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ABSTRACT

Previous studies in transportation equilibrium have focused on models in which travel 

demands were functions of travel time in the current time period. Most of these models 

are single-period models, neglecting the time lag effect. However, the time lag effect can 

be a very important factor, especially in long-term transportation planning. In this thesis, 

the geometric distributed lag (GDL) structure used in energy equilibrium models is 

applied to the multi-period transportation equilibrium models. Because it may be difficult 

to obtain the equilibrium solutions of such models by general iterative methods directly, 

such as the projection method or the relaxation method. General iterative methods are 

modified and implemented by GAMS (general Algebraic Modeling System). Final, a 

small scale transportation equilibrium model is solved by modified iterative method, 

illustrating the procedure of modeling and equilibrium seeking.
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CHAPTER 1 

INTRODUCTION

With the explosion of urbanization, traveling has become embedded into our daily lives. 

As a result, transportation has become increasingly important to our daily routine. Not 

only do transportation engineers need to plan the whole urban transportation system, but 

ordinary people also need to plan their own trips ahead of traveling. Regardless of who 

does the planning, both an individual and a transportation engineer have the same goal in 

mind; to lessen road traffic trouble caused by mass transportation. Actions between 

drivers and engineers’ decisions and road congestion problems could be modeled as shifts 

in transportation equilibrium positions. The equilibrium models of transportation 

networks, which employ mathematical methods, are widely utilized in the realm of 

transportation planning and regional development.

In transportation equilibrium problem, much attention has been focused on those models 

in which travel demands can be functions of the travel time in the current time period. 

However, most of these single-period models, neglecting the time lag effect (Sheffi,

1985, Nagumey, 1999). In the real world, the time lag effect can be a very important 

factor, especially in long-run transportation equilibrium problem analysis. The analysts 

and transportation engineers may wish to present the time lag effect in response of travel
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demands to travel time. For example, the travel demand in this year on some paths 

depended to a great extent on historical data, such as the locations of residences or the 

residents’ places of work, and these location decisions were influenced by the travel time 

when the decisions were made.

The geometric distributed lag (GDL) equilibrium approach (Dhrymes, 1981) has been 

applied in the energy field (Wu and Fuller, 1995). It has proved to be useful especially in 

long-run energy planning and environment management (Chung, Wu and Fuller, 1997).

In order to provide a tool that can describe the time lag effect to analyze the effect of past 

travel time on current demands. The GDL demand need to be introduced into the multi

period transportation equilibrium models. The current GDL equilibrium approach 

requires to be further modified in order to analyze long-term urban transportation 

equilibrium networks. In this thesis, the GDL equilibrium approach will be used to 

provide alternations cases under two distinct conditions, i.e., system-optimization and 

user-optimization.

In the energy GDL equilibrium models, the demand is represented by a function of the 

prices in the current time period, but also price in previous time periods based on the 

GDL structure, and the supply is a cost-minimizing linear process sub-model. It is 

motivated by Daniel and Goldberg (1981). Convergence of projection independence 

evaluation system (PIES) algorithm (Ahn and Hogan, 1982) as applied to the GDL 

equilibrium models has been explored both theoretically and empirically by Wu and 

Fuller (1991). Because it can be difficult to compute the solution of the GDL equilibrium
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models by the PIES algorithm directly, the decoupling algorithm was developed by Wu 

and Fuller (1996). In this thesis, the decoupled principle i.e., to decouple the inter-period 

price links, as applied in the GDL energy equilibrium models needs to be modified when 

applied to urban transportation networks, considering the time lag effect. The modified 

iterative methods, called decoupled projection method and decoupled relaxation method 

are employed to solve transportation equilibrium models with GDL demand.

This thesis is organized as follows. Chapter 2 contains a literature review and some 

background material on equilibrium models and various equilibrium-seeking algorithms. 

Chapter 3 provides a mathematical presentation of single-period transportation 

equilibrium models. In chapter 4, based on the single-period models, GDL demand is 

introduced into multi-period transportation equilibrium models, considering the time lag 

effect. In chapter 5, an exponential structure is utilized in the demand function, and then 

solution algorithms are provided for the multi-period transportation equilibrium models 

with time lag demand. In chapter 6, a numerical example is solved by using the 

decoupled relaxation algorithm. Finally, the summary and conclusions are presented in 

chapter 7.
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CHAPTER 2 

BASIC CONCEPTS AND LITERATURE REVIEW

2.1 Market Equilibrium and Market Equilibrium Models

The equilibrium concept was first introduced in market fields (Thompson and Thore 

1992). The application of this equilibrium concept in a market environment can be seen 

as a classical market equilibrium model. In a market equilibrium model, a commodity in 

the market is influenced by two sides of the market, the suppliers and the consumers. The 

supplier’s behavior of production can be described by a supply function, and the users’ 

behavior of consumption can be captured by a demand function. The price of goods will 

be automatically regulated by the market until they reach an equilibrium state in which 

the market is said to clear.

The supply fonction expresses the amount of goods that the suppliers produce according 

to the current market price. As the price increases, it becomes a more profitable product 

and the quantity supplied increases. The demand function describes the aggregate 

behavior o f consumers by relating the amount of product consumed to its price. As the 

price increases, the amount of consumer decreases. When the price of production equals 

the price o f consumption, the market achieves clearance.
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Figure 2.1 depicts simple supply and demand functions for a certain product. When the 

entire quantity product is consumed, the market clears at the point where the two curves 

intersect. This point (P*, Q*) is known as equilibrium point, where P* is equilibrium 

price and Q* is equilibrium production quantity. If the price is higher than P*, 

production will be higher than consumption, as shown in Figurer 2.1 b, such a balance 

cannot be kept because not all of the product sells. This will result in growing inventory. 

Prices will eventually fall and consumptions will increase accordingly. If price is lower 

than P*, the quantity demanded is higher than the production. Such a situation is again 

unstable, since producers will try to increase price in order to capture the consumers’ 

willingness to pay more. This will lead to higher production and lower demand. In other 

words, if  the price is lower or higher than P*, market forces will tend to push the price to 

its “market clearing” level. At this point, the price will be stable and the point (P*, Q*) 

will be the corresponding equilibrium point.
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Figure 2.1; Demand / supply equilibrium 

(a) market-equilibrium quantity and price;

(b) price too high; (c) price too low (Sheffi, 1985)

Following Ahn and Hogan (1982), the general type of market equilibrium models can be 

defined as:

Supply side:

Min d Z

S.t. A Z  = Q (V)

Z e W

Demand side: (2.1)

G = & W
Equilibrium condition:

P = V

R eoroduced w ith oerm iss ion  o f the  coovriah t ow ner. Further reoroductlon  o roh ib ited  w ithou t oerm iss ion .



In model (2.1), Kis an optimal dual variable vector (shadow price vector), corresponding 

to the demand requirement constraints A Z  = Q, Cis a cost vector for the supply 

activities, Z is a production activity level vector. I f  is a polyhedral production constraint 

set which includes resource availability, material balance and other system constraints, 

and Qcj f.J is the demand function relating demand vector O to the price vector F.

Under the competitive market assumption, the elements of a shadow price vector F can 

be regarded as the supply prices, representing the marginal cost of meeting an additional 

unit of demand. As a result, a set of optimal solutions F* (or P*) and Q* become 

equilibrium price and demand vectors, respectively. An accompanying optimal value of 

the objective function Z* represents an equilibrium production profile of the supply 

activities.

The classical market equilibrium model of Ahn and Hogan (1982) has been applied 

widely in energy and environmental fields. In 1988, Murphy et al applied partial 

equilibrium models containing a large number of constraints to build an Intermediate 

Future Forecast System (IFFS) and forecasted integrated energy markets for the US. 

Energy Information Administration (ElA). IFFS has been demonstrated to be a very 

useful tool to predict and measure the impacts of new energy policy to the energy 

markets. Since the 1960s, mathematical models began to be used to certain problems of 

environment quality control for resource management and policy analysis. Equilibrium
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models were applied in the environmental quality control field to analyze environmental 

quality polity and describe economic and environment impacts (Greenberg, 1995).

2.2 Basic Concepts for Transportation Equilibrium Models

Like in market equilibrium, the concept of equilibrium can also be presented in the 

transportation equilibrium models (Sheffi, 1985). In this section some basic concepts for 

transportation equilibrium models will be reviewed.

In a transportation network of an urban area, normally there is heavy traffic during rush 

hours on most streets, intersections and transit lines. One of the major problems which 

transportation engineers and urban planners face is to predict the impact of given 

transportation scenarios to the whole transportation system.

Consider a congested segment of an urban network as an example. In order to reduce 

congestion, one main solution is to consider opening a new road to the network.

However, the new road may bring a new congestion problem if  more and more users 

choose the new road than originally anticipated. When congestion arises again, users may 

choose to go back to the old road according to current flow distributed in system. After a 

short period, the drivers become familiar with the new network and know which route is 

better for them. Finally, the traffic on all roads reaches a stabilized point or equilibrium 

status.
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2.2.1 Travel Time Function and Travel Demand Function

Similar to the supply function and demand function in the market equilibrium models, 

there are corresponding travel time function and travel demand fonction in urban 

transportation equilibrium models to represent time and travel demands (Sheffi, 1985).

In an urban transportation network, assume there are a few origin and destination pairs 

(O-D pair) of interest. For each O-D pair, there are a few different paths that people can 

choose. The system can be modeled and studies to see what flows distribution will make 

the traveling system optimal where all travelers could spend as little time as possible. On 

a given O-D pair, if  all travelers took the quickest path, congestion would develop on this 

path. As a result, the travel time on this path might increase to a point where it is no 

longer the minimum travel-time on this path. Some of these drivers would then change to 

a different path. The alternative paths can be congested too, and so on. The situation can 

be analyzed by two functions: 1. Time fonction which describes how the level of travel 

time being affected by the transportation flows; 2. Demand function, which describes 

how the traffic volume on a road being affected by the travel time spent on this O-D pair.

Usually the travel impedance associated with the links on a path can include many 

components, reflecting travel time, safety, travel cost, stability o f flow, and others. 

Among those factors, the travel time is naturalized in this thesis. In other words, the 

demand function is described by the travel time spent on the links under current flow 

status.
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If variable demand instead of assuming fixed travel demand between every O-D pair is 

considered, the demand may be influenced by the level of service on the network such as 

travel time. In order to take this phenomenon into consideration, the demand between 

every O-D pair may be a fimction of minimum travel time among all paths between this 

O-D pair; this can be referred to as travel disutility.

The demand function can be expected to be monotonically decreasing in the O-D travel 

time. Usually the demand is bounded by the total population between this O-D pair in a 

certain period.

2.2.2 System-optimization versus User-optimization

Wardrop (1952) explicitly recognized alternative possible behaviors of users of 

transportation networks and stated two principles. First, the travel time of all routes 

actually used is equal, and less than those which would be experienced by a single 

vehicle on any unused route. Second, the average travel time for all users is minimal.

In 1969, Dafermos and Sparrow coined the terms user-optimized (UO) and system- 

optimized (SO) in transportation equilibrium models to distinguish between two distinct 

situations. In the first situation, users act unilaterally in selecting their quickest routes. In 

the latter problem, users select routes according to what is optimal for the whole system.

R eoroduced w ith oerm iss ion  o f the  coovriah t ow ner. Further reoroduction  oroh ib ited  w ithou t oe rm iss ion .



System-optimization problem is also known as traffic assignment firom the system level, 

namely because it assigns the O-D travel demand to make the total travel time spent in 

this system minimum. The capacity of each path on every O-D pair must also be known. 

The objective is to minimize the total users travel time. An equilibrium status will be 

reached when the marginal total travel time on all the used paths connecting a given 

original and destination pair is equal to or less than the travel time required on any 

unused path.

Comparing to system-optimization model, user-optimization is to optimize from 

individual user’s view, under the condition of knowing the travel time and the number of 

users in each path for all the O-D pairs. It tries to find an optimal path with minimal 

travel time from origin to destination. A stable condition is reached only when no traveler 

can improve individually his travel time by unilaterally changing his route. In other 

words, the travel time on each used path is same and equal to or less than the travel time 

on any unused path.

2.3 Solution Algorithms for Equilibrium Models

Since the computable equilibrium models are used widely in management and decision

making, such as transportation network flow assignment, decision making for optimal 

routes choosing, and even currently most concerned environment pollution problems 

caused by cars’ emissions, etc (Nagumey, 2000), much work has been done to develop 

various solution techniques for calculation of the equilibrium models. In this section,

11
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some previous work on solution algorithms will be reviewed for solving equilibrium 

models.

2.3.1 Economic Surplus Maximization Approach

Economic surplus maximization algorithm is a popular method in solving equilibrium 

models. This idea is originated with Samuelson (1947), and widely used (Takayama and 

Judge, 1971). It is from an optimization’s angle to model the original problem, in order to 

maximize the total producers and consumers surplus. When the surplus is maximized, an 

equilibrium solution also reached. In other words, an equilibrium problem can be 

transferred into an optimization problem. The competitive equilibrium problem is closely 

related to the surplus problems, which can be solved by an economic surplus 

maximization approach that is equivalent to solve a nonlinear optimization problem.

To illustrate this method, the single product and single-period equilibrium model is 

examined. Figure 2.2 shows the basic idea of the computational technique for the 

economic surplus maximization approach to the competitive equilibrium model.

SCO)

QQl Q-

L

Figure 2.2: Consumers’ plus producer’s surplus
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In Figure 2.2, if  the quantity purchased and produced is QL  The area below the demand 

curve (jD) from 0 to Q l is usually interpreted as the total value to consumers of an 

amount QL Further, the area below the supply curve (5) is the total cost of supplying an 

amount Ql, because the supply curve is essentially the marginal cost curve for all 

producers aggregated together. So the shaded area A (Ql) is the area under the demand 

curve (up to demand quantity Q l minus the total cost (the area under the supply curve), 

which is the value of a function called “consumers’ plus producers’ surplus”. As Q 

moves form Q l to the right, the shaded area becomes larger, until Q passes Q *- then 

moving to the right makes negative additions to the area. As a result, we know that the 

shaded area A ( 0  is maximized at the equilibrium point Q*.

Economic surplus maximization approach can be applied in one commodity and one 

period. It even can be extended to cover the multi-period competitive equilibrium model. 

Samuelson(1947) and Takayama and Judge(1971) stated that it can also be generalized to 

the multi-commodity and multi-period competitive equilibrium case if  certain conditions 

are satisfied, namely the demand functions satisfy the integrability condition. This 

condition is equivalent to the symmetry of the demand function’s (a vector valued 

function of prices) Jacobian matrix, or the price of those commodities do not interact with 

each other in the demand frmctions. Samuelson (1947) and Takayama and Judge (1971) 

also reported that their models assume the symmetry o f cross-price effects, satisfying the 

integrability condition.

13
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However, in the presence of many known examples of asymmetrical cross, such as price 

effects in demand functions, this condition could not he expected to hold. As a result, the 

convenient equivalence between the competitive equilibrium problem and the economic 

surplus maximization problem is not available in multi-commodity and multi-period 

competitive equilibrium case.

