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FUNCTIONALLY GRADED BEAMS

Aaron Gee
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Abstract

The Dynamic Finite Element (DFE) theory is applied to calculate the natural frequencies of Functionally

Graded Material (FGM) beams. The formulation derived is based on Euler-Bernoulli beam theory and

material grading is assumed to follow a power law variation through the thickness of the beam. Results

from DFE are numerically validated against methods such as Classical Finite Element Method (FEM)

and the Dynamic Stiffness Method (DSM), as well as other data found in literature. Commercial

software was used to further validate the proposed DFE formulation. The test cases showed that DFE

results displayed excellent agreement to published results. When compared to the FEM method, DFE

showed higher accuracy while requiring fewer elements to converge to the solution. Finally some general

comments are made on possible future research paths for DFE method on FGM beams.
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Chapter 1

Introduction

1.1 Introduction

Functionally Graded Material (FGM) are a class of composites characterised by a change in composition

through its volume, resulting in properties that vary spatially throughout the material [1]. Originally

these materials were designed for use as heat shields to protect spacecrafts during re-entry. Presently,

the applications of this material have been limited due to challenges in manufacturing. Powder pressing

and sintering is a common method to produce FGMs, however the sintering temperature for each con-

stitutive material can vary. The challenge is finding an optimal sintering environment that satisfies the

requirements of all of the constitutive materials. For example, to illustrate the challenges in manufactur-

ing, consider a medical implant, which may use titanium (Ti) and Hydroxyapatite (HAP). The optimal

temperature for sintering HAP is 1150C and 1300C for Ti, a difference of 150C [2]. Titanium adds an

additional level of difficulty as it must be sintered in a vacuum to reduce oxidation; however HAP is

unstable in a vacuum and decomposes [2]. Engineers must determine an optimal solution that minimizes

the negatives and maximizes the benefits of the material combination. The advent of novel manufactur-

ing techniques such as electron beam freeform fabrication and additive manufacturing seem promising

in solving/avoiding the challenges in manufacturing FGM and could lead to the wider use of the mate-

rial [1, 3–5]. FGMs have seen use in industries such as aerospace, automotive, electrical/electronic and

have many more potential applications in various industries such as biomedical implants [2, 6].

FGMs offer designers with high tailoring ability; they can use a variety of material types such as
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CHAPTER 1. INTRODUCTION

metals, ceramics or polymers and can choose the amount to vary throughout the component. For

example, similar to a bi-material composite (e.g. metallic component coated with ceramic), a metallic-

ceramic FGM would offer a combination of the strength of the metal and the heat resistance property of

a ceramic. However, the real advantage of FGM lies in the gradual change in the content of one material

into the other. A traditional metallic-ceramic composite would have a sharp interface between the two

materials, resulting in high interlaminar stresses. This is particularly detrimental for ceramic coatings

as interlaminar stress caused by thermal loading leads to delamination and chipping of the protective

coating. The gradual change of FGMs theoretically eliminates the sharp boundary between the two

materials, reducing interlaminar stress, delamination, and thermal stress concentrations [5]. Due to the

many advantages of FGMs over traditional composites and the possible proliferation of FGMs resulting

from novel manufacturing techniques, closed-form analytical and numerical methods for static, dynamic,

stability and vibration analysis of FGM beams have been a growing area of research.

1.2 Finite Element Method (FEM) Theory

The Finite Element Method (FEM) is a well-established numerical method that can be used for a variety

of engineering applications, such as modal analysis. It is a robust method that uses a systematic approach

to solve complex systems by breaking the problem down into simpler forms. Polynomial shape functions

are typically used and an element mass and stiffness matrices are produced. For modal analysis, the

problem reduces into a linear eigenvalue problem, which when solved yields the natural frequencies and

mode shapes of the system. The strength of FEM lies in its versatility, complex/irregular geometries

and bodies of different materials can be analyzed with relative ease. Various loading types and boundary

conditions can be introduced into a model. Furthermore, many companies have commercialized FEM

software packages that simplify model creation and analysis for the user. The use of FEM has expanded

beyond its original intended use as a structural analysis tool, to other disciplines such as mathematical

physics, heat transfer, and acoustics. The wide range of applications that can be solved using this

method is a testament to its versatility [7]. However, since FEM is an approximate method, the accuracy

is dependent on the number of elements used. This is especially true when performing modal analysis

at high frequencies, where larger numbers of elements are required to accurately capture the system’s

natural frequencies and mode shapes.

2



CHAPTER 1. INTRODUCTION

1.3 Dynamic Stiffness Method (DSM) Theory

Advancement in computing power has led to the development of the frequency dependent Dynamic

Stiffness Method (DSM). The DSM is an exact frequency method; it provides an analytical solution to

the free vibration problem. Where applicable, this method combines the coupled governing equations of

motions into a single ordinary differential equation, where a closed-form solution can be found [8,9]. The

general closed-form solution is used to obtain the frequency dependent stiffness matrix. In conventional

FEM, there is a stiffness and mass matrix, but in DSM the resultant frequency dependent stiffness

matrix combines the elastic and inertial properties into a single matrix. The DSM stiffness matrix is

non-linear and the solution is exact within the limits of the theory. The DSM element can express an

infinite number of natural frequencies and therefore, only one element is required to find any frequency.

Consequently, the DSM method exhibits superior convergence performance than FEM, particularly at

higher frequencies, where a greater number of FEM elements are required to obtain suitable accuracy.

The major drawback of DSM is that a closed form solution to the governing equations of motion is

fundamental to the formulation. This is only available for certain special cases and can be difficult to

obtain for complex models.

1.4 Dynamic Finite Element (DFE) Theory

Hashemi [10] introduced a hybrid method, the Dynamic Finite Element (DFE) formulation, which

combines the versatility of FEM with the accuracy of DSM. The DFE method is a semi-analytical

solution; similar to FEM it uses the general procedure of the weighted residual method. In the DFE

formulation an additional set of integration by parts on the weak form equation is performed and

frequency dependent trigonometric shape functions are used, in contrast to polynomial shape functions,

which are commonly used in FEM formulations. Since the DFE is a hybrid method it retains some

characteristics from the FEM and DSM formulation. The formulation results in a single frequency

dependent stiffness matrix that combines the inertial and elastic properties similar to DSM. Since DFE

uses a weighted residual approach it retains the robustness of the FEM and can be applied to complex

cases where DSM cannot. When compared to conventional FEM, the DFE generally exhibits much

higher convergence rates, particularly at higher vibration frequencies. It is also interesting to note

that Hashemi [10], has developed basis function expression that revert to the shape functions produced
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CHAPTER 1. INTRODUCTION

by Hermite cubic polynomials at zero frequency. This means the DFE element would reduce to a

conventionally FEM element when performing static analysis.

1.5 Literature Survey

The modeling of the effective properties caused by material grading was a prominent research topic in

the 1990s. There were two approaches towards modeling of the effective properties, a detailed microme-

chanical approach or a simplified model based on the assumption of a smooth property distribution.

The micromechanical model was a material science approach. Research focused on how the microstruc-

ture formed and the resulting effect on the distribution of material properties through the volume of

the component. Micromechanical approaches included representative volume elements, percolation the-

ory, fractal analysis, lattice-based microstructure models, renormalization group, neural networks, and

Voronoi cell finite element method, a few selected papers are quoted, which provide an introduction

and reference to the subject [11–15]. Researchers also attempted to use laminate theory to model the

properties of FGM [16]. This method was not a popular approach because the laminate theory would use

step changes in material properties. Steps changes would result in a sandwich beam architecture, which

defeats the purpose of FGM because the model would not have a continuous transition of properties.

The simplified model assumed a smooth property distribution and ignored the details of the materials

microstructure. The justification of this model was that research focused on micromechanical modeling

and manufacturing would produce the desired continuous property distribution. Instead, the simplified

model would be used to demonstrate the benefits of actually applying FGMs to various applications. The

rule of mixtures was used to model the properties of the FGM. Various functions to model the volume

variation of the material was proposed, similar functions were used depending on the research area.

Typically, research on fracture mechanics often used exponential variations [17] and linear variations

were used for thermo-elastic/plastic effects [18]. Researches on modal analysis have commonly modeled

material property variation according to a power law distribution [19].

As mentioned previously, the majority of early research on FGMs focused on manufacturing, mi-

cromechanical modeling and thermal stress. Prior to the 2000s papers on the topic of vibration were

rare, a paper was found which dealt with the vibration of FGM shells [20]. However, in the last 17 years

research on the free vibration of FGMs has risen drastically. A number of research papers have been
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CHAPTER 1. INTRODUCTION

written for approximate and analytical solution of FGM beams.

Supposedly, Elishakoff and Candan formed the first closed-form solution for general inhomogeneous

beams [21]. This concept was further developed to include axial varying properties [22–24]. Li formulated

an analytical solution to analyze the static and dynamic behaviours of FGM Timoshenko and Euler-

Bernoulli beams [25]. Higher order theories were investigated to introduce more complex characteristics

such as shear deformation and warping, a sample of research papers [26–38] are quoted here which

provide a good introduction on the subject.

Studies typically varied properties along the thickness for numerical simplicity. To maximize use

of FGMs, designers should be able to tailor components by axially grading the material. A sample of

research quoted here investigated varying properties axially [39–49]. Building on axially varying FGM

beams, research has expanded into the variation of material properties along multiple directions (axially

and through thickness) [50,51]. Research has also expanded to stepped and tapered functionally graded

beams [52, 53]. Turbine blades are a prime candidate for FGM use and as a result there have been a

number of research papers on rotating thin walled beams. The objective of the research is to model

FGM structures for turbines and rotating discs. Various authors quoted here, analyzed the vibration of

rotating thin-walled beams [54–61]. The Timoshenko beam was a common beam theory used to model

thin-walled rotating laminated beams [62–64].

In terms of approximate solutions, finite element approaches were found to be the most common.

Various authors have applied the FEM to FGM beams based on Euler-Bernoulli and Timoshenko beam

theory [19,65–73]. Pradhan and Chakraverty [69] used the Rayleigh-Ritz method to formulate an element

model to solve for the free vibration of Euler and Timoshenko beams. The Chebyshev collocation method

has been investigated by various authors [70,73] for Timoshenko and axially graded beams. Kahya and

Turan [72] used a Lagrange equation approach to develop a model for analysing the vibration and

buckling of first-order shear deformation theory beams. Shakeri et al. used Galerkin and Newmark

methods to solve layered graded thick hollow shells [65, 66]. Simsek [67] investigated the vibration of

functionally graded beams for Euler-Bernoulli, Timoshenko and the third order deformation theory.

Several studies used the Dynamic Stiffness Method to find an analytical solution for FGM beams. Su

and Banerjee have applied the DSM to the vibrational analysis of both Euler-Bernoulli and Timoshenko

beams [74, 75]. Rajasekaran applied Banerjee’s DSM method to axially functionally graded beams [76].

Lee and Lee used the exact transfer matrix expression, which is similar to the DSM solution, to find
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CHAPTER 1. INTRODUCTION

the natural frequency of an Euler-Bernoulli FGM beam [77]. Similarly, Hao and Wei [78] derived the

dynamic stiffness matrix using state space differential equations.

The DFE method has been extended to the vibration analysis of various beam-like structure problems

[79–82]. Hashemi and Richard (1999) [79] presented dynamic shape functions and a DFE for the vibration

analysis of thin spinning beams. Kashani et al. [80] extended the analysis of coupled bending-torsion

beams to combined loadings. Hashemi and Adique [81] presented a DFE approach to various three-

layered sandwich beam models. Erdelyi and Hashemi [82] applied the DFE method to delaminated

Euler-Bernoulli beams. In all studies, when DFE is compared to the conventional FEM, the DFE

generally exhibits much higher convergence rates, especially for higher modes of vibration.

1.6 Research Motivation

A main design motivator in the commercial aerospace industry is increasing the fuel efficiency of the

aircraft and FGMs could be part of the solution. Two design levers that increase the fuel efficiency

of an aircraft is a reduction of the aircrafts overall weight and increasing the thermal efficiency of its

turbofan engines through higher core temperatures. A FGM using a combination of metallic materials

could be optimized to provide similar structural characteristics to conventional materials with the goal

of optimizing the weight. Metallic-ceramic FGMs can replace turbo-machinery components such as

ceramic coated turbine blades or combustion liners. Theoretically a metallic-ceramic FGM should be

more durable than traditional ceramic coatings due to the benefits of not having a sharp interface

between layers. With more heat durable components a rise in core temperature could be possible,

leading to higher thermal efficiencies. It is important to develop reliable methods of predicating the

vibration behavior of FGMs as they can be a solution to the material constraints in today’s aerospace

industry.

