Step 0 : Initialization

Select an initjal feasible flow and demand pattern (f°,d°) € K. Also, select
symmetric, positive definite matrices G and— M , where G is an nL xnL matrix and

— M is an nJ x nJ matrix. Select p such that

. |:2a Za}
0<p<minf —,—|,

n H
Where « is constant in the strong monotonic condition, 7 and u are the maximum over

K of the positive definite symmetric matrixes

[ac afi]r G- |:ac af:l and [au ad]T M [au ad]
Set k:=1

Step 1: construction and computation

Construct

B* = pe(FF) - G+

tk—l — pu(dk—l)_Mdit—l
Compute the unique transportation pattern (f*,d*) corresponding to travel time and

travel disutility functions of the special form:

15
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(Y= Gf + 1+
|

li uw*(d) = Md +t*
Step 2: convergence verification

l d* — dk—ll
<e and——wzq— <e,v.ithe > 0, a pre-specified tolerance, stop;

-1

If \f H‘

otherwise, setk := k +1, and go to Step 1.

Nagurney (1999) pointed out that possibilities for the selection of the matrices G and

M are any diagonal positive definite matrices of appropriate dimensions. One could also
i : S oc ou
set G and M to the diagonal parts of the Jacobian matrices [ 5 fjl and l é d-‘ ,

evaluated at the initial feasible flow pattern. Observe that if one selects diagonal matrices

then the above sub-problems are decoupled by mode of transportation and each sub-

problem can be allocated to a distinct processor for computation.

By practical applications it is demonstrated that the projection method is an effective
solution technique in solving the transportation equilibrium models, especially in
transportation equilibrium models involving hundreds of variables and complicated
nonlinear functions which are expensive to evaluate. However, the projection method can
only be used if the time functions and demand function’s Jacobian matrices G and -M
satisfy symmetric, positive definite conditions. However, this symmetry assumption is
not expected to hold in most‘ applications. In many known examples, the asymmetry

affects the time of mode i on link a in different manner with that of mode j on link 4. In

16
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the case of a single mode problem, the asymmetry condition would imply that the time on
link a is affected by the flow on link b in different manner as the time on link b is
affected by the flow on link a. As a result, the projection method is not available in those

models with asymmetric properties.
2.3.3 Project Independence Evaluation System Algorithm

As shown in section 2.3.2, the projection method cannot be directly used in corpetitive
equilibrium case with asymmetrical cross — price effects in demand functions. The
Project Independence Evaluation System (PIES) was developed based on economic
surplus maximization algorithm. The PIES algorithm is also known as a relaxation
method in transportation equilibrium models (Nagurney, 1999). It’s done by
approximating a non-inverse demand function by substituting the price with an
approximate value to estimate the asymmetrical cross price items. Normally this
approximate price comes from last iteration optimal value. A nonlinear optimization
algorithm may compute the optimal activity levels and market prices are derived from the
corresponding shadow prices. The PIES algorithm combines the economic surplus
maximization algorithm and the fixed-point method (Scarf, 1973) to solve multi-

commodity and multi-period competitive equilibrium problems. (Stone, 1985)
The PIES algorithm (Ann and Hogan, 1982) is initiated by inserting an approximate price

vector into an economic sub-model that determines demands. This is done so that a

demand function with cross price effects is approximated by eliminating the cross

17
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i components and thus a non-inverse function being transferred to an inverse-able function.
Hence, the economic surplus maximization problem may be solved by a linear or

nonlinear optimization algorithm.

If the quantity demanded is known, the competitive selection of supply alternatives is
equivalent to that required delivering these quantities at minimum total cost. Furthermore,
the change in the total cost required to deliver an additional unit of a given product can be
interpreted as the supply price of the product. This results in a new approximation to the
vector of the market price. The price vector is inserted back into the demand sub-model; a
new approximate demand function is established, and so on. If the quantities demanded

can be determined such that the associated supply prices and demand prices are equal, a

| solution is obtained which would be equal to the equilibrium solution for the original

non-integrable system.

1
|
‘ 2.3.4 Multi-period GDL Energy/Environment Equilibrium Models and

Decoupling Algorithm

As we mentioned before, in equilibrium models, the time lag effect can be a very
importation factor, and the analyst may wish to present the time lag effect in demand
function in response of the price. In order to present time lag effect, a new multi-period
equilibrium model with GDL demand, called the GDL equilibrium model, has been

proposed by Wu and Fuller (1995). In the GDL equilibrium model, the demand is
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represented by a function of the prices not only in the current time period but also in

previous time periods based on the geometric distributed lag structure.

For the normal solution algorithm for the GDL equilibrium model, Wu and Fuller (1996)
stated that it can be difficult to compute the solution of the GDL equilibrium model by
applying the PIES algorithm directly. Consequently, a new equilibrium seeking algorithm,

referred to as the decoupling algorithm, was developed.

The decoupling algorithm constructs a modified GDL demand at each decoupling
iteration through inflated price elasticity, in which demands are approximated as the
functions only of the current period prices. By doing so, it successfully decouples inter-
period travel disutility links in decoupled sub-model. Then the PIES algorithm can be
used in each decoupling step. The optimal values obtained from the PIES algorithm are
inserted back again to calculate new inflated price elasticity. So and so on, the system

will reach the final optimal point. Accompanying solutions are the equilibrium optimal

solutions.

Following Wu and Fuller (1996), the decoupling algorithm can be stated as follows:
Step 1. Provide a starting guess of the price vector p{?, for t =1,2,...,T , set m =1.

Step 2. Using p, estimate the decoupled sub-model and calculate its equilibrium, p&

) )

Step 3. Ifl—g'ﬁ:f“—“— <4, a small enough tolerance, then go to step 4. Otherwise,
P

let p@, = p, and go to step 2.

19
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el

Step 4. Terminate with p* = p{?,

The decoupling algorithm has been proved to be effective in solving energy model with
GDL structure. It was applied in solving a large scale model of North American energy

supplies and demands in the 30-year version (10 periods each of 3 years duration) (Wu

and Faller 1996).

In this chapter, classical market eciuilibn'um models were introduced, as well as their
application in energy and transportation equilibrium fields. Then, some previous solution
algorithms were reviewed: economic surplus maximization, projection method, and
relaxation algorithm. All of these were demonstrated to be effective algorithms in solving
single-period energy equilibrium models and single- period transportation equilibrium
models. Decoupling algorithm was developed for the solution of the energy equilibrium
models, considering multi-period demand functions with time lag effect, called GDL

energy equilibrium models. Computation results suggest empirically that decoupling

algorithm is very efficient convergent algorithm.

In this thesis, the GDL equilibrium approach used in the energy model will be applied to

multi-period transportation equilibrium problems with tiine lag effect demand.
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CHAPTER 3

SINGLE-PERIOD TRANSPORTATION

EQUILIBRIUM MODELS

As it was mentioned in Chapter 2, equilibrium concepts can be applied in transportation
network. There exist two types of equilibrium status in the transportation equilibrium
models, system-optimization and user-optimization. In this chapter, single-period

transportation equilibrium models for two types of equilibria will be discussed.

Before the basic formulation is discussed, the following paragraphs present the network
notations used in this chapter. Following Sheffi (1985), the network itself is represented
by a directed graph that includes a set of consecutively numbered nodes, N, a set of links,
L, and a set of paths, P. Let R denote the set of origin nodes and S denote the set of
destination nodes. The origin node set and the destination node set are not mutually
exclusive since nodes can serve as origins and destinations of different travel demands at

the same time. Each O-D pair i (i € RS) is connected by a set of paths (routes) through

the network.

The origin-destination matrix is denoted by d with entriesd, . In other words, 4, is the

travel demand between origin » and destination s during the period of analysis. Let f; and
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| ¢, present the flow and travel time, respectively on link / (where /€ L).

Furthermorec¢, = ¢;(f), where c,(.) represents the relationship between flow and travel
time for link a. In other words, ¢,(f) is the travel time function on link /. Similarly, let
x, and C, represent the flow and travel time, on path p. the travel time on a particular

path is the sum of the travel time on the links comprising this path. So, the time function

in each path p can be represented as follows:
C,=2¢75,
1

Where &, , =1, iflink / is a part of path p connecting O-D pair {, and &, , = O otherwise.

Using the same indicator variable, the link flow can be expressed as a function of the path

flow, that is
fl = pr&l.p
p

The above equation means that the flow on each link is the sum of the flows on all paths

going through that link.

The path-link indicator variable can be presented by a path-link indicator matrix. As an
example of the use of the indicator matrix to represent the path-link relationships,

consider the simple network shown in Figure 3.1.

Figure 3.1: Example network with two O-D pairs and four links

& 22
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Assume that there are 2 O-D pairs node 1 to node 4 and node 2 to node 4. The first path
from origin node 1 to destination node 4 uses link 1 and link 3 and the second one uses

link 1 and 4. Similarly, assume that the first path from origin node 2 to node 4 uses link 2
and 3, and the second one uses link 2 and 4. So the path-link indicator &, , matrix for

Figure 3.1 can be written as the following table:

Table 3.1: Path-link relationship

RS 14 RS 24
Pathl | Path2 | Path3 | Path4
Linkl 1 1 0 0
Link2 0 0 . 1 1
Link3 1 0 1 0
Link4 0 1 0 1

For example, 6,, =1(since link1 is on path 1), &;, =0 (since link 3 is not on the path 4).
The incidence relationships for Figure 3.1 mean that. For example,

C, =¢,0,; +¢,0,, +¢36,, +C,0,, =c, +c4
The above equation means that the travel time on path 1 between origin 1 and destination
4 is the sum of the travel times on the links comprising this path. Similarly,

Ja =x05; +%,05, +%,055 +X,05, =X +X;

The flow on a particular link is the sum of the path flows traversing this link.

In this chapter, equilibriums models for system-equilibrium condition will first be

discussed and then for user-optimization condition.
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1i 3.1 The Formulation for Single-peried System-optimization

In a single-period system-optimization model, it is assumed that there exists a central
controller who seeks to minimize the total time in the network. As it was discussed in the
previous chapter, the network achieves system equilibrium status when the marginal time
spent in used paths is less than or equal to marginal time on unused paths. It achieves
equilibrium status from the whole system level to minimize the total drivers’ travel time
rather than individual user. In other words, at system-optimization flow pattern, drivers

may be able to decrease their travel time by unilaterally changing routes.

The single-period system-optimization flow pattern can be obtained by solving the

following mathematical program (Sheffi, 1985):

Min Z=Y ¢,(f)x f,

S.t.

and the definitional constraints

f’ = pré‘l,p (3-1)

In model (3.1) the objective function is the total travel time spent in the whole network.
Constrain 1 states that the flow on all paths connecting each O-D pair should equal to the

corresponding O-D travel demand. In other words, all O-D travel demands have to be

24
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assigned to the network. The non-negative conditions in constraint 2 are required to
ensure that the solution of the program will be physically meaningful. In model (3.1) it is
assumed that the travel demand at each O-D pair is a fixed number first. In this case, the
original equilibrium problem is transferred to a pure optimization programming. The

accompanying optimal solutions are equilibrium solutions.
3.2 The Formulation for Single-period User-optimization

Compared with system-optimization, for user-optimization, the road choosing is based on
behavioral assumption that each individual car travels on the path that minimizes the
travel time from its origin to destination. Once the network achieves user equilibrium
mode, no user can lessen his travel time by unilaterally changing roads. The user-
optimization flow pattern is achieved when the travel time for each O-D pair on all used

paths is less than or equal to the travel time that should be experienced by an individual

user on any unused path.

The equilibrium flow pattern can be obtained by solving the following mathematical

formulation (Sheffi, 1985):
S
Min Z=, [c, (@)do
I 9

S.t.
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and the definitional constraints

fi=2.x,6,, (3.2)

In model (3.2), the objective function is the sum of the integrals of the travel time

functions, and the constraints are the same as system-optimization models’ constraint set.
3.3 Transportation Equilibrium Models with Variable Demand

In models (3.1) and (3.2) it was assumed that the demand between every origin and
destination is fixed and known. However, in reality, travel demands may be influenced by
the level of service on the network. For example, as congestion increases, users may

decide to use another path.

In order to present this phenomenon, the travel demand, 4, , between every O-D pair r-s,
can be assumed to be a function of the travel time between r and s (Sheffi, 1985).
d, = D,(u;)
Where u; is the minimum travel time between » and s, and D,(.) is the demand function
- of travel disutility between r and s. The demand function may be presented by
d, = ABf(u;) , where A and B are known parameters associated with origin » and

destination s, respectively, and f(x,) is a function of ;.

The demand function may be expected to be monotonically decreasing or not increasing.

As u, grows, d, decrease, and vice versa. This function is also bounded. For example, the

| | 26
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maximum number of demand generated between an O-D pair in a certain period may be

bounded by the total population size at the origin.
3.3.1 System-optimization with Variable Demand

Consider the variable demand and the demand function is given by a function of travel
disutility, d, = D,(u). Then system-optimization with variable demand can be formulated

as follows:
Min Z=Y¢,(f )x f,~ 3. D' (d)= d,
1 i

S.t.

and the definitional constraints

fi=2%,8,, (33-1)

Where D;'(.) is the inverse of the demand function associated with O-D pair i.