2.3.2 General Iterative Approach

In equilibrium model calculation, once the urban transportation equilibrium optimized 

flow pattern is established according to two types’ equilibrium (system-optimization and 

user-optimization), transportation equilibrium problems can be solved by general iterative 

approach (Nagumey, 1999).

As we mentioned before, in a system-optimization, users are allocated among the routes 

to minimize the total time in the system. In a user-optimization problem, each user o f a 

network, system seeks his/her optimal travel paths until equilibrium is reached, in which 

no user can decrease his/her time of travel by unilateral changing routes. In the particular 

situation of the transportation equilibrium problem under certain symmetry assumptions 

on time and travel disutility function, an algorithm called projection method is effective 

in solving this kind of problems (Bertsekas and Gafiii, 1982). The projection method 

divides the original problem into smaller components, which are equivalent to quadratic 

programming problems. Usually, quadratic programming problems are much easier to

14
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solve as compared to some nonlinear optimization problems, especially in cases where 

hundreds of decision variables are involved.

The projection method in computation of single-period transportation network 

equilibrium can be represented as follows:

Step 0 : Initialization

Select an initial feasible flow and demand pattern e K. Also, select

symmetric, positive definite matrices G a n d - M , where G is m  nL xnL  matrix and 

—M is  an n J x n J matrix. Select p  such that

0< p  < min 2a 2a 

. 7 ’ A

Where a  is constant in the strong monotonie condition, 77 and p  are the maximum over 

K  of the positive definite symmetric matrixes

5c. G - I % and

Set k:=l

Step 1 : construction and computation 

Construct

And

= pu{d''-^)-M d

Compute the unique transportation pattern ( f ' ‘,d^)  corresponding to travel time and 

travel disutility functions o f the special form:

Tk-\

15
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c * - '( /)  = G r + A*-'

u ’̂ - \d )= M d  + &^

Step 2: convergence verification

I /* - /* - '!  w*
If-—I———- < e and-—r—r-i—- < 6 , withe > 0 , a pre-specified tolerance, stop;

l / ‘‘‘
ik-\

otherwise, set A: := A: -f-1, and go to Step 1.

Nagumey (1999) pointed out that possibilities for the selection of the matrices G and 

M  are any diagonal positive definite matrices of appropriate dimensions. One could also

set G and M  to the diagonal parts of the Jacobian matrices %■] 1%
evaluated at the initial feasible flow pattern. Observe that if  one selects diagonal matrices 

then the above sub-problems are decoupled by mode of transportation and each sub

problem can be allocated to a distinct processor for computation.

By practical applications it is demonstrated that the projection method is an effective 

solution technique in solving the transportation equilibrium models, especially in 

transportation equilibrium models involving hundreds of variables and complicated 

nonlinear functions which are expensive to evaluate. However, the projection method can 

only be used if  the time functions and demand function’s Jacobian matrices G and -M 

satisfy symmetric, positive definite conditions. However, this symmetry assumption is 

not expected to hold in most applications. In many known examples, the asymmetry 

affects the time o f mode i on link a in different manner with that of mode j  on link b. In

16
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the case of a single mode problem, the asymmetry condition would imply that the time on 

link a is affected by the flow on link b in different manner as the time on link b is 

affected by the flow on link a. As a result, the projection method is not available in those 

models with asymmetric properties.

2.3.3 Project Independence Evaluation System Algorithm

As shown in section 2.3.2, the projection method cannot be directly used in competitive 

equilibrium case with asymmetrical cross -  price effects in demand functions. The 

Project Independence Evaluation System (PIES) was developed based on economic 

surplus maximization algorithm. The PIES algorithm is also known as a relaxation 

method in transportation equilibrium models (Nagumey, 1999). It’s done by 

approximating a non-inverse demand function by substituting the price with an 

approximate value to estimate the asymmetrical cross price, items. Normally this 

approximate price comes from last iteration optimal value. A nonlinear optimization 

algorithm may compute the optimal activity levels and market prices are derived from the 

corresponding shadow prices. The PIES algorithm combines the economic surplus 

maximization algorithm and the fixed-point method (Scarf, 1973) to solve multi- 

commodity and multi-period competitive equilibrium problems. (Stone, 1985)

The PIES algorithm (Ann and Hogan, 1982) is initiated by inserting an approximate price 

vector into an economic sub-model that determines demands. This is done so that a 

demand function with cross price effects is approximated by eliminating the cross

I
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I  components and thus a non-inverse function being transferred to an inverse-able function.
I
' Hence, the economic surplus maximization problem may be solved by a linear or

nonlinear optimization algorithm.

If the quantity demanded is known, the competitive selection of supply alternatives is 

equivalent to that required delivering these quantities at minimum total cost. Furthermore, 

the change in the total cost required to deliver an additional unit of a given product can be 

interpreted as the supply price of the product. This results in a new approximation to the 

vector of the market price. The price vector is inserted back into the demand sub-model; a 

new approximate demand function is established, and so on. If the quantities demanded 

can be determined such that the associated supply prices and demand prices are equal, a 

solution is obtained which would be equal to Üie equilibrium solution for the original 

non-integrable system.

2.3.4 Multi-period GDL Energy/Environment Equilibrium Models and 

Decoupling Algorithm

As we mentioned before, in equilibrium models, the time lag effect can be a very 

importation factor, and the analyst may wish to present the time lag effect in demand 

function in response of the price. In order to present time lag effect, a new multi-period 

equilibrium model with GDL demand, called the GDL equilibrium model, has been 

proposed by Wu and Fuller (1995). In the GDL equilibrium model, the demand is

18
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represented by a function of the prices not only in the current time period but also in 

previous time periods based on the geometric distributed lag structure.

For the normal solution algorithm for the GDL equilibrium model, Wu and Fuller (1996) 

stated that it can be difficult to compute the solution of the GDL equilibrium model by 

applying the PIES algorithm directly. Consequently, a new equilibrium seeking algorithm, 

referred to as the decoupling algorithm, was developed.

The decoupling algorithm constructs a modified GDL demand at each decoupling 

iteration through inflated price elasticity, in which demands are approximated as the 

functions only of the current period prices. By doing so, it successfully decouples inter

period travel disutility links in decoupled sub-model. Then the PIES algorithm can be 

used in each decoupling step. The optimal values obtained fi'om the PIES algorithm are 

inserted back again to calculate new inflated price elasticity. So and so on, the system 

will reach the final optimal point. Accompanying solutions are the equilibrium optimal 

solutions.

Following Wu and Fuller (1996), the decoupling algorithm can be stated as follows:

Step 1. Provide a starting guess of the price vector , for t = 1,2,..., T , set w = 1.

Step 2. Using estimate the decoupled sub-model and calculate its equilibrium,

I IStep 3. If— —  < J , a small enough tolerance, then go to step 4. Otherwise,
| % |

let = Pm , and go to step 2.

19
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Step 4. Teiminate withp* — .

The decoupling algorithm has been proved to be effective in solving energy model with 

GDL structure. It was applied in solving a large scale model of North American energy 

supplies and demands in the 30-year version (10 periods each of 3 years duration) (Wu 

and Fuller 1996).

In this chapter, classical market equilibrium models were introduced, as well as their 

application in energy and transportation equilibrium fields. Then, some previous solution 

algorithms were reviewed; economic surplus maximization, projection method, and 

relaxation algoritlim. All of these were demonstrated to be effective algorithms in solving 

single-period energy equilibrium models and single- period transportation equilibrium 

models. Decoupling algorithm was developed for the solution of the energy equilibrium 

models, considering multi-period demand functions with time lag effect, called GDL 

energy equilibrium models. Computation results suggest empirically that decoupling 

algorithm is very efficient convergent algorithm.

In this thesis, the GDL equilibrium approach used in the energy model will be applied to 

multi-period transportation equilibrium problems witli time lag effect demand.
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CHAPTER 3 

SINGLE-PERIOD TRANSPORTATION 

EQUILIBRIUM MODELS

As it was mentioned in Chapter 2, equilibrium concepts can be applied in transportation 

network. There exist two types of equilibrium status in the transportation equilibrium 

models, system-optimization and user-optimization. In this chapter, single-period 

transportation equilibrium models for two types of equilibria will be discussed.

Before the basic formulation is discussed, the following paragraphs present the network 

notations used in this chapter. Following Sheffi (1985), the network itself is represented 

by a directed graph that includes a set of consecutively numbered nodes, N, a set of links, 

L, and a set of paths, P. Let R  denote the set of origin nodes and S denote the set of 

destination nodes. The origin node set and the destination node set are not mutually 

exclusive since nodes can serve as origins and destinations of different travel demands at 

the same time. Each O-D pair i (i e  RS) is connected by a set of paths (routes) through 

the network.

The origin-destination matrix is denoted by d  with entries J , . In other words, d; is the 

travel demand between origin r and destination 5 during the period of analysis. Let fi and
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c, present the flow and travel time, respectively on link / (where 1 e.L).

Furthermore C; = c , ( / ) , where c,(.) represents the relationship between flow and travel

time for link a. In other words, c, ( / )  is the travel time function on link I. Similarly, let

Xp and Cp represent the flow and travel time, on path p. the travel time on a particular

path is the sum of the travel time on the links comprising this path. So, the time function 

in each pathp  can be represented as follows:

Cp='Z^,S,^p
I

Where ô, p = 1, if  link I is a part of path p  connecting O-D pair i, and = 0 otherwise.

Using the same indicator variable, tlie link flow can be expressed as a function of the path 

flow, that is

P

The above equation means that the flow on each link is the sum of the flows on all paths 

going through that link.

The path-link indicator variable can be presented by a path-link indicator matrix. As an 

example of the use of the indicator matrix to represent the path-link relationships, 

consider the simple network shown in Figure 3.1.

Figure 3.1: Example network with two O-D pairs and four links

22
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Assume that there are 2 O-D pairs node 1 to node 4 and node 2 to node 4. The first path 

from origin node 1 to destination node 4 uses link 1 and link 3 and the second one uses 

link 1 and 4. Similarly, assume that the first path from origin node 2 to node 4 uses link 2 

and 3, and the second one uses link 2 and 4. So the path-link indicator Si ̂  matrix for

Figure 3.1 can be written as the following table:

Table 3.1: Path-link relationship

RS 1-4 RS2-4
Pathl Path2 Paths Path4

Linkl 1 1 0 0
Link2 0 0 . 1 1
Links 1 0 1 0
Link4 0 1 0 1

For example, S ^  = 1 (since linkl is on path 1), S^ 2 ~ 0 (since link 3 is not on the path 4). 

The incidence relationships for Figure 3.1 mean that. For example,

C l =  c . J i i  +  C2^2_, +  C3 ̂ 3̂ 1 +  Ĉ Ŝ i =  C, +  C3

The above equation means that the travel time on path 1 between origin 1 and destination 

4 is the sum of the travel times on the links comprising this path. Similarly,

Â  +̂ 2<5̂ 3.2 +̂ 3<̂ 3,3 +^4^3,4 = ^̂1 + ̂ 3

The flow on a particular link is the sum of the path flows traversing this link.

In this chapter, equilibriums models for system-equilibrium condition will first be 

discussed and then for user-optimization condition.

23
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3.1 The Formulation for Single-period System-optimization

In a single-period system-optimization model, it is assumed that there exists a central 

controller who seeks to minimize the total time in the network. As it was discussed in the 

previous chapter, the network achieves system equilibrium status when the marginal time 

spent in used paths is less than or equal to marginal time on unused paths. It achieves 

equilibrium status from the whole system level to minimize the total drivers’ travel time 

rather than individual user. In other words, at system-optimization flow pattern, drivers 

may be able to decrease their travel time by unilaterally changing routes.

The single-period system-optimization flow pattern can be obtained by solving the 

following mathematical program (Sheffi, 1985):

MmZ = ^ c , ( / ) x /
/

s.t.

p

Xp>0

and the definitional constraints

/, = E ^ A , (3-1)
p

In model (3.1) the objective function is the total travel time spent in the whole network. 

Constrain 1 states that the flow on all paths connecting each O-D pair should equal to the 

corresponding O-D travel demand. In other words, all O-D travel demands have to be
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assigned to the network. The non-negative conditions in constraint 2 are required to 

ensure that the solution of the program will be physically meaningful. In model (3.1) it is 

assumed that the travel demand at each O-D pair is a fixed number first. In this case, the 

original equilibrium problem is transferred to a pure optimization programming. The 

accompanying optimal solutions are equilibrium solutions.

3.2 The Formulation for Single-period User-optimization

Compared with system-optimization, for user-optimization, the road choosing is based on 

behavioral assumption that each individual car travels on the path that minimizes the 

travel time firom its origin to destination. Once the network achieves user equilibrium 

mode, no user can lessen his travel time by unilaterally changing roads. The user- 

optimization flow pattern is achieved when the travel time for each O-D pair on all used 

paths is less than or equal to the travel time that should be experienced by an individual 

user on any unused path.

The equilibrium flow pattern can be obtained by solving the following mathematical 

formulation (Sheffi, 1985):

ft
Min Z = V  (c,{cù)dcû 

I 0

S.t.

Xj,>0
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and the definitional constraints

(3.2)
P

In model (3.2), the objective function is the sum of the integrals of the travel time 

functions, and the constraints are the same as system-optimization models’ constraint set.

3.3 Transportation Equilibrium Models with Variable Demand

In models (3.1) and (3.2) it was assumed that the demand between every origin and 

destination is fixed and known. However, in reality, travel demands may be influenced by 

the level o f service on the network. For example, as congestion increases, users may 

decide to use another path.

In order to present this phenomenon, the travel demand, d .̂ , between every O-D pair r-s, 

can be assumed to be a function of the travel time between r  and s (Sheffi, 1985). 

d. = D,(w,)

Where m, is the minimum travel time between r  and s, and D^Ç) is the demand function 

of travel disutility between r  and s. The demand function may be presented by 

dj -  A B f  (m,) , where A and B are known parameters associated with origin r and 

destination j ,  respectively, and /(« ,)  is a function of u,-.

The demand function may be expected to be monotonically decreasing or not increasing. 

As U; grows, d̂  decrease, and vice versa. This function is also bounded. For example, the

26
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maximum number of demand generated between an O-D pair in a certain period may be 

bounded by the total population size at the origin.

3.3.1 System-optimization with Variable Demand

Consider the variable demand and the demand function is given by a function of travel 

disutility, d. = D,.(w). Then system-optimization with variable demand can be formulated 

as follows:

Min Z - j ; c , ( / ) x / , - ^ f l , - ‘{d)xd ,
I i

S.t.

p

^ ,> 0

and the definitional constraints

(3-3-1)
P

Where Dr*(.) is the inverse of the demand fimction associated with O-D pair L

The objective function is the sum of the total link travel time functions minus the sum of 

the inverse demand fimctions multiplying corresponding demands. The constraint set is 

similar to the fixed-demand function.
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According to the system-optimization equilibrium condition; marginal time spent in any 

used paths is less than or equal to unused paths. There is another mathematical 

presentation for system-optimization models.

A '''A
Min Z = ̂  ^Ui{v)dv

I 0 I 0

s.t.

p

Xp > 0

d; > 0

and the definitional constraints

(3.3-2)
P

Where

Cl ( / )  = dci ( / )  / df, X / ,  + c; ( / )

« / ( / )  = dU;{d)ldd; X  d. +u.(d)

c , { f ) , Ui{d) are marginal time and travel disutility. Marginal time can be interpreted as 

the marginal contribution o f an additional traveler to the total travel time in this system.

