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Abstract 

Variable Geometry Wing-box: 

Toward a Robotic Morphing Wing 

 

© Amin Moosavian, 2014 

Doctor of Philosophy 

Aerospace Engineering 

Ryerson University 

 

The ability to vary the geometry of a wing to adapt to different flight conditions can 

significantly improve the performance of an aircraft. However, the realization of any 

morphing concept will typically be accompanied by major challenges. Specifically, 

the geometrical constraints that are imposed by the shape of the wing and the 

magnitude of the air and inertia loads make the usage of conventional mechanisms 

inefficient for morphing applications. Such restrictions have served as inspirations 

for the design of a modular morphing concept, referred to as the Variable Geometry 

Wing-box (VGW). 

The design for the VGW is based on a novel class of reconfigurable robots referred 

to as Parallel Robots with Enhanced Stiffness (PRES) which are presented in this 

dissertation. The underlying feature of these robots is the efficient exploitation of 
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redundancies in parallel manipulators. There have been three categories identified in 

the literature to classify redundancies in parallel manipulators: 1) actuation 

redundancy, 2) kinematic redundancy, and 3) sensor redundancy. A fourth category 

is introduced here, referred to as 4) static redundancy. The latter entails several 

advantages traditionally associated only with actuation redundancy, most significant 

of which is enhanced stiffness and static characteristics, without any form of 

actuation redundancy. Additionally, the PRES uses the available redundancies to 1) 

control more Degrees of Freedom (DOFs) than there are actuators in the system, 

that is, under-actuate, and 2) provide multiple degrees of fault tolerance. Although 

the majority of the presented work has been tailored to accommodate the VGW, it 

can be applied to any comparable system, where enhanced stiffness or static 

characteristics may be desired without actuation redundancy. 

In addition to the kinematic and the kinetostatic analyses of the PRES, which 

are developed and presented in this dissertation along with several case-studies, an 

optimal motion control algorithm for minimum energy actuation is proposed. 

Furthermore, the optimal configuration design for the VGW is studied. The optimal 

configuration design problem is posed in two parts: 1) the optimal limb configuration, 

and 2) the optimal topological configuration. The former seeks the optimal design of 

the kinematic joints and links, while the latter seeks the minimal compliance solution 

to their placement within the design space. In addition to the static and kinematic 

criteria required for reconfigurability, practical design considerations such as fail-safe 

requirements and design for minimal aeroelastic impact have been included as 

constraints in the optimization process. The effectiveness of the proposed design, 

analysis, and optimization is demonstrated through simulation and a multi-module 

reconfigurable prototype.  



vi 
 

Acknowledgements 

Foremost, I want to thank my supervisor Prof. Jeff Xi. I am extremely grateful to 

him for giving me the opportunity to work on this project and for providing guidance 

throughout my studies. His encouraging attitude and openness to new ideas along 

with his comprehensive knowledge of robotics and mechanisms have been immensely 

inspiring and instrumental to what has been accomplished. Furthermore, I want to 

thank my co-supervisor, Prof. Seyed Hashemi for all the guidance, helpful feedback, 

and insightful discussions during the course of this work. I have the utmost respect 

and gratitude for both of them, personally and professionally. I have learnt a 

tremendous amount from them over the years, and consider myself lucky to have 

studied under their supervision.  

I wish to express my gratitude to the defense committee, Prof. Brian Surgenor 

from Queens’s University, Prof. Vincent Chan from the Dept. of Mechanical 

Engineering, Prof. Puren Ouyang, and Prof. Anton de Ruiter from the Dept. of 

Aerospace Engineering, for all their invaluable remarks and suggestions regarding 

this thesis.  

This work was funded by the Natural Sciences and Engineering Research Council 

of Canada (NSERC) and Bombardier Aerospace (BA). I would like to thank NSERC, 

and BA, especially Dr. Fassi Kafyeke and Dr. Patrick Germain, for all their support. 

I would also like to thank the government of Ontario and Ryerson University for the 



vii 
 

various Ontario and Ryerson graduate scholarships and awards which helped to 

support this research. 

Furthermore, I would like to thank my colleagues at the Intelligent Systems and 

Robotics Laboratory for their support. A special thanks goes out to my good friend 

and colleague, Mike Rizoiu, for all the stimulating conversations we had about this 

project and his assistance with the prototype. 

Finally, a very special thanks goes out to my wonderful family, especially my 

amazing parents, and my lovely fiancée, Marlena, for their vast support and 

continuous encouragement. 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

 

 

To My Parents 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                “It is possible to fly without motors,  
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Chapter 1  

Introduction 

Traditionally, aircraft design represents a fine balance between performance, weight, 

and cost. The aerodynamicist strives for a design with minimal drag, the structural 

engineer strives for maximized stiffness and minimal weight, while the manufacturing 

partner desires to achieve the lowest cost of manufacturing and ease of assembly. 

The same principle of competing objectives applies to the design of a wing or any 

other lift producing surface on the aircraft. Conventionally, the engineer is faced with 

the following problem: generate a wing configuration that will maximize the 

performance index of the aircraft over one or a series of typical mission profiles. A 

typical index for this purpose could be the �/D, that is, the lift to drag ratio. The 

solution to this problem is usually a wing which is optimized for one configuration, 

typically the cruise configuration, in the case of most commercial and business 

aircraft. However, the configurations that give the best solutions, for example, for 

landing and take-off are drastically different than those for cruise.  

One could imagine the possibilities created with the freedom to generate different 

wing configurations, each suited for a particular flight condition or a segment of the 

mission profile, or used to control the aircraft. This is a goal as old as manned 

aviation itself. In fact the Wright flyer, flown over a century ago utilized a warping 
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wing design (Fig. 1.1). This comes at no surprise as engineers have always been 

seeking inspirations from nature, and this is precisely the way nature behaves. For 

example, birds change the shape of their wings for control and to adapt to different 

flight conditions.  

 

Figure 1.1: Wright brothers’ morphing wing concept (the Wright Flyer) [1]. 

 

In practice, the further realization of a warping wing, or more generally the 

concept of bird-like morphing, proved to be a very challenging feat for aircraft 

engineers, and was eventually abandoned in favor of fixed-wing designs. However, 

the obsession with morphing wings has only grown with time. To realize the benefits 

of discrete shape changes engineers invented different means to partially mimic this 

natural phenomena of morphing. Some of these included the addition of hinged 

surfaces such as ailerons, used for control, and high-lift devices such as slats and 

flaps to the wings. In general, there is some ambiguity as to what constitutes 

morphing. From a categorization point of view, it is the common consensus that the 

previously noted hinged surfaces and high-lift devices are not considered morphing 

features due to their conventional nature. However, from a fundamental perspective, 

morphing is exactly what they do. The less conventional approaches to change the 
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shape of a wing during flight through planform and out-of-plane alterations as well 

as the shape of an airfoil are generally accepted as morphing.  

1.1  Motivation  

In wing morphing it is desirable to have a system that acts both as a load-bearing 

structure and a morphing mechanism, without any distinction between the two. 

When dealing with a rather large design space, designing for this requirement would 

be less challenging as the constituting structural elements could be topologically 

placed in a fashion to enhance the static characteristics of the system, without 

sacrificing its kinematic abilities. However, in the case of an aircraft wing, where the 

design space is highly restrictive, conventional approaches typically yield inefficient 

designs from a static perspective. Such restrictions have served as motivations for 

the proposed concept of a reconfigurable system, which is able to alter its kinematic 

and static characteristics to act both as a mechanism and a high-stiffness structure. 

1.2  Objectives 

In the current era the push for less conventional wings capable of morphing during 

flight beyond the conventional means of hinged surfaces and high-lift devices, seems 

to be exhibiting no signs of slowing down. In fact, there is no deficit of ideas and 

concepts for the design of morphing wings. However, from a practical perspective, 

there are still major areas that are currently attracting immense research focus in 

this field as identified by Reich and Sanders [2]. Amongst those are structural 

mechanization, and control law development, which are of significant interest to the 

current research efforts. The objectives of this thesis can be formally categorized into 

three groups:  
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• Design: design a new type of morphing system through the novel approach 

of separating static and kinematic requirements. 

• Analysis: develop the kinematic and static relationships of the proposed type 

of morphing system. 

• Optimization: develop the optimal configuration and motion control for the 

proposed morphing system. 

1.3  Variable Geometry Wing-box 

By replacing the primary structural elements of a conventional wing-box with a series 

of discrete load-bearing members, some of which are able to actively change their 

geometry, one can obtain a wing with variable geometry. This transformation will 

effectively turn the conventional semi-monocoque design of the wing-box into a 

variable truss-like structure, which herein will be referred to as the Variable 

Geometry Wing-box (VGW). The hybrid mechanism-structure design is possible due 

to the reconfigurable nature of the system, minimizing the drawbacks that have been 

raised in the literature about the weight penalties of actively actuated morphing 

wings.  

The VGW consists of actively actuated modules that are laid out in a serial 

fashion. The number of modules and the discretization depend on the particular 

application. Each module consists of a series of kinematic chains which will enable 

the ribs or the so-called platforms to change their pose. These platforms are also 

used to connect the modules, as illustrated in Fig. 1.2. The VGW can provide 

morphing capabilities in all six Cartesian Degrees of Freedom (DOFs). 

Unlike conventional Variable Geometry Truss Manipulators (VGTMs), where 

only the pose of the last platform (the end-effector) is of interest, in the VGW each 
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platform will have its own independent pose control. This allows for modular control, 

better suited for a morphing wing application. Each module in the VGW is in effect 

a parallel mechanism consisting of a series of kinematic chains or so-called limbs. 

From a kinematic perspective, a variety of different architectures could be used for 

these limbs. However, from a structural perspective, some of these limb architectures 

will be better suited for the applications outlined in this thesis. Additionally, due to 

the restrictive nature of the design space, compactness is highly desired. All of these 

parameters will be evaluated to determine the optimal configuration for the VGW.  

 

Figure 1.2: Proposed modular morphing wing with six morphing DOFs per module: 

VGW. 
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1.4  Thesis Organization 

In Chapter 2, the background and literature review on morphing wings are 

presented. Thereafter, each chapter highlights the following:  

Chapter 3 covers the design and development of a new family of under-actuated 

robots with specific applications in wing morphing. 

Chapter 4 covers the development of the kinematics and the under-actuated 

motion control for the VGW.  

Chapter 5 covers the development of the kinetostatic relationships for the 

VGW. 

Chapter 6 covers the configuration optimization of the VGW based on the 

kinematic and static requirements of the system.  

Chapter 7 covers the development of the optimal motion planning based on a 

novel minimal-energy actuation scheme.  

The conclusion and the suggested future works are presented in Chapter 8.   
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Chapter 2  

Background and Literature Review 

Morphing wings at a conceptual level have proven to outperform the conventional 

fixed-wing design, and have been of special interest to aircraft designers since the 

first manned flight. One form of classification that is typically used to categorize the 

type of morphing deals with the variable of interest in the morphing process, such 

as the sweep angle, the planform area, or the thickness to chord ratio. Based on the 

type of motion, one can classify morphing parameters into two general categories: 1) 

wing morphing, and 2) airfoil morphing (Fig. 2.1). Wing morphing includes planform 

and out-of-plane parameters, i.e. variable sweep, dihedral, twist, and span, whereas 

airfoil morphing includes variable airfoil thickness, chord length, and camber. The 

proposed mechanism in this thesis is specifically designed for wing morphing. 

However, it could be used in combination with airfoil morphing.  

By adopting the above classification, if the airfoil shape was to remain unchanged, 

then a maximum of four parameters could be manipulated by morphing; these are 

sweep, span, twist, and dihedral, as illustrated by Fig. 2.2.  
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Figure 2.1: Morphing classification based on the parameter of interest. 

 

 

Figure 2.2: Four main DOFs associated with wing morphing. 

 

Morphing

Airfoil
Morphing

Airfoil
Thickness

Chord
Length

Wing
Morphing

Dihedral TwistSweep Span

Initial

Span

Twist

Sweep

Dihedral



9 
 

Although the focus of this thesis is in the area of planform and out-of-plane 

morphing (see Fig. 2.1), the following review will also encompass a brief summary of 

various research efforts in the areas of airfoil morphing and morphing materials in 

the recent years. 

The most notable government agencies that have been involved in developing 

and funding universities in the area of research for morphing wings include the 

National Aeronautics and Space Administration (NASA), the United States Air 

Force Research Laboratory (AFRL), and the Defense Advanced Research Project 

Agency (DARPA). Researchers at such agencies in collaboration with various 

universities have developed methodologies for the design and optimization of 

morphing wings that could serve as useful guidelines for future research efforts. Most 

of these efforts have been concerned with the high level layout design, Multi-

disciplinary Design Optimization (MDO), and applicability of such vehicles. 

However, from a practical perspective, wing morphing research is still at its infancy 

in the areas of structural design, actuation, and control. This is where it is believed 

that most valuable contributions could stem from. Hence, of special interest to the 

current research are those works that have produced working prototypes, rather than 

the ones focusing only on the theoretical benefits of wing morphing.  

Most contributions that have led to the construction and testing of prototypes 

have been focused on one of these four motions: sweep, span, twist, and dihedral. 

Very few have attempted to combine more than one of the above motions to achieve 

the morphing functionality, that is, polymorphing. One of those few is the wing 

morphing research group at Bristol University [3,4]. In these works, the possibility 

of having combined dihedral, twist, taper, and span with a variety of different 

actuation options is systematically analyzed for morphing winglets of a commercial 
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jet aircraft. Although their work can be regarded as a useful guideline for conceptual 

design and MDO of morphing wings/winglets, no details have been specified on the 

actuation process or construction of a prototype that is capable of simulating all four 

motions. Amongst other examples of polymorphing are [5,6]. A preliminary design 

and analysis framework for morphing wings that can undergo multi-DOF shape 

changes is presented in [5]. The design for a morphing Unmanned Aerial Vehicle 

(UAV) is presented in [6], in which three separate actuation systems are used to 

control the sweep, span, and twist of the UAV in a non-modular fashion. Some other 

examples of previous work in the areas of MDO and advanced design include [7-10]. 

2.1  Morphing DOFs 

Although when considered from the aircraft perspective, there are four wing 

morphing parameters, once discretized into smaller actuating modules, the four 

parameters can be implemented via all six Cartesian variables. The twist and the 

span motions each have one distinct DOF associated with them. However, the cant 

and the sweep motions can comprise of both rotational and translational DOFs. A 

fully variable mechanism with the ability to independently control all six DOFs has 

a two-fold benefit. The first arises from having no unwanted coupling of the motions. 

Typically in kinematically constrained mechanisms, unless the architecture of the 

mechanism is specifically laid out in a fashion to minimize this coupling, any 

controllable DOF will have some considerable dependent motion. In the case of a 

morphing mechanism with only four controllable parameters, two out of the six 

DOFs will be dependent. However, if the remaining two DOFs can also be controlled 

then this coupling will vanish. In addition to the removal of dependent motions, 

being able to control the two additional DOFs can increase the workspace of the 

mechanism. Therefore, having control over these two additional translational DOFs 
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can improve the overall performance of the system. Traditionally, this would come 

at the cost of having more actuators than kinematically required. However, this issue 

has been addressed in the design of the proposed mechanism, as will be demonstrated 

in Chapter 3.  Figure 1.2 illustrates the four main DOFs: sweep (Λ), span (!�), twist 

("), dihedral (Γ), and the two additional so-called auxiliary DOFs: translational 

sweep (!�), and translational dihedral (!�). It should be noted that the right-hand 

axis system applied to the left wing is consistently used throughout this thesis. 

Therefore, negative definitions for the rotational DOFs must not be mistaken with 

their conventional definitions.  

With a few exceptions, most past research efforts in the field of wing morphing 

have concentrated on one of the four main wing morphing parameters. Furthermore, 

even fewer have attempted to combine more than two of the above motions to 

achieve the morphing functionality. The focus of this thesis is the development of a 

high-stiffness and fault-tolerant design for the internal actuating mechanism of a 

fully variable morphing wing. After the introduction of the mechanism design, the 

optimal actuation scheme and configuration design are presented. The optimization 

formulations are based on the kinematic and static relationships of the proposed 

system, which will be developed and presented in the upcoming chapters.  

2.1.1 Variable Sweep 

Among those who have successfully demonstrated morphing for sweep are [6,11-15]. 

Variable sweep can be highly effective for reducing compressibility induced drags at 

higher Mach numbers. Some examples of aircraft that have deployed this technique, 

some as early as 1952, include the Bell X-5, F-111, F-14, Tornado, Tu-160, and B1-

B Lancer (Fig. 2.3). More recently, NextGen Aeronautics has successfully 

demonstrated a sweep morphing UAV [16]. This aircraft has been reported to be 
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capable of a 70% change in wing area, a 40% change in span, and a 200% change in 

aspect ratio [17].  

2.1.2  Variable Span 

The variable span has been used to obtain changes in the aspect ratio to optimize 

the wing for specific flight regimes. Some examples of variable span include [11, 

13,18-22]. Due to practical aspects, sweep and span motions are typically combined. 

References [13,18] are great examples of this coupling. From a structural point of 

view, telescopic wings have been one of the most popular approaches to achieve wing 

span increase [6,19].  

2.1.3  Variable Twist 

The twist is perhaps one of the most common DOFs to morph due to the immense 

aeroelastic benefits. Being able to obtain variable twist for various flying conditions 

carries a large incentive with it, from both aerodynamic and structural aspects. One 

of the most popular examples is the NASA’s modified F-18 with Active Aeroelastic 

Wing (AAW) [23,24], morphed through wing warping for aeroelastic tailoring and 

roll control. Other successful demonstrations of morphing for twist include [25-34]. 

2.1.4  Variable Dihedral (Cant) 

The dihedral can help to improve lateral stability. In the case of wing tips, the 

dihedral or cant can help to reduce the strength of the wing tip vortices. The most 

common approaches to vary the cant angle are via mechanical rotary actuators, for 

example in [35], and Shape Memory Alloys (SMAs), for example in [36]. Dihedral is 

of special interest to this thesis, since this is one of the hardest motions to achieve 

with conventional actuation. The aerodynamic loads that are required to alter the 

dihedral angle are far larger than the ones required to change the sweep angle. Using 
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conventional revolute joints to manipulate the cant/dihedral angle can generally 

be very energy consuming. Other contributions in this area include [37-39].  

A special reference should be made to the XB-70, Valkyre (Fig. 2.3), which 

achieved a dihedral of up to 65 deg [40], with reference to the convention defined in 

Fig. 1.2, that is, rotating towards the ground. It did so for improved stability, drag 

reduction, and increased compression lift at transonic and supersonic speeds. 

Compression lift is generated by shock waves and helps to support parts of the 

aircraft’s weight. Other examples include the gull wing [38], which uses a jointed 

spar controlled by a linear actuator placed in the fuselage, and the Lockheed Martin 

folding wing [41]. Figure 2.3 illustrates some of the morphing aircraft discussed in 

the previous sections.   

2.2 Airfoil Morphing 

There is no lack of ideas in the field of airfoil morphing, some of which go as far back 

as 1916 [49]. Some of these concepts have evolved to become what are now referred 

to as conventional high lift devices, i.e. flaps and slats. The less conventional 

approaches such as hingeless trailing edge devices and chord-wise bending, also 

known as variable camber, are still attracting research attention. This area of 

morphing has attracted a significant amount of research both from actuation and 

material perspectives [50-54]. The Mission Adaptive Wing (MAW) is a working 

example of chord-wise bending/variable camber. It is used on the F-111 (Fig. 2.3) 

and has demonstrated significant drag reductions and the ability to change the lift 

distribution to decrease root bending moments [55]. Another demonstration is the 

Smart Wing wind tunnel model actuated using SMA torque tubes and wires to 

achieve a change in the twist and trailing edge shape, respectively [56]. This can be 

considered an example of combining wing and airfoil morphing.  
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Figure 2.3: Examples of high profile morphing aircraft [42-48]. 

 

2.3 Morphing Skins 

One major challenge in the design of morphing wings lies in the creation of skins for 

the morphing modules. Although a morphing skin may not be contributing to the 

stiffness for the wing-box, it will still have to withstand the local pressure loads 

induced by the flow around the wing. Hence, any suitable material for a morphing 
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skin needs to be both flexible and be able to handle the loads at the same time. 

SMAs have proven to be a good candidate for the morphing skins. They have been 

proposed and demonstrated by [57]. However, they have their limitations and 

complications, some of which will be discussed in Sec. 2.5.1. Reich et al. [58] proposed 

a methodology for the design of a suitable composite skin using topology 

optimization, in order to address the conflicting requirements of low in-plane and 

high out-of-plane stiffness characteristics. Murray et al. [59] investigated the usage 

of pre-tension in Flexible Matrix Composites (FMCs) to obtain the desired response 

for morphing, that is, low in-plane and high out-of-plane stiffness.   

Amongst new materials with potential for wing morphing applications is Metal 

Rubber [60]. Although appearing as a promising candidate for morphing skins, the 

research in this area is not extensive. Other materials that have attracted research 

interest in this field include the Veriflex®-based polymer [61], which is thermally 

activated, and the nastic shape changing materials [62]. The nastic materials refer to 

a class of substances that mimic biological systems to produce large deformations 

through the conversion of chemical energy available within the material. It should 

be noted that most of these materials are in their early stages of research and require 

more development to be utilized at an applied level. The development of a suitable 

material capable of supporting multiple DOFs is still a major ongoing area of research 

and is beyond the scope of this thesis. For a thorough literature review for morphing 

skins the reader is encouraged to see [63,64]. 