The objective function is the sum of the total link travel time functions minus the sum of

the inverse demand functions multiplying corresponding demands. The constraint set is

similar to the fixed-demand function.
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According to the system-optimization equilibrium condition: marginal time spent in any
used paths is less than or equal to unused paths. There is another mathematical

presentation for system-optimization models.

i A 4 5
Min Z =Z Ic,(a))dm —Z ju.—(u)du
1l 9 i Q0

S.t.

and the definitional constraints

f, = pral,p (3.3-2)

Where
&(f) = 3e,(F)18f; % f, + ¢, (f)
wi(f) = du,(d)/ 8d, x d, +1,(d)

cA,( ), ;i(d ) are marginal time and travel disutility. Marginal time can be interpreted as

the marginal contribution of an additional traveler to the total travel time in this system.

In model 3.3-2, a system-optimization problem is formulated as user-optimization models

I by marginal time substituting time.
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3.3.2 User-optimization with Variable Demand

The user-optimization with variable demand can be formulated as follows (Sheffi, 1985):

5 4
Min Z=Y" [c(@)do - [D'(@)do
[ i 0

S.t.

and the definitional constraints

fi=2.x,5,, (3.4)

Where D;'(.)is the inverse of the travel demand function associated with O-D pair i.

The objective function is the sum of the integrals of the link travel time functions minus
the sum of the integrals of the inverse demand function. The constraint set is similar to

the fixed-demand formulation.

The solution of equilibrium models with variable demand functions can be interpreted by
Figure 3.2. Here for simplicity, just consider one path and link equal to path
transportation network. Further, assume the travel time spent in this path is given by
travel time functions, ¢ = f+ 1,

The demand decrease with the total time needed in the system is given by travel demand

functions, D =5-u,
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Figure 3.2: Equilibrium conditions with variable demand

Under user-optimization equilibrium condition, and according to economic surplus
maximum method, the equilibrium solution will be achieved when the maximization
difference between the area under the inverse demand curve (# = 5 — d) and the area
under the time function (¢= I + f) is maximized. If system-optimization is considered,
demand curve and time curve are substituted by marginal demand and marginal time.

The corresponding marginal travel disutility function should be

azau/adxd+u=5—2xd.

And marginal time function is

2=8c/6fxf+c=2xf+1.
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The equilibrium solution can be obtained when the difference area between the areas
under the marginal travel disutility function and marginal time function are maximized.
Figure 3.2 show the equilibrium solution under system-optimization and user-

optimization.

3.4 An Illustration Case for Single-period Transportation

Equilibrium Models

!
f
]
!
E

In this section, the transportation network topology structure as shown in Figure 3.3 will
be used to illustrate the single-period transportation network equilibrium model and its

optimal solutions. System-optimization and user-optimization will be considered

separately.

Figure 3.3: Example network with one O-D pair and three links

It was assumed that there are 1 O-D pair, 2 links and 2 paths in a small transportation
network. For the origin and destination pair node 1 to node 3 there are 2 paths available,

path I connected by link a and link c, and path 2 through link b and link ¢. In supply side,
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l‘ it was assumed that there are interactively flow influences in time functions for each link.
For example, the travel time spent in link a not only depends on the flow in its own link,
but also on other links in the same O-D pair. The travel time functions in each link are
given as follows:

C,=5xf,+2x f, +5

e =Txfo+f,+5

c,=3xf.+fo+f,+7

On demand side, instead of fixed demand, it was assumed that the travel demand varies
with travel time spent in the system. The less travel time spent in this segment of network,

the more users prefer travel on the routes. The travel disutility function is:

d, =49.5-0.5xu,

First, system-optimization mode was considered to assign flows in order to achieve the

minimum total travel time for all users spent in this system. The system-optimization case
can be formulated as follows:

Min

Z= 3, o(f)xfi-2uld)xd, = (5x f,+2x fu + )% fo+(Tx fi+ f,+5)x fy +

I=ab,c

CBxfo+fotfo+T)xf,—(99-2xd,)xd,
St x +x,=d;

Ja=x

Sy =353

Jo =% +x,;
fo ot 20,
X,%, 20;
d, 20
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Compared with system-optimization, user-optimization can be modeled as:
Min

h d A Ty
z= jc,(a))a’a)—z ju,(u)du: [5xw+2x £, +5)do+ j(7xca+fa +5)da +
0 4 4

I=a,b,c i=l o

£ di
[Bxo+ £, + f,+ Tdo - [(99-2xv)dv
0 0

St x +x,=d;

Ja=x3
Sy =2y
Jo=x+%,;
fo Lo fe 205

X,%, 20;
d, 20;

Since no asymmetry effect in time and travel disutility function exist, the projection

method can be used to find the optimal solutions.

After applying the projection method, final results are summarized in Tables 3. 2 and 3.3
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3 2
&
&
1
B
&
¥
&
3
ka
5

Iteration A fs fe d; z
0 4 4 8 8
Ca cy Ce
33 37 39
¢ G
72 76
éa é‘b éc
53 65 63
C C;
116 128
1 Jfa Jo Je d; Z
2.511 2.079 4.589 4,589 167.084
Ca Ch Ce
21.713 | 22.064 | 25.357
C, C
47.07 47421
é, Ep ée
34.268 | 36.617 | 39.124
¢ C,
73.392 75.741
2 f;, fE, _ﬁ d] z
2,825 2.122 4.947 4.947 193.787
Cq Sy Ce
23.369 | 22.679 | 26.788
C Cr_ |
50.157 | 49.467
é, ép é.
37.494 | 37.533 | 41.629
C c
79.123 79.162
3 Ja Jo fe d; Z
2.829 2,122 4.952 4952 194.145
Ca Ch Ce
23.389 | 22.683 | 26.807
G G
50.196 49.49
éa éb éc
37.534 | 37.537 | 41.663
o} ¢,
79.2 79.2

Table 3.2: System-optimization calculation results
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Iteration fa fy e d; z

0 4 4 8 8
Ca Cp Ce
33 37 39
G G
72 76
1 _]‘:, f;, L; d] z
5.021 4.158 9.179 9.179 | 334.168
Ca Co Ce
38.421 | 39.127 | 43.716
G G
82.137 | 82.843
2 Jfa fo fe d; 2
4.948 4.005 8.953 8.953 | 317.739
Cq Ch Ce
37.75 37.983 | 42.812
Cl CZ
80.562 | 80.795
3 La f fe d; z
4.999 4.008 5.008 9.008 | 321.581
Ca Cp Ce
38.011 | 38.055 | 43.031
¢ G
81.042 | 81.086
4 Ja Jo Je d; Z
4.997 4.001 8.993 8.998 | 320.846
Ca Co Ce
37.987 | 38.004 | 42.992
G G
80.979 | 80.996
5 Ja fo e d z
5 4 9 9 -321
Ca Cp Ce
. 38 38 43
¢ C;
81 31

Table 3.3: User-optimization calculation results

In Table 3.2 and 3.3, two examples were solved from the same guess of flow /;. In Table
3.2 when flow in the system was automatically adjusted to £, = 2.829, fi= 2.122, £=4.952,

the marginal travel time spent in two paths were equal. As a result, the system achieves
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system-optimization where the corresponding flows are equilibrium flow patterns under

the system-optimization condition. The same as system-optimization, Table 3.3 iteration
4 shows the time spent in path 1 and 2 are equal, and no user can change his or her routes
to get less travel time. Hence the system achieve user-optimization where the
corresponding flow pattern f; = 5, /=4, f.=9 are equilibrium solutions.
i
%
] Appendix A illustrates eight single-period transportation equilibrium models. The
52
§ optimal solutions and test the convergence of projection method is used for computing
single-period transportation equilibrium models by using GAMS.
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CHAPTER 4

MULTI-PERIOD TRANSPORTATION

EQUILIBRIUM MODELS

Transportation network demand adjustment to travel disutility usually occurs over a long
period, while current time demand mainly depends on travel times in previous time

period. As it was discussed before, in long period equilibrium analysis, the time lag effect

can be a very important factor.

In this chapter energy GDL equilibrium will be applied to transportation equilibrium
fields to consider the time lag effect. First, multi-period transportation equilibrium
models without time lag demand will be introduced; and then time lag effect in
transportation network demand function is presented. Finally, exponential structure in
demand function will be introduced to describe the relation between demand and travel

disutility in multi-period transportation equilibrium.

37 L
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4.1 Multi-period Transportation Network Equilibrium Models

4.1.1 Multi-period Transportation Equilibrium Models without Time

Lag Demand

Multi-period transportation equilibrium model can be an important tool for decision
makers. In transportation policies analysis, the transportation planner and analyst usually
need to analyze and consider transportation congestion that normally occurs during a long

period. In this section, multi-period transportation equilibrium models will be considered.

Consider the system-optimization case, multi-period equilibrium model can be

formulated as follows:
T
. -1
Min Z =3 0’ (f)x £ = 2.0/ (d?)xd}?)
t=1 ] i
S.t.
D x0 =4 (r=12,..7)
P
xg) =20

d¥ >0
and the definitional constraints

[0 =Y 595, (4.1)
P

Where D,.(')_1 (.)is the inverse of the demand function associated with O-D pair i in each

period ¢. The objective function is sum of travel times on all links in all periods, minus

. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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the sum of demands on all links multiplied by their corresponding travel disutility. The

constraint, Zx;’) =d{", states that the flow on all paths connecting each O-D pair in
b

period ¢ equals to the O-D demand in that period. The no negativity conditions are

required to ensure that the solution of the program will be physically meaningful.

Compared with system-optimization, the multi-period user-optimization equilibrium
model without time lag effect can be formulated as follows:

fl(l) d,(’)

Min Z = i(z [e(@)do -3 | D™ (L)dv)
=1 1 i 0

0

S.t.

S =4d" (+=12,...T)

P

(f)>
x, >0

d® >0
and the definitional constraints

£ = Z xﬁ,') 5., (4.2)
p
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4.1.2 Multi-period Transportation Equilibrium Models with Time Lag

Demand

DI

4.1.2.1 Time Lag Demand in Equilibrium Models

In the energy sector, the reaction of demand to a change in its price is a process in a
period (Wu and Fuller, 1995). Part of the reaction may occur during the period of the
price changes, but the complete adjustments to the price changes typically occur in the
latter period. Daniel and Goldberg (1981) pointed out that the effect of the price of an

| energy commodity in preceding period often exceeds the effect of the current period price
on the demand for that commodity. Similarly there exists “time lag” effect in
transportation models. Road flow and congestion level of current period depend a great
extent on flow and travel time of previous periods. In order to present the “time lag

effect”, lag elasticity coefficients £ in demand functions is introduced.

In transportation netwosk, the general demand function without time lag effect can be

described as:

I
d® =a® =3 by

i=1 i
Where
d® =Travel demand in i O-D pair at period ¢,
al? = Constant in demand function i at period ¢,

b, = Travel disutility elasticity,

40
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u® =Travel disutility in { O-D pair at period ¢.

In energy models the general geometric distributed lag (GDL) structure can be stated as

(Wu and Fuller, 1995):

n
¥ =a+ ax"" +u®
=0

Where
y® =Demand quantity in period ¢,
x® =Price in period ¢,
a = A constant,
o; =Unknown constants,

u® = A random variable independent of x, with mean zero and constant

variance.

Comparing the energy models with general distributed lag structure, the general type
demand function (for simplicity, consider a one O-D pair transportation equilibrium
model) with time lag effect can be stated as:

d9 = g® —py® 4 ed¢ "

Where
d” ,u"” =The travel demand and the travel disutility at period ¢,

a® = Constant at period z,
b =The travel disutility elasticity,

e =The time lag elasticity,

41
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Atperiod f—1:

dUD = gD _ gy, L o gt

So that, by successive substitution

t I3
dV = Ze""a(") — Z e "bu' +&'d®
n=1

n=1

.
R

‘Where

d",u" =Travel demand and the travel disutility at period ¢,

SRR A R R

b =The travel disutility elasticity,

e =The lag elasticity,

S ARG

a'? =Constant at period t = i.

R B P S R

In one O-D pair and T-period transportation equilibrium models, the demand function

employed time lag structure can be represented by:

cax b B

DW= 4O _ py®
D(Z) = A(2) _EBU(I) _BU(Z)

b(T) = AT _ pr-uppt) _ p@-2gp@ _  _ ppM
Where
D®W,UY =Vectors of demand and travel disutility in period ¢;
E =an I x I matrix of lag elasticity;
B =an IxI matrix of travel disutility elasticity;

A =a vectors of the constant factors at period ¢.

42
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This can also be written in matrix notation as;
(p®71 [ 4® B 01 [yw

DO = 14© - EHB B U(l)

D" | (4" | |[E™B  E™B B} {UT]

4.2 Exponential Structure in Demand Functions

In energy equilibrium models, the demand function is not limited to linear expression;
there exists a more popular expression among econometricians: exponential structure in
demand function, which is used very widely. In the previous transportation equilibrium
research, for the sake of simplification, the demand was assumed to be a linear function
of travel disutility. In this section, the exponential demand function is introduced, i.e.,

travel demand is an exponential function of travel disutility.

First, in energy models the geometric distributed lag exponential structure can be stated

as

n -
y(l) — GH[X(’—") ]ca(')
i=0
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The influence of the lag independent variable x on the reaction variable y decreases with

increasing lags, and the influence of the lag variable x on variable y is close to zero as the

lag goes to infinity.

Comparing with GDL demand function, the transportation network with time lag

exponential demand function can be stated by:

D D e e U b T g SR i i

7
di(t) = a(t) % (l I u;t)—bi,/)x d"(t-l)e,-
i

‘Where

d!” =The travel demand and the travel disutility in O-D pair / at period ¢,

u{? =The travel demand and the travel disutility in O-D pair j at period ¢,

b, ; =The travel disutility elasticity,

% e; = The time lag elasticity for demand on O-D pair i.

j For the sake of simplicity, consider one O-D pair T-period models with time lag effect,
e‘ the exponential demand function can be presented by

.

d(l) = a(z)u(l)—bd(t—l)e

Where

TS

d®,u® =The travel demand and the travel disutility at period ¢,

Safrese WY S Dbt a s

b =The travel disutility elasticity,

e =The time lag elasticity.