In model 3.3-2, a system-optimization problem is formulated as user-optimization models 

by marginal time substituting time.

^  28 UVlW't-Vv : i t  ̂‘ ‘
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3.3.2 User-optimization with Variable Demand

The user-optimization with variable demand can be formulated as follows (Sheffi, 1985):

/;  rf,-
Min Z = ^  ^ C j { c o ) d ( o ^DT^{cù)dœ 

I 0 < 0

s.t.

Xj,>0

and the definitional constraints

f , = ' Z ^ A p  (3.4)
P

Where Z)r'(.)is the inverse of the travel demand function associated with O-D pair i.

The objective function is the sum of the integrals o f the link travel time functions minus 

the sum of the integrals of the inverse demand function. The constraint set is similar to 

the fixed-demand formulation.

The solution of equilibrium models with variable demand functions can be interpreted by 

Figure 3.2. Here for simplicity, just consider one path and link equal to path 

transportation network. Further, assume the travel time spent in this path is given by 

travel time functions, c = f  + 1,

The demand decrease with the total time needed in the system is given by travel demand 

functions, D = 5 - u ,

29
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g

Figure 3.2; Equilibrium conditions with variable demand

Under user-optimization equilibrium condition, and according to economic surplus 

maximum method, the equilibrium solution will be achieved when the maximization 

difference between the area under the inverse demand curve (u = 5 - d )  and the area 

under the time function (c= i  is maximized. If system-optimization is considered, 

demand curve and time curve are substituted by marginal demand and marginal time. 

The corresponding marginal travel disutility function should be

A

u = d u ld d x d  + u = 5 — 2 x d .

And marginal time function is

c — d c ld fx  f  + c — 2 x  f  + 1.

30
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The equilibrium solution can be obtained when the difference area between the areas 

under the marginal travel disutility function and marginal time function are maximized. 

Figure 3.2 show the equilibrium solution under system-optimization and user- 

optimization.

3.4 An Illustration Case for Single-period Transportation 

Equilibrium Models

In this section, the transportation network topology structure as shown in Figure 3.3 will 

be used to illustrate the single-period transportation network equilibrium model and its 

optimal solutions. System-optimization and user-optimization will be considered 

separately.

Figure 3.3: Example network with one O-D pair and three links

It was assumed that there are 1 O-D pair, 2 links and 2 paths in a small transportation 

network. For the origin and destination pair node 1 to node 3 there are 2 paths available, 

path I connected by link a and link c, and path 2 through link b and link c. In supply side,
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it was assumed that there are interactively flow influences in time functions for each link.

For example, the travel time spent in link a not only depends on the flow in its own link,

but also on other links in the same O-D pair. The travel time functions in each link are

given as follows;

^ a = 5 x /^ + 2 x / j ,  + 5 
C i= 7 x / j + / , - t - 5  
Cc = 3 x / ,  + / „ + / ô  + 7

On demand side, instead of fixed demand, it was assumed that the travel demand varies 

with travel time spent in the system. The less travel time spent in this segment of network, 

the more users prefer travel on the routes. The travel disutility function is;

J, = 49.5-0 .5 xwj

First, system-optimization mode was considered to assign flows in order to achieve the 

minimum total travel time for all users spent in this system. The system-optimization case 

can be formulated as follows;

Min

2  ^ / ( / ) ^ . / î ~ S “/(^ )^^ / = ( 5 ^ / a + 2 x / i  + 5 ) x / ,  + ( 7 x / j  + /^ + 5 ) x / j  +
l-a,byC i~\

( 3 x ) :+ / ,+ y ^  + 7 ) x y ;- ( 9 9 -2 x ( f J x ^ ,

s.t. ^1+^2 = ^ ,; 

f a  ~  ^1 Î

f b  — ^ 2 ’ 

f c  =^1 +X ;;

A /L  ^  0;
>0;
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Compared with system-optimization, user-optimization can be modeled as:

Min

/i d, L Â
Z = ^  j(5xü) + 2xy^ + 5)(fü)+ j(7xa) + +5)do) +

/=a,fc,c 0 0 0 0

j(3xû> + /^ + fi^ + 7)dco- ^ { 9 9 - l x ü ) d ü  
0 0

s.t. x^+X2 =d^;

f a

= X ,  - f X ; :

A / :  ^  0;
Xi,X2 >0;

Since no asymmetry effect in time and travel disutility function exist, the projection 

method can be used to find the optimal solutions.

After applying the projection method, final results are summarized in Tables 3. 2 and 3.3
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Iteration L f c d, z
0 4 4 8 8

Ca Cb Cc
33 37 39
C; Q
72 76
Ca Cb 4
53 65 63
c , C2
116 128

1 /b /c d, z

2.511 2.079 4.589 4.589 167.084
Ca Cb Cc

21.713 22.064 25.357
C j Q

47.07 47.421
4 4

34.268 36.617 39.124
c , C 2

73.392 75.741
2 /« /b / . d, z

2.825 2.122 4.947 4.947 193.787
Ca Cb Cc

23.369 22.679 26.788
c , Q

50.157 49.467
Ca 4 4

37.494 37.533 41.629
c , C

79.123 79.162
3 f a /b di z

2.829 2.122 4.952 4.952 194.145
Cb Cc

23.389 22.683 26.807
c , C;

50.196 49.49
Ca 4 4

37.534 37.537 41.663
c , C2

79.2 79.2
Table 3.2: System-optimization calculation results
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Iteration fa fb fo d, z 1
0 4 4 8 8

Ca Cb Cc
33 37 39
c, c .
72 76

1 . fb fc dj z

5.021 4.158 9.179 9.179 334.168
Cb Cc

38.421 39.127 43.716
C/ Q

82.137 ■82.843
2 fa fb fc d, z

4.948 4.005 8.953 8.953 317.739
Co Cb Cc

37.75 37.983 42.812
c, Q

80.562 80.795
3 .. fa fb fc d, z

4.999 4.008 9.008 9.008 321.581
Cb Cc

38.011 38.055 43.031
Q C2

81.042 81.086
4 fa / . fc di z

4.997 4.001 8.998 8.998 320.846
Ca Cb Cc

37.987 38.004 42.992
c, Q

80.979 80.996
5 fa fb fc d, z

5 4 9 9 -321
Ca Cb Cc

. 38 38 43
c, Q
81 81

Table 3.3: User-optimization calculation results 

In Table 3.2 and 3.3, two examples were solved from the same guess of flow //. In Table 

3.2 when flow in the system was automatically adjusted iofa — 2.829, fb= 2.122,_/è=4.952, 

the marginal travel time spent in two paths were equal. As a result, the system achieves
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system-optimization where the corresponding flows are equilibrium flow patterns under 

the system-optimization condition. The same as system-optimization, Table 3.3 iteration 

4 shows the time spent in path 1 and 2 are equal, and no user can change his or her routes 

to get less travel time. Hence the system achieve user-optimization where the 

corresponding flow p a t t e r n = 5,fb=4,fc=9 are equilibrium solutions.

Appendix A illustrates eight single-period transportation equilibrium models. The 

optimal solutions and test the convergence of projection method is used for computing 

single-period transportation equilibrium models by using GAMS.
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CHAPTER 4 

MULTI-PERIOD TRANSPORTATION 

EQUILIBRIUM MODELS

Transportation network demand adjustment to travel disutility usually occurs over a long 

period, while current time demand mainly depends on travel times in previous time 

period. As it was discussed before, in long period equilibrium analysis, the time lag effect 

can be a very important factor.

In this chapter energy GDL equilibrium will be applied to transportation equilibrium 

fields to consider the time lag effect. First, multi-period transportation equilibrium 

models without time lag demand will be introduced; and then time lag effect in 

transportation network demand function is presented. Finally, exponential structure in 

demand function will be introduced to describe the relation between demand and travel 

disutility in multi-period transportation equilibrium.
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4.1 Multi-period Transportation Network Equilibrium Models

4.1.1 Multi-period Transportation Equilibrium Models without Time 

Lag Demand

Multi-period transportation equilibrium model can be an important tool for decision 

makers. In transportation policies analysis, the transportation planner and analyst usually 

need to analyze and consider transportation congestion that normally occurs during a long 

period. In this section, multi-period transportation equilibrium models will be considered.

Consider the system-optimization case, multi-period equilibrium model can be 

formulated as follows:

Min Z
/=1 I I

S .t

p

x f  > 0 

> 0

and the definitional constraints

(4.1)
P

Where D\'^  ̂(.)is the inverse of the demand function associated with 0-D pair i in each 

j period t. The objective function is sum of travel times on all links in all periods, minus

^ M  ___________________
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the sum of demands on all links multiplied by their corresponding travel disutility. The 

constraint, , states that the flow on all paths connecting each O-D pair in
p

period t equals to the O-D demand in that period. The no negativity conditions are 

required to ensure that the solution of the program will be physically meaningful.

Compared with system-optimization, the multi-period user-optimization equilibrium 

model without time lag effect can be formulated as follows:

M in Z  = 2 Œ  \ c \ ‘\ o i ) d o > - Y ,
t=l  / 0 ' 0

s.t.

p

4 '> > 0

and the definitional constraints
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\

4.1.2 Multi-period Transportation Equilibrium Models with Time Lag 

Demand

4.1.2.1 Time Lag Demand in Equilibrium Models

In the energy sector, the reaction of demand to a change in its price is a process in a 

period (Wu and Fuller, 1995). Part of the reaction may occur during the period of the 

price changes, but the complete adjustments to the price changes typically occur in the 

latter period. Daniel and Goldberg (1981) pointed out that the effect of the price of an 

energy commodity in preceding period often exceeds the effect of the current period price 

on the demand for that commodity. Similarly there exists “time lag” effect in 

transportation models. Road flow and congestion level of current period depend a great 

extent on flow and travel time of previous periods. In order to present the “time lag 

effect”, lag elasticity coefficients E  in demand functions is introduced.

In transportation network, the general demand function without time lag effect can be 

described as:

1=1

Where

d^‘'> = Travel demand in i O-D pair at period t, 

a\‘̂  = Constant in demand function i at period t, 

bj = Travel disutility elasticity.
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= Travel disutility in i O-D pair at period t.

In energy models the general geometric distributed lag (GDL) stracture can be stated as 

(Wu and Fuller, 1995);

= di+
1=0

Where

y  = Demand quantity in period t,

= Price in period t, 

a = A  constant, 

a* = Unknown constants,

= A random variable independent ofx^'^, with mean zero and constant

variance.

Comparing the energy models with general distributed lag structure, the general type 

demand function (for simplicity, consider a one O-D pair transportation equilibrium 

model) with time lag effect can be stated as:

Where

—The travel demand and the travel disutility at period t,

a^‘'> = Constant at period t, 

b =Tbe travel disutility elasticity, 

e = The time lag elasticity,
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At period f - 1 :

So that, by successive substitution

«=1 n=l

Where

= Travel demand and the travel disutility at period t, 

b =The travel disutility elasticity, 

e = The lag elasticity,

= Constant at period t — i.

In one O-D pair and T-period transportation equilibrium models, the demand function 

employed time lag structure can be represented by:

£,(1) ^^(1)

J)LT)  _  _  ^ ( . T - D ^ p m  _  p ( T - 2 ) p p [ 2 )  _ _ _ _ _  p p { T )

Where

£)«) ̂  jj(.o = Vectors of demand and travel disutility in period t;

E=sxi /  X /  matrix of lag elasticity;

B = an /  X /  matrix of travel disutility elasticity;

= a vectors o f the constant factors at period t.
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This can also be written in matrix notation as;

' j5(D ■

= -

2)(n

B

E ‘-^B

ET-Ib  B

B

T - l

urn

U(r)

4.2 Exponential Structure in Demand Functions

In energy equilibrium models, the demand function is not limited to linear expression; 

there exists a more popular expression among econometricians: exponential structure in 

demand function, which is used very widely. In the previous transportation equilibrium 

research, for the sake of simplification, the demand was assumed to be a linear function 

of travel disutility. In this section, the exponential demand function is introduced, i.e., 

travel demand is an exponential function of travel disutility.

First, in energy models the geometric distributed lag exponential structure can be stated 

as

1=0
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The influence of the lag independent variable x on the reaction variable y  decreases with 

increasing lags, and the influence of the lag variable x  on variable y  is close to zero as the 

lag goes to infinity.

Comparing with GDL demand function, the transportation network with time lag 

exponential demand function can be stated by;

X ) X

Where

=The travel demand and the travel disutility in O-D pair i at period t,

UjP =The travel demand and the travel disutility in O-D pair j  at period t,

bj j = The travel disutility elasticity,

e, = The time lag elasticity for demand on O-D pair i.

For the sake of simplicity, consider one O-D pair T-period models with time lag effect, 

the exponential demand function can be presented by

I Where

I =The travel demand and the travel disutility at period t,

b =The travel disutility elasticity, 

e = The time lag elasticity.

At period t - l  :
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So that, by successive substitution

n=l 77=1

If

= Inu^'^, 

= ln]~ Ia
n=\

Me''

and if period t from 7 to T is considered, the following can be obtained

d = a — B,u

The vectors q, a and p, and the matrix 5, can be stated as matrix expression:

V ) '

— -

_^(D_ e^-^b e^-^b b

, 0 )

u (n
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CHAPTER 5 

SOLUTION ALGORITHMS FOR MULTI-PERIOD 

GDL TRANSPORTATION EQUILIBRIUM MODELS

5.1 Decoupling Approach for GDL Equilibrium Models

As introduced before, decoupling algorithm is an effective algorithm used in the energy 

GDL models. At each decoupling step, a new decoupling sub-model is constructed, in 

which the travel demands depend only on their cunent period travel disutility through 

inflated disutility elasticity. Then, the PIES algorithm can be used directly in each 

decoupling sub-model. If the prices and demand quantities at a decoupling step are equal 

to those at the next decoupling step (in practice, “equal” means within a given small 

tolerance), an equilibrium solution is obtained.