2.4 Morphing for Control vs. Improved Performance 

Wing morphing is typically done to achieve one, or in some cases both, of the 

following: 1) morphing for control and 2) morphing for improved performance. The 

second category could be further broken down to other subclasses such as range 
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increase by means of drag reduction, flutter improvement, and vibration reduction, 

or expanding the flight envelope, for example, by tailoring for subsonic/supersonic 

flight regimes. There have been some major recent advancements and proposals in 

the morphing for control area. However, most of the efforts in the wing morphing 

field fall into the performance improvement category, perhaps due to the larger range 

of applicability. The presented research in this thesis also falls into the latter 

category. Nonetheless, some brief references are included for works in the field of 

morphing for control here.  

With the advancement of Fly-By-Wire (FBW) technology in the recent years, 

the concept of implementing morphing technology in aircraft control has been of 

special interest. Some examples of morphing for control are the NASA’s modified F-

18 for improved roll control [65], NASA’s Hyper Elliptic Cambered Span (HECS), 

which uses a biologically inspired approach for yaw, pitch, and roll control, and to 

reduce induced drag by means of wing tip morphing [66], as well as the variable cant 

angle winglets used for turning maneuver [35]. Researchers at University of 

Manchester [67] developed an adaptive vertical tail, which takes advantage of the 

aeroelastic effects in a desirable manner through alterations in the stiffness of the 

tail. This is achieved by rotating the spars. The spars could be varied between the 

two maximum positions: vertical (similar to a conventional spar) to obtain maximum 

bending stiffness, and horizontal to obtain minimum bending stiffness. Consequently, 

the torsional stiffness of the tail could then be varied by mechanical means.  

2.5 Actuation Concepts 

Depending on the DOFs required for morphing, several different actuation concepts 

have been proposed and tested. The common feature between most of these systems 

is the use of linear actuators, specially for the planform alteration purposes. However, 
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most of these systems are only capable of achieving one or two DOFs, for example 

in [11,19]. The authors in [19] used a combination of pneumatic actuators and linear 

bearings to achieve a change in span for a morphing UAV application, while the 

authors in [11] used a worm drive to extend the ribs. Linear actuators are attractive 

for morphing applications because of their ease of setup and application. Most linear 

actuators are designed to handle axial loads fairly well. However, they are generally 

not ideal for supporting out of plane loads. Since in most proposed designs, the linear 

actuators are packaged to actuate within the x-y plane (Fig. 2.4), additional structure 

has to be added in such cases to realize the necessary out of plane stiffness (along 

the z axis in Fig. 2.4). This can lead to significant weight penalties.    

 

Figure 2.4: Aircraft coordinates. 

 

The proposed design, which will be introduced and studied in the following 

chapters, employs linear actuators in the form of parallel actuation. This is a fairly 

appealing concept because it is not only capable of simulating the four DOFs (sweep, 

dihedral, twist, span), it also behaves as the primary structure. In a conventional 

aircraft, the combination of spars and skin-stringers typically provides the necessary 
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torsional stiffness (stiffness about the y axis in Fig. 2.4), the spars provide the shear 

stiffness (stiffness along the z axis in Fig. 2.4), and the combination of spars and the 

skin-stringers provide the necessary bending stiffness (stiffness about the x axis in 

Fig. 2.4). Figure 2.5. illustrates how the major three loads that are experienced by 

the wing are reacted in a conventional wing-box 

 

Figure 2.5: Conventional wing-box setup, capable of reacting shear, torsion, and 

bending using a combination of spars, skins, and stringers. 

 

Replacing the spars, skins, and stringers with a series of linear members will 

essentially turn the wing-box into a parallel robot, which will be able to provide the 

appropriate stiffness in all the aforementioned DOFs. The realization and optimal 

design of such a concept will be discussed in detail in the upcoming chapters. 

2.5.1 VGTMs for Wing Morphing 

Parallel Kinematic Manipulators (PKMs), such as those belonging to the Gough-

Stewart family of parallel manipulators [68,69] used in a modular fashion are referred 

to as Variable Geometry Truss Manipulators (VGTMs). VGTMs have been utilized 
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for various space robotics [70-72], and recently wing morphing applications [73-78]. 

In [73] the authors proposed a discretization method for determining the optimum 

number of VGTM modules for a morphing wing based on maximizing L/D. In [74,75] 

a novel under-actuated design concept using VGTMs was proposed for a morphing 

wing along with an optimal configuration based on a cuboid design space. In [76] the 

authors used a cable-strut system to demonstrate actuation on the HECS wing, 

where the cables were used to actuate the wing into different positions. In [77] the 

authors developed a novel topology optimization formulation to obtain optimal 

structural arrangements for variable geometry truss structures. The optimization 

process determined the optimum placement for actuators, and attachments that 

connect the morphing structure to a non-morphing structure, for example a wing to 

a fuselage. In [78] the authors investigated the use of a cable-strut tensegrity system 

for a biomimetic application.  

It is worth noting that the use of variable geometry trusses in adaptive aerospace 

structures has not been limited to lift producing surfaces. For example, the authors 

in [79] designed a morphing structure to change the inlet cross section of a supersonic 

wind tunnel. The proposed nozzle in [79] is capable of continuously changing the 

flow velocity for a range of Mach numbers.  

Amongst all the proposed VGTMs used for wing morphing, with the exception 

of a few, for example [74], the modular motion control has not been extensively 

studied. It is believed that the majority of the types of VGTMs suggested for wing 

morphing will be generally difficult to control in a precise manner for high-load 

applications such as those experienced by a wing of a commercial or a business 

aircraft. Therefore, contributions in the areas of design for high stiffness and the 

modular motion control of morphing mechanisms are deemed valuable.   
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2.5.2  Embedded Actuation  

Wing morphing via active actuation can be classified into two categories: 1) those 

using mechanisms in addition to the existing structural elements of the wing-box, 

and 2) those converting the structural elements into morphing mechanisms. In 

general the latter will result in a less conventional system; however, it will offer 

minimal weight impact, since no additional components would be required for 

morphing. This thesis will investigate the design, analysis, and optimization of a 

morphing concept that belongs to the second class. 

Amongst those who have proposed morphing concepts embedded within the wing 

structural elements are [18,19,24,29,67,80,81]. The authors in [24] replaced the 

conventional wing spars with the variable stiffness spar to improve the aircraft roll 

performance. In [29,67], the authors applied the concept of actively moving and 

rotating spars to vary the aeroelastic shape of the wing by altering its stiffness. Kota 

et al. [80] explored various ideas to vary the torsional stiffness of the spars. Similarly, 

other concepts have been proposed that replace the existing structure within the 

wing-box using, for example, scissor mechanisms [18], telescopic spars [19], or multi-

stable materials [81]. A thorough literature review on morphing wings, using active 

systems, is presented in [63]. Most of these embedded concepts, proposed for 

performance improvement or load alleviation, achieve the intended goal by varying 

only a single DOF, or a coupled set of DOFs.  

VGTMs, due to their highly variable nature can easily accommodate morphing 

for more than just one DOF. This makes them very attractive for multi-DOF 

morphing applications. However, conventional VGTMs can suffer from poor static 

characteristics and low stiffness in highly constrained spaces, as in a wing. To 

improve this trait, a design approach for a wing morphing mechanism is presented 
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here, in which the static and kinematic characteristics are separated by reconfiguring 

the system to act both as a statically indeterminate structure and a kinematically 

determinate mechanism as required. All of this is implemented without redundant 

actuation, using a novel under-actuated motion control, offering more controllable 

DOFs than the number of actuators. In the proposed concept, the mechanism is 

foreseen to be statically redundant during most of its mission profile. This includes 

instances where the aircraft is performing a high-g maneuver or experiencing a high 

velocity gust. However, when it is required to morph, during the pre-specified 

morphing periods, for example, during cruise or before a maneuver, it acts as a 

conventional mechanism. In the morphing configuration, the system will be 

kinematically and statically determinate, that is, isostatic, which will allow for 

conventional actuation schemes. However, in the non-morphing configurations, the 

system will become statically and kinematically indeterminate, that is, hyperstatic. 

This reconfiguration is achieved using a series of lockable passive members that will 

be locked and unlocked at various times and sequences. By utilizing this 

implementation the members can be sized to provide the stiffness and the actuation 

forces required for the morphing configurations while offering the stiffness and the 

holding forces required for the non-morphing configurations. 
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Chapter 3  

Morphing Mechanism Design  

Static redundancy in a parallel manipulator can enhance the stiffness of the end-

effector, improve its fault tolerance, minimize its singularity loci, and reduce the 

internal loads experienced by the joints. Traditionally, this form of redundancy 

would be accompanied by actuation redundancy. Introduced in this chapter is a new 

approach to statically enhance a manipulator without actuation redundancy. This is 

achieved through the use of lockable passive joints that are utilized in an alternating 

fashion to reconfigure the system into various isostatic and hyperstatic topologies 

without any external assistance. Although applicable to both kinematically non-

redundant and constrained manipulators, this approach is specially effective for those 

with lower instantaneous mobility. The inherent redundancy in these reconfigurable 

robots is exploited to obtain full finite mobility with as few as one actuator through 

under-actuation with the use of virtual alternating constraints, which will be 

discussed in Chapter 4.  

Although the application at hand is one that belongs to ℝ3, the general theory 

presented in this chapter has been developed to be applicable to cases in both ℝ2 

and ℝ3.  

 



23 
 

3.1 Reconfigurability  

Reconfigurable parallel robots have attracted considerable interest both in the areas 

of machine design and motion control over the past two decades. Traditionally, the 

objective for reconfigurability has been the alteration of mobility [82,83], or motion 

characteristics [84,85]. However, with the exception of a few [85,86], reconfigurability 

for enhanced stiffness or static redundancy has not been extensively studied.         

Reconfigurability in PKMs can be classified into geometric, topological, or a 

combination of the two [87]. Geometric morphing deals with the variation in size or 

orientation of the branches that make up the manipulator, without altering its 

kinematic architecture. For examples of geometric morphing see [85,86]. Topological 

morphing deals with variations in the kinematic architecture of the manipulator by 

changing the types or the sequence of the joints that make up the system. For 

examples of topological morphing see [82,83,88].   

Analogous to the geometric and topological classifications of reconfigurability, 

the variation in the static and stiffness characteristics of a PKM can also be classified 

into similar groups (see Fig. 3.1). In this context, the geometric approach will take 

advantage of the change in the size and orientation of the branches to alter the 

stiffness of the end-effector or the internal loads experienced by the members, 

whereas the topological approach will utilize alterations in the connectivity of the 

branches and joint types to do the same. Generally, only the topological approach 

has the potential to generate a statically redundant system, which makes it more 

suitable for autonomous and aerospace applications.  

Traditionally, in lower mobility manipulators, the topology is designed to 

accommodate the motion requirements. The static characteristics are then addressed 

by altering the geometric parameters such as joint locations or the sizing of the 
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actuators. By separating the kinematic and the static requirements, one can design 

manipulators with lower mobility and more appealing static traits. Such lower 

mobility systems can exhibit stiffness characteristics comparable to that of a PKM 

with full mobility and superior to conventional lower mobility manipulators with 

permanently constraining legs.  

 

Figure 3.1: Geometric and topological approaches to change the static and stiffness 

characteristics of a PKM. 

 

In addition to applications where varying the topology can enhance the static 

characteristics of a PKM in motion, there exist applications where a manipulator 

may be required to act as a structure for a significant period of time during which it 

will be experiencing external loads far greater than those required for actuation. One 

example would be a PKM belonging to an autonomously reconfigurable structure. 

Geometric Approach Topological Approach
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Although the manipulator may be in a stationary pose, any shift in the position of 

its payload, which may happen to be another PKM, could induce large internal loads 

on the manipulator. Another example is a PKM which would be experiencing large 

dynamic loads as it would be autonomously transported to reconfigure a larger 

structure. In any of these cases having a manipulator that can exhibit enhanced 

static characteristics is desirable. Traditionally, this enhancement comes at the cost 

of having more actuators than kinematically required. 

In this chapter a family of reconfigurable parallel robots with enhanced static 

characteristics with only as many actuators as the required instantaneous mobility 

is introduced. These robots belong to the topologically reconfigurable category. 

Although the focus will be on robots with lower instantaneous mobility, the 

presented design and analysis methodologies are also applicable to enhance those 

with full mobility such as the Gough-Stewart parallel manipulators [68,69]. The 

proposed reconfigurable robots are fault tolerant and can provide enhanced static 

characteristics with minimal number of actuators. In addition, they offer a larger 

freedom for their structural design through the separation of static and kinematic 

requirements. Design of these reconfigurable robots will be presented and discussed 

in this chapter, while the kinematics/motion implementation, and the kinetostatic 

analysis will be covered in detail in the upcoming chapters. Before presenting the 

design, in order to classify these robots, one needs to first review various types of 

redundancies applicable to PKMs.  

3.2 Manipulator Redundancy  

A Variable Topology Manipulator (VTM) can effectively reconfigure its topology to 

accommodate particular situations that may arise from either a static requirement, 

i.e. increased external loads, or a motion requirement, i.e. enlarged workspace. In 
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either case, such a manipulator will have to be inherently redundant. Pierrot [89] 

classifies redundancies in parallel mechanisms into three types: a) actuation 

redundancy, b) kinematic redundancy, and c) sensor redundancy. A fourth type,      

d) static redundancy [90] is introduced here. 

Static redundancy occurs when a mechanism or a structure becomes hyperstatic. 

A robot or a configuration with a hyperstatic topology is one that is statically and 

kinematically indeterminate, or in other words it is redundantly rigid, whereas an 

isostatic topology is one that is both statically and kinematically determinate, or in 

other words, it is minimally rigid. Kinematic redundancy occurs when the mobility 

of the manipulator is greater than the number of Cartesian motion parameters. This 

type of redundancy is typically used to enlarge the workspace of a manipulator; for 

examples see [91,92]. Actuation redundancy occurs when the number of actuators is 

greater than the mobility of the manipulator. This type of redundancy can increase 

the stiffness or minimize the singularity loci and internal loads of a parallel 

manipulator; for examples see [93-95]. Sensor Redundancy occurs when the number 

of sensors is greater than the number of actuated joints. This type of redundancy is 

typically used for solving forward kinematic problems. See [96] for an example of this 

type of redundancy.  

Figure 3.2 illustrates four examples belonging to each type of redundancy in order 

to distinguish these types in terms of the number of actuators, $%&, and mobility, 

ℳ. Mobility of a system represents its number of independently controlled DOFs, 

and can be determined using Eq. (3.1) [97]:  

 ℳ = Υ($( − $% − 1) + ∑ ℱ�
-.

�=1
 (3.1) 
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where the motion parameter, Υ, takes a value of three in ℝ2, and six in ℝ3; $(, $%, 
ℱ� , and ℳ are the number of links, the number of joints, the degrees of relative 

motion permitted by joint i, and the DOF of the manipulator, respectively.  

 

Figure 3.2: Four types of redundancies associated with parallel manipulators. 

 

The kinematically redundant manipulator (Fig. 3.2 a) has 13 joints, and 11 links; 

it has a mobility of ℳ = 4. The redundantly actuated manipulator (Fig. 3.2 b) has 

12 joints, and 10 links; it has a mobility of ℳ = 3. The sensor redundant manipulator 
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(Fig. 3.2 c) has 12 joints, and 10 links; it has a mobility of ℳ = 3. In the case of the 

statically redundant manipulator (Fig. 3.2 d) with the lockable passive limb in the 

unlocked position, there are 12 joints and 10 links; this gives a mobility of ℳ = 3. 

However, when the passive limb is locked, the number of joints and links become 11 

and 9 respectively; this yields a mobility of ℳ = 2. The manipulator depicted by d 

is statically and kinematically determinate when the passive limb is unlocked. In this 

case it would be similar to c in terms of determinacy. However, when the passive 

limb becomes locked the system becomes both statically and kinematically 

indeterminate. In this case, it would be similar to b in terms of determinacy and 

could be considered statically redundant.  

The kinematically redundant manipulator (a) does not offer static redundancy, 

that is, if one of the actuators were converted into a passive member the manipulator 

would become degenerate. The sensor redundant manipulator (c) is isostatic at all 

times; hence, it also offers no static redundancy. Therefore, the only two types that 

can deliver static redundancy are types b and d. To further distinguish between the 

applications of static redundancy, two terms are introduced referred to as the 

stagnant stiffness and the transitional stiffness. The stagnant stiffness refers to the 

stiffness of a kinematic module when it is not in motion, whereas the transitional 

stiffness simply refers to the stiffness of a kinematic module while it is in motion. 

Although, the stagnant and transitional stiffnesses are both static terms, the 

distinction between the two arises from a topological perspective. When transitional 

stiffness is achieved, the system is isostatic; however, when stagnant stiffness is 

achieved, it may remain isostatic or become hyperstatic. The distinction between the 

determinacy of the system has significant impacts on the actuation scheme of the 

manipulator.  
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A redundantly actuated manipulator can either have joints that are passive, but 

can turn into actuators upon command or have redundant actuators that may or 

may not be part of the kinematic system but can be included when required. Other 

than the obvious inefficiency of having more actuators than kinematically required, 

the control implementation of such manipulators entails various complexities. In the 

case where redundant actuators are active for internal load reduction, due to the 

indeterminate nature of the system, additional measures from the control point of 

view must be taken to ensure that actuators are not working against each other or 

that unnecessary loads are not imposed on the system due to over-constraints. 

All published research in the area of parallel manipulator redundancy have been 

focused on kinematic, actuation, and sensor redundancies. However, static 

redundancy without redundant actuation has not been studied before. The 

manipulators introduced in this thesis belong to this type and can generally improve 

their stagnant stiffness over a conventional non-redundant manipulator in most of 

their workspace. Additionally, they can generally improve their transitional stiffness 

for certain poses and areas in their workspace and potentially reduce their singularity 

loci. Generating static redundancy without actuation redundancy can improve the 

static characteristics of the system while avoiding the inherent complexities and 

inefficiencies of actuation redundancy for particular applications such as the ones 

introduced earlier. In addition, through under-actuation a high degree of actuation 

efficiency can be maintained while attaining static redundancy.   

3.3 Robot Design 

The idea of using passive joints that could be locked and unlocked at particular times 

or sequences has been previously introduced and explored [82,84,88,98,99]. Up to this 

point the intention for using lockable passive joints have been for actuation efficiency 
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[88,99] or functional/workspace improvements [82,84,98]. In this thesis lockable 

passive joints are used to enhance the stiffness and static characteristics of the 

manipulator. Due to their sequential locking feature they are referred to as Passive 

Alternating Lockable Members (PALMs). Also, for brevity, any robot that falls in 

this variable topology family of manipulators will be referred to as a Parallel Robot 

with Enhanced Stiffness (PRES). Figure 3.3 illustrates a planar PRES with two 

actuated limbs and two passive lockable limbs.  

 

Figure 3.3: A Planar PRES with two actuators and two lockable passive limbs. 

 

In Fig. 3.3 the passive limbs (limbs 2 and 4) can be locked and unlocked to vary 

the topology of the manipulator. In total, one can have three distinct topologies for 

this system, two of which are isostatic and one is hyperstatic. The isostatic 

configurations are used for actuation and enhanced transitional stiffness, whereas the 

hyperstatic topology is used for enhanced stagnant stiffness. In effect when a passive 

limb becomes locked it turns into a link connecting the moving platform to the 

ground/base, and when unlocked it has no effect on the system. For the mechanism 

illustrated by Fig. 3.3 this transformation results in the three topologies shown in 

Fig. 3.4. 
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The actuation process for this planar PRES will be demonstrated through an 

illustrative example (Fig. 3.5). The goal is to go from some initial pose, �0 , to some 

final pose, �2 , with only two actuators. The left subscript notation refers to the 

stage associated with a pose, i.e. initial (0), intermediate (1), and final (2) in this 

case. 

 

Figure 3.4: Three topologies effectively realized using the ground topology 

presented in Fig. 3.3. 

Ground Topology

Isostatic Topology I

Isostatic Topology II

Hyperstatic Topology
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Figure 3.5: Actuation procedure for a planar PRES with two actuators and two 

lockable passive limbs. 

 

With the module in the final pose, �2 , one will have a vector                                             

62 = [ 72 1 72 2 72 3 72 4 ]�  that describes the lengths of the actuated, unlocked, 

and locked passive limbs for the final pose. At this point the components associated 

with the actuated limbs can be ignored since they can be directly controlled. To 

attain �2  one must initially realize the components associated with the passive 

limbs, i.e. 72 2  and 72 4 . The notation 72 4  refers to the length of the fourth limb in the 

second (final) pose. Without loss of generality, first 72 4  will be obtained, followed by 

72 2 . In order to achieve this an intermediate pose, �1 , will be utilized. The 

intermediate pose, which is an indirect approach to obtain 72 4  will need to satisfy 

an actual constraint which is the length of the second limb that remains locked from 

the initial pose, i.e. 70 2 , and a virtual constraint which is the desired final length of 

the fourth limb, i.e. 72 4 . Once the desired final length for the fourth limb is obtained, 

it will become and remain locked, while the second limb will become unlocked and 

the same procedure will be repeated using the other isostatic topology to obtain the 
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desired final length for the second limb, i.e. 72 2 . Then, by obtaining the lengths 

associated with the actuated limbs, 62  can be attained to give the final pose, �2 .  

The optimal sequence of actuation and the choice for the independent Cartesian 

variable for the intermediate pose can be determined through an optimization 

problem which may further enhance the transitional stiffness of the system or 

minimize the internal loads during actuation.  

