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Abstract

Power load forecasting is essential in the task scheduling of every electricity production
and distribution facility. In this project, we study the applications of modern artificial intel-
ligence techniques in power load forecasting. We first investigate the application of principal
component analysis (PCA) to least squares support vector machines (LS-SVM) in a week-
ahead load forecasting problem.

Then, we study a variety of tuning techniques for optimizing the least squares support vec-
tor machines’ (LS-SVM) hyper-parameters. The construction of any effective and accurate
LS-SVM model depends on carefully setting the associated hyper-parameters. Popular opti-
mization techniques including Genetic Algorithm (GA), Simulated Annealing (SA), Bayesian
Evidence Framework and Cross Validation (CV) are applied to the target application and
then compared for performance time, accuracy and computational cost.

Analysis of the experimental results proves that LS-SVM by feature extraction using
PCA can achieve greater accuracy and faster speed than other models including LS-SVM
without feature extraction and the popular feed forward neural network (FFNN). Also, it is
observed that optimized LS-SVM by bayesian evidence framework can achieve greater accu-
racy and faster speed than other techniques including LS-SVM tuned with genetic algorithm,
simulated annealing and 10-fold cross validation.
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Chapter 1

Introducti'on

Load forecasting has always been a very important issue in economic and reliable power
systems planning and operation [1], [2]. Short term forecasting (up to week ahead) is re-
quired for the optimum allocation of generation, unit commitment and scheduling functions,
evaluation of net interchange, and system security analysis. Medium term forecasts ranging
between one week and one year are used for maintenance planning, fuel scheduling and hydro
reservoir management. Both energy and peak demand estimates are required for medium
term forecasting to assess the fuel requirements and to check the adequacy of plant margins
after allowing for unavailability of system components due to maintenance and breakdown.
The time horizon for long term demand projections is from one to ten years, which corre-
sponds to lead times required for planning and development of transmission and distribution
systems, and generation facilities [1].

Another area of application involves load flow studies, including contingency planning,
load shedding, and load security strategies [3]. Economically, accuracy in load forecasting
can allow utilities to operate at lower cost which can potentially contribute to millions of
dollars in savings in major electric power utilities.

When analyzing the reports and trends in the industry, it is clear that Week-Ahead
daily peak load forecast plays an important role in the day-to-day operations of every power

producing company.



1.1 Motivations and Objectives

A wide variety of power forecasting techniques have been investigated and introduced so
far. Traditional prediction techniques treat the problem as a special instance of parameter
estimation where the estimated model is regarded as the predictor. Regression methods
necessitate the identification of relevant variables with strong correlation to electric loads
such as temperature, humidity and winds, etc. The time series method of load forecasting
involves the examination of historical data, extracting essential data characteristics, and
effectively projecting these characteristics into the future. The essential requirements for a
good forecasting model are accuracy and reliability during all seasons and varying weather
conditions [4], [5].

These statistical methods of load forecasting have some theoretical limitations that make
difficult the fulfillment of the above mentioned requirements. They are inefficient due to their
dependence on the functional relationship between the load and the weather variables, and
also they are numerically unstable. Recognizing various limitations of these time-series and
stochastic methods in terms of computational effort, amount of historical data required and
accuracy of results, the emphasis has shifted to application of Artificial Intelligence based
methods to load forecasting [6].

During the past decade, artificial neural networks have emerged as a very successful
approach to power load forecasting [7]. However, this methodology has weaknesses when
load patterns are not similar to those of weekdays, e.g., on weekends and public holidays.
Also, the neural networks require many training samples and frequent retraining due to
changes in seasonal conditions, and learning speed is reported to be comparatively slow 8],
[9]. '

Recently, support vector machines (SVM) have attracted much attention in load fore-
casting field [10]. They have been successfully employed to solve most nonlinear regression
and time series problems [11], [12]. Typical advantages of SVMs include good generalization
performance and the absence of local minima.

The theory of SVM is based on statistical learning theory pioneered by Vapnik et al [13].



3
Unlike most of the traditional methods which implement the empirical risk minimization

(ERM) principal, SVMs implement the structural risk minimization (SRM) principal, which
seeks to minimize an upper bound of the generalization error rather than minimizing the
training error. Essentially, SVMs map the inputs into a higher dimensional feature space in
which a linear regressor is constructed by minimizing an appropriate cost function. Using
Mercer's theorem [14], [15], the regressor is obtained by solving a finite dimensional quadratic
programming (QP) problem in the dual space avoiding explicit knowledge of the high di-
mensional mapping and using only the related kernel function. Therefore, the solution of
SVM is always globally optimal. SVM is a powerful solution for problems with nonlinearity
and high dimension, and it improves both training time and accuracy in comparison with
other competitor forecasting tools [11], [16].

LS-SVM is a simplified form of SVM that uses equality constraints (instead of the in-
equality constraints implemented in standard SVMs) and a least squares error term to obtain
a linear set of equations in the dual space [17].