In this chapter, the GDL approach is compared to present the expression of inflated 

disutility elasticity in multi-period transportation equilibrium models with time lag effect 

demand. Next, the solution algorithms decoupled projection and decoupled relaxation 

methods for solving transportation equilibrium models with time lag effect will be stated.
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5.2 Inflated Disutility Elasticity in Transportation 

Equilibrium Models

5.2.1 One O-D pair and Multi-period Inflated Disutility Expression

First consider a one O-D pair and multi-period transportation equilibrium. The one O-D 

pair and multi-period with time lag demand function can be described as 

d = a — B,u

the matrix notation as follows:

> 1) -

= -

0  u

é  ' 6  b

Here, we set 6 “' ,6 '̂ ' ,6 "' to be inflated disutility elasticities at period 1,2, 3. The demand 

function also can be described as:

0 1V ')"

- uW -

diT)

0 0

0 0

,(0

u (T)
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y  %

If the last decoupled iteration has travel disutility, U *, this iteration inflated disutility 

elasticities can be found through the following steps:

'&(') 0  ' yO) * h o' yO) *

0  0 y(b * = e ' - '6  6 ĵ (0 *

0  0
y n  *

The inflated disutilities considering one O-D pair multi-period can be expressed by 

algebra structure:

^

5.2.2 Two O-D Pairs and Two-Period Inflated Disutility Expression

Furthermore consider 2 O-D pairs and 2 period’s transportation network. Assume that 

there exist 2 origin and destination pairs, and consider t -2  transportation equilibrium 

with lag elasticity E, travel disutility elasticity B. The demand function can be stated as 

follows:
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D = A - B f i r

or the matrix structure as;

■ B O'
£,(2)̂ _EB B_ ^ ( 2)

If is set to be inflated disutility elasticity at period t = 1 and 2, then the demand

function can also be described as:

0  ‘
£)(2) _ 0 g(2) £■(2)

Note that the last decoupled iteration travel disutility is U*, then

' B O' * -£(1) 0  ’
£,(2) EB B _ 0 £(2) J£(2)

0  ' * " B O'
_ 0  B^^\ y  2) EB B [;(2)

At period t=l, and from the above equation, the following is achieved;

^{i)x [/(!)* = ^ x

At period t=l the inflated disutility elasticity B̂ ^̂  equal to travel disutility elasticity^, 

namely,

?o) _ b\\ b̂ 2
_Z?2, &22

B '̂  ̂ =B Or

At period t=2;

^ (2) X  [/(2)' = e B x  [/(')' + 5  X 

At period t?=2 the inflated disutility elasticity B̂ ^̂
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=EBx  / [7^ )̂') + B 

Also, the above equation can be extended to:

^1̂ 12«1*11

^2^21 ^2^22
4- ^i;

2̂1 2̂2

4 T  =  Ê1 X  i n  X  /  u p ^ ’ )  +  i n

Similarly,

ijp  ̂= 6i X i ,2 X / »P^*) + i (2

ijP  = gj ^ ̂ 2! ^ + ill

ijP  = 6 2 ^ ̂ 22 ^ (»2^' /wp^') + i j2

5.2.3 Multi O-D Pairs and Multi-period Inflated Disutility Expression

More generally, consider the multi O-D pairs (I) and multi-period (T) transportation 

networks. Assume that there exists one origin and destination pair, and consider t =T 

transportation equilibrium with lag elasticity E  and travel disutility elasticity B. The 

demand function can be stated as follows:

D = v4-jB2.[/

or the matrix structure as:

" ~ B 

E'-^B .

E^-'B  .

£ )(0 : -

^(n

B

EB B

jy(0

[/(D
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If  . . . B is set to be inflated disutility elasticity at periodt  = \ . . . T , the demand

function can also be described as:

-^ ( 0 -

£ ,(0 = - B (0 Uio

Also, note that if  the last decoupled iteration travel disutility is U*, then

' (̂T)

•^(1)

B

E'~'B . B

E^~'B EB B

u o r -

A(n

B (0

B (0

B (D

B

- E'~^B

At period t=l, and from above equation, the following is achieved:

= ̂ x  [/(')'

At period t = 1 the inflated disutility elasticity equal to travel disutility elasticity 5  , 

namely.

6 ,? • b[P 4 T ' • 4 /

= B Ox ■ 4T = 4i 4/ • 4/

AT ■ 6T A . 4, • 4/_

At period t = t.
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j  X - E‘~̂ BX +  E‘-^BX +  . . .  +  B C / m

( At period t ~ t  the inflated disutility elasticity B'̂ '̂
I

BO) = X ([/(')*/[/(')') + E ‘-^B X + ... + 5

The above equation can also be extended to consider one O-D pair, 

b[\ -  ^ r ’ X bii X lu[‘''*) + e[“% , X 

Similarly,

' X X {uj^* / wP") + X {uf^* / +  ... + 6 ..

5.3 Decoupled Projection Method for Multi-period 

Transportation Equilibrium Models with Time Lag Linear 

Demand

The multi-period with time lag effect and the linear demand function transportation 

problem can be formulated as a quadratic programming in the objective function with 

linear constraints nonlinear programming. As it was mentioned before, the projection 

method can be applied in solving single-period or multi-period transportation equilibrium 

problems without the time lag effect demand. Due to time lag effect in demand function 

exists, it could be difficult to compute the solution for the multi-period transportation 

equilibrium problems with time lag effect directly.
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In this section, decoupled projection methods, such as projection method combined 

decoupling approach to solve the multi-period transportation equilibrium models with 

time lag effect will be discussed.

In essence, due to the time lag effect, the decoupled projection sub-model must be 

constructed so that the linear demands depend only on their current period prices through 

inflated disutility elasticity. As a result, an equilibrium solution o f the projection sub

model can be calculated relatively easily with the original projection method at each 

iteration decoupled projection sub-models. This will give an approximate equilibrium 

solution of the decoupled projection sub-model. The new equilibrium solution is inserted 

back to adjust the next iteration inflated disutility elasticity. Thus, a new decoupled 

projection sub-model is established and can be solved by the original projection method, 

and so on. For the convergence verification, if  the differences of demands between this 

iteration and the last iteration is less than or equal to a given tolerance which is small 

enough, then an equilibrium solution can be obtained for this transportation equilibrium 

models with time lag effect.

The decoupled projection method for transportation equilibrium models with time lag 

effect can be stated as the follow:

Step 1. Initialization:

Provide a starting feasible solution guess of travel disutility between each O-D pair,

fort=  1, 2, 3, ...T; set the iteration index m =l, set the tolerances small enough.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Step 2. Construct a sub-model without time lag effect in demand function.

Using , and the results achieved from the last iteration of this decoupled projection 

method, calculate current iteration inflated disutility elasticity,

Then, the transportation equilibrium problem with time lag effect is transferred to multi

period linear demand equilibrium problem without time lag effect. Original projection 

method can be called to calculate the solution (the original projection method will be 

stated in the following).

Step 3. Convergence test 

If

E  = Max k >
16/

< s .

a preset tolerance, then go to step 4, otherwise, increase the iteration index m = 

and go to the next iteration.

Step 4. Terminate with D* = D^,U* = U^.

The sub-procedure of decoupled projection method for transportation equilibrium models 

with time lag effect, namely, original projection method applied to multi-period linear 

demand transportation equilibrium models without time lag effect can be stated as 

follows:

Step 1. Initialization: (Projection method)
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Provide a starting feasible solution guess of flow vector in each link, Fj;2o > and demand 

between each O-D pair, , set the iteration index n = l,  calculate G = 9 C (/)  / d f and 

M  = d D ~ \d )ld d .

Step 2. Construct and compute; (Projection method)

Using last iteration solution D̂ '_\ calculate current iteration constant factor and 

T ‘̂' ', construct objective function:

Ts
/=1 /=! (=l 1=1

then call the nonlinear programming (NLP) solver to get current iteration solution

aiidDl‘\  Using

U r= D -'(D W )

to calculate the current iteration ,

Step 3, Convergence test (Projection method) 

If

IgL

and

E  = M ax  ------  < s ,ieL

then go to step 4, otherwise, increase the iteration index n = n +1, and go to next 

iteration.

Step 4, Terminate with F* = F„ D* = , U* = . (Projection method)
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5.4 Decoupled Relaxation Method for Multi-period 

Transportation Equilibrium Models with Time Lag 

Exponential Demand

In the last section, it was stated that the decoupled projection method can be used in 

solving multi-period with time lag effect hansportation models. By using exponential 

demand functions instead of linear demand functions in the transportation equilibrium 

problem, G and M can be any diagonal positive definite matrices o f appropriate 

dimensions based on projection method. One could also set G and M to be the diagonal 

parts o f the Jacobian matrices \d d d f\ mà\du /  dd \. Now, it is shown that matrix M is 

difficult to calculate from exponential structure demand functions. So the projection 

method is not available for the multi-period transportation equilibrium problem with time 

lag effect.

In this section, another iterative method, namely, relaxation method will be considered to 

be applied in solving transportation equilibrium problems with nonlinear demand 

functions. Like the projection method, the original relaxation method can be applied in 

solving the single-period or multi-period transportation equilibrium problems without 

time lag effect. It can also be difficult to compute the solution o f the multi-period 

transportation equilibrium problems with time lag effect directly. The decoupled 

relaxation method is generated for this reason, in which relaxation method is combined
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with decoupling approach, and applied in solving the multi-period exponential structure 

demand function transportation equilibrium models with time lag effect.

Through “inflated disutility elasticity” the time lag effect is transferred to demands 

depending only on their current period travel disutility in each decoupled relaxation sub

model. Original relaxation methods can be used to solve the multi-period nonlinear 

demand function structure without time lag effect at each iteration decoupled relaxation 

sub-models. This will give an approximate equilibrium solution of the decoupled 

relaxation sub-model. The new equilibrium solution is inserted back to adjust the next 

iteration inflated disutility elasticity, a new decoupled relaxation sub-model is established 

and solved by the original relaxation method, and so on. If the difference of demands 

between this iteration and last iteration is less than or equal to a given tolerance which is 

small enough, then an equilibrium solution is obtained for transportation equilibrium 

models with time lag effect.

The decoupled relaxation method for transportation equilibrium models with time lag 

effect can be stated as follows:

Step 1. Initialization:

Provide a starting feasible solution guess of travel disutility between each O-D pair,

, &»r t= 1,2, 3, ...T; set the iteration index m =l, set the tolerance g small enough. 

Step 2. Construct the decoupled relaxation method sub-model

Using , results got from last decoupled projection method, calculate current iteration 

inflated disutility elasticity.
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b\p = e \  ‘ X X +  e\ ^by x  /  w^^*) + . . .  +  è̂ .

Then call the original relaxation method to calculate the solution.

Step 3. Convergence test 

If

e  = M ax' < £ .

then go to the step 4, otherwise, increase the iteration indexm = m + l,  and go to next 

iteration.

Step 4. Terminate withD* = D^,U* = U^.

At each decoupled relaxation iteration, the original relaxation method can be used in 

solving o f nonlinear demand transportation equilibrium models with time lag effect The 

original relaxation method applied to multi-period nonlinear demand transportation 

equilibrium models without time lag effect can be stated as follows:

Step 1. Initialization: (Relaxation method)

Provide a starting feasible solution guess of flow vector in each link,jriO  ̂ demand 

between each O-D pair, , set the iteration index n = l.

Step 2. Construct and compute: (Relaxation method)

Using last iteration solution, , construct new time functions 

c~i — c ( /•(') \
^  L , n - \ }

and new travel disutility functions
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then call the NLP solver to compute the solution using the above travel time and travel 

disutility fiinctions, and Using

to calculate the current iteration ,

Step 3, Convergence test (Relaxation method)

If

F  = Max < s

and

.  K ' - % |
E  = Max-— i—77!— *■ < s

then go to the step 4 otherwise, increase the iteration index n = n +1, and go to next 

iteration.

Step 4, Terminate withF* = F„ D* = D„,U* = . (Relaxationmethod)
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CHAPTER 6 

A NUMERICAL EXAMPLE

In this chapter the decoupled relaxation method will be applied to a numerical case of a 

small transportation network. In this example, time lag demand functions have 

exponential structure, and also the travel disutility interacts with each other in the 

demand. In order to have an overview of the procedure of developing such models and 

equilibrium seeking algorithms, formulations for two different types of transportation 

equilibrium, i.e., system-optimization and user-optimization will be illustrated.

6.1 The Structure of the Model

As a numerical case, the local transportation network system in a city will be modeled. In 

the local transportation network system of city Z, four major communities (A, E, U and 

Y) and a downtown area M exist. They are all connected by local main streets as shown 

in Figure 6.1. For simplification, it is assumed that all streets are one-way only and the 

single direction flows for people fi"om those four communities traveling to downtown for 

work each day was modeled. Base on this model, future demand will be predicted.
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The transportation network topology diagraph used in this example is shown in Figure 

6 .1.

© ------ K£)

Figure 6.1: The transportation network topology

As shown in Figure 6.1, there are 25 nodes in this transportation network. Since there is 

only the transportation flow firom the four major communities to downtown area, there 

are 4 original-destination (O-D) pairs, RSam, RSem, RSum, RSym- Every edge in the 

graph is a ‘Link’ and there are totally 40 links.
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The variables will be used in this r  i , si.

c-(l)f P  - Flow in link / (where I ~ 1, 2, 40) in period t (where t ~  l, 2 3)-

- Flow in pathp  (wherep = 1, 2, 24) in period t (where t ~ l  2 3 )-

- Demand in O-D pair i (i =  am, em, um, ym) in period t (where t ~ l  2 3)-

Travel disutility in O-D pair i (i = am, em, um, ym) in period t (wheie t =
2 , j);

The parameters are defined as follows:

-  4W x24n w ü rixofm d m ak fvarid fieÜ M Ü ^ ü d cn j#k % K h ,p)-

-  4x4Wn%ürixofmdhak,rvaridfieODT)pÜFfa&,eküomAÿ,);

B - 4 x 4  square matrix of short-run travel disutility elasticity-

- 4x4  square matrix of inflated disutility elasticity in period f

E  - 1x4  matrix of short-run lag elasticity;

4- - Constant factors in demand equation i in period t;

r - Discount rate.