Free vibration analysis of functionally graded beams can be performed using various numerical and

analytical techniques. From literature it is observed that conventionally FEM is commonly used and the

frequency dependent DSM approach has been explored. These two approaches have their advantages

and disadvantages. The conventional FEM is a robust tool that can perform analysis on complex

geometry and loadings. In terms of accuracy, the DSM method is a better alternative particularly at

high frequencies, providing ’exact’ solutions to an infinite number of frequencies. However, the DSM
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CHAPTER 1. INTRODUCTION

procedure requires the solution to the governing equations which can be difficult to obtain for complex

problems and therefore the application of the method is often limited to special cases.

The DFE method is a hybrid approach that combines the FEM and DSM method to retain the

advantages of each method. The DFE method has been applied to various beam and plate structures

and composites such as sandwich beams. To the best of the author’s knowledge a DFE formulation

has not yet been applied to the vibration modeling of structural members made of continuous non-

homogeneous materials such as FGMs. In the present study, a DFE method for the free vibration

analysis of FGM Euler-Bernoulli beams under various boundary conditions and material variation is

developed. The gradient properties vary along the thickness with a power-law distribution. Based on

previously developed applicable governing differential equations of motion [74], the weighted residual

method is used to develop the weak integral form of the governing equations. The closed-form solutions

of the differential equations governing the uncoupled lateral and axial vibrations of the system are

used as the basis functions of approximation space to derive the relevant Dynamic Trigonometric Shape

Functions (DTSFs). Introducing the field variables, in terms of the DTSFs and nodal displacements, into

the weak integral form of the governing equations and through additional mathematical manipulation

leads to an element matrix resembling the frequency dependent element from the Dynamic Stiffness

Method. The element matrices are then assembled and the boundary conditions applied to form the

system’s non-linear eigenvalue problem. The natural frequencies and modes of the system are extracted

by solving the non-linear eigenproblem. A parametric study is performed to investigate the effects

of various material grading and boundary conditions on the natural frequency and mode shapes. To

validate the DFE formulation, results will be compared against FEM, DSM, sources from literature and

results from a commercial FEM package.

1.7 Specific Objectives

The purpose of the research was to develop a Dynamic Finite Element formulation for functionally

graded beams. The specific objectives of the research were:

• Apply a conventional FEM formulation for Euler-Bernoulli functionally graded beams.

• Develop a MATLAB code based on the FEM formulation for benchmarking.
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• Develop a MATLAB code based on the DSM formulation found in literature for benchmarking.

• Apply the DFE formulation for Euler-Bernoulli functionally graded beams.

• Develop a MATLAB code based on the DFE formulation.

• Numerically validate the Dynamic Finite Element formulation with classical FEM, DSM, and

results found from literature.

• Create a finite element model using the commercial software ANSYS R© to further validate results.

1.8 Thesis Document Organization

The document is organized into four chapters and five appendices. A brief introduction to FEM, DSM,

DFE methods as well as a literature survey are presented in the present chapter.

Chapter 2 begins with introducing the methodology of modeling the material variation of FGM. The

FEM, from governing equations to the matrices of the system, is presented. The DSM formulation used

for the MATLAB code is also briefly presented. The DFE formulation is then introduced starting from

the FEM weak form equation. The DFE is created through an additional set of integration by parts

and the application of trigonometric shape functions. Some methods to solve the non-linear eigenvalue

problem of DFE and DSM are briefly discussed. The natural frequencies are studied for various FGM

beam configurations and parameters. Using the data, convergence test and numerical validations are

presented. Finally, a parametric study is performed by varying the material grading parameter to

investigate higher mode frequency and shapes.

In Chapter 3 a FGM beam model created in ANSYS R© is introduced. The model is created using

a number of discrete layers with homogenous material properties in each layer. The properties of each

layer were dependent on its location on the height of the beam cross section; i.e., through the beam

thickness. The methodology used to model FGM using commercial software is discussed. Two models

are presented with different mesh refinements and are used to compare with the results presented in

Chapter 2.

Finally, in Chapter 4 some conclusions are drawn based on the results of Chapters 2 and 3, and

prospective topics to further the research of functionally graded beams is discussed.

8



Chapter 2

Functionally Graded Euler-Bernoulli

Beam

2.1 Introduction

In this chapter FEM and DFE formulations for functionally graded Euler-Bernoulli beams are presented.

Using the Galerkin method of weighted residual the weak form equation of the governing equations is

derived. For the FEM formulation polynomial shape functions are used to find the stiffness and mass

matrices of the system. Additional mathematical manipulation is performed on the weak form equations

to develop the DFE formulation. The trigonometric shape functions for the uncoupled bending and axial

vibrations are then used to find the frequency dependent stiffness matrix. The DSM method derived by

Su and Banerjee [74] is also presented and briefly discussed as it was used to create a MATLAB code

for benchmarking and numerical validation purposes.

2.2 Theory

The co-ordinate system and notation used in this investigation is shown in Figure 2.1, where the beam

has a length L along y, thickness h along z, and width b along the x axes. Relevant material properties

are Young’s Modulus, E, and density, ρ.

9
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Figure 2.1: Co-ordinate system and notation for formulation [74].

The Euler-Bernoulli beam is the simplest beam model and is based on the following assumptions [83]:

• The cross section can be assumed to be rigid under the application of transverse and axial loads.

• The cross section is assumed to remain planar and normal to the deformed axis during deformation

To model the effective material property, P , of a FGM beam, the rule of mixtures is used and can

be expressed as [67,74,75]:

P (z) = (Pt − Pb)Vt + Pb (1)

where Pt and Pb are the material properties at the top and bottom surfaces of the beam, respectively.

Vt is the volume fraction of the top constituent of the beam which is defined as [67,74,75]:

Vt =
( z
h

+
1

2

)k
(2)

As mentioned previously in the literature survey, the effective material properties for research on

modal analysis commonly vary according to a power law distribution. Variation of the volume fraction

against thickness for different values of k is represented in Figure 2.2, where k = 1 indicates a linear

variation of material composition from the top to the bottom, k = 0 represents a beam composed entirely

of the top material, and k =∞ represents a beam made entirely of the bottom material.

In this investigation, the same governing equations of motions as those used by Su’s and Banerjee’s

research [74], are utilized. To derive the governing differential equations, Su and Banerjee calculated the

10
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Figure 2.2: Variation in volume fraction through thickness in terms of k.

strain and kinetic energy and applied Hamilton’s principle. The boundary conditions were also produced

as a by-product of the Hamilton formulation. The result was the two coupled differential equations of

motion [74]:

−I0v̈ + I1ẅ
′ +A0v

′′ −A1w
′′′ = 0 (3)

−I0ẅ − I1v̈′ + I2ẅ
′′ +A1v

′′′ −A2w
′′′′ = 0 (4)

where ( )′ stands for the derivative with respect to y for (0≤y≤L) and (˙) denotes the derivative with

11
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respect to t(time). The parameters Ii and Ai are defined as:

Ii =

∫
ziρ(z)dA

Ai =

∫
ziE(z)dA

(5)

Assuming simple harmonic motion, axial displacements, v and lateral displacement, w can be written

as:

v(y, t) = V (y)eiωt

w(y, t) = W (y)eiωt
(6)

where ω denotes the frequency, V (y) and W (y) are the amplitudes of axial and flexural displacements,

respectively. By substituting (6) into (3) and (4), the governing equations can be rewritten as:

I0V ω
2 − I1W ′ω2 +A0V

′′ −A1W
′′′ = 0 (7)

I0Wω2 + I1V
′ω2 − I2W ′′ω2 +A1V

′′′ −A2W
′′′′ = 0 (8)

The loads or natural boundary conditions are the resultant axial force (F ), shear force (S), and

bending moment (M), which are defined as [74]:

F = −A0V
′ +A1W

′′

S = −I1V ω2 −A1V
′′ + I2W

′ω2 +A2W
′′′

M = A1V
′ −A2W

′′

(9)

2.3 Finite Element Method (FEM) Derivation

In what follows, a finite element formulation for the free vibration analysis of a FGM beam is presented

based on a Galerkin weighted residual method. From the Euler-Bernoulli beam theory and assuming

simple harmonic motion, the equations of motions take the following form:

I0V ω
2 − I1W ′ω2 +A0V

′′ −A1W
′′′ = 0 (10)

12
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I0Wω2 + I1V
′ω2 − I2W ′′ω2 +A1V

′′′ −A2W
′′′′ = 0 (11)

Following the Galerkin method of weighted residuals, the above equation is expressed as a residual

equation weighted by axial and lateral virtual displacements, δv and δw, respectively. The integral of

the residual is set to zero, resulting in the following forms:

Wv =

∫ L

0

δv(I0V ω
2 − I1W ′ω2 +A0V

′′ −A1W
′′′)dy = 0 (12)

Ww =

∫ L

0

δw(I0Wω2 + I1V
′ω2 − I2W ′′ω2 +A1V

′′′ −A2W
′′′′)dy = 0 (13)

A set of integration by parts are performed, resulting in the following weak form of the above integral

equations:

Wv = δv(−A0V
′ +A1W

′′)
∣∣∣L
0

+

∫ L

0

((−ω2)δv(I0V − I1W ′) + δv′(A0V
′ −A1W

′′))dy = 0 (14)

Ww = (δw(−I1ω2V −A1V
′′ + I2ω

2W ′ +A2W
′′′) + δw′(A1V

′ −A2W
′′))
∣∣∣L
0

+

∫ L

0

((−ω2)δw(I0W ) + (−ω2)δw′(I2W
′ − I1V ) + δw′′(A2W

′′ −A1V
′))dy = 0

(15)

The above expressions (14) and (15) also satisfy the principle of virtual work (PVW),

Wtotal = Wint −Wext = 0 (16)

where Wtotal is the total virtual work, Wint is the internal virtual work, and Wext is the external virtual

work. The underlined terms in expressions (14) and (15) represent the virtual work generated by the

load boundary conditions of the system, presented earlier as expression (9). For the free vibration of a

13
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system, the total external virtual work is Wext=0 and therefore:

δv(−A0V
′ +A1W

′′)
∣∣∣
x=0

= δWext

∣∣∣
x=0

δv(−A0V
′ +A1W

′′)
∣∣∣
x=L

= δWext

∣∣∣
x=L

(δw(−I1ω2V −A1V
′′ + I2ω

2W ′ +A2W
′′′) + δw′(A1V

′ −A2W
′′))
∣∣∣
x=0

= δWext

∣∣∣
x=0

(δw(−I1ω2V −A1V
′′ + I2ω

2W ′ +A2W
′′′) + δw′(A1V

′ −A2W
′′))
∣∣∣
x=L

= δWext

∣∣∣
x=L

(17)

Consequently, the net resultant virtual work caused by the external force and moment terms in (14)

and (15) goes to zero. With the boundary conditions satisfied, the remaining parts of the expressions

can now be discretized, leading to the following elemental form:

wnv =

∫ ln

0

((−ω2)δv(I0V − I1W ′) + δv′(A0V
′ −A1W

′′))δy (18)

wnw =

∫ ln

0

((−ω2)δw(I0W ) + (−ω2)(δw′)(I2W
′ − I1V ) + δw′′(A2W

′′ −A1V
′))δy (19)

Linear and cubic Hermite polynomials approximations are used for axial and bending displacements,

respectively.