Atperiod t—-1:
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dD 2 =D, t=D=b glt=2e

So that, by successive substitution

' -1 I i-n
d¥ = (Ha(n)e’ ) x (Hu(n)e (—b))
n=1 n=l

If
d® =Ind"”,

2 =1nu®”,

!

f-n

a® =In]Ja"",
n=}

and if period t from I to T is considered, the following can be obtained
d=a—-Bu

The vectors g, a and p, and the matrix B, can be stated as matrix expression:

d® a® " b o1 [u® ]
d(l) = a(f) - el-l b b u )
_d(T) ] _a (T) | _eT—lb eT—Zb b-J _u (T) |
\
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CHAPTER 5

SOLUTION ALGORITHMS FOR MULTI-PERIOD

GDL TRANSPORTATION EQUILIBRIUM MODELS

5.1 Decoupling Approach for GDL Equilibrium Models

As introduced before, decoupling algorithm is an effective algorithm used in the energy
GDL models. At each decoupling step, a new decoupling sub-model is constructed, in
which the travel demands depend only on their current period travel disutility through
inflated disutility elasticity. Then, the PIES algorithm can be used directly in each
decoupling sub-model. If the prices and demand quantities at a decoupling step are equal
to those at the next decoupling step (in practice, “equal” means within a given small

tolerance), an equilibrium solution is obtained.

In this chapter, the GDL approach is compared to present the expression of inflated
disutility elasticity in multi-period transportation equilibrium models with time lag effect
demand. Next, the solution algorithms decoupled projection and decoupled relaxation

methods for solving transportation equilibrium models with time lag effect will be stated.
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5.2 Inflated Disutility Elasticity in Transportation

Equilibrium Models

5.2.1 One O-D pair and Multi-period Inflated Disutility Expression

First consider a one O-D pair and multi-period transportation equilibrium. The one O-D
pair and multi-period with time lag demand function can be described as
d=a-Bu

the matrix notation as follows:

am a® C b o] [,

d(t) = a(r) - e"lb b u(r)
(T) (T) T-1 T-2 I

1" | o™ e b e °b bl [u"]

Here, we set 5,0 ,b® to be inflated disutility elasticities at period 1, 2, 3. The demand

function also can be described as:

d0 PL p® 0 u®
d¥V 1= a9 |- 0 NG 0 u®
an | |a? 1 Lo 0 b | |u® ]
47
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If the last découpled iteration has travel disutility, U *, this iteration inflated disutility

elasticities can be found through the following steps:

b o] [«@*] [ b 0] [u®*]
6 A0 0 WO %=1 b u*
K 0 b | {u ¥ |e™'b e b b| |u™*]

The inflated disutilities considering one O-D pair multi-period can be expressed by

algebra structure:

pO, 0 = b N p® = p

By = ebu® .+ o bV =& bx @ /uPY) + ...+ b
O™ = e U™ + L+ > BN =™ hx P [uy+...+b

5.2.2 Two O-D Pairs and Two-Period Inflated Disutility Expression

Furthermore consider 2 O-D pairs and 2 period’s transportation network. Assume that
there exist 2 origin and destination pairs, and consider ¢ =2 transportation equilibrium

with lag elasticity E, travel disutility elasticity B. The demand function can be stated as

follows:
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D=A-BU

or the matrix structure as:

p® 4O B 0] [uw
DA | 4@ { EB B} U
If BM,B® is set to be inflated disutility elasticity at period t = 1 and 2, then the demand

function can also be described as:

D(l) 3 A(l) B.(l) 0 U(l)
D® - 4D | 0 B?||y®

Note that the last decoupled iteration travel disutility is U*, then

pw AT T3 ol[ud [407 [go o 1 fpwl*
p@ || 4@ -[EB B} go| Tl 4@\ | o p@||y®
BY o 1[u®l* B3 o] [ym]*

0o B®||u®| l:EB B] u®

At period t=1, and from the above equation, the following is achieved:

BYxUY = BxUW"

At period t=1 the inflated disutility elasticity B® equal to travel disutility elasticity B,

namely,

B(‘) =B Or [bl(}) b1(21)j|= l:bll b12]
by bP | b by
At period t=2:

BOxUD =EBxU" + BxU®"

At period t=2 the inflated disutility elasticity B%

49
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B@® =EBx(UW ) UP)+ B

Also, the above equation can be extended to:

2 2 1)* 2y
by by - [elbn elblz} ul Ju{® +\:b“ blz}
2 2 e 2)¢
by by by by | (us fuf’ by by
b = xby,x @™ 14" + b,

Similarly,

2 0* ()
bl(2) =g xb, x(u;g_) /”z) ) +by,
bg) =¢,x by X(ux(])‘/ux(zy)‘*'bzl

2) _ n* @
bgz) —esznx(u;) /uz) )+by,

5.2.3 Multi O-D Pairs and Multi-period Inflated Disutility Expression

More generally, consider the multi O-D pairs (I) and multi-period (T) transportation
networks. Assume that there exists one origin and destination pair, and consider ¢ =T

transportation equilibrium with lag elasticity E and travel disutility elasticity B. The

demand function can be stated as follows:

D=A4A-B8U

or the matrix structure as:
pDw 491 T B 1Tpw
b") = .A(’) - E’;‘B . B .U“’
| D | _;4.(”_ _ET.“B éB B _if"’ i
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If BW B® B is set to be inflated disutility elasticity at period# =1...T', the demand

function can also be described as:

'Amw

A(f) .

AD

L

B(f)

B(T)

U(t)

LU(T)

O 7

Also, note that if the last decoupled iteration travel disutility is U*, then

~ 4O -

B

E’;B

7-1
1 LETB

B(r)

i

B

o [4®7 [gw
.U(t)* = A‘(” -
éB B] _if‘”‘_ _A;T’_ i
1ol [ B
v = | i . B
| _.U‘T)'_ LET:‘B E-B

—U(m -
B® i](')'
B(T) .l](T)"
7 —U(l)‘ ]
.U'(f)'
o) [

At period =1, and from above equation, the following is achieved:

BOXxUY = Bx U™

At period t = 1 the inflated disutility elasticity B" equal to travel disutility elasticity B,

namely,
BY =B Or
Atperiodt =1t

FR0)]
bll

0
bil

0
_bll

M
blf

M
bfi

(1
bli

i) (o

b |= &

AN
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BOXxUW = EF'Bx UM + ET2BxUP" +.. .+ BUD
At period ¢ = ¢ the inflated disutility elasticity B

BY = E'Bx (UM /U Y+ ET*Bx(UP /U Y+ ...+ B

e | e, —— an——

The above equation can also be extended to consider one O-D pair,
- * -2 2)* £y
P =t by x " ) ey X @ 1) ¢t

Similarly,

-1 1)* bAL -2 2)* *
bij(,‘)zei’ xbijx(uj.) Iu$") + ¢ b,.jx(uﬁ.) /uj.'))+...+b,.j

( 5.3 Decoupled Projection Method for Multi-period
! Transportation Equilibrium Models with Time Lag Linear
!

Demand

The multi-period with time lag effect and the linear demand function transportation
problem can be formulated as a quadratic programming in the objective function with
\ linear constraints nonlinear programming. As it was mentioned before, the projection
l method can be applied in solving single-period or multi-period transportation equilibrium
{ problems without the time lag effect demand. Due to time lag effect in demand function

exists, it could be difficult to compute the solution for the multi-period transportation

equilibrium problems with time lag effect directly.
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In this section, decoupled projection methods, such as projection method combined
decoupling approach to solve the multi-period transportation equilibrium models with

time lag effect will be discussed.

In essence, due to the time lag effect, the decoupled projection sub-model must be
constructed so that the linear demands depend only on their current period prices through
inflated disutility elasticity. As a result, an equilibrium solution of the projection sub-
model can be calculated relatively easily with the original projection method at each
iteration decoupled projection sub-models. This will give an approximate equilibrium
solution of the decoupled projection sub-model. The new equilibrium solution is inserted
back to adjust the next iteration inflated disutility elasticity. Thus, a new decoupled
projection sub-model is established and can be solved by the original projection method,
and so on. For the convergence verification, if the differences of demands between this
iteration and the last iteration is less than or equal to a given tolerance which is small

enough, then an equilibrium solution can be obtained for this transportation equilibrium

models with time lag effect.

The decoupled projection method for transportation equilibrium models with time lag
effect can be stated as the follow:

Step 1. Initialization:
Provide a starting feasible solution guess of travel disutility between each O-D pair,

U®,, fort=1,2, 3, ...T; set the iteration index m=1, set the tolerance & small enough.
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Step 2. Construct a sub-model without time lag effect in demand function.

Using U, , and the results achieved from the last iteration of this decoupled projection

B" =™ x b, x (ug.l)' /uﬁ.z)#) + e;'zb,.j x @ 1y + L+ b,

|

t

[

$ method, calculate current iteration inflated disutility elasticity,

l

l

‘ Then, the transportation equilibrium problem with time lag effect is transferred to multi-
period linear demand equilibrium problem without time lag effect. Original projection
method can be called to calculate the solution (the original projection method will be

stated in the following).

Step 3. Convergence test

|
\
‘,
‘ 1t
|
|
J
|
!

() (1)
lui,m _ui,m-—ll
E=Max——<g¢g,
iel lu _(l) I
im—-1

a preset tolerance, then go to step 4, otherwise, increase the iteration index m =m+1,

and go to the next iteration.

Step 4. Terminate with D¥*=D_U*=U .

The sub-procedure of decoupled projection method for transportation equilibrium models

with time lag effect, namely, original projection method applied to multi-period linear

demand transportation equilibrium models without time lag effect can be stated as

follows:

Step 1. Initialization: (Projection method)
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Provide a starting feasible solution guess of flow vector in each link, £ , and demand

7=0 3
between each O-D pair, D, set the iteration index n =1, calculate G = 8C(f)/df and
M =0D"'(d)/od.

Step 2. Construct and compute: (Projection method)

Using last iteration solution £, D’ calculate current iteration constant factor H” and

T” , construct objective function:
i 02 i Oy i 02 ZT: G0
Z=YGF" + Y gOFO _N yp®? N 70 pw
t=1 =1 ! t=1 t=1

then call the nonlinear programming (NLP) solver to get current iteration solution F”

and DY, Using
U® = pt (D(f))

to calculate the current iteration U

n 2

Step 3, Convergence test (Projection method)

If

) _ r@

‘f;,n In-1
E=Max"—— "l ¢
leL 4]

I.n-1

and

then go to step 4, otherwise, increase the iteration index n=n+1, and g0 to next

iteration.

Step 4, Terminate with F*=F, D*= D ,U*="U, . (Projection method)
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5.4 Decoupled Relaxation Method for Multi-period
Transportation Equilibrium Models with Time Lag

Exj,onential Demand

In the last section, it was stated that the decoupled projection method can be used in
solving multi-period with time lag effect transportation models. By using exponential
demand functions instead of linear demand functions in the transportation equilibrium
problem, G and M can be any diagonal positive definite matrices of appropriate

dimensions based on projection method. One could also set G and M to be the diagonal
parts of the Jacobian matrices |9c/&f| and|ou / 8d|. Now, it is shown that matrix M is
difficult to calculate from exponential structure demand functions. So the projection

method is not available for the multi-period transportation equilibrium problem with time

lag effect.

In this section, another iterative method, namely, relaxation method will be considered to
be applied in solving transportation equilibrium problems with nonlinear demand
fun.ctions. Like the projection method, the original relaxation method can be applied in
solving the single-period or multi-period transportation equilibrium problems without
time lag effect. It can also be difficult to compute the solution of the multi-period
transportation equilibrium problems with time lag effect directly. The decoupled

relaxation method is generated for this reason, in which relaxation method is combined
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with decoupling approach, and applied in solving the multi-period exponential structure

demand function transportation equilibrium models with time lag effect.

Through “inflated disutility elasticity” the time lag effect is transferred to demands
depending only on their current period travel disutility in each decoupled relaxation sub-
model. Original relaxation methods can be used to solve the multi-period nonlinear
demand function structure without time lag effect at each iteration decoupled relaxation
sub-models. This will give an approximate equilibrium solution of the decoupled
relaxation sub-model. The new equilibrium solution is inserted back to adjust the next
iteration inflated disutility elasticity, a new decoupled relaxation sub-model is established
and solved by the original relaxation method, and so on. If the difference of demands
between this iteration and last iteration is less than or equal to a given tolerance which is
small enough, then an equilibrium solution is obtained for transportation equilibrium

models with time lag effect.

The decoupled relaxation method for transportation equilibrium models with time lag

effect can be stated as follows:

Step 1. Initialization:

Provide a starting feasible solution guess of travel disutility between each O-D pair,
Ud,, fort=1,2,3,...T; set the iteration index m=1, set the tolerance s small enough.
Step 2. Construct the decoupled relaxation method sub-model

Using U, , results got from last decoupled projection method, calculate current iteration

inflated disutility elasticity,
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" . -t s g, Q) -2 @* 4,0
by =7 xbyx(u;” [u]" )+ by x (w7 Tup ) L+ by

Then call the original relaxation method to calculate the solution.

Step 3. Convergence test

If

then go to the step 4, otherwise, increase the iteration indexm = m +1, and go to next

iteration.