The other aspect of load forecasting rather than prediction algorithm is the feature selec-
tion and extraction. Here, Principal Component Analysis (PCA) is used in order to identify
the most influential inputs in the context of the forecasting model [18]. It evaluates the in-
put variables according to the projection of the largest eigenvector of the correlation matrix
on the initial basis vector. This technique creates a new set of input variables which are
orthogonal, so that they are uncorrelated with each other; the resulting orthogonal, princi-
pal components are ordered so that those with the largest variation take precedence; and
components that contribute the least to the variation in the data set can be eliminated. In
this work, the original inputs are first transformed into uncorrelated principal components
using PCA. These new features are then used as inputs of LS-SVMs to solve time series load
forecasting problems [19].

In any LS-SVM used for either classification or regression tasks, if embedded hyper- -
parameters are not well chosen, results will not be satisfactory. The set of parameters that

we select depends on the type of SVM used. The majority of works in the literature, rely on
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cross validation for their optimization of SVM parameters (leave-one-out cross validation)

[10], [17] - [20]. Global optimization techniques such as genetic algorithm and simulated
annealing are used in exceptional cases [21] - [22]. Popular optimization techniques including
genetic algorithms (GA), simulated annealing (SA), bayesian evidence framework (BEF) and
cross validation (CV) are applied to tune the LS-SVM hyper-parameters, and then they are
compared for speed, accuracy and computational complexity [23]. In this project, the kernel
function variable () and the regularization parameter () in SVM are the hyper-parameters
of interest. Our goal is to predict the daily peak load demand of the coming week. Evaluation
of algorithms is typically based on two error metrics, namely, mean absolute error (MAE)
and mean absolute percentage error (MAPE). Here, we rely on MAPE for general evaluation,

and the cost function of the algorithms is defined as:

3 k|
MAPE = E" x100%, (1.1)
> |- £ |
MAE=="— | (1.2)

where L; and L; represent the actual and predicted peak daily loads and n is the number of

the days in forecasting period.

1.2 Organization

The organization of this project is as follows: In Chapter 2, we describe the feature selection
and extraction processes. In addition, the analysis of load trend is also propounded. In
Chapter 3 the concepts and fundamentals of PCA are introduced (Section 3.1), followed by
an overview of least squares support vector machines theory and its hypér-parameters tuning
algorithms (Sections 3.2 and 3.3). In Chapter 4, the results of the proposed algorithms and
other competitors are presented and compared. Finally, discussions related to this research

along with conclusions are presented in Sections 5.1 and 5.2,



Chapter 2

Background

2.1 Historical Data
2.1.1 Load Demand Analysis

The following information are usually used for load forecasting:

1. Calendar information
2. Temperature profiles

3. Historical load demands

It is known that the load consumption has multiple seasonal patterns, corresponding to
a weekly and annually periodicity. Depending on geographical location, we may encounter
different climatic conditions. Fig. 2.1 gives a simple description of the maximum daily load
demand from 2003 to 2006 in Toronto, Canada. This pattern implies the relation between
electricity usage and weather conditions in different seasons. Also in Fig. 2.2, we can clearly
see the seasonal periodicity of temperature during winters and summers for the same period
in Toronto. Moreover, a closer look at Fig. 2.3 shows that load consumption in summer is
extensively more than winter, due to extreme increases in temperature. In comparison with
other Canadian cities, Toronto has a milder winter. Moreover, during June to August, the

load consumption reaches the maximum of the year.
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Besides, a load periodicity exists in every week. Fig. 2.4 shows that load demand in
weekends and holidays is usually lower than weekdays or in other words working day (Monday
to Friday). Besides, Electricity demand on Saturday is a little higher than Sunday, because
some businesses are open on Saturday and it will increase the amount of consumption in a
noticeable manner. On the whole, it can be observed that broadly speaking, the peak load
happens in the middle of the week .i.e., Wednesday. But there are always exceptions to all

this.

A. Holiday Exceptions

As it was noted, the load demand is usually lower on holidays. With further study, we will
figure out that load usage also depends on what holiday it is. On some major holidays such

as Christmas or New Year, the demand may be more affected compared with other holidays.



10000

*

7000

5000

Peak Daily Load (MW)
g
AR Bt . X
B USSR  YO0EX X X X
%% WA XX XX JOMDION %
¥X %  SESERAEMMMEMMRMOCK X% 3% %
R =l S
e —————————— . S W

4000 = L
1 2 3 4 5 6

Weekday

Figure 2.4: Load vs. Period (Day), Toronto

B. Extreme Temperatures

There is a complicated correlation between load demand and daily temperature [20]. As
temperature increments, the load demand is decreasing. But there is always exceptions, e.g.,
in cases that temperatures passes the 30 celsius degrees (e.g. in Toronto) because of the
Humidex effect, the load consumption will grow tremendously due to heating, ventilation,

and air conditioning systems.