V (y) =

[
1 y

]
{A} (20)

W (y) =

[
1 y y2 y3

]
{C} (21)

The following vectors represent nodal displacements:

{Vn} =

V1
V2

 =

1 0

1 L

 {A} (22)

14
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{Wn} =



W1

W ′1

W2

W ′2


=



1 0 0 0

0 1 0 0

1 L L2 L3

0 1 2L 3L2


{C} = [Pn]{C} (23)

Applying the Hermite polynomial approximations presented in Appendix 1:

V (y) =

[
1 y

]
[Pn]−1{Vn} = [N(y)]{Vn} (24)

W (y) =

[
1 y y2 y3

]
[Pn]−1{Wn} = [N(y)]{Wn} (25)

The row vector [N(y)] represents the shape functions that describe the displacement along the domain

of the element. Now that the shape functions have been defined, they are substituted into equations

(18) and (19) resulting in:

wnv =

∫ ln

0

((−ω2) < δVn > {Nv}(I0 < Nv > {Vn}− < N ′w > {W ′n}I1)

+ < δV ′n > {N ′v}(A0 < N ′v > {V ′n} −A1 < N ′′w > {W ′′n })δy
(26)

wnw =

∫ ln

0

((−ω2) < δWn > {Nw}(I0 < Nw > {Wn})

+(−ω2) < δW ′n > {N ′w}(I2 < N ′w > {W ′n} − I1 < Nv > {Vn})

+ < δW ′′ > {N ′′w}(A2 < N ′′w > {W ′′n } −A1 < N ′v > {Vn})δy

(27)

The above terms can be combined to form the following eigenvalue problem:

< δVn > ((K +Kcoupling)− ω2(M +Mcoupling)){Vn} = 0

< δWn > ((K +Kcoupling)− ω2(M +Mcoupling)){Wn} = 0

(28)

The two equations above can be combined to create a 6 x 6 matrix for each element, where K is the

element stiffness matrix, and M is the element mass matrix. The coupling terms have been separated to

show the coupling relations between the two equations. The assembly of the element matrices and the

application of boundary conditions then leads to the system’s linear eigenvalue method, which is then

15



CHAPTER 2. FUNCTIONALLY GRADED EULER-BERNOULLI BEAM

solved to find the natural frequencies.

2.4 Dynamic Stiffness Method(DSM) Formulation

Su and Banerjee [74] have developed a Dynamic Stiffness method for FGM Euler-Bernoulli beams. This

method exploits the analytical solution, forgoing any approximation within the limits of the theory. As

a result, the DSM method is independent of the number of elements and is capable of providing exact

results for all natural frequencies without discretization. The DSM formulation developed by Su and

Banerjee [74] is briefly presented here for the sake of completeness. An in-house MATLAB code was

created based on the formulation.

First, the governing equations (7) and (8) are combined into a single sixth order ordinary differential

equation. Introducing the non-dimensional term ξ = y/l (0≤ ξ≤ 1) and the differential operator D =

d/dξ:

(D6 + aD4 + bD2 + c)H = 0 (29)

where,

a =
2A1I1 −A0I2 −A2I0

A2
1 −A0A2

L2ω2 (30)

b =
A0I0 + I21ω

2 − I0I2ω2

A2
1 −A0A2

L4ω2 (31)

c =
I20

A2
1 −A0A2

L6ω4 (32)

H = V (ξ) or W (ξ) (33)

The solution to the differential equation (29) can be expressed as:

V (ξ) =

6∑
j=1

Rje
rjξ, or W (ξ) =

6∑
j=1

Qje
rjξ (34)
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where rj is the roots of the characteristic equation and Rj and Qj are constant vectors:

{Q}T =< Q1 Q2 Q3 Q4 Q5 Q6 >

{R}T =< R1 R2 R3 R4 R5 R6 >

(35)

The constant vectors are related to each other through the following relationship:

Qj = αjRj (36)

where,

αj =
I0ω

2L3 + LA0r
2
j

I1ω2L2rj +A1r3j
(37)

The expressions for rotation θ(ξ), axial force F (ξ), shear force S(ξ) and the bending moment M(ξ)

are obtained from equations (38) - (41) as:

θ(ξ) =
dW

dy
=

1

L

dW

dξ
=

1

L

6∑
j=1

rjαjRje
rjξ (38)

F (ξ) = −A0

L
V ′ +

A1

L2
W ′′ =

1

L2

6∑
j=1

(−A0L+A1αjrj)rje
rjξRj (39)

S(ξ) = −I1ω2V − A1

L2
V ′′ +

I2ω
2

L
W ′ +

A2

L3
W ′′′

=

6∑
j=1

[
−
(
I1ω

2 +
A1

L2
rj

)
+
(I2ω2

L
+
A2

L3
r2j

)
αjrj

]
erjξRj

(40)

M(ξ) =
A1

L
V ′′ − A2

L2
W ′′ =

1

L2

6∑
j=1

(A1L−A2αjrj)rje
rjξRj (41)

The end conditions for the displacements and forces of the beam element are given as follows:

At ξ = 0 : V = V1, W = W1, θ = θ1, F = F1, S = S1, M = M1 (42)

At ξ = 1 : V = V2, W = W2, θ = θ2, F = F2, S = S2, M = M2 (43)
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Using equations (34), (38), (42) and (43), the relationship between displacement and the constant

vector R is written as:

un = BR (44)

where,

B =



1 1 1 1 1 1

α1 α2 α3 α4 α5 α6

r1α1/L r2α2/L r3α3/L r4α4/L r5α5/L r6α6/L

er1 er2 er3 er4 er5 er6

α1e
r1 α2e

r2 α3e
r3 α4e

r4 α5e
r5 α6e

r6

r1α1e
r1/L r2α2e

r2/L r3α3e
r3/L r4α4e

r4/L r5α5e
r5/L r6α6e

r6/L


(45)

The relationship between force F , and the constant vector R, can be expressed using equation (39)

- (43) as:

F = AR (46)

where A, is a 6 x 6 matrix with each row given by:

A1j =
1

L2
(−A0L+A1αjrj)rj

A2j = −
(
I1ω

2 +
A1

L2
r2j

)
+
(I2ω2

L
+
A2

L3
r2j

)
αjrj

A3j =
1

L2
(A1L−A2rjαj)rj

A4j =
1

L2
(−A0L+A1αjrj)rje

rj

A5j =
[
−
(
I1ω

2 +
A1

L2
r2j

)
+
(I2ω2

L
+
A2

L3
r2j )αjrj

]
erj

A6j =
1

L2
(A1L−A2rjαj)rje

rj

(47)

Vector R can be eliminated by substituting equation (44) into (46), resulting in:

F = Kun (48)
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where K, the required dynamic stiffness matrix is:

K = AB−1 (49)

At this point the dynamic stiffness matrix K can be used to calculate the natural frequency and

mode shapes. Frequency can be found through various methods, a simple method would be to sweep

through a range of frequencies to find the frequencies where the |K|=0. Other more complex methods

such as the Wittrick-Williams algorithm can be used to solve for the natural frequencies in a more

efficient process [74].

2.5 Dynamic Finite Element (DFE) Formulation

The DFE formulation follows the conventional FEM formulation using a Galerkin weighted residual

approach. The formulation begins to diverge from a conventional FEM formulation after the discretized

weak form equation is found. In an FEM formulation, the polynomial shape functions would be intro-

duced at this point. However, for a DFE formulation, additional integration by parts is performed before

the shape functions are introduced. Beginning by restating the already discretized weak form equation

from the FEM formulation:

wnv =

∫ ln

0

((−ω2)δv(I0V − I1W ′) + δv′(A0V
′ −A1W

′′))δy (50)

wnw =

∫ ln

0

((−ω2)δw(I0W ) + (−ω2)(δw′)(I2W
′ − I1V ) + δw′′(A2W

′′ −A1V
′))δy (51)

the following term ξ = y/l (0≤ ξ≤ 1) is introduced into the above equations, resulting in the following

non-dimensional form:

Wn
v =

∫ 1

0

δv
(
I0lV ω

2 − I1W ′ω2 +
A0

l
V ′′ − A1

l2
W ′′′

)
δξ (52)

Wn
w =

∫ 1

0

δw
(
I0lWω2 + I1V

′ω2 − I2
l
W ′′ω2 +

A1

l2
V ′′′ − A2

l3
W ′′′′

)
δξ (53)

A set of additional integration by parts are performed on the discretized weak form equations above,
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leading to the following form of the equations:

Wn
v =

[
δv′
(A0

l
V
)]∣∣∣1

0
+

∫ 1

0

V
(
− ω2I0lδv −

A0

l
δv′′
)
δξ︸ ︷︷ ︸

*

+ω2

∫ 1

0

δv(I1W
′)dξ −

∫ 1

0

δv′
(A1

l2
W ′′

)
dξ︸ ︷︷ ︸

Coupling

(54)

Wn
w =

[
δw′
(
− ω2I2

l
W
)

+ δw′′
(A2

l3
W ′
)
− δw′′′

(A2

l3
W
)]1

0

+

∫ 1

0

W
(A2

l3
δw′′′′ +

ω2I2
l
δw′′ − ω2I0lδw

)
dξ︸ ︷︷ ︸

**

+ω2

∫ 1

0

δw′
(
I1V

)
dξ −

∫ 1

0

δw′′
(A1

l2
V ′
)
dξ︸ ︷︷ ︸

Coupling

(55)

The coupling terms are separated and labeled here for clarity. The characteristic equation of (*) found

in (54) is a second order differential equation having the form −c1D2 − c2ω2 = 0, where the c terms are

constants and D2 is the second partial derivative operator with respect to the non-dimensional length ξ.

The characteristic equation of (**) found in (55) is a fourth order differential equation having the from

c3D
4 + c4ω

2D2− c5ω2 = 0, where c terms are constants and D4 and D2 are the fourth partial derivative

and second partial derivative operators with respect to the non-dimensional length ξ, respectively. The

closed-form solutions of the uncoupled integral terms (*) and (**), respectively, can be expressed in the

following forms:

V (ξ) = D1cos(γξ) +D2sin(γξ) (56)

W (ξ) = C1cos(αξ) + C2sin(αξ) + C3cosh(βξ) + C4sinh(βξ) (57)

where D1,2 and C1,2,3,4 are constants. The term γ is based on the characteristic equation of (*) in

expression (54).

γ =

√
−ω2I0l2

A0
(58)
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and the terms α and β are based on the characteristic equation of (**) in expression (55).

α, β =
1√
2A

√
(−B ±

√
B2 − 4AC) (59)

where,

A =
A2

l3

B =
ω2I2
l

C = −ω2I0l

(60)

The interpolation functions are then obtained as follows. First, the generalized parameters < a >,

< b >, < δa >, and < δb > are used, respectively, to express the solution functions V and W , and test

functions δV and δW , written as:

V =< P (ξ) >v {a}

δV =< P (ξ) >v {δa}

W =< P (ξ) >w {b}

δW =< P (ξ) >w {δb}

(61)

The axial and flexural dynamic basis functions of approximation space, respectively, are defined

as [10,81]:

Vn(ξ) =
〈
cos(γξ)

sin(γξ)

γ

〉
(62)

Wn(ξ) =
〈
cos(αξ)

sin(αξ)

α

cosh(βξ)− cos(αξ)
α2 + β2

sinh(βξ)− sin(αξ)

α3 + β3

〉
(63)

Replacing the generalized parameters < a >, < δa >, < b >, and < δb > with the nodal variables,

< V1 V2 >, < V ′1 V ′2 >, < W1 W ′1 W2 W ′2 >, and < δW1 δW ′1 δW2 δW ′2 >, respectively,
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expression (61) can be rewritten as:

{Vn} = [P (ξ)]v{a}

{δVn} = [P (ξ)]v{δa}

{W} = [P (ξ)]w{b}

{δW} = [P (ξ)]w{δb}

(64)

where the matrices [Pn]v and [Pn]w are define as:

Pnv =

P1(ξ = 0)

P2(ξ = 1)


v

=

 1 0

cos(γ) sin(γ)
γ

 (65)

Pnw =



P1(ξ = 0)

P ′1(ξ = 0)

P2(ξ) = 1)

P ′2(ξ) = 1)


=



1 0 0 0

0 1 0 β−α
α3+β3

cos(α) sin(α)
α

cosh(β)−cos(α)
α2+β2

sinh(β)−sin(α)
α2+β2

−αsin(α) cos(α) βsinh(β)+αsin(α)
α2+β2

βcosh(β)−αcos(α)
α3+β3


(66)

By combining (64), (65), and (66) the approximation in nodal variables can be written as:

V (ξ) =< P (ξ) >v [Pn]−1v {Vn} =< N{ξ} >v {Vn}

W (ξ) =< P (ξ) >w [Pn]−1w {Wn} =< N{ξ} >w {Wn}
(67)

where < N(ξ) >v and < N(ξ) >w are the frequency-dependent trigonometric shape functions for the

axial and flexure, respectively. Equation (67) can be combined and rewritten as:

V (ξ)

W (ξ)

 = [N ]{un} (68)

where,

[N ] =

N1v(ω) 0 0 N2v(ω) 0 0

0 N1w(ω) N2w(ω) 0 N3w(ω) N4w(ω)


un =< V1 W1 W ′1 V2 W2 W ′2 >

T

(69)
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Using expressions (54), (55) and the shape functions (1) through (8), presented in Appendix 2, the

element dynamic stiffness matrix, [K(ω)]k, is derived which consists of uncoupled and coupled dynamic

stiffness matrices, [K(ω)]ku and [K(ω)]kc , respectively. The resulting expressions for the uncoupled and

coupled dynamic stiffness matrices can be found within Appendix 3. The element dynamic stiffness

matrix, [K(ω)]k, is formulated by adding the eight coupled and uncoupled sub-matrices. The global

dynamic stiffness matrix [K(ω)], is obtained by assembling all the element matrices and applying the

boundary conditions. The non-linear eigenvalue problem resulting from this method is:

[K(ω)]Un = 0 (70)

where Un is the global nodal displacements of the system. The natural frequencies of the system would be

the values of ω, which yield a zero determinant, |K(ω)| = 0, for the global dynamic stiffness matrix [10].