Step 4. Terminate withD*=D_,U*=U, .

At each decoupled relaxation iteration, the original relaxation method can be uged in
solving of nonlinear demand transportation equilibrium models with time lag effect. The
original relaxation method applied to multi-period nonlinear demand tranéportation

equilibrium models without time lag effect can be stated as follows:

— i ————— s e e s — —————— - — — ——— —— ——

Step 1. Initialization: (Relaxation method)
Provide a starting feasible solution guess of flow vector in each link, F”, and demand
between each O-D pair, D, set the iteration index n =1,
Step 2. Construct and compute: (Relaxation method)
Using last iteration solution, £}, construct new time functions
cr=¢ (fl(:.)-x yeers l(-‘l),n-l :fz(') > 15:1),,.-1 seses L(,'Z_l

and new travel disutility functions
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- -1 %)
Wi =u, (A e d]

i-l,n-12

) (1) )
di * di+1,n—l AR d!,n—l)

then call the NLP solver to compute the solution using the above travel time and travel

disutility functions, F' and D%, Using
UWw=p! (D(t))

to calculate the current iterationU",

Step 3, Convergence test (Relaxation method)

If
E M Fn(’) - Fn(-l-z
= Max <&
FY
and
Dr(:) - Dr(zl-)l
E = Max 0 <g

then go to the step 4 otherwise, increase the iteration indexn = n+1, and go to next

iteration.

Step 4, Terminate with F*=F, D*= D, U*=U, . (Relaxation method)
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CHAPTER 6

A NUMERICAL EXAMPLE

In this chapter the decoupled relaxation method will be applied to a numerical case of a
small transportation network. In this example, time lag demand functions have
exponential structure, and also the travel disutility interacts with each other in the
demand. In order to have an overview of the procedure of developing such models and
equilibrium seeking algorithms, formulations for two different types of transportation

equilibrium, i.e., system-optimization and user-optimization will be illustrated.

{

\

|

l

3

‘ 6.1 The Structure of the Model
|

l

1 As a numerical case, the local transportation network system in a city will be modeled. In
‘ the local transportation network system of city Z, four major communities (A, E, U and

|

| Y) and a downtown area M exist. They are all connected by local main streets as shown

!. in Figure 6.1. For simplification, it is assumed that all streets are one-way only and the

single direction flows for people from those four communities traveling to downtown for

work each day was modeled. Base on this model, future demand will be predicted.
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The transportation network topology diagraph used in this example is shown in Figure

6.1.

Figure 6.1: The transportation network topology

As shown in Figure 6.1, there are 25 nodes in this transportation network. Since there is
only the transportation flow from the four major communities to downtown area, there
are 4 original-destination (O-D) pairs, RSam, RSgm, RSum, RSvm. Every edge in the

graph is a ‘Link’ and there are totally 40 links.
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The variables will be used in this ¢+ . =1.

|

t - Flow in link / (where ! = 1, 2, ..., 40) in period ¢ (where ¢ = 1, 2, 3);

' X0 - Flow in path p (wherep = 1, 2, ..., 24) in period ¢ (wWhere ¢ = 7, 2, 3);
o - Demand in O-D pair i (i = am, em, um, ym) in period ¢ (where ¢ = 1,2, 3);
u® - Travel disutility in O-D pair i (i

= am, em, um, ym) in period ¢ et =
- (where ¢ =

The parameters are defined as follows:

5” - 40x 24 matrix of indicator variable (path-link relationshjp);

} A, - 4x 40 matrix of indicator variable (O-D pair-path relationship);
B - 4x 4 square matrix of short-run travel disutility elasticity:

) B® - 4x 4 square matrix of inflated disutility elasticity in period t,

i E - I'x 4 matrix of short-run lag elasticity;

J
A - Constant factors in demand equation ; in period #;
r - Discount rate.

By observation, there are 6 paths for each O-D pair, The relationships between link and
' an

path for each O-D pair are:

p= {11 L 116}
b= {ll I 116}

' RS. - by = {ll I s lzo}
- py= {ls e I 116}
bs = {ls Lo s lzo}
Pg= {ls Ly Iy lzo}
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I L

RSer P9={I4 Iy 1, 121}

Pz = {132 Ly Iy lzo}

by = {132 Ly by Zzo}

RSy bis= {132 Ly Ly ‘125}
P = {137 Ly Ly lzo}

D= {137 Ly Ly 125}

b= {137 Ly by lzs}

Py = {140 hy I lzs}

Dy = {l4o Ls Ly lzs}

RS Dy = {140 Ls Ly 121}
" Dp= {136 Ly Ly 125}
Py = {136 Ly b 121}

Py = {136 Ly In 121}

The demand functions are assumed as follows:

A2 = g (W20 e (W)™ x (D)7 x (D) x (e
A5 = g % (™ x ()2 x 2)H < () x (4
A2 = 3 () (D)5 @)™ e ()™ x ()

@) = @y X (Y0 (U2 % )P X ()P X (45"

Travel disutility elasticities are given as follows:

by, =16 b,=-04  b,=-06
by=-03  by,=161  by=-0.7

by=-02  b,=-0.6 b,=162
by=-03  b,=-05  b,=-04

Lag elasticities:

b, =-0.5

by, =—0.4

b, =—0.3

by, =1.64
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e, =07  e,=072 ,=072 e,=075

nm

Time functions on the links used in this model are given in Table 6.1

Link Cu)
7, fit03%f; + 2
I, fot 0.1%f; + 3
1 fi+0.5%f+3
I Ji+0.4%xfo+ 4
Is fs+02%xf, + 4
Is S+ 0.4+ 1
I, S+ 0.3%fe+ 2
Is Ss+0Ixf;4+5
I, fo+ 0.3%f, + 1
) Jio+ 0.2%f, + 2
I Ji +03%fis +2
1 Ji2 ¥0.4%f, + 1
I3 Jiz+0.2%f1s+ 4
. Iis f14+0.4>(f10+2
‘ lis Jis +05%fy; + 1
Lis 16+ 0.4%f15 + 2
1; Siz + 0.2%f), + 2
li Jis +04%f15 + 1
) fi9+0.2%f5+ 3
L3 Joo+ 0.5%f5 + 1
Ly Jor ¥ 0.4%f5 + 2
122 ﬁz+0.]xﬁ1 + 5
123 _)‘:?3 +0.2 x_f28 + 4
124 f:u + 0.4><f}9 + 2
l2s ﬁ_g + 0.2><ﬁ4 + 4
Iy fas+ 0.I%f50+ 5
Ly f27+0.4><f}1 + 2
los ﬁg + 0.2 Xﬁ; +2
Lyg Joo+ 0.3%f5,+ 2
|9 S0+ 0.5%f6+ 1
I3 Sar +0.2%f,+ 3
) Ji2 + 0.4%f37 + 2
133 f}_g + 0.4x_f:;3 + 17
l34 Sag +0.5%f33+ 1
135 f;5+0,3)<f}9+2
I3 J36 T 0.2%f + 2
137 f}7 + 0.3 Xfi2 + 2
I3 Sis +0.2%f33+ 1
Lo Sio + 0.2%f55 + 2
lgg S+ 04xf55+ 2

Table 6.1: Time functions for links
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The discount rate:

r=0.05

In this model, a three period transportation equilibrium analyses was considered. Assume
the demand equations are the constant elasticity type with time lag exponential structure.
The travel disutilities interact in the demands equation according to travel disutility

elasticity and lag elasticity.

From the system level, the minimum total time spent in this network must be achieved.
This problem can be formulated as system-optimization. From user point of view, it will

be modeled as user-optimization. Two type of equilibrium models are illustrated below.

System-optimization can be formulated as:

Objective function:

Minimize z= i{[Zcm( Fyx £ - ZD“)“‘(d“))xd(')]x(1/(1+r) }
=1 I=1

S.t. Za x xW = £ =1,2,3 [=1,.,40

p=1

Z}Lp, xx =d® =123 i=am,em,um, ym

p=l

Non-negativity:
020,

” s
x," 20;

d® >0
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User-optimization can be formulated as:
Objective function:

"
a0 M 4 di

Minimize 2=l [co@)yxdo=3, [ DO ()x dvlx A/ +7))

t=t 1=l g i=l ¢

24
St. 316, xxy = £ t=123 l=1,..,40
p=l

24 )
2/1,7..- X xf,” =d =123 [ = am,em,um,ym
p=l1

Non-negativity:
=0
x5 =2 0;

d 20,
6.2 Decoupled Relaxation Method for the Solution of the Model

In the given conditions of this model, three periods were considered. Further, the demand
functions are exponential structure with time lag effect, and the travel disutilities interact

with each other in the demand functions.

Due to the time lag effect, the demands in the previous periods will influence demands in
the current period. The general algorithms in urban transportation equilibrium cannot be

used to solve the model directly since it required a travel disutility function of demand,
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i.e., D''(d). But in this model, because of the interaction of multi-periods’ demand
functions, D (d) cannot be achieved directly. Thus by adapting the decoupled method
and using inflated disutility elasticities the demand functions can become function of
current period travel disutility. After doing so, the relaxation method can be applied in
each decoupled step to solve this model and get current calculated values. Next, these
calculated values in decoupled process of next step can be used. Finally, the results can
be brought back into the relaxation method and the process repeated until an equilibrium
state is reached in the system-optimization model:
1) the marginal travel disutility spent in each used path is less than or equal to
the value on any unused path;
(ii)  in all used paths, the marginal travel disutility is the same, so the time spent in
the whole system is minimized;
In the user-optimization model:
@) the travel disutility spent in each used path is less than or equal to the value on
any unused path;
(ii)  in all used paths, the travel disutility is the same, so users will spend same

time no matter which path they choose.

In the real world, the travel disutility elasticities and lag elasticities usually would be
obtained from regression of historical data via statistics. In this chapter, it was assumed
that travel disutility elasticity b ) and lag elasticity e¢; are known, and a set of data

assumed to be close to the statistics was used. The given historical data includes travel
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disutility u at period ¢ = 0 and demand d at periods ¢ = -1 and # = 0. The constant factors

a; in demand functions are calculated from the given data by equation 6.1:
4
a,= (@ x [ [ @) x(df =y | 6.1)
=l

The demand functions can be described as a matrix notation:

DW] [4®7] [ B 0] [u®]
D® = 4@} - | EB B u® (6.2)
| D® | |49 ] |E’B EB B [U®I

Where the constant factor of demand function

i
(el
e,

(@) )
A9 = (a,.)f\:-x x (d1=0) (6.3)

At each step of decoupled algorithm, the demand functions without time lag effect are

| shown in the following matrix:

' [ pM ] [ 407 P: o] TuoT
i D@ |= | 4®]. B® Uu® (6.9)
|
3 3 (
| D™ | _AG)J L B )J U 3)_1

Where B, B” B® are 4x4 square matrices of the inflated travel disutility in period ¢ =

I, 2, 3 calculate by equation (6.5)
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by = by x 2 1) ™ x (™ *) /In@w P *)] (6.5)

n=l

Where U* is the equilibrium travel disutilities in the last decoupled iteration.

If system-optimization model is considered ,then at each decoupled step the form of each

NLP solved at each iteration in relaxation method is the following:

Z= 21/(l+r)’ [(Z = 9e (£ ) X(FOP 4 O FOGDy ([ x fOGY

=1 af;w f(t)
_ Z(A’_(t) x H(uy),(k_x)) bbY, )(llbb((,’_),)) N ulg),(k_l) y (di(,)) 1-1/66$0), 3]
i=1 =l
(6.6)
S.t. 25 xxt = £ =123 [=1,.,40
p=
i&,_i X xﬁ,” =d t=123 i =am,em,um,ym

Non-negativity: !

=0

® s 0
x, 20;

a® >0

From user-optimization point at each decoupled step, the form of each NLP at each

relaxation method is the following:
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Min
3 40 :) ®
! 4 t 0 _
Z=§l/(l+r) X[(Zl/z* f(({; )X(f;()) + O (FOEDY c; f((J: ) f;(’)’(k )
4 ' ,
- Z(l /(1-1/ b(f)j))) % 4(!) % H(u(r) (k-l))'bbfr)n )(“ bb{)) % ui(t).(k—l) x di(,))l-l/bb{,j.) N

i=1

(6.6)
S.t. 25 x x5 = £ t=123 I=1,..,40
p=l
Z A, xx =d “ =123 i = am,em,um, ym
p=t

Non-negativity:
f9=0
x0 >0;

I4

d®f >0,

Both system-optimization and user-optimization are formulated and solved separately by
decoupled relaxation method implemented by the GAMS. The computation results are

discussed in the next subsection. The flowchart of the algorithm is shown in Figure 6.2
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| Denine seta cTime. Link, Path, OD pair) |

I Define indices IT1, IT2 l

I Define dats tables YO, CM, XM0, CN, G I

l Define date R, BB, E, U0, Ul, U2, UV, DD0,DD1, D1, D2.F0, F1

v

[ Calculste AD, AA, BD. DR |

¥

[ Define decigion varizbles Z, F. D, X I

¥

l Define equations OBJ, CON1, COMN2 I

¥

l Formulate equations OBJ, CORN1, CONI J

{ Define bounds on variables D, F ]

v

I Define GAMS optins J

LD afine data MERRI], MERRZ, ERR1, ERR2, TLI

I Initialize MERR1 with a vatue larger than specified tolerance I

I Bregin Decoupling Algorithun with [T1 w1 ]

MERR] > tolerance 7

Y
L redefine data BD l

[ Initintize MERRZ with & walie larger than specified tolerance I

v

[ Begin Retaxation Algarithm with 1T2 =1 |

MERR2 > tolerance 7

I redefine dats UV I

v

I Reset MERR2 ~~ O ]

¥

calculate ERR2 with cost disutility, demand and flow in each link

IS:!.MERRZ squal to maximum value nfmj
T

[ Fl=F.L,D2=D.L, U2=UV |

{ 1IT2-1T2+ 1 |
N W
k4
| Resst MERR1— 0 ]
W

[ calculaie ERR] with coxt disutlity und demand

¥

[SnlM‘ERRl ecrual 1o maxinuen valus of ERR1 [

[ Fl~F.L, D1 =D.2, Ul ~U2 |

=0

| ITY = IT1+ 1 |

IT1 > MAXITER ?

