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ABSTRACT

In this thesis, the use of Lévy processes to model the dynamics of Hedge fund indices

is proposed. Merton (1976) and Kou (2002) models which differ on the specification of the

jump components are employed to model hedge funds in continuous time. Secondly, an

alternative to the Maximum Likelihood Estimation (MLE) method, Empirical Characteris-

tic Function (ECF) estimation method, is explored in our analysis and compared to MLE.

The Cumulant Matching Method (CMM) is used in getting the starting parameters; and

the method that overcomes the major problem associated with this estimation method is

outlined. Calibration shows that these two models fit the data well, however, the empirical

comparison shows that double exponential jumps are more consistent with the empirical

data. Each fund’s exposure to risk is calculated using Monte Carlo Value-at-Risk (VaR)

estimation method.
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3.1 Lévy Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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Chapter 1

INTRODUCTION

It has been known that the behaviour of asset returns is not modelled well with Brownian

motion because these models are inconsistent with market data, typically in relation to the

dynamics of the asset return process. A number of extensions have been proposed. Adding

jumps to standard Brownian motion is one of the extensions. Jump diffusion models are

used because asset return distributions tend to have heavier tails than those predicted by

a normal distribution. This is because asset returns experience occasional discontinuities,

causing the returns to be generated by a mixture of both continuous and jump processes.

Merton [30] explored jump diffusion models to describe discontinuous changes of stock

returns upon arrival of new information. He added Poisson jumps to a standard geometric

Brownian motion process to link the changes in asset return to arrival of unanticipated

information. His model approximates underlying stock returns generated by a mixture of

both continuous and jump processes.

Despite the abundance of continuous-time models for stocks, commodities and market

indices, in hedge funds, a continuous-time approach has not been followed previously. The

first contribution made in this thesis is developing a continuous-time model for hedge fund

modelling by using Lévy process models of log returns of hedge funds, exploiting data from

the Hedge Fund Research (HFRX) hedge-fund database for the period 2003-2012. Secondly,

since Maximum Likelihood Estimation method (MLE) is difficult to use in some complicated

problems, an alternative estimation method - Empirical Characteristic Function (ECF)

estimation method which builds on the works done by [19] and [36] is explored in the

analysis using Cumulant Matching Method (CMM) and Generalized Method of Moments

(GMM) to get and improve on the starting parameters for the models respectively. In the
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analysis, the MLE estimates are compared to those of ECF and the asymptotic variance of

both models are found and used in estimating the standard error of the ECF estimates. Risk

analysis based on Kou and Merton rather than Gaussian based model was performed for

different period of time and investment style behaviours. The goodness of fit of the models

is done by comparing the quantiles and densities of the empirical data and the simulated

data from Kou and Merton models. Kolmogorov-Smirnov goodness of fit test is also used to

test whether the empirical and fitted distributions are sampled from the same distribution.

The dynamics of hedge fund indices are best captured by models that fit the data well. In

this thesis, two popular jump diffusion models are compared using historical HFRX indices

data for selected hedge fund styles. The models considered are those proposed by Merton

[30] and Kou [24] which differ on the specification of the jump component. In the former

model, jumps follow a log-normal distribution whereby in the latter the jump component

is drawn from a double exponential distribution. Calibration shows that these two models

fit the data well, however, our empirical comparison shows that double exponential jumps

are more consistent with the empirical data capturing asymmetries.

In the next chapter a brief discussion of hedge funds and the main styles of hedge

fund strategies in relation to the distribution of the indices, the dynamics of the data

and descriptive statistics is outlined. In the third chapter, Lévy processes are introduced

and their major mathematical properties, beginning from Poisson process which is the

starting point of jump processes, are presented. Also, the mathematical tools useful for

estimating the parameters of the models and the methods used in parameter estimation are

presented. In chapter four, the models used in the thesis are specified and discussed; the

characteristic functions and distributions of jumps for both models are shown. Numerical

implementation and results are presented in chapter five; parameter estimation for both

Merton and Kou Models using ECF and MLE methods are outlined and compared, the

simulated data from the models are compared to the empirical data using QQ-plots, densities

fitting and Kolmogorov-Smirnov (KS) goodness of fit test. Application in risk assessment

2



is presented in chapter six; Monte Carlo Value-at-Risk (VaR) method is used to estimate

the VaR of each of the four funds analysed and one way these estimates can be used in risk

management is outlined. The final discussion and proposals of a future work are included

in the Conclusions. Derivations of theoretical results, tables of parameter estimates and

applied program codes in MATLAB 1, MAPLE 2 and SAS 3 are presented in the Appendix.

1MATLAB is a programming environment for algorithm development,numerical computation,etc.
2MAPLE is a commercial symbolic mathematical engine that manipulates formulas
3SAS is system of software products provided by SAS Institute Inc. used for statistical analysis, etc.
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Chapter 2

HEDGE FUNDS

In this chapter a brief discussion of hedge funds and the main styles of hedge fund strategies

in relation to the distribution of the indices, the dynamics of the data and descriptive

statistics is outlined.

2.1 Brief History of Hedge Fund Industry

Hedge funds are privately organized and lightly regulated investment partnership that in-

vests in a range of securities that are professionally managed in an attempt to increase

expected return while reducing risk. Different types of strategies and techniques can be

used to achieve the same investment objectives.

Alfred Winslow Jones, who established the first hedge fund as a general partnership in

the US in 1949, is considered the father of hedge funds [2]. Since 1966, when Jones’s unique

and highly successful strategies were made known to the public, the hedge fund industry has

grown into a global business at the forefront of investment innovations [2]. Jones merged

two speculative tools, short selling and leverage into a conservative strategy for investing in

both rising and falling market. In the 1950’s and 60’s, the hedge fund outperformed equity

mutual funds. Many hedge fund managers entered the market due to Jones success but

failed to use his model. They used only leverage which led to failure during the bear market

of 1970’s. The number of hedge funds decreased from up to 200 in the 60’s to 68 in 1984

[26]. The decline in stock prices following March 2000 and the need to diversify risk spurred

many investors to search for alternative investments less correlated with traditional markets

[3] which have led to a rapid growth in hedge fund in recent years. Based on estimate, there

are more than 6000 hedge funds now around the world managing over 1 trillion US dollars.

4



Around 80% of the hedge funds are smaller than $100 million and around 50% are smaller

than $25 million, which reflects the high number of recent new entries [20].

2.2 Investment Styles

Hedge fund investment strategies tend to be quite different from the strategies followed by

traditional money managers. Moreover, in principle every fund follows its own proprietary

strategy. Although the term ”hedge fund” is often used generically, in reality hedge funds

are not all alike; they are a very heterogeneous group. Hedge funds managers, consultants,

and investors often segregate the hedge fund market into a range of investment styles in

order to develop a coherent plan to exploit the opportunity offered by hedge funds. For

the sake of simplicity the classification by [26] which groups hedge funds into four main

strategies is used in this thesis. The four main strategies are tactical trading investment

style, equity long/short style, event driven Style and relative value arbitrage. The fifth

classification comprises funds that follow more than one strategy as well as funds of funds.

2.2.1 Tactical Trading Investment Style

This style speculates on the direction of market prices of currencies, commodities, equities

or bonds on a systematic or discretionary basis. Two styles in this category are:

Global Macro Managers

These managers carry long and short positions in any of the world’s major capital or deriva-

tive markets. They usually rely on a top-down global approach and base their trading views

on overall market direction as influenced by major economic trends and events. Due to their

discretionary approach, the quality of the manager is the sole key to a fund’s success.

Commodity Trading Advisors and Managed Futures Managers

These Managers trade listed financial and commodity futures markets and currency mar-

kets on behalf of their clients. The managers are usually referred to as Commodity Trading

5



Advisors, or CTAs. They are split into two groups, systematic and discretionary traders.

Systematic traders tend to analyse historical price movement to anticipate future prices and

make trading decisions, while discretionary managers use a more fundamental approach.

2.2.2 The equity long/short style

Long/short equity managers invest in equities, and combine long investments with short

sales to reduce but not eliminate market exposure. In an equity hedge (long/short equity)

strategy, the managers investment decisions depend on the degree to which individual stocks

are undervalued or overvalued relative to current market prices. This strategy is heavily

reliant on manager’s skill in discerning a stock’s fair value. Styles in this category are:

Regionally or industry focused managers

These managers specialize in a particular region.

Dedicated short managers

These managers only use short positions.

Emerging market funds

These managers invest in all types of securities in emerging markets around the world.

Market timers

These managers vary their long/short exposure in response to market factors within a short

period of time.

2.2.3 The event-driven Style

An event-driven strategy is designed to capture price movements generated by a significant

pending corporate event, such as a merger, corporate restructuring, liquidation, bankruptcy,

or reorganization. Distressed securities and risk arbitrage are the predominant styles in this

category.

Distressed Securities

Distressed securities managers trade the securities of companies that are, or are expected to

6



be in financial or operational difficulty such as bankruptcy, reorganizations, distressed sale

and other corporate restructuring. Distressed or high-yield securities are generally below

investment grade, and require extensive due diligence to take advantage of the low prices

at which they trade. Distressed securities managers analyze and buy these securities when

they perceive a turnaround.

Risk (Merger) arbitrage

Merger arbitrage managers exploit merger activity to capture the spread between the cur-

rent market values of securities and their values in the event of a merger, restructuring, or

other corporate transaction. Managers generally consider a transaction once an announce-

ment is publicly made. A typical trade within this style is to buy the stock of the company

being acquired while shorting the stocks of the acquirer. The most important risk to this

style is deal breakage after the announcement.

2.2.4 Relative Value Arbitrage

When using relative value arbitrage strategies, a manager generally seeks to profit from a

relative pricing discrepancies between related instruments, including equities, debt, options

and futures. The general theme among these strategies is a bet that two securities or market

prices will converge over time. Predominant styles in this category are:

The Convertible Arbitrage

Managers seek to exploit pricing anomalies between convertible bonds and their underlying

equities. A typical investment is to short the common stock and take a long position on

the convertible bond1 of the same company.

The Fixed Income Arbitrage

The managers aim to profit from price anomalies within and across global fixed income mar-

kets. Typical strategies include but are not limited to interest rate swap arbitrage, forward

1A convertible bond is a bond with an embedded call option on the company’s stock.
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yield curve arbitrage, sovereign debt arbitrage and mortgage-backed securities arbitrage.

The Equity Market Neutral

This strategy also referred to as statistical arbitrage is designed to exploit pricing inefficien-

cies between related securities and usually involves being simultaneously long in overvalued

equities and short in undervalued equities in as risk-free a manner as possible.

2.2.5 Statistical Data

The data used in this thesis are taken from Hedge Fund Research Inc.(HFR), www.hfr.com.

HFR is is a hedge fund research and consulting firm which specializes in the areas of

indexation and analysis of hedge funds. It is considered the global leader in the alternative

investment industry and HFR database, is also considered the most comprehensive resource

available for hedge fund investors. The four indices analysed are Global Hedge, Event

Driven, Convertible Arbitrage and Equally Weighted hedge funds and the time series and

daily log returns of each of the indices from March 2003 to May 2012 are shown in figures

2.1 and 2.2 respectively.
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Figure 2.1: The Time Series of Hedge Fund indices for Period 2003-2012
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Figure 2.2: The Log returns of Hedge Fund indices for Period 2003-2012

The histograms of hedge fund data display asymmetric heavy tails and high peak. The

kurtosis of the distributions is too large (leptokurtic distribution). To get a clear picture
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of what happened at different periods, we divided our data into three - before the financial

crisis, during the major financial crisis and after the crisis. The periods were determined

empirically . For the four styles analyzed, the kurtosis are much larger than three, as seen

in tables 2.1, 2.2 and 2.3 and the skewness seems to be significant. Models with jumps are

proposed to incorporate these features. The descriptive statistics for different hedge fund

styles are shown in tables 2.1, 2.2 and 2.3.

G. Hedge E. Driven C. Arbitrage E. Weighted
Mean 0.00027 0.00039 0.00007 0.00023
Std. dev. 0.0021 0.00248 0.00207 0.00143
Skewness -1.0174 -0.54532 -0.38753 -1.01584
Kurtosis 7.6095 6.24571 4.78365 9.33362

Table 2.1: Descriptive statistics for HFRX index data from March 2003 to July 2007 taken
from HFR

G. Hedge E. Driven C. Arbitrage E. Weighted
Mean -0.00011 -0.00012 -0.00069 -0.0007
Std. dev. 0.00261 0.00326 0.00555 0.00332
Skewness -1.54815 -1.57947 -4.78229 -1.00435
Kurtosis 16.10559 21.96825 43.89047 8.91403

Table 2.2: Descriptive statistics for HFRX index data from August 2007 to December 2008
taken from HFR

G. Hedge E. Driven C. Arbitrage E. Weighted
Mean 0.00013 0.000205 0.00053 0.00014
Std. dev. 0.00203 0.00236 0.00261 0.00154
Skewness -1.06321 -0.85277 0.48208 -1.32607
Kurtosis 8.28435 7.5743 6.05142 11.11451

Table 2.3: Descriptive statistics for HFRX index data from January 2009 to May 2012 taken
from HFR

The correlation matrices between the indices for the different periods are shown in tables
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2.4, 2.5, and 2.6. The correlation matrices show that all the funds are correlated and the

correlation between the indices for the crisis period is close to 1 where as there are variations

for the pre-crisis and post-crisis data. The correlation of the Convertible Arbitrage Style to

other styles is higher in crisis and post-crisis periods.