A simple procedure of finding the system’s natural frequency is varying ω in small steps to find the

values that make the determinant zero. However, there are more efficient algorithms to solve for the

natural frequencies such as the Wittrick-Williams algorithm. Hashemi [10] goes into detail of using

various algorithms to solve for natural frequency. For the sake of simplicity, the simple procedure of

sweeping through ω was used for the results presented herein.

It is worth noting that the basis functions are specifically chosen so that when the frequency ap-

proaches zero, the roots, α, β, and γ of the characteristic equations also approach zero. Subsequently,

the dynamic trigonometric shape functions and basis functions become identical to those generated from

the Hermite approximations, which are commonly used for FEM. The form of the DFE basis functions

were formulated to exhibit this property to ensure a complete solution at all frequencies. In other words,

if this was not considered, a static deformation solution would not be possible.

2.6 Numerical Test and Results

In this section, three illustrative examples are presented to numerically validate the DFE formulation

through vibration analysis. For the first validation study, the DFE formulation is compared to and

numerically validated against the well-defined solution of solid beams. In this example, the beam is

assumed to be made of aluminium and the frequency results are compared against classical methods and

the DSM method. Various material grading, boundary conditions and slender ratios were investigated.
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The second validation case involves a FGM beam composed of aluminum and alumina. Similar to the

first case, the beam is assumed to be subjected to various material grading and slender ratios. However,

only the simply supported boundary condition is used due to availability of data in literature. The

final validation study is similar to the second study, but uses a linear variation in material properties.

Once the numerical validation is completed, further analysis is performed to investigate the natural

frequency and mode shapes for FGM beams with different boundary conditions and material variation.

Furthermore, comparisons are made between the convergence performance of DFE and FEM.

The following non-dimensional parameter was used to normalize and compare results of various

sources:

λi = ωiL
2

√
ρbA

EbI
(71)

A pure aluminum beam can be considered a special case of a FGM beam. Using the current model,

a solid aluminum beam would require an unattainable value of k = ∞ (refer to Figure 2.2). To avoid

the use of infinity Su and Banerjee [74, 75] have proposed two methods; setting the top and bottom

properties within ±.0001%, or use a value of k = 106. It was observed that both methods would produce

the same result, and therefore, for the purposes of this investigation the former method was used.

The material properties for the solid aluminum beam are: ρt = 2700.0027 kg/m3, ρb = 2700 kg/m3,

Et = 70.00007GPa, and Eb = 70GPa. An in-house DSM code was also created using the method pre-

sented in reference [74] to numerically validate the DFE formulation. The first three natural frequencies

for an aluminum beam using classical Euler-Bernoulli beam solution, DSM, FEM, and DFE for various

boundary conditions are presented in Table 2.1 through Table 2.3.

Excellent agreement is achieved for DFE in all conditions. The classical results used generic closed-

form solutions to the 4th order Euler-Bernoulli governing equation solution that is often found in standard

texts [84]. There is a slight deviation between some of the classical results with the element based

methods. The discrepancy is caused by the differences between the the equation of motion for a Euler-

Bernoulli FGM beam and the conventional Euler-Bernoulli beam equation. The equation of motion for

FGM has three uncoupled terms for lateral displacement, where as the conventional beam equation has

two terms. This extra term results in the small difference between the results. However, the effect of

this term is diminished as the slender ratio is increased.
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Table 2.1: First 3 natural frequencies of a Al beam with L/h = 10 for various boundary conditions.

Boundary Frequency
Non-dimensional fundamental natural frequency (λi)

Condition No. i Classical DSM DSM DFE DFE FEM
Resultsa Ref [74]. Codeb (1 ELE)a (3 ELE)a (10 ELE)a

1 9.8696 9.8293 9.8293 9.8293 9.8293 9.8293
S-S 2 39.478 38.845 38.845 38.845 38.845 38.849

3 88.826 85.711 85.711 85.711 85.711 85.757
1 22.373 22.259 22.259 22.259 22.259 22.260

C-C 2 61.673 60.522 60.522 60.522 60.522 60.538
3 120.90 116.21 116.21 116.21 116.21 116.32
1 3.5160 3.5092 3.5092 3.5092 3.5092 3.5092

C-F 2 22.035 21.743 21.743 21.743 21.743 21.743
3 61.698 59.801 59.801 59.801 59.801 59.801
1 15.418 15.345 15.345 15.345 15.345 15.345

C-P 2 49.965 49.095 49.095 49.095 49.095 49.095
3 104.25 100.39 100.39 100.39 100.39 100.46

aSolution to the classical results can be found in Appendix 4
bResults from in-house MATLAB code

Due to the frequency-dependent and highly convergent nature of DFE, both the DFE and DSM

results also exhibit excellent convergence for higher frequencies, while FEM results start to deviate. In

addition, for the conventional FEM, additional elements would be required to match the results of DFE

and DSM.

Figure 2.3 shows the FEM convergence test results for the 3rd mode of the homogeneous beam made

from pure aluminum (Al). As can be observed from the figure, the conventional FEM nearly converges

at around 10 to 12 elements. In contrast, DFE results show that a single element is capable of producing

exact solutions. This is due to the fact the DFE method uses the solution of the uncoupled governing

equation to create the DTSFs. Since this validation case uses no material grading, therefore, the coupling

terms approach zero and the DFE solution is exact within the limits of the theory.

To further validate the proposed DFE formulation, with coupling terms in effect, a second study is

carried out with a FGM beam k = 0.3 composed of aluminum and alumina (Al2O3), as also presented

in [67]. The properties of the aluminum are: Eb = 70GPa, ρb = 2700 kg/m3 and the properties of the

alumina are: Et = 380GPa, ρt = 3800 kg/m3 [67]. The reference results by Simsek [67] used a governing

equation based on the third-order shear deformation theory, where solutions for Timoshenko and Euler-

Bernoulli beams were presented. The author also included the effects of a moving mass in the formulation,

however for the purpose of this paper only the solutions for a non-moving mass were presented. The
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Table 2.2: First 3 natural frequencies of a Al beam with L/h = 30 for various boundary conditions.

Boundary Frequency
Non-dimensional fundamental natural frequency (λi)

Condition No. i Classical DSM DSM DFE DFE FEM
Resultsa Ref [74]. Codeb (1 ELE)a (3 ELE)a (10 ELE)a

1 9.8696 9.8651 9.8651 9.8651 9.8651 9.8652
S-S 2 39.478 38.406 38.406 38.406 38.406 38.411

3 88.826 85.463 85.463 85.463 85.462 85.511
1 22.373 22.361 22.361 22.361 22.361 22.361

C-C 2 61.673 60.542 60.542 60.542 60.542 60.558
3 120.90 120.35 120.35 120.35 120.35 120.47
1 3.5160 3.5153 3.5153 3.5153 3.5153 3.5153

C-F 2 22.035 21.002 21.002 21.001 21.001 21.002
3 61.698 61.478 61.478 61.478 61.478 61.493
1 15.418 15.410 15.410 15.410 15.410 15.410

C-P 2 49.965 49.866 49.866 49.866 49.866 49.875
3 104.25 103.80 103.80 103.80 103.80 103.87

aSolution to the classical results can be found in Appendix 4
bResults from in-house MATLAB code

frequency results in the article were non-dimensionalized using the following parameter [67]:

λi =
ωiL

2

h

√
I0
A0

(72)

with I0 and A0 defined previously in (5). The natural frequencies, ω, was calculated by manipulating

equation (72) and then using equation (71) to convert to a consistent non-dimensional form. The first

natural frequency values obtained using DFE, DSM, FEM and reference results for Euler-Bernoulli and

Timoshenko beam theories are presented in Table 2.4.

Since in this case the material grading effects are present, a single DFE element does not produce

the exact results of the DSM method due to coupling effects. Additional DFE elements are required

to converge to the solution. Note that the in-house DSM code and the reference DSM results deviate

by about 1.6%. The author was unfortunately unable to resolve the difference between the two results;

however there is an excellent agreement between the results of the in-house DSM code and reference [67].

Furthermore, the results of the in-house DSM, DFE and FEM converge to the same solution at higher

element numbers. Therefore for validation and comparison purposes, the in-house DSM results were used

as the benchmarks. Excellent agreement was found for reference Euler-Bernoulli results and the three-

element DFE solution, deviation was found to be extremely small; i.e., 0.121%, 0.160%, and 0.145%
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Table 2.3: First 3 natural frequencies of a Al beam with L/h = 100 for various boundary conditions.

Boundary Frequency
Non-dimensional fundamental natural frequency (λi)

Condition No. i Classical DSM DSM DFE DFE FEM
Resultsa Ref [74]. Codeb (1 ELE)a (3 ELE)a (10 ELE)a

1 9.8696 9.8692 9.8692 9.8692 9.8692 9.8693
S-S 2 39.478 39.472 39.472 39.472 39.472 39.476

3 88.826 88.794 88.794 88.794 88.794 88.841
1 22.373 22.372 22.372 22.373 22.372 22.373

C-C 2 61.673 61.661 61.661 61.660 61.661 61.677
3 120.90 120.85 120.85 120.86 120.85 120.97
1 3.5160 3.5160 3.5159 3.5159 3.5159 3.5159

C-F 2 22.035 21.032 21.032 21.032 21.032 21.032
3 61.698 61.677 61.677 61.677 61.677 61.693
1 15.418 15.418 15.417 15.417 15.417 15.418

C-P 2 49.965 49.956 49.956 49.956 49.956 49.965
3 104.25 104.21 104.21 104.21 104.21 104.28

aSolution to the classical results can be found in Appendix 4
bResults from in-house MATLAB code

Table 2.4: First non-dimensional frequency of a FGM beam with k = 0.3 under S-S boundary condition.
Non-dimensional fundamental natural frequency (λi)

L/h Ref [67]. DSM DSM DFE DFE FEM
EB TB Ref [74]. Codea (1 ELE)a (3 ELE)a (3 ELE)a

10 17.329 17.138 17.614 17.328 17.378 17.350 17.365
30 17.392 17.373 17.676 17.395 17.447 17.420 17.433
100 17.405 17.398 17.684 17.402 17.455 17.430 17.441

aResults from in-house MATLAB code

for L/h ratios of 10, 30, and 100, respectively. As expected, DSM results performed better with a

difference of 0.004%, 0.0164% and 0.0163%. Deviation between the DFE results and the Timoshenko

beam values are 1.24%, 0.269%, and 0.181%. Again, DSM outperforms with a difference of 1.107%,

0.126%, and 0.0202%. The FEM showed the greatest discrepancy between results and reference values.

When using the same numbers of elements, an error of 0.210%, 0.235% and 0.208% for Euler-Bernoulli

and 1.323%, 0.345%, and 0.208% for Timoshenko was found. Since the formulations in this thesis are

based on Euler-Bernoulli assumptions, a greater discrepancy is expected when comparing to reference

Timoshenko beam results.

Finally, a third vibration analysis was carried out for a FGM beam composed of steel and alumina with

a linear variation in properties k = 1. The properties of the steel are: Eb = 210GPa, ρb = 7800 kg/m3

and the properties of the alumina are: Et = 390GPa, ρt = 3960 kg/m3, also reported in Reference [35].
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Figure 2.3: Convergence study for the 3rd mode of an aluminum beam with C-F boundary conditions.

The author of the study reported in [35] derived their frequency results using hierarchical beam theories.