Similarly, a planar manipulator with the same topology as the one in Fig. 3.3 

with only one actuated and three passive lockable limbs (see Fig. 3.6 a) can achieve 

the same in three stages. The additional stage is required to realize the final desired 

length for the additional passive member. In the case with only one actuator, one 

will have two actual constraints which correspond to two locked passive members to 

attain isostaticity and one virtual constraint corresponding to the final length of the 

unlocked limb. In this case, because the number of constraints is equal to the number 

of Cartesian variables, there will generally exist only one reachable pose within the 

workspace of the manipulator. Therefore, the only optimization problem that could 

be set up is for the choice of sequence in obtaining the desired final lengths for the 

passive limbs.  

A similar actuation procedure can be applied to a spatial PRES. The 

generalization and the specific case applicable to the VGW will be presented in 

Chapters 4 and 7, respectively. Figure 3.6 illustrates a few examples of planar and 

spatial PRES’s. For the spatial cases, the joints depicted using a full circle inside a 

half circle represent spherical joints. The solid lines with no passive/active members 

depicted in Fig. 3.6 e represent rigid links. 
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Figure 3.6: Examples of planar and spatial PRES’s. 

 

As it can be seen all these manipulators are either kinematically non-redundant 

or constrained. The degree of static redundancy can vary depending on the 

application. However, it is always equal to or greater than one. The degree of static 

redundancy in the hyperstatic state is equal to the number of locked DOFs associated 

with passive joints that would have to be unlocked to turn the system into an 

isostatic one. The degree of static redundancy in the hyperstatic state can be 

expressed as 

(a) (b)

(c)

(d) (e)
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 � = ($%& + $%�:) − Υ (3.2) 

where $%�: and $%& are the total number of lockable passive and actuated joints, 

respectively, and � represents the degree of static redundancy in the hyperstatic 

configuration, where � ∈ ℕ>0. Equation (3.2) is expressed with the underlying 

assumption that the actuation or locking action is applied to one non-redundant 

DOF of the joint, regardless of the number of DOFs of the joint itself. 

Although PRES’s with $%& < Υ actuators are systems with lower mobility and 

are primarily intended for applications that require lower mobility but high stiffness, 

their inherent redundancy can be exploited to obtain full mobility through under-

actuation, as will be discussed in Chapter 4. 

3.4 Class Synthesis   

Based on the mobility of the system, one can generalize PRES’s into three classes as 

tabulated in Table 3.1. The first class is kinematically non-redundant, i.e. ℳ = Υ, 

whereas the second and the third classes are kinematically constrained, i.e. ℳ < Υ. 

All three classes could offer enhanced stiffness for particular applications over a 

conventional PKM, however their degrees of finite and instantaneous mobilities will 

vary. 

There are two types of DOFs with reference to the end-effector’s pose for any 

mechanical system: Instantaneous or velocity DOF and finite or configuration DOF 

[100]. Finite DOFs are the minimum number of geometric parameters required to 

uniquely identify the pose of a rigid body in space, i.e. three for planar and six for 

spatial cases. Instantaneous DOFs are those of a rigid body whose velocities and 

accelerations could be controlled. For fully-actuated PKMs the independent finite 
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and the instantaneous DOFs are the same. However, if the system is under-actuated, 

one could have more independent finite DOFs than instantaneous ones. The finite 

and instantaneous mobilities of the manipulator could then be defined by the 

achievable independent DOFs in either case.  

From a motion control point of view, any PRES that falls under class I is fully-

actuated with full finite and instantaneous mobilities; a PRES belonging to class II 

is under-actuated with full finite and lower instantaneous mobilities; and a PRES 

belonging to class III is partially-actuated with lower finite and instantaneous 

mobilities. 

Table 3.1: Classification of PRES’s and their corresponding static and kinematic 

characteristics. 

Class 
Kinematic 

Characteristic 

Static 

Characteristic 

Stagnant 

Stiffness 

Transitional 

Stiffness 

Finite 

Mobility 

Instantaneous 

Mobility (ℳ) 
I 

Non-

Redundant 
Redundant Enhanced 

Not 

Enhanced 
= Υ = Υ ∗ 

II Constrained Redundant Enhanced Enhanced = Υ < Υ 

III Constrained Redundant Enhanced Enhanced < Υ < Υ 

∗ Corresponding to the isostatic state 

 

In all three cases, the redundant rigidity in the system is obtained through the 

use of PALMs. The manipulator shown in Fig. 3.2 d is an example of class I; the 

manipulator depicted in Fig. 3.3 is an example of class II; and the manipulator 

illustrated by Fig. 3.6 e is an example of class III.  
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Manipulators that fall under class I could be used to only improve the stagnant 

stiffness. However, class II manipulators could enhance both the stagnant and the 

transitional stiffnesses while maintaining a higher level of actuation efficiency 

through under-actuation. Similarly Class III manipulators can enhance both the 

stagnant and the transitional stiffnesses; however, they will not be able to attain full 

finite mobility. Although the third class is generally classified as not under-actuated, 

in general the under-actuation scheme could be used to achieve a lower finite 

mobility, still higher than the instantaneous mobility.   

Although all three classes vary from the mobility and actuation aspects, the same 

kinematic constraint and kinetostatic formulations can be applied to all three. The 

second class can be considered the most general of the three, due to the added 

complexity introduced by under-actuation. Therefore, the fully-actuated class (class 

I) and the partially-actuated class (class III) can be treated as special cases of the 

under-actuated one (class II). Consequently, the focus of the remainder of the 

chapter will be on the design and analysis of the second class. 

In what follows, three areas are addressed: 1) generalizing the enumeration rule 

for determining the minimum number of required passive members (as presented in 

this chapter), 2) generating a systematic approach for the kinematic analysis and the 

implementation of the under-actuation through the systematic implementation of 

kinematic constraints (see Chapter 4), and 3) efficiently evaluating the stiffness and 

the internal loads for all configurations and topologies (see Chapter 5).  

3.5 Architecture Design  

The architecture criteria define a series of design equations that could be used to 

generate planar and spatial PRES’s capable of under-actuation. By inspecting Eq. 
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(3.1), it becomes clear that the only viable limb architectures for the PRES are those 

with Υ non-redundant DOFs. Some examples are RPR1 and RRR for the planar 

case, and SPS, SRS, UPS, UCS, and SCS for the spatial case. When unlocked passive 

limbs with such architectures are added to an already isostatic manipulator they will 

have no effect on the mobility potential of the system, i.e. three for a planar 

manipulator and six for a spatial one. Without loss of generality, for the purposes of 

demonstration and presentation of the proposed design and analysis, mostly RPR 

and SPS limb architectures have been employed throughout this chapter, for planar 

and spatial cases, respectively. The optimality of various limb architectures for the 

VGW will be studied in Chapter 6. 

In the planar case, three RPR limbs would be required to maintain isostaticity. 

Similarly, in the spatial case, six SPS limbs would be required to do the same. This 

is generally true for systems with injective joints, i.e. those with limbs that are not 

sharing any joints. Even then, isostaticity is not guaranteed. An example of a 

singular or a degenerate configuration for a parallel manipulator that possesses six 

non-injective SPS limbs is the 6-6 Gough-Stewart platform with similarly oriented 

base and platform [101]. Therefore, due to the lack of a combinatorial condition that 

would hold for all architectures and configurations, one must rely on computational 

methods for detecting such singularities. This is a much larger concern in the spatial 

case, as one may be able to generate hyperstatic topologies that offer a significant 

increase in the stagnant stiffness of the robot, but in actuation, i.e. for isostatic 

topologies, the system may suffer from an abundance of singularities. With that said, 

it is assumed that meeting the necessary conditions for isostaticity is sufficient for 

generating the architecture criteria for the PRES, as the singularity issue is indeed 

                                                           
1 See Table 6.1 for the definitions of the symbols and the corresponding kinematic joints   
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a topology/geometry design problem and not one of mobility or enumeration. 

Therefore, it can be assumed that the addition of any load-bearing limbs to an 

isostatic topology will generally create a hyperstatic configuration.   

For a typical spatial PKM with six actuators, the six Cartesian variables, that 

is, three translations and three rotations, that represent the pose of the platform, �, 

are usually independent of each other. By locking j prismatic joints, j independent 

Cartesian variables are effectively converted into dependent ones. For an isostatic 

topology, if one stores all the independent and dependent Cartesian variables into 

two vectors �@  and �A, their dimensions will be equal to the number of actuated 

joints, and the number of locked passive joints, respectively. Therefore, to maintain 

isostaticity the following will have to be satisfied for any actuating topology:  

 dim(�@) + dim(�A) = Υ. (3.3) 

If one lets the total number of lockable passive joints be $%�: = dim(�A), then one 

will only have one possible isostatic topology. In this case, if dim(�A) = G ≠ 0, one 

will have r coupled Cartesian variables that cannot be independently controlled in a 

finite sense. To gain full finite mobility through under-actuation, one needs more 

than one topology, specifically, a minimum of $�IJ distinct isostatic. To realize this, 

a minimum of (dim(�A) + 1) passive lockable joints would be required. Hence, one 

can express $�IJ as the following binomial coefficient: 

 $�IJ = (dim(�A) + 1 dim(�A) ). (3.4) 

If a manipulator can provide a minimum of $�IJ distinct isostatic topologies, then it 

can be under-actuated. For example, in the case of the planar manipulator in Fig. 
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3.3, dim(�A) = 1; this gives $�IJ = ( 21 ) = 2. Since one can generate two distinct 

isostatic topologies with the given architecture, under-actuation is possible in this 

case. 

Alternatively, one can express this requirement in terms of the number of lockable 

passive joints, $%�:, as a function of the number of actuated joints, $%&, for any 

PRES as follows:  

 $%�: ≥ (Υ − $%&) + 1  ∀ 1 ≤ $%& ≤ Υ. (3.5) 

Equation (3.5) is expressed with two underlying assumptions. First, it is assumed 

that $%& = dim(�@), since PRES’s are either kinematically non-redundant or 

constrained. Second, it is assumed that the actuation or locking action is applied to 

one non-redundant DOF of the joint, regardless of the number of DOFs of the joint 

itself. In cases where more than one DOF belonging to a joint with multiple DOFs 

can be actuated or locked, Eq. (3.5) needs to be modified to reflect this. Moreover, 

the choice for $%& is driven by the tolerance of the application to utilize finite DOFs 

vs. instantaneous ones. 

To distinguish between the architectures, a three-digit reference is adopted. The 

first letter will reference the operational dimensions of the robot, i.e. P for planar 

manipulators and S for spatial ones. The second digit will specify the number of 

actuators and the third digit will specify the number of lockable passive joints. For 

example the PRES depicted in Fig. 3.3 is P-2-2. This implies that it is a planar 

manipulator with two actuators and two lockable passive joints. The spatial PRES 

in Fig. 3.6 c can be described as S-4-3, since it is a spatial manipulator with four 

actuators and three lockable passive joints. Table 3.2 summarizes the minimal 
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architecture requirements for the planar and the spatial cases, determined by Eq. 

(3.5). Terms ℳ and $%�:R�S are the instantaneous mobility of the system and the 

minimum number of lockable passive joints, respectively.  

Table 3.2: Minimal architecture criteria for PRES’s in ℝ3 and ℝ2. 

 Type ℳ $%& $%�:R�S  

ℝ3 

S-6-1 6 6 1 

S-5-2 5 5 2 

S-4-3 4 4 3 

S-3-4 3 3 4 

S-2-5 2 2 5 

S-1-6 1 1 6 

ℝ2 

P -3-1 3 3 1 

P -2-2 2 2 2 

P -1-3 1 1 3 

 

Naturally, the minimum number of actuated/lockable joints to become 

hyperstatic is four and seven for the planar and the spatial cases, respectively. 

However, this is only the minimum requirement. With the minimal number of 

actuated/lockable joints, there will potentially be one degree of static redundancy if 

the topology is designed properly. However, more lockable passive joints could be 

added to increase the degree of redundancy. For instance, the robot shown in Fig. 

3.6 d has two degrees of static redundancy.   
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3.6 Modularity in Design 

From a kinematic perspective, there is no need to have limbs that are architecturally 

identical to each other. However, from a practical perspective, this is a valuable trait 

to have incorporated into the design. As will be shown in this section, useful 

relationships can be developed if modularity restrictions are imposed on the system. 

These modularity restrictions are as follows: a) all active limbs have the same 

architecture, b) all passive limbs have the same architecture when unlocked, and c) 

all passive limbs have the same architecture when locked. The distinction between 

active and passive limbs will become clear shortly. Figure 3.7 illustrates some 

examples of planar PRES’s that can be considered modular and non-modular based 

on the proposed definition of modularity, defined through the above restrictions. 

 

Figure 3.7: Examples of modular and non-modular planar PRES’s. 

(a) (b)

(c) (d)

Active Joint

Lockable Passive Joint
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A PRES could be made up of active, passive, or hybrid limbs. An active limb is 

a kinematic branch containing one or more actuated joints. A passive limb is a 

kinematic branch containing only passive joints, at least one of which is lockable. 

One can also have a hybrid limb, made up of both actuated and lockable passive 

joints. More on hybrid limbs will be discussed shortly. The total number of passive 

joints in the system, $%� , will be equal to the summation of all regular passive joints, 

$%�T, and all lockable passive joints, $%�:, that is, 

 $%� = $%�T + $%�:. (3.6) 

The total number of lockable passive limbs in the system, $� , will be equal to 

the summation of all passive limbs in the locked state, $�U , and all passive limbs in 

the unlocked state, $�V, that is, 

 $� = $�U + $�V . (3.7) 

Passive limbs accommodating Υ non-redundant DOFs without any lockable 

joints are not considered here as they would not affect the static characteristics of 

the system. Figure 3.8 illustrates the joint type breakdown of the active and passive 

limbs that make up a PRES.  

As previously noted, in addition to the active and passive limbs, the PRES could 

also be made up of hybrid limbs. A hybrid limb contains both active and lockable 

passive joints. Any PRES with hybrid limbs, be it modular or non-modular, can be 

transformed into a PRES with only active and passive limbs. Figure 3.9 illustrates 

two examples of such transformations. In Fig. 3.9 the PRES’s on the left and their 
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corresponding equivalent versions effectively have the same characteristics, that is, 

same instantaneous and finite mobilities, as well as the same degrees of static 

redundancy.  

 

Figure 3.8: Joint type breakdown of the active and passive limbs making up a 

PRES.  

 

It can be shown that the PRES’s depicted in Fig 3.9 a and b have the same 

mobility, that is, ℳ = 2 when isostatic, and ℳ = 1 when hyperstatic. Similarly, the 

PRES’s depicted in Fig. 3.9 c and d have the same mobility, that is ℳ = 2 when 

isostatic, and ℳ = 1 when hyperstatic. All four PRES’s have a static redundancy of 

one. Due to the possibility of this transformation, only active and passive limbs are 

used in what follows. Hybrid limbs can be simply realized by superimposing active 

and passive limbs, in both modular and non-modular PRES’s. 
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Figure 3.9: Examples of transformation of PRES’s with hybrid limbs into 

functionally equivalent PRES’s with only active and passive limbs. 

 

To develop the required relationships for modularity one can initially start by 

expressing the mobility equation (Eq. (3.1)) in the following form:  

 ℳ = Ω + Φ (3.8) 

where  

 Ω = Υ($( − $% − 1) (3.9) 

 Φ = ∑ ℱ�
-.

�=1
. (3.10) 

(a) (b)

(c) (d)
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Based on the defined restrictions the components of Ω and Φ can be further broken 

down to separate the active, locked passive, and unlocked passive limbs:  

 $( = Y&$& + Y�U$�U + Y�V$�V + 2 (3.11) 

 $% = (Y& + 1)$& + (Y�U + 1)$�U + (Y�V + 1)$�V (3.12) 

 ∑ ℱ� = Z&$& + Z�U$�U + Z�V$�V
-.

�=1
 (3.13) 

where Y&, Y�U , and Y�Vrepresent the number of links per active, locked passive, and 

unlocked passive limbs, respectively; Z&, Z�U, and Z�Vrepresent the branch 

connectivity of active, locked passive, and unlocked passive limbs, respectively; 

similarly, $&, $�U , and $�Vrepresent the number of active, locked passive, and 

unlocked passive limbs, respectively. The 2 in Eq. (3.11) represents to the ground 

and the moving platform.  

For example the robot depicted in Fig. 3.6 c has $& = 4, Y& = 2, Y�U = 1,     

Y�V = 2, Z& = 6, Z�U = 5, and Z�V = 6 for all configurations. When the PRES is 

isostatic, that is, one of the passive members is unlocked, $�U = 2, and $�V = 1; 

and when hyperstatic, that is, all passive members are locked, $�U = 3, and      

$�V = 0. By inserting these values into Eqs. (3.11) through (3.13), subsequently into 

Eqs. (3.9) and (3.10), and finally into Eq. (3.8) it can be confirmed that ℳ = 4 for 

the isostatic case, while ℳ = 3 for the hyperstatic case, as expected.  

Furthermore, by substituting Eqs. (3.11) and (3.12) into Eq. (3.9), Ω can be 

expressed as follows:  
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 Ω = Υ(1 − $& − $�U − $�V). (3.14) 

It can be observed from Eq. (3.14) that Ω is invariant with respect to changes in 

topology. For any given system, the summation of all the limbs, whether actuated, 

locked passive, or unlocked passive, are always the same, regardless of topology. 

Therefore, using Eq. (3.8) one can conclude the following relationship:  

 ℳ�IJ − Φ�IJ = ℳℎ�] − Φℎ�] (3.15) 

where ℳ�IJ and ℳℎ�] represent the mobility of the system in the isostatic and 

hyperstatic configurations, respectively. Similarly, Φ�IJ and Φℎ�]represent the same 

for the total relative DOFs of the system. Furthermore, the mobility of the system 

in the hyperstatic state can be represented by subtracting the degree of static 

redundancy, �, introduced through the locking action, from the isostatic mobility of 

the system:  

 ℳℎ�] = ℳ�IJ − �. (3.16) 

For example the PRES in Fig. 3.6 b has � = 3 when all the passive members are 

locked, which yields ℳℎ�] = 0. The terms Φ�IJ and Φℎ�] can also be represented as  

 Φ�IJ = Z&$& + Z�U$�U
�IJ + Z�V$�V

�IJ (3.17) 

 Φℎ�] = Z&$& + Z�U$�U
ℎ�] (3.18) 



48 
 

where the terms with subscripts/superscripts iso and hyp correspond to the isostatic 

and hyperstatic states, respectively. It should be highlighted that the terms 

associated with the unlocked passive members do not appear in Eq. (3.18) since by 

definition unlocked passive members are non-existent in the hyperstatic 

configuration. By substituting Eqs. (3.16) through (3.18) into Eq. (3.15), one obtains  

 Z�V$�V
�IJ − Z�U($�U

ℎ�] − $�U
�IJ) = �. (3.19) 

Since by definition,  

 $�V
�IJ = $�U

ℎ�] − $�U
�IJ (3.20) 

Eq. (3.19) can be further simplified to the following form:  

 Z�V − Z�U = �$�V
�IJ. (3.21) 

The term (Z�V − Z�U) represents the number of non-redundant DOFs that must be 

removed from each unlocked passive limb for $�V
�IJ limbs to attain � degrees of static 

redundancy in the system. After imposing the following physical constraints all 

possible solutions for a given degree of static redundancy can be obtained to 

accommodate modularity:  

 

⎩{{
{⎨
{{{
⎧A :  (Z�V − Z�U) ∈ ℕ>0

 
B :   $�V

�IJ ∈ ℕ>0
 

C :   Z�V > Z�U
 

D :   � ∈ ℕ>0

 . (3.22) 



49 
 

For example for a system with � =1, there is only one solution that satisfies both 

Eqs. (3.21) and (3.22), which is (Z�V − Z�U) = 1. Similarly, for a system with        

� = 2, two solutions exist: (Z�V − Z�U) = 1,2. Table 3.3 summarizes all possible 

solutions for � = 1,… ,6  to accommodate modularity. These solutions and the above 

relationships are valid in ℝ3, as well as ℝ2, with the obvious limitation of 

(Z�V − Z�U) ≤ 3 for cases in ℝ2. 

Table 3.3: Possible solutions for modularity with various degrees of static 

redundancy. 

�  $�V
�IJ Z�V − Z�U  

1 1 1 

   2 1 2 

2 2 1 

   3 1 3 

3 3 1 

   4 1 4 

4 2 2 

4 4 1 

   5 1 5 

5 5 1 

   6 1 6 

6 2 3 

6 3 2 

6 6 1 

 

As it can be observed from Table 3.3, the only solution that satisfies all degrees 

of static redundancy is (Z�V − Z�U) = 1. Furthermore, if more modularity 

restrictions are introduced into the problem by, for example, requiring the passive 

and the active limbs to be of similar architecture with one actuator per limb, then 
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the only solution will be (Z�V − Z�U) = 1, that is, if the same DOF being actuated 

on the active limb is to be locked on the passive limb. In such cases, the number of 

actuated and lockable passive joints will simply be equal to the number of actuated 

and lockable passive limbs, respectively, that is, $%& = $& and $%�: = $� . The 

choice for the optimal architecture for the VGW will be discussed in more details in 

Chapter 6.    

3.7 Conclusion 

A new type of parallel robots that can enhance their static and stiffness 

characteristics by varying their topology while maintaining actuation efficiency have 

been presented in this chapter. These robots can attain static redundancy without 

any actuation redundancy. In addition, a class of these VTMs can deliver full finite 

mobility through under-actuation with as few as one actuator. This particular class 

is of special interest for the morphing wing mechanism.  