G. Hedge E. Driven C. Arbitrage E. Weighted
G.hedge 1.0000 0.9875 0.5652 0.9976
E. Driven 1.0000 0.4665 0.9871
C. Arbitrage 1.0000 0.5894
E. Weighted 1.0000

Table 2.4: Correlation Matrix for HFRX index data from March 2003 to July 2007

G. Hedge E. Driven C. Arbitrage E. Weighted
G.hedge 1.0000 0.9817 0.9832 0.9974
E. Driven 1.0000 0.9744 0.9715
C. Arbitrage 1.0000 0.9859
E. Weighted 1.0000

Table 2.5: Correlation Matrix for HFRX index data from August 2007 to December 2008

G. Hedge E. Driven C. Arbitrage E. Weighted
G.hedge 1.0000 0.9527 0.8764 0.9772
E. Driven 1.0000 0.9346 0.9616
C. Arbitrage 1.0000 0.9413
E. Weighted 1.0000

Table 2.6: Correlation Matrix for HFRX index data from January 2009 to May 2012

The time series for the different periods are shown in figures 2.3, 2.4 and 2.5. The index

values have an upward trend in the pre-crisis period, downward trend in the crisis period

and upward trend in the post-crisis period.
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Figure 2.3: The Time Series of Hedge Fund indices for Pre-crisis returns (2003-2007)
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Figure 2.4: The Time Series of Hedge Fund indices for Crisis returns (2007-2008)
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Figure 2.5: The Time Series of Hedge Fund indices for Post-crisis returns (2009-2012)

Hedge fund returns empirical distribution and fitted normal distribution (the red line)

for different periods are shown in figures 2.6, 2.7 and 2.8. These figures show the presence
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of high peaks, heavy tails and asymmetries and that the returns are non-Gaussian. The

peakness are much more prominent during the crisis period. The distributions of convertible

arbitrage style for different periods differ from the distributions of the other styles with lower

peak in the pre-crisis period and higher peak in crisis and post-crisis periods.
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Figure 2.6: The empirical density (histogram) and fitted normal density (red line) for Pre-
crisis returns (2003-2007)
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Figure 2.7: The empirical density (histogram) and fitted normal density (red line) for Crisis
returns (2007-2008)
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Figure 2.8: The empirical density (histogram) and fitted normal density (red line) for Post-
crisis returns (2009-2012)
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Chapter 3

THEORETICAL BACKGROUND

A mathematical model that can reproduce the non-smoothness of the trajectories of hedge

fund indices data is what is intended to be developed in this thesis. It is therefore reasonable

to model the dynamics of index returns with Lévy processes which are processes with

stationary independent increments that can not only generate continuous movements via a

Brownian motion and rare and large events via a compound Poisson process, but can also

generate frequent jumps of different sizes [39]. In this chapter, Lévy processes are introduced

and their major mathematical properties, are presented. Also, the mathematical tools useful

for estimating the parameters of the models and the methods used in parameter estimation

are explained in detail. For additional details on Lévy processes see [8].

3.1 Lévy Processes

Definition 3.1. [8] A cadlag1 stochastic process (Xt)(t≥0) on (Ω,P,F , (Ft≥0)2 with values

in Rd such that X0 = 0, is called a Lévy process if it possesses the following properties:

(1) Independent Increments: for every increasing sequence of times t0 < t1 < . . . < tn,

the random variables Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1 are independent.

(2) Stationary Increment: for every t, h > 0 the law of Xt+h −Xt does not depend on t.

By condition one, the future increment Xt+h−Xt is independent of the past history (Fs :

s ≤ t). The stationarity of increments implies that changes in the underlying variableXt+h−
1cadlag means right-continuity and left limits and it should be noted that some authors do not impose

this property in the definition of Lévy process
2F is a σ-algebra which is a collection of set of events, where each event is a set containing zero or more

outcomes while (Ft≥0) is a filtration or flow of σ-algebras
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Xt have the same distribution at all the times t. The simplest Lévy process is the linear

drift, a deterministic process. The Brownian motion is the only (non-deterministic) Lévy

process with continuous sample paths [8]. The Poisson and compound Poisson processes

are other examples of Lévy processes. Also, the sum of a linear drift, a Brownian motion

and a compound Poisson process is a Lévy process called a jump-diffusion process.

3.1.1 Characteristic Function of a Lévy Process

It is possible to characterize all Lévy processes by looking at their characteristic function.

3.1.2 Lévy Khintchine Theorem

Theorem 3.2. Let (Xt)(t≥0) be a Lévy process on R with characteristic triplet (A, ν, γ),

by the Lévy-Khintchine Theorem, the characteristic function of Xt satisfies the following

relation:

φXt(u) = etψ(u), u ∈ Rd

where ψ(u) known as the characteristic exponent is given by:

ψ(u) = iγu− 1

2
Au2 +

∫
Rd

(eiux − 1− iux1|x|≤1)ν(dx)

where A is the diffusion component, γ ∈ Rd is the drift component and ν is a positive

Radon measure on Rd − {0} verifying:

∫
|x|≤1

|x|2ν(dx) <∞
∫
|x|≥1

ν(dx) <∞.

ν is called the Lévy measure of the distribution.

3.1.3 Infinitely divisible distributions and the Lévy-Khintchine formula

There is a strong interplay between Lévy processes and infinitely divisible distribution.
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Definition 3.3. [8] A probability distribution F on Rd is said to be infinitely divisible if for

any integer n ≥ 2, there exist n independent and identically distributed random variables

Y1, Y2, . . . , Yn such that Y1 + . . .+ Yn has distribution F .

Proposition 3.4. [8] Let (Xt)t≥0 be a Lévy process. Then for every t, Xt has an infinitely

divisible distribution. Conversely, if F is an infinitely divisible distribution then there exists

a Lévy process (Xt) such that the distribution of X1 is given by F.

Any infinitely divisible distribution is the distribution at time t = 1 of some Lévy

process. The characteristic function is represented as follows:

Theorem 3.5. [8] Let F be an infinitely divisible distribution on Rd. Its characteristic

function can be represented as:

φF (u) = eψ(u), u ∈ Rd

ψ(u) = iγu− 1

2
u2A+

∫
Rd

(eiux − 1− 1ux1|x|≤1)ν(dx)

Financial models with jumps fall into two categories. The first category is given by a

diffusion process, punctuated by jumps at random intervals. The second category consists

of models with infinite number of jumps in every interval and is called infinite activity model

[8].

3.1.4 Jump Diffusion Models

In jump-diffusion processes, jumps are considered rare events, and in any given finite interval

there are only a finite number of jumps. In the jump-diffusion models, jumps disturb

the standard diffusion structure at random times. Such a property can be described by

constructing the log-return of hedge fund indices as a Lévy process with a non-zero Gaussian

part and a jump component, which is assumed to be a compound Poisson process with

finitely many jumps in every time interval . A Lévy process of a jump-diffusion type is
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given by the expression:

Xt = µt+ σBt +

Nt∑
i=1

Yi

where µ is a drift rate, σ > 0 is a stock return volatility, (Bt)t≥0 is the standard Brownian

process, (Nt)t≥0 is the Poisson jump process and Yi are the distributions of the jumps

magnitudes. It is assumed that there is no dependency between the Brownian process, the

Poisson process and the random jumps sizes. To define the model completely, it is necessary

to determine the distribution of the jump sizes [8]. The jump diffusion models considered

in this thesis are Merton’s and Kou’s models.

3.1.5 Infinite Activity Model

A pure jump process is defined to be one of infinite activity if the number of jumps in

any finite interval of time is infinite. Some recent researchers have considered some pure

jump processes with infinite activity. Two examples of these infinite-activity pure jump

processes are the variance gamma model and the hyperbolic model. Given the ability of

infinite activity jump processes to capture both frequent small moves and rare large moves,

the question arises as to whether it is necessary to employ a diffusion component when

modeling asset returns. To answer this question, a continuous time model that allows for

both diffusions and for jumps of both finite and infinite activity was developed [7]. The

model is called the CGMY model, after the researchers who developed it.

3.2 Estimation Methods

The estimation methods used in this thesis are Maximum Likelihood Estimation, Empir-

ical Characteristic Function, Generalized Method of Moments, and Cumulant Matching

Method. The Empirical Characteristic Function (ECF) estimation method will be used to

model log-returns as independent and identically distributed (i.i.d) random variables using

Merton’s and Kou’s models. This method builds on the works done by Jiang and Knight

23



(2000) and Semenova and Rockinger (2005) to estimate the parameters of jump diffusion

models. Jiang and Knight used ECF method to estimate the parameters of affine jump

diffusion models with latent variables while Semenova and Rockinger used the method to

estimate the parameters of affine jump diffusion models with stochastic volatility. ECF

method for i.i.d random variables proposed by Heatcote (1977) is used in this thesis. In

this section, an overview of the different estimation methods is presented.

3.2.1 Maximum Likelihood Estimation

Maximum likelihood estimation begins with expressing the likelihood function of the sample

data; “the likelihood of a set of data is the probability of obtaining that particular set

of data, given the chosen probability distribution model. This expression contains the

unknown model parameters. The values of these parameters that maximize the sample

likelihood are known as the Maximum Likelihood Estimates” [31]. MLE method produces

better estimation of the parameters because of its desirable optimality and mathematical

properties. It can be used in a large variety of optimization situations which makes it

a consistent approach to parameter estimation problems. The choice of starting values

affect the estimation and optimality properties may not apply for small samples [31]. In

finance, alternatives to MLE approach has been used by practitioners. Despite its generality

and well known asymptotic properties, such as consistency, normality and efficiency, the

likelihood function may not be tractable in many situations due to its boundlessness over

the parametric space, instabilities or the existence of many local maxima [32]. Another

problem with the MLE approach is that some families of distribution do not have a closed

form density function and therefore the MLE method will be computationally expensive

when applied. Let S = [S0, S1 . . . Sn] denote the hedge fund index values at equally-spaced

times t = 0, 1, 2, . . . , n, the one period rate of return X∆t = lnS(t)− lnS(t− 1) is I.I.D. Let

X = (X1∆, X2∆, · · · , Xn∆) denote the observed return vector, where ∆ is the length of the
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interval of equally spaced observations, then the probability density function is:

f(X, θ) (3.1)

where θ = θ1, θ2, θ3, . . . , θk are k unknown parameters that need to be estimated.

Likelihood and Log-likelihood Functions

The likelihood function is given by the following product:

L(X|θ) =

n∏
i=1

f(Xi∆, θ)

In writing the right hand side as the product of the density function we have assumed that

the random sample variables are independent and identically distributed. The log likelihood

function is given by:

lnL(X|θ) =
n∑
i=1

ln f(Xi∆, θ) (3.2)

The maximum likelihood estimators of θ are obtained by maximizing the likelihood function.

Since the maxima of the likelihood function are the same with that of the log-likelihood as

the natural logarithm function is monotonic in θ, we can maximize log-likelihood which is

much simpler to work with than likelihood function.

Asymptotic Properties

Let the maximum likelihood estimator of the parameter vector θ be represented by θ̂ and

the true value by θ0.

Consistency

Under some regularity conditions on the form of the density, all maximum likelihood esti-

mators are consistent. Consistency means that having a sufficiently large number of obser-

vations n, it is possible to find the value of θ0 with arbitrary precision. In mathematical

terms, this means that the sequence of estimators, will converge in probability to θ0 as n
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goes to infinity. This is formally represented as

θ̂
P−→ θ0

Under slightly stronger conditions, the estimator converges almost surely to the true value

θ̂
a.s.−→ θ0

Asymptotic Normality

MLE is asymptotically normally distributed. As the sample size grows without limit,the dis-

tribution of a MLE converges to a normal distribution. Even for moderately large samples,

the distribution of MLE is approximately normal. Under suitable regularity conditions, it

holds that
√
n(θ̂ − θ0)

d−→ N(0, I(θ0)−1)

where I(θ0) is the Fisher information matrix is the negative of the expectation of the Hessian

which is the amount of information that an observable random variable X carries about an

unobservable parameter θ upon which the probability distribution of X depends. It is the

variance of the score and a measure of the best precision with which a parameter can be

estimated from statistical data. It may be written as:

I(θ0) = −E

([
∂

∂θ
log f(X; θ)

]2
)

and the variance-covariance matrix is the inverse of the Information matrix. The square

roots of the diagonal elements of I(θ0)−1 represent the standard errors.