By observation, there are 6  paths for each O-D pair. The relationships between link and

path for each O-D pair are:

RSam •

P\ -  {a A A As}
Pi =  (A A A, As)
p-i — (a A As Ao)
Pa — {a Ao A: As)
Ps =  {a Ao As Ao)
p& -  (a A4 Ag Ao)
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R S e

RSu

RSym

Pi — {̂ 4 4  4r 46}

Pi — K 4  4z 4e }

A  -  {̂ 4 4  A7 4 l }

Pw =  ( 4 43 4z 4é}

Pn={k 43 4? 4 i }

Pl2 -  { 4 4b hi 4 i )

Pii -  {4 z 43 4;  4 o 1

A 4  ~  {4 z 4 b hi ho}

Pl5 = ihl 4 b 4 g h i}

Pi6 ~ {hi 43 44 4 o}

P\1 -  {4? 43 4 @ 4 s }

Pis = [hi 4 b 44 4 s }

Pl9 — {4 o 4 g 44 4 s}

P20 -  (4 o 45 ho h i}

P21 — (4 o 4 s he hi}

P22 -  [he 4 . 4 o 4 5 }

P2S — ihè hi he hi}

P2A — {4 e hi 4 z hi 1

The demand functions are assumed as follows:

< '2  ■= X X X X ( „ « ) - * “ X

= o „  X (x2 r*" X X X X « : - » ) "

rf.‘2 = X («2)-*" X («»>)-•” X X X w i-» )"

<  = V  X («2 )-'" X ( u ï ï r ‘« X x x (rf""")"

Travel disutility elasticities are given as follows:

Z>ii =  1. 6  b,2 =  - 0.4  6,3 =  - 0.6 6,4 =  - 0.5

62, = —0.3  6 2 2 = 1 . 6 1  6 2 3 = —0.7  624 = - 0.4

63, = - 0.2  632 = - 0.6  6 3 3 = 1 . 6 2  634 =  —0.3

64, =  - 0.3 6

Lag elasticities:

64, =  - 0.3 642 =  - 0.5  643 =  - 0.4  644 =  1.64
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^.m=0.7 = 0.72 g.. =0.72 e^„=0.75

Time functions on the links used in this model are given in Table 6.1

Link Q 69
h y} +  o.^x/^ +  2

h Æ +  0 . J x / ; 4- j

h f s  +  0.5  x/ÿ +  j

u ,/i +  0 . 4 x f g  +  4

h /^ +  0 .2x /}  +  4
k /tf +  0 .4 x f2 +  1

h f y  +  0 .3  +  2

h f s  +  O . I ^ f s  +  5

k f ç  +  0.3  x/^ 4- 1

h o f i o  +  0 . 2 x f i 4 +  2

l u f u  +  0.3  X/}, +  2

l u f ,2 + 0 . 4 x f i y  +  ]

l u f i s  +  0.2  x f i i f  4- 4

l u f i 4 +  0 . 4 x f , f )  4- 2

l u y}j +  O .Jx/), +  ;

h ô f i 6 +  0 . 4 x f i ,  4- 2

l u f i 7 4- 0 .2  X/}; 4 -2

l j 8 f i s  +  0 .4  x f j ^  4 -1

l l 9 f i 9 +  0.2  x f y i f  4- 3

h o f i o  +  O .S x f ^ g  4- J

l u f s i  +  &4 X&0 +  2
122 f s 2 +  0.1  x f i  +  5

h s f s 3  +  0.2  x f j g  4- 4

I24 f s 4 +  0 4 x6 ,  +  2
I25 f i s  +  0 . 2  x f  4 +  4

I26 f i e  +  0.1  x f n  +  5

h r f r r  +  0 . 4 x f i  4- 2
h s &, +  &2 x6 7  +  2
h ç Ü , +  0 J x 6 ,  +  2
h o f s o  -h 0.5  x f ^  4- 1

h t f s i  4- 0.2  x f r  4- 3

h z .6 :  +  0 .4x67  -h 2
I33 f s 3 +  0.4  x6 g 4- 1

I34 f s 4 +  0 .5 x6 , 4- 1

I35 f s s  4- 0.3  x f g  4- 2

h e 6 f  +  0 .2 x6 o 4 -2

h r f s r  +  0 .2x62 4- 2
h s f s s  4- 0.2 x6 , 4- 1

I39 f s 9 +  0.2  x f s  4- 2
h o ,6 o 4- 0.4 x6 rt4 -2

Table 6.1; Time functions for links
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The discount rate: 

r = 0.05

In this model, a three period transportation equilibrium analyses was considered. Assume 

the demand equations are the constant elasticity type with time lag exponential structure. 

The travel disutilities interact in the demands equation according to travel disutility 

elasticity and lag elasticity.

From the system level, the minimum total time spent in this network must be achieved. 

This problem can be formulated as system-optimization. From user point of view, it will 

be modeled as user-optimization. Two type of equilibrium models are illustrated below.

System-optimization can be formulated as:

Objective function:

3 40 4

Minimize z = x x i f f x  (1/(1 + r ) '}
/= 1  1=1

S.t. ~ t = \,2,3 / = !,...,40
p= i

24

^p,i X  ̂ = iff^ f = 1,2,3 i = am, em, um, ym
p=\

Non-negativity:

if f ) > 0 ;
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User-optimization can be formulated as: 

Objective ftmction:

//'>
Minimize z = d c o j (u )x  rfujx (1/(1 + ?-)'}

/=! /=1 0

d(< )

1=1 0

24

S.t. / = 1,2,3 Z =1,...,40

24

^  Ap ,■ X t = 1,2,3 i — am,em,um,ym
p=\

Non-negativity:

6.2 Decoupled Relaxation Method for the Solution of the Model

In the given conditions of this model, three periods were considered. Further, the demand 

functions are exponential structure with time lag effect, and the travel disutilities interact 

with each other in the demand functions.

Due to the time lag effect, the demands in the previous periods will influence demands in 

the current period. The general algorithms in urban transportation equilibrium cannot be 

used to solve the model directly since it required a travel disutility function of demand.
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i.e., D'^(d). But in this model, because of the interaction of multi-periods’ demand 

functions, D’̂ (d) cannot be achieved directly. Thus by adapting the decoupled method 

and using inflated disutility elasticities the demand functions can become function of 

current period travel disutility. After doing so, the relaxation method can be applied in 

each decoupled step to solve this model and get current calculated values. Next, these 

calculated values in decoupled process o f next step can be used. Finally, the results can 

be brought back into the relaxation method and the process repeated until an equilibrium 

state is reached in the system-optimization model:

(i) the marginal travel disutility spent in each used path is less than or equal to 

the value on any unused path;

(ii) in all used paths, the marginal travel disutility is the same, so the time spent in 

the whole system is minimized;

In the user-optimization model:

(i) the travel disutility spent in each used path is less than or equal to the value on

any unused path;

(ii) in all used paths, the travel disutility is the same, so users will spend same 

time no matter which path they choose.

In the real world, the travel disutility elasticities and lag elasticities usually would be 

obtained from regression of historical data via statistics. In this chapter, it was assumed 

that travel disutility elasticity b(ij) and lag elasticity e,- are known, and a set of data 

assumed to be close to the statistics was used. The given historical data includes travel
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disutility u at period t 0 and demand d  at periods t — 1 and t — 0. The constant factors 

a-i in demand functions are calculated from the given data by equation 6 .1 ;

(6.1)
j=\

The demand functions can be described as a matrix notation:

^ ( 2) -

2)(3)

B

EE B

E"B EB B 

Where the constant factor o f demand function

X

(1)

^(3)

(6.2)

(6.3)

At each step of decoupled algorithm, the demand functions without time lag effect are 

shown in the following matrix;

^ ( 2) = ^ (2) -

2 )0 )

0  [/

^(2)

^(3)

rO)

[/(")

[ / ( 3)

(6.4)

Where B^4 are 4x4 square matrices of the inflated travel disutility in period,

2, 3 calculate by equation (6.5)
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n=l

Where U* is the equilibrium travel disutilities in the last decoupled iteration.

If system-optimization model is considered ,then at each decoupled step the form of each 

NLP solved at each iteration in relaxation method is the following:

40

/=1
4 4

t ; '  ^ 9/;

1 = 1

s.t.

24

p=i

Non-negativity:

%M>0 ; 

> 0;

/ = 1,2,3 / = 1,...,40

i = 1,2,3 i -  am, em, um, ym

(6.6)

From user-optimization point at each decoupled step, the form of each NLP at each 

relaxation method is the following:
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Min

Z = j ] l / ( l  + r y x [ (^ l /2 '
/=!

40

1=1

( ,)  2

u ,  ;  -, .V ,

M/=1

(6.6)

S.t.
p=i

t = 1,2,3 I = 1,...,40

24

zP=1
4 . , t  = 1,2,3 / = am, em, um, ym

Non-negativity:

Both system-optimization and user-optimization are formulated and solved separately by 

decoupled relaxation method implemented by the GAMS. The computation results are 

discussed in the next subsection. The flowchart o f the algorithm is shown in Figure 6.2
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Deftne «efts ÇTime. Link. Path. OD pair)

Deftne indices IT l, ITS

Define dal* tables VO. C M .  JX2VI0. CN. G

Define dala R. BB. E, UO, U l. U2. UV, DDD, D P I, P I ,  D2. FD. FI

Calculate AO. AA, BP. DR

Define decision variables Z, F. P . X

Define equations OBJ. CONl. COM2

Formulate e<iu*tions OBJ. COMl. COM3

Define bounds on vsriables D. F

Define GAMS options

loafin* dmlm MERRl. MEJRR2. BRRl. SRR2. TI.

Initialize MERRl wilhi a value larger than specified tolerance

Begizx Decoupling Algoritbm witli ITl —1

MERRl > tolsance 7

Initialize MERR3 ■with a value larger than specified tolerance

Begin Relaxaition Algotilbm with IT2 —1

MERR2 > tolerance 7

UV

calculate ERR2 with cost disutility, demand and flow in each link

S«tMERR3 «quai to

FI -F .P .  D 2 -D .D . U 2 —UV

IT2 -  IT2

Reset MERRI— 0

calculate ERRl with cost disutility and demand

SslMERRl «quel to

FI — F.L. D1 -  D.2. U l -  U2

MAXITER7

Define output

Figure 6.2: Algorithm flowchart
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6.3 Calculation Results

In the following, the above numerical examples computational results are summarized. 

Tables 6.2 and 6.3 show decoupled relaxation iterative information. For the two type 

transportation equilibrium cases with time lag effect, this test model involves 207 

decision variables and 135 single equations. The model was solved from a “cold start” 

with initial estimates o f demands and travel disutilities. Both of this test models need 

only, six for system-optimization and four for user-optimization decoupled iterations to 

converge. For system-optimization, total 2428 nonlinear programming were solved to get 

the optimal solution. And total 1522 nonlinear programming were solved to get the 

optimal solutions for user-optimization. It is interesting to notice that most nonlinear 

programming iterations, 58% of NLP iterations for system-optimization and 75% of NLP 

iteration for user-optimization are finished in the first decoupled step. Only 42% of NLP 

iterations for system-optimization and 25% of NLP iteration are used to calculate the 

equilibrium solutions during the following decoupled steps. This means, for this simple 

model, the decoupled relaxation method converges well in the following decoupled steps. 

This indicated that the decoupled relaxation method is a useful approach to solve multi

period transportation equilibrium models with time lag demand. Tables 6.2 and 6.3 

illustrate the number of interactions for two type’s equilibria.
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Decoupled
Iteration

Relaxation
Iteration

No. of 
NLP 

Iteration
Total 

No. NLP
1 482
2 160
3 108
4 97
5 94
6 88

1
7 73 1410
8 69
9 53
10 42
11 33
12 37
13 38
14 36
1 83
2 88
3 75
4 64

2 5 50 ' 537
6 35
7 37
8 37
9 36
10 32
1 47
2 48

3 3 32
4 40

Z j o

5 34
6 37
1 37

4 2 36 105
3 32

5 1 37 7H

2 33
/U

6
1 34
2 34

O o

Table 6.2: System-optimization computing iteration information
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Decoupled
Iteration

Relaxation
Iteration

No. of 
NLP 

Iteration
Total 

No. NLP

1

1 606

1212

2 118
3 90
4 81
5 68

6 53
7 39
8 32
9 31
10 33
11 30
12 31

2

1 58

1572 30
3 35
4 34

3
1 24

892 31
3 34

4 1 32
2 32

0 4

Table 6.3 User-optimization computing iteration information 

Tables 6.4 and 6.5 illustrate the final computational results in the cases of system- 

optimization and user-optimization: flow in each link, travel disutility and demand in 

each O-D pair. From Table 6.4, all paths in this system that are used and at each period t

a(0
can be seen. Further, marginal times c, spent at all paths in each O-D pair are the same

and equal to the marginal travel disutility », . Thus, when the network achieves system- 

optimization, the accompanying solutions are optimal solutions. Table 6.5 also displays 

the adjustment of demands in four communities for all three periods. Since there is the 

time lag effect in demand function, the current demands partly depend on demands firom
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previous periods. Demands in period t = 1 will be influenced to a great extend by the 

demand in period t — 0. For example, demands for O-D pair AM at period t = 0 was 

assumed to be equal to 22. Since the demand is relatively large compared to the road 

capacity between this O-D pair, congestion will occur more frequently than expected, it 

will then take longer time to travel on the path. At the next period, namely at t = i ,  when 

people notice such information, they will switch to different paths to shorten their travel 

time or even move to a different community in the future in order to save their travel 

time. So the travel demand between this O-D pair will decrease. When the network 

achieves system-optimization, the demand for O-D pair AM is adjusted automatically to 

15.509. Table 6 .6  and Table 6.7 show how demands changes for four O-D pairs under 

system-optimization and user-optimization separately.

t - 1 tp=2 t=3 t=l t=2 t=3
fl 7.69 6^58 6 .6 f r i 17.53 16.74 16.743
f2 2j&4 1.841 1.687 f r z 6.924 6 .6 6 6.684
f3 4.108 4.113 4.189 frs 2.007 1.995 2.092
U 8 .8CJ 8.466 8.458 f r 4 4.866 4.791 4.88
fs 7.818 6.945 6.665 frs 15.853 15.091 15.11
f6 5.406 5.018 4.914 f r o 5.729 5.649 5.752
f? 6.392 5.954 5.875 frv 3.344 3.461 3.627
fs 4.728 4.352 4.269 frs 3.651 3.337 3.287
f9 9.814 9.24 9.122 fr9 3.359 2.954 2.865
fio 4.286 3.845 3.733 fro 5.983 5.875 5.945
fn 4.048 3.627 3.525 f r l 6.54 6.443 6.531
fl2 6.084 5.964 6.028 fo2 5.658 5.331 5.379
fl3 6.234 6.042 6.065 fr3 4.575 4.409 4.458
fl4 3.533 3.1 2.931 f r 4 6.51 6.262 6.3
f l 5 5.644 5.236 5.122 frs 5.172 5.082 5.166
fl6 16.524 15.544 15.428 fre 9.883 9.904 10.158
f l 7 4.877 4.431 4.307 fr? 5.89 5.38 5.325
fl8 3.58 3.198 3.057 frs 1.315 0.971 0.867
f|9 5.54 5.095 5.023 fro 5.195 5.291 5.433
fro 16.051 15.122 15.026 fio 10.367 10.373 10.599

Table 6.4 System-optimization flow in each link results
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Solutions for user-optimization are summarized in Tables 6.5

t=l t= 2 t=3 t=l t= 2 t=3
fl 10.319 10.057 9.996 fsi 25.849 26.625 27.023
f2 2.989 2.649 2.533 fs2 9.6 9.978 10.163
fs 5.636 6.105 6.305 fss 4.095 4.206 4.255
f4 11.749 12.319 12.587 fs4 7.94 8.264 8.41
f5 9.939 9.748 9.723 fs5 23.035 23.692 24.036
fe 7.33 7.408 7.464 fs6 9.74 10.158 10.353
f? 8.624 8.754 8.838 fs? 5.236 5.752 5.978
fg 6.113 6.214 6.281 fs8 5.177 5.091 5.07
fg 13.995 14.268 14.419 fs9 5.144 4.972 4.922
fio 6.045 5.926 5.903 fso 8.193 8.721 8.965
fll 5.724 5.569 5.528 fsi 10.459 11.098 11.392
fl2 9.235 9.767 10.008 fss 9.272 9.298 9.326
fis 9.632 10.042 10.234 fss 7.906 8.145 8.261
fl4 3.894 3.822 3.82 fs4 9.698 9.999 10.15
fl5 7.651 7J65 7.839 fs5 7.474 7.78 7.925
fl6 23.584 24.089 24.373 fs6 15.695 16.85 17.37
fn 6.51 6.49 6j08 fs7 9.904 9.64 9.552
fis 4.363 4.226 4.185 fs8 1.998 1.495 1.29
fl9 8.029 8.075 fs9 7.7 8.504 8.859
fso 23.579 24.058 24.325 fio 15.174 16.284 16.784

Table 6.5 User-optimization flow in each link results

t = l t= 2 t=3
dam 15.509 13.804 13.265
dem 18.65 17.706 17.58
dum 11.548 10.711 10.704
dym 20.25 20.277 20.757
A

W am 81.546 75.581 74.192
A

W em 92.887 88.628 88.204
A

W um 74.009 70.051 69.916
A

^  vm 94.097 92.176 93.187
A

C a m 81.546 75.581 74.192
A

C e m 92.887 88.628 88.204

C u m 74.009 70.051 69.916
A

C y m 94.097 92.176 93.187
Table 6 .6  System-optimization demand, marginal travel disutility 

and marginal time in each O-D pair results
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t=l t=2 t=3
dam 2 0 .258 19.805 19.72
dem 25.744 26.588 27.005
dum 19.176 18.938 18 .877
dym 30.869 33.134 34.155
Uam 63.49 63.541 63.776
Uem 74.507 76.409 7 7 .383
Uym 63.54 63.967 64 .288
Uym 78.922 82.5 8 4 .1 7 4

Cam 63.49 63.541 6 3 .7 7 6

Cem 74.507 76.409 77 .383

Cum 63.54 6 3 .9 6 7 6 4 2 8 8

Cym 7 8 .9 2 2 82.5 8 4 .1 7 4
Table 6.7 User-optimization demand, trave: disutility and time in each O-D pair results

According to Tables 6 .6  and 6.7, we can predict the demand changes in the next three 

periods. For example, in table 6.7, it shown the numbers of residences lived in 

community A will decrease for 20.258 in period one to 19.72 in period three. And the 

demand in community E will increase firom 25.744 to 27.005 in next three periods.
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1 '

CHAPTER 7 

SUMMARY

In this thesis, the GDL equilibrinm approach was employed to different types of 

transportation equilibrium models, i.e., single-period and multi-period models without 

time lag effect, and multi-period models with time lag effect. And exponential structure 

expression of GDL was introduced into demand functions instead of linear demand 

function to illustrate i.e., the effect of past travel time on current travel demands. Two 

types of transportation equilibrium models were mathematically presented to study 

system-optimized and user-optimized behavior on travelers o f the urban transportation 

networks.