Y
L Define cutput l

—

Figure 6.2: Algorithm flowchart
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6.3 Calculation Results

In the following, the above numerical examples computational results are summarized.
Tables 6.2 and 6.3 show decoupled relaxation iterative information. For the two type
transportation equilibrium cases with time lag effect, this test model involves 207
decision variables and 135 single equations. The model was solved from a “cold start”
with initial estimates of demands and travel disutilities. Both of this test models need
only, six for system-optimization and four for user-optimization decoupled iterations to
converge. For system-optimization, total 2428 nonlinear programming were solved to get
the optimal solution. And total 1522 nonlinear programming were solved to get the
optimal solutions for user-optimization. It is interesting to notice that most nonlinear
programming iterations, 58% of NLP iterations for system-optimization and 75% of NLP
iteration for user-optimization are finished in the first decoupled step. Only 42% of NLP
iterations for system-optimization and 25% of NLP iteration are used to calculate the
equilibrium solutions during the following decoupled steps. This means, for this simple
model, the decoupled relaxation method converges well in the following decoupled steps.
This indicated that the decoupled relaxation method is a usefu1 approach to solve multi-
period transportation equilibrium models with time lag demand. Tables 6.2 and 6.3

illustrate the number of interactions for two type’s equilibria.
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Decoupled
Iteration

Relaxation
Iteration

No. of
NLP
Iteration

Total
No. NLP

1

482

160

108

97

94

88

73

69

W0 [ || |bwIN

53

[
o=

42

—
P

33

—
|

37

—
w

38

,_..
N

36

1410

83

88

75

64

50

35

37

37

O |Co [~Q [ | [ (W | f=

36

fary
o

32

537

47

48

32

40

34

37

238

37

36

32

105

37

33

70

6

— A I (W N = OV (L B [ D [

34

2

34

68

73

Table 6.2: System-optimization computing iteration information
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No. of
Decoupled | Relaxation NLP Total
Tteration Tteration | Ieration | No. NLP

1 606
2 118
3 90
4 81
5 68

1 6 >3 1212
7 39
8 32
9 31
10 33
11 30
12 31
1 58

2 2 30 157
3 35
4 34
1 24

3 2 31 89
3 34

4 L 32 64
2 32

Table 6.3 User-optimization computing iteration information

Tables 6.4 and 6.5 illustrate the final computational results in the cases of system-
optimization and user-optimization: flow in each link, travel disutility and demand in

each O-D pair. From Table 6.4, all paths in this system that are used and at each period t

can be seen. Further, marginal times & spent at all paths in each O-D pair are the same

Al
and equal to the marginal travel disutility »;, . Thus, when the network achieves system-
optimization, the accompanying solutions are optimal solutions. Table 6.5 also displays
the adjustment of demands in four communities for all three periods. Since there is the

time lag effect in demand function, the current demands partly depend on demands from

I
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previous periods. Demands in period ¢ = I will be influenced to a great extend by the
demand in period ¢ = 0. For example, demands for O-D pair AM at period ¢ = 0 was
assumed to be equal to 22. Since the demand is relatively large compared to the road
capacity between this O-D pair, congestion will occur more frequently than expected, it
will then take longer time to travel on the path. At the next period, namely at ¢ = I, when
people notice such information, they will switch to different paths to shorten their travel
time or even move to a different community in the future in order to save their travel
time. So the travel demand between this O-D pair will decrease. When the network
achieves system-optimization, the demand for O-D pair AM is adjusted automatically to
15.509. Table 6.6 and Table 6.7 show how demands changes for four O-D pairs under

system-optimization and user-optimization separately.

i=] =2 =3 t=1 =2 =3
fi 7.69 6.858 6.6 i 17.53 16.74 16.743
f 2.284 1.841 1.687 f 6.924 6.66 6.684
f 4.108 4.113 4.189 )3 2.007 1.995 2.092
fy 8.82, 8.466 8.458 4 4.866 4.791 4.88
fs 7.818 6.945 6.665 fs 15.853 | 15.091 15.11
fs 5.406 5.018 4914 B 5.729 5.649 5.752
f; 6.392 5.954 5.875 2 3.344 3.461 3.627
fy 4.728 4.352 4.269 fos 3.651 3.337 3.287
f 9.814 9.24 9.122 o 3.359 2.954 2.865
fio 4.286 3.845 3.733 f30 5.983 5.875 5.945
fiy 4.048 3.627 3.525 3 6.54 6.443 6.531

fiz 6.084 5.964 6.028 f32 5.658 5.331 5.379
fi3 6.234 6.042 6.065 33 4.575 4.409 4.458
fia 3.533 3.1 2.931 fay 6.51 6.262 6.3

fis 5.644 5.236 5.122 f35 5.172 5.082 5.166
fie 16.524 | 15.544 | 15428 fi6 9.883 9.904 10.158

fi 4.877 4.431 4.307 f37 5.89 5.38 5.325
fis 3.58 3.198 3.057 i3 1.315 0.971 0.867
fig 5.54 5.095 5.023 f3 5.195 5.291 5433

o 16.051 | 15.122 | 15.026 a0 10367 | 10.373 | 10.599
Table 6.4 System-optimization flow in each link results
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Solutions for user-optimization are summarized in Tables 6.5

Table 6.6 System-optimization demand, marginal travel disutility

and marginal time in each O-D pair results

76

t=1 t=2 t=3 t=1 t=2 =3
f) 10.319 | 10.057 | 9.996 o1 25.849 | 26.625 | 27.023
£ 2.989 2.649 2.533 1) 9.6 9.978 10.163
f3 5.636 6.105 6.305 f 4.095 4.206 4.255
f, 11.749 | 12.319 | 12.587 4 7.94 8.264 8.41
fs 9.939 9.748 9.723 s 23.035 | 23.692 | 24.036
fs 7.33 7.408 7.464 £ 9.74 10.158 | 10.353
f; 8.624 8.754 8.838 £y 5.236 5.752 5.978
fs 6.113 6.214 6.281 s 5.177 5.091 5.07
fo 13.995 | 14.268 | 14.419 £ 5.144 4.972 4.922
fio 6.045 5.926 5.903 f39 8.193 8.721 8.965
iy 5.724 5.569 5.528 5 10.459 | 11.098 | 11.392
fiz 9.235 9.767 10.008 3 9.272 9.298 9.326
fis 9.632 10.042 | 10.234 f33 7.906 8.145 8.261
fis 3.894 3.822 3.82 fi4 9.698 9.999 10.15
fis 7.651 7.765 7.839 f3s 7.474 7.78 7.925
fi6 23.584 | 24.089 | 24.373 f36 15.695 16.85 17.37
fin 6.51 6.49 6.508 £y 9.904 9.64 9.552
fig 4.363 4.226 4.185 f3g 1.998 1.495 1.29
fig 7.989 8.029 8.075 fi9 7.7 8.504 8.859
£ 23.579 | 24.058 | 24.325 fyo 15.174 | 16.284 | 16.784
Table 6.5 User-optimization flow in each link results
t=1 t=2 =3

dam 15.509 | 13.804 | 13.265

dem 18.65 17.706 17.58

dym 11.548 | 10.711 | 10.704

dym 20.25 | 20.277 | 20.757

Y am 81.546 | 75.581 | 74.192

U em 92.887 | 88.628 | 8£.204

U ym 74.009 | 70.051 [ 69.916

U ym 94.097 | 92.176 | 93.187

Cam 81.546 | 75.581 | 74.192

Cem 62.887 | 88.628 | 88.204

Cum 74.009 | 70.051 69.916

Cim 94.097 | 92.176 | 93.187
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t=1 t=2 t=3
dam 20.258 | 19.805 19.72
den 25.744 | 26.588 | 27.005
dum 19.176 | 18.938 | 18.877
dym 30.869 | 33.134 | 34.155
Uy 63.49 63.541 | 63.776
Uy 74.507 | 76.409 | 77.383
Uy 63.54 | 63.967 | 64.288
Uy 78.922 82.5 84.174
Cam 63.49 63.541 | 63.776
Cem 74.507 | 76.405 | 77.383
Cum 63.54 | 63.967 | 64.288
Cym 78.922 82.5 84.174
Table 6.7 User-optimization demand, travel disutility and time in each O-D pair results

According to Tables 6.6 and 6.7, we can predict the demand changes in the next three
periods. For example, in table 6.7, it shown the numbers of residences lived in
community A will decrease for 20.258 in period one to 19.72 in period three. And the

demand in community E will increase from 25.744 to 27.005 in next three periods.
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CHAPTER 7

SUMMARY

In this thesis, the GDL equilibrium approach was employed to different types of
transportation equilibrium models, i.e., single-period and multi-period models without
time lag effect, and muiti-period models with time lag effect. And exponential structure
expression of GDL was introduced into demand functions instead of linear demand
function to illustrate i.e., the effect of past travel time on current travel demands. Two
types of transportation equilibrium models were mathematically presented to study
system-optimized and user-optimized behavior on travelers of the urban transportation

networks.

The projection method and relaxation method are general tools which can be used to
calculate the equilibrium solution in single-period transportation equilibrium models.
Consider multi-period transportation equilibrium models with the time lag effect, using
projection method and relaxation method to solve such model directly rna}lI be difficult to
converge. Based on the decoupling principle, the modified iterative methods, called
decoupled projection or decoupled relaxation method, was used to solve multi-period
transportation equilibrium models. Four examples were solved by applying decoupled

; projection in multi-period time lag linear demand and decoupled relaxation in multi-
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period time lag exponential demand. Appendix B illustrates four multi-period
transportation equilibrium test models and their computational results. More numerical
test models can be found in the manual (Wu, 2003). The GAMS was used to calculate the

optimal solution and investigate the computational behavior of transportation equilibrium

algorithm.

7.1 Contribution

In this thesis, main contributions can be summarized as follows:

1. Introduction of multi-period GDL structure into transportation equilibrium

models.

2. Introduction of different expressions of demand functions: linear structure

demand with cross effect of travel disutility, exponential structure demand with

cross effect of travel disutility.
3. Modification and implementation of the decoupling algorithm to solve multi-

period transportation GDL equilibrium models.

7.2 Future Research

With limited empirical investigations on the test models, it is interesting to notice that the

decoupled projection method and decoupled relaxation method converge well for the test
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efficient methods for multi-period transportation equilibrium models in long-term

transportation planning and urban development.
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Appendix A

Single-Period Transportation Equilibrium Models
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For the single-period transportation network equilibrium problems and optimal solution
algorithms, eight test examples were tested in which different types of transportation

network problems were included. The types of these examples are summarized in Table

A.l:
Example | Fixed | Variable | Time | Notime | Path=
demand | demand Cross Cross link?
effect effect
1 Y Y Y
2 Y Y Y
3 Y Y Y
4 Y Y N
5 Y Y N
6 Y Y N
7 Y Y N.
8 Y Y N

Table A.1: Type of examples
For each example, based on the network topology diagraph, time and demand functions
or travel disutility functions, mathematical formulations were given in two forms:
system-optimization and user-optimization. Projection method was also applied in the
examples. Programming code in GAMS was also developed to get the solution for those

examples. In the end of each example, a table of the optimal solution was summarized.

Example 1: Fixed demand function (Path = Link) (1)

Figure A.1 Example 1 network topology
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Time functions:

e, (f) =2 f,+5
ey (f) = £, +10

Demand functions:

d, =10

The solution will be illustrated in two cases for the system-optimization model and the

user-optimization model respectively.

Case I: System-optimization model.

Min

S.t.

Z=Y () fi=@2xf, +5)x f, +(f, +10)x f,

x, +x, =10;

I=a,b

Applying the projection method, the final results are summarized in Table A.2:

Tteration fa I Cq Cp ) C, VA
0 2 8 9 18 9 18
é é C, G,
13 26 13 26
1 4_[;, ﬁ, Cq Cp C} Cz
4.167 5.833 | 13.334 | 15.833 | 13.334 | 15.833

¢ é; [o) ¢, Z

21.667 | 21.667 | 21.667 | 21.667 | 147.917
2 f;, ﬁ, Cq Cp C] Cz
4.167 5.833 | 13.334 | 15.833 | 13.334 | 15.833

é é, C; o Z

21.667 | 21.667 | 21.667 | 21.667 | 147.917

Table A.2: System-optimization results of example 1
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Case II: User-optimization model.

Ji fs Sy
Min Z=y [¢(0)do= |exo+5)do + |(@+10)do
0 0

I=a,bg

St x,+x, =10;

Ja=%
fo =x45
fa,fb ZO;

X,,%, 20

Applying the projection method, the final results are summarized in Table A.3:

Iteration fa o Ca Cp C; C; Z
0 2 8 9 18 9 18
1 Ja Jo Ca Cp G G Z
5 5 15 15 15 15 112.5
2 fa fo Ca Cp G G Z
5 5 15 15 15 15 112.5

Table A.3: User-optimization results of example 1

Example 2: Fixed demand function (Path=Link) (2)

Figure A.2 Example 2 network topology

Time functions:

c,(fy=2xf,+5
¢ (f)=/f, +8
c,(f)=15xf,+5
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Demand functions:

d, =10

The solution will be illustrated in two cases for the system-optimization model and the

user-optimization model respectively.