2.1.2 Feature Selection

Historical load data was obtained from Ontario’s IESO [24] for Canadian major city, Toronto
for the period May 2003 to July 2006 (hourly load).

The Temperature info was acquired from Environment Canada [25] for the same period.
The minimum, maximum and average daily temperatures, precipitation and the snow level

on the ground are the most important parameters influencing the load usage in a typical
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day. Other sources, [26], suggest that occasionally cloud cover is being considered in load
forecasting, but this parameter alters instantaneously in real time, and for this reason. it
is not proved to have a reliable impact on prediction accuracy. Moreover, wind speed and
humidity are being used exceptionally, but in this work, we have decided not to consider
them, due to rapid changes in their values in Toronto area. Finally, official holidays are
determined for the relative years.

Furthermore, there is another parameter to be taken into account in every load forecasting
issue and that is the daylight hours. As illustrated in Fig. 2.5, the daytime during summer
and winter fluctuates enormously and depending on the geographical location, this has to
be factored into data selection. To do so, the time between sunrise and sunset is readily
determined as light hours during daytime.

To represent temperature, we use 3 numerical attributes for normalized temperature
data. That includes the minimum, maximum and average daily temperatures of the target

day (which is itself an accurate forecast) followed by one and two weeks before temperatures
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on the same day.

In the matter of load, we employ 25 numerics for the past hourly loads and daily peak load
demand. In order to forecast the maximum load of target day, we use the load information
of last week same day, the day before that and 2 weeks ago on the same day.

Regarding Calendar, we use two different features:

e An integer for each day of the week from Monday to Sunday (1 to 7)

e Three binary digits to distinguish day types which includes weekdays, weekends and
public holidays

Different data encodings affect the selection of modeling schemes. The above selection of
data was obtained through empirical results and in almost all cases it gained the least error

(MAPE).

2.1.3 Feature Extraction

In developing any forecasting problem, the first step is feature selection (new features are
selected from the original inputs) and then feature extraction (new features are transformed
from the original inputs) [18]. In other words, all available information can be used as inputs,
but irrelevant or strongly correlated features could unfavorably impact the generalization
performance due to the dimensionality problem [27].

On this basis, there are changes to the original load data received from Ontario’s IESO.
A quick look at the historical load data shows that starting 14¢th August 2003 at 16:10, due
to huge blackout in southern Ontario and northeastern US, the load in transmission grid
decreased tremendously and it remained same for the next day, until the full recovery from
the widespread power outage. Thus, to improve the accuracy and be more realistic, the
hourly loads of those two days are substituted with the average of the hourly loads of the
days before and after the Blackout occurred.

Eventually, the data considered for training, validation and then testing have to be sep-

arately clarified.



Chapter 3

Techniques

3.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a widely used method for feature extraction. By
calculating the eigenvectors of the sample covariance matrix, PCA linearly transforms the
original inputs into uncorrelated new features (called principal components), which are the
orthogonal transformation of the original inputs based on the eigenvectors. The obtained

principal components in PCA have second-order correlations between the original inputs
[28].

Given a set of centered input vectors z; (t_il z; = 0) , each of which is of m dimension
z, = (z(1), z:(2), ..., th(m))T,
(usually m < 1) , PCA linearly transforms each vector z;, into a new one s;, by
s =UTxy, (3.1)

where U is the m x m orthogonal matrix whose i-th column wu; is the i-th eigenvector of the

sample covariance matrix: l
1
=1
Basically, PCA firstly solves the eigenvalue problem (3.2):
Au; = Cuyi=1,..,1 (3.2)

11
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\; is one of the eigenvalues of C' and u; is the corresponding eigenvector. Based on the

estimated wu;, the components of s;, are then calculated as the orthogonal transformations of
Iy .

si(d) = ul i =1,...,m. ‘ (3.3)-

The new components are known as principal components. By using only the first several
eigenvectors sorted in descending order of the eigenvalues, the number of principal compo-
nents in s;, can be reduced. This is the dimensional reduction characteristic of PCA. The
size of the input vectors will be reduced by retaining only those components which con-
tribute more than a specified fraction of the total variation in the data set. That means a
new variable, minimum fraction variance component, should be defined. The comparison of

different values of this parameter is explained in section 4.1.

3.2 Least Squares Support Vector Machines

In general, any ideal forecasting algorithm must satisfy the following criteria [20]:

1. Non stationarity of load series: When modeling the load series, it is important to
consider the dynamic, nonlinear and complex input—output relationships that exist in

the load trend.

2. Adaptiveness of the forecasting model: Previous researches have proved that the char-
acteristics of load series between regular workdays and anomalous days (weekends and

public holidays) are different.
3. Robustness of the forecasting model: A universal model is the top priority.