The first natural frequency using this method is presented in Table 5.2 in Appendix 5. The article used

the following non-dimensional parameter [35]:

λi = 100ωih
√
ρb/Eb (73)

The natural frequencies, ω, was calculated by manipulating equation (73) and then using equation

(71) to convert to a consistent non-dimensional form. The first natural frequency values for the three

aspect ratio of, 5, 10, and 100, obtained using DFE, DSM, and FEM, together with the reference results

for Euler-Bernoulli and Timoshenko beam theories are presented in Table 2.5.

The three-element DFE solution error was, 0.233%, 0.156%, and 0.131% for L/h ratios of 5, 10, and
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Table 2.5: First non-dimensional frequency of a FGM beam with k = 1 under S-S boundary condition.
Non-dimensional fundamental natural frequency (λi)

L/h Ref [35]. DSM DSM DFE DFE FEM
EB TB Ref [74]. Codea (1 ELE)a (3 ELE)a (3 ELE)a

5 13.145 12.673 13.368 13.130 13.195 13.176 13.174
10 13.321 13.190 13.530 13.318 13.362 13.342 13.350
100 13.380 13.379 13.586 13.381 13.419 13.398 13.409

aResults from in-house MATLAB code

100, respectively. DSM results performed better with a difference of 0.117%, 0.0240% and 0.00419%.

Deviation between the DFE results and the Timoshenko beam values are 3.97%, 1.15%, and 0.142%.

Again, DSM outperforms with a difference of 3.61%, 0.971%, and 0.0146%. Using three elements FEM

had an error of 0.218%, 0.216% and 0.213% for Euler-Bernoulli and 3.96%, 1.21%, and 0.224% for

Timoshenko. At an aspect ratio of L/h = 5 the frequency obtained from the DFE has a greater error

than FEM, although this value is very small, 0.015% when compared to the reference Euler-Bernoulli

value. From Table 2.4 and Table 2.5 it can be seen that there is a higher deviation in results at lower

L/h ratios. Note that the present example is the first mode, where quite often the DFE and FEM results

are very close. Deviation between DFE and FEM results occur more drastically at higher frequency,

which will become apparent in the parametric study.

To further investigate the effect of boundary conditions and material grading, vibrational analysis

was performed to find the first four natural frequencies and mode shapes using the FGM beam presented

in the third numerical validation study. The beam is composed of steel and alumina, a L/h ratio of

100 is used and the material grading variable k is varied from 0.1 to 5. The properties of the steel are:

Eb = 210GPa, ρb = 7800 kg/m3 and the properties of the alumina are: Et = 390GPa, ρt = 3960 kg/m3,

as also reported in [35].

The results of Table 2.6 through Table 2.9 show that when using the same number of elements, the

DFE model outperforms the FEM. This becomes more apparent at a higher frequency. For example,

in the case of k = 1 and cantilevered boundary conditions, the 4th frequency obtained using the FEM

and DFE exhibit an error of 0.274% and 0.183%, respectively, when compared to the DSM data. Now

referring to the first frequency results, the error is found to be 0.00629% for both FEM and DFE. To

model the 4th mode using FEM one would need at least 4 elements just to roughly detect and extract the

mode shape. Since DFE uses frequency dependent interpolation functions, a single element can produce

29



CHAPTER 2. FUNCTIONALLY GRADED EULER-BERNOULLI BEAM

Table 2.6: First 4 non-dimensional frequency of a C-F FGM beam for various k values.

Non-dimensional fundamental natural frequency (λi)

Freq k = 0.1 k = 0.5 k = 1 k = 2 k = 5
No.
i DSM DFE FEM DSM DFE FEM DSM DFE FEM DSM DFE FEM DSM DFE FEM

Codea 10 10 Codea 10 10 Codea 10 10 Codea 10 10 Codea 10 10
ELEa ELEa ELEa ELEa ELEa ELEa ELEa ELEa ELEa ELEa

1 6.2673 6.2673 6.2673 5.2779 5.2781 5.2781 4.7669 4.7672 4.7672 4.3766 4.3769 4.3769 4.0493 4.0495 4.0495

2 39.272 39.272 39.274 33.072 33.080 33.081 29.870 29.883 29.883 27.425 27.438 27.439 25.374 25.381 25.382

3 109.92 109.95 109.97 92.561 92.634 92.656 83.599 83.703 83.722 76.755 76.864 76.881 71.014 71.085 71.102

4 215.38 215.40 215.60 181.37 181.55 181.72 163.81 164.11 164.26 150.39 150.72 150.86 139.16 139.34 139.47

aResults from in-house MATLAB code

Table 2.7: First 4 non-dimensional frequency of a S-S FGM beam for various k values.

Non-dimensional fundamental natural frequency (λi)

Freq k = 0.1 k = 0.5 k = 1 k = 2 k = 5
No.
i DSM DFE FEM DSM DFE FEM DSM DFE FEM DSM DFE FEM DSM DFE FEM

Codea 10 10 Codea 10 10 Codea 10 10 Codea 10 10 Codea 10 10
ELEa ELEa ELEa ELEa ELEa ELEa ELEa ELEa ELEa ELEa

1 17.592 17.592 17.592 14.815 14.816 14.816 13.381 13.382 13.382 12.290 12.287 12.287 11.366 11.367 11.367

2 70.360 70.361 70.367 59.252 59.268 59.274 53.515 53.542 53.547 49.133 49.163 49.167 45.459 45.476 45.481

3 158.28 158.28 158.37 133.29 133.37 133.44 120.38 120.51 120.58 110.52 110.67 110.73 102.26 102.34 102.40

4 281.30 281.32 281.78 236.88 237.13 237.51 213.94 214.36 214.69 196.42 196.87 197.18 181.74 182.00 182.29

aResults from in-house MATLAB code

an infinite number of frequencies. Figure 2.4 shows that even with a single element DFE produces less

errors then 5 FEM elements. At higher frequencies fewer DFE elements can be used to develop results

that are better or comparable to FEM.

Figure 2.5 through Figure 2.7 show the lateral and axial mode shapes at the first three natural

frequency, respectively. These figures show that lateral bending is the dominant mode shape and as

a result only the lateral bending mode shapes will be presented moving forward. The bending mode

shapes for C-F, S-S, C-C, and C-P boundary conditions for k = 1 are shown in Figure 2.8 through Figure

2.11, respectively. Figure 2.12 and Figure 2.13 show that C-F mode shape for values of k = 0.1 and

k = 5, respectively. The mode shape remains unchanged, therefore for the current theory the through

thickness variance of material properties does not affect the mode shape. This is expected due the fact

that the Euler-Bernoulli theory assumes that the cross section remains plane and deforms only on the

neutral axis.
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The effect of k on the natural frequency for various boundary conditions are shown in Figure 2.14

through Figure 2.17. L/h is fixed at 100 and k ranges from 0.1 to 5, where at 0.1 the beam is made mostly

of Al2O3 and trends towards steel as k increases. As k is increased the natural frequency decreases and

at low values of k such as k < 2 the rate of which the natural frequencies decrease is greater.

Table 2.8: First 4 non-dimensional frequency of a C-C FGM beam for various k values.

Non-dimensional fundamental natural frequency (λi)

Freq k = 0.1 k = 0.5 k = 1 k = 2 k = 5
No.
i DSM DFE FEM DSM DFE FEM DSM DFE FEM DSM DFE FEM DSM DFE FEM

Codea 10 10 Codea 10 10 Codea 10 10 Codea 10 10 Codea 10 10
ELEa ELEa ELEa ELEa ELEa ELEa ELEa ELEa ELEa ELEa

1 39.872 39.872 39.881 33.577 33.582 33.596 30.326 30.333 30.352 27.845 27.849 27.870 25.761 25.766 25.778

2 109.89 109.88 109.95 92.534 92.565 92.652 83.576 83.627 83.734 76.733 76.788 76.897 70.997 71.027 71.103

3 215.35 215.36 215.66 181.33 181.46 181.82 163.79 164.00 164.38 150.37 150.61 150.99 139.13 139.27 139.56

4 355.83 355.85 356.99 299.64 299.98 301.13 270.63 270.21 272.40 248.48 249.09 250.26 229.90 230.27 231.19

aResults from in-house MATLAB code
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Table 2.9: First 4 non-dimensional frequency of a C-P FGM beam for various k values.

Non-dimensional fundamental natural frequency (λi)

Freq k = 0.1 k = 0.5 k = 1 k = 2 k = 5
No.
i DSM DFE FEM DSM DFE FEM DSM DFE FEM DSM DFE FEM DSM DFE FEM

Codea 10 10 Codea 10 10 Codea 10 10 Codea 10 10 Codea 10 10
ELEa ELEa ELEa ELEa ELEa ELEa ELEa ELEa ELEa ELEa

1 27.485 27.485 27.485 23.170 23.174 23.175 20.947 20.954 20.955 19.240 19.247 19.248 17.783 17.788 17.788

2 89.050 89.053 89.069 75.014 75.051 75.063 67.770 67.832 67.842 62.229 62.296 62.305 57.560 57.597 57.607

3 185.75 185.77 185.90 156.45 156.59 156.70 141.32 141.56 141.66 129.76 130.02 130.11 120.04 120.19 120.27

4 317.55 317.59 318.25 267.43 267.82 268.37 241.55 242.21 242.70 221.79 222.49 222.94 205.20 205.60 206.02

aResults from in-house MATLAB code

Figure 2.4: Convergence study for the 4th mode of a FGM beam (k = 1) with C-F boundary conditions.
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Figure 2.5: First mode shapes for a C-F FGM beam (k = 1).
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Figure 2.6: Second mode shapes for a C-F FGM beam (k = 1).
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Figure 2.7: Third mode shapes for a C-F FGM beam (k = 1).
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Figure 2.8: First 4 mode shapes for a FGM beam (k = 1) with C-F boundary conditions.
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Figure 2.9: First 4 mode shapes for a FGM beam (k = 1) with S-S boundary conditions.
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Figure 2.10: First 4 mode shapes for a FGM beam (k = 1) with C-C boundary conditions.
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Figure 2.11: First 4 mode shapes for a FGM beam (k = 1) with C-P boundary conditions.
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Figure 2.12: First 3 mode shapes for a FGM C-F beam (k = 0.1).
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Figure 2.13: First 3 mode shapes for a FGM C-F beam (k = 5).
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Figure 2.14: The effect of k on the first four natural frequencies for C-F boundary condition.
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Figure 2.15: The effect of k on the first four natural frequencies for S-S boundary condition.
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Figure 2.16: The effect of k on the first four natural frequencies for C-C boundary condition.

44



CHAPTER 2. FUNCTIONALLY GRADED EULER-BERNOULLI BEAM

Figure 2.17: The effect of k on the first four natural frequencies for C-P boundary condition.
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Chapter 3

Verification Using Commercial FEM

Software

3.1 Introduction

In the previous chapter the DFE formulation for FGM beams was presented and the vibration charac-

teristics were investigated under various conditions. Results from the DFE were numerically validated

against DSM, FEM and other data available in the open literature. However, there was some deviation

between DSM results reported in the relevant literature and the results generated using an in-house

DSM code. In this chapter, to further validate and build confidence in the results presented, a FGM

beam model will be analyzed using the commercial FEM software package, ANSYS R©.

3.2 ANSYS R© Model

A 3D model of a FGM beam was created in ANSYS R©. ANSYS R© workbench’s 3D modeling tools provide

a relatively simple way of introducing a material gradient effect into the model. By creating layers similar

to a layered sandwich beam and constraining each layer a simple FGM model can be created. A visual

representation of the cross section is shown on the left in Figure 3.1. Material properties are calculated

for each element based on its location on the cross section using expressions (1) and (2). Each element
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is homogenous with material properties calculated at the centre point. An adequate number of elements

in the cross section is important to capture the material grading effect.

Figure 3.1: Cross section and mesh of ANSYS R© FGM model.

Material properties and geometry are the same as the values used for the third verification and

parametric study reported earlier in this thesis (see Chapter 2 section 6). Material properties are

Eb = 210GPa, ρb = 7800 kg/m3, Et = 390GPa, ρt = 3960 kg/m3, k = 1 and the FGM beam cross-

sectional geometry is b = 0.1, h = 0.1, and L/h = 100 [35]. 30 layers were found to be adequate to

model material grading and converge to the solution. An additional 2 elements were added to simplify

model creation so that each layer thickness could be divided evenly. A visual representation of the cross

section mesh is shown on the right in Figure 3.1. Note, that when using too many layers, for example 64,

each layer’s thickness becomes very small and the model may become unstable. The instability is due

to how the elements are constrained, the contact constraint forces two nodes to be coincident. However

the element sides can penetrate leading to large errors. This is easily noticed when analyzing the mode

shapes with increased scaled deformation.