The projection method and relaxation method are general tools which can be used to 

calculate the equilibrium solution in single-period transportation equilibrium models. 

Consider multi-period transportation equilibrium models with the time lag effect, using 

projection method and relaxation method to solve such model directly may be difficult to 

converge. Based on the decoupling principle, the modified iterative methods, called 

decoupled projection or decoupled relaxation method, was used to solve multi-period 

transportation equilibrium models. Four examples were solved by applying decoupled 

projection in multi-period time lag linear demand and decoupled relaxation in multi-
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period time lag exponential demand. Appendix B illustrates four multi-period 

transportation equilibrium test models and their computational results. More numerical 

test models can be found in the manual (Wu, 2003). The GAMS was used to calculate the 

optimal solution and investigate the computational behavior of transportation equilibrium 

algorithm.

7.1 Contribution

In this thesis, main contributions can be summarized as follows;

1. Introduction of multi-period GDL structure into transportation equilibrium 

models.

2. Introduction of different expressions of demand functions: linear structure 

demand with cross effect of travel disutility, exponential structure demand with 

cross effect of travel disutility.

3. Modification and implementation of the decoupling algorithm to solve multi

period transportation GDL equilibrium models.

7.2 Future Research

With limited empirical investigations on the test models, it is interesting to notice that the

decoupled projection method and decoupled relaxation method converge well for the test
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efficient methods for multi-period transportation equilibrium models in long-term 

transportation planning and urban development.
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Appendix A 

Single-Period Transportation Equilibrium Models
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For the single-period transportation network equilibrinm problems and optimal solution 

algorithms, eight test examples were tested in which different types of transportation 

network problems were included. The types of these examples are summarized in Table 

A.l:

Example Fixed
demand

Variable
demand

Time
cross
effect

No time 
cross 
effect

Path =  
link?

1 Y Y Y
2 Y Y Y
3 Y Y Y
4 Y Y N
5 Y Y N
6 Y Y N
7 Y Y N.
8 Y Y N

Table A. 1; Type of examples 

For each example, based on the network topology diagraph, time and demand functions 

or travel disutility functions, mathematical formulations were given in two forms: • 

system-optimization and user-optimization. Projection method was also applied in the 

examples. Programming code in GAMS was also developed to get the solution for those 

examples. In the end of each example, a table of the optimal solution was summarized.

Example 1 : Fixed demand function (Path = Link) (1)

a

Figure A .l Example 1 network topology
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Time functions:

Ca(/) = 2 x / ^ + 5

Demand functions: 

d ,  =  1 0

The solution will be illustrated in two cases for the system-optimization model and the 

user-optimization model respectively.

Case I: System-optimization model.

Min z  = ^ c , ( / ; ) x y ;  = (2 x / , - h 5 ) x y ; + ( / , + i o ) x y ;
l=a^b

s.t. Xi+jC2 = 1 0 ;

fa  ~  ^ 1 ’

A  = ^ 2 ;
A .A  ^  0;
x,,x2 >0;

Applying the projection method, the final results are summarized in Table A.2:

Iteration f a f b Ca Cb c, C2 Z
0 2 8 9 18 9 18

C l 6 c , C2

13 26 13 26
1 f a f b Cb c, C2

4.167 5.833 13.334 15.833 13.334 15.833
C] Ô2 Cj c , Z

21.667 21.667 21.667 21.667 147.917
2 f a fb Cb c, Q

4.167 5J83 13.334 15.833 13.334 15.833
C l C2 Cl 6 Z

21.667 21.667 21.667 21.667 147.917
Table A.2: System-optimization results of example 1

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Case II; User-optimization model

fl. A
Min Z = ^  jc,(ty)<iû7 = J(2x(2>+5)io+ ^{co-\-\Ç))dcû

l=a,bO 0 0

S.t. =10;

f a  ~ ^ a ' i

f b  ~  j 

A .A ^ O ;

Xa,Xi, >0;

Applying the projection method, the final results are summarized in Table A.3:

Iteration fa fb Ca Cb c, Q Z
0 2 8 9 18 9 18
1 fa fb Ca Cb c, Q Z

5 5 15 15 15 15 112.5
2 fa fb Ca Cb c, Q Z

5 5 15 15 15 15.. 112.5
Table A.3: User-optimization results of example 1

Example 2: Fixed demand function (Path=Link) (2)

Time functions:

Ca(/) = 2 x / ^  +5 

Cbif) = fb +8 
C c(/) = 1 .5x f + 5

a

Figure A.2 Example 2 network topology
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Demand functions: 

=  10

The solution will be illustrated in two cases for the system-optimization model and the 

user-optimization model respectively.

Case I: System-optimization model.

Min z =  %]c,(y;)xy)=(2xy;4.s)x/,4.(/;,+8)xy;-H(i.5xy; + 5)x/;
l=a,b,c

S.t. Xj + jCj+X3 = 10; 

fb ~ ^ 2  >

^ 0;
>0;

Applying the projection method, the final results are summarized in Table A.4;

Iteration f a A A Cb Cc Cl Cl Cl Z
0 2 3 5 9 11 12.5 9 11 12.5

Cl Cl C3 Cl Q Cl
13 14 2 0 13 14 20

1 A f c Ca Cb Cc Cl Q Ci Z
2.654 3.808 3.538 10.308 11.808 10.307 10.308 11.808 10.307 108.79

Cl Cl Cl Cl Cl Q
15.615 15.615 15.615 15.615 15.615 15.615

2 fo A A Ca Cb Cc Cl Q Ci Z
2.654 3.808 3.538 10.308 11.808 10.307 10.308 11.808 10.307 108.79

Cl Cl Cl Cl C; Ci
15.615 15.615 15.615 15.615 15.615 15.615

Table A.4: System-optimization results of example 2 

Case II: User-optimization model.
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4
Min Z =  ^  J(2x£ü + 5 ) ( i 0 + j((» + 8 ) J 0 + J ( 1 .5 x 0  + 5)j£y

l=a,b,c 0 0 0 0

S.t. Xi+X2+X3=10;

f a  -

f b  =  ^2 »

/ :  = :^ ;

x,,X2,X3 > 0;

Applying the projection method, the final results are summarized in Table A.5

Iteration f f b f c Ca Cb Ca c, C2 Q z
0 2 3 5 9 11 12.5 L  9 11 12.5
1 f a f f c Ca Cb Ca C, C, Q z

3 3 4 11 11 11 11 11 11 84.5
2 f fc Cb Cc Cl C2 Q Z

3 3 4 11 11 11 11 11 11 84.5
Table A.5; User-optiinization results of example 2

Example 3; Fixed demand function (Path = Link)

Figure A.3 Example 3 network topology

Time fiinctions:

= 5 x / „ + / ^ + 5  
Cj =10x/^  + 5 x /^  + 5 

= 1 0 x / ^ + 5 x / ^  + l I0  
= 5 x / ,  + 2 x / ^  +150 

c, = 4 x/^ + 3 x /^+10

86

Reproduced with permission of the copyright owner. Further rep.oduction prohibited without permission.



Demand functions:

ĉ i = 10 
=10

The solution will be illustrated in two cases for the system-optimization model and the 

user-optimization model respectively.

Case I: System-optimization model.

Min

Z= E^,(/:)'</=(5x/,+/:,+5)x/,+(10x/,4-5x/,+5)xy;,+
l=a,b,c,d,e

(iOx/:,+5xy;+iio)xy; + (5xy:,+2xy;-n50)xy;+(4xy;4-3x/;+io)xy;

q x. + x .+ x ,  =10;
Xj+Xrf=10;

f a

f b  — ^3  »

f c

f d  ~  ^ 4 ’

f e  -  ^ 5 :

>0;

Applying the projection method, the final results are summarized in Table A.6:

;
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Iteration fb fa . f d f c Z
0 10 0 0 5 5

Ca Cb Cc Cd Cc
60 30 135 195 30
c , C2 Q Q Q
60 30 135 195 30
Ca Cb Cc Cd Cc

110 30 135 220 50
c , Q Q Q Q
110 30 135 220 50

1 f a fb fa f d fe Z
7.333 2.667 0 0 10 993.333

Cb Cd Cc
41.665 31.670 160 164.666 50

c , C2 Q Q Cs
41.665 31.670 160 164.666 50

Ca 'Cb Cc Cd Ce
78.33 58.340 160 164.666 90

c, C2 Q Q Q
78.33 58.340 160 164.666 90

2 f a f b fa f d / . Z
6.667 3.333 0 0 10 883.333

Ca Cb Cc Cd Cc
38.335 38.330 160 163.334 50

c , Q Q Q Cj
38.335 38.330 160 163.334 50

Ca Cb Cc Cd Cc
71.66 71.660 160 163.334 90

c , C2 Cj Q C5

71.660 71.660 160 163.334 90
Table A.6: System-optimization results o f examples

Case II: User-optimization model.

Min

f ,  fa  fb

Z =  'Yj ^Ci{cû)dû) = j{5'x.Cù + fj+ S )d c ù + ^ {] .Q 'x .û )^ + 5 y .f^+ 5 )d c û  +
I^a,b,c,d,e 0 0 0

^
j(10xty + 5x +\\Ù)dcû+ J(5xty + 2x +150)i£O+ j(4xiy^ -t-3x +\Q)dû)
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X, +x,  =10;
S.t. ^  '

X4 +X5 = 1 0 ;

fa =^,;
A  — 3̂*
/ :  = ^ 3; 
f d  “ ^4 5
f e  “ ^5 5

^1 ? ■̂ 2 )  ^3 3 ̂ 4 5 ̂ 5  “  5̂

Applying the projection method, the final results are summarized in Table A.7

Iteration fa Â f c f d ,/ê Z
0 10 0 0 5 5

Cb Cc Cd Ce
60 30 135 195 30
Cl C2 c , Q C5

60 30 135 195 30
1 f a Â f c f d ,/ê Z

8 2 0 0 10 620
Ca Cb Cc Cd Ce
45 25 160 166 50
Cl C2 Q Q Q
45 25 160 166 50

2 f a Â f c f d fe Z
6.667 3.333 0 0 10 516.667

Cb Cd Ce
38.330 38.330 160 163.333 50

Cl Q Cs Q C5

38.330 38.330 160 163.333 50
Table A.7: User-optimization results of example 3 

Example 4: Fixed demand function (Path ^  Link)
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0
©

Figure A.4 Example 4 network topology

Time functions;

Ca = 5 x / ^ + 2 x / j +5  
C& =  7 X + / ,  +5

Demand functions: 

d, =10

The solution will be illustrated in two cases for the system-optimization model and the 

user-optimization model respectively.

Case I: System-optimization model.

Min

I ; < ^ i W ) x / . = < 5 x / . + 2 x A + 5 ) x / „ + ( 7 x / . + / . + 5 ) x A + ( 3 x / , + / , + / . + 7 ) x / ,
l=a,b,c

S.t. X,+X2=10;

f a

f b  -  ^ 2 )

^  0;
x,,%2 ^0;

Applying the projection method, the final results are summarized in Table A.8
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Iteration. fn Ü /c z
0 4 6 10

Ca Ch Cc
37 51 47
c, C2
84 98
Ca Cb Cc
57 93 77
Cl C,
134 170

1 fa f. fc z
5.5 4.5 10 897
Ca Cb Cc

41.5 42 47
c, Q

88.5 89
Ca Ch Cc
69 73.5 77
c, C2
146 150.5

2 fa fb fc z
5.688 4.312 10 886.828

Ca Cb Cc
42.064 40.872 47

c, Q
89.064 87.872

Ca Cb Cc
70.504 71.056 77

C; c ,
147.504 148.056

3 f a fb f c z
5.711 4.289 10 885.497

Ch Cc
42.133 40.734 47

c, c.
89.133 87.734

Ca Cb Cc
70.688 70.757 77

c, c .
147.7 147.757

4 f a /; fc z
5.714 4.286 10 885.33

Ch Cc
42.142 40.716 47

c, c ,
89.142 87.716

Ca Cb Cc
70.714 70.715 77

c, C2
147.7 147.715

Table A.8: System-optimization results of example 4
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Case II: User-optimization model.

Min

f ,  L  4  4
Z =  jci(o))dû)= j(5xû)„+2xfi^+5)dû)+^(7xco + f^+5)âû)+j(3xû)^ + f^+ fh+ l)dû )

l=a,b,c 0 0 0 0

S.t. Xi+X2=10;

f a

f b = ^ 2 , 
f o  = ^ 1 + ^ 2 ;

Applying the projection method, the final results are summarized in Table A.9
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Iteration f t /c z
0 4 6 10

Cq Cb Ce

37 51 47
c, Q

84 98
Iteration fa f t z

1 5.167 4.833 10 5 9 9 .8 3 3
Cq Cb Ce

40.5 44 47
c, Q

8 T 5 91
Iteration fa f t /c z

2 5 .4 5 8 4.542 10 592.906
Cq Cb Ce

41.375 42 .2 5 47
c, C 2

88.375 89.25
Iteration / . f t / c z

3 5.531 4.469 10 591.015
Ca Cb C e

41.594 41.812 47
c, Q

88.594 88.812
Iteration / . f t / . z

4 5.549 4.451 10 5 9 0 .5 3 2

Ca Cb C e

41.648 41.703 47
c, Q

88 .648 88.703
Iteration fa f t / . z

5 5.554 4.446 10 59 0 .4 1 1

Cb Ce
41.662 41.676 47

c, G

88.662 88.676
Iteration fa ./À /c z

6 5.555 4.445 10 590.381
Cb Ce

41.666 41.666 47
c, G

88.666 88.666
Table A.9: User-optimization results of example 4

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Example 5; Variable demand function (Path ^  Link) (1)

Figure A.5 Example 5 network topology

Time functions:

C\ == / i  +1

3̂ = /s  + 2

C4 = / ,  + 1

Demand functions:

(f, =4 -1 /7 » ,
=7  — 1/ 6»2

The solution will be illustrated in two cases for the system-optimization model and the 

user-optimization model respectively.