The proposed robots can be reconfigured to change their motion characteristics 

to increase their workspace over conventional lower mobility systems with 

permanently constraining limbs. The static redundancy in the design of these 

reconfigurable robots improves their fault tolerance over conventional non-redundant 

ones, making them desirable for autonomous and aerospace applications. In what 

follows, first, the general kinematic and kinetostatic analyses of these robots will be 

presented with the underlying theme of wing morphing application. Afterwards, the 

optimal design and motion control specific to wing morphing will be studied.  
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Chapter 4  

Kinematics  

There are two components involved in the kinematics of the proposed modular 

morphing wing: a global component and a local one. The global kinematics is 

concerned with determining the pose of each platform in the open kinematic chain 

which is made up of multiple morphing modules, i.e. open-loop kinematics. The local 

kinematics is concerned with establishing the inverse kinematic relationships needed 

for the actuation of each module, i.e. closed-loop kinematics. 

Although from a stiffness point of view, the hyperstatic structure is superior to a 

conventional parallel robot placed inside of an envelope similar to a wing, the 

hyperstatic configuration cannot be conventionally controlled since the system is 

kinematically indeterminate. To resolve this issue, an under-actuated control scheme 

has been proposed. This will not only help to achieve the desired final motion, it will 

also offer a very efficient actuation scheme. This motion control scheme, which is 

based on the use of alternating kinematic constraints, is the distinguishing feature of 

the proposed reconfigurable mechanism. In this chapter, initially, the general local 

and global kinematic models of the VGW are presented. Then the proposed under-

actuated motion control scheme is presented and discussed.  
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4.1 Local Kinematics   

Once the pose of the ith platform defined by its corresponding frame is established 

with respect to the (i-1)th platform, one can apply the inverse kinematic relationship 

to the ith module to determine the stroke lengths required for actuation. The 

conventions and coordinates illustrated in Fig. 4.1 are used to present the local 

kinematic model for the proposed mechanism. 

 

Figure 4.1: Local kinematic model of the VGW. 

 

As illustrated, the coordinate frame i is attached to the ith platform, and the 

coordinate frame (i+1) is attached to the (i+1)th platform. Using the defined 

coordinate frames, the loop closure equations can be set up as follows for each of the 

limbs: 

 e%� + f%� = g�+1� + h�+1� e%�+1  (4.1) 

xi
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where g�+1� = [ !� �+1j !� �+1k !� �+1l]�  is the vector representing the coordinates 

of the ¼ c (chord) point on the (i+1)th platform in the ith coordinate frame. The 

components of g�+1�  represent the main span DOF and the two auxiliary 

translational DOFs. Vector e%�  represents the position of the joint belonging to limb 

j on the ith platform in the ith coordinate frame; f%�  is the limb vector in the ith 

coordinate frame; and e%�+1  represents the position of the joint belonging to limb j 

on the (i+1)th platform in the (i+1)th coordinate frame. The term h�+1�
 represents 

the rotation matrix, where h�+1� ∈ no(3). Expressed in terms of the variables of 

interest, that is, dihedral, Γ (rotation about the body-fixed x axis), sweep, Λ (rotation 

about the body-fixed y axis), and twist, "  (rotation about the body-fixed z axis), 

h�+1�
  could be written as follows: 

 h�+1� = h�( Γ�+1� )h�( Λ�+1� )h�( "�+1� ) (4.2) 

where  

 h�( Γ�+1� ) = ⎣⎢
⎡ 1 0 00 cos( Γ�+1� ) −sin( Γ�+1� )

0 sin( Γ�+1� ) cos( Γ�+1� )  ⎦⎥
⎤ (4.3) 

 h�( Λ�+1� ) = ⎣⎢
⎡ cos( Λ�+1� ) 0 sin( Λ�+1� )0 1 0−sin( Λ�+1� ) 0 cos( Λ�+1� ) ⎦⎥

⎤ (4.4) 

 h�( "�+1� ) = ⎣⎢
⎡ cos( "�+1� ) −sin( "�+1� ) 0

sin( "�+1� ) cos( "�+1� ) 00 0 1
 ⎦⎥
⎤. (4.5) 
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The term h�+1�  in its current order of sequence (Eq. (4.2)) could alternatively 

be expressed in its compact form as  

 h�+1� = [ CΛ C" −CΛ S" SΛSΓ SΛ C" + CΓ S" −SΓ SΛ S" + CΓ C" −SΓ CΛ−CΓ SΛ C" + SΓ S" CΓ SΛ S" + SΓ C" CΓ CΛ ] (4.6) 

where C" and S" imply cos(") and sin("), respectively. The superscripts and the 

subscripts have been omitted for clarity.  

Generally, the sequence at which the rotation matrices are applied changes the 

final pose of the platform, since rotation matrices are not commutative. The sequence 

represented by Eq. (4.2) has been chosen for the demonstration of the current work; 

however, any valid rotation sequence can be used instead.   

The percentage of contribution towards the overall motion of the wing can be 

determined for each actuating module using any suitable discretization algorithm 

such as the one proposed by [73]. Subsequently, the local kinematics is used to 

establish the inverse kinematic relationships associated with each module. Each 

module is then treated as a kinematic building block, generating a modular serial 

robot, whose analysis is presented in the following section.   

4.2 Global Kinematics  

The position and the orientation of every actuating rib/platform are determined with 

respect to the previous platform using a series of coordinates attached to each 

platform which is considered to be a rigid body. One can determine the position and 

the orientation of each module by using these coordinate frames. The point at the 

¼c of each platform is used as the origin of the corresponding coordinate frame. As 

illustrated in Fig. 4.2, the pose of each platform can then be described and 
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manipulated using a vector, g�+1� , which defines the position of the (i+1)th coordinate 

frame, ��+1, with respect to the ith coordinate frame, ��, followed by a rotation 

matrix, h�+1� , which captures the changes in the orientation of the (i+1)th 

coordinate frame with respect to the ith coordinate frame.   

 

Figure 4.2: Global kinematic model of the VGW. 

 

The position and the orientation of the ath platform with respect to a reference 

coordinate system, here denoted by 0 (also referred to as global), can be found using 

a recursive method as follows:  

 g�∗0 = g10 + ∑ (∏ h� �+1
�−1
�=0

)�−1
�=1

g�+1�  (4.7) 

and 

 h�0 = ∏ h� �+1
�−1
�=0

 (4.8) 
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where g�∗0  and h�0  represent the position and the orientation of the ath platform 

with respect to the global reference frame, respectively. 

4.3 Under-actuation2    

There are various approaches to implement the under-actuation, such as by locking 

the passive joints [88,99] or using guiding racks [102]. Traditionally, the intents for 

the design of such manipulators have been to implement a control scheme for forward 

kinematics of serial manipulators with passive joints [99], or simply to minimize the 

number of actuators in the case of parallel manipulators [88,102]. However, to the 

author’s best knowledge, no under-actuated parallel manipulator has been designed 

for the purpose of redundant rigidity or enhanced stiffness.  

The variable topology approach which enables the under-actuation in the 

proposed system is made possible through the use of lockable passive joints. These 

lockable passive joints assist in the under-actuation by imposing kinematic 

constraints in a systematic fashion, as illustrated in the example shown in Fig. 3.5. 

There are several possible ways to implement such constraints in order to obtain the 

desired end results. From a kinematic perspective, the conversion of passive joints 

into fully rigid or partially rigid joints can be implemented on any type of joint. A 

fully rigid joint refers to a joint that has lost all of its DOFs. A prismatic (P) or a 

revolute (R) joint would become fully rigid if it was to be locked. A partially rigid 

joint refers to a joint that still has some DOFs left after being locked. A spherical 

(S), a universal (U), or a cylindrical (C) joint could potentially become partially rigid. 

The change in topology could also occur by locking multiple joints belonging to one 

limb. From a practical perspective, locking and unlocking a passive P or R joint, or 

                                                           
2 under-actuation in the present context only deals with holonomically constrained systems 
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the axial component of a C joint is simpler to implement. Additionally, having limbs 

that are similar in architecture helps with maintaining modularity in design. As it 

will become clear in Chapter 6, lockable prismatic joints with similar SPS limbs will 

be employed for the VGW. Although having similar limbs with lockable P or R joints 

are preferred, they are not necessary features for the proposed design. Without loss 

of generality, lockable prismatic joints are used here with similar RPR and SPS limbs 

for the planar and the spatial cases, respectively.  

For a fully-actuated PRES the inverse kinematic relationship could be directly 

used to control the manipulator. However, an under-actuated or a partially-actuated 

PRES is a lower mobility system from an instantaneous point of view, in which case 

one needs to be able to express the dependent Cartesian variables in terms of the 

independent ones. Essentially, solving the kinematic constraint equations is required 

in order to solve the inverse kinematic problem.  

4.3.1 Kinematic Constraints  

It was shown in Chapter 3 that in order to independently control all six Cartesian 

variables, one will need $�IJ distinct topologies. In other words, to obtain full finite 

mobility, one will need (dim(�A) + 1) actuation stages, where each stage 

corresponds to a change in the pose. For instance, for a planar manipulator with two 

actuators, a minimum of two lockable passive limbs and two actuation stages will be 

required to get to the final pose. The transitions from �0  to �1  and �1  to �2  

illustrated by Fig. 3.5 represent the two aforementioned stages. For a spatial 

manipulator with four actuated limbs (see Fig. 3.6 c), a minimum of three lockable 

passive limbs and three actuation stages will be required to independently control 

six finite DOFs, and so on.  
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By locking one passive SPS limb the branch connectivity, Z%, has changed from 

six to five, effectively reducing the independent Cartesian variables of the module 

from six to five. This is true since for any holonomically constrained kinematic 

system,  

 ∑ Z%
-�

%=1
= ∑ ℱ�

-.

�=1
 (4.9) 

where $: and $% represent the total number of limbs and joints in the module, 

respectively, and ℱ� represents the number of relative DOFs permitted by joint i. 

Therefore, in the case with one locked passive member, one out of six parameters 

needs to be expressed in terms of the other five. The number of locked passive 

members in the system directly corresponds to the number of dependent Cartesian 

variables, which belong to vector �A. In general, for every distinct isostatic topology, 

one needs to express the dependent parameters in terms of the independent ones and 

the length(s) of the locked limbs. Symbolically this can be written as  

 �A = �(�@ ,6� ) (4.10) 

where 6�  is a vector of scalars containing the lengths of the locked passive members 

and � is the constraint function. The branch kinematic constraint is essentially the 

parametric equation of a circle and a sphere for the planar and the spatial cases, 

respectively, imposed by the fixed length of the locked passive member. Therefore, 

to develop the parametric constraint equation of the jth locked passive limb, one can 

rewrite Eq. (4.1) in terms of its Euclidian norms: 
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 ∥ f%� ∥2 = ∥ g� �+1 + h� �+1 e�+1 % − e� %∥2 (4.11) 

which could be decomposed into  

∥ f%� ∥2 = ∥ g� �+1 − e� %∥2 + 2 [( g� �+1 − e� %)� h� �+1 e�+1 %] + ∥ h� �+1 e�+1 %∥2. (4.12) 

Since h� �+1 ∈ no(3), then ∥ h� �+1 e�+1 %∥ = ∥ e�+1 %∥. Also, ∥ f%� ∥ ≡ 7%� . Therefore, 

Eq. (4.12) can be further simplified to   

 7%2� − 2 [( g� �+1 − e� %)� h� �+1 e�+1 %] − ∥ g� �+1 − e� %∥2 − ∥ e�+1 %∥2 = 0. (4.13) 

Equation (4.13) represents the parametric constraint corresponding to the jth 

passive limb. A kinematically constrained system with r locked passive limbs will 

have r constraint equations that need to be simultaneously solved in order to obtain 

the inverse kinematic relationships of the system.   

The positions of all the joints that lie on the platform with respect to the moving 

frame, as well as the length(s) of the locked passive member(s), are known. Therefore, 

the only variables to solve would be (!�, !�, !�, Γ, Λ, "). In total there will be 

dim(�A) constraint equations, which implies dim(�A) unknown variables. The 

choice of the elements of �A is somewhat arbitrary from the finite DOF point of 

view, since full mobility is attainable with the under-actuated system, given that 

joint limits are not reached. The optimal sequence could generally be determined 

using an optimization algorithm, for example, to minimize the actuation energy, i.e. 

minimize both the internal loads and the stroke lengths, or to maximize the 

transitional stiffness of the system. The optimal actuation sequences will be 
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investigated in Chapter 7. Any suitable numerical methods such as Newton-Raphson 

could be used to obtain the solutions.  

While the kinematic constraint of Eq. (4.13) is presented for a lockable prismatic 

joint, the proposed scheme could be easily modified and applied to architectures with 

lockable R joints; for example an RRR limb for a planar PRES, or an SRS limb for 

a spatial PRES where the middle R joint is locked to generate the kinematic 

constraint. However, as it will become evident in Chapter 6, such limb architectures 

may not be desirable for the application at hand.  

Solving the constraint equations is required to determine the dependent 

components of the pose; however, it is not sufficient to implement the under-

actuation. To do so, a systematic approach is proposed, which will be referred to as 

Under-actuation with Virtual Alternating Constraints (UVAC). 

4.3.2 Under-actuation with Virtual Alternating Constraints  

For any given pose in the Cartesian space of the manipulator, there would be a 

unique vector representing the lengths for all the limbs in the reachable workspace 

of the manipulator. To obtain that particular pose one needs to realize those lengths. 

The lengths of the actuated limbs can be simply varied through actuation; however, 

the lengths of the passive limbs must be realized indirectly since they cannot be 

actuated. One can achieve those lengths by imposing a virtual constraint in addition 

to the physical constraints needed to generate an isostatic topology. The virtual 

constraint will treat an unlocked passive member as if it were locked when solving 

the constraint equations. Therefore, any solution that satisfies the actual constraints, 

i.e. constraints required to maintain isostaticity, must also satisfy the length 

constraint imposed by the virtual constraint. The virtual constraint would be the 

desired length of a particular passive member in the final pose. By achieving the 
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lengths in a sequential manner, one can obtain the final lengths of all the passive 

limbs without directly actuating any of them as demonstrated through the example 

in Chapter 3.  

The lengths of the locked passive members in the final pose must satisfy the 

constraint function �, which expresses the dependent Cartesian variables in terms of 

the independent ones for going from the last intermediate pose to the final one. A 

minimum of (dim(�A) + 1) constraint equations are needed for every intermediate 

stage. Out of these, dim(�A) constraint equations are real, as they are imposed by 

the locked passive member(s) to maintain isostaticity and one is virtual as it 

corresponds to the one passive member that is not locked. 

The idea of using active joints to drive lockable passive joints into a particular 

position in a closed-loop system has been previously introduced and investigated [84]. 

Similarly, the use of inverse kinematics to determine locking values of lockable 

passive joints for a parallel manipulator has also been investigated [98]. The robot 

in [84] is kinematically non-redundant, whereas the robot in [98] operates in two 

modes, one of which is redundantly actuated, and the other one is kinematically 

redundant. The robots introduced in the current work that utilize the proposed 

virtual constraints are kinematically constrained.  

What sets the proposed approach apart from the previous works is the utilization 

of under-actuation through an alternation of locking and unlocking of passive joints 

to give full finite mobility to an otherwise kinematically constrained robot. This 

alternating scheme, which could utilize the same passive member more than once in 

one actuation cycle, i.e. going from an initial pose to a final pose, enables the under-

actuation and gives the UVAC approach its novelty compared to the previous works.  
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The same principle that applies to the under-actuated motion control of the 

proposed three-dimensional wing morphing mechanism also applies to the two-

dimensional case. Therefore, for clarity in demonstration, a two-dimensional case is 

initially used to present the UVAC approach. Although the general methodology for 

any similar under-actuated system in ℝ2 and ℝ3 are alike, as it will shortly become 

clear the exact implementation of the under-actuation is topology dependent. 

Therefore, the implementation for the VGW will be presented in Chapter 7 after the 

presentation of the optimal configuration (Chapter 6). 

4.3.2.1 UVAC for a P-2-2 PRES  

The planar mechanism depicted in Fig 4.3 has two actuators and two passive 

members. The presented ground topology yields two isostatic and one hyperstatic 

topologies.  

 

Figure 4.3: Two isostatic and one hyperstatic topologies can be generated for the  

P-2-2 PRES. 
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In Fig. 4.3 the solid lines with the thick bars represent linear actuators, the plain 

solid lines represent locked passive limbs, and the dashed lines represent unlocked 

passive limbs. Each limb consists of two revolute joints and one prismatic joint, i.e. 

RPR, with P being the actuated/lockable joint. Topologies I and II represent two 

distinct isostatic topologies that could be attained using the ground topology. The 

hyperstatic topology is obtained through the locking of all lockable passive joints. 

Fig. 4.4 represents the kinematic model of the P-2-2 PRES. 

 

Figure 4.4: Kinematic model of a P-2-2 PRES. 

 

The loop closure equation (Eq. (4.1)) is also applicable to the P-2-2 PRES. In 

this case, the rotation matrix, h� �+1 ∈ no(2), can be represented as  

 h� �+1 = [cos ��+1l
 � −sin ��+1l

 �
sin ��+1l

 � cos ��+1l
 � ]. (4.14) 

The rest of the terms are similar to those of ℝ3 with the z component of the 

vectors missing. Using the loop closure equations, the inverse kinematic relationships 

can be set up for each of the limbs as  

iqj

iRi+1
i+1pj

Platform i Platform ‘i+1’

i+1Pj

l 

yi+1
l 

ipj

i bi+1

xi+1xi

yi

iPj

zθ



64 
 

 7�� % = �( ��� �+1)  ∀ 1 = 1,2,3,4;  � = 0,1,2 (4.15) 

where  

 ��� �+1 = [ !�� �+1j !�� �+1k !�� �+1l]�  (4.16) 

and j and s are the number of limbs and stages, respectively, and � is the function 

representing the loop closure equation. The term 7�� % represents the length of the jth 

limb of the ith module in the sth actuation stage. 

The objective is to go from some initial pose to some final pose in the 2D 

Cartesian space. Since there are two actuators available, one intermediate pose will 

be needed to achieve this. Notation �0� �+1 will be adopted to represent the initial 

pose of the (i+1)th platform in the ith coordinate frame. Subsequently, �1� �+1 and 

�2� �+1 will be used to represent the intermediate and the final poses, respectively. 

With the given topology, there are two possible actuation paths that could be 

utilized. Each path presents a distinct sequence of how to get from some initial pose 

to some final pose. Figure 4.5 illustrates the two options for under-actuation. 

Generally, the higher the number of paths the higher the number of possible 

solutions, which could lead to more optimal actuation. The details of the 

optimization for motion control will be discussed in Chapter 7.    

Similar to the example presented in Chapter 3, with the module in the final pose, 

�2� �+1, one has a vector 62� = [ 72� 1 72� 2 72� 3 72� 4 ]�  that describes the lengths of the 

actuated, unlocked, and locked passive limbs of the ith module for the final pose. 

Since the lengths of the actuated limbs can be directly controlled, one needs not be 
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concerned with attaining those values through under-actuation; thus, 72� 2  and 72� 3  

need to be achieved in order to obtain �2� �+1. With path 1, when going from �0� �+1 

to �1� �+1��	ℎ 1 using topology I, the attained pose will give 72� 2 . This pose must satisfy 

a real constraint, that is 70� 3 , and a virtual constraint, that is 72� 2 . The two constraint 

arcs that must be satisfied can be visually represented by Fig. 4.6. 

 

Figure 4.5: Two distinct paths used to achieve under-actuation for the P -2-2 

PRES. 

 

The dashed line implies that the passive member is unlocked, whereas the solid 

line implies that it is locked. Figure 4.6 shows the state of 

QPath 11� =[ q1� 1 q1� 2 q1� 3 q1� 4 ]T, where q1� 3 = q0� 3 , i.e. the actual constraint, and 

q1� 2 = q2� 2 , i.e. the virtual constraint. With 72� 2  achieved, and the third limb unlocked, 

the inverse kinematics problem can be simply solved to attain �2� �+1. For systems 
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with more than one intermediate pose, the step described above will be repeated 

until all the passive members have achieved the desired stroke lengths. 

 

Figure 4.6: Virtual and actual kinematic constraints used in UVAC,                

pose = �1� �+1��	ℎ 1.  
 

For the spatial case, i.e. the VGW, a suitable numerical method (see Appendix 

A) should be used to solve the kinematic constraints, presented by Eq. (4.13). 