The length of the elements along the y axis is varied to change the number of elements in the model.

Two different size meshes were created, a coarse mesh of 10240 elements (32 x 32 x 10) and a fine mesh of

40960 elements (32 x 32 x 40). The three dimensional quadratic SOLID186 element from the ANSYS R©
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element library was used to mesh the body. It is a 20 node homogenous element having three degrees of

freedom per node (translation in x, y, and z). The standard Block Lanczos solver was used to solve for

the natural frequencies and mode shapes.

3.3 ANSYS R© Results

The first four natural frequencies for C-F, S-S, C-C, and C-P boundary conditions were found using the

model generated in ANSYS R©. For each frequency, the equation (71) is used to calculate the normalized

frequency λ.

Table 3.1: Course and fine mesh ANSYS R© results for various boundary conditions.

Non-dimensional fundamental natural frequency (λi)

Frequency ANSYS R© ANSYS R© DSM DFE FEM
Boundary Condition No. 32 x 32 x 10 32 x 32 x 40 (1 ELE)a (10 ELE)a (10 ELE)a

i
1 4.7682 4.7699 4.7669 4.7672 4.7672

C-F 2 29.853 29.863 29.870 29.883 29.883

3 83.522 83.522 83.599 83.703 83.722
4 163.65 163.40 163.81 164.11 164.26
1 13.327 13.376 13.381 13.382 13.382

S-S 2 53.429 53.429 53.515 53.542 53.547

3 115.91 119.93 120.38 120.51 120.58
4 213.21 212.48 213.94 214.36 214.69
1 30.311 30.397 30.326 30.333 30.352

C-C 2 83.539 83.677 83.576 83.627 83.734

3 163.55 163.76 163.79 164.00 164.38
4 271.07 270.15 270.63 271.21 272.40
1 20.893 20.900 20.947 20.954 20.955

C-P 2 67.645 67.657 67.770 67.832 67.842

3 141.06 140.94 141.32 141.56 141.66
4 241.55 240.52 241.55 242.21 242.70

aResults from in-house MATLAB code

The coarse ANSYS R© model results, shown in Table 3.1, show very good agreement with those

obtained from the DFE, DSM and FEM formulations derived in this research. The element formulations

in Chapter 2 also used 10 axial elements, but a single element was used for the cross-section in contrast to

the 32 x 32 layers used in the ANSYS R© model. Using a FGM element eases the modeling, as the material
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variation is built into the formulation. Slight deviations can be seen, which can be most likely attributed

to the differences between the ANSYS R© elements and the derived formulations. The SOLID186 element

is derived using higher-order equations and includes 3D effects. Nonetheless the deviations are very

small (<0.4%) for most frequencies. An anomaly in the results was found for the third frequency for the

simply supported boundary condition. However, by adding more axial elements the issue is resolved,

as seen in the fine mesh model. The fine mesh model generally showed less deviation in higher mode

results. Again, some deviation can be found. As mentioned earlier this was attributed to the difference

in the elements’ formulation.
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Conclusion

4.1 Concluding Remarks

Based on the Dynamic Finite Element (DFE) formulation, a new element was developed to conduct

vibrational analysis of Euler-Bernoulli functionally graded beams. The DFE results were compared with

’exact’ results from DSM and those obtained from FEM and sources from literature. Comparisons were

made between DFE, FEM, and DSM results for various L/h ratios, k values and material properties. The

results were further validated using the commercial FEM software package ANSYS R©. DFE exhibited

higher convergence rates compared to FEM, particularly at higher frequencies. In the absence of material

grading, the results obtained from a one-element DFE model are ’exact’ within the limits of the theory.

4.2 Future Work

From the successful implementation of DFE for Euler-Bernoulli FGM beam, the next step would be to

extend the element formulation to more complex FGM beam theories. The first-order shear deformation

theory, or the Timoshenko beam theory, would be the next logical beam theory to apply the DFE

formulation. By using the Timoshenko theory, shear deformation and rotary inertia effects would be

accounted for. Su and Banerjee [75] have successfully extended the DSM method to FGM Timoshenko

beams and could be used as a reference for comparison and validation purposes.

The majority of research on FGM has dealt with the through thickness grading of material prop-
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erties. To enable more design choices axial grading can be considered as well. Therefore, analytical

and numerical methods for axial graded beams are required. Elishakoff et al. [21–23] have developed

analytical and numerical solutions to axial graded beams. The method used to solve for the axial graded

beams seemed to only satisfy the simply supported boundary conditions. Further investigation would

be required to understand if the DFE method would be able to model axially graded beams with various

boundary conditions.
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Appendix 1

Hermite based Shape Functions

The following shape functions approximate the axial displacement along the domain:

Nv1 = 1− y

L
(1)

Nv2 =
y

L
(2)

The following shape functions approximate the bending displacement along the domain:

Nw1 =
1

L3
(2y3 − 3y2L+ L3) (3)

Nw2 =
1

L3
(y3L− 2y2L2 + yL3) (4)

Nw3 =
1

L3
(−2y3 + 3y2L) (5)

Nw4
1

L3
(y3L− y2L2) (6)
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Figure 1.1: Hermite shape function for axial displacement.
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Figure 1.2: Hermite shape function for bending displacement.
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Dynamic Trigonometric Shape

Functions

The following shape functions, also presented in an earlier work by author [81], approximate the axial

displacement along the domain [10,80]:

Nv1 = cos(γξ)− cos(γ)sin(γξ)

Dt
(1)

Nv2 =
sin(γξ)

Dt
(2)

where,

Dt = sin(γ) (3)

The following shape functions approximate the bending displacement along the domain [10,80]:

Nw1 =
αβ

Df
{−cos(αξ) + cos(α(1− ξ))cosh(β) + cos(α)cosh(β(1− ξ))

−cosh(βξ)− β

α
sin(α(1− ξ))sinh(β) +

α

β
sin(α)sinh(β(1− ξ))}

(4)
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Nw2 =
1

Df
{β[cosh(β(1− ξ)sin(α))− cosh(β)sin(α(1− ξ))− sin(αξ)]

+α[cos(α(1− ξ))sinh(β)− cos(α)sinh(β(1− ξ))− sinh(βξ)]}
(5)

Nw3 =
αβ

Df
{−cos(α(ξ − l)) + cos(αξ)cosh(β)− cosh(β(1− ξ))

+cos(α)cosh(βξ)− β

α
sin(αξ)sinh(β) +

α

β
sin(α)sinh(βξ)}

(6)

Nw4 =
1

Df
{β[−cosh(βξ)sin(α) + sin(α(1− ξ)) + cosh(β)sin(αξ)]

+α[−cos(αξ)sinh(β) + sinh(β(1− ξ)) + cos(α)sinh(βξ)]}
(7)

where,

Df = αβ
{
− 2(1− cos(α)cosh(β)) +

(α2 − β2

αβ

)
sin(α)sinh(β)

}
(8)
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Figure 2.1: Axial dynamic trigonometric shape function λ = 2500.
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Figure 2.2: Axial dynamic trigonometric shape function λ = 5000.
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Figure 2.3: Bending dynamic trigonometric shape function λ = 50.
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Figure 2.4: Bending dynamic trigonometric shape function λ = 500.
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Figure 2.5: Axial dynamic trigonometric shape function λ = 0.
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Figure 2.6: Bending dynamic trigonometric shape function λ = 0.
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Appendix 3

Coupled and Uncoupled Submatrices

There are four coupled and four uncoupled matrix components. The four uncoupled element stiffness

matrices are:

[K(ω)]nu1 =
A0

l

N ′1vN1v N ′1vN2v

N ′2vN1v N ′2vN2v

 ∣∣∣1
0

(1)

[K(ω)]nu2 =
ω2I2
l



N ′1wN1w N ′1wN2w N ′1wN3w N ′1wN4w

N ′2wN1w N ′2wN2w N ′2wN3w N ′2wN4w

N ′3wN1w N ′3wN2w N ′3wN3w N ′3wN4w

N ′4wN1w N ′4wN2w N ′4wN3w N ′4wN4w


∣∣∣1
0

(2)

[K(ω)]nu3 =
A2

l3



N ′′1wN
′
1w N ′′1wN

′
2w N ′′1wN

′
3w N ′′1wN

′
4w

N ′′1wN
′
1w N ′′2wN

′
2w N ′′2wN

′
3w N ′′2wN

′
4w

N ′′1wN
′
1w N ′′3wN

′
2w N ′′3wN

′
3w N ′′3wN

′
4w

N ′′1wN
′
1w N ′′4wN

′
2w N ′′4wN

′
3w N ′′4wN

′
4w


∣∣∣1
0

(3)

[K(ω)]nu4 =
A2

l3



N ′′′1wN1w N ′′′1wN2w N ′′′1wN3w N ′′′1wN4w

N ′′′2wN1w N ′′′2wN2w N ′′′2wN3w N ′′′2wN4w

N ′′′3wN1w N ′′′3wN2w N ′′′3wN3w N ′′′3wN4w

N ′′′4wN1w N ′′′4wN2w N ′′′4wN3w N ′′′4wN4w


∣∣∣1
0

(4)
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and the four coupled element matrices are written as:

[K(ω)]nc1 = ω2

∫ 1

0

I1

N1vN
′
1w N1vN

′
2w N1vN

′
3w N1vN

′
4w

N2vN
′
1w N2vN

′
2w N2vN

′
3w N2vN

′
4w

 δξ (5)

[K(ω)]nc2 =

∫ 1

0

A1

l2

N ′1vN ′′1w N ′1vN
′′
2w N ′1vN

′′
3w N ′1vN

′′
4w

N ′2vN
′′
1w N ′2vN

′′
2w N ′2vN

′′
3w N ′2vN

′′
4w

 δξ (6)

[K(ω)]nc3 = ω2

∫ 1

0



N ′1wN1v N ′1wN2v

N ′2wN1v N ′2wN2v

N ′3wN1v N ′3wN2v

N ′4wN1v N ′4wN2v


δξ (7)

[K(ω)]nc3 =

∫ 1

0

A1

l2



N ′′1wN
′
1v N ′′1wN

′
2v

N ′′2wN
′
1v N ′′2wN

′
2v

N ′′3wN
′
1v N ′′3wN

′
2v

N ′′4wN
′
1v N ′′4wN

′
2v


δξ (8)
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Classical Solution

The classical solution for a single material Euler-Bernoulli beam under C-F, S-S, C-C, and C-P boundary

condition is presented using a conventional method found in standard textbooks [84]. Using the standard

Euler-Bernoulli governing equation:

EI
δ4W

δx4
− ρAω2W = 0 (1)

where W is the lateral displacement, E is the elastic modulus, I is the mass moment of inertia, ρ is

density, A is area, and ω is the frequency.

The general closed-form solution to the standard Euler-Bernoulli equation is as follows:

W (x) = C1sin(βx) + C2cos(βx) + C3sinh(βx) + C4cosh(βx) (2)

where C1234 is a constant and β is based on the characteristic equation of (1):

β4 =
ω2ρA

EI
(3)

For a C-F beam the boundary conditions for the fixed end of the beam are:

W (0) = 0 (4)

65



APPENDIX 4. CLASSICAL SOLUTION

δW

δx
(0) = 0 (5)

The boundary conditions for the free end of a C-F beam are:

δW 2

δx2
(l) = 0 (6)

δW 3

δx3
(l) = 0 (7)

Applying the fixed end boundary conditions, (4) and (5), to the general closed-form solution (2)

yields the following constant coefficient relationship:

W (0) = (C2 + C4) = 0

C2 = −C4

(8)

δW

δx
(0) = (βC1 + βC3) = 0

C1 = −C3

(9)

Applying the free end boundary conditions, (6) and (7), to the general closed-form solution (2) yields

the following expression:

δW 2

δx2
(l) = −(C1sin(βl) + C2cos(βl) + C1sinh(βl) + C2cosh(βl)) = 0

(sin(βl) + sinh(βl))C1 + (cos(βl) + cosh(βl))C2 = 0

(10)

δW 3

δx3
(l) = (−C1cos(βl) + C2sin(βl)− C1cosh(βl)− C2sinh(βl)) = 0

(−cosh(βl)− cos(βl))C1 + (sin(βl)− sinh(βl))C2 = 0

(11)

To find the non-trivial solution for C1, and C2, the determinant of their coefficients must be zero.