Case I: System-optimization model.

Min

Z = É  =, ( / , )  X -  É  “ , « )  X rf , =  ( / , . + 1 )  X y ; +  ( / j  +  2 )  X / ,  +  ( / j  +  2 )  X / j + ( / . + 1 )  X / .
/=1 1=1

■ (28 — 4 X (/, ) X ùf, — (42 — 6 X ^ ^2

S.t. Xj+Z; =(/,;

"F X̂  = r/2 >

94
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y;

A  = 3̂ + ^ 4;
/3 =Xi+Xa;
f ^= x^+ x^ \

A A A / ; ^ o ;
^15 ̂ 2  ) ̂ 3 5 ̂ 4 ^  0 , 
c?i û?2 ^  0;

Applying the projection method, the final results are summarized in Table A. 10

Iteration f j _ f 2 f 2 f4 dl d2 Z
0 3 2 2 3 3 2

Cl C2 Cs C4
4 4 4 4

Cl C2 Cs C4
8 8 8 8
Cl C2 Cs Ô4
1 6 6 7

Cl C 2 Cs C 4
13 14 12 13

Iteration f j . . .  f 2 fs /4 dl d2 Z
1 1.354 2.476 1.665 2.165 1.354 2.476 -65.063

C/ C2 Cs C4 Ul U2
2.354 4.476 3.665 3.165 9.038 12.282

c , C2 Cs Q
6.019 5.519 8.141 7.641

Cl C2 Cs C4
3.708 6.952 5.33 5.33

C; C2 Q C4
9.038 9.038 12.282 12.282

Table A.IO; System-optimization results of example 5

Case II: User-optimization model. 

Min

1 0

■Z" = ^  2  ju^^(v)do  = j(û) +  ï)dû) +  j(û? +  2)dû) +  ^ ( 0 3  •+ 2)dû) + +  ï)dû)
i=\ 0 '=1 0 0

d l  d 2

— ^(28 — 4 x  u')dv — J(42 —6xu)c/ü
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s.t. Xj + ^ 2  =<3?i;

X3 +X4

f\ = .̂ 1 + 5
= X3 + x^]

/ 3 =X, +X3;
f ^ = X 2 +x^;

■̂I3 ̂ 2  > *̂3 3 "̂ 4 ~ 3̂ 
>  0;

Applying the projection method, the final results are summarized in Table A. 11

Iteration ./} f i fs /4 dl ds Z
0 3 2 2 3 3 2

C ; C2 C3 C4
4 4 4 4
C, C2 Cs C4
8 8 8 8

Iteration f , 7S fs ./4 dl d2 Z
1 2.709 4.953 3.331 4.331 2.709 4.953 -130.126

C l C2 Cs C4 M; U2

3.709 6.953 5.331 5.331 9.04 12.284
Cl € 2 Q Q

9.04 9.04 12.284 12.284
Tab e A. 11 : User-optimization Resu ts of example 5

Example 6: Variable demand function (Path Link) (2)

Figure A.6 Example 6 network topology
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Time functions:

Ca = 5 x / „  + 2 x / ^  +5
C6=7xy^+_/^+5
Ca=3x/;+y;+y;,4.7

Travel disutility function:

M[ =  9 9  — 2  X c/j

The solution will be illustrated in two cases for the system-optimization model and the 

user-optimization model respectively.

Case I; System-optimization model.

Min

Z =  c , ( / ) x / ; - ^ M , . ( c ; ) x J ,  = ( 5 x / . + 2 x / j + 5 ) x / , + ( 7 x / j , + / ^ + 5 ) x / f t  +
/=o,6,c 1=1

(3xy:+y;+y;+7)xy;-(99-2x^,)x<f,

s.t. x ^ + X 2 = d { ,

f a = x , ;

f b  =X2l
f c = X ^

A A / L  ^0;  
-  Oi 

d , ^ 0 ;

Applying the projection method, the final results are summarized in Table A. 12
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Iteration f a /c dl Z

0 4 4 8 8
Ca Cb C c

33 37 39
c, Q
12 76
Ca Cb Cc

53 65 63
c, c .
116 128

1 f a /6 A d, Z

2.511 2.079 4.589 1 589 167.084
Ca Cb Cc

21.713 22.064 25.357
c, Q

47.07 47.421
Ca . 4 Cc

34.268 36.617 39.124
c, Q

73.392 75.741
2 f a A A d, Z

2.825 2T22 4.947 4.947 193.787
Ca Cb C c

23.369 22.679 26.788
c, c.

50.157 49.467
Ca Cb Cc

37.494 37.533 41.629
c, Q

79.123 79.162
3 / . A A d, Z

2.829 2.122 4.952 4.952 194.145
Ca Cb Cc

23.389 22.683 26.807
c, Q

50.196 49.49
Ca Cb Cc

37.534 37.537 41.663
c, C;

79.2 79.2
Table A. 12: System-optimization results of example 6
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Case II: User-optimization model.

Min

f t  f a  f b

Z =  ^  Jc,(£ü)c/û)-^  |(5xffl + 2 x /j ,+ 5 )c /ty + j(7 x ty +  / ^ +5)û?o +
/=Kii,c 0 M 0 0 0

/. d\
|(3xfl} + + f^+l)dco~ j(99-2xu)du  
0 0

s.t. X, + ;

f a  — ^ 1 )

f b  “ ^ 2  5 

f , ^ X ^ +X ^ \

A .A /L  ^0 ;
x,,X2 >0; 
d, > 0;

Applying the projection method, the final results are summarized in Table A. 13
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Iteration .Ù fb d l Z

0 4 4 8 8
Ca Cb Cc
33 37 39
C j Q
72 76

1 fa fb f c d l Z

5.021 4.158 9.179 9.179 334.168
Ca Cb Cc

38.421 39.127 43.716
C l C2

82.137 82.843
2 f a f b f c d l Z

4.948 4.005 8 .9 5 3 8.953 317.739
Ca Cb Cc

37.75 37.983 42.812
C l Q

80.562 80.795
3 fa fb f c d l ^  z

4.999 4.008 9.008 9.008 321.581
Cb Cc

38.011 38.055 43.031
C l Q

81.042 81.086
4 f a fb f c d l Z

4.997 4.001 8 4 9 8 8 .9 9 8 320.846
Ca Cb Cc

37.987 38.004 42.992
C l Q

80.979 80.996
5 f a f b f c d l Z

5 4 9 9 -321
Ca Cb Cc
3 8 38 43
C l Q
81 . .  . 8 1

Table A. 13: User-optimization results o f example 6

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Example 7; Fixed demand function (Path ̂  Link)

Figure A.7 Example 7 network topology

Time functions:

Ca = /a + 5 
Cj = 2x /"j +10

Travel disutility fimction:

Mj =  100

The solution will be illustrated in two cases for the system-optimization model and the 

user-optimization model respectively.

Case I: System-optimization model.

MinZ = Yu >< / /  = (/a + 5) X / ,  + (2 X /^ +10) X / j  + (/^ +15) x
l=a,b,c

S.t. X,+X2=100;

fa =^i;  
f b  —

f c = ^ \  +^z;
A A /L  ^0 ;
x,,X2 >0;

Applying the projection method, the final results are summarized in Table A. 14
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Iteration f a fb fc Z
0 " 40 60 100

Ca Cb Cc
45 130 115
Cl c .
160 245
Ca Cb Cc
85 250 215
Cl c ,

300 465
1 fa f b f c z

67.5 32.5 100 18831.25
Ca Cb Cc

72.5 75 115
c , G

187.5 190
Ca Cb Cc

140 140 215
Cl G

355 355
Table A. 14: System-optimization results of example 7

Case II: User-optimization model. 

Min

4 .  f a  f t ,

Z ]((  ̂+ 5)dü}+ \(2x(-o + lQ)dû)-\- ](a> + l5)d<v
0 0 0 n

S.t. +%2 =100;

f a  —

f b  — U i

f c  = 4  + ^ 2 i

A. A ./:  ^  0;
X ,,x , > 0 ;

Applying the projection method, the final results are summarized in Table A. 15
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Iteration fa fb f c Z

0 40 60 100
Ca Cb Cc
45 130 115
C l Q
160 245

1 fa fb fc z
68.333 31.667 100 10495.83

Ca Cb Cc
73.333 73.334 115

c, c ,
188.333 188.334

Table A. .5: User-optimization results of example 7

Example 8; Variable demand function (Path Link)

Figure A.8 Example 8 netu'ork topology

Time functions: 

c. = / , + 5
C j= 2 x j^ + 1 0

Travel disutility function:

U[ — 99 — 2 X

The solution will be illustrated in two cases for the system-optimization model and the 

user-optimization model respectively.
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Case I; System-optimization model.

z =  X  ^ < M ) x . ^ - Z “.-W)x‘' . = ( / . + 5 ) x / , + ( 2 x / . + 1 0 ) x / , + a  + 15)x / ,
M .U 1  l^a,b,c 1=1

-  ( 9 9  -  2  X <i, )  X (i,

S.t. x^+X2=d^\

f b  - ^ 2 ’

_/;=%,+%z;

x,,X2 >0;

Applying the projection method, the final results are summarized in Table A. 16

Iteration f a fb _ I c Z
0 40 60 100

Ca Cb Cc
45 130 115
C l Q
160 245
Ca Cb Cc
85 250 215
c, C:

300 465
1 f a fb f c Z

67.5 32.5 100 18831.25
Ca Cb Cc

72.5 75 115
C l C:

187.5 190
Ca Cb Cc

140 140 215
c, c .

355 355
Table A. 16: System-optimization results of example 8
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Case II; User-optimization model.

Min

ft, ^
c , { ( o ) d c a  -

l-a,b,c Q 1=1 0

f, % f-. ' fo. %
Z =  ^  ^c,{(o)da) -  ^ { 0  + 5)dco+ j (2 x c o  + lO)d (0 + j (ty +  1 5 ) ( i o  -  J (9 9 -2 x ü )c? u

S.t. x^+X2=d^;

f a  “ ^ 1 5

fc =^i

Xi,^2 >0; 
dx > 0;

Applying the projection method, the final results are summarized in Table A. 17

Iteration f a fb fa Z
0 40 60 100

Ca Cb Cc
45 130 115
Cl Q
160 245

1 f a f b f c Z
68.333 31.667 100

10495.83

Ca Cb Cc
73.333 73.334 115

c, C2
188.333 188.334

Table A. 17: User-optimization results o f example 8 

Through the numerical tests as shown in these eight single-period transportation 

equilibrium models, it can be concluded that the projection method is very efficient 

algorithm in soh ing single-period transportation equilibrium models.
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Appendix B

Multi-period Transportation Equilibrium Models
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For the multi-period transportation network equilibrium problems and optimal solution 

algorithms, four examples will be presented. These include linear, exponential, time lag 

effect and no time lag effect transportation equilibrium models. The types of these 

examples are summarized in Table B.l:

Example Linear
structure
demand
function

Exponential
structure
demand
Function

No
time
lag

effect

Time
lag

effect

1 Y Y
2 Y Y
3 Y Y
4 Y Y

Table B. 1 : Type o f example in Appendix B

In this appendix, the same network topology and time functions that were implemented 

for all four examples will be used. Three periods for each of the examples will be 

considered. Further, there will be a constant discount factor for every period in all the 

examples, and demand functions are given according to Table B.l.

In each example, a mathematical formulation in the two forms of system-optimization 

and user-optimization will be given. In example 1 and 3, the demand functions have no 

time lag effect and the relaxation method is used; in example 2 and 4, the demand 

functions have a time lag effect and the decoupled relaxation method is used. The 

programming code was developed in GAMS to get the solution for those examples.

At the end of each example, the results were summarized in two tables, one for 

computing iterations and the other one for the optimal solutions.
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Example 1 : Linear structure demand function without time lag effect.

Figure B. 1 Transportation network topology

Time functions:

= /;(')+ 0 .5  

c "  = +0.4 X + 2

c r= .^ ^ '^ + 0  4 x /( ')  + 2 

cW =/:<')+0.3 x _ ^ ')+ l

Discount factor: 

r = 0.05 

Period: 

t = 1,2,3

Demand functions:

d[‘̂  = ofj -1 .6  X u[‘̂  + 0.9 X i 

d.2^ = Û 2  +  l - l x w f ' ^  - 1 . 8 x m ^ 4

History data (in periodr = 0) are given as follows:

Demand: 4=°>=3,

Travel disutility: =12.4, =12.5.

The solution will be illustrated in two cases for the system-optimization model and the 

user-optimization model respectively.
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Case I: System-optimization model.

4

I
r= l ;=1 1=1

M in Z = % l/( l  +  ry

S.t.

+X4  ̂=

4-

/•(O _  y(f) , ^(0./4 — %2 ^  -̂ 4 ,

for all >0;

Relaxation method was used to calculate the optimal solution;

First the parameter of demand functions, â  and was regressed from history data.

o ,= 4 < '- » + 2 ( a r ’ xV fl) (B.l)
J=\

The objective function at lâ  relaxation step is described as equation B.2:

Z = /(I + r) ' X x W " ) ' + c“ ( / “>"-'>) -  X  /<'>■“ -’> )
2 '='  ̂ (B.2)

- 1  4 "  + (a, + ( t " ? ’" - ’ X (-V y,)) + n™ ‘-'> X i><,,„)/(.„,„)x 4,‘'>]
<•=1 7=1

Iteration information is summarized in Table B.2:
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Relaxation
Iteration

No. of  
NLP 

Iteration

Total No. 
NLP

1 100

277

2 37
3 20
4 18
5 20
6 22
7 20
8 20
9 20

Table B.2; Example 1 system-optiimzation iteration information

The optimal solution for system-optimization model is summarized in Table B.3

f , / i
t=l 2.302 1.939 1.753 2.488
i=2 2.302 1.939 1.753 2.488
t=3 2.302 1.939 1.753 2.488

d, dl u'-i
(=7 2.302 1.939 13.076 13.300
t=2 2.302 1.939 13.076 13.300
t=3 2.302 1.939 13.076 13.300

c , Q Q Q
t=l 13.076 13.076 13.300 13.300
t=2 13.076 13.076 13.300 13.300
î=3 13.076 13.076 13.300 13.300
Z -64.6160

Table B.3: Example 1 system-optimization results

Case II: User-optimization model.

Min Z = | ]  1 /(I + r) ' X ( g  {co)da) -  ]  D f {v)dv)
//'>

/=1 0 1=1 0

s.t.
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f ( .‘) _  ^(0 + jf(0.