Asymptotic Efficiency

MLE is asymptotically efficient. This means that as the sample size grows without limit,

the ratio of the variance of a MLE to the Cramer-Rao Lower Bound tends to 1. The
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Cramer-Rao Lower Bound provides a bound on the possible efficiency of an estimator. For

the maximum likelihood estimator θ̂, the asymptotic variance of θ̂ is therefore V = I(θ0)−1.

[31]

Finding the Variance-Covariance Matrix

The variance-covariance matrix is:

[I(θ)]−1 = (−E[H(θ)])−1

where H(θ) is the Hessian of the log-likelihood function, the matrix of second derivatives

with respect to our parameters. Thus, the first thing we do is find the Hessian, i.e. the

second derivative of the log-likelihood function with respect to the parameter vector θ. It

is given by the symmetric square matrix

∂2 lnL(θ)

∂θ∂θ′
=



∂ lnL(θ)
∂θ1∂θ1

∂ lnL(θ)
∂θ1∂θ2

· · · ∂ lnL(θ)
∂θ1∂θk

∂ lnL(θ)
∂θ2∂θ1

∂ lnL(θ)
∂θ2∂θ2

· · · ∂ lnL(θ)
∂θ2∂θk

...
...

...
...

∂ lnL(θ)
∂θk∂θ1

∂ lnL(θ)
∂θk∂θ2

· · · ∂ lnL(θ)
∂θk∂θk


The importance of Hessian in the Maximum Likelihood framework is two fold: to establish

that a maximum for the log-likelihood function has been achieved and to determine the

precision of the maximum likelihood estimator in numerical methods to compute the MLE

[16].

3.2.2 Generalized Method of Moments

Generalized Method of Moments (GMM) is a generalization of the classical Method of

Moments (MOM) estimation technique. MOM procedure equates population moments

to sample moments in order to estimate population parameters. Since the introduction of

GMM in 1982 by Lars Hansen, it has been widely applied to analyze economic and financial
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data. Even though MLE is a more efficient estimator than GMM, the dependence of MLE

on probability distribution can be a weakness. Some of these problems are sensitivity

of statistical properties to the distributional assumption and computational burden [13].

In the GMM framework, the probability density function is not specified and this makes

GMM a more computationally convenient method for parameter estimation. To use the

generalized method of moment to estimate parameters, the estimators are derived from so-

called moment conditions. A moment condition is a statement involving the data and the

parameters [38]. For a set of data Xt where t = 1 . . . n drawn from a probability distribution

P and we know that the parameter vector θ0 ∈ θ satisfies the following moment condition

E [g (Xt, θ0)] = 0

for some known function g. In GMM, the basic idea is to construct the function g to form

a valid moment condition and the sample data is used to form a sample analog of E [g (.)]

using the Law of Large Numbers [38]. A parameter θ̂ is chosen to solve

Mt(θ) =
1

n

n∑
t=1

g(Xt, θ) = 0

This allows us to consider the quadratic form

Qt(Θ) = Mt(θ)
′WtMt(θ) (3.3)

where Wt is a symmetric, positive semi-definite matrix which may depend on the data but

it is required to converge in probability to a positive definite matrix for the estimator to be

well defined. If Mt(θ) is a q x 1 matrix, W is a q x q matrix. The estimate θ̂ is obtained

by minimizing Qt(θ). The main problem for GMM is which moments to match and how

many moments to include in the estimation. Andersen and Sorensen (1996) showed that the

inclusion of an excessive number of moments results in more pronounced biases and larger
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root mean square error. Thus, the use of additional information can be harmful. We can

conveniently derive all the moments via the characteristic function by taking advantage of

the relationship between moments and cumulants. Denoting φx as a characteristic function

of a random variable X and assuming that E|X|n <∞ then φx has n continuous derivative

at u = 0, we obtain for all k = 1, · · · , n

mk = E[Xk] =
1

ik
∂kφx(0)

∂uk

and

Ck =
1

ik
∂k lnφx(0)

∂uk

where mk and ck are the kth moment and kth cumulant respectively.

3.2.3 Characteristic Function Estimation Method

Characteristic function (CF) estimation method is applied in situations when the likelihood

is of a considerably more complicated form than the characteristic function because “the

characteristic function (CF) is always bounded and is available in a simpler form than

the density in some important cases” [32]. Empirical characteristic function (ECF) retains

all information in the sample because there is a one to one correspondence between the

CF and cumulative distribution function (CDF) due to the fact that CF is the Fourier -

Stietjes transform of the CDF and this justifies the use of the ECF estimation method [40];

and therefore inference based on ECF can outperform that based on generalized method

of moments. Under some regularity conditions, the resulting estimators are shown to be

consistent and asymptotically normal. In Lévy models, the CF is know via Lévy Khintchine

theorem see Theorem 3.2.
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3.2.3.1 The independent and Identical Distribution (I.I.D) case

Suppose that the PDF of X is defined as in (3.1), and θ = (θ1, θ2, θ3, · · · , θk) are k unknown

parameters that need to be estimated and let X = (X1, X2, . . . , Xn) denote independent

and identically distributed random variables, then the CF is defined by

φ(u, θ) = E [exp (iuX)]

and the ECF is the sample counterpart of the CF defined by

φ̂(u) =
1

n

n∑
j=1

exp (iuXj)

where u is the transform variable, and i =
√
−1. By the Law of Large Numbers φ(u) is a

consistent estimator of φ̂(u). The general idea for ECF estimation is to minimize various

distance measures between the ECF and CF; The method finds

θ̂ = min
θ
‖φ̂(u)− φ(u, θ)‖

where ‖.‖ is usually a L∞ or Lr weighted norm. In this thesis the L2 norm will be used.

One can minimize

h(θ) =

∫ ∞
−∞
|φ̂(u)− φ(u, θ)|2g(u)du

with g(u) being a continuous weighting function. The choice of the weighting function g(u)

is often a concern. The optimal weight function obtained by Feuerverger and McDunnough

[10] using the Parseval identity is the inverse Fourier transform of the score function given

by

g(u) =
1

2π

∫
exp (−iux)

∂ log fθ(x)

∂θ
dx
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which depends on the density function. The resulting estimator attains maximum likelihood

efficiency. Since, in this thesis, the density function of Kou’s model is not known in closed

form, an arbitrary weight function that assigns more weight to an interval around the origin

and whose increments vanish outside some finite interval [15] will be used. Specifically, an

exponential weighting function exp (−bu2) will be used. Although the exponential weight

guarantees consistency and has the numerical advantage associated with quadratures, in

general, the resulting ECF estimator from the exponential weight is less efficient than the

Maximum Likelihood estimator [40]. In the exponential weighting function the choice of b

is very important in the efficiency of the estimators. In most of the literature b is set to be

1, resulting in w(t) = exp(−u2). For computational simplicity, b = 1 is used in this thesis,

however, b that minimizes the trace or determinant of the covariance matrix gives a more

efficient estimator [22].

3.2.3.2 Consistency and Asymptotic Normality

Consistency and asymptotic normality of the ECF estimators presented here follow from

Heathcote (1977). The assumption here is that h(θ) can be differentiated under the integral

sign.

∂h

∂θ
=

∫ ∞
−∞

d

dθ
|φ̂(u)− φ(u, θ)|2g(u)du (3.4)

The statistics θ̂ minimizes

h(θ) =

∫ ∞
−∞
|φ̂(u)− φ(u, θ)|2g(u)du (3.5)

=

∫ ∞
−∞

(
[Reφ̂(u)−Reφ(u, θ)]2 + [Imφ̂(u)− Imφ(u, θ)]2

)
g(u)du (3.6)
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Here, φ̂(u) = Reφ̂(u) + iImφ̂(u) and φ(u, θ) = Reφ(u, θ) + iImφ(u, θ). The estimating

equation becomes

∂h

∂θ
= −2

∫ (
φ̂(u)−Reφ(u, θ)]

∂Reφ(u, θ)

∂θi
+ [Imφ̂(u)− Imφ(u, θ)]

∂Imφ(u, θ)

∂θi

)
g(u)du

(3.7)

Since exp (iuXj) = cos (uXj) + i sin (uXj), this implies that

1

n

n∑
j=1

exp (iuXj) =
1

n

n∑
j=1

(cos (uXj) + i sin (uXj))

This means that Reφ̂(u) = 1
n

∑n
j=1 cos (uXj) and Imφ̂(u) = 1

n

∑n
j=1 sin (uXj)

Equation (3.7) can be written as,

∂h

∂θ
=
−2

n

∑∫ ∞
−∞

[cos (uXj −Reφ(u, θ))]
∂Reφ(u, θ)

∂θi
(3.8)

+ [sin (uXj)− Imφ(u, θ)]
∂Imφ(u, θ)

∂θi
g(u)du

The estimator θ̂ is the root of (3.8) for which h′′(Θ̂) > 0.

The ECF estimator is consistent, i.e

θ̂
a.s−→ θ

and asymptotically normally distributed,

√
n(θ̂ − θ) d−→ N(0, B−1(θ)A(θ)B−1(θ)) n→∞ (3.9)
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where d in equation (3.9) stands for convergence in distribution, A(θ) is the covariance

matrix of the random variables

K(i)(θ) =

∫ ∞
−∞

cos (uXj)−Reφ(u, θ)]
∂Reφ(u, θ)

∂θi

+ [sin (uXj)− Imφ(u, θ)]
∂Imφ(u, θ)

∂θi
g(u)du

for i = 1, · · · , k, given by

A(θ) = E

 1

n

n∑
j=1

n∑
h=1

Kj(θi)Kh(θi)


Since X is a vector of i. i.d observations, the above expression is given by:

Ai,j(θ) =
1

n

∫ ∫
∂Rec(u; θ)

∂θi

∂Rec(s; θ)

∂θj
cov(cos(u,X), cos(s,X))

+ 2× ∂Rec(u; θ)

∂θi

∂Imc(s; θ)

∂θj
cov(cos(u,X), sin(s,X))

+
∂Imc(u; θ)

∂θi

∂Imc(s; θ)

∂θj
cov(sin(u,X), sin(s,X)) exp(−u2) exp(−s2)duds

where, from elementary trigonometric identities, for real numbers u, s

cov(cos(u,X), cos(s,X)) =
1

2
[Rec(u− s; θ) +Rec(u+ s; θ)− 2Rec(u; θ)Rec(s; θ)]

cov(cos(u,X), sin(s,X)) =
1

2
[Imc(u+ s; θ)− Imc(u− s; θ)− 2Rec(u; θ)Imc(s; θ)]

cov(sin(u,X), sin(s,X)) =
1

2
[Rec(u− s; θ)−Rec(u+ s; θ)− 2Imc(u; θ)Imc(s; θ)]

θi and θj correspond to the ith or jth element in the vector θ = (θ1, · · · , θk) and B(θ) is the

k x k symmetric matrix whose (i, j)th entry is

Bi,j(θ) =

∫ [
∂Rec(u, θ)

∂θi

∂Rec(u, θ)

∂θj
+
∂Imc(u, θ)

∂θi

∂Imc(u, θ)

∂θj

]
exp(−u2)du
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The method used for approximating the integrals above is adaptive Gauss-Kronrod

quadrature using MATLAB ’quadgk’ built-in function which attempts to approximate the

integral of a scalar-valued function from a to b using high-order global adaptive quadrature.

The limits a and b can be −∞ or ∞. A function handle of user-defined ’quadgk’ is used as

a method in MATLAB ’dblquad’ to approximate the double integrals.

3.2.3.3 Non-I.I.D Stationary Case

The estimation procedure is similar to the i.i.d. case, i.e., to match some distance between

the Empirical Characteristic Function and the theoretical Characteristic Function, however,

Estimation of a strictly stationary stochastic process using the ECF is not exactly the same

as that of an iid sequence, because the dependence must be taken into account [40]. The

ECF method for i.i.d case is well understood, but the ECF method for non-i.i.d case has not

received much attention and consequently there is great scope for research. In the non-i.i.d

case, using marginal ECF may result in a loss in efficiency. Approaches based on joint ECF

and conditional ECF have been used in literature [40].

Joint Empirical Characteristic Function Method

One way of describing a stochastic process {Xt, t ∈ T} is to specify the joint probability

law of n random variables Xt1 · · ·Xtn for all integers n and n points t1, t2, · · · tn in T [33].