∣∣∣∣∣∣∣
sin(βl) + sinh(βl) cos(βl) + cosh(βl)

−cosh(βl)− cos(β) sin(βl)− sinh(βl)

∣∣∣∣∣∣∣ = 0 (12)
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Expanding the determinant yields the frequency equation:

cos(βl)cosh(βl) = −1 (13)

The first three values of βl to satisfy the above equation is listed:

β1l = 1.875104

β2l = 4.694091

β3l = 7.854757

(14)

By manipulating equation (3), the natural frequency can be found:

β4L4 =
mω2L4

EI

ω2 =
β4L4EI

mL4

ω = (βL)2

√
EI

ρAL4

(15)

Examples of three frequencies found are:

ω1 = 516.81

ω2 = 3238.8

ω3 = 9068.6

(16)

Applying the normalized frequency equation results in:

λ1 = 3.5160

λ2 = 22.035

λ3 = 61.697

(17)
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For a S-S beam the boundary conditions for the simply supported ends are:

W (0) = 0 (18)

δW 2

δx2
(0) = 0 (19)

W (l) = 0 (20)

δW 2

δx2
(l) = 0 (21)

Applying the simply supported boundary conditions, (18) and (19), to the general closed-form solu-

tion (2) yields the following constant coefficient relationship:

W (0) = (C2 + C4) = 0 (22)

δW 2

δx2
(0) = (βC4 − βC2) = 0 (23)

Equation (22) and (23) give:

C2 = C4 = 0 (24)

Applying the second simply supported end boundary condition, (20) and (21), to the general closed-

form solution (2) yields the following expression:

W (l) = (C1sin(βl) + C3sinh(βl)) = 0 (25)

δW 2

δx2
(l) = (−C1sin(βl) + C3sinh(βl)) = 0 (26)
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To find the non-trivial solution for C1, and C3, the determinant of their coefficients must be zero.

∣∣∣∣∣∣∣
sin(βl) sinh(βl)

−sin(βl) sinh(βl)

∣∣∣∣∣∣∣ = 0 (27)

Expanding the determinant yields the frequency equation:

2sin(βl)sinh(βl) = 0 (28)

The first three non-trivial solution to (28) are βl values of:

β1l = π

β2l = 2π

β3l = 3π

(29)

Using equation (15) examples of three frequencies found are:

ω1 = 1450.695

ω2 = 5802.782

ω3 = 13056.26

(30)

Applying the normalized frequency equation results in:

λ1 = 9.8696

λ2 = 39.478

λ3 = 88.826

(31)
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For a C-C beam the boundary conditions for the fixed ends are:

W (0) = 0 (32)

δW

δx
(0) = 0 (33)

W (l) = 0 (34)

δW

δx
(l) = 0 (35)

Applying the fixed end boundary conditions, (32) and (33), to the general closed-form solution (2)

yields the following constant coefficient relationship:

W (0) = (C2 + C4) = 0

C2 = −C4

(36)

δW

δx
(0) = (βC1 + βC3) = 0

C1 = −C3

(37)

Applying the second fixed end boundary condition, (34) and (35), to the general closed-form solution

(2) yields the following expression:

W (l) = (C1sin(βl) + C2cos(βl)− C1sinh(βl)− C2cosh(βl)) = 0

(sin(βl)− sinh(βl))C1 + (cos(βl)− cosh(βl))C2 = 0

(38)

δW

δx
(l) = (C1cos(βl)− C2sin(βl)− C1cosh(βl)− C2sinh(βl)) = 0

(cos(βl)− cosh(βl))C1 + (−sin(βl)− sinh(βl))C2 = 0

(39)
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To find the non-trivial solution for C1, and C2, the determinant of their coefficients must be zero.

∣∣∣∣∣∣∣
sin(βl)− sinh(βl) cos(βl)− cosh(βl)

cos(βl)− cosh(βl) −sin(βl)− sinh(βl)

∣∣∣∣∣∣∣ = 0 (40)

Expanding the determinant yields the frequency equation:

cos(βl)cosh(βl) = 1 (41)

The first three values of βl to satisfy the above equation is listed:

β1l = 4.730041

β2l = 7.853205

β3l = 10.99561

(42)

Using equation (15) examples of three frequencies found are:

ω1 = 3288.564

ω2 = 9065.054

ω3 = 17771.13

(43)

Applying the normalized frequency equation results in:

λ1 = 22.373

λ2 = 61.673

λ3 = 120.90

(44)
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For a C-P beam the boundary conditions for the fixed ends are:

W (0) = 0 (45)

δW

δx
(0) = 0 (46)

For the pinned end the boundary conditions are:

W (l) = 0 (47)

δW 2

δx2
(l) = 0 (48)

Applying the fixed end boundary conditions, (45) and (46), to the general closed-form solution (2)

yields the following constant coefficient relationship:

W (0) = (C2 + C4) = 0

C2 = −C4

(49)

δW

δx
(0) = (βC1 + βC3) = 0

C1 = −C3

(50)

Applying the pinned end boundary condition, (47) and (48), to the general closed-form solution (2)

yields the following expression:

W (l) = (C1sin(βl) + C2cos(βl)− C1sinh(βl)− C2cosh(βl)) = 0

(sin(βl)− sinh(βl))C1 + (cos(βl)− cosh(βl))C2 = 0

(51)

δW 2

δx2
(l) = (−C1sin(βl)− C2cos(βl)− C2cosh(βl)− C1sinh(βl)) = 0

(−sin(βl)− sinh(βl))C1 + (−cos(βl)− cosh(βl))C2 = 0

(52)
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To find the non-trivial solution for C1, and C2, the determinant of their coefficients must be zero.

∣∣∣∣∣∣∣
sin(βl)− sinh(βl) cos(βl)− cosh(βl)

−sin(βl)− sinh(βl) −cos(βl)− cosh(βl)

∣∣∣∣∣∣∣ = 0 (53)

Expanding the determinant yields the frequency equation:

tan(βl) = tanh(βl) (54)

The first three values of βl to satisfy the above equation is listed:

β1l = 3.926602

β2l = 7.068583

β3l = 10.21018

(55)

Using equation (15) examples of three frequencies found are:

ω1 = 2266.263

ω2 = 7344.145

ω3 = 15322.98

(56)

Applying the normalized frequency equation results in:

λ1 = 15.418

λ2 = 49.965

λ3 = 104.25

(57)
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Original Data Tables for Validation

Study

Table 5.1: Reference values for k = 0.3 in the original non-dimensional form.
Non-dimensional fundamental natural frequency (λi)

L/h Ref. [67] DSM Ref [74].
Pure Al k = 0.3

Pure Al k = 0.3
EB TB EB TB

10 2.837 2.804 2.731 2.701 2.837 2.776
30 2.847 2.843 2.741 2.738 2.847 2.786
100 2.848 2.848 2.743 2.742 2.848 2.787

Table 5.2: Reference values for k = 1 in the original non-dimensional form.
Non-dimensional fundamental natural frequency (λi)

L/h Ref. [35] DSM
EB TB Ref [74].

5 15.179 14.633 15.436
10 3.8455 3.8076 3.9059
100 0.038626 0.038622 0.039218

74



List of Contributions

1. Aaron Gee and Seyed M. Hashemi. A Dynamic Finite Element for Free Vibration of Functionally

Graded Beams. Shock and Vibration. Submitted: July, 2017. (Under review, Ref.#5395103).

75



References

[1] Won-Jong Ji and Young-Hoon Moon. Fabrication of functionally graded properties by direct laser

melting of compositionally selective metallic powder. In 15th International Conference on Control,

Automation and Systems, 2015.

[2] Fumio Watari, Atsuro Yokoyama, Mamoru Omori, Toshio Hirai, Hideomi Kondo, Motohiro Uo, and

Takao Kawasaki. Biocompatibility of materials and development to functionally graded implant for

bio-medical application. Composites Science and Technology, 64(6):893–908, 2004.

[3] Karen Taminger and Robert Hafley. Electron beam freeform fabrication: A rapid metal deposition

process. In 3rd Annual Automotive Composites Conference, 2003.

[4] Lin Li, W.U.H. Syed, and A.J. Pinkerton. Rapid additive manufacturing of functionallly graded

structures using simultaneous wire and powder laser deposition. Virtual and Physical Prototyping,

1(4):217–225, 2006.

[5] R.M. Mahamood and E.T. Akinlabi. Laser metal deposition of functionally graded ti6al4v/tic.

Materials & Design, 84:402–410, 2015.

[6] Rasheedat Mahamood and Esther Akinlabi. Functionally Graded Materials. Springer International

Publishing, 2017.

[7] Daryl Logan. A first course in the finite element method. Thomson, 2006.

[8] J.R. Banerjee. Dynamic stiffness formulation for structural elements: a general approach. Comput-

eres & Structures, 63(1):101–103, 1997.

76



REFERENCES

[9] J.R. Banerjee, A.J. Sobey, H. Su, and J.P. Fitch. Use of computer algebra in hamiltonian calcula-

tions. Advances in Engineering Software, 39(6):521–525, 2008.

[10] Seyed Mohammad Hashemi. Free Vibrational Analysis of Rotating Beam-Like Structures: A Dy-

namic Finite Element Approach. PhD thesis, Universite Laval, 1998.

[11] Joseph Zuiker and George Dvorak. The effective properties of functionally graded composites -1.

extension of the mori-tanaka method to linerarly varying fields. Composites Engineering, 4(1):19–35,

1994.

[12] A.J. Markworth, K.S. Ramesh, and W.P. Parks. Modelling studies applied to functionally graded

materials. Journal of Materials Science, 30:2183–2193, 1995.

[13] Michael M. Gasik. Micromechanical modelling of functionally graded materials. Computational

Materals Science, 13:42–55, 1998.

[14] M. Grujicic and Y. Zhang. Determination of effective elastic properties of functionally graded

materials using voronoi cell finite element method. Materials Science & Engineering, A251:64–76,

1998.

[15] J. Aboudi, M.-J. Pindera, and S.M. Arnold. Higher-order theory for functionally graded materials.

Composites Part B: Engineering, 30:777–832, 1999.

[16] John J. Lannutti. Functionally graded materials: properties, potential and design guidelines. Com-

posites Engineering, 4(1):81–94, 1994.

[17] F. Erdogan. Fracture mechanics of functionally graded materials. Composites Engineering, 5(7):753–

770, 1995.

[18] A.E. Giannakopoulos, S. Suresh, M. Finot, and M. Olsson. Elastoplastic analysis of thermal cycling:

layered materials with compositional gradients. Acta Metallurgica Et Materialia, 43(4):1335–1354,

1995.

[19] A. Chakraborty, S. Gopalakrishnan, and J.N. Reddy. A new beam finite element for the analysis of

functionally graded materials. Mechanical Sciences, 45:519–539, 2003.

77



REFERENCES

[20] C.T. Loy, K.Y. Lam, and J.N. Reddy. Vibration of functionally graded cylindrical shells. Interna-

tional Journal of Mechanical Sciences, 41:309–324, 1999.

[21] I. Elishakoff and S. Candan. Apparently first closed-form solution for vibration: inhomogeneous

beams. International Journal of Solids and Structures, 38:3411–3441, 2001.

[22] I. Elishakoff and Z. Guede. Analytical polynomial solutions for vibrating axially graded beams.

Mechanics of Advanced Materials and Structures, 11:517–533, 2004.

[23] Ivo Calio and Issac Elishakoff. Can a trigonometric function serve both as the vibrtion and the

buckling mode of an axially graded structure? Mechanics Based Design of Structures and Machines,

32(4):401–421, 2004.

[24] Lei Wu, Qi shen Wang, and Issac Elishakoff. Semi-inverse method for axially functionally graded

beams with an anti-symmetric vibration mode. Journal of Sound and Vibration, 284:1190–1202,

2005.

[25] X.-F. Li. A unified approach for analyzing static and dynamic behaviors of functionally graded

timoshenko and euler-bernoulli beams. Journal of Sound and Vibrations, 318:1210–1229, 2008.

[26] S. Kapuria, M. Bhattacharyya, and A.N. Kumar. Bending and free vibration response of lay-

ered functionally graded beams: A theoretical model and its experimental validation. Composite

Structures, 82:390–402, 2008.