/-(() _  y(0 , yd).J2 — A3 + ̂ 4 ,

=%M+xW;

/;( ')=  x< ')+xr;

for all x ’̂ \f,^ ‘\d9^ > 0;

Relaxation method was used to calculate the optimal solution:

First the parameter o f demand function was regressed, a, and from history data.

< i , = i r ’ + Z " r ’x(V/))

The objective function at Æ'* projection step is described as equation B.4:

(B.3)

t = \

1=1

-  2 (  -1 /(2  X b„„)x + (a, + X (-i,u>)) + X X </,">]
M

(B.4)

Iteration information is summarized in Table B.4

Relaxation No. of 
NLP 

Iteration
Total No.

Iteration NLP

1 101
2 18
3 20 2034 20
5 24
6 20

Table B.4: Example 1 user-optimization iteration information

The optimal solution for user-optimization model is summarized in Table B.5
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fi f2 Â f4
t=l 3.916 2.906 2.38 4.441
t=2 3.916 2.906 2 J 8 4.441
f=3 3.916 2.906 2 J 8 4.441

d, di M/ U2
3.916 2406 12.523 12.627

t=2 3.916 2.906 12.523 12.627
t=3 3.916 2.906 12.523 12.627

c, C2 c , Q
12.523 12.523 12.627 12.627

t=2 12.523 12.523 12.627 12.627
t=3 12.523 12.523 12.627 12.627
Z -86.374

Table B.5; Example I user-optimization results 

Example 2: Linear structure demand function with time lag effect

Time functions:

fU) + 0 .5x^c) -Fl
+o.4xy;(') + 2

c-r - + 0.4x/,M + 2
+ 0.3x_^') + 1

Discount factor:

r  = 0.05

Period:

t = 1,2,3

Demand functions:

d[‘̂  = Qj — 1.6X + 0.9XU2̂  4-0.82X

d^^ = Ü2 +l.lXMj '̂^ 1.8x«(')+0.8x(f('-')
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History data (At t = - \ and f = 0) are given as follows;

At f = -1 :

demand: -  3 , = 2 ;

At t = 0 :

demand: = 4 , = 3,

travel disutility: = 12.4, = 12.5.

The solution will be illustrated in two cases for system-optimization and user- 

optimization respectively.

Case I: System-optimization model.

Min Z = j ] l / ( l  + r)'
/=! /=! (=1

s . t .

for all x f  >0;

Decoupled relaxation method will be illustrated to calculate the optimal solution:

First the parameter o f demand function, a, and was regressed from history data.

a , + i;» r  (^.s)
M

The constant factor inflated disutility elasticity in the decoupled steps will also be needed here.
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Constant factor of demand function;

= (a, X X ( B  6)
n-1

Inflated disutility elasticity at each decoupled step:

C > = * M x i w " "  (B.7)
n-1

The objective function at Æ'* decoupled step applying relaxation method is described as equation 

B.8:

z = 1 1/(1+r)' + c r> (/« " -» )  >;<'»->)
/=i 1=1 oJt °Ji ^ g \

- Z ( - l / i g ,  X < "  +  ( 4 " '  +  ( t X  ( - % , »  +  U < - « « >  X % ) / % ) X  d f  ]
1=1 y=i

Iteration information is summarized in Table B.6
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Decoupled
Iteration

Relaxation
Iteration

No. of 
NLP 

Iteration
Total 

No. NLP

1 101
2 38

1 3 18 2724 17
5 19
6 20
7 18
8 22
9 19
1 18

2 2 19
3 18
4 21 128
5 16
6 21
7 15

3 1 20
2 17
3 17 88
4 17
5 17

4 1 17
2 17 49
3 15

5 1 16 'X'X
2 17

6 1 15 15
Table B.6: Example 2 system-optimization iteration information

The optimal solution for system-optimization model is summarized in Table B.7
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f2 f s f4
t= l 2.469 2.115 1.919 2.664
t=2 2.351 1.997 1.805 2.543
t=3 2.358 1.984 1.802 2.540

d, di wU
t= l 2.469 2.115 13.899 14.121
t=2 2.351 1.997 13.328 13.563
t=3 2.358 1.984 13.328 13.529

c , C2 Cj Q
t= ] 13.899 13.899 14.121 14.121
t=2 13.328 13.328 13.563 13.563
t=3 13.328 13.328 13.529 13.529
Z -71.2960

Table B.7: Example 2 system-optimization results

Case II: User-optimization model.

3 4 2
Min Z = ^ 1 /(1 4- r)' X ^c\‘̂ {cù)dco ~ ̂  J {v)do)

r=l /=1 0 i= l 0

S.t.

= d\‘̂ \

=d^2\

for all x f  >Q\

Decoupled relaxation method was used to calculate the optimal solution:

First the parameter of demand function, and was regressed from history data.

y=i

(B.9)
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The constant factor inflated disutility elasticity in the decoupled steps will be needed here. 

Constant factor of demand function:

n“l

inflated disutihty elasticity of demand at each decoupled stqj:

^(U) ~  4' j )  ^ S  (^i X w )

(B.IO)

(B.ll)
n=l

The objective function at /ĉ'’ decoupled step applying relaxation method is described as equation 

B.12:

Z = iu (l + ryxg(l/2x.^Egr)x(y;m):+,«(/™-,,)_ag^
t=\ M/=!

-  2 : (  -1  /(2 X ) X d;« + (4 “  + ( t  u f" -«  X ( - % ) )  + 4>.(.-0 X 4<« ) / X 4 " ]
1=1 J= l

(B.12)

Iteration information is summarized in Table B.8

Decoupled
Iteration

Relaxation
Iteration

No. of 
NLP 

Iteration

Total
No.
NLP

1 115
2 21
3 19
4 21

1 5 21 284
6 22
7 23
8 24
9 18

2 1 19 382 19
3 1 19 342 15
4 1 20 20

Table B.8: Example 2 user-optimization iteration information 

The optimal solution for user-optimization model is summarized in Table B.9
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f t h h  _ f4
t=I 4.179 3.191 2.632 4.737
t=2 4.223 3.241 2.676 4.788
t-=3 4.236 3.258 2.690 4.804

d, d2 Ui U2
4.179 3.191 13.301 13.389

t=2 4.223 3.241 13.432 13.520
t -3 4.236 3.258 13.475 13.563

c , C; C3 Q
t= l 13.301 13.301 13.389 13.389
t=2 13.432 13.432 13.520 13.520
t=3 13.475 13.475 13.563 13.563
Z -94.2282

Table B.9: Example 2 user-optimization results

Example 3 : Exponential structure demand function without time lag effect.

Time fonctions:

= / ( ' ) + 0 . 5

-t-0.4 2

0.3 X

Discount factor: 

r  = 0.05 

Period: 

t  = 1,2,3

Demand functions:

= < 3 2  X  w f ‘ X
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History data (At period 2“ = 0) are given as follows:

Demand: = 4 , = 3 ,

Travel disutility: = 12.4, = 12.5 .

The solution will be illustrated in two cases for the system-optimization model and the 

user-optimization model respectively.

Case I: System-optimization model.

Min Z = % l/( l  + r)'
/=! /=! (=1 

S.t.

= dl‘̂ ;

y;(') = x ['> + x f ;

+ x^‘̂ ;
f i t )  __ , y ( f ) .JA “  -̂ 2 ^  ̂ 4 5

for all >0;

Relaxation method was used to calculate the optimal solution:

First the parameter o f demand function, and was regressed from history data.

a, = X f j w f  ) (B. 13)
M
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The objective function, at k!’' relaxation step is described as equation B.14;

Z  =  t l / ( l  +  /,<»■<•-'>)
i= l

/=! y=i

Iteration information is summarized in Table B.IO;

(B.14)

Relaxation No. of 
NLP 

Iteration
Total No.

Iteration NLP

1 262
2 48
3 20
4 18 4305 19
6 21
7 22
8 20

Table B.IO: Example 3 system-optimization iteration information

The optimal solution for system-optimization model is summarized in Table B .ll:

fi f2 h f4
t=l 1.896 1.910 1.542 2.263
t=2 1.896 1.910 1.542 2.263
t=3 1.896 1.910 1.542 2.263

d, dj u'-'i u'̂ 2
t=l 1.896 1.910 11.735 12.568
t=2 1.896 1.910 11.735 12.568
t=3 1.896 1.910 11.735 12.568

Cl Q Q Q
t=l 11.735 11.735 12.568 12.568
t=2 11.735 11.735 12.568 12.568

11.735 11.735 12.568 12.568
Z -222.8318

Table B. 1: Example 3 system-optimization results

Case 11: User-optimization model.
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4 2 ,

Min Z = g l / ( I  + r)‘ X g  Jcf>( d y ) r f t y j  (o)dv)
1=1 0 '=) 0f=l

s.t.

4 " '  + ^ 4 "  = 4 " ;

/3<'>>x!'>+4'>;

for all ij>./;«,rf«>0;

Relaxation method was used to calculate the optimal solution:

First the parameter of demand honction, a, and was regressed from history data.

M

The objective function at A"" relaxation step is described as equation B.16:

x r y x  , ,  J  ^  /  ŷ JL/ ^  j P ( t ) \ 2  , „ ( 0  /  ,T (0 .(* -1 )  \  ^

(=1 /=!

i=l1=1

(B.16)

Iteration information is summarized in Table B.12:

Relaxation No. of 
NLP 

Iteration

Total No.
Iteration NLP

1 332
2 21
3 21 448
4 23
5 25
6 26

Table B.12: Example 3 user-optimization iteration information
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The optimal solution for user-optimization model is summarized in Table B.13;

fi f2 fs /<
t=i 3.949 2.957 2.419 4.486
t=2 3.949 2.957 2.419 4.486
t=3 3.949 2.957 2.419 4.486

d, d2 W/ U2
t=l 3.949 2.957 12.639 12.749
t=2 3.949 2.957 12.639 12.749
f=3 3.949 2.957 12.639 12.749

c, Q Cj Q
12.639 12.639 12.749 12.749

t=2 12.639 12.639 12.749 12.749
t=3 12.639 12.639 12.749 12.749
Z -423.336

Table B.13; Example 3 user-optimization results

Example 4: Exponential structure demand function with time lag effect.

Time functions:

0.5

c(') 4-0.4 x /C ) +2
,(0

,(0

(0

Discount factor: 

r = 0.05 

Period: 

t = 1,2,3

Demand functions:
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History data (At period t = -I and ? = 0) are given as follows:

At period f = -1 :

demand: = 3 , = 2;

At period t = 0:

demand: = 4, = 3,

travel disutility: =12.4, =12.5

The solution will be illustrated in two cases for the system-optimization model and the 

user-optimization model respectively.

Case I: System-optimization model.

Min Z = ^ l/(H -r y
f=l l-l 1=1

S.t.

= dl‘̂ ;

=d^‘̂ -, 

f l ‘̂  = + x f \
= %(')+%(');

4-

for all

Decoupled relaxation method was used to calculate the optimal solution:

First the parameter o f demand function, a, and was regressed from history data.
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a, = X ) X (f (B.17)
y=i

The constant factor inflated disutility elasticity in the decoupled steps will be needed here. 

Constant factor of demand function:

(B.18)

Inflated disutihty elasticity o f demand at each decoupled step:

6 (U) =  h . J )  ^  E (4 "" X ln(wW ) /  l n ( w )) (B. 19)
n=I

The objective function at decoupled step is described as equation B.20:

(=1 /=i ^Ji ^Jt

i= l > 1

Iteration information is summarized in Table B.14

(B.20)
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Decoupled
Iteration

Relaxation
Iteration

No. o f  
NLP 

Iteration

Total 
No. NLP

1 266
2 46
3 18
4 21

1 5 20 464
6 22
7 23
8 24
9 24 '
1 25
2 19
3 19

2 4 18 137
5 19
6 20
7 17
1 18
2 18

3 3 20 96
4 19
5 21
1 19

4 2 18 74
3 21
4 16
1 21

5 2 19 63
3 23

6 1 20 "17
2 17

7 1 21 21
Table B.14: Example 4 system-optimization iteration information

The optimal solution for system-optimization model is summarized in Table B.15
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fi f2 fs f4
t= l 2.194 2.373 1.911 2.656
t=2 2.26 2.374 1.944 2.69
t=3 2.421 2.467 ^  2.067 . 2.821

d, d2 U'̂ j U'̂ 2
t= l 2.194 2.373 13.459 14.508
t=2 2 2 6 2.374 13.671 14.617
t=3 2.421 2.467 14.337 15.164

c , C2 Cj Q
t= l 13.459 13.459 14.508 14.508
t=2 13.671 13.671 14.617 14.617
t=3 14.337 14.337 15.164 15.164
z 1 -192.4626

Table B.15: Example 4 system-optimization results

Case II: User-optimization model.

3 4 / / ' '  2

Min Z = J ;  1 /(I + r) ' X J c f ^ { c o ^ d œ jD f^  {ü)dv)
1=1 0 '■=' 0(=I

s.t.

h  

Â

;
(0 _ „(0 , „(0. ■̂3 ^*^4 5
(0 __ „(0 . »(0. - Aj -1- ̂ 3 5

for ail >0;

Decoupled relaxation method was used to calculate the optimal solution:

First the parameter o f  demand function, a, and was regressed from history data.

M

The constant factor inflated disutility elasticity in the decoupled steps is needed here.
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Constant factor of demand function;

Inflated disutility elasticity of demand at each decoupled step: 

6(%) = hij) ^ S  ( ^ r  X ̂ og(uf ) / log(wf ))

(B.22)

(B.23)

The objective function at k!’’ decoupled step applying relaxation method is described as equation 

B.24:

' <y I ojjt=\ i=\

■ ^ 1 / ( 1  - 1 / % )  X  ( 4 ' >  X  X  X  ( t f f  ]

/=I 7=1

(B^4)

Iteration information is summarized in Table B.16:

Decoupled
Iteration

Relaxation
Iteration

No. of 
NLP 

Iteration

Total
No.
NLP

1

1 323

450

2 26
3 21
4 19
5 20
6 20
7 21
8 21

2

1 16

123
2 20
3 21
4 22
5 23

3
1 18

572 19
3 20

4 1 22 442 22
5 1 19 19

Table B.16: Example 4 user-optimization iteration information
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The optimal solution for user-optimization model is summarized in Table B.17:

fi f2 fs Â
t=l 4.539 3.71 3.038 5.211
t=2 4.817 4.168 3.378 5.607
t=3 4.951 4.441 3.566 5.826

d, d2 Ul U2
t=l 4.539 3.71 14.516 14.648
t=2 4.817 4.168 15.521 15.715
t=3 4.951 4.441 16.066 16.316

Cj G Cs Q
t=l 14.516 14.516 14.648 14.648
t-2 15.521 15.521 15.715 15.715
t=3 16.066 16.066 16.316 16.316
Z -385.3421

Table B.17: Example 4 user-optimization results 

Through the numerical tests as shown in these four single-period transportation 

equilibrium models, it can be concluded that the relaxation method is an effective 

algorithm in solving multi-period transportation equilibrium models without time lag 

effect and the decoupled relaxation method is also effective method in solving multi

period transportation equilibrium models with time lag effect.
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