Case I: System-optimization model.

Min Z= Zc,(f,)xf, =@x f+5)x f,+(f, +&)x f, + L.5x f,+5)x f,

=a,b,c

St x+x,+x =10

Ja=3;
Jo =23
fe=x3
Jo oS 205

Xi5 Xy, %5 2 0;

Applying the projection method, the final results are summarized in Table A.4:

N

Tteration | f; o A Co Cp . C; C; Cs Z
0 2 3 5 9 11 12.5 9 11 12.5
é é é C, C, C;
13 14 20 13 14 20
1 Ja i fe Ca Cp Ce C; C C; Z
2.654 | 3.808 | 3.538 | 10.308 | 11.808 | 10.307 | 10.308 { 11.808 | 10.307 | 108.79
é é; C3 [of Cy G
15.615 | 15.615 | 15.615 | 15.615 | 15.615 | 15.615
2 Ja Jb fe Ca Cp Ce Ci G G Z
2.654 | 3.808 | 3.538 {10.308 | 11.808 | 10.307 | 10.308 | 11.808 | 10.307 | 108.79
¢ é; é3 Ci G C;
15.615{ 15.615 | 15.615 | 15.615 | 15.615 | 15.615

Table A.4: System-optimization results of example 2

Case II: User-optimization model.
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I Je 1y 1.
Min  Z= Y [c(@)do= [exo+5)do + [(@+8)do + [(1.5x0 +5)do
0 0 0

I=ab,c o

St X, +x, +x; =10;

Jfa=x3
Jo =%
Je=x3
Sotot. 20;

Applying the projection method, the final results are summarized in Table A.S

Iteration Jfa I - Ca Cy Ce C C; C; Z
0 2 3 5 9 11 12.5 9 11 12.5
1 fa o fe Ca Cy Ce C, G, C; yA
3 3 4 11 11 11 11 11 11 84.5
2 Ja Jo Je Ca Cp Cc C &) Cs Z
3 3 4 11 11 11 11 11 11 84.5

Table A.5: User-optimization results of example 2

Example 3: Fixed demand function (Path = Link)

a

N

Figure A.3 Example 3 network topology

Time functions:

c, =5xf + f,+5

¢, =10x f, +5x f, +5
c.=10x f, +5x £, +110
c;=5xf,;+2x f, +150
c,=4x f,+3x f, +10

86

i (

Reproduced with permission of the copyright owner. Further rep.oduction prohibited without permission.



Demand functions:

The solution will be illustrated in two cases for the system-optimization model and the
user-optimization model respectively.
Case I: System-optimization model.
Min
Z= Y o()xfi=0xf+ f+5)x f, +A0x f, +5x f +5)x f, +

I=ab,cd.e

AOx £ +5x £, +110)x £, + (5% f; +2x f, +150) x f, + (4% f, +3x f, +10)x f,

x, +x, +x, =10;

S.t.

x; +x, =10;
Ja=x;

Jo=x33

fe=x;

Sa =%

fe=x5;
Jfa.f;:,ﬂ,fd,.f; =0,

X153 X5, Xy, X4, X5 20

Applying the projection method, the final results are summarized in Table A.6:
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Tteration Ja s Iz fa fe Z
0 10 0 0 5 5
Cqa Cp Ce Caq Ce
60 30 135 195 30
C[ C2 Cj C4 C5
60 30 135 195 30
é, &y é. [ Go
110 30 135 220 50
¢ C; G Cy Cs
110 30 135 220 50
I fa fo 2 2 £ Z
7.333 2.667 0 0 10 993,333
Cq Cp Ce Cq Ce
41.665 | 31.670 160 164.666 50
Cl Cg C3 C4 C5
41.665 | 31.670 160 164.666 50
&, &y é. é4 é,
78.33 58.340 160 164.666 90
C, C, C; Cq Cs
78.33 58.340 160 164.666 90
2 Jo Jo L Ja fe Z
6.667 3.333 0 0 10 883.333
Ca Cp Ce Cq Ce
38.335 | 38.330 160 163.334 50
C, C Cs Cq Cs
38.335 | 38.330 160 163.334 50
é, Ep é. (o é,
71.66 71.660 160 163.334 90
¢ ¢, Cs Cs Cs
71.660 | 71.660 160 163.334 90

Table A.6: System-optimization results of example3

Case II: User-optimization model.

Min

Ji Ja Sy
Z= 3 ja,(m)dm:j(Sxa;+fd+5)da)+j(wxmb+5xfd+5)da)+
0 0

I=abed,e
Je

J4 I
Ja0x @ +5% £, +110)do + [(5x @ +2x £, +150)dw + [(4x @, +3x% £, +10)do
0 0

0

88
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St X+ %, + %3 =10;
X4 + x5 =10;

Ja=x
Sy =%
Je=x3;
Sa=%43
Jo =%
JotoSeSa S 205

X5 Xgy Xy, Xgy X5 2 0;

Applying the projection method, the final results are summarized in Table A.7

Tteration £ fo ) Ja Je Z
0 10 0 0 5 5
Ca Cp Ce Cd Ce
60 30 135 195 30
C C; C; Cy Cs
60 30 135 195 30
1 Ja Jo fe Ja fe Z
8 2 0 0 10 620
Ca ch . Cq Ce
45 25 160 166 50
C; C; C; Cy Cs
45 25 160 166 50
2 Jfa Jo Je Ja fe Z
6.667 3.333 0 0 10 516.667
Ca Ch C. Ca Ce
38.330 38.330 160 163.333 50
C, C, C; C, Cs
38.330 38.330 160 163.333 50

Table A.7: User-optimization results of example 3

Example 4: Fixed demand function (Path = Link)
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Figure A.4 Example 4 network topology

Time functions:

c,=5xf,+2x f, +5
c,=Txfo+f,+5
c,=3x fo+ f+ fo+1

Demand functions:

d, =10

The solution will be illustrated in two cases for the system-optimization model and the
user-optimization model respectively.

Case I: System-optimization model.

Min

Z=3c(MNxfi=0Gxfi+2xf, +)x o +(Ix fy+ [, +5)x [y +Cx o+ f, + f+T)x £,

I=ab,c

St x +x, =10

Jo=x3
Jo = %33
Jo =%+ %3
SoJo fe 205

X,%, 20;

Applying the projection method, the final results are summarized in Table A.8
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Iteration £ 5 f z
0 4 6 10
c, ¢ c.
37 51 47
of) G,
84 98
é, é &,
57 93 77
C (0F)
134 170
1 fa ) f z
5.5 4.5 i0 897
Cy Ch Cc
41.5 42 47
G G
88.5 89
é, é, é,
69 73.5 77
[of C,
146 150.5
2 fa fs fc z
5.688 4.312 10 886.828
Ca Ch Ce
42.064 | 40.872 47
C C,
89.064 | 87.872
é, & &
70.504 | 171 .956 77
C, C,
147.504 | 148.056
3 fa fo fc z
5.711 4,289 10 885.497
Ca Ch Ce
42.133 | 40.734 47
C Cr
89.133 | 87.734
¢y ép é;
70.688 | 70.757 77
C[ C,
147.7 1 147.757
4 fa f fc z
5.714 4.286 10 885.33
Ca Cp Ce
42.142 | 40.716 47
C, G
89.142 | 87.716
éa (43 ée
70.714 | 70.715 77
C[ Cz
147.7 147,715

Table A.8: System-optimization results of example 4
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Case II: User-optimization model.

Min
Ji fa L S
Z= Y [e@)do=|6x0,+2x f,+5)do+ [Ixo+f,+5)do + [3xo,+ f,+ f,+ o
I=a,b,c ¢ o 0 0

St x +x,=10;

Ja=x
Jo = %33
Jfo =%+ x5
foto S 205

Xy, %, 20;

Applying the projection method, the fina! results are summarized in Table A.9
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Tteration fa 1 A z
0 4 6 10
Ca Cp Ce
37 51 47
C Cz
84 98
Iteration fa fp fe z
1 5.167 4.833 10 599.833
Cq Cp Ce
40.5 44 47
Ci C,
87.5 91
Iteration fa 1o A z
2 5.458 4.542 10 592.906
Ca Cp Ce
41.375 | 42.25 47
C, &)
88.375 | 89.25
Iteration fa fy Je z
3 5.531 4.469 10 591.015
Cq Cp Ce
41.594 | 41.812 47
C &)
88.594 | 88.812
Tteration Ja S [ z
4 5.549 4.451 10 590.532
Ca Cp Cc
41.648 | 41.703 47
C; G,
88.648 | 88.703
Iteration fa b f: z
5 5.554 4.446 10 590.411
Ca Cp Ce
41.662 | 41.676 47
C G
88.662 | 88.676
Iteration Ja fo [ z
6 5.555 4.445 10 590.381
Ca Ccp [
41.666 | 41.666 47
C, C,;
88.666 | 88.666

Table A.9: User-optimization results of example 4
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Example 5: Variable demand function (Path # Link) (1)

Figure A.5 Example 5 network topology

Time functions:

¢ =fi+1
c,=fr+2

ey =/f3+2

¢, =f,+1
Demand functions:
d,=4-1/7y,
d,=T7-1/6u,

The solution will be illustrated in two cases for the system-optimization model and the
user-optimization model respectively.
Case I: System-optimization model.
Min
A 2
Z=) q(f,)xfi= D2 uld)xd; = (fi+Dx fi+(f,+2x f, +(f +2x [+ (fi +Dx [,
I=] i=l

~(28-4xd,)xd,~(42~6xd,)xd,

St x+x,=d;

X +x,=d,;
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Si=x 4%,

Jo =%+ x5

VA =X X5
fo=x, +x,;

S S Sa fa 20
Xy X5 X3, %, 205
dd, >0

Applying the projection method, the final results are summarized in Table A.10

Tteration £ 5 fz [ d d; Z
0 3 2 2 3 3 2
Ci c2 Cs3 Cq
4 4 4 4
C, C, C; Cy
8 8 3 8
é] & &3 éy
7 6 6 7
Cl C’z ég é4
13 14 12 13
Iteration f 12 f Je d; d; Z
1 1.354 2.476 1.665 2.165 1.354 2.476 | -65.063

Cy Co C3 Cq Uy Uy

2.354 4.476 3.665 3.165 9.038 12.282
C] Cz C3 C4

6.019 5.519 8.141 7.641
é; ) é3 ¢y

3.708 6.952 5.33 5.33
[ C; Cs Cs

9.038 9.038 12.282 | 12.282

Table A.10: System-optimization results of example 5

Case II: User-optimization model.

Min

4
7 =
=

di dy
- [(28-4xv)dv - [(@2-6xv)dv
0 0

Ji

1 0

2 4
e/(@)dw, =y, f u, (V)dv =

i=l ¢

95

N ¥7) fi Sa
[@+Ddo + [(o+2)do+ [(@,+2)do + |(@, +Ddo
0 1 0 0 0
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St.  x+x,=d;

Xy +x, =d,;

fi=%+ %3

fo =%+ x,;

Sy =%+ %53
fi=x+x;
Si o s fa 205
Xp5X5,%5,%, 205

d\d, 20,

Applying the projection method, the final results are summarized in Table A.11

Iteration fi 5 fi fa d; d, Z
0 3 2 2 3 3 2
Cy Cy C3 Cy
4 4 4 4
C, C; C; Cy
8 8 8 8
Iteration f1 f fz fa d; d; Z
1 2.709 4.953 3.331 4.331 2.709 4.953 | -130.126
C; C2 C3 Cyq U; Uu;
3.709 6.953 5.331 5.331 9.04 12.284
C G, Cs Cy
9.04 9.04 12.284 | 12.284

Table A.11: User-optimization Results of example 5

Figure A.6 Example 6 network topology

Example 6: Variable demand function (Path # Link) (2)

96
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Time functions:

c,=5xf,+2x fy+5
e, =Tx fo+f,+5
c,=3xfo+f,+f,+7

Travel disutility function:

u, =99 —~2xd,

The solution will be illustrated in two cases for the system-optimization model and the
user-optimization model respectively.
Case I: System-~-optimization model.

Min

Z=3 ¢(Nxfi— 2 u(d)xd; =(5x f, +2x fo +5)x fo + (Ix fy + [ +5)x fy +

I=a,b,c i=l

Bxfi+f,+f,+T)x f,—(99-2xd,)xd,

St x+x,=d;

Applying the projection method, the final results are summarized in Table A.12
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Tteration £ fo fe d; Z
0 4 4 8 8
Ca Cp Cc
33 37 39
G G
72 76
é. Sy é.
53 65 63
C, C;
116 128
1 fa J fe d, Z
2.511 2.079 4,589 589 167.084
Ca Cp Ce
21.713 22.064 25.357
C, C;
47.07 47.421
C/"a éb éc
34,268 36.617 39.124
Cr [
73.392 75.741
2 Ja Jo fe d z
2.825 2.122 4.947 4,947 193.787
Cq Cp Cc
23.369 22.679 26.788
G C
50.157 49 467
éa éb éc
37.494 | 37.533 41.629
Ci [
79.123 79.162
3 fa fo fe a4 Z
2.829 2.122 4,952 4,952 194,145
Ca Cp Cc
23.389 22.683 26.807
C C;
50.196 49 49
é, Sy é.
37.534 37.537 41.663
¢ C,
79.2 79.2

Table A.12: System-optimization results of example 6
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Case II: User-optimization model.