[27] Xian-Fang Li, Bao-Lin Wang, and Jie-Cai Han. A higher-order theory for static and dynamic

analyses of functionally graded beams. Archive of Applied Mechanics, 80(10):1197–1212, 2010.

[28] Huu-Tai Thai and Thuc P. Vo. Bending and free vibration of functionally graded beams using various

higher-order shear deformatioin beam theories. International Journal of Mechanical Sciences, 62:57–

66, 2012.

[29] Latifa Ould Larbi, Abdelhakim Kaci, Mohammed Sid Ahmed Houari, and Abdelouahed Tounsi.

An efficient shear deformation beam theory based on neutral surface position for bending and

free vibration of functionally graded beams. Mechancs Based Design of Structures and Machines,

41:421–433, 2013.

78



REFERENCES

[30] Trung-Kien Nguyen, Thuc P. Vo, and Huu-Tai Thai. Static and free vibration of axially loaded

functionally graded beams based on the first-order shear deformation theory. Composites: Part B,

55:147–157, 2013.

[31] K.K. Pradhan and S. Chakraverty. Effects of different shear deformation theories on free vibration

of functionally graded beams. International Journal of Mechanical Sciences, 82:149–160, 2014.

[32] Shi rong Li, Ze qing Wan, and Jing hua Zhang. Free vibration of functionally graded beams based on

both classical and first-order shear deformation beam theories. Applied Mathematics and Mechanics,

35(5):591–606, 2014.

[33] Thuc P. Vo, Huu-Tai Thai, Trung-Kien Nguyen, and Fawad Inam. Static and vibration analysis of

functionally graded beams using refined shear deformation theory. Meccanica, 49:155–168, 2014.

[34] Karan K. Pradhan and S. Chakraverty. Generalized power-law exponent based shear deformation

theory for free vibration of functionally graded beams. Applied Mathematics and Computation,

268:1240–1258, 2015.

[35] G. Giunta, D. Crisafulli, S. Belouettar, and E. Carrera. Hierarchical theories for the free vibration

analysis of functionally graded beams. Composite Structures, 94:68–74, 2011.

[36] Khelifa Zoubida, Tahar Hassaine Daouadji, Lazreg Hadji, Abdelouahed Tounsi, and Adda Bedia El

Abbes. A new higher order shear deformation model of functionally graded beams based on neutral

surface position. Transactions of the Indian Institute of Metals, 69(3):683–691, 2016.

[37] Lazreg Hadji, Zoubida Khelifa, and Adda Bedia El Abbes. A new higher order shear deformation

model for functionally graded beams. KSCE Journal of Civil Engineering, 20(5):1835–1841, 2016.

[38] Xuan Wang and Shirong Li. Free vibrational analysis of functionally graded material beams based

on levinson beam theory. Applied Mathematics and Mechanics, 37(7):861–878, 2016.

[39] Young Huang and Xian-Fang Li. A new approach for free vibration of axially functionally graded

beams with non-uniform cross-section. Journal of Sound and Vibration, 329:2291–2303, 2010.

[40] A. Shahba, R. Attarnejad, M. Tavanaie Marvi, and S. Hajilar. Free vibration and stability analysis

of axially functionally graded tapered timoshenko beams with classical and non-classical boundary

conditions. Composites: Part B, 42:801–808, 2011.

79



REFERENCES

[41] H. Hein and L. Feklistova. Free vibrations of non-uniform and axially functionally graded beams

using haar wavelets. Engineering Structures, 33:3696–3701, 2011.

[42] Yong Huang, Ling-E Yang, and Qi-Zhi Luo. Free vibration of axially functionally graded timoshenko

beams with non-uniform cross-section. Composites: Part B, 45:1493–1498, 2013.

[43] A.-Y. Tang, J.-X. Wu, X.-F. Li, and K.Y. Lee. Exact frequency equations of free vibration of expo-

nentially non-uniform functionally graded timoshenko beams. International Journal of Mechanical

Sciences, 89:1–11, 2014.

[44] Korak Sarkar and Ranjan Ganguli. Closed-form solutions for axially functionally graded timo-

shenko beams having uniform cross-section and fixed-fixed boundary condition. Composites: Part

B, 58:361–370, 2014.

[45] Sundaramoorthy Rajasekaran and Emad Norouzzadeh Tochaei. Free vibration analysis of axially

functionally graded tapered timoshenko beams using differential transformation element method

and differential quadrature element method of lowest-order. Meccanica, 49(4):995–1009, 2014.

[46] D.V. Bambill, C.A. Rossit, and D.H. Felix. Free vibrations of stepped axially functionally graded

timoshenko beams. Meccanica, 50(4):1073–1087, 2015.

[47] X.-F. Li, Y.-A. Kang, and J.-X. Wu. Exact frequency equations of free vibration of exponentially

functionally graded beams. Applied Acoustics, 74(3):413–420, 2013.

[48] Mohammad Rezaiee-Pajand and Seyed Mojtaba Hozhabrossadati. Analytical and numerical method

for free vibration of double-axially functionally graded beams. Composite Structures, 152:488–498,

2016.

[49] Xiaobai Li, Li Li, Yujin Hu, Zhe Ding, and Weiming Deng. Bending, buckling and vibration of

axially functionally graded beams based on nonlocal strain gradient theory. Composite Structures,

165:250–265, 2017.

[50] Zhi hai Wang, Xiao hong Wang, Guo dong Xu, Su Cheng, and Tao Zeng. Free vibration of two-

directional functionally graded beams. Composite Structures, 135:191–198, 2016.

80



REFERENCES

[51] Thao An Huynh, Xuan Qui Lieu, and Jaehong Lee. Nurbs-based modeling of bidirectioinal func-

tionally graded timoshenko beams for free vibration problem. Composite Structures, 160:1178–1190,

2017.

[52] Nuttawit Wattanasakulpong and Jarruwat Charoensuk. Vibration characteristics of stepped beams

made of fgm using differential transformation method. Meccanica, 50(4):1089–1101, 2015.

[53] Ahmad Shahba, Reza Attarnejad, and Hossein Zarrinzadeh. Free vibration analysis of centrifugally

stiffened tapered functionally graded beams. Mechanics of Advanced Materials and Structures,

20(5):331–338, 2013.

[54] Liviu Librescu, Sang-Yong Oh, and Ohseop Song. Thin-walled beams made of functionally graded

materials and operating in a high temperature environment: Vibration and stability. Journal of

Thermal Stresses, 28:331–338, 2005.

[55] Sang-Yong Oh, Liviu Librescu, and Ohseop Song. Vibration and instability of functionally graded

circular cylindrical spinning thin-walled beams. Journal of Sound and Vibration, 285:1071–1091,

2005.

[56] Liviu Librescu, Sang-Yong Oh, Ohseop Song, and Ho-Sik Kang. Dynamics of advanced rotating

blades made of functionally graded materials and operating in a high-temperature field. Journal of

Engineering Mathematics, 61(1):1–16, 2008.

[57] M.T. Piovan and R. Sampaio. Vibrations of axially moving flexible beams made of functionally

graded materials. Thin-Walled Structures, 46(2):112–121, 2008.

[58] M.T. Piovan and R. Sampaio. A study on the dynamics of rotating beams with functionally graded

properties. Journal of Sound and Vibration, 327:134–143, 2009.

[59] Farzad Ebrahimi and Mohadese Mokhtari. Free vibration analysis of a rotating mori-tanaka-based

functionally graded beam via differential transformation method. Arabian Journal for Science and

Engineering, 41(2):577–590, 2016.

[60] Yutaek Oh and Hong Hee Yoo. Vibration analysis of rotating pretwisted tapered blades made of

functionally graded materials. International Journal of Mechanical Sciences, 119:68–79, 2016.

81



REFERENCES

[61] Kemal Mazanoglu and Serkan Guler. Flap-wise and chord-wise vibrations of axially functionally

graded tapered beams rotating around a hub. Mechanical Systems and Signal Processing, 89:97–107,

2017.

[62] S.A. Fazelzadeh, P. Malekzadeh, P. Zahedinejad, and M. Hosseini. Vibration analysis of functionally

graded thin-walled rotating blades under high temperature supersonic flow using the differential

quadrature method. Journal of Sound and Vibration, 306:333–348, 2007.

[63] H.J. Xiang and J. Yang. Free and forced vibration of a laminated fgm timoshenko beam of variable

thickness under heat conduction. Composites: Part B, 39(2):292–303, 2008.

[64] Chunhua Jin and Xinwei Wang. Accurate free vibration analysis of euler functionally graded beams

by the weak form quadrature element method. Composite Structures, 125:41–50, 2015.

[65] M. Shakeri, M. Akhlaghi, and S.M. Hoseini. Vibration and radial wave propagation velocity in

functionally graded thick hollow cylinder. Composite Structures, 76:174–181, 2006.

[66] Mesut Simsek. Bi-directional functionally graded materials (bdfgms) for free and forced vibration

of timoshenko beams with various boundary conditions. Composite Structures, 133:968–978, 2015.

[67] Mesut Simsek. Vibration analysis of a functionally graded beam under a moving mass by using

different beam theories. Composite Structures, 92(4):904–917, 2010.

[68] H. Ashrafi, K. Asemi, M. Shariyat, and M. Salehi. Two-dimensional modeling of heterogeneous

structures using graded finite element and boundary element methods. Meccanica, 48(3):663–680,

2013.

[69] K.K. Pradhan and S. Chakraverty. Free vibration of euler and timoshenko functionally graded

beams by rayleigh-ritz method. Composites: Part B, 51:175–184, 2013.

[70] Nuttawit Wattanasakulpong and Qibo Mao. Dynamic response of timoshenko functionally graded

beams with classical and non-classical boundary conditions using chebyshev collocation method.

Composite Structures, 119:346–354, 2015.

[71] Nuttawit Wattanasakulpong and Arisara Chaikittiratana. Flexural vibration of imperfect function-

ally graded beams based on timoshenko beam theory: Chebyshev collocation method. Meccanica,

50(5):1331–1342, 2015.

82



REFERENCES

[72] Volkan Kahya and Muhittin Turan. Finite element model for vibration and buckling of functionally

graded beams based on the first-order shear deformation theory. Composites: Part B, 109:108–115,

2017.

[73] Yang Zhao, Yixin Huang, and Mingquan Guo. A novel approach for free vibration of axially

functionally graded beams with non-uniform cross-section based on chebyshev polynomials theory.

Composite Structures, 168:277–284, 2017.

[74] H. Su, J.R. Banerjee, and C.W. Cheung. Dynamic stiffness formulation and free vibration analysis

of functionally graded beams. Composite Structures, 106:854–862, 2013.

[75] H. Su and J.R. Banerjee. Development of dynamic stiffness method for free vibration of functionally

graded timoshenko beams. Computers and Structures, 147:107–116, 2015.

[76] S. Rajasekaran. Buckling and vibration of axially functionally graded nonuniform beams using

differential transformation based dynamic stiffness approach. Meccanica, 48(5):1053–1070, 2013.

[77] Jung Woo Lee and Jung Youn Lee. Free vibration analysis of functionally graded bernoulli-euler

beams using an exact transfer matrix expression. International Journal of Mechanical Sciences,

122:1–17, 2017.

[78] Deng Hao and Cheng Wei. Dynamic characteristics analysis of bi-directional functionally graded

timoshenko beams. Composite Structures, 141:253–263, 2016.

[79] S. Mohammad Hashemi and Marc J. Richard. A dynamic finite element (dfe) method for free

vibrations of bending-torsion coupled beams. Aerospace Science and Technology, 4(1):41–55, 2000.

[80] Mir Tahmaseb Kashani, Supun Jayasinghe, and Seyed M. Hashemi. Dynamic finite element analysis

of bending-torsion coupled beams subjected to combined axial load and end moment. Shock and

Vibration, 2015:12, 2015.

[81] Seyed M. Hashemi and Ernest J. Adique. A quasi-exact dynamic finite element for free vibration

analysis of sandwich beams. Applied Composite Materials, 17(2):259–269, 2010.

[82] Nicholas H. Erdelyi and Seyed M. Hashemi. A dynamic stiffness element for free vibration analysis

of delaminated layered beams. Modelling and Simulation in Engineering, 2012:8, 2012.

83



REFERENCES

[83] R. Hibbeler. Mechanics of Materials. Prentice Hall, 2010.

[84] Francis S. Tse, Ivan E. Morse, and Rolland T. Hinkle. Mechanical vibrations: theory and applica-

tions. Allyn and Bacon, 1978.

84