Kernel based estimation techniques, such as support vector machines (SVMs) and spe-
cially least squares SVMs (LS-SVMs) have shown to be powerful nonlinear classification and
regression techniques and it has turned out that they can fulfill all of the above criteria

perfectly [11], [12].
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With the help of a kernel function, LS-SVMs perform the linear regression in the trans-

formed space by nonlinearly mapping of the input data into a high dimensional feature space
[17]. We will use z and z to denote the input vector and the feature space vector respectively,
and z = ¢(z).

Let the training set, x; and y;, consist of N data points, where z; is the i-th input vector
and y; is the corresponding target value. The goal of LS-SVMs regression is to estimate a
function that is as “close” as possible to the target values y; for every z; and at the same
time, is as “flat” as possible for good generalization. The function f is represented using a

linear function in the feature space:
= f(z) =w- ¢(z) + b, (3.4)

where ¢(z) is a function that maps the input space into a higher dimensional feature
space. Also, b denotes the bias, as in all SVM designs, we define the kernel function, where

[I3R}]
.

represents inner product in the space.
k(z, &) = ¢(z) - ¢(z)
This will result in the optimization problem in primal weight space:

min J(w, e) = —w w + 2')'Zek, (3.5)

w,b,e

subject to
ue = wTd(z) +b+er, k=1,.,N,
where w is weight vector in primal weight space and e is the error variable. The cost
function J concludes a sum squared error and a regularization term. <y is a positive real
constant that determines the penalties to estimation errors.
Next, the model in (3.5), can be computed in dual space instead of the primal space that

results in Lagrangian with Lagrange multipliers ax € R, called support values.

. N .
L(w,b,e;0) = J(w,e) = Y ar {w’o(zx) + b+ ex =y }- (3.6)
k=1

PROPERTY OF ~_
RYERSON UNIVERSITY LIBRARY
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The circumstances for optimality are as follows:

( N
L =0—w= ) arp(z)
k=1

N
k=1 (3.7)

%=0—>ak='yek,k=1,".,N

| & =0 wTp(w) +b+ex—p=0k=1,..,N

Based on [15], with the application of Mercers theorem, K (z;,z;) = ¢(z:)T - ¢(z;), and
with a positive definite kernel function K, we can eliminate w and e; , obtaining

«

N
yj = Zail((x,-,xj) -+ b+ ’;

i=1
Building the kernel matrix §;; = K(xz;,z;) and writing the equations in matrix notation

will express the final system in dual form,

N
y(z) = Z o, K (zi,z;) + b (3.8)

i=1
The followings are popular kernel functions K (z;,z;) used for SVM regression or classi-

fication problems:
e Linear kernel: K(z;,z;) = zlx;
e Polynomial kernel with degree d and tuning parameter c:
K(zi,z;) = (a:?a:j/c+ l)d
e Radial basis function (RBF):
K (x5, z;) = exp(—||z; — z;]|2/62)

where § is a tuning parameter.
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It was observed in the literature that a nonlinear RBF kernel has been widely used than

other types to fit the electricity load data and therefore in this project it is being applied
in the LS-SVM algorithm. There is no doubt that the efficient performance of the LS-SVM
model involves an optimal selection of the kernel parameter § and regularization parameter
~ , which can be done using one of several optimization techniques explained in the next

section.

3.3 LS-SVM Hyper-parameters Optimization Algorithms

In general, in any classification or regression problem, if hyper-parameters of the model are
not well selected, results will not be good enough. In this work, regularization parameter (v)
and kernel parameter (§) of LS-SVM are called hyper-parameters, and their optimal values

are of interest. There are roughly two classes of methods for LS-SVM parameter estimation

(tuning):
1. Ezperimental methods: In practice, most researchers have so far used cross-validation.

2. Theoretical methods: Potentially, we can use global or local optimization techniques

such as a genetic algorithm, simulated annealing and bayesian evidence framework.

Each of these techniques has its own pros and cons specific to the proposed application.

In this section, different optimization techniques applied to the proposed LS-SVM algorithm

are introduced in brief.

3.3.1 Genetic Algorithm

Genetic algorithms comprise a powerful stochastic search and optimization technique based
on the processes of evolution theory. This method is reported to be suitable for a good
approximate global maximum or minimum value. A genetic algorithm involves using three .
Operators: reproduction, crossover, and mutation. The process of LS-SVM with Genetic
Algorithm is illustrated in Fig. 3.1. Here, a genetic algorithm produces sets of individuals,

which represent the LS-SVM parameters (7) and (d) [22], [29]. Each resulting LS-SVM is
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Figure 3.1: The proposed GA with LS-SVM

trained and is used to forecast the peak load demand. Parents of the next generation are
selected according to a fitness function. Several measurement indicators have been proposed
and used to evaluate the prediction accuracy of model such as MAPE, MAE, and maximum
error in time series prediction problems. In this work, mean absolute percentage error
(MAPE) is selected as fitness function. Individuals with larger fitness value have greater
possibility of being selected as parents. The fitness function is defined as:

1

fitness = W—E(T’Y).