The joint distribution function or the joint characteristic function may be used to specify

the joint probability law of the random variables and given all real numbers u1, u2, · · · , un

the joint characteristic function is given by

φXt1 ,Xt2 ,···Xtn (u1, u2, · · · , un) = E[exp i(u1Xt1 + · · ·+ unXtn)]

The approach via joint CF described here is culled from Knight and Yu (2002). It in-

volves moving blocks of data. Let {Xj}∞j=−∞ be a univariate, stationary time series whose
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distribution depends upon a vector of unknown parameters θ, to estimate θ from a finite

realization,X1, X2 · · ·XT . Denote the moving blocks forX1, X2 · · ·XT as Zj = (Xj , · · ·Xj+p),

j = 1 . . . T − p. Thus each block has p+ 1 observations and p overlapping periods with its

adjacent blocks. The CF of each block is defined as

c(u; θ) = E[exp (iu′Zj)]

where u = (u1, u2 · · ·up+1) and hence the transform variable is of p + 1 dimensions. The

joint ECF is defined as

cn(u) =
1

n

n∑
i=1

exp (iu′Zj)

where n = T − p.

To estimate the parameter via the joint ECF one can minimize a distance measure between

the joint CF and joint ECF,

∫
. . .

∫
|c(u; θ)− cn(u)|2g(u)du (3.10)

or ∫
. . .

∫
|c(u; θ)− cn(u)|2dG(u) (3.11)

or solve the following equation

∫
. . .

∫
|c(u; θ)− cn(u)|2w(u)du = 0 (3.12)

where g(u), G(u) and w(u) are weighting functions. Equations (3.10), (3.11) and (3.12)

are equivalent under suitable regularity conditions [40]. Since the transform variable u is a

vector, the moment conditions include both marginal and joint moments. The procedure is

to match the joint CF and joint ECF continuously. In this continuous ECF procedure the

weighting function is a continuous function and hence the transform variable is integrated
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out [40]. The choice of weight function is very important in ECF method, to obtain an

optimal weight, Parseval theorem, which gives the weight in terms of θ is used. The method

with optimal weight is referred to GLS-ECF as in Yu (2004), and the weight is specified as

follows

w(u; θ) =

∫
. . .

∫
exp (−iu′zj)

∂ log f(xj+p|xj , . . . , xj+p−1)

∂θ
dxj . . . dxj+p−1 (3.13)

where f(xj+p|xj , . . . , xj+p−1) is the conditional score function. This weight is optimal in the

sense that the asymptotic variance of the GLS-ECF estimator can be made arbitrarily close

to the Cramér-Rao lower bound when p is large enough. To use the GLS-CECF method,

however, the conditional score function must have an analytical expression. When this is

not the case, this weight function has to be approximated. Exponential weighting function,

which in general does not result in the efficient estimator because the exponential weight is

not optimal, can be used and this method is referred to as WLS-ECF. Using het WLS-ECF

method has two major advantages. First, it puts more weight on the interval around the

origin, consistent with the recognition that the CF contains the most information around

the origin. The second reason is for computational convenience. With an exponential

weight, the integral in (3.10) can be numerically calculated by Hermitian quadrature or

Monte Carlo integration [22]. According to Knight and Yu, the choice of p can have an

impact on the efficiency of the ECF estimator, as the moving blocks with a different p may

contain different amounts of information in the sample. Ideally an optimal p is selected

to minimize the mean square error (MSE) of the ECF estimator [40]. It was pointed out

by Knight and Yu (2002) that the choice of p is related to the dimension of the minimal

sufficient statistics. In particular, the overlapping moving blocks with block size of 2 form

a set of sufficient statistics for a Markov process of order 1, and hence p = 1 is enough for

Markov processes and it is reasonable to believe that when a non-Markov process can be

well approximated by a Markov process of order l, p = l should work well [40]. For more
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detail on the ECF method for non-i.i.d observations, see [22].

3.3 Monte Carlo Simulation

Monte Carlo simulation is a method for iteratively evaluating a deterministic model using

sets of random numbers as inputs. This method is often used when the model is complex,

non-linear, or involves more than just a couple uncertain parameters. Monte Carlo methods

are based on analogy between probability and volume and simulation can typically involve

over 10,000 evaluations of the model [12].

3.3.1 Principle of the Monte Carlo Simulations

The idea is as follows, suppose we are considering a random variable X on a probability

space, which records an outcome of an experiment. The repetitions of the experiments can

be modelled by introducing a sequence of random variables X1, . . . , Xn, each of which has

the same probability information as X. Assuming that X1, . . . , Xn are independent, the

sequence can be regarded as a model for repeated and independent runs for the experiment

[4]. The Strong Law of Large Numbers shows that with probability one, we can deduce the

common expected values of the random variables.

The Strong Law of Large Numbers

Theorem 3.6. Let X1, · · · , Xn be a sequence of independent, identically distributed, inte-

grable random variables defined on the same probability space, such that for i = 1, · · · , n,

let x = E[Xi], then

P
(

lim
n→∞

X1 +X2 + · · ·+Xn

n
= x

)
= 1

The Strong Law of Large Numbers says that for almost every sample point ω ∈ Ω,

X1(ω) +X2(ω) + . . .+Xn(ω)

n
→ x as n→∞
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Therefore, if X1, · · · , Xn is a sequence of random variables each of which has the same

probability information as X and E[X] <∞, then

1

n

n∑
i=1

Xi
a.s−→ E(X)

Monte Carlo simulation has an advantage of being flexible compared to other numerical

methods. Moreover, it serves as the only method of simulation in higher dimensions.

3.3.2 Monte Carlo Simulation of Lévy Processes

The simulation of Lévy processes depends on the type of process you want to simulate.

In this thesis, the simulation of jump diffusion models ( Kou’s and Merton’s models) are

outlined in the next chapter.
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Chapter 4

THE MODELS FOR HEDGE FUND

In this chapter the discussion is concentrated on Merton and Kou models because they are

deemed capable of describing the observed behaviour of hedge fund log-returns data.

4.1 Merton’s Model

Let St denote the hedge fund index value at time t, in Merton’s model, changes in index

value consists of continuous diffusion component that is modeled by a Brownian motion with

drift process and discontinuous (jump) component that is modeled by a compound Poisson

process. The jumps follow a Gaussian distribution and are assumed to occur independently

and to be identically distributed [28]. Suppose that, in a small time interval dt the index

value jumps from St to ytSt, the percentage change in the index value caused by the jump

is:

dSt
St

=
ytSt − St

St
= yt − 1

where yt is called the absolute index value jump size which Merton assumes is a non-negative

random variables drawn from log-normal distribution. Merton Jump Diffusion dynamics

of index values which incorporates the above properties takes the stochastic differential

equation (SDE) of the form:

dSt = (µ− λk)Stdt+ σStdBt + StdZt (4.1)

where

µ : Instantaneous Expected Return on the Asset
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σ : Instantaneous Volatility

Bt : Standard Brownian Motion process

Zt :
∑Nt

j=1 (yj − 1) or dZt = (yt − 1)dNt

Nt : A Poisson process with intensity λ

k : E[yt − 1], where (yt − 1) is the random variable percentage change in index value if the

Poisson event occurs. The standard assumption is that Nt , yt and Bt are independent

Ito’s formula for a jump- diffusion process given in Cont and Tankov (2004) is as follows:

Proposition 4.1. Let Xt be a diffusion process with jumps defined as a sum of drift term,

a Brownian stochastic integral and a compound Poisson process

Xt = X0 +

∫ t

0
asds+

∫ t

0
bsdBs +

Nt∑
i=1

∆Xi (4.2)

where at corresponds to the drift term and bt corresponds to the volatility term. Then

df(Xt, t) =
∂f(Xt, t)

∂t
dt+ at

∂f(Xt, t)

∂x
dt

+
b2t
2

∂2f(Xt, t)

∂x2
dt+ bt

∂f(Xt, t)

∂x
dBt

+ [f(Xt− + ∆Xt)− f(Xt−)]

Apply Itô’s integral formula above on the interval [t, t+∆t] on the process f(St, t) = lnSt
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to get:

d lnSt = (µ− λk)St
1

St
dt− σ2S2

t

2

1

S2
t

dt+ σSt
1

St
dBt + [ln(St− + (yt − 1)St−)− lnSt−]

= (µ− λk)St
1

St
dt− σ2S2

t

2

1

S2
t

dt+ σSt
1

St
dBt + [lnSt−(1 + yt − 1)− lnSt−]

= (µ− λk)St
1

St
dt− σ2S2

t

2

1

S2
t

dt+ σSt
1

St
dBt + [ln ytSt− − lnSt−]

= (µ− λk)dt− σ2

2
dt+ σdBt + [ln yt + lnSt− − lnSt−]

= (µ− σ2

2
− λk)dt+ σdBt + ln yt

Which gives the following equations when integrated on the interval [t, t+ ∆t]

lnSt+∆t − lnSt = (µ− σ2

2
− λk)(∆t) + σB∆t +

Nt∑
i=1

ln yi

lnSt+∆t = lnSt + (µ− σ2

2
− λk)(∆t) + σε

√
∆t+

Nt∑
i=1

ln yi

exp (lnSt+∆t) = exp (lnSt + (µ− σ2

2
− λk)(∆t) + σε

√
∆t+

Nt∑
i=1

ln yi)

St+∆t = St exp ((µ− σ2

2
− λk)(∆t) + σε

√
∆t+

Nt∑
i=1

Yi),

where ε is the standard normal distribution, ln yt ≡ Yt, and ln yt is i.i.d Normal(µj , σj).

This means that the index value is modelled as an exponential Lévy model of the form:

St+∆t = Ste
X∆t ,

where X∆t is a Lévy process which is categorized as a Brownian motion with drift (con-

tinuous part) plus a compound Poisson process (jump part). In other words, log-return
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ln(
St+∆t

St
) = X∆t is modeled as a Lévy process such that:

ln(
St+∆t

St
) = X∆t = (µ− σ2

2
− λk)(∆t) + σε

√
∆t+

Nt∑
i=1

Yi

4.1.1 The Characteristic Function and Moments of Merton’s Model

Using Lévy Kintchine theorem, the characteristic function is found to be

φx∆t(u) = E
[
eiuX∆t

]
(4.3)

= exp (∆t(iu(µ− σ2

2
− λk)− σ2u2

2
+ λ{exp (iµju−

σ2
ju

2

2
)− 1})) (4.4)

The log-characteristic function ψ (u) = ln (φ (u)) is used in generating the cumulant of the

function [8]. The nth cumulant is defined by

cn =
1

in
∂nψ (0)

∂un
(4.5)

Applying (4.5) to the log-characteristic function gives the following cumulants for Merton’s

model

c1 = ∆t

(
µ− 1

2
σ2 + λk + λµj

)
c2 = ∆t(σ2 + λσ2

j + λ µ2
j )

c3 = λ∆tµj
(
3σ2

j + µ2
j

)
c4 = λ∆t

(
3σ4

j + 6σ2
jµ

2
j + µ4

j

)
c5 = λ∆tµj

(
15σ4

j + 10σ2
jµ

2
j + µ4

j

)
c6 = λ∆t(15σ6

j + 45σ4
jµ

2
j + 15σ2

jµ
4
j + µ6

j )
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See Appendix for MAPLE codes used for deriving these equations. The moments of the

log-returns are computed using the cumulants. The first and second cummulants equals

the mean and variance of the return respectively. The two higher order moments that

are of particular interest are the skewness and the kurtosis. The skewness S measures the

asymmetry of the distribution and is given by:

S =
c3

c
3
2
2

=
λ∆t

(
3σ2

j + µ2
j

)
(∆t(σ2 + λσ2

j + λ µ2
j ))

3
2

.

And the excess kurtosis, K, which measures the fatness of the tails of the disribution is:

K =
c4

c2
2

=
λ∆t

(
3σ4

j + 6σ2
jµ

2
j + µ4

j

)
(∆t(σ2 + λσ2

j + λ µ2
j ))

2
.

4.1.2 Transition Density

The transition density between any two instants t and t+∆t, with ∆t > 0 can be computed

from the above characteristic function through the inverse Fourier transform. It is the sum of

the conditional probability density weighted by the probability of the conditioning variable

i.e. the number of jumps. It is a quickly converging series which satisfies:

f∆t(x) =

∞∑
n=0

e−λ∆t(λ∆t)n

n!
√

2π(∆tσ2 + nσ2
j )

exp

{
−(x−∆t(µ− σ2

2 − λk)− nµj)2

2(∆tσ2 + nσ2
j )

}
(4.6)

4.1.3 Simulation of Merton’s Model

The method used in this paper is simulation at fixed set of dates 0 = t0 < t1 < · · · < tn

without explicitly distinguishing the effects of the jump and diffusion terms, as specified by

Glasserman (2004) [12]. If we set X(t) = logS(t), the algorithm for the steps in a sequential

Monte Carlo procedure for Merton’s model is as follows:

1. Generate Z ∼ N (0, 1).
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2. Generate N ∼ P(λ∆t)

3. If N 6= 0 Generate log Y1, . . . , log YN and set Jump = log Y1 + . . . + log YN else if

N = 0, set Jump = 0. Since Yj has log-normal distribution LN (µj , σ
2
j ) then log Yj ∼

N (µj , σ
2
j ) and log Y1 + . . . + log YN ∼ N (Nµj , Nσ

2
j ) = Nµj + σj

√
NN (0, 1). So,

generate Z2 ∼ N (0, 1) and set Jump = Nµj + σj
√
NZ2.