However, in this planar case with a symmetric platform, the two constraint equations 

corresponding to �1� �+1��	ℎ 1 can be analytically solved by simplifying them and 

expressing them as follows:  

 70� 32 − ( !1� �+1j − �sin �1� �+1l)2 + ( !1� �+1k + �(cos �1� �+1l + 1))2 = 0 (4.17) 
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 72� 22 − ( !1� �+1j + �sin �1� �+1l)2 + ( !1� �+1k − �(cos �1� �+1l + 1))2 = 0. (4.18) 

Although, the choice of the independent DOF is not important for the purpose 

of demonstrating the under-actuation, it would be of significance in the case of the 

VGW or any other practical application. Since (dim(�A) + 1) < Υ there will be an 

infinite number of solutions to choose from. The optimality of the intermediate poses 

will be studied in Chapter 7. Without loss of generality the rotational DOF is allowed 

to be the independent one for this example, and given a value equal to that of the 

final pose, that is , �1� �+1l = �2� �+1l . With the final pose known, 70� 3 , 72� 2 , and �1� �+1l 

can be substituted into Eqs. (4.17) and (4.18) to obtain !1� �+1j and !1� �+1k , and solve 

the under-actuation problem. By letting � = 1.0, �0� �+1 = [1.000 0.000 0.0]� , and       

�2� �+1 = [1.500 0.500 30.0]� , the following results could be obtained, where all 

translational and rotational components are presented in m and deg, respectively:   

�1� �+1��	ℎ 1 = [1.301 0.013 30.0]� . 
The Q vectors for the three stages will be  

Q0� =[1.000 1.414 1.414 1.000]T 

Q��	ℎ 11� =[1.052 1.803 1.414 1.553]T 

Q2� =[1.323 1.803 1.902 1.840]T. 
All the steps required to achieve the under-actuated motion for the P-2-2 robot 

can be demonstrated as shown in Fig. 4.7. This figure illustrates how three Cartesian 

variables, i.e. x, y, and ��, can be controlled with only two actuators, with the use 

of two isostatic topologies.  



68 
 

 

Figure 4.7: Under-actuation procedure for a planar mechanism with two actuators 

and two passive members using path 1. 

 

As illustrated in Fig. 4.7 five steps are used to go from the initial pose to the 

final one, where each step represents a change in either the topology or the pose. A 

step is not to be confused with the previously defined stage, which only represents a 

change in the pose. In the first step, isostatic topology I is activated by unlocking 

one of the locked passive members. In the second step, some intermediate pose which 

satisfies the actual and the virtual constraints is realized. In the third step, isostatic 

topology II is activated by locking the previously unlocked passive member and 

unlocking the other passive member. In the fourth step, the final pose is realized. In 

the fifth step, the mechanism returns to the hyperstatic configuration, i.e. both 

passive members become locked. Alternatively, the same results could be achieved 

using path 2, as illustrated in Fig. 4.8.   
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Figure 4.8: Under-actuation procedure for a planar mechanism with two actuators 

and two passive members using path 2. 

 

The results corresponding to initial and final poses for path 2 are the same as 

those from path 1, while the results for the values for the intermediate stage are as 

follows:  

�1� �+1��	ℎ 2 = [1.283 0.405 0.0]�  

Q��	ℎ 21� =[1.345 1.414 1.902 1.345]T. 
In the case of path 2 the independent DOF is set to be �1� �+1l = �0� �+1l . 

In general, the UVAC can be applied to generate more intermediate poses and 

sub-stages for higher fidelity. Ultimately, the choice of the independent parameter(s), 

their values, and the amount of discretization for the UVAC could be part of a 

universal optimization scheme that can capture responses related to modularization, 
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stiffness, kinematics, topology layout, and any other potential design criteria. In the 

case of the VGW, as will be discussed in detail in Chapter 7, far more paths exist 

than the simplified planar example presented in this section, leading to several 

possible solutions, and a more complex algorithm for the motion control.     

4.3.3 Joint Placement for Under-actuation 

It is worthwhile to note that in the case where the two passive limbs of the P-2-2 

robot do not share a node on the (i+1)th platform, that is £�+1 2 ≠ £�+1 3 (Fig. 4.9 a), 

multiple solutions for under-actuation exist. However, where the two passive limbs 

of the P-2-2 robot share a node on the (i+1)th platform, that is £�+1 2 = £�+1 3 (Fig. 

4.9 b), there would generally be one solution in the reachable workspace of the 

manipulator. In the case of the P-1-3 robot, where £�+1 2 = £�+1 3 (Fig. 4.9 c), 

generally no solutions for under-actuation would exist within the reachable 

workspace. However, when the passive joints on the (i+1)th platform are separated 

in the case of the P-1-3 robot (Fig. 4.9 d), multiple solutions for under-actuation can 

be found.  

As it can be observed, separating the joints associated with the passive limbs on 

the platform will generally lead to a wider range of solutions. From a practical 

perspective, when a passive member is locked, it is the pivoting motion about its end 

joint on the platform that allows the mechanism to achieve the desired length for 

the unlocked passive member. Therefore, if two passive members are sharing the 

same joint or are in very close proximity of each other on the platform, this will 

create an undesired redundancy in the under-actuation and one will not be able to 

control all the Cartesian variables with the minimum number of passive members. 

Therefore, in order to optimize the actuation procedure, care must be taken from a 
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layout design point of view to ensure that the passive limbs are not in very close 

proximities of each other. 

 

Figure 4.9: Topology effect on ability to under-actuate. 

 

In order to avoid such configurations, one can impose the following condition on 

all PRES’s with one lockable DOF per limb: 

 $%¤ = $�  (4.19) 

where, $%¤  and $�  are the number of joints connected to passive limbs on the 

platform, and the number of passive limbs, respectively. This relationship implies 

that passive limbs cannot share joints on the moving platform, if they are to be 

utilized in the under-actuation. However, if there are a sufficient number of passive 
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members to undertake the under-actuation, then any extra passive members that 

may be added for additional stiffness enhancement may be sharing joints on the 

moving platform. 

4.4 Conclusion 

The local and global kinematic formulations of the VGW were presented in this 

chapter, along with a proposed under-actuated motion methodology, UVAC. This 

novel method exploits the inherent static redundancy in the system to improve the 

actuation efficiency of the robot. A planar example was presented to demonstrate 

the application of the alternating constraint formulation, developed to accommodate 

the under-actuated motion of the PRES. The use of different paths for under-

actuation was introduced in this chapter. The optimality of the paths will be 

investigated for the VGW in Chapter 7, where minimum-energy actuation is 

discussed. 
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Chapter 5  

Kinetostatics 

To design and optimize the topological and geometric features of VGW, one must 

be able to parametrically evaluate the stiffness and the internal loads (actuator and 

joint loads) for various loading conditions as a function of the pose and the 

configuration. Similar to the kinematic relationships, the static relationships can also 

be broken up into local and global components. The local statics is concerned with 

determining the internal loads in the ith module for a given external load acting on 

the (i+1)th platform, while the global statics is concerned with determining the 

external forces and moments acting on each platform. Similarly, the local and the 

global stiffness are concerned with the stiffness of a single module and a series of 

modules, respectively.  

5.1 Local Stiffness (Module Level) 

Defining the stiffness terms and the coupling is highly dependent on the definition 

of the point of interest on the platform. From the motion control point of view, the 

choice is somewhat arbitrary, as identical motions can be obtained using different 

points. However, the most obvious and convenient choice would be the quarter-chord 

point (¼c), since this will facilitate conventional wing/planform motion definitions, 

for example, a twist about the ¼c point. From a stiffness point of view, the choice 
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of the point of interest will have a significant impact on the form of the stiffness 

matrix. For the evaluation of the stiffness matrix, the most natural choice for defining 

the point of interest would be the center of area of the airfoil section, which would 

approximately line up with the halfway point on the platform (as identified in Fig. 

5.1). Although picking one point or another will not affect the results of the 

optimization, having the point of interest placed at the halfway point will eliminate 

unnecessary offset terms. 

 

Figure 5.1: Loop closure diagram for the VGW. 

 

In what follows, the analytical form of the 6 × 6 Cartesian stiffness matrix of the 

VGW is derived. The various components of the derived stiffness matrix will be used 

in the next chapter to determine the optimal configuration for the VGW. Using 

screw theory [103-105], one can apply the following relationship to the VGW:   

 ¦§�f�̇ = ¦©� �̇� �+1 (5.1) 

where ¦§� and ¦©� are the inverse and direct Jacobian matrices associated with the 

ith module, respectively; f�̇  is the vector of joint rates associated with module i, 
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expressed in the joint space. The term �̇� �+1 is the vector of Cartesian rates of the 

(i+1)th platform expressed in the ith coordinate frame, that is, a twist vector 

containing the linear and angular velocities of a point on the platform, where 

�̇� �+1 ∈ ℝ6 for the VGW, that is, the spatial case. Although the analysis is 

applicable to both planar and spatial cases, for brevity, in the remainder of the 

derivations the presentation of the terms will be limited to the spatial case only. 

Matrices ¦§�and ¦©�can be expressed as 

 ¦§� = diag[ 71� ,… , 7S� ] (5.2) 

 ¦©� =
⎣⎢
⎢⎢
⎡ f� 1� «� 1�

⋮ ⋮
f� S� «� S� ⎦⎥

⎥⎥
⎤ (5.3) 

where  

 f� % = g� �+1 + � % − e� % (5.4) 

 «� % = � % × f� % (5.5) 

and  

 � % = h� �+1 e�+1 %. (5.6) 

The term n represents the total number of limbs; 7%�  is the length of the jth limb in 

the ith module; f%�  is the jth limb vector in the ith coordinate frame; e%�  represents 
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the position of the joint belonging to limb j on the ith platform in the ith coordinate 

frame; e%�+1  represents the position of the joint belonging to limb j on the (i+1)th 

platform in the (i+1)th coordinate frame; g�+1�  is the vector representing the 

coordinates of a point of interest on the (i+1)th platform in the ith coordinate frame; 

and h� �+1 represents the rotation matrix of the platform, as defined in Sec. 4.1. 

Equation (5.4) is defined based on the loop closure equation, corresponding to 

Fig. 5.1. The previously introduced vectors are defined as follows:  

 f� % = [ 7� %j 7� %k 7� %l]�  (5.7a) 

 e� % = [ ®� %j ®� %k ®� %l]�  (5.7b) 

 e�+1 % = [ ®�+1 %j ®�+1 %k ®�+1 %l]�  (5.7c) 

 g� �+1 = [ !� �+1j !� �+1k !� �+1l]�  (5.7d) 

 � % = [ ¯� %j ¯� %k ¯� %l]�  (5.7e) 

 «� % = [ °� %j °� %k °� %l ]�  (5.7f) 

where 

 °� %j = ¯� %k 7� %l − ¯� %l 7� %k (5.8a) 
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 °� %k = ¯� %l 7� %j − ¯� %j 7� %l (5.8b) 

 °� %l = ¯� %j 7� %k − ¯� %k 7� %j . (5.8c) 

Equation (5.1) can also be expressed as  

 f�̇ = ¦� �̇� �+1 (5.9) 

where 

 ¦� = ¦§�
−1¦©� . (5.10) 

Matrix ¦� , referred to as the Jacobian, is the mapping from the Cartesian velocity 

vector to the joint velocity vector for module i, that is,  

 ¦� =

⎣⎢
⎢⎢
⎢⎢
⎢⎡

± 71�
± !� �+1j

⋮
± 7S�

± !� �+1j

± 71�
± !� �+1k

⋮
± 7S�

± !� �+1k

± 71�
± !� �+1l

⋮
± 7S�

± !� �+1l

± 71�
± Γ�+1�

⋮
± 7S�

± Γ�+1�

± 71�
± Λ�+1�

⋮
± 7S�

± Λ�+1�

± 71�
± "�+1�

⋮
± 7S�

± "�+1� ⎦⎥
⎥⎥
⎥⎥
⎥⎤

. (5.11) 

From Eq. (5.9) it can be concluded that  

 ²f� = ¦� ² �� �+1 (5.12) 
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where ²f� and ² �� �+1 are the joint and Cartesian infinitesimal displacements, 

respectively. By applying the principle of kinematic/static duality, one can write  

 �� �+1 = ¦�� ³� (5.13) 

where ³� is the vector of actuator/locked passive member loads associated with 

module i defined in the joint space, and �� �+1 is the vector of forces and torques 

acting on a point on the (i+1)th platform expressed in the ith coordinate frame, that 

is, a wrench vector, where �� �+1 ∈ ℝ6 for the VGW. In the presented forms of Eqs. 

(5.12) and (5.13), ¦� and ¦��  are in fact the compatibility and the equilibrium 

matrices associated with module i, respectively. The size of the matrix and the values 

that make up ¦� will vary depending on configuration.  

The actuator/locked passive member forces can be related to their displacements 

using Hooke’s law: 

 ³� = ´µ�²f� (5.14) 

where 

 ´µ� = diag[ ¶1� ,… , ¶S� ] = ·�¸¹º κ� (5.15) 

and  

 κ� = diag [ κ1� ,… , κS� ]. (5.16) 
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Matrix ´µ� is the joint stiffness matrix of the ith module. Terms κ1�  through κS�  

represent the equivalent stiffness of each limb when it is load-bearing. Actuators are 

always load-bearing, whereas passive members are load-bearing when they are 

locked. To minimize alterations in dimensions and forms of the Jacobian and the 

joint vectors, a configuration matrix, ·�¸¹º , is used to change the stiffness of a passive 

limb when it is unlocked. Depending on the numbering convention used, ·�¸¹º  can 

take on different forms, however it will be a » × » diagonal matrix regardless of the 

numbering and its components will take on values of zero and one, representing 

unlocked passive limbs, and locked passive/actuated limbs, respectively. For 

example, when all the passive members are locked, that is, a hyperstatic 

configuration, ·�¸¹º ≡ ·�ℎ�] = ¼, where ¼ ∈ ℝ8×8 refers to the identity matrix3. The 

terms ¶1�  through ¶S�
 represent the modified limb stiffness, where ¶%� = κ%�  if the 

corresponding limb is an actuator or a locked passive member, and ¶%� = 0 if the 

corresponding limb is an unlocked passive member. Alternatively, the Jacobians and 

the joint vectors could be modified to achieve the same results, instead of using a 

configuration matrix. Nevertheless, by substituting Eq. (5.12) into Eq. (5.14) one 

has 

 ³� = ´µ�¦� ² �� �+1. (5.17) 

Then, by substituting Eq. (5.17) into Eq. (5.13) one can obtain 

 �� �+1 = ¦�� ´µ�¦� ² �� �+1. (5.18) 

                                                           
3 the choice for eight load-bearing limbs will become clear in Sec. 6.2.1 
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By assuming that the platform portion of the VGW is rigid, the equivalent stiffness 

matrix of the (i+1)th platform, solely due to the compliance of the members, 

expressed in the ith coordinate frame becomes 

 ´� ½�+1 = ¦�� ´µ�¦�. (5.19) 

By substituting Eq. (5.10) into Eq. (5.19), ´� ½�+1 can be expressed as 

 ´� ½�+1 = ¦©�
� ¾�¦©� (5.20) 

where 

 ¾� = ¦§�
−� ´µ�¦§�

−1. (5.21) 

Matrix ¾� can be expressed as 

 ¾� = diag[ ¿1� ,… , ¿S� ] (5.22) 

where  

 ¿%� = ¶%�
7� %2. (5.23) 

By substituting Eqs. (5.22) and (5.3) into Eq. (5.20) one has 

 ´� ½�+1 = [ K
� �+111 K

� �+112
K

� �+121 K
� �+122

] (5.24) 
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where 

 K
� �+111 = ∑ ¿� %

S
%=1

( f� % f� %� ) (5.25) 

 K
� �+112 = ∑ ¿� %

S
%=1

( f� % «� %� ) (5.26) 

 K
� �+121 = ∑ ¿� %

S
%=1

( «� % f� %� ) (5.27) 

 K
� �+122 = ∑ ¿� %

S
%=1

( «� % «� %� ). (5.28) 

The 6 × 6 Cartesian stiffness matrix can be expressed by expanding K
� �+111, 

K
� �+112, K

� �+121, and K
� �+122:    

 

       K
� �+111 =

⎣⎢
⎡ À� �+111 À� �+112 À� �+113À� �+121 À� �+122 À� �+123À� �+131 À� �+132 À� �+133⎦

⎥⎤                           

      =
⎣⎢
⎢⎢
⎢⎢
⎢⎡∑ ¿� % 7� %j

2S
%=1

∑ ¿� % 7� %j 7� %k
S

%=1
∑ ¿� % 7� %j 7� %l

S
%=1

∑ ¿� % 7� %k
2S

%=1
∑ ¿� % 7� %k 7� %l

S
%=1

SYM ∑ ¿� % 7� %l
2S

%=1 ⎦⎥
⎥⎥
⎥⎥
⎥⎤

 

(5.29) 

      K
� �+122 =

⎣⎢
⎡ À� �+144 À� �+145 À� �+146À� �+154 À� �+155 À� �+156À� �+164 À� �+165 À� �+166⎦

⎥⎤                           (5.30) 
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      =
⎣⎢
⎢⎢
⎢⎢
⎢⎡∑ ¿� % °� %j

2S
%=1

∑ ¿� % °� %j °� %k
S

%=1
∑ ¿� % °� %j °� %l

S
%=1

∑ ¿� % °� %k
2S

%=1
∑ ¿� % °� %k °� %l

S
%=1

SYM ∑ ¿� % °� %l
2S

%=1 ⎦⎥
⎥⎥
⎥⎥
⎥⎤

 

 

K
� �+112 =

⎣⎢
⎡ À� �+114 À� �+115 À� �+116À� �+124 À� �+125 À� �+126À� �+134 À� �+135 À� �+136⎦

⎥⎤                           

      =
⎣⎢
⎢⎢
⎢⎢
⎢⎡∑ ¿� % 7� %j °� %j

S
%=1

∑ ¿� % 7� %j °� %k
S

%=1
∑ ¿� % 7� %j °� %l

S
%=1

∑ ¿� % 7� %k °� %j
S

%=1
∑ ¿� % 7� %k °� %k

S
%=1

∑ ¿� % 7� %k °� %l
S

%=1
∑ ¿� % 7� %l °� %j

S
%=1

∑ ¿� % 7� %l °� %k
S

%=1
∑ ¿� % 7� %l °� %l

S
%=1 ⎦⎥

⎥⎥
⎥⎥
⎥⎤

 

(5.31) 

where 

 K
� �+112 = K

� �+121
 � . (5.32) 

Although the formulation can be easily extended to account for the compliance of 

the platform, to simplify the formulation it is assumed that the platform portion of 

the mechanism is rigid. The derived components of ´� ½�+1will be used in the 

upcoming optimization process. 

5.2 Local Statics    

To obtain a generalized form which could be applied to all isostatic and hyperstatic 

topologies for all PRES’s, one can decompose Eq. (5.13) as follows:  
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 �� �+1 = [¦�Ç
� ¦�È

� ]Υ×S [³�Ç³�È
]

S×1
 (5.33) 

where » ≥ Υ. Each configuration can be classified into one of the two following 

categories: a) isostatic, where » = Υ; and b) hyperstatic, where » > Υ. Terms A and 

P refer to actuated and passive limbs, respectively. Using the presented 

active/passive decomposition, for the isostatic cases where one or more of the passive 

limbs may become unlocked, the corresponding rows or columns can be simply 

deleted and the matrices can be reduced to a square form. Thus, in the statically 

determinate cases for the VGW, the internal loads, ³��IJ , can be simply calculated 

by inverting ¦�� , which is a 6 × 6 matrix: 

 ³��IJ = ¦�−� �� �+1. (5.34) 

To obtain the internal loads for the hyperstatic case, short of using a pseudo-

inverse to invert a non-square Jacobian, the compliance of the limbs could be used 

to determine the internal loads. Similar to Eq. (5.34), Eqs. (5.12) and (5.19) can also 

be decomposed to active and passive components:   

 [²f�Ç²f�È
]

S×1
= [¦�Ç¦�È

]
S×Υ

² �� �+1 (5.35) 

 ´� ½�+1 = [¦�Ç
� ¦�È

� ] [´µ�Ç ÌÌ ´µ�È
][¦�Ç¦�È

]. (5.36) 

In order to obtain the general form for internal loads one could substitute  
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 ² �� �+1 = ´� ½�+1
−1 �� �+1 (5.37) 

into Eq. (5.35) to get 

 ²f� = ¦� ´� ½�+1
−1 �� �+1. (5.38) 

Finally, by substituting Eq. (5.38) into Eq. (5.14) one obtains 

 ³�ℎ�] = ´µ�¦� ´� ½�+1
−1 �� �+1 (5.39) 

where ³�ℎ�]  is a » × 1 vector representing the internal loads for the hyperstatic 

configuration. The general form of the Jacobian for the ith module can be expressed 

as  

 ¦� =
⎣⎢
⎢⎢
⎡ f� 1� 7� 1⁄ h� �+1 e�+1 1 × f� 1 7� 1⁄

⋮ ⋮
f� S� 7� S⁄ h� �+1 e�+1 S × f� S 7� S⁄ ⎦⎥

⎥⎥
⎤ (5.40) 

where iqn is the length of the nth load-bearing member of the ith module. The size of 

the matrix and the values that make up Ji will vary depending on configuration.   

5.3 Global Stiffness (Wing Level) 

After determining the local stiffness of each platform isolated from the rest of the 

structure, it would be useful to determine the actual stiffness at any particular 

platform with the contribution of the preceding kinematic modules. This will be 

referred to as the global or the upstream stiffness. In order to do this, one must first 
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transform the load and displacement vectors associated with each platform from 

some reference coordinate system, for example the global system denoted by 0, to 

the local coordinate system of that platform. These could be expressed as  

 ² �0 �+1 = Î0 �² �� �+1 (5.41) 

 �0 �+1 = Î0 � �� �+1 (5.42) 

where ² �� �+1 denotes the displacement vector associated with the (i+1)th platform 

in the ith coordinate system. Similarly, �� �+1 denotes the load vector containing the 

external forces and moments acting on the (i+1)th platform in the ith coordinate 

system; ² �0 �+1 and �0 �+1 express similar vectors in the global coordinate frame; Î0 � 
is the transformation matrix from the ith to the global coordinate system and can be 

expressed as  

 Î0 � = [ h0 � ÌÌ h0 �] (5.43) 

where h0 � represents the orientation of the ith platform in the global reference frame. 