Min

/) d, Sa Sy
z=7 |a@do-Y, [u)dv= [5x@+2x £, +5)do + [Tx0+f, +3)do+

l=abc @ i=l

A d1
[Bxo+ £, + £, + o~ [99-2xv)dv
0 0

S.t. x, +x, =d;

fa=xl;

; Applying the projection method, the final results are summarized in Table A.13
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Tteration fo fo Jfe d; Z
0 4 4 8 8
Ca Cs Cc
33 37 39
C, G
72 76
1 Ja Jo fe d; Z
5.021 4,158 9.179 9.179 334.168
Ca Cp Ce
38.421 39.127 43.716
G G
82.137 82.843
2 Ja Js Je d; Z
4,948 4.005 8.953 8.953 317.739
Cq Cp Cc
37.75 37.983 42 812
C, G,
80.562 80.795
3 Jfa fo fe d, Y4
4.999 4.008 9.008 9.008 321.581
Ca Cp Ce
38.011 38.055 43.031
C, G,
81.042 81.086
4 fa fo fe d Z
4997 4,001 8.098 8.998 | 320.846
Ca Cp Ce
37.987 38.004 42.992
C; C;
80.979 80.996
5 Ja Jo fe d 4
5 4 9 9 =321
Cq Cp Cc
38 38 43
Ci G
81 81

Table A.13: User-optimization results of example 6
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Example 7: Fixed demand function (Path # Link)

Figure A.7 Example 7 network topology

Time functions:

c,=f,+5
¢, =2x f, +10
c.=f.+15

Travel disutility function:

u,; =100

The solution will be illustrated in two cases for the system-optimization model and the
user-optimization model respectivzly.

Case I: System-optimization model.

MinZ = Y ¢(f;)x f; =(f, +5)x f, + (2% f, +10)x f, + (f, +15)x f.

I1=a,b,c
St x +x, =100;

fa =x1;
fb =X,
fo=x +x,;
Joto . 20;

X%, 20;

Applying the projection method, the final results are summarized in Table A.14
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Tteration fa Jo fe Z
0 40 60 100
Cq Cy Ce
45 130 115
o C,
160 245
&, Gy é,
85 250 215
é/ é,?
300 465
1 Ja Jo fe Z
67.5 32.5 100 18831.25
C, Cp Ce
72.5 75 115
o C,
187.5 190
éa éb éc
140 140 215
C, C,
355 355

Table A.14: System-optimization results of example 7

Case II:-User-optimization model.

Min
Ji Ja Sy Se
Z= 3 [e(@)do= [(@+3)da + [exw+10)dw + f(@+15)e
I=ab,c 0 0 Q

St x +x,=100;

f;zle;
fo=x,;
Je =x +x,3
fado S 20

X,%X, 20;

Applying the projection method, the final results are summarized in Table A.15
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Iteration fa fo A VA
0 40 60 100
Ca Cp Ce
45 130 115
C, C,
160 245
1 Ja Lo fe Z
68.333 | 31.667 100 10495.83
Ca Cy Ce
73.333 73.334 115
C[ Cg
188.333 | 188.334

Table A.15: User-optimization results of example 7

Example 8: Variable demand function (Path # Link)

Figure A.8 Example 8 network topology

Time functions:

c,=f,+5
¢, =2x%x f, +10
¢, =f,+15

Travel disutility function:

u, =99 -2xd,

The solution will be illustrated in two cases for the system-optimization model and the

user-optimization model respectively.
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Case I: System-optimization model.

MinZ = Y alf)x fi= 2 u(d)xd; = (f, +5)x f, + 2% f, +10)x f, + (£, +15)x £,

~(99-2xd,)xd,

St x+x,=d,;

Applying the projection method, the final results are summarized in Table A.16

Tteration fa Jo Je Z
0 40 60 10
Ca Cp Ce
45 130 115
o) C,
160 245
Ca Ep é.
85 250 215
C, C,
300 465
1 fo fo fe Z
67.5 32.5 10 18831.25
Cq Cp Ce
72.5 75 115
C] C;
187.5 190
é, é, é,
140 140 215
¢ [of
355 355

Table A.16: System-optimization results of example 8
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Case II: User-optimization model.

Min
3] 4 Ja ./ I dy
z=7Y, |gq@)do-3, [w@w)dv = [(@+5)do + j(zx © +10)do + [(@+15)do - [(99-2xv)dv
I=ab,c i=1 ¢ 0 0 0 0

St x+x,=d;
fa =x[;

Sfo=x+x,;

Applying the projection method, the final results are summarized in Table A.17

Through the numerical tests as shown in these eight single-period transportation

equilibrium models, it can be concluded that the projection method is very efficient

Iteration fa o A Z
0 40 60 10
Cq Cp Ce
45 130 115
C ()
160 245
I 2 2 2 Z
68.333 | 31.667 100
Cq Cp Ce
73.333 | 73.334 115
C; G, 10495.83
188.333 | 188.334

Table A.17: User-optimization results of example 8

algorithm in sol+ ing single-period transportation equilibrium models.
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Appendix B

dv Multi-period Transportation Equilibrium Models
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For the multi-period transportation network equilibrium problems and optimal solution
algorithms, four examples will be presented. These include linear, exponential, time lag
effect and no time lag effect transportation equilibrium models. The types of these

examples are summarized in Table B.1:

Example {| Linear | Exponential | No Time

structure | structure time lag
demand demand lag effect
function | Function effect

1 Y - Y

2 Y Y

3 Y Y

4 Y Y

Table B.1: Type of example in Appendix B

In this appendix, the same network topology and time functions that were implemented
for all four examples will be used. Three periods for each of the examples will be
considered. Further, there will be a constant discount factor for every period in all the

examples, and demand functions are given according to Table B.1.

In each example, a mathematical formulation in the two forms of system-optimization
and user-optimization will be given. In example 1 and 3, the demand functions have no
time lag effect and the relaxation method is used; in example 2 and 4, the demand
functions have a time lag effect and the decoupled relaxation method is used. The

programming code was developed in GAMS to get the solution for those examples.

At the end of each example, the results were summarized in two tables, one for

computing iterations and the other one for the optimal solutions.
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Example 1: Linear structure demand function without time lag effect.

Figure B.1 Transportation network topology

Time functions:

' = fP+05x ;7 +1
e = £ +04x f0+2
= f0+04x f0+2
¢ = fP+03x f2+1

Discount factor:
r=20.05

Period:

r=123

Demand functions:

dP? =a ~1.6xu® +09xuf’

d{ =a, +1.1xu -1.8xu"

History data (in periodt = 0) are given as follows:

Demand: 4% =4, 49 =3,

Travel disutility: = =12.4, u{=" =12.5.

The solution will be illustrated in two cases for the system-optimization model and the

user-optimization model respectively.
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Case I: System-optimization model.

3 4 2 _
Min Z =310 +7) <[P (FO)xf) - (DO (@) x d)]
t=1 1= i=1
S.t.

2O +x0 =d®;

20 4 %0 = do;
f(r) = x® + x;
O =20 4 X0,
O =59 4 50,

1) (1
f:;( x§)+x4),

for all x, £1,d\" 2 0;
Relaxation method was used to calculate the optirﬁal solution:
First the parameter of demand functions, g, and a, was regressed from history data.
2
a,=d"" + Z (u§'=°) xbg ) ®B.1)
J=1
The objective function at & relaxation step is described as equation B.2:

¢ £O ¢ £
Z= Zl/(l+r) x[;(ac' j% ) ¢ X(fOY? 4+ O FOED) _ 0c; ;(J:) ) fo-)

(B.2)
—Z( 1/b,,xd® +(q, +(Zu<'><" D x (b )+ U D x b, )/ by ) xdfP]

Iteration information is summarized in Table B.2:
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. No. of
Relaxation NLP Total No.

Iteration . NLP
Tteration

100
37
20
18 277
20
22
20
20
20
Table B.2: Example 1 system-optimization iteration information

Ojoo ||| |[&B]|Witd|r-=

The optimal solution for system-optimization model is summarized in Table B.3

fi L ] fa
t=1 2.302 1.939 | 1.753 2.488
1=2 2.302 1.939 | 1.753 2.488
=3 2.302 1.939 | 1.753 2.488
d] dz u"1 qu
r=] 2.302 1.939 | 13.076 | 13.300
=2 2.302 1.939 |13.076 | 13.300
=3 2.302 1.939 | 13.076 | 13.300
¢ [0 Cs Cs
t=1 13.076 | 13.076 | 13.300 | 13.300
=2 13.076 | 13.076 | 13.300 | 13.300
=3 13.076 | 13.076 | 13.300 | 13.300
Z -64.6160
Table B.3: Example 1 system-optimization results

Case II: User-optimization model.
4 f'(I) 2 dl(l)
=1

Min Z=i1/(1+r)' x| (@)do - | DY (b)dv)
=1 =1 ¢ i 0

i

S.t.

110

|
|

Reproduced with permissién of thé c;)wpyri'ght owneﬂr..” Further re_b»r;)duction prdﬁibﬁéd Awithoubt.permission.




xl(r) +x§t) dl(t);

X0 4 x® = 4o,
f(r) = x® 4 x0;
£ = x“’ + 20
9 = 50 4 50,

) _ 0, (0.
0 = x4 X
for all ¥, £9,d = 0;

Relaxation method was used to calculate the optimal solution:

First the parameter of demand function was regressed, a, and a, from history data.
2
a,=d" +Y ul™ x(b, ) (B.3)
J=1

The objective function at ¥” projection step is described as equation B.4:

Z= Zl/(l +r) % [Z(l /2x ac}‘;({: “ x(£O)? + O (fOHDy acf;;(]; “) x fOEDy

—Z( 1/(2x B, ) xd” +(a; +(Zu(’)"‘“’)x( ~by N +uPED x b, ) By, )x A0

i=1

B.4)

Iteration information is summarized in Table B.4

Relaxation I\II\?I;;f Total No.
Iteration . NLP
Iteration
1 101
2 18
3 20 a
4 20 203
5 24
6 20

Table B.4: Example 1 user-optimization iteration information

The optimal solution for user-optimization model is summarized in Table B.5
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fi by RE fa
t=1 3916 | 2906 | 238 | 4.441

= 3.916 2.906 2.38 4.441
=3 3.916 2.906 2.38 4441
d] dz Uy Uz

t=1 3916 2.906 12,523 | 12.627
=2 3.916 2.906 12.523 | 12.627
=3 3.916 2.906 12.523 | 12.627
C C, C; Cq
t=] 12,523 | 12.523 | 12.627 | 12.627
=2 12,523 | 12.523 | 12.627 | 12.627
=3 12.523 | 12.523 | 12.627 | 12.627
Z -86.374
Table B.S: Example 1 user-optimization results

Example 2: Linear structure demand function with time lag effect

Time functions:

¢ = £ +05x £ +1
= 0 404x £0+2
= f10404x £ +2
e = fO+03x 0 +1

Discount factor:
r=0.05

Period:

r=123

Demand functions:

d¥ =a —-1.6xu® +0.9%u{” +0.82x d*™"
dP =a, +1L.I1xul® ~1.8xul” +0.8x d{'™
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History data (At = -1 and ¢ = 0) are given as follows:
Att=-1:

demand: d'*Y =3, 4=V =2;
At t=0:

demand: d{=" =4, d{* =3,

travel disutility: »{=® =12.4, & =12.5.

The solution will be illustrated in two cases for system-optimization and user-
optimization respectively.

Case I: System-optimization model.
3 X 4 2 A
Min Z =Y 1/(1+r) x[Q ¢ (fP)x i) =D (D (dV)yxd")]
t=1 1=1 i=1

S.t.

29 4+ 20 = g0,
x + %0 =d;
F = 0 40
£ =0 4 50
AN CIRNOR

(1) — AD 4 0.
[0 =%+ x0;

forall x¥, 719,d% >0;

Decoupled relaxation method will be illustrated to calculate the optimal solution:

First the parameter of demand function, g, and a, was regressed from history data.
2
a, =d{ + % ul0 x (b ) —e;xd " B.5)
j=l
The constant factor inflated disutility elasticity in the decoupled steps will also be needed here.
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Constant factor of demand function:

¢
AP =(a; Zef,—") e xd{™” (B.6)

n=1

Inflated disutility elasticity at each decoupled step:

I
0 _ t-n ) 7,
bg.jy = by jy % Z g xuy” luj’) B.7)

n=l

The objective function at & decoupled step applying relaxation method is described as equation

B.§:

Z= ;1/(1 +r) x[z (ac,(t); (];(:)) x(F)? + O (f Oy - _a_c,';__((_{_)“_) fDy

(B.8)
3T (1B, K 4 (AD + (3D (B0 3) + D s B0y B0y 4O
i=1 j=1

(i)

Iteration information is summarized in Table B.6
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No. of
NLP
Iteration
101
38
18
17
19
20
18
22
19
18
19
18
21 128
16
21
15
20
17
17 S8
17
17
17
17 45
15
16
7 33
6 15 15
Table B.6: Example 2 system-optimization iteration information

Decoupled | Relaxation
Iteration Iteration

Total
No. NLP

272

5

'—‘N'—'UJNHM-&WNH\]O\U\AMNH\OOO\IO\UIAWN’—‘

The optimal solution for system-optimization model is summarized in Table B.7
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fi [ RE; _f
=1 2469 | 2.115 | 1919 | 2.664

=2 2.351 1.997 1.805 2.543
t=3 2.358 1.984 1.802 2.540
d[ dz u’\, u'\z
=] 2.469 2.115 13.899 | 14.121
1=2 2.351 1.997 | 13.328 13.563
t=3 2.358 1.984 | 13.328 13.529
C C, Cs Cy
t=1 13.899 | 13.899 { 14.121 | 14.121
=2 13.328 | 13.328 13.563 | 13.563
=3 13.328 | 13.328 13.529 | 13.529
V4 -71.2960
Table B.7: Example 2 system-optimization results

Case II: User-optimization model.