(3.9)

Thus, maximizing the fitness value corresponds to minimizing the predicted error. When

the termination criterion is met, the individual with the best fitness defines the optimal
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parameters of the LS-SVM. We used the Matlab Genetic Algorithm Toolbox developed by

C.R. Houck, J. Joines, and M. Kay, which by comparison is a really good and promising

implementation of Genetic Algorithm [30].

3.3.2 Simulated Annealing

The simulated annealing algorithm is an optimization technique which simulates the anneal-
ing process of material physics [21]. Fig. 3.2 shows the general form of simulated annealing
(SA). Based on the work of Boltzmann et al. [31] if a system is in thermal equilibrium at
temperature T, then the probability Pr(s) of the system being in a given state s is given by

Boltzmann distribution:

exp(—=E(s)/kT)
Es exp(—E(s)/kT)’

where E(s) represents the energy of state s, k is the Boltzmann constant and S is the set

Pr(s) = (3.10)

of all possible states. Metropolis et al. [32] developed an algorithm which simulates the
process of Boltzmann. Based on this algorithm, when the system is in the original state soq
with energy F(soq), @ randomly selected atom is perturbed, resulting in a new state spew
with energy F(Snew). This new state could be either accepted or rejected depending on the
Metropolis criterion which says if E(Snew) < E(Sod), the new state is accepted. Otherwise, if
E(Spew) > E(So1a), then the probability of accepting the new state is given by the following
probability function:

P(Accept Spew) = €Xp (— E(Sota) I:TE(S"B’")) . (3.11)
Following the work of Boltzmann and Metropolis, Kirkpatrick et al. [33] suggested that

the Metropolis approach be conducted for each temperature on an annealing schedule until

when the thermal equilibrium is accomplished. The SA algorithm in accordance with LS-

SVM is described as follows:

Step 1 (Initialization): Set upper bounds of the two LS-SVM positive parameters « and 6.

Generate and feed the initial values of the two parameters into the LS-SVM model. The
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Figure 3.2: SA with LS-SVM algorithm

mean absolute percentage of forecasting error (MAPE) is defined as the system energy E.
Thus, we have the energy of (Ep) as the initial state.

Step 2 (Temporary state): Make a random move to change the existing state to a temporary
state. A new set of the parameters is obtained at this stage.

Step 8 (Acceptance criteria): The following conditions are employed to determine the ac-

ceptance or rejection of the temporary state:

Accept if E(spew) > E(sod) and p < P(Accept Spew),
0<p<LlL

Also, accept if E(Spew) < E(So1a)- (3.12)

Reject otherwise.

In (3.12), p is a random number to determine the probability of acceptance of the temporary

state. If the temporary state is accepted, then, it will be set as the current state. If the

temporary state is rejected, then, return to Step 2, and make another move. We may define

a maximum number of repetitions Ng, to avoid infinite loops.

Step 4 (Temperature reduction): After the new system state is obtained, reduce the current

temperature by some user-defined positive ratio. If the predetermined temperature (Stop

criterion) is reached, then stop the algorithm, and the latest state is the approximate optimal
solution. Otherwise, go back to Step 2.

We used the General simulated annealing algorithm developed by Joachim Vandekerck-
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hove, which is found to be well-explained and very easily traced by comparison with other

implementations of simulated annealing [34].

3.3.3 Bayesian Evidence Framework

The Bayesian evidence framework first introduced by Mackay [35] has been applied to the
design of neural networks with great success. But, it was first applied to the standard
SVM classification algorithm by Kwok [36]. Then Gestel et al. [37] extended its integration
to the LS-SVM classifier and regression problems. This approach starts from the feature
space formulation, while analytic expressions are obtained in the dual space on the different
levels of bayesian inference, which yields the similar expressions of Gaussian Processes (GPs)
[35]. It is known that this novel approach shows good generalization performances but
with very complicated expressions for practical use. In this project, we apply the Bayesian
evidence framework to the LS-SVM regression algorithm for load forecasting problem and
use this practical approach to select optimal regularization parameter () and optimal kernel
parameter (6). The method we are using here is quite simplified and similar to the Bayesian
interpretation of standard SVM.

According to the Bayesian evidence theory, the inference is divided into three distinct
levels. Training of the LS-SVM regression (i.e. support values and the bias) is interpreted
as Level 1 inference. The optimal regularization parameter can be achieved as Level 2. The

optimal kernel parameter selection can be performed as Level 3.