4. Set

X(ti+1) = X(ti) + (µ− 0.5σ2 − λk)∆t+ σ
√

∆Z + Jump

X∆t = (µ− 0.5σ2 − λk)∆t+ σ
√

∆Z + Jump

A sample path for simulated Merton’s Model is shown in figure 4.1
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Figure 4.1: Simulated Merton’s Model path, parameters µ = 0, σ = 0.2, µj = 0, σj = 0.2,
and λ = 3.45.

4.2 Kou’s Model

The double exponential jump-diffusion (DEJD) model called Kou model, was introduced

by Kou in 1999 [23]. As opposed to Merton’s, it generates a highly skewed and leptokurtic

distribution and is capable of matching key features of hedge fund index returns. Like

Merton’s model, Kou model is an improvement of Black-Scholes model with respect to

the modelling of empirical phenomena, while still having a simple analytical approach.

Numerous variations of the jump diffusion model has been proposed, and the DEJD model

has gained wide acceptance. There are two interesting properties of the double exponential

distribution that are crucial for the model-the leptokurtic feature inherited from the jump

size distribution and the memoryless property inherited from the exponential distribution

[25]. These special properties explain why the closed-form solutions(or approximations)

for various option pricing problems, including barrier, lookback, and perpetual American

options, are feasible under the double exponential jump-diffusion model. In this paper
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Kou model will be used to model hedge fund indices as an alternative to Merton’s and

Black-Scholes models.

4.2.1 Kou’s Model Specification

Let St be the hedge fund index value at time t and assume that under the probability

measure P, the index value process follows:

dSt = µSt−dt+ σSt−t+ St−d

(
Nt∑
i=1

(Yi − 1)

)
(4.7)

where µ and σ are the drift and volatility terms, Bt is a standard Brownian process, St−

denotes the value of the process just before a potential jump, Nt is a Poisson process with

intensity parameter λ, and {Yi} is a sequence of independent identically distributed non-

negative random variables. In the model, all sources of randomnessNt, Bt and Υ = log Y are

assumed to be independent. It is assumed that µ and σ are constants, while the Brownian

process and the jumps are one-dimensional [24]. Solving the stochastic differential equation

using Ito’s formula as in (4.7) gives the dynamics of the index return:

St+∆t = St exp

{
µ− (

1

2
σ2)∆t+ σB∆t

}N∆t∏
i=1

Yi (4.8)

Υ = log(Y ) has an asymmetric double exponential distribution with the density:

fΥ(y) = p.η1e
−η1y1{y≥0} + q.η2e

η2y1{y<0} η1 > 1, η2 > 0

where p, q ≥ 0, p + q = 1 represent the probabilities of upward and downward jumps,

respectively. The requirement η1 > 1 is needed to ensure that E(Y ) < ∞ and E(St) < ∞.

It essentially means that the average upward jump cannot exceed 100%, which is quite

reasonable [25]. The means of the two exponential distributions have parameters 1
η1

and
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1
η2

, respectively.

4.2.2 The Characteristic Function and Moments of Kou’s Model

The double exponential jump diffusion process is a special case of Lévy processes with

two-sided jumps, whose characteristic exponent admits the (unique) representation:

φx∆t(u) = E
[
eiuX∆t

]
(4.9)

= exp (∆t(iuµ− σ2u2

2
+ λ{ pη1

η1 − iu
+

qη2

η2 + iu
− 1})) (4.10)

Applying the formula given in (4.5) to log-characteristic function gives the following popu-

lation cumulants for Kou model

c1 = ∆t

(
µ− 1

2
σ2 + λ (

p

η1
− 1− p

η2
)

)
c2 = ∆t σ2 + 2 ∆t λ (

p

η1
2

+
1− p
η2

2
)

c3 = 6 ∆t λ (
p

η1
3
− 1− p

η2
3

)

c4 = 24 ∆t λ (
p

η1
4

+
1− p
η2

4
)

c5 = 120 ∆t λ (
p

η1
5
− 1− p

η2
5

)

c6 = 720 ∆t λ (
p

η1
6

+
1− p
η2

6
)

See Appendix for derivation of Characteristic function and MAPLE code used for deriving

the cumulants.

4.2.3 Simulation of Kou’s Model

The method used is the same as the method used in simulating Merton’s Model i.e. sim-

ulation at fixed set of dates 0 = t0 < t1 < · · · < tn without explicitly distinguishing the

effects of the jump and diffusion terms, as specified by Glasserman (2004) [12]. If we set
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X(t) = logS(t), the algorithm for the steps in a sequential Monte Carlo procedure for Kou’s

model is as follows:

1. Generate Z ∼ N (0, 1).

2. Generate N ∼ P(λ∆t)

3. If N 6= 0 Generate log Y1, . . . , log YN and set Jump = log Y1 + . . . + log YN else if

N = 0, set Jump = 0. Since an exponential distribution is a gamma distribution with

shape parameter 1 and scale parameter β, then log Y1 + . . .+ log YN has the gamma

distribution with shape parameter N and scale parameter β and the sign of log Yj is

positive with probability p and negative with probability 1 − p. Conditional on the

Poisson random variable N taking the value n , the number of log Yj with positive

sign has binomial distribution with parameters n and p, so

3a. Generate B ∼ Binomial(N,p)

3b. Generate G1 ∼ Gamma(B,β) and G2 ∼ Gamma((N-B),β) and set Jump = G1 −G2

4. Set

X(ti+1) = X(ti) + (µ− 0.5σ2)∆t+ σ
√

∆Z + Jump

X∆t = (µ− 0.5σ2)∆t+ σ
√

∆Z + Jump

In 3b, interpret a gamma random variable with shape parameter zero as the constant 0 in

case B = 0 or B = N . Sample path for simulated Kou’s model is shown in figure 4.2
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Figure 4.2: Simulated Kou’s Model path, parameters µ = 0, σ = 0.2, η1 = 0.2, η2 = 0.3, p =
0.5, and λ = 4.25.
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Chapter 5

NUMERICAL IMPLEMENTATION AND PARAMETER ESTIMATION

UNDER MERTON AND KOU MODELS

In this chapter, Lévy models are applied to hedge fund data and the parameters are esti-

mated using the estimation methods described in section 3.2. The density of Kou model is

not known in closed form, inverse Fourier transform method is used to get the density.

5.1 Method of Moments

The method of moment is used to estimate the parameters of the models and theses param-

eters are used as the starting point in the subsequent estimation methods. The procedure

used in this thesis is a variant of the method of moments and is called “cumulant match-

ing”. The Cumulant Matching method is based on the relationship between the population

cumulant and the distribution parameters. Population cumulants are not known,the sam-

ple cumulants are used to estimate the parameters. Parameter estimation by cumulant

matching is known to yield consistent estimators but estimators are not always efficient

Press(1967). The cumulants are matched with the sample central moments because of the

relationship that exists between them. The log-characteristic function ψ (u) = ln (φ (u)) is

used in generating the population cumulant ck of the function [8]. Using the relationship

between the central moment mk and ck, the first six sample cumulants of the models can
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be computed from the sample moments in the following way [21]:

c̄1 = m′1

c̄2 = m2

c̄3 = m3

c̄4 = m4 − 3m2
2

c̄5 = m5 − 10m3m2

c̄6 = m6 − 15m4m2 − 10m2
3 + 30m3

2

where m′1 is the mean and m2 the second central moment is the variance of the sample.

In this thesis, the approach used by Beckers (1981) is used to estimate the parameters of the

Merton model using cumulant matching method. This estimation method has been proven

to generate sensible parameter values for stocks with high sample kurtosis. The procedure

involves setting the mean logarithmic jump size equal to zero, i.e µj = 0, the odd cumulants

except the first one all vanish giving the following estimates of the Parameters:

µj = 0, µ = 1
∆t(c1 + 1

2(c2 −
5c24
3c6

)− 25c34k

3c26
), and σj = c6

5c4
, λ =

25c34
∆t3c26

, σ = 1
∆t(c2 −

5c24
3c6

).

For Kou’s model, equating the population cumulants of the models to the sample cumulants

gives the parameter estimates for the models. As stated above the parameters estimated

using this method are consistent but not always efficient but provide a good initial parame-

ter for GMM and ECF algorithms. However, the cumulant estimates may not exist or may

have the wrong sign. In this thesis, the method proposed involves setting the population

cumulants ck = c̄k the sample cumulants, k = 1, · · · , 6. Solving these set of equations with-

out constraints might lead to getting values outside the range that is desired, for instance

one could get a negative value for σ or value greater than 1 or less than 0 for p. So, we set

fk = ck − c̄k (5.1)
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and Sum of Squared Error, SSE = f2
1 + f2

2 + . . .+ f2
6 ; MATLAB constrained optimization

function fmincon is used to minimize SSE subject to the constraints that σ > 0, η1 > 1, η2 >

0 and 0 ≤ p ≤ 1. SSE is minimum when ck ≈ c̄k. Specifically Kou model is done this way

f1 = ∆t

(
µ− 1

2
σ2 + λ (

p

η1
− 1− p

η2
)

)
−m′1

f2 = ∆t σ2 + 2 ∆t λ (
p

η1
2

+
1− p
η2

2
)−m2

f3 = 6 ∆t λ (
p

η1
3
− 1− p

η2
3

)−m3

f4 = 24 ∆t λ (
p

η1
4

+
1− p
η2

4
)−

(
m4 − 3m2

2

)
f5 = 120 ∆t λ (

p

η1
5
− 1− p

η2
5

)− (m5 − 10m3m2)

f6 = 720 ∆t λ (
p

η1
6

+
1− p
η2

6
)−

(
m6 − 15m4m2 − 10m2

3 + 30m3
2

)
This method can also be applied to Merton model. The parameter estimates are shown in

the tables in the appendix.

5.2 Maximum Likelihood Estimation

The transition density f∆t(X) Merton model is shown in equation (4.6) and using MAT-

LAB ’fmincon’, and parameter estimates from CMM as initial parameter, negative of the

log-likelihood specified in (3.2) can be minimized which is equivalent to maximizing the

log-likelihood function and the parameters that maximize the log-likelihood function also

maximize the likelihood function and are the MLE estimates for Merton model. For kou

model, the density is not known in closed form, therefore the density is approximated using

inverse Fourier transform of the characteristic function shown in (4.9) using this formula:

fX∆t
(X) =

1

2π

∫ ∞
−∞

(
e−iuXφX∆t

(u)
)
du =

1

π

∫ ∞
0

(
e−iuXφX∆t

(u)
)
du (5.2)
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The integral is evaluated using MATLAB built-in function ’quadgk’. In this thesis MATLAB

built-in function ’mle’ is used to estimate the parameters for both Merton and Kou models

and ’mlecov’ is used to get the covariance matrix using the parameter estimates and square

roots of the diagonal elements of the covariance matrix give the standard error of the

estimation. Parameter estimates for the models are also shown in the tables in appendix C

and the 3-D plot of λ, σ and Log-likelihood are shown in figures 5.1 ,5.2, 5.3, and 5.4 for the

pre-crisis period and for the four styles analysed. The figures show that the parameters that

maximize the likelihood functions are consistent with the parameter estimates i.e. the value

for the likelihood function is highest where σ and λ are equal to the parameter estimates

in table D.1. For instance, in figure 5.1, the maximum value for the log-likelihood is 5289

and the corresponding values for λ and σ are 0.4586 and 0.00127 which correspond to the

parameter estimates for pre-crisis global hedge fund data. The figures for the other periods

show similar information and are not included in this thesis.
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Figure 5.1: Mesh Plot of σ, λ and Log-likelihood for G. Hedge
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Figure 5.2: Mesh Plot of σ, λ and Log-likelihood for E. Driven

0 0.002 0.004 0.006 0.008 0.01
0

0.1
0.2

3800

4000

4200

4400

4600

4800

5000

5200

5400

σ

X: 0.001818
Y: 0.1005
Z: 5228

λ

L
o

g
−

li
k
e

li
h

o
o

d

Figure 5.3: Mesh Plot of σ, λ and Log-likelihood for C. Arbitrage
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Figure 5.4: Mesh Plot of σ, λ and Log-likelihood for E. Weighted
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5.3 Generalised Method of Moments (GMM)

To use this method, we need to specify the moment conditions. The number of moment

conditions should be greater than the number of parameters to be estimated. Since we are

estimating five parameter, we will use at least six moment conditions in the GMM method.