3 4 fl(') 2 d}')
Min  Z=Y1K1+r) () [c*(@)do-) [ DO ()dv)
t=1 =1 ¢ i=l g

S.t.

x,(') +x§x) - dl(t);

() () _ J.
X +xy =d;’;
FO =30 450,
t ).
£ =5 4 50,

t 0.
{3 ¢ 0.
()._x() Ix(),

for all 9, /9,4 > 0;

Decoupled relaxation method was used to calculate the optimal solution:

First the parameter of demand function, g, and a, was regressed from history data.
2
a,= di(‘=0) + Z (u;mo) x b(i, j)) —€ Xd.( =
j=1
(B.9)
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The constant factor inflated disutility elasticity in the decoupled steps will be needed here.

Constant factor of demand function:

t
AV =(a, x> e/ ") +el xd

(B.10)
n=1
Inflated disutility elasticity of demand at each decoupled step:
!
£l =X 36l xa? ) ®.11)

The objective function at #" decoupled step applying relaxation method is described as equation

B.12:
3 4 ) r@) ¢ @)

7 = Zl/(l + r)t % [Z (1/2 x aclafg}:; ) X(f;(f))z + cl(t) (f(t),(k-l)) _ aclaf({l: ) x f;(f),(k—l))
1=l I=1 i I

2 2
=D (~1/@2xb{) x dP + (49 + (O w4 x (5D ) +uP¢D x b)) b ) x d 0]
i=1

ii)
J=l

(B.12)

teration information is summarized in Table B.S

Decoupled
Iteration

Relaxation
Tteration

No. of
NLP
Iteration

Total
No.
NLP

115
21

19

21

21 284
22
23
24
18
19
19
19
15 34
4 20 20
Table B.8: Example 2 user-optimization iteration information

2
3

38

= ro = {ro =l wiocofa]n|n| b

The optimal solution for user-optimization model is summarized in Table B.9
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fi L b fa
=1 4.179 3.191 2,632 4.737
=2 4.223 3.241 2.676 4.788
=3 4236 3.258 2.690 4.804
d] dz U Uy
=] 4.179 3.191 13.301 | 13.389
=2 4.223 3.241 13.432 | 13.520
=3 4.236 3.258 13.475 | 13.563
C] Cz C3 C4
t=1 13.301 | 13.301 | 13.389 | 13.389
t=2 13432 | 13.432 | 13.520 | 13.520
=3 13475 | 13.475 | 13.563 | 13.563
Z -94.2282

Table B.9: Example 2 user-optimization results

Example 3: Exponential structure demand function without time lag effect.

Time functions:

= £ +0.5x £ +1
=0 +04x 0 +2
= f0 +04x £ +2
P = fP+03x 0 +1

Discount factor:

r =0.05

Period:

t=123

Demand functions:

() _ (£)-1.6 (1)0.9
d\” =a, xu""° xu;

) _ L1 (1)-1.8
dy,’ =a, xu" xuy

118
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I VR )

History data (At period # = 0) are given as follows:

Demand: d® =4, d*9 =3,

Travel disutility: «{"™” =12.4, u{"” =12.5.

The solution will be illustrated in two cases for the system-optimization model and the

user-optimization model respectively.

Case I: System-optimization model.

3 4 2

Min Z =Y 1/1+r) x [ (F )=/ -3 (DO (dP)x d™)]
t=] =] i=1

S.t.

5+ =d;
5+ 5 =y
RO =50 +x;
£ = 50 4 50,
FO =50 4 0,
F0 = 50 4 50,

for all x0, 79,4% > 0;

Relaxation method was used to calculate the optimal solution:

First the parameter of demand function, @, and a, was regressed from history data.

2
a, = (@ x ] [y (B.13)

J=1
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The objective function at ¥* relaxation step is described as equation B.14:

acf? ) B F® i
Z= Zl/(1+r)'x[2( ] ({) ) K(fO + (O 1))__017;%_)_Xﬁ(n.(k D)
' B.14)
_Z(a XH(u(l) (K~ l))-b(;,) )I/b(,,, X1 (:)(k D X(d('))l 1/1;(,”]

i=l

Iteration information is summarized in Table B.10:

No. of
NLP
Tteration
262
43
20
18
19
21
22
20
Table B.10: Example 3 system-optimization iteration information

Relaxation
Iteration

Total No.
NLP

430

OO ~JI NP D]

The optimal solution for system-optimization model is summarized in Table B.11:

fi f2 fi fa
t=1 1.896 | 1910 |1.542 |2.263

$=2 1.896 | 1.910 1.542 2.263
=3 1.896 | 1.910 1.542 2.263
d/ dz u", qu
t=1 1.896 | 1.910 11.735 | 12.568
=2 1.896 | 1.910 11.735 | 12.568
t=3 1.896 | 1.910 11.735 | 12.568
¢ [ C; ¢,
t=1 11.735 | 11.735 | 12,568 | 12,568
=2 11.735 | 11,735 |} 12.568 | 12.568
t=3 11.735 | 11.735 | 12.568 | 12.568
Z -222.8318
Table B.11: Example 3 system-optimization results

Case II: User-optimization model.
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f(l) d,(')
Min Z= Zl/(l+r) x(i Ic(‘)(a))da)——zz: [ D™ w)dv)
0 =l ¢

S.t.

(n (r) ETOR
X +x =d"
xgr)+ u)_ d§";

f(f)_ (1) xg),

fz(t) (r) + xy)’
f3(l) - xl(r) + x(')

(1) H
S =0+ X0,

0)
for all x32, 59,49 >0

Relaxation method was used to calculate the optimal solution:

First the parameter of demand function, g, and a, was regressed from history data.

@, =@ x[ ™) (8.15)
Jj=1
The objective function at ¥ relaxation step is described as equation B.16:

(t (t )¢ ()
Z= Zl/(1+r) x[Z(l/z oc; _)f(‘]’: ))X(fzm) O (FOEDy dc; ;{) ) x fOG-D)

“1yx—bpy \1/b - 1-1/b
- le/(l ~1/b, )% (a, X H(uﬁ‘t).(k Dy~ yhun u({'),(k Dy (di(t)) ]
i= j=1

(B.16)

Iteration information is summarized in Table B.12:

Relaxation I\II\(I)I';f Total No.
Tteration . NLP
Iteration
1 332
2 21
3 21
4 23 448
5 25
6 26

Table B.12: Example 3 user-optimization iteration information
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The optimal solution for user-optimization model is summarized in Table B.13:

fi _f L Ji
=1 3.949 2.957 2.419 4.486
=2 3.949 2.957 2.419 4.486
=3 3.949 2.957 2.419 4.486
d ] dz Uu; U
t=1 3.949 2.957 12.639 | 12.749
=2 3.949 2.957 12.639 | 12.749
=3 3.949 2.957 12.639 | 12.749
C 7 Cz C 3 C4
=] 12.639 | 12.639 | 12.749 | 12.749
=2 12.639 | 12.639 | 12.749 | 12.749
1=3 12.639 | 12.639 | 12.749 | 12.749
Z -423.336
Table B.13: Example 3 user-optimization resulis

Example 4: Exponential structure demand function with time lag effect.

Time functions:

e = £ +0.5x £ +1
e = £ 404x f© +2
e = £ +04x £ +2
¢ = £ +03x £ +1

Discount factor:
r=0.05
Period:

t=123

Demand functions:
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d(f) =a, xu(t)—lG ><1",'(1)(!9 % d(t-l)D .82

(OL1

dér) =a, xu (n-18 d2(1-1)0.8

XU,
History data (At period £ = -1 and ¢ = () are given as follows:
Atperiod t=-1:

demand: df" =3, d{= =2,

At period 7=0:

demand: 4" =4, d{*” =3,

travel disutility: 2" =12.4, u{"” =12.5

The solution will be illustrated in two cases for the system-optimization model and the
user-optimization model respectively.

Case I: System-optimization model.
3 4 2
Min Z =Y 10+ <[ el (fO)xf2) -3 (DO (dP)x d)]
t=1 =1 i=

S.t.

(t) +x(f) d‘(‘);
10 420 = 4
fi(’} = xl(f) + x(l)
12 =0 450,
f(t) — xl(f) + xgr)’

f) — x(f) + x‘(;),

for all x¥, £79,d® > 0;

Decoupled relaxation method was used to calculate the optimal solution:

First the parameter of demand function, a, and a, was regressed from history data.
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2
a, = (d"0 x ] Jul™eyx = (B.17)

j=t
The constant factor inflated disutility elasticity in the decoupled steps will be needed here.

Constant factor of demand function:

!
1-n

40 =(@)=" xdro B.18)

Inflated disutility elasticity of demand at each decoupled step:
¢
b =bg,y x Z(e‘f"‘ x In() /In( ")) (B.19)
The objective function at &* decoupled step is described as equation B.20:

Z = Zl/(l-}-r) x[i( ');(J; ) x(fO) 4O (fOEDy 6::,“); ({;(r)) v

( A x H(um (k= 1))-"(. 0) )“bo " 5 D 5 (40 ”b(,n]

i=1

(B.20)

Tteration information is summarized in Table B.14
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Decoupled | Relaxation No. of Total

Tteration Tteration NLP No. NLP
Iteration

266
46
18
21
20 464
22
23
24
24
25
19
19
18 137
19
20
17
18
18
20 96
19
21
19
18
21
16
21
19 63
23
20

6 7 37

7 21 21

Table B.14: Example 4 system-optimization iteration information

74

=l —{w|ol=|ajwol—|una v = 9lo s ]L =[O WLIN -

The optimal solution for system-optimization model is summarized in Table B.15
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Si L2 S fa
t=1 2.194 2.373 1.911 2.656
=2 2.26 2.374 1.944 2.69
=3 2.421 2.467 2.067 | . 2.821

d] dz u’\l qu
=1 2.194 2373 | 13.459 | 14.508
=2 2.26 2374 | 13.671 | 14.617
=3 2.421 2467 | 14337 | 15.164

[of C; -C; Cy
t=] 13.459 | 13.459 | 14.508 | 14.508
=2 13.671 | 13.671 | 14,617 | 14.617
=3 14.337 | 14337 | 15.164 | 15,164
Z -192.4626

Table B.15: Example 4 system-optimization results

Case II: User-optimization model.

3 4
Min  Z=)U{1+r)x(Q,
t=1 1=1

S.t.

) +x" =d”;
£ 1 20 = 490,
RO =5+ x0;
F1 = x4 50
O = x0 4 30,

t ! t).
£ =20 420,

forall x¥, 7,9,d[" 20;

Decoupled relaxation method was used to calculate the optimal solution:

fl(l)

jc,m (@)dw —
0

2
— (7 (=0 (=005, ) (t=1)-¢;
a, =(d; xl ]uj )xd;
1

126

2 4

[ D™ (w)dv)

i=l ¢

!

The constant factor inflated disutility elasticity in the decoupled steps is needed here.

l

First the parameter of demand function, g, and a, was regressed from history data.

(B.21)
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Constant factor of demand function:

-1

A0 =@y awor ®.22)

Inflated disutility elasticity of demand at each decoupled step:

3
by =by % Y (€ xlog™) /logu!)) (B.23)

n=l

The objective function at ¥ decoupled step applying relaxation method is described as equation
B.24:

3 4 ()¢ £ OTgrat
Z=21/(l+r)’x[z(1/2 % ;‘j’: 9 ) (032 + 0 (f000y - ;{: L gloseony
t=1

—il/(l-—l/bm)) x( (r)xH(u(f)(k 1))"’(!1) )””(.n ><u(t)(k ) x(d('))l ”"(1:)]
i,j

i=]

(B.249)

Iteration information is summarized in Table B.16:

No. of | Total
NLP No.
Tteration { NLP
323
26

21

19

20

20

21

21

16

20
21 123
22
23
18
19 57
20
22
4 7 44
5 19 19
Table B.16: Example 4 user-optimization iteration information

Decoupled | Relaxation
Iteration Tteration

450

R I TR T IS IV RN TP S I Y LI BN e WAV T RN LV S R L
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The optimal solution for user-optimization model is summarized in Table B.17:

fi L RE fs
=] 4.539 371 3.038 5.211
t=2 4.817 4.168 3.378 5.607
1= 4.951 4.441 3.566 5.826
d] dg Uy u;
=] 4.539 3711 14516 | 14.648
t= 4.817 4.168 | 15521} 15.715
=3 4.951 4441 | 16.066 | 16316
C; G, C; Cq
t=1 14516 | 14516 | 14.648 | 14.648
t=2 15.521 | 15.521 15.715 | 15.715
=3 16.066 | 16.066 | 16.316 | 16.316
Z -385.3421

Table B.17: Example 4 user-optimization results

Through the numerical tests as shown in these four single-period transportation
equilibrium models, it can be concluded that the reiaxation method is an effective
algorithm in solving multi-period transportation equilibrium models without time lag
effect and the decoupled relaxation method is also effective method in solving multi-

period transportation equilibrium models with time lag effect.
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