Here, the global coordinate system is used as the reference to express the overall 

stiffness of the structure. In general, any frame of interest could be used to find the 

equivalent stiffness. 

The direct stiffness relationship of the (i+1)th platform expressed in the ith 

coordinate system, using the adopted notation would be    
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 �� �+1 = ´� ½�+1² �� �+1. (5.44) 

By rearranging Eqs. (5.41) and (5.42) and substituting them into Eq. (5.44), one has 

 Î0 �� �0 �+1 = ´� ½�+1 Î0 �� ² �0 �+1 (5.45) 

where Î0 �� ≡ Î� 0 and Î0 �� ≡ Î0 �−1. Thus, Eq. (5.45) can be simply expressed as 

 �0 �+1 = Î0 � ´� ½�+1 Î� 0² �0 �+1. (5.46) 

Since 

 �0 �+1 = ´0 ½�+1² �0 �+1 (5.47) 

where ´0 ½�+1is the stiffness of the (i+1)th module expressed in the global coordinate 

system, it can be concluded that  

 ´0 ½�+1 = Î0 � ´� ½�+1 Î� 0. (5.48) 

With every module expressed in the global coordinate system, the equivalent 

compliance of any platform of the VGW can be evaluated by adding the compliances 

of the preceding modules. Notation ´Ï is used to distinguish between the stiffness 

of a module with and without accounting for the preceding modules which are laid 

out in series. The term ´0 Ï�+1represents the equivalent stiffness of the (i+1)th 

module expressed in the global coordinate, while accounting for the compliance of 
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the preceding modules. Therefore, the global compliance of the ath platform can be 

expressed in the global system, as  

 ´0 ÏÐ
−1 = ∑( ´0 ½�+1

−1 )�
�=0

. (5.49) 

Finally, expressed in the global coordinate frame, the global stiffness of the ath 

platform becomes 

 ´0 ÏÐ = (∑( Î0 � ´� ½�+1
−1 Î� 0)�

�=0
)−Ñ. (5.50) 

Using the presented kinetostatic model, one can determine the global stiffness of any 

platform as a function of its pose. 

5.4 Global Statics   

The multi-module static relationships, i.e. global statics, of the modular morphing 

wing are similar to those of a serial robot with each module being represented by an 

equivalent link in the serial chain. The two major differences are the inclusion of the 

aerodynamic loads, and the dependency of these loads on the changes in geometry, 

as will be discussed in Sec. 5.5. 

The loads acting on any platform can be classified into two general groups: 

intrinsic loads and extrinsic loads4. The intrinsic loads, �@- , acting on the (i+1)th 

platform include aerodynamic and inertia loads that are directly generated by the 

(i+1)th module. The extrinsic loads, �Ò©, acting on the same platform include the 

                                                           
4 The intrinsic and extrinsic classifications are not to be confused with internal and external ones, as both 
intrinsic and extrinsic loads are considered external loads. Furthermore, intrinsic loads are not to be mistaken 
with loads that are generated by the actuation system, for instance a spike in the hydraulic system pressure 
beyond what is required to counteract the external loads; such loads may occur in a jam case.  
  



88 
 

contribution of the forces and the resulting moments from the outboard modules. 

The total external loads can then be symbolically expressed as  

 �� �+1 = �� �+1@- + �� �+1Ò© (5.51) 

where  

 �� �+1 = (�Ó�Ô)�+1
� = ( [�� �� ��]�[�� �� ��]� )

�+1
�  (5.52) 

consists of forces, �Ó , and moments, �Ô , defined in the corresponding Cartesian 

frame.  

5.4.1 Intrinsic Loads  

In the proposed formulation, the loads acting on the wing are discretized by modules, 

making it convenient to transform the external loads as required. Figure 5.2 

illustrates the transformation of the distributed loads acting on the wing into discrete 

intrinsic loads acting on each platform.  

The term ×�+1 �+1�Ø�J represents the distributed aerodynamic loads acting on the 

(i+1)th module defined in the (i+1)th coordinate frame. The term ×0 �+1�SØ�	��   

represents the distributed inertia loads acting on the (i+1)th module defined in the 

global coordinate frame. Similarly, ��+1 �+1�Ø�J and �∗ �+1�SØ�	�� represent the equivalent 

aerodynamic and the inertia loads acting on the (i+1)th platform, respectively. The 

force components in �∗ �+1�SØ�	�� are defined in the global coordinate frame, whereas the 

moment components are defined in the (i+1)th coordinate frame.  
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Figure 5.2: View looking aft on the wing showing the intrinsic loads discretized by 

module.  

 

Any appropriate function could be used to define the load distributions. Without 

loss of generality, chordal distributions are used for the simulation, as presented in 

Sec. 7.6.3. The total intrinsic loads acting on the (i+1)th platform can be expressed 

as 

 �� �+1@- = �� �+1�Ø�J + �� �+1�SØ�	�� (5.53) 

where 
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 �� �+1�Ø�J = Î� �+1 ��+1 �+1�Ø�J (5.54) 

 �� �+1�SØ�	�� = Î� ∗ �∗ �+1�SØ�	��. (5.55) 

Transformation matrices Î� �+1 and Î� ∗ are defined as   

 Î� �+1 = [ h� �+1 ÌÌ h� �+1] (5.56) 

 Î� ∗ = [ h0 �� ÌÌ h� �+1∗ h� �+1] (5.57) 

where 

 h� �+1∗ =
⎣⎢
⎢⎡

cos( Γ�+10 ) 0 0
0 cos( Λ�+10 ) 0
0 0 cos( "�+10 )⎦⎥

⎥⎤. (5.58) 

The term h� �+1∗  captures the projection of the moment arm associated with the 

inertia loads acting on the (i+1)th module onto the ith coordinate frame. The angles 

are defined with respect to the global frame. The significance of the frames used to 

define the intrinsic loads, the physical meanings of the transformations, and their 

range of validity will be discussed in Sec. 5.5. 

5.4.2 Extrinsic Loads  

In addition to the intrinsic loads acting on a platform, the contribution from the 

outboard sections also need to be considered when determining the total loads acting 

on the platform. The so-called extrinsic loads can be derived using the wrench 
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transformation, which transforms the total loads acting on the (i+2)th platform into 

equivalent forces and moments acting on the (i+1)th platform, while transforming 

the coordinate frame from (i+1) to i. 

The extrinsic loads acting on the (i+1)th platform in the ith coordinate frame, 

resulting from the total loads acting on the (i+2)th platform, which are conventionally 

defined in the (i+1)th coordinate frame can be expressed as  

 �� �+1Ò© = Î̃� �+1 ��+1 �+2 (5.59) 

where 

 Î̃� �+1 = [ h� �+1 Ì
h� �+1 g̃�+1 �+2 h� �+1

]. (5.60) 

The term g̃�+1 �+2 represents the skew symmetric cross product matrix of g�+1 �+2, 

expressed as 

  g̃�+1 �+2 = ⎣⎢
⎡ 0 −!� !�!� 0 −!�−!� !� 0 ⎦⎥

⎤�+1

�+2
. (5.61) 

Once the resultant external load vector acting on each platform is defined using 

the global statics, the local statics is used to obtain the internal loads.  

5.5 Geometry Dependent Loading     

Any changes in the sweep, cant, twist, or span of the wing will alter the distribution 

of the loads acting on the wing. Although determining the exact distributions is 

beyond the scope of this work, a modified representation of the internal loads has 



92 
 

been introduced in Sec. 5.4, which will allow for the inclusion of geometry dependent 

loading.  

It should be recalled that the ith coordinate frame was used to define the 

aerodynamic loads acting on the ith platform, which are the resultant of the 

distributed aerodynamic loads acting on the ith module. This means that as module 

i changes its pose, the corresponding intrinsic aerodynamic loads will automatically 

change their orientation. Additionally, the intrinsic inertia loads acting on the ith 

platform, which are the resultant of the distributed inertia loads acting on the ith 

module were defined using two coordinate frames. The forces were defined in the 

global axis, which implies that they will not be affected by changes in the pose, 

whereas the moments induced by the inertia loads were defined in the ith coordinate 

frame. This was done to account for the pose dependency of the inertia-induced 

moments with the help of a special matrix h� �+1∗  (Eq. (5.57)). Generally, this 

transformation is valid for maximum accumulative rotations of up to 90 deg 

applicable to all three rotational DOFs, with an input for �∗ �+1�SØ�	�� (Eq. (5.55)), 

which corresponds to the wing configuration that gives the largest inertia-induced 

moments. This simplified projection approach for dealing with inertia-induced 

moments is a crude but reasonable approximation. A more general approach could 

be adopted using the wrench transformation, similar to the one presented in Sec. 

5.4.2 for dealing with extrinsic loads. It should be noted that the previously 

mentioned inertia loads only include those induced by the gravity. Due to the 

relatively low speed of the mechanism and the proposed usage type, that is, 

performance enhancement, other inertia loads have been ignored. However, they can 

be easily included if required as an extension to the current loads.   
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Using only the transformation of the loads will ignore any variation in the 

magnitude of the loads as a function of the pose change, such as an increase in lift 

due to an increase in the angle of incidence, or an increase in the bending moment 

due to a span increase. These variations in magnitude can be considered using a 

weighting matrix, which can modify the load vector to correct for all the 

aforementioned parameters. Additionally, further enhancements could be made to 

the formulation to account for changes in the parasitic drag as a function of changes 

in the geometry. For simplicity, for the case-study presented in Chapter 7, these 

effects are ignored. 

5.6 Alternative Jacobian 

Alternatively, the Jacobian could be decomposed into an isostatic component which 

may include a combination of actuators and passive members, and a redundant 

component that includes the additional locked passive members required to 

transform the isostatic topology into a hyperstatic one. Hence the compatibility 

relationship can be written as follows:  

 [²f�Û²f�Ü
] = [¦�Û¦�Ü

] ² �� �+1 (5.62) 

where I and R refer to the isostatic and redundant portions of the matrix, 

respectively. Depending on the class and the architecture of the manipulator, the 

isostatic portion of the Jacobian could contain only actuated limbs or a combination 

of actuated and locked passive limbs. Nonetheless, ¦�Û  will be a square matrix. From 

Eq. (5.62) one can obtain  
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 ²f�Ü = ¦�Ü¦�Û
−1²f�Û . (5.63) 

By decomposing the equilibrium relationship in a similar fashion, one has 

 �� �+1 = [¦�Û
� ¦�Ü

� ] [´µ�Û ÌÌ ´µ�Ü
][²f�Û²f�Ü

]. (5.64) 

By substituting Eq. (5.63) into Eq. (5.64) and some further manipulation, it can be 

shown that  

 �� �+1 = ¦�Û
� ³�Û + ¦�Ü

� ´µ�Ü¦�Ü¦�Û
−1´µ�Û

−1 ³�Û . (5.65) 

Using a modified Jacobian, ¦�+, where ¦�+ ∈ ℝΥ×Υ, one could write 

 �� �+1 = ¦�+� ³�Û (5.66) 

where 

 ¦�+ = [¦�Û
� + ¦�Ü

� ´µ�Ü¦�Ü¦�Û
−1´µ�Û

−1 ]� . (5.67) 

The presented kinetostatic and stiffness formulations in this chapter can be 

applied to all classes of PRES’s for both isostatic and hyperstatic topologies.  

In addition to the presented methodology to model the local stiffness of the VGW, 

other means could be used to do the same. Appendix C presents the derivation of 

the stiffness model of the VGW using the Finite Element Method (FEM).  
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5.7 Case Study: S-4-4 PRES vs. Gough-Stewart vs.  

Pentapod 

An example of a statically redundant robot is proposed in Fig. 5.3. 

 

Figure 5.3: Proposed variable topology robot with lower instantaneous mobility, 

full finite mobility, and enhanced stiffness and static characteristics, classified as an 

S-4-4 PRES.  

 

The robot illustrated by Fig. 5.3  has an instantaneous mobility of four and a 

finite mobility of six, with four actuated limbs and four passive limbs which can be 

locked and unlocked to vary the topology of the manipulator. The four actuated 

limbs are distinguished using dashed lines in Fig 5.3. The limbs, which are hydraulic 

cylinders, are attached to the base and the platform using spherical joints. 

Schematically, the topology can be illustrated by Fig. 5.4. This reconfigurable PKM 

can achieve full finite mobility through under-actuation and has multiple degrees of 
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fault tolerance. This robot can be classified as an S-4-4 PRES. It will be 

demonstrated shortly that such a robot has comparable stiffness to that of a hexapod 

when isostatic, while exhibiting superior stiffness when hyperstatic. Additionally, it 

will be shown that this robot has far superior stiffness characteristics compared to a 

conventional lower mobility manipulator with a constraining limb, of similar overall 

dimensions and joint spacing. 

 

Figure 5.4: Schematic representation of the proposed robot. 

 

By using the ground topology shown in Fig. 5.4 one can generate six potential 

isostatic topologies. However, two of these will be nearly degenerate and generally 

not usable. Those are the topologies with passive limbs 1, 4 or 2, 3 unlocked 

simultaneously. In addition, two other robots are included in this study. The first 

one is a Gough-Stewart manipulator with the same overall dimensions and joint 

spacing as the proposed S-4-4 PRES. The second one is a pentapod with four 

identical UPS limbs, which are active, and a PS constraining limb, which is passive. 

Figure 5.5 summarizes the schematics of the six various robots/topologies that are 

included in the case-study.   

Passive
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Figure 5.5: Six different isostatic topologies used in the case-Study, four of which 

are generated from the hyperstatic ground topology of the proposed robot. 

 

The topology used for the pentapod yields constrained x and y motions. 

Therefore, two fictitious linear springs aligned with the x and the y Cartesian axes 

are used to calculate the Cartesian stiffness of the platform. The two constraints will 

appear as [1  0  0  0  0  0] and [0  1  0  0  0  0] in the two rows of the Jacobian 

relating ²75 to ²Þ  and ²76 to ²à, respectively. ²75 and ²76 are infinitesimal 

displacements associated with the two fictitious springs. For simplicity it is assumed 

that the stiffnesses of the constraining leg are ten times that of a load-bearing 

UPS/SPS limb. Also, it is assumes that all the other limbs have the same stiffness. 

This reduces Eq. (5.19) to  

Pentapod

PKM

Gough-Stewart

PKM

S-4-4 PRES

Isostatic D

S-4-4 PRES

Isostatic C

S-4-4 PRES

Isostatic B
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 ´� ½�+1 = ¶Ø§¦�� ¦� (5.68) 

where keq is the equivalent axial stiffness of a UPS/SPS limb. The relative stiffness of 

these robots/topologies are evaluated by comparing the lowest eigenvalue of the 

Cartesian stiffness matrix. To obtain a dimensionally-uniform stiffness matrix for 

solving the eigenvalue problem, a weighting matrix, á¹� , is used [106]: 

 á¹� = diag[1, 1, 1, ℒ�−1, ℒ�−1, ℒ�−1] (5.69) 

where ℒ�−1 is a parameter with the dimension of length; for the purpose of this study, 

one can let ℒ� = ∥ g� �+1∥. The dimensionally-uniform stiffness matrix, ´̃� ½�+1, may 

then be expressed as 

 ´̃� ½�+1 = á¹� ´� ½�+1á¹� . (5.70) 

The following measure of stiffness could then be used as a relative index to compare 

different robots/topologies in various poses:  

 ¶R�S = min (eig( ´̃� ½�+1)). (5.71) 

The variation in ¶R�S for �� = [0 0.3 0 0 0 "�+1� ] is illustrated in Fig. 5.6. 

The term Xr represents a subset of poses within the Cartesian space of the robot. All 

the translational components are in m, and all the rotational components are in deg; 

the directions are defined based on the coordinate frame illustrated in Fig. 5.4.  
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Figure 5.6: Variation of minimum stiffness as a function of topology and pose 

(rotation about the z axis). 

 

The variation in minimum stiffness as a function of topology and pose can be 

clearly observed in Fig. 5.6. Compared to a 3-3 Gough-Stewart platform, the S-4-4 

PRES offers the same finite mobility with less number of actuators, while offering 

comparable stiffness. As expected, isostatic topologies A and D have the same 

minimum stiffness due to the symmetry of the robot. Similarly, isostatic topologies 

B and C share the same characteristic.  

Additionally, it can be seen that the S-4-4 PRES possesses superior stiffness 

compared to the pentapod with four DOFs. Although the eigenvectors associated 

with the derived dimensionally-uniform principal stiffness terms are generally not 

aligned with the Cartesian coordinate system, it was observed that the dominant 

DOF associated with the lowest eigenvalue for the pentapod was consistently the 

rotational DOF about the z axis. This explains the poor performance of the pentapod 

compared to the S-4-4  PRES when comparing the lowest principal stiffnesses. The 
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only way to improve the torsional stiffness of the pentapod, i.e. the component 

associated with the rotation about the z axis, is by replacing the PS constraining 

limb with one that constrains the rotational motion about the z axis such as the 

RPU limb or the RRU limb similar to the one proposed in [107]. However, such a 

constraining limb will completely eliminate the rotational DOF of the platform about 

the z axis, and significantly reduce the workspace of the robot. Also, the torsional 

stiffness of the robot will then be mostly dependent on the torsional stiffness of the 

constraining limb and less so on the remainder of the topological and geometric 

features. Therefore, it would serve no practical purpose to include a rotationally 

constrained system in this comparison.   

5.8 Conclusion  

The local and global kinetostatic and stiffness models of the VGW were presented 

in this chapter. The models can be used to develop both an optimal design and an 

optimal motion control algorithm. Both of these will be explored in the following 

chapters.   

Furthermore, to display the effectiveness of the proposed design, a case-study 

was conducted using a spatial PRES. In this particular example, the results indicated 

that the proposed manipulator can attain stiffness characteristics comparable to that 

of a Gough-Stewart manipulator of similar dimensions and joint spacing, and 

superior stiffness to a lower mobility manipulator with a constraining limb. Although 

when dealing with a regular design space, the stiffness benefits of the proposed robot 

compared to that of a conventional hexapod do not appear drastic, when the design 

space starts to become less conventional, as in a wing, the stiffness variations become 

more significant. The actual design space for the VGW will be explored in the 

following chapter to obtain the optimal configuration.    
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Chapter 6  

Optimal Configuration Design 

The optimal configuration design of the reconfigurable mechanism poses an 

interesting design problem which can be broken up into two distinct sets: 1) the 

optimal limb configuration, and 2) the optimal topological configuration, both of 

which are addressed in this chapter. The optimal limb configuration problem seeks 

the optimal design of the kinematic joints and links that make up the mechanism to 

satisfy a series of static and kinematic design requirements. On the other hand, the 

optimal topological configuration seeks the minimal compliance solution to the 

placement of the aforementioned limbs within the design space, while satisfying a 

series of design requirements such as fail-safe criteria, and minimal aeroelastic 

impact. In general, this type of configuration optimization is comparable to 

structural optimization [108-110], which has been extensively studied and applied in 

the field of structural design (see, for example, [111]) and compliant mechanism 

design (see, for example, [112]). However, with the exception of a few [113-115], the 

compliance-based configuration optimization has not been widely applied in the 

design of active mechanisms and robotics. In the field of topological optimization for 

robotics, it is more common to use the condition number of the robot as the objective 

(see, for example, [116,117]), as opposed to its compliance. The condition number is 

a measure of the isotropy of the robot, for instance from the stiffness or the velocity 
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point of view, over the anticipated workspace. Such measures will ensure that the 

static and kinematic abilities of the robot do not change drastically as the 

manipulator moves through the workspace. The rather structural approach of 

compliance-based optimization formulation for the wing morphing application will 

be discussed in detail in this chapter. Additionally, the design of the optimal limb 

architecture will be discussed and the optimal limb configuration will be presented. 

The optimal limb architecture is then used as a building block in the compliance-

based topological optimization of the VGW, formulated as a multi-stage optimization 

process. Finally, the optimal configuration is presented along with a rigidity 

validation of the optimal design using a prototype.  

6.1 Optimal Limb Configuration 

Unlike conventional spatial mechanisms, generally not designed to be reconfigurable, 

the VGW must be able to reconfigure itself without adversely affecting its kinematic 

capabilities. This requirement imposes a special constraint on the limb architecture. 

The architecture for the lockable passive limb must be such that when unlocked in 

an isostatic configuration, it must not reduce the maximum instantaneous mobility 

of the mechanism, and while locked, it must impose the constraint needed to generate 

static redundancy. The only limb architecture that can have no effect on the 

aforementioned mobility by imposing a potential constraint is one with a 

connectivity of six. The connectivity of a limb is defined as the total number of DOFs 

associated with all the joints in that limb. This could be appreciated intuitively, as 

a spatial rigid body, that is, the moving platform, can undergo rigid body motion in 

six DOFs; therefore, any limb attached to the platform that can support all six DOFs 

without imposing any kinematic constraints will not affect the mobility of the moving 

platform. However, when one or more non-redundant DOFs are removed from that 
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limb, as many constraints are imposed on the motion of the moving platform. The 

switch between isostatic and hyperstatic states affects the mobility of the system by 

adding and removing these constraints, which will in effect introduce one or more 

degrees of static redundancy to the system.  

Therefore, to find the most optimal limb architecture(s) for the VGW, one shall 

only search for limbs that can provide six non-redundant DOFs. For practicality, 

the search will be limited to lower kinematic pairs, that is, line and point contact, 

for example cam pairs, will be excluded from the search. Additionally, the planar 

joint will also be excluded from the search due to practical considerations. This leaves 

the kinematic pairs shown in Table 6.1 to be used in the search. 