Usually, the moments are generated using the moment generating function; however for our

models, it is easier to get the cumulants than the moments and therefore we specify our

moments in terms of cumulants [21] using the following recursive formula:

µn = cn +

n−1∑
m=1

(
n− 1

m− 1

)
cmµn−m

which gives the nth moments µn as an nth degree polynomial in the first n cumulants:

µ1 = c1

µ2 = c2 + c2
1

µ3 = c3 + 3c2c1 + c3
1

µ4 = c4 + 4c3c1 + 3c2
2 + 6c2c

2
1 + c4

1

µ5 = c5 + 5c4c1 + 10c3c2 + 10c3c
2
1 + 15c2

2c1 + 10c2c1
3 + c5

1

µ6 = c6 + 6c5c1 + 15c4c2 + 15c4c
2
1 + 10c2

3 + 60c3c2c1 + 20c3c
3
1 + 15c3

2 + 45c2
2c

2
1 + 15c2c

4
1 + c6

1

µ7 = c7 + 35c4c
3
1 + 35c3c

4
1 + 21c2c

5
1 + 21c5c

2
1 + 105c3

1c
2
2 + 105c1c

3
2 + 70c1c

2
3 + 21c2c5 + 105c2

2c3

+ 35c3c4 + 7c6c1 + 105c1c2c4 + 210c2
1c2c3 + c7

1.

SAS program is used to get the GMM estimates using these moment conditions (see ap-

pendix B for the algorithm).
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5.4 Characteristic Function Estimation Method

For Merton’s Model, the characteristic function is φ(θ, u) is as defined in equation (4.3).

Real part of the Characteristic function is

Re = exp
(

∆t
(
−0.5σ2u2 + λ

(
e−0.5σj

2u2
cos (µj u)− 1

)))
× sin

(
∆t
(
uµ− 0.5uσ2 − uλ k + λ e−0.5σj

2u2
sin (µj u)

))

The Imaginary Part is given by

Im = exp
(

∆t
(
−0.5σ2u2 + λ

(
e−0.5σj

2u2
cos (µj u)− 1

)))
× sin

(
∆t
(
uµ− 0.5uσ2 − uλ k + λ e−0.5σj

2u2
sin (µj u)

))

For Kou model, the characteristic function is φ(θ, u) is as defined in equation (4.9). The

real part of the characteristic function is :

Re = exp

(
∆t

(
−1/2σ2u2 + λ

(
pη1

2

η1
2 + u2

+
qη2

2

η2 2 + u2
− 1

)))
× cos

(
∆t

(
uµ− 1/2uσ2 + λ

(
pη1 u

η1
2 + u2

− qη2 u

η2 2 + u2

)))

The Imaginary part is:

Im = exp

(
∆t

(
−1/2σ2u2 + λ

(
pη1

2

η1
2 + u2

+
qη2

2

η2 2 + u2
− 1

)))
× sin

(
∆t

(
uµ− 1/2uσ2 + λ

(
pη1 u

η1
2 + u2

− qη2 u

η2 2 + u2

)))

For both models minimize equation (3.5) using parameters from GMM as initial param-

eters.
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5.5 Discussion of Results from Parameter Estimation

From the parameter estimates, shown in Tables D.1, D.2, D.3, D.4, D.5 and D.6, the values

for the parameters depend on the style and the estimation method used. The mean µ and

standard deviation σ did not differ so much across styles. In the pre-crisis period, the jump

intensity of Event driven style is the largest for both ECF and MLE methods across styles.

This trend changed in the crisis period; convertible arbitrage style has the highest jump

intensity in this period. This change is probably due to effect of the market situation on the

strategy employed by different styles. Also, the mean of the jump process µj is significantly

lower for the convertible arbitrage style. For MLE estimates based on Merton model in

Tables D.1, D.2 and D.3, the standard deviation of the jump distribution are higher for

all styles in the crisis period than in other periods. For estimates based on Kou model in

Tables D.4, D.5 and D.6, the p values are higher in the pre-crisis and post-crisis periods

than in the crisis period. For Kou Model, estimation based on ECF saves time because of

Fourier inversion involved in using the MLE estimation method, however, for Merton model

the MLE method is better than the ECF method because the distribution of Merton model

is known in closed form and less time is used in the parameter estimation.

5.6 Goodness of Fit

In order to assess the goodness of fit of the Merton and Kou distributions to the Hedge

fund data, we use the quantile-quantile (Q-Q)-plot. A Q-Q plot is a plot of the quantiles

of two distributions against each other, or a plot based on estimates of the quantiles. The

pattern of points in the plot is used to compare the two distributions. If the plotted points

lie roughly on the line y = x, then the compared distribution fits the data well. In order

to show the goodness of fit using Q-Q plot, the Parameters from MLE from pre-crisis log-

returns are used to simulate the distributions of the models and then the quantiles of the

distributions are compared to the quantiles of historical log-return data sets. Q-Q plots for
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our models are shown in figures 5.5, 5.6, 5.7 and 5.8. The styles from the other periods, show

similar fit but are not shown. For the model based on the normal distribution, the deviation

from the straight line is clearly seen (right panel) for all the styles. The Q-Q plots of the

simulated returns against the historical returns show that both Merton and Kou models do

significantly better job when compared to the models based on normal distribution. The

quantiles of the simulated distributions are much more aligned with the quantiles of the

historical return distribution than was the case for the plain normal distribution.
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Figure 5.5: The QQ plot of Kou fitted Global hedge and Event driven strategy vs Data
(left panel) and QQ plot of data vs normal density (right panel) For Pre-crisis Data
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Figure 5.6: The QQ plot of Kou fitted Convertible Arbitrage and Equally weighted strategy
vs Data (left panel) and QQ plot of data vs normal density (right panel) For Pre-crisis Data
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Figure 5.7: The QQ plot of Merton fitted Global hedge and Event driven strategy vs Data
(left panel) and QQ plot of data vs normal density (right panel) For Pre-crisis Data
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Figure 5.8: The QQ plot of Merton fitted Convertible Arbitrage and Equally weighted
strategy vs Data (left panel) and QQ plot of data vs normal density (right panel) For
Pre-crisis Data
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One sample and Two sample Kolmogorov-Smirnov (KS) statistic goodness of fit tests

are also used to test the null hypothesis that the log-returns are normally distributed and

to test whether the empirical distribution Femp and the fitted distribution Ffit are sam-

pled from the same distribution respectively. MATLAB one-sample Kolmogorov-Smirnov

test, ‘[h,p,ksstat,cv] = kstest(x)’, is used to compare the empirical data x to the standard

normal distribution. The null hypothesis is that x has standard normal distribution. The

alternative hypothesis is that x does not have that distribution. The result h is 1 if the test

rejects the null hypothesis at the 5% significance level, 0 otherwise. The null hypothesis

is accepted if p is greater than 5% and rejected otherwise. As shown in columns 1 and 2

in tables 5.1 and 5.2, the null hypothesis is rejected. The two-sample Kolmogorov-Smirnov

test to compare the distributions of the values in the two data vectors, the empirical data

x1 and the fitted data x2 is also used to whether the empirical distribution Femp and the

fitted distribution Ffit are sampled from the same distribution. The null hypothesis is that

x1 and x2 are from the same continuous distribution. The alternative hypothesis is that

they are from different continuous distributions. The result h is 1 if the test rejects the null

hypothesis at the 5% significance level; 0 otherwise. The test statistic is:

KS = max
y∈R
|Femp(y)− Ffit(y)|

The compared values of the KS test at α = 5% for normal, Merton and Kou distributions

are reported in tables 5.1 and 5.2, the null hypothesis is accepted if the distance is too large

and p value is greater than α and otherwise rejected. From the tables we can see that the

KS distances for the different styles are smaller for Kou model than for Merton model.
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Normal Merton Kou

KS P KS P KS P

G.H 0.49675 8.19e-236 0.02838 0.76542 0.02071 0.97177

E. D 0.49584 6.49e-235 0.02001 0.97989 0.01739 0.99619

C. A 0.49678 7.7e-236 0.02747 0.79915 0.02242 0.94414

E. W 0.49691 5.78e-236 0.02106 0.96718 0.01783 0.99468

Table 5.1: KS distance and Probabilities For Pre-Crisis Returns Using MLE Parameter
Estimates

Normal Merton Kou

KS P KS P KS P

G. H 0.49675 8.19e-236 0.02960 0.78623 0.02529 0.87154

E. D 0.49584 6.49e-235 0.02388 0.91074 0.02394 0.90967

C. A 0.49678 7.7e-236 0.02838 0.76542 0.02674 0.89954

E. W 0.49691 5.78e-236 0.02296 0.88623 0.02200 0.951897

Table 5.2: KS distance and Probability For Pre-Crisis Return Using ECF Parameter Esti-
mates

Also, The densities of the empirical data, the fitted data and normal random variables

with the same mean and variance are compared using MATLAB ‘dfittool’. Non-parametric

fit with normal kernel is used in fitting the densities. Comparing the densities of the log-

returns to the densities of the simulated data from both models shows that the models

provide good fit for the data as shown in the graphs of the densities in figures 5.9, 5.10,

5.11, 5.12, 5.13, 5.14, 5.15 and 5.16.
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Figure 5.10: Fitted Event Driven Using Kou Model Parameter Estimates
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Figure 5.9: Fitted Global Hedge Log-return Using Kou Model Parameter Estimates
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Figure 5.11: Fitted Convertible Arbitrage Log-return Using Kou Model Parameter Esti-
mates
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Figure 5.12: Fitted Equally Weighted Using Kou Model Parameter Estimates
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Figure 5.13: Fitted Global Hedge Log-return Using Merton Model Parameter Estimates

−0.015 −0.01 −0.005 0 0.005 0.01

20

40

60

80

100

120

140

160

180

200

Data

D
e

n
s
it
y

 

 
Merton
Normal
ED Data

Figure 5.14: Fitted Event Driven Log-return Using Merton Model Parameter Estimates
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Figure 5.15: Fitted Convertible Arbitrage Log-return Using Merton Model Parameter Es-
timates

−10 −8 −6 −4 −2 0 2 4 6

x 10
−3

50

100

150

200

250

300

350

Data

D
e

n
s
it
y

 

 

Normal
Merton
EW Data

Figure 5.16: Fitted Equally Weighted Log-return Using Merton Model Parameter Estimates
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5.7 Application to Risk Management

The results obtained from the parameter estimation can be used in estimating the Value-at-

Risk (VaR) of an index which in turn could be used in portfolio management to determine

an efficient portfolio.

Definition of Value-at-Risk

Hyunh, Lai and Soumaré (2011) defined VaR as the expected extreme loss emerging from

the ownership of a risky portfolio or an asset during a specific period of time given a

specific confidence level. VaR models try to measure the maximum potential loss for a fixed

probability on a given time frame [17]. It tries to answer the question on the most one can

lose in an investment within a reasonable bound. The VaR can be specified for an entire

firm , a portfolio of assets or an individual asset.

Monte Carlo Simulation VaR Estimation Method

In Monte Carlo Simulation VaR Estimation Method (MCVaR), the risk factors are simulated

through mathematical modelling of a stochastic process for each of the risk factors [17].

The freedom to choose distributions other than normal distribution for the variables, the

flexibility in estimating VaR of any type of portfolio and ones ability to bring in subjective

judgements to modify these distributions make MCVaR appealing. Unrealistic assumptions

about normality in returns is avoided. The simulation process starts when a distribution is

specified.

Methodology

Since the distributions of Kou and Merton models provide good fit for the log returns,

these distributions are used to estimate the VaR of the hedge fund Strategies analysed

using Monte Carlo Value-at-Risk Estimation method. The method used in this thesis is

adopted from J.P. Morgan Investment Analytics & Consulting (www.jpmorgan.com) and is

as follows:

(1) Determine the length T of the analysis horizon and divide it equally into a large
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number N of small time increments ∆t (i.e. ∆t = T/N).

(2) Simulate the distribution of the log-returns using the parameter estimates from Kou

and Merton models walking along the N time intervals.

(3) Repeat the run in (2) a large L number of times (1000 times is used)

(4) Rank the L simulated log-return from the smallest to the largest, read the simulated

value in this series that corresponds to the desired (1 − α)% confidence level (95%

or 99% generally) and deduce the relevant VaR, which is the difference between the

expected value of the log-return and the αth lowest terminal log-return.

The VaR estimates for each fund are shown in the tables 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8 .