Level 1 inference

To be convenient [35], we divide optimization objective in (3.5) by < and then replace % by

A. For a given value of ), the first level of inference infers the posterior of w by

p(w|D, A, H) o p(Dlw, A, H)p(w|), H), (3.13).

where D is the training dataset and H represents model with parameter vector w. Assum-

ing training data are independently identically distributed, and p(w|A, H) is the Gaussian
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probability distribution, we finally will obtain

z |
p(w|D, A\, H) o exp {—ngw = L(y;, f(a:,))} : (3.14)

i=1
where z;, y; represent the input and output pairs, f(z;) is the LS-SVM model and finally
L(yi, f(z;)) denotes the loss function. Level 1 inference, training of LS-SVM (3.5) can be

interpreted as maximizing p(w|D, A\, H) with respect to w.

Level 2 inference

Applying the Bayesian rule in the second level of inference, we obtain the posterior proba-

bility of A:

p(AD, H) o p(D|X, H)p(A|H) o« p(D|A, H). (3.15)

The most possible value of A can be determined by maximizing the posterior probability
of X\ as p(\|D, H).
Let us define E, = wT¥/2,Ep = Z L(y;, f(z;)) and then we w1ll obtain

k
In(p(A\|D, H))  In(p(D|A, H)) = —/\EyP—EgP+-2-InA—%In(det A) +constant., (3.16)

where wyp is the most possible value of parameters w and A is A = V? (AE + Z Ly, f (a:,))) .
Maximization of the log-posterior probability of p(A|D, H) with respect to B leads to the

most probable value of Ayp obtained by the following equation

2/\MPE£4P =g, (317) '

where ¢ is called the effective number of parameters. In the case of LS-SVM regression, use

of cost function L(y;, f(z:)) = 3(3: — wé(z;) — b;)? yields

l
A=V? .(/\Ew + ZL(y,-, f(:c,-))) = M + B, (3.18)

i=1
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where B = Z @(z;)(z;)T. Denote the eigenvalues of B by p; yields the effective number of

parameters c of LS-SVM as follows:

N
Pi

P (3.19)
= Pi + A

c:

where N(N < 1) denotes the number of nonzero eigenvalues of | x I matrix K(z;, ;) =

o) p(z:),1,5 =1,2, .1

Level 3 inference

The third level of inference in the evidence framework compares the different models by
examining their posterior probabilities P(H|D) o< P(D|H)P(H) and can be used to find the
optimum kernel parameter. Assuming the prior probability P(H) over all possible models

is uniform, we have

P(H|D) « P(D|H) & / P(DIA, HYP(AH)A < P(D)wrp H)/v/: (3.20)

Therefore

In P(H|D) = —/\MpE‘ﬁ’P—Eg’P+§ In A]\,[p—';‘ In(det A) —% In(k—ArptraceA™!)+constant.
(3.21)

The optimum kernel parameter can be obtained by maximizing log-posterior probabilities

In P(H|D) with respect to the kernel parameter. For practical use, the selection method of
the kernel parameter ¢ of Gaussian kernel ié illustrated in this subsection. To obtain the most
possible value of the kernel parameter &, we set the derivative of In P(H|D) with respect to

J§ to zero we obtain the kernel parameter in the LS-SVM regression.

8ln P(H|D)

a5 =0 (3.22)
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Figure 3.3: CV with LS-SVM algorithms

l 1/3
< ij=1
s : 7 : (3.23)
trace (A~ (55)) + gy peamr trace (A2 (55))

a; and a; represent the ith and jth element of A. The bayesian evidence framework in

(38] is used with some modifications to best fit the load forecasting application.

3.3.4 Cross Validation

One of the most popular techniques of evaluating a set of parameter values is the use of
cross-validation [39]. As shown in Fig. 3.3, in cross-validation [40], the training set T is
divided up into M partitions (13,75, ..., Ths). For each parameter setting, it trains the LS-
SVM model M times when during each time one of M cases is held out while the remaining
(M — 1) cases are used to train the model. Then, the trained model is used to test the held-
out case. The average accuracy of these M trials is used to estimate what the generalization
accuracy would be if the parameter value was used. The parameter value that yields the
highest estimated accuracy, i.e. the least generalization error is, then, chosen. When more
than one parameter needs to be tuned, the combined settings of all of the parameters can
be measured using cross-validation in the same way. When M is equal to the number of
training samples in 7, the result is leave-one-out cross-validation (LOO-CV), in which each
instance 7 is tested by all of the instances in 7" used for training except for 7 itself, so that
almost all of the training data is available for each regression attempt. LOO-CV has been

described as being desirable but computationally expensive.



Chapter 4

Results

4.1 Implementation and Evaluation

In this chapter, we explain the PCA-based LS-SVM approach used to forecast the week-
ahead peak load demand:

Step 1: Preprocessing the historical load data sets (e.g., removing the abnormal samples of
13th and 14th, August 2003 Blackout) and then normalizing all sample sets to zero mean and
unit variance. As it was observed in the literature, there is no agreement on the use of target
day’s temperature for forecasting purposes, because the temperature itself is essentially a
prediction and this will diminish forecasting accuracy. But, in this project, we observed that
even by removing the target days temperature information, we would get almost the same
results, since we are using also the data from the previous two weeks on the same day.
Step 2: Implementing PCA on the input data and based on trial-and-error, to determine the
appropriate minimum fraction variance component, i.e., number of features to be entered
into the LS-SVM model.