A combinatorial search could be performed to find all suitable limb architectures 

that meet the minimum required condition of having six DOFs. Meeting the 

minimum requirement for the enumeration is a necessary condition for the limb 

architecture; however, this is not a sufficient condition due to the existence of 

possible kinematic redundancies in the architecture. For example, consider the limb 

architecture shown in Fig. 6.1. This architecture has six DOFs; however, despite 

meeting the minimum enumeration requirement, body B cannot rotate about the 

axis normal to the viewing plane with respect to body A. In order to enable this 

DOF, additional joint(s) must be added to the limb, resulting in a total of more than 

six DOFs. Although in general, having more than six DOFs suggests the potential 

for the existence of kinematic redundancies in the limb, in many cases, such 

redundancies do not contribute to the motions of the body/platform, for example, 

the free rotation of a link about its own axis. Nonetheless, to maximize the search 

space for the optimal architecture, the possibility for the existence of such 

redundancies will be considered. 
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Table 6.1: Kinematic pairs: description and schematic. 

Joint Symbol DOFs Motion Schematic 

Helical H 1 
Coupled 

Translation and 
Rotation  

Prismatic P 1 Translation 

 

Revolute R 1 Rotation 

 

Cylindrical C 2 
Uncoupled 

Translation and 
Rotation 

 

Universal U 2 
Uncoupled 
Rotations 

 

Spherical S 3 
Uncoupled 
Rotations 

 
 

Six DOFs will be used as the lower bound of the search as previously discussed, 

whereas nine will be used as the upper bound. The reason for choosing nine as the 

upper bound is due to the limit imposed on the number of joints per limb. To 

minimize the complexity of the system, the number of joints per limb is limited to 

three. Also, since the maximum number of DOFs per joint is three (see Table 6.1), 

one shall never have more than nine DOFs per limb. It should also be highlighted 

that each joint will be connected to the next one via a rigid link. Table 6.3 represents 

all the possible permutations having a maximum of three joints with six, seven, eight, 

and nine DOFs. The summation of a connectivity permutation equals the total 

number of limb DOFs, while the numbers that make up the permutation represent 
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the DOFs of the joints in the limb. For instance, 123 refers to a six-DOF architecture 

with a one-DOF joint connected to a two-DOF joint, which is connected to a three-

DOF joint.  

 

Figure 6.1: An example of a limb architecture that meets the necessary 

enumeration condition but has less than six non-redundant DOFs. 

 

Table 6.2: Connectivity permutations with three or less joints. 

Σ DOF = 6 Σ DOF = 7 Σ DOF = 8 Σ DOF = 9 

123 133 233 333 

132 313 323  

213 331 332  

231 322   

312 232   

321 223   

222    

33    

 

In the case of limbs with three joints, the two numbers on the left and the right 

side represent the DOFs of the joints attaching the limbs to platforms i and (i+1), 

respectively. The middle number represents the DOF of the intermediate joint. In 

the case of the limb with only two joints, that is 33, there is no intermediate joint. 

The only possibility for this architecture is two S joints attached by a link. Although 

the total number of DOFs is six, this architecture can only provide five non-

A

B
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redundant DOFs, that is, it can never allow any extension of the limb, which 

constitutes a kinematic constraint. Therefore, the 33 architecture will be excluded 

from the search. All the possible architectures (with the exception of 33) and their 

corresponding types and total DOFs are tabulated in Table 6.3.   

Table 6.3: Possible architectures with three joints. 

Σ DOF Type Architecture 

6 123 HCS, PCS, RCS, HUS, PUS, RUS 

6 132 HSU, PSU, RSU, HSC, PSC, RSC 

6 213 CHS, CPS, CRS, UHS, UPS, URS 

6 231 CSH, CSP, CSR, USH, USP, USR 

6 312 SHC, SPC, SRC, SHU, SPU, SRU 

6 321 SCH, SCP, SCR, SUH, SUP, SUR 

6 222 CUU, UCU, UUC, UCC, CUC, CCU, CCC, UUU 

   
7 133 HSS, PSS, RSS 

7 313 SHS, SPS, SRS 

7 331 SSH, SSP, SSR 

7 322 SCC, SCU, SUC, SUU 

7 232 CSC, CSU, USC, USU 

7 223 CCS, CUS, UCS, UUS 

   
8 233 CSS, USS 

8 323 SCS, SUS 

8 332 SSC, SSU 

   
9 333 SSS 

 

All architectures with intermediate R, U, or S joints, for example, the RSU or 

the PUS architecture, are excluded from further consideration. This is done for two 

reasons: 1) geometrical constraints, and 2) structural design considerations. 

Primarily, any architecture that cannot maintain a compact form is not suitable for 
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the proposed application. Architectures with an R, U, or S intermediate joint are 

susceptible to a folding motion when actuation is occurring, as illustrated by Fig. 

6.2. Due to the highly restrictive design space of the VGW, any folding architecture 

can greatly reduce the chances of finding the most structurally optimal configuration, 

by imposing complex geometrical constraints on limb placement. Secondly, from a 

structural design perspective, it would be sub-optimal to introduce architectures into 

the system that can induce bending at the joints that are attached to the platforms. 

Any architecture that can take on a folding motion can induce a bending moment 

at the platform, when combined with a one-DOF joint at the platform. An example 

of such a configuration is the RSS architecture.  

 

Figure 6.2: Highly geometrically constrained design with folding limbs. 

 

Furthermore, any remaining architectures with less than six non-redundant DOFs 

are excluded from the list. These include architectures with a total of six DOFs 

possessing the following pairs of joints in their architecture: P and C, C and H, R and 

C, U and C, C and C, and architectures with a total of seven DOFs with at least two 

C joints. Some examples of such architecture are the PCS and the UCC architectures. 

It should be noted that the compactness requirement is implicitly considered in all 

these exclusions. For instance, in the case of the excluded UCC architecture, it is 

assumed that the translational axes of the C joints are in line, leading to the 



108 
 

generation of redundant DOFs. Placing these axes perpendicular to each other can 

generate a limb with six non-redundant DOFs; however, this would violate the 

compactness requirement. 

Apart from those excluded above, the remaining architectures all satisfy the 

sufficient enumeration conditions of possessing six non-redundant DOFs, as well as 

the previously discussed geometrical and structural constraints. These architectures 

will be referred to as the optimal set and are listed as follows: UPS, UHS, SPU, SHU, 

UCU, SPS, SHS, SCU, UCS, and SCS. Depending on the actuation system and the 

required workspace of the mechanism, some of these configurations may be more 

suitable than others. For example, if mechanical actuation is used, the SHS 

architecture, where H represents a jackscrew actuator, may be the more suitable 

candidate for the actuated members, whereas the UCS architecture may be more 

suitable where hydraulic actuation is used, with C representing a hydraulic actuator. 

In general, the optimal architectures can be used in conjunction with any type of 

actuation system including, but not limited to, mechanical, hydraulic, or SMA 

systems. 

To accommodate modularity in design, it would be desirable to use the same 

architecture for both actuated and passive members. The only difference between 

the two is that the former would be actively actuated, and the latter would be able 

to lock and unlock to generate static redundancy in the mechanism without requiring 

any energy. Thus, the same joint that would be actuated for an active limb would 

ideally be chosen as the lockable one for a passive limb. From a kinematic 

perspective, any of the passive joints could be locked or actuated. However, from a 

practical point of view, joints with one DOF are generally more suitable for actuation 

or locking. Furthermore, applying the actuation or locking to the U or the S joint 
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can unnecessarily complicate the mechanical design. From a structural perspective, 

having locked U and S joints could impose bending at the platforms which would 

not be desirable. While mindful of these implications, it is deemed most suitable to 

actuate/lock only the intermediate P, H, or the axial component of the C joints. 

Without loss of generality, this will be adopted as the method for actuation and 

locking for the VGW in the remainder of this work.  

With the intermediate axial DOF locked/actuated via the P, H, or C joint, the 

actuated/locked limb is effectively a spatial truss element with only axial stiffness. 

When the intermediate joint is unlocked, the limb will have no stiffness. Therefore, 

without loss of generality, all these optimal architectures, which have similar static 

characteristics, will be grouped together and referred to as the SPS family, which 

can statically take on only two forms: 1) actuated/locked, and 2) unlocked. These 

two forms will be used as the building blocks for the design of the VGW in the 

upcoming sections. Figure 6.3 illustrates the schematics of a six-member 

configuration with the optimal limb architecture.  

 

Figure 6.3: Configuration with the optimal limb architecture (from the SPS family). 

 

The passive limbs can be directionally locked to provide additional measures 

against load uncertainties (for example a gust case encountered while in actuation), 

this feature will not affect the choice for the optimal configuration of the VGW; thus, 
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it is not included in the formulation. The implementation for the directional 

lockability is explained in detail in Appendix D.     

6.2 Optimal Topological Configuration  

To determine the most optimal configuration for the VGW, in addition to the 

optimal limb architecture, one must determine the optimal number of actuators and 

passive members, as well as their placements, which will constitute the optimal 

topological configuration. Before doing so, it is important to discuss the requirement 

for symmetry in the optimal configuration.  

6.2.1 Symmetry 

As previously noted, when seeking the optimal configuration for a robotic 

manipulator it is popular to use the velocity or stiffness isotropy of the end-effector 

(or platform) as the measure of optimality. However, such measures are not 

applicable to the present application due to the anisotropic nature of the design 

space and the loading, that is, large loads in shear, bending, torsion, and smaller 

magnitudes in other DOFs. Therefore, a more suitable measure of optimality could 

be the directional stiffness for the DOFs of interest. In the context of wing design, 

and particularly the VGW, shear, bending, and torsion DOFs, as identified in Fig. 

5.1, correspond to a translation along the ith y axis, a rotation about the ith x axis, 

and a rotation about the ith z axis, respectively. 

The minimum requirements for the architecture of the PRES with common limbs, 

presented in Sec. 3.6, necessitates the limbs to have a connectivity of six, such as the 

SPS limb. Such a mechanism must have a minimum of seven limbs connecting the 

two platforms to be able to both under-actuate and form a hyperstatic configuration. 

With seven limbs and only one lock per passive limb, the system will have one degree 
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of static redundancy. However, this could be increased by adding additional lockable 

passive limbs to the system. For the VGW, an additional passive lockable limb is 

included, so it will have a total of eight limbs. Eight is the lowest number that meets 

the minimum enumeration requirement and can generate symmetrical designs (as 

will be shown shortly, symmetry is a requirement for the optimal design). Although 

a seven-member configuration could also form a symmetric design by placing one of 

the members at the center of the module, such a configuration is inherently sub-

optimal for the proposed application. The optimal design must be tailored to 

accommodate the typical loading encountered by a wing, that is, large shear, 

bending, and torsion loads. Placing a member at the center of the module will 

essentially align that member with the neutral axes of sections of interest, causing 

the member to have minimal contribution to the shear, bending, and torsional 

stiffness of the module. Although this may be intuitively appreciated, one can inspect 

the stiffness terms associated with the shear, bending, and torsion discussed in Sec. 

6.2.2.1 to confirm this. 

The aeroelastic properties of the wing, in particular in the case of flutter, are 

driven by several parameters, such as the wing geometry, airfoil shape, stiffness, and 

mass distribution. Consequently, the aeroelastic tailoring for any given wing will 

vary depending on these parameters, and is beyond the scope of this work. However, 

since the intent is to create a generic framework for the VGW, one can employ some 

design guidelines in the optimization process to improve the aeroelastic performance 

of the system. One of these measures is to uncouple the torsion and bending motion 

of the wing to improve its flutter characteristics [118]. In reality, eliminating this 

coupling can prove to be a very difficult task, specifically in the case of a wing with 

varying geometry. However, doing so for the cuboid design space in the home pose 
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is deemed to have some merit in the context of creating a generic framework for the 

VGW.  

The bending-torsion coupling is typically viewed from the global point of view of 

the wing, where the bending is in fact a result of the shear force acting on the wing 

caused by the aerodynamic and inertia loads. Therefore, in order to have no bending-

torsion coupling, one must attempt to eliminate the offset between the shear center 

and the mass center for the sections of interest, that is, the platforms in the case of 

the VGW. The only way this could be possible is if some form of symmetry or anti-

symmetry exists in the topology. Therefore, symmetry is imposed as a constraint in 

the initial stage of the optimization process. In the later stages of the optimization, 

the symmetry constraint is replaced by actual coupling constraints implemented 

using a displacement method. 

6.2.2 Optimization Formulation 

With the minimum design requirements in mind, the design space will be explored 

in search of the optimal configuration for the VGW. The same design space taken 

up by a conventional wing-box, that is, the space between a rear and a front spar, 

will be utilized for the VGW, as illustrated by Fig 6.4. Each module will be separated 

by a platform/rib.  

The highlighted volume in Fig. 6.4 will be used as the design space for the 

optimization. In order to simplify the design problem, taper and sweep effects will 

be neglected. Detailed sizing of actuators and passive members can offset the effect 

of such geometrical irregularities. Therefore, in order to develop the generic optimal 

configuration for the VGW, the design space will be idealized as a rectangular cuboid, 

with the two platforms acting as the boundaries of each module. The advantages of 

limiting the design space to that of a conventionally configured wing-box, made up 
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of spars, ribs, and stiffened panels, will become apparent when two or more 

conventionally configured sections of the wing are attached to each other via 

morphing modules (see, for example, Fig. 4.2). This will ensure that the structural 

elements that are responsible for the load transfer within the wing from a non-

actuating section to an actuating section and back to a non-actuating section are all 

contained within the box and away from the leading edge and the trailing edge of 

the wing.  

 

Figure 6.4: Representation of the cuboid design space. 

 

Furthermore, since this work is concerned with generating a common generic 

framework for the VGW, which could be applicable to all modules, only the home 

pose represented by the cuboid will be used. In practice, any changes in the pose of 

the platform will result in changes in the stiffness of the module and thus the 

aeroelastic properties of the wing. However, if an appropriate number of modules are 

used with practical considerations in mind, drastic shape changes to a single module 

Platform ‘i+1’

Platform ‘i’
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can be minimized. Therefore, the general static behavior of the module in terms of 

internal load directions and approximate magnitudes will not change, as long as these 

shape changes are within some practical limits. See the example in Sec. 7.6 for typical 

limits for the proposed applications of the VGW. 

Structural optimization problems are typically broken up into three different 

classes, based on their geometrical features. The first one is sizing optimization. This 

is when the geometrical feature to be optimized represents some form of thickness 

such as the cross section of a truss member. The second class is shape optimization. 

In this case the geometrical feature to be optimized represents the form or contour 

of some part of the boundary of the structural domain. The last and the most general 

class of optimization problems is topology optimization, which is concerned with the 

nodal connectivity. Figure 6.5 illustrates the three types of structural optimization.  

 

Figure 6.5: Three classes of structural optimization. 

 

Since the number of limbs is predetermined, the limb placement problem can be 

classified as a shape optimization problem. Each limb will have two joints attached 

to the platforms, with each set of coordinates for these joints representing three 

Sizing
Optimization

Shape
Optimization

Topology
Optimization
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design variables. Since the boundaries of the design space are determined via 

appropriate discretization criteria, one of the three design variables per joint can be 

omitted. Consequently, the number of design variables can be reduced to two per 

joint, that is, the x and the y components of the joint vector. Therefore, with eight 

limbs, one will have 32 design variables for the limb placement problem (Fig. 6.6). 

For clarity in demonstration, the more simplified structural schematic of the 

mechanism is adopted instead of the kinematic one. In the structural schematic 

representation, the load-bearing SPS limb is represented via a solid line representing 

the two kinematic links plus the actuated/locked joint and two shaded spheres 

representing the spherical joints. This representation of the limbs is used throughout 

the upcoming sections. 

 

Figure 6.6: Design variables for the shape optimization problem. 

 

Unlike conventional shape optimization problems used in static or geometrical 

design of conventional mechanisms, the problem at hand cannot be simply solved for 

a typical objective such as minimum compliance with boundary constraints. In 
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addition to the complex clashing constraints that need to be introduced into the 

optimization problem, the impact of the transformation between isostatic and 

hyperstatic configurations will need to be captured in the optimization problem. The 

variation in stiffness caused by the transformation between a structure and a 

mechanism needs to be implemented with the least amount of impact on the 

aeroelastic characteristics of the wing. Incorporating all of these conditions, 

objectives, and constraints into a single problem will create a complex problem with 

potential numerical difficulties. To address this, a multi-stage process has been 

developed to turn the general shape optimization problem into a series of smaller 

problems. This is achieved by using a reduced design space, utilized in a more 

structured problem belonging to the class of topology optimization problems. The 

proposed procedure starts off by generating a ground topology, which is then used 

to find the globally optimal hyperstatic configuration for the VGW. The feasible 

isostatic configurations will then be determined based on a series of design criteria. 

This leads to the solution for the limb type problem, that is, which limbs should be 

actuated and which should be passive. Figure 6.7 illustrates the three stages of the 

optimization process. 

 

Figure 6.7: Summary of the three-stage optimization process. 

1)  Define the Minimal Ground Topology 
using Shape Optimization 

2)  Obtain the Globally Optimal Hyperstatic 
Topology using Topology Optimization

3)  Determine the Active / Passive Member Placement
by Finding the Optimal Isostatic Topologies 
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6.2.2.1 Minimal Ground Topology (MGT) 

When hyperstatic, the optimal design must have the maximum bending, torsional, 

and shear stiffness. Additionally, it must have adequate stiffness for the three 

remaining DOFs. Therefore, the ground topology, which would be used to generate 

such an optimal design, must contain elements that will contribute to the maximum 

directional stiffness for all six DOFs. It stands to reason that if one could produce 

the superposition of six configurations, where each configuration has the elements 

required to maximize a particular component of the Cartesian stiffness, then one 

would have a ground topology that contains all the necessary elements that may be 

required to obtain the optimal configuration for the VGW. To obtain such a ground 

topology, six sub-problems must be generated, where each one aims to maximize the 

stiffness of one Cartesian DOF. Each sub-problem can be set up as follows: 

       (ℙ)��� =

⎩{{
{{{
{{{
⎨{
{{{
{{{
{⎧äåæ À� �+1çç( ®� %j , ®� %k , ®�+1 %j , ®�+1 %k) 

è. é.

⎩{{
{{⎨
{{{
{⎧Þ ≤ ( ®� %j , ®�+1 %j) ≤ Þ

à ≤ ( ®� %k , ®�+1 %k) ≤ à
sym about Þ-¢ plane 
sym about à-¢ plane

∀ 1 = 1, ⋯ ,8;  ñ = 1,⋯ ,6

 (6.1) 

where Þ and Þ represent the lower and upper bounds of the design variables, 

respectively, that is, the boundaries of the platform, in the x direction. Similarly, à 

and à represent the same in the y direction. The scalar À� �+1çç is the component 

of the Cartesian stiffness matrix in the mth row and the mth column. As can be 

observed from Eq. (6.1), equilibrium constraints or requirements for positive-
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definiteness are not included for any of the six sub-problems. Therefore, each of the 

six configurations may (and most likely will) be singular. The positive-definiteness 

will be imposed as a constraint only when the optimal configuration is to be 

determined. Additionally, to simplify the sub-problems, only the diagonal terms of 

the stiffness matrix are used. The contribution of the off-diagonal terms will be 

included in the optimization problem in the next stage, where the topology 

optimization problem is solved. Also, it is assumed that all the members, regardless 

of their lengths, have the same stiffness. Since the optimal configuration is to be 

determined in some nominal position, referred to as the home pose, the diagonal 

stiffness terms can be further simplified to let h�+1� = ¼, where ¼ ∈ ℝ3×3 and 

b�+1j
i  = b�+1k

i = 0. Additionally, since it was established that the joints were placed 

on the ith and the (i+1)th platform, one can set ®� %l = ®�+1 %l = 0. The six derived 

diagonal stiffness terms for the VGW (from Eqs. (5.29) through (5.32)), used in the 

optimization sub-problems, can then be expressed as:    

  À� �+111 = ∑ ¿%� ( ®�+1 %j − ®� %j)28
%=1

 (6.2) 

 À� �+122 = ∑ ¿%� ( ®�+1 %k − ®� %k)28
%=1

 (6.3) 

 À� �+133 = ∑ ¿%� ( !� �+1l)28
%=1

 (6.4) 

 À� �+144 = ∑ ¿%� ( ®�+1 %k !� �+1l)28
%=1

 (6.5) 
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 À� �+155 = ∑ ¿%� ( ®�+1 %j !� �+1l)28
%=1

 (6.6) 

 À� �+166 = ∑ ¿%� ( ®�+1 %k ®� %j − ®�+1 %j ®� %k)28
%=1

. (6.7) 

With the inclusion of symmetry, the six sub-problems produce the optimal eight-

member configurations illustrated in Fig. 6.8.  

 

Figure 6.8: Examples of optimal solutions to the single-DOF sub-problems. 

 

The solutions illustrated in Fig. 6.8 only capture some examples of the optimal 

solutions. There exist many more variations that are equally as optimal and 

symmetric with respect to the definition of optimality and symmetry expressed via 

Eq. (6.1). For example,  Fig. 6.9 illustrates various forms that have the same À� �+144 .   

Max iKi+111
Max iKi+122

Max iKi+133

Max iKi+144
Max iKi+155

Max iKi+166
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Figure 6.9: Equally optimal configurations with maximum bending stiffness 

(stiffness about the x axis). 