Normal Merton Kou
Global Hedge 0.00451 0.00771 0.00828
E. Driven 0.00540 0.00913 0.00923
C. Arbitrage 0.00477 0.00734 0.00835
E. Weighted 0.00309 0.00556 0.00633

Table 5.3: 99% Value-at-Risk Estimates For Pre-Crisis Data Using MLE

Normal Merton Kou
Global Hedge 0.00451 0.00887 0.00897
E. Driven 0.00540 0.00850 0.00929
C. Arbitrage 0.00477 0.00665 0.00824
E. Weighted 0.00309 0.00562 0.00594

Table 5.4: 99% Value-at-Risk Estimates For Pre-Crisis Data Using ECF
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Normal Merton Kou
Global Hedge 0.01051 0.01523 0.01617
E. Driven 0.01338 0.02428 0.02569
C. Arbitrage 0.02421 0.04456 0.05515
E. Weighted 0.00843 0.01529 0.015389

Table 5.5: 99% Value-at-Risk Estimates For Crisis Data Using MLE

Normal Merton Kou
Global Hedge 0.01051 0.01079 0.01497
E. Driven 0.01338 0.02141 0.02126
C. Arbitrage 0.02421 0.03572 0.04187
E. Weighted 0.00843 0.01011 0.01289

Table 5.6: 99% Value-at-Risk Estimates For Crisis Data Using ECF

Normal Merton Kou
Global Hedge 0.00461 0.00718 0.00740
E. Driven 0.00528 0.00979 0.00995
C. Arbitrage 0.00554 0.00816 0.00811
E. Weighted 0.00344 0.00557 0.00615

Table 5.7: 99% Value-at-Risk Estimates For Post-Crisis Data Using MLE

Normal Merton Kou
Global Hedge 0.00461 0.00860 0.00818
E. Driven 0.00528 0.00986 0.01070
C. Arbitrage 0.00554 0.00822 0.00810
E. Weighted 0.00344 0.00530 0.00594

Table 5.8: 99% Value-at-Risk Estimates For Post-Crisis Data Using ECF

The estimated VaR are based on log-returns which correspond approximately to per-

centage change in the value of the indices, the dollar amount of the VaR is the expected
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value of the indices times the VaR of log returns. That is if the Value-at-Risk of the index

is denoted by V aRi and that of the log-return is denoted by V aRr, then:

V aRi = E(Ri)× V aRr

where E(Ri) is expected value of the index. One can also use the approximation:

V aRi = E(Ri)× (exp (V aRr)− 1).

From the tables, we can see that VaR estimates based on normal distribution are lower

than the estimates based on Kou and Merton Models. Estimates based on Kou and Merton

Models are slightly different but the differences are not significant. Another thing worth

pointing out is that the VaR estimates for Convertible arbitrage is higher than the esti-

mates for the other style during the crisis period probably because the style was affected

most during the period as could be seen from the time series plot in figure 2.4. In general,

there are differences in the VaR estimates across styles and for different periods.
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Chapter 6

CONCLUSION AND EXTENSIONS

This thesis examined the application of Lévy processes of finite activity, in particular Kou

and Merton models are introduced to model the jump that occurs in hedge fund indices

caused by the over reaction or under reaction to outside news. The numerical results on four

hedge fund styles show that Kou and Merton distributions capture the skewness and the tail

behaviour of the distribution of hedge fund log-returns better than the normal distribution.

The simulation of the indices under both models using the estimated parameters shows that

these processes reproduce the dynamics of the indices. Kolmorov-Smirnov goodness of fit

test results shown in tables 5.1 and 5.2 show that Kou model does a slightly better job

at replicating the distribution of log-returns than Merton model. The parameter estimates

from both ECF and MLE methods give similar results in terms of providing good fit for the

data, however, the distribution from parameter estimates using MLE have slightly lower

KS statistics values compared to those from parameters estimated using ECF method. The

differences between the VaR estimates using parameters from both estimation methods are

not much and therefore, when it is not possible to estimate parameters using MLE method,

ECF method is a viable alternative.

This study is based on an individual dataset, HFRX index values; thus, the conclusion

may be different for other datasets. The performance of the two models needs to be checked

on other data sets as well as against models with stochastic volatility; this is a possible

extension to this thesis. Univariate models and constant parameters are used in the thesis;

using multi-variable models and time-dependent parameters in analysing hedge fund indices

are other possible extensions. Also, with the value at risk for each fund known, if the

portfolio VaR is known we can use these in risk management. As an example, we can use a
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simple ad hoc risk-aggregation formula suggested by [27] to get the portfolio VaR. Based on

the formula, the VaR of a portfolio of N funds is easily obtained from the individual VaR

of the funds as follows:

V aRp =

√√√√ N∑
i=1

N∑
j=1

ρi,jwiV aRiwjV aRj (6.1)

Where wi is the weight of the ith fund and ρi,j is the correlation between the ith and jth

fund. We can now use this method to choose the optimal weights of the fund to include

in a portfolio in order to maximize return while keeping loss at a specified value by solving

the following linear programming problem:

max E[Rp] =

N∑
i=1

wiE[Ri]

S.t V aRp ≤ value

1 = w1 + · · ·+ wN

wi ≥ 0

Where E[Rp] is the expected return on the portfolio, E[Ri] is the expected return of the

fund or in our case index, ’value’ is the maximum loss allowable in the portfolio.
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Appendix A

THE DERIVATION OF THE CHARACTERISTIC FUNCTIONS

A.0.1 Derivation of Characteristic function for Merton’s Model

The jump size in the Merton’s model has a normal distribution with the density given by

(4.6) and the following Lévy density defined in [8] as:

λf(x) = ν(x) =
λ√

2πσ2
j

exp

(
−(x− µj)2

2σ2
j

)

The Lévy triplet is given as (γ, σ, λf(x)) , γ = µ − σ2

2 − λk. By the Lévy-Khintchine

Theorem, the characteristic function of Xt satisfies the following relation:

φXt(u) = etψ(u), u ∈ Rd

where ψ(u) known as the characteristic exponent is given by:

ψ(u) = iγu− 1

2
σu2 +

∫
Rd

(eiux − 1− iux1|x|≤1)ν(dx)

Since in the case of Merton’s Model, the process has finite activity then

ψ(u) = iγu− 1

2
σu2 +

∫
Rd

(eiux − 1)ν(dx)

= iγu− 1

2
σu2 +

∫
Rd

(eiux − 1)λf(dx)

= iγu− 1

2
σu2 + λ

[∫ ∞
−∞

eiuxf(dx)−
∫ ∞
−∞

f(dx)

]
= iγu− 1

2
σu2 + λ

{
eiuµj−

σ2
j u

2

2 − 1

}
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A.0.2 Derivation of Characteristic function for Kou’s Model

The jump size in the Kou’s model has double exponential distribution with the density

given by (4.6) and the following Lévy density defined as

λfΥ(y) = ν(y) = λp.η1e
−η1y1{y≥0} + λq.η2e

η2y1{y<0} η1 > 1, η2 > 0

The Lévy triplet is given as (γ, σ, λfΥ(y)) , γ = µ− σ2

2 . By the Lévy-Khintchine Theorem,

the characteristic function of Xt satisfies the following relation:

φXt(u) = etψ(u), u ∈ Rd

where ψ(u) known as the characteristic exponent is given by:

ψ(u) = iγu− 1

2
σu2 +

∫
Rd

(eiux − 1− iux1|x|≤1)ν(dx)

Since in the case of Kou Model, the process has finite activity, i.e. in a finite period of time,

it has a finite number of jumps, then

ψ(u) = iγu− 1

2
σu2 +

∫
Rd

(eiux − 1)ν(dx)

= iγu− 1

2
σu2 +

∫ ∞
0

(eiux − 1)λp.η1e
−η1ydy +

∫ 0

−∞
(eiux − 1)λq.η2e

η2y

= iγu− 1

2
σu2 + λpη1

[
−1

η1 − iu
e−(η1−iu)y +

1

η1
e−η1y

]∞
0

+ λqη2

[
1

η2 + iu
e(η2+iu)y +

1

η2
eη2y

]0

−∞

= iγu− 1

2
σu2 +

λpη1

η1 − iu
− λp+

λqη2

η2 + iu
− λq

= iγu− 1

2
σu2 + λ

(
pη1

η1 − iu
+

qη2

η2 + iu
− 1

)
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Appendix B

MAPLE CODES

MAPLE Commands for Getting the Cumulants of Merton Model from Characteristic Function

φ := u −→ e
∆t

(
Iu(µ−1/2σ2−λ k)−1/2σ2u2+λ

(
eIµj u−1/2 σj2u2−1

))
: # φ is the characteristic function

ψ := u −→ ln(φ(u)) : # I is
√
−1

k1 := diff(ψ(u), u$1) = u −→ ∆t
(
I
(
µ− 1/2σ2 − λ k

)
− σ2u+ λ

(
Iµj − uσj2

)
eIµj u−1/2σj2u2

)
k1(0)

I
:= (µ− (1/2) ∗ σ2 − λ ∗ k + λ ∗ µj) ∗∆t # This is the first cumulant c1

k2 := diff(ψ(u), u$2) = u −→ ∆t
(
−σ2 − λσj2eIµj u−1/2σj2u2

+ λ
(
Iµj − uσj2

)2
eIµj u−1/2σj2u2

)
k2(0)

I2
:= ∆t

(
σ2 + λσj2 + λµj2

)
# This is the second cumulant c2

k3 := diff(ψ(u), u$3) = u −→ ∆t
(
−3λσj2

(
Iµj − uσj2

)
eIµj u−1/2σj2u2

+ λ
(
Iµj − uσj2

)3
eIµj u−1/2σj2u2

)
k3(0)

I3
:= ∆t λ µj

(
3σj2 + µj2

)
# This is the third cumulant c3

k4 := diff(ψ(u), u$4) :

k4(0)

I4
:= ∆t

(
3λσj4 + 6λσj2µj2 + λµj4

)
# This is the fourth cumulant c4

k5 := diff(ψ(u), u$5) :

k5(0)

I5
:= ∆t λ µj

(
15σj4 + 10σj2µj2 + µj4

)
# This is the fifth cumulant c5

k6 := diff(ψ(u), u$6) :

k6(0)

I6
:= ∆t λ

(
15σj6 + 45σj4µj2 + 15σj2µj4 + µj6

)
# This is the sixth cumulant c6
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The cumulants for Kou model are derived in the same way.

MAPLE Commands for Getting the Moment Conditions from Cumulants

µ(1) := c(1) :

µ(2) := c(2) + c(1)2 :

µ(3) := c(3) +

3−1∑
m=1

(( 3− 1

m− 1

)
∗ (c(m) ∗ µ(3−m))

)
:

µ(4) := c(4) +

4−1∑
m=1

(( 4− 1

m− 1

)
∗ (c(m) ∗ µ(4−m))

)
:

µ(5) := c(5) +

5−1∑
m=1

(( 5− 1

m− 1

)
∗ (c(m) ∗ µ(5−m))

)
:

µ(6) := c(6) +

6−1∑
m=1

(( 6− 1

m− 1

)
∗ (c(m) ∗ µ(c−m))

)
:

µ(7) := c(7) +

7−1∑
m=1

(( 7− 1

m− 1

)
∗ (c(m) ∗ µ(7−m))

)
:
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Appendix C

MATLAB AND SAS CODES

C.1 Matlab Code for Computing the MLE for Merton Model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% This Script calls the function ’pdfmerton’ which is the pdf of Merton model and MATLAB %%

%% built-in functions ’mle’ and ’mlecov’ and outputs the MLE and standard error estimates %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

format long;

M = xlsread(’hfrsprecrisisvalue.xls’); %read the data from excel file

X = M(1:end,1);

N = length(X);

%% Get the log-returns

for i = 1: N-1

P1(i) = log(X(i)/X(i+1));

end

x = P1(end:-1:1)’;

pdf_m = @pdfmerton % This the function handle calling the pdf

%Input the initial values of the parameters

mustart = 0.00027;

sigmastart = 0.001671126388601;

mujstart = 0;

sigmajstart = 0.004388806529903;

lambdastart = 0.073036563163645;

start = [mustart,sigmastart,mujstart,sigmajstart,lambdastart];

%% Specify the upper and lower bounds for the parameters

lb = [-Inf 1e-6 -inf 1e-6 1e-6];

ub = [inf Inf Inf Inf inf];

options = statset(’MaxIter’,10000, ’MaxFunEvals’,10000);

pEsts=mle(x,’pdf’,pdf_m,’start’,start,’lower’,lb,’upper’,ub,’options’,options)

acov = mlecov(pEsts, x, ’pdf’,pdf_m);

stderr = sqrt(diag(acov))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C.2 Matlab code for Merton Model PDF

function Q = pdfmerton(x,mu1,sigma1,muj,sigmaj,lambda)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

This function takes the random variables x and the parameters and outputs the PDF of

Merton’s model.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

dt=1;

Max_jumps = 10;%This is the maximum number of jumps

fac = factorial(0:Max_jumps);

for t = 1:length(x)

transdens = 0;% transdens is the transition density

for jumps = 0:Max_jumps-1

probjump =(exp(-lambda.* dt).*((lambda.*dt).^jumps))./fac(jumps+1);%the Poison distribution

condmu = -(mu1 -((sigma1.^2)./2)-lambda.*(exp(muj + ((sigmaj.^2).*0.5)) -1)).*dt- jumps.*muj;

condsigma = 2.*(((sigma1.^2).*dt) + jumps.*(sigmaj.^2));

cond_dens = (exp((-(x(t) + condmu).^2)./(condsigma))).* (1./sqrt(pi.*condsigma));

transdens = transdens + probjump.*cond_dens;

end

S(t) = transdens;

end

Q = S’;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C.3 MATLAB Code for Kou Model PDF

function Q = pdfkou1(x,mu1,sigma1,eta1,eta2,p,lambda1)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

This function takes the random variables x and the parameters and

outputs the PDF of Kou model. I(n) is the inverse Fourier transform of the

characteristic function.