Step 3: Building the the target equation (3.8) and using the test data sets to predict the
next seven day’s maximum load demands. When training a LS-SVM model, there are some

parameters to be selected. They would influence the performance of the model significantly.

e Regularization parameter (vy)

e Kernel bandwidth parameter (J)

23
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Table 4.1: LS-SVM with GA Optimization Training Parameters
Parameter Il Value

Problem Type Minimum

Population Size 10
Generations 20 - 500

Gamma Range 0 - 1000
Sigma Range 0- 1000

Selection Method || Tournament
Mutation Method Uniform

e The kernel function k(z, ), RBF is used in our LS-SVM model.

e The size of training data sets, i.e. how many previous days are included for one training

data.

Step 4: Applying the optimization algorithms to the LS-SVM regression and keep estimating
the optimal hyper-parameters until enough accuracy is reached.

In cross validation the number of subsets M in the training data set needs to be selected.
Empirically, the 10-fold cross validation is the one most commonly used for both regression
and classification purposes [39], [40]. The parameter value « and § that yields the minimum
generalization error is, then, chosen. ‘ '

For genetic algorithm, some parameters have to be determined in advance before using
LS-SVM model. For instance, population size, range of parameters, selection and mutation
operators have to be selected correctly. The values of individual parameters and the fitness
value of the fitness function were based on prior experiences of training and on problem type.
In Table 4.1 some of these parameters are shown.

Bayesian evidence framework does not need any initialization of parameters, and that is
a very powerful and interesting aspect of the bayesian inference.

Simulated annealing however, requires more parameters to be determined such as cooling

schedule, suitable initial and stop temperatures, annealing scheme and termination condition.



Table 4.2: LS-SVM with SA Hyper-Parameter Optimization

Level 1: Inference of Model Parameters || Infer wy,p and bysp or o and by, p

Level 2: Inference of Hyper-Parameters Infer oy p

Level 3: Inference of Model Parameters || Infer the Kernel Parameter v,,p

8000 T T T T T

7500
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Z
= 6500
S
©
S
6000
=== Actual Load
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5000 1 1 ) |

1 2 3 4 5 6 7
Period (Day)

Figure 4.1: Actual vs. Predicted Load (LS-SVM with PCA for feature extraction)

Another important variable in both GA and SA is the maximum number of iterations. All of
these parameters should be selected properly by an expert and they have significant influence
on final result. Since this method is completely expert-dependent, it cannot be the algorithm
of choice for our LS-SVM load forecasting model.

The comparison of different forecasting models with and without PCA is shown in Table
4.3 and Fig. 4.1. For instance, the 0.0001 for PCA 4 LS-SVM means those components that
contribute more than one percent to the variance in the data set are kept and the remaining
is eliminated. LS-SVM with PCA and minimum fraction variance of 1% obtained better

results than LS-SVM without feature extraction and feed forward back propagation neural
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networks. In this case the number of features decreased to 34 from the original 85. It can be

observed from the Table 4.3 that this the PCA feature extraction resulted in better accuracy
(MAPE) and also in faster speed. Since, the number of features is decreasing, therefore the
amount of computations and calcualations will be reduced significantly and as a result, the
algorithm will be faster. Also, it was found that using smaller minimum fraction variance
improves MAPE and the model performance further. For example we used .1% minimum
fraction variance of PCA and observed that although the number of features is growing, but
the performance got better and the processing time was a bit slower. Generally speaking,
there is a trade-off between the number of features and speed. As the number of features
increasing, the speed will be slower and vice versa.

Here, we will explain in brief the feed forward back propagation neural networks used
in this work for the purpose of comparison with our proposed LS-SVM with PCA feature
extraction. An Artificial Neural Network (ANN) can be defined as a highly connected array
of elementary processors called neurons. The the multi-layered perceptron (MLP) type
ANN consists of one input layer, one or more hidden layers and one output layer. Each
layer employs several neurons and each neuron in a layer is connected to the neurons in
the adjacent layer with different weights. Signals flow into the input layer, pass through
the hidden layers, and arrive at the output layer. With the exception of the input layer,
each neuron receives signals from the neurons of the previous layer linearly weighted by
interconnecting values between neurons. The neuron then produces its output signal by
passing the summed signal through a sigmoid function [41] , [42].