 

The goal at this point is to develop a ground topology with the minimum number 

of nodes, and consequently minimal nodal connectivity that can still retain all the 

elements necessary to provide an optimal solution to the topology optimization 

problem. All the optimal sets of solutions can be grouped into two geometrically 

distinct sets: face diagonals, represented by ó, and edges, represented by ô. Set ó 

will capture the minimal nodal connectivity required for maximizing À� �+111 , 

À� �+122 , and À� �+166 while maintaining symmetry. Set ô will do the same for 

À� �+133 , À� �+144 , and À� �+155 . The union of ô and ó provides the ground topology 

with the minimal required nodal connectivity. This set is referred to as õ:  

 õ = ô ∪ ó. (6.8) 

Figure 6.10 illustrates õ.  

  

Figure 6.10: Union of the edge and the face diagonal members forming the minimal 

ground topology. 

x
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With this minimal nodal connectivity, any bias can be implemented using 

topology and sizing optimizations. This 16-member configuration represented by õ 

is utilized to find the globally optimal hyperstatic topology in the following section. 

6.2.2.2 Optimal Hyperstatic Topology (OHT) 

Using the proposed ground topology, the topology optimization problem to obtain 

the most optimal hyperstatic configuration can be posed as follows:  

 (ℙ)÷ø� =

⎩{{
{{{
{{{
{{{
{{⎨
{{{
{{{
{{{
{{{
{⎧äùú ∑ Wç �

6
R=1

�ç� �+1� ûç� �+1 

è. é.

⎩{{
{{{
{{{
⎨{
{{{
{{{
{⎧

 

ü� ý�ü = 8
þ� ´ℎk�� ½�+1þ > 0
þ� ´��,�� ½�+1þ > 0
∣ �¢ℎk�� �+1�k ∣ ≈ 0
∣ �¢ℎk�� �+1
j ∣ ≈ 0
 clashing constraints

∀ þ ∈ ℝ6;  þ ≠ Ì;  � = 1,⋯ ,8;  ü = [1 1 1 1]�

 (6.9) 

where 

 û� �+1 = ([Þ à ¢]�[�Þ �à �¢]� )�

�+1
. (6.10) 

Vector �ç� �+1 represents the unit load acting on the (i+1)th platform defined in the 

ith coordinate frame, with m representing the DOF at which the unit load is applied; 

values of one through six represent translational DOFs along x, y, z, and rotational 
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DOFs about x, y, z, respectively. The term ûç� �+1 represents the displacement vector 

of the (i+1)th platform defined in the ith coordinate frame, corresponding to the load 

applied in the mth DOF. The term �¢ℎk�� �+1�k  refers to the rotation of the (i+1)th 

platform, when hyperstatic, about the ith z axis, that is, a twist deformation, caused 

by a shear force (��).  Similarly, �¢ℎk�� �+1
j  refers to a twist deformation, caused by 

a bending moment (��). Constraining these deformations diminishes the coupling 

between bending and torsion for the optimal hyperstatic topology. The term Wç � 
represents a weight scalar providing a bias in the order of magnitude for the shear, 

bending, and torsion DOFs versus the three remaining DOFs. Matrices ´ℎk�� ½�+1 and 

´��,�� ½�+1 correspond to the stiffness matrix of the hyperstatic and the fail-safe 

configurations, respectively. The term e represents the configuration of the fail-safe 

scenario; its implementation will be explained shortly. The term ý� represents a 4 ×
4 connectivity matrix, capturing the nodal connectivity and the volume fraction of 

the design. The four rows and columns of ý� are associated with the four nodes on 

platform i and platform (i+1), respectively. Its terms take on a value of one if there 

is connectivity between two nodes of the ground topology, and a value of zero 

otherwise. The term u represents a dummy four-dimensional unit vector used to 

capture the volume fraction.  

The proposed minimum compliance objective will yield the stiffest hyperstatic 

configuration. The positive-definiteness requirement needs to be satisfied for both 

the optimal eight-member hyperstatic configuration, as well as the seven-member 

fail-safe configurations. The fail-safe constraint will ensure that the VGW does not 

lose its structural integrity in the event where any one of the limbs (active or passive) 

loses its load-bearing capabilities permanently.  

The hyperstatic stiffness matrix can be expressed as  
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 ´ℎ�]� ½�+1 = ¦�� ·�ℎ�] κ�¦� (6.11) 

where the configuration matrix, ·�ℎ�] , as defined in Sec. 5.1, is used for efficiency, 

so the stiffness matrix of an isostatic configuration or a fail-safe one can be obtained 

without modifying the terms of the Jacobian matrix (Eq. (5.10)). Similarly, the fail-

safe stiffness matrix can be expressed as  

 ´¹I,Ø� ½�+1 = ¦�� ·�Ø κ�¦�  ∀ � = 1,⋯ ,8 (6.12) 

where ·�Ø  is a 8 × 8 diagonal matrix with all the diagonal members equal to one, 

except the member in the eth row and the eth column, which is equal to zero. Each 

fail-safe configuration effectively represents a seven-member design, with the eth 

member having no contribution to the stiffness matrix. The application of the fail-

safe configurations are discussed in Appendix D as a part of the measures taken to 

design for uncertainties.  

Due to the relatively small scale of the problem, the optimization is solved using 

a direct search and penalization method. The clashing, volume fraction, and non-

singularity constraints are implemented using a single objective with penalization 

formulation. The two solutions that are equally globally optimal are illustrated in 

Fig. 6.11.  

 

Figure 6.11: Globally optimal hyperstatic topologies. 
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Without loss of generality, the one on the left (Fig 6.11) is used in the remainder of 

this work. Fig. 6.12 represents the associated limb numbering. 

 

Figure 6.12: Numbering convention for the limbs of the VGW. 

 

6.2.2.3 Optimal Isostatic Topologies   

As the VGW switches from a hyperstatic to an isostatic configuration, or between 

various isostatic configurations, the main stiffness and the coupling terms can change 

drastically. This can significantly impact the aeroelastic properties of the wing. It 

would be desirable to tailor the configurations that could be potentially formed to 

have certain stiffness characteristics to minimize or eliminate this impact. To achieve 

this one can come up with a series of requirements that can help to minimize the 

impact of changes in configuration on the aeroelastic properties of the wing, for 

example, the minimization of bending-torsion coupling. In general, accounting for 

such requirements for all the possible poses and geometrical irregularities that the 

wing could have is a difficult task. As it was stated previously, it is assumed that an 

appropriate number of modules are used for the application to demand only relatively 

small changes in the geometry of each module. Therefore, some rather generic and 

regular home pose could be used to implement the general limb placement. This 

could be seen as a fundamental step to minimize the stiffness sensitivity to changes 

in configuration through the topological design of the mechanism. Additional 
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improvements can be implemented through motion control, path planning, and 

stiffness tailoring via sizing of the members. Prior to presenting these requirements, 

some set definitions will be introduced to assist with solving the active/passive limb 

placement problem.  

From the given eight-member hyperstatic configuration (Fig. 6.12), one can 

generate 28 (= 8C6) six-member configurations, not all of which may be isostatic. The 

elements of each of these configurations or sets can take on non-repeating values 

between one and eight. The inclusion of a number in the set signifies the existence 

of a load-bearing limb, while the exclusion of a number identifies the corresponding 

limb as an unlocked passive member. For example, �1 = {1, 2, 3, 4, 5, 6} represents 

the configurations shown in Fig. 6.13, where the solid lines represent load-bearing 

limbs, that is, actuated or locked passive, and the dashed lines represent unlocked 

passive limbs.  

 

Figure 6.13: Six-member configuration corresponding to set �1. 

 

Each one of these 28 sets are members of a larger set, �, containing all the 

possible six-element subsets of �, denoted as   

 � = (�6 ) = {�1, ⋯ , �28} (6.13) 
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where � = {1, ⋯ ,8} represents the eight-member hyperstatic configuration with 

eight elements. Similarly, the inclusion of a number in this set signifies the existence 

of a corresponding load-bearing limb.  

There exists a subset of �, referred to as the feasible set, represented by �, whose 

elements are made up of those sets of � that satisfy the aforementioned requirements, 

which will be formally introduced shortly. In order to solve the limb placement 

problem, one must initially find the elements of �, denoted by ��. The common 

elements among the members that make up � represent the elements that must be 

load-bearing in all configurations, or in general they must be actuated limbs. These 

members belong to a set represented by �, expressed as follows:  

 � = ⋂ ��
��∈�

. (6.14) 

Similarly, one can store the members that are passive into a set represented by 

�. Since by definition a limb can either be actuated or passive, sets � and � are 

mutually exclusive. Also, 

 � = � ∪�. (6.15) 

Therefore, � is the complement of � in �, expressed as 

 � = � \ �. (6.16) 

Thus, the solution to the limb placement problem can be obtained by determining 

the members of �, based on the desired requirements, which are as follows: 
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1) Any member of � must have a positive-definite stiffness matrix. The subset of 

solutions that satisfy this requirement will belong to a set represented by �1. This 

requirement can be expressed as  

 þ� ´	� ½�+1þ > 0  ∀ þ ∈ ℝ6;  þ ≠ Ì;  � = 1,⋯ , |�| (6.17) 

where |�| represents the cardinality of �. Matrix ´�� ½�+1 represents the Cartesian 

stiffness of the tth member of �, and can be expressed as  

 ´	� ½�+1 = ¦�� ·�	 κ�¦�  ∀ � = 1, ⋯ , |�| (6.18) 

where ·�	  is the configuration matrix corresponding to the tth member of �.   

2) Any member of � must maintain a relatively high degree of torsional stiffness. 

The subset of solutions that satisfy this requirement will belong to a set represented 

by �2. This requirement can be expressed as 

 äùú (∣ �¢ℎk�� �+1
l ∣− ∣ �¢�
� �+1
l ∣)  ∀ � = 1, ⋯ , |�| (6.19) 

where �¢ℎk�� �+1
l  and �¢�
� �+1
l  represent a twist (rotation of the (i+1)th platform 

about the ith z axis) due to a torsional moment (��) corresponding to the hyperstatic 

and the tth configurations, respectively. To implement this criterion, a suitable 

relative threshold is used to identify those configurations with minimal change in the 

torsional stiffness relative to the hyperstatic configuration.  
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3) Any member of � must possess minimal bending-torsion coupling. The subset 

of solutions that satisfy this requirement will belong to a set represented by �3. This 

requirement can be expressed as 

 äùú (∣ �¢ℎk�� �+1
j ∣− ∣ �¢�
� �+1
j ∣)  ∀ � = 1, ⋯ , |�| (6.20) 

where �¢ℎk�� �+1
j  and �¢�
� �+1
j  represent a twist due to a bending moment (��) 

corresponding to the hyperstatic and the tth configurations, respectively. Similarly, a 

suitable relative threshold is used to identify those configurations with minimal 

coupling relative to the hyperstatic configuration.  

Set � can then be simply defined as the set whose members satisfy all the above 

requirements:  

 � = �1 ∩�2 ∩�3. (6.21) 

After applying the filters to all 28 sets, only four remain as feasible sets:  

 � = {�1, �2, �3, �4} (6.22) 

where  

 

�1 = {1, 2, 3, 4, 5, 6}
�2 = {1, 2, 3, 4, 5, 7}
�3 = {1, 2, 3, 4, 6, 8}
�4 = {1, 2, 3, 4, 7, 8}.
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These sets, which represent the feasible isostatic configurations, are illustrated in 

Fig. 6.14. 

 

Figure 6.14: Four optimal isostatic topologies used for under-actuation. 

 

The four elements of � will be used to realize under-actuation, as will be 

demonstrated in Chapter 7. By applying Eqs. (6.14) and (6.16) the elements of � 

and � can be determined as follows:  

 
� = {1, 2, 3, 4}
� = {5, 6, 7, 8}.  

All three stages of the optimization are thereby complete.   

6.3 Practical Realization 

Using the proposed methodology, the optimal configuration design for the VGW has 

been determined, as illustrated by Fig. 6.15. 

Isostatic Topology r1 Isostatic Topology r2

Isostatic Topology r3 Isostatic Topology r4
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Figure 6.15: Schematic representation of the optimal configuration. 

 

This configuration has the common SPS architecture for all its limbs, four of 

which are actuated and the other four are passive and lockable. Depending on the 

actuation setup, mechanical, hydraulic, or SMA means can be used to drive the 

mechanism. Figure 6.16 illustrates the CAD realization of the optimal design using 

a hydraulic setup. In this setup, hydraulic cylinders are used for the active and 

passive members, and spherical plain bearings with high misalignment are used for 

the pin joints. 

 The active/passive limb placement determined by the requirements defined in 

Sec. 6.2.2.3 can be intuitively appreciated. As can be observed from Fig. 6.15, all 

four resulting isostatic topologies have the face diagonal members present. These 

members are the main contributors to the torsional stiffness of the VGW as 

demonstrated in Sec. 6.2.2.1. Also, it can be seen that in all four optimal isostatic 

configurations the edge members maintain symmetry about the x-z or the y-z plane. 

The presence of the diagonal members at all times and the bending symmetry result 

Active Limb

Lockable Passive Limb
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in minimal change in the torsional stiffness and minimal bending-torsion coupling of 

the VGW as it switches between various topologies. This would result in minimal 

aeroelastic impact during the actuation process.  

 

Figure 6.16: CAD representation of the optimal configuration for the VGW 

(prototype). 

 

This particular placement also maximizes the number of isostatic configurations, 

which will be used for the motion control as will be discussed in Chapter 7. The 

Platform ‘i+1’

Platform ‘i’

Lockable Passive Member

Spherical Joint

Actuated Member

Routing / Lightening Holes
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proposed mechanism is well-suited for modular applications, as illustrated in Fig. 

1.2. 

6.4 Rigidity Validation 

To validate the rigidity of the proposed optimal configuration in various modes, that 

is, hyperstatic, isostatic, and fail-safe, loading tests were performed on a two-module 

prototype. The prototype, built for the validation of the rigidity and motion control 

(as will be discussed in Chapter 7) is illustrated by Fig. 6.17.  

  

Figure 6.17: Two-module prototype built for validation. 

 

The actuated limbs were set up using electromechanical linear actuators, while 

the passive limbs were set up using hydraulic cylinders and active/passive flow 

control valves, as discussed in Appendix D. A pulley system was used to apply the 
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loads to the platforms. Figure 6.18 illustrates the prototype undergoing simultaneous 

shear, bending, and torsion loads, while simulating a twist motion. 

 

Figure 6.18: Rigidity validation for the optimal configuration (view looking aft on 

the prototype). 

 

The shear forces acting at the platforms are results of the difference in magnitude 

between the loads applied at the aerodynamic center and the mass center of each 

platform, simulating lift and inertia, respectively. The torsional moments acting at 

the platforms are results of the offset between the load application points, that is, 

0.25 c (chord length) and 0.4 c at each platform. The bending moment acting on the 

moving platform of the first module is due to the resultant shear force acting on the 

moving platform of the second module. The two-module setup allows for the 

generation of this bending moment. While isostatic and undergoing the simulated 

loading, the prototype was able to generate controlled motion in all six DOFs without 

encountering any singularities for all four isostatic topologies. Additionally, the 

Aerodynamic
Center (0.25 c)

Mass
Center (0.4 c)

First
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prototype was able to maintain rigidity under the simulated loading without 

encountering any singularities for the eight-member hyperstatic and the seven-

member fail-safe topologies. These loading tests validated the rigidity of the proposed 

optimal configuration for the VGW.  

6.5 Alternative Configuration  

Depending on the application, some of the actuators can be replaced with non-

extendable linear members. For example, in the case of a wing tip morphing, no 

considerable span increase may be required, and some degree of kinematic coupling 

between the translational and rotational DOFs may be acceptable. As a result one 

may replace two of the actuators with solid members to have the configuration shown 

in Fig. 6.19. 

 

Figure 6.19: Schematic representation of the optimal configuration with two 

actuators and lower mobility. 

 

The configuration shown in Fig. 6.19 can offer well coupled translational-

rotational cant and sweep motions, as well as a minimally coupled twist motion, with 
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only two actuators, while maintaining all the optimal characteristics of the fully 

variable VGW (Fig. 6.15).  

6.6 Conclusion 

The optimal configuration design for the VGW was presented in this chapter. The 

design problem at hand was broken up into two components: 1) the optimal limb 

configuration, and 2) the optimal topological configuration. Initially, it was shown 

that the family of SPS limbs, including UPS, UHS, SPU, SHU, UCU, SPS, SHS, SCU, 

UCS, and SCS, are all optimal solutions for the limb configuration of the VGW. Such 

architectures meet the kinematic and the compactness requirements while offering 

good static characteristics such as the elimination of bending at the joints. 

Additionally, it was shown through a multi-stage compliance-based optimization 

process that the optimal topological configuration is one with permanently load-

bearing members placed on the face diagonals of the cuboid design space and lockable 

passive members placed along the edges. This configuration has a total of eight limbs 

and is fail-safe (in the event that any one of the eight limbs is permanently lost), if 

sized properly. Furthermore, the rigidity of the proposed configuration was validated 

using a multi-module prototype undergoing simultaneous shear, bending, and torsion 

loads. As a part of the validation, the prototype was reconfigured to test the rigidity 

of the eight-member hyperstatic topology, the six-member isostatic topologies, and 

the seven-member fail-safe topologies.  

The geometrical and loading constraints associated with a wing have served as 

the inspirations for the development of the methodology presented in this chapter, 

specific to a variable geometry wing-box design application. However, the proposed 

compliance-based optimization formulation for the under-actuated system can be 

applied to any comparable mechanism. 
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It should be recalled that the proposed optimal configuration is to be treated as 

a starting framework. Further sizing optimization of the limbs and perhaps some 

additional local shape optimization for the joint locations may be required to tailor 

the design to a particular application and to account for geometrical irregularities in 

a highly swept wing. It should also be noted that additional measures need to be 

taken when dealing with less conventional shapes. For example, if cant angles of 90 

degrees or larger are to be realized using multiple modules, other forms of couplings 

such as torsion-axial (axial being aligned with the base wing span) coupling may 

become significant when switching between isostatic topologies. These effects need 

to be accounted for in the detailed design and sizing of the VGW. 
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Chapter 7  

Optimal Motion Planning   

In this chapter, the criteria for optimality of the motion and the sequences that the 

VGW will go through to get from some initial pose to some final one will be 

presented. The proposed optimal actuation scheme is based on the kinematic and 

static relationships of the system which were presented in Chapters 4 and 5, 

respectively. A case-study for a wing tip morphing application will be presented at 

the end of this chapter to show the effectiveness of the proposed formulation.  

7.1 Control Implementation Scheme 

Given that the proposed application is morphing for performance improvement, as 

opposed to control, one can specify the instances when actuation is to take place. 

This implementation can yield significant weight reductions. For a typical mission 

profile, as shown in Fig. 7.1, one can pre-determine when to actuate the mechanism 

so that the actuators experience minimal external loads. 

In Fig. 7.1, six predetermined zones for morphing are indicated on the profile 

using dashed circles. To minimize the required actuation loads, subsequently leading 

to the minimization of the weight of the actuating modules, morphing will only take 

place during steady level flight or just before take-off or after landing. A similar 

implementation could be carried out for turn maneuvers so that actuation takes place 
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just before the turn. This implementation means that the members and the joints 

do not need to be structurally over-sized to handle very large external loads in the 

isostatic/actuating configurations. The members can be sized to provide the stiffness 

and the actuation forces required for the actuating configurations while offering the 

stiffness and the holding forces required for the non-actuating configurations. Using 

this approach all eight members can be sized to provide adequate stiffness and load-

bearing capabilities without over-designing the mechanism. When the wing is 

experiencing large aerodynamic and inertia loads due to a balanced maneuver or a 

gust, the eight-member hyperstatic configuration will provide the necessary stiffness 

and load-bearing capabilities, and when morphing is to take place during the pre-

determined flight regimes, the isostatic configurations will be utilized.  

 

Figure 7.1: Typical mission profile for a commercial aircraft. 

 

If a combination of actuators and passive members that could be locked and 

unlocked at appropriate times and sequences were utilized, one could still have a 

fully variable mechanism that is capable of serving a dual role as a structure and a 

mechanism. It was determined in Chapter 6 that for the optimal configuration, the 

four diagonal members should be actuators, whereas the four edge members should 
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be lockable passive members. This particular configuration offers four isostatic 

topologies that will be used in the under-actuated control scheme.  

The passive members are axial members that are attached to the platforms using 

spherical joints, similar to the actuators, except they are not actuated. However, 

they can provide axial stiffness when required. This is accomplished by a lock/unlock 

feature. When locked, a passive member will be load-bearing; when unlocked, it will 

have no stiffness. In practice, this could be realized using a clutch in the case of a 

mechanical setup or a valve in the case of a hydraulic one. In addition to the 

lock/unlock feature, the passive members can be directionally locked. This is useful 

for improved stiffness when encountering uncertainties in loading, such as a high-

velocity gust which may reverse the anticipated loading. See Appendix D for the 

implementation of the directional lockability. 

7.2 Actuation Paths 

For the proposed VGW mechanism, a minimum of three isostatic topologies would 

be required to achieve under-actuation, as discussed in Sec. 3.5. Each isostatic 

topology will be utilized to achieve the final length of at least one passive member. 

In total there will be three actuation stages to go from an initial pose to a final one 

while controlling all the DOFs, where each stage corresponds to a change in the pose.  

With the given ground topology (Fig. 6.15) one can form four isostatic topologies, 

as shown in Fig. 7.2.  

Generally, one can start with any given isostatic topology in