The Script for calling ’pdfmerton’ is modified to call this function to get the MLE estimates

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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dt = 1;

for n = 1:length(x)

I(n) = (1/pi)*real( quadgk(@(u)exp(dt .* ((1i) .* u .* (mu1 - sigma1 .^ 2 ./ 0.2e1) - ...

((sigma1 .^ 2) .* u .^ 2) ./ 2 + lambda1 .* (p .* eta1./(eta1 + (-1.*1i) * u) + ...

((1-p).* eta2)./(eta2 + (1i).* u) - 1))) .*exp(-1i.*u*x(n)),0,inf,’RelTol’,1e-8,...

’AbsTol’,1e-12,’MaxIntervalCount’,100000 ));

end

Q =I’;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C.4 MATLAB Codes for Cumulant Matching Method

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

This script calls the function Cumul_kou to estimate the parameters of Kou model by

Cumulant Matching method

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;

format long;

init_param =[0.00027 0.002 1 1 0.5 1];

options= optimset(’LargeScale’,’on’,’MaxFunEval’,100000,’MaxIter’,100000,’TolFun’,1e-12,...

’TolCon’,1e-12);

[Para,xter,exit1]= fmincon(’paranlekou’,init_param, [],[],[],[],[],[],’confun2’,options)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function SSE = Cumul_kou(Param)

format long;

M = xlsread(’hfrxpostcrisisvalues.xls’);

X = M(1:end,3);

N = length(X);

P = X(end:-1:1);

P1(1) = 0;

for i = 2: N

P1(i) = log(P(i)/P(i-1));

end

R = P1’;

dt=1;
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length(R);

K1=mean(R);

K2 = moment(R,2);

K3=moment(R,3);

K4=moment(R,4)-3*moment(R,2)^2;

K5=moment(R,5)-10*moment(R,3)*moment(R,2);

K6 =moment(R,6)-15*moment(R,4)*moment(R,2) -10*moment(R,3)^2+30*moment(R,2)^3;

mu = Param(1); sigma = Param(2); eta1 = Param(3); eta2 =Param(4); p= Param(5);

lambda= Param(6);

f(1) = dt*(mu -0.5.*(sigma^2)+ lambda.*p./eta1 - lambda.*(1-p)./eta2)- K1;

f(2) = dt *( sigma^2 + 2*lambda*((p./eta1^2) + (1-p)./eta2^2))-K2;

f(3) = 6*dt*lambda*((p./eta1^3) - (1-p)./eta2^3)- K3;

f(4) = 24*dt*lambda*((p./eta1^4) + (1-p)./eta2^4)-K4;

f(5) = 120*dt*lambda*((p./eta1^5) - (1-p)./eta2^5)-K5;

f(6) = 720*dt*lambda*((p./eta1^6) + (1-p)./eta2^6)-K6;

SSE = (f(1)^2 +f(2)^2 +f(3)^2 + f(4)^2 +f(5)^2 +f(6)^2);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [c, ceq] = confun2(param)

% Nonlinear inequality constraints

c = [-param(5)+ 10^(-6);-param(2)+ 10^(-6);param(5)-1;-param(4)+ 10^(-6);...

-param(6)+ 10^(-6);-param(3)+1];

% Nonlinear equality constraints

ceq = [];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C.5 MATLAB Code for Simulating Merton Model

function Eulermrjd_sim (tf,dt,Params,S0)

%Param = (mu1,sigma1,muj,sigmaj,lambda)

mu1 = Params(1); sigma1 = Params(2);

muj= Params(3); sigmaj = Params(4); lambda= Params(5);

t0 = 1;

t = t0:1:tf;

N = length(t);% N is the number of simulation

S = zeros(N,1);% Intialize S

83



S(1) = S0;

k = exp(muj + ((sigmaj.^2).*0.5)) -1;

z1 = randn(1,N-1);

dw = sqrt(dt).*z1;

Nt = poissrnd(lambda.*dt,1,N-1);

for i =2:length(S)

if Nt(i-1) == 0

jump = 0;

else

jump = normrnd(muj*(Nt(i-1)) ,sqrt(Nt(i-1))*sigmaj);

end

S (i) = (mu1-(0.5.*(sigma1.^2))-(lambda.*k)).*dt + sigma1.*dw(i-1) + jump;

end

save(’eulersim.txt’, ’S’, ’-ASCII’)

plot(t,S)

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C.6 MATLAB Code for Simulating Kou Model

function Eulermrjd_simkou2(Params)

% It requires the functions pssrnd1.m and Gamma1.m

mu1 = Params(1); sigma1 = Params(2);

eta1= Params(3); eta2 = Params(4); p = Params(5);lambda1= Params(6);

t0 = 1;

N = 1092;

dt =1;

t = (0:dt:N);

length(t)

%t2 =(0:1:N-1);

% N is the number of simulation

S = zeros(N+1,1);% Intialize S

J = zeros(N+1,1);

X = zeros(N,1);

Nt =zeros(N,1);
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S(1) =0.001428978523691;

for i = 1:N

Nt(i) = pssrnd1(dt*lambda1);

if Nt(i) == 0;

J(i) = 0;

else K = binornd(Nt(i),p);

R1 = Gamma1(K,eta1);

R2 = Gamma1((Nt(i)-K),eta2);

J(i) = R1 - R2;

end

S(i+1) = (mu1-(0.5.*(sigma1.^2))).*dt + sigma1*sqrt(dt)*randn + J(i);

end

save(’eulersimkou2.txt’, ’S’, ’-ASCII’)

plot(t,S)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function y = Gamma1(a,b)

if a == 0;

y1 = 0;

elseif a <= 1

y1 = gamma11(a);

else

y1 = gamma2(a);

end

y = y1/b;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function X1 = pssrnd1(lambda)

X = 0;Sum = 0;flag = 0;

while flag == 0

E = -log(rand);

Sum = Sum + E;

if Sum < lambda

X = X + 1;

else

flag = 1;

end

end

X1 = X;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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function y = gamma2(a)

a2 = a-1;

c = (a-(1/(6*a)))/a2;

m = 2/a2;

d = m+2;

flag = 0;

while flag == 0

W1 = rand;

W2 = rand;

V = c*W2/W1;

if m*W1-d+V+(1/V)<=0

flag = 1;

elseif m*log(W1)-log(V)+V-1<=0

flag = 1;

end

end

y = a2*V;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function x = gamma11(a)

e = exp(1);c = (a+e)/e;flag = 0;

while flag == 0

W1 = rand;W2 = rand;Y = c*W1;

if Y<=1

Z = Y^(1/a);

if W2<exp(-Z)

flag = 1;

end

else Z = -log((c-Y)/a);

if W2<=Z^(a-1)

flag = 1;

end

end

end

x = Z;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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C.7 MATLAB Code for ECF estimation method for Kou Model

% This script calls the function ’charfunkou2’ to estimate the parameters of Kou Model

format long;

init_param = [0.000339, 0.001191,971.0867,623.0382,0.208876,0.126135];

options= optimset(’LargeScale’,’on’,’MaxFunEval’,100000,’MaxIter’,100000,’TolFun’,1e-12,...

’TolCon’,1e-12);

[Para,xter,exit1]= fmincon(’charfunkou2’,init_param, [],[],[],[],[],[],’confun4’,options)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function C = charfunkou2(u, Param)

clear all

format long;

M = xlsread(’hfrSprecrisisvalue.xlsx’);

P = M(1:end,1);

N = length(X);

for i = N-1: 1

P1(i) = log(P(i)/P(i+1));

end

Dt = 1;

x =P1(1:N-1);

mu = Param(1); sigma = Param(2);

muj= Param(3); sigmaj = Param(4); lambda= Param(5);

k = exp(muj + ((sigmaj^2)./2));

sum1 =0;

sum2 = 0;

for i = 1: length(x)

Remchar1 = cos(u*x);

sum1 =sum1 + Remchar1;

Imemchar1 = sin(u*x);

sum2 = sum2 +Imemchar1;

end

Rempchar = sum1./length(x); %This is the real part of empirical CF

Imempchar =sum2./length(x); % This is the imaginary part of empirical CF

A1 = exp(dt .*(-(sigma^2 .*u^2)./2 + lambda.*((p.*eta1^2/eta1^2+u^2)...

+ (((1-p).*eta2^2)/eta2^2+u^2 )-1)) );

A2 = cos(dt .*(u.*mu-(sigma^2 .*u^2)./2 + lambda.*((p.*u.*eta1^2/eta1^2+u^2)...

+ (((1-p).*u.*eta2^2)/eta2^2+u^2 ))));

A3 = sin(dt .*(u.*mu-(sigma^2 .*u^2)./2 + lambda.*((p.*u.*eta1^2/eta1^2+u^2)...
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+ (((1-p).*eta2^2)/eta2^2+u^2 ))));

RealTheoChar = A1.* A2; %This is the real part of Kou’s model xteristic fnc

ImagTheoChar = A1.*A3; %This is the Imaginary part of Kou’s model xteristic fnc

C = (RealTheoChar -Rempchar)^2 + (ImagTheoChar - Imempchar)^2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C.8 SAS Code for estimation of Kou Model Parameters using GMM method

/* GMM estimation of the parameters of Kou’s Jump-Diffusion Model

Author: Ugochi Emenogu uemenogu@ryerson.ca */

/* Import datasets from Excel. One has to make sure that the file path below is correct: */

PROC IMPORT OUT= WORK.hfrxpostcrisislogrets

DATAFILE= "\\Client\C$\Users\ugochi\Documents\hfrxpostcrisislogrets.xls" /*daily returns*/

DBMS= xls REPLACE;

SHEET="Sheet1";

GETNAMES=YES;

RUN;

proc model data = hfrxpostcrisislogrets;

endogenous ED;

dt = 1;

/* Specify initial parameters */

parms mu 0.0002 sigma 0.0018 eta1 415.737 eta2 265.17 p 0.509 lambda 0.09370 ;

/* The Cumulant*/

m1 = dt*(mu - 0.5*(sigma**2) + lambda*((p/eta1) - (1-p)/(eta2)));

m2 = dt*sigma**2 + dt*lambda*((2*p/(eta1**2)) + 2*(1-p)/(eta2**2));

m3 = 6 * dt*lambda*((p/(eta1**3)) - (1-p)/(eta2**3));

m4 = 24 * dt*lambda*((p/(eta1**4)) + (1-p)/(eta2**4));

m5 = 120 * dt*lambda*((p/(eta1**5)) - (1-p)/(eta2**5));

m6 = 720* dt*lambda*((p/(eta1**6)) + (1-p)/(eta2**6));

m7 = 5040*dt*lambda *((p/(eta1**7)) - (1-p)/(eta2**7));

/* Moment conditions */

eq.h1 = ED - m1 ;

eq.h2 = ED**2 - m2-m1**2 ;

eq.h3 = ED**3 - (m3 +3*m2*m1 + m1**3);

eq.h4 = ED**4 - (m4 +4*m3*m1 +3*(m2**2) +6*m2*(m1**2) + m1**4);

eq.h5 = ED**5 - (m5 +5*m4*m1 +10*m3*m2 +10*m3*(m1**2) +15*(m2**2)*m1 +10*m2*(m1**3) +m1**5);
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eq.h6 = ED**6 - (m6 +6*m5*m1 +15*m4*m2+15*m4*(m1**2)+10*(m3**2)+ 60*m3*m2*m1 +20*m3*(m1**3)+(15*m2**3)

+45*(m2**2)*(m1**2) +15*m2*(m1**4) +(m1**6));

eq.h7 = ED**7 -(m7+7*m6*m1+21*m2*m5+21*m5*(m1**2)+35*m4*(m1**3)+35*m3*(m1**4)+21*m2*(m1**5)+

105*(m1**3)*(m2**2)+105*m1*(m2**3)+ 70*m1*(m3**2)+105*(m2**2)*m3 +35*m3*m4 +105*m1*m2*m4 +

210*(m1**2)*m2*m3+m1**7);

bounds lambda > 0, eta2 > 0, sigma > 0, eta1 > 1, p > 0, p < 1;

instruments / intonly;

fit h1-h7 / gmm kernel=(parzen, 1, 0);

run;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Appendix D

TABLES SHOWING PARAMETER ESTIMATES

The tables start from the next page.
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