A complete set of training data are assumed to be available. Inputs are imposed on the
top layer. The ANN is trained to respond to the corresponding target vectors on the bottom
layer. The training continues until a certain stop-criterion is satisfied. Typically, training is
halted when the average error between the desired and actual outputs of the neural network
over the training data sets is less than a predetermined threshold. The topology of the ANN
for the peak load forecasting in our work consists of 5 hidden neurons in the hidden layer

and we used the MATLAB Neural Network Toolbox which is a promising and powerful tool



Table 4.3: Forecasting errors for a typical week (LS-SVM with PCA for feature extraction)

Estimation Technique No. features | MAPE (%) | MAE (MW)
Single LS-SVM 85 1.5755 110.3582
FFBP Neural Network 85 2.9231 203.1979
PCA + LS-SVM [0.0001] 34 1.1454 80.0693
PCA + LS-SVM [0.00001] || 58 0.8082 56.1873
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Table 4.4: Forecast errors for a typical Week (LS-SVM with hyper-parameter optimization tech-

niques)
Tuning Technique | MAPE (%) | MAE (MW)
LS-SVM + CV 2.9231 203.1979
LS-SVM + GA 2.1454 142.0693
LS-SVM + SA 1.9082 125.1873
LS-SVM + BI | 1.3057 86.5239

for any kind of artificial intelligence application [43].

The comparison of different hyper-parameter tuning techniques for a typical week is

~ shown in Table 4.4 and Fig. 4.2. It can be observed that LS-SVM with Bayesian framework

optimization outperformed other methods including simulated annealing, genetic algorithm

and cross validation in case of yielding better performance and accuracy. The correspond-

ing programs were developed from LS-SVMlab [44], with major changes to conform to the

application. All the discussed algorithms and models were implemented and tested with the

Same processor.
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Figure 4.2: Actual vs. Predicted Load (LS-SVM with hyper-parameter optimization techniques)



Chapter 5

Conclusions

5.1 Conclusions

In this project, a PCA-based least squares support vector machine was presented and its
performance was evaluated through a simulation study. As it was shown, the PCA was used
to reduce the input variable dimension. A wide range of the minimum fraction variance were
tested on the model and the results were satisfactory. Also, a crucial and effective feature
was added to the data collection namely daylight time. Depending on the region, this feature
could be varying tremendously and as a result it has to be taken into account.

LS-SVM by feature extraction using PCA outperformed other techniques in week-ahead
load forecast including LS-SVM without feature extraction and the well-known feed for-
ward back propagation neural networks. It showed better accuracy, faster speed and superb
generalization.

Furthermore, various optimization methods for tuning the least squares support vector
machine hyper-parameters were presented and performance was evaluated through a sim-
ulation study. The LS-SVM technique shows satisfactory performance, such as powerful
regression ability, acceptable predicting accuracy and perfect foundations in theory. How-
ever, the efficient performance of the LS-SVM model depends on the optimum choice of the
kernel and regularization parameters, which can be done using different optimization tech-
niques. As a result, available parameter tuning techniques were applied into the LS-SVM

regression model. It was observed that LS-SVM with bayesian framework outperformed

29
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other tuning techniques in week-ahead load forecasting problem including LS-SVM with ge-

netic algorithm, simulated annealing and cross validation. It showed better accuracy, faster

speed and superb generalization.

5.2 Discussion

In general, simulated annealing (SA) and genetic algorithm (GA) are often viewed as different
techniques, but in reality, it seems that they are more closely related than it is commonly
thought. There is no concrete proof which one is more accurate or faster, since this issue is
problem-dependent. Both SA and GA are stochastic, flexible and less likely to get trapped
in local minima. On the other hand, they are both slow and their good movement is to some
extent non-intuitive for a given task. As related to our application, it was observed that they
have almost the same performance and close speed. Perhaps the Bayesian framework could
be introduced as the most reliable, powerful and accurate algorithm which does not need
any initialization of parameters. This last factor may significantly reduce the losses over the
user-defined variables. Eventually, cross validation seemed to be the simplest, slowest and
most popular. Although, it is slow and less accurate, but its computational simplicity has

proved it as the first choice of try in most regression and classification problems.

5.3 Future Research

There is still additional research required to explore if the algorithms can yield in better per-
formance. For instance, there are other advanced models of LS-SVM like Fixed-Size Support
Vector Machines which is reported not only have identical performance as SVM and LS-SVM,
but also can improve the computational complexity and training time tremendously. Also,
there are a wide variety of LS-SVM implementations available in the literature and every
one of them depending on the type of application can have end up in better results. So,
there seems to be a really good potential for examining different implementations of SVMs |

on our load forecasting application.
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In this project, for feature extraction, PCA was used and it resulted in good performance.

But, it has been observed that IKernel Principal Component Analysis (I{PCA) and Indepen-
dent Component Analysis (ICA) have better generalization performance than PCA feature
extraction [28]. Unlike PCA which linearly transforms the original inputs into uncorrelated
features, KPCA is a nonlinear PCA developed by using the kernel method. In ICA, the

original inputs are linearly transformed into statistically independent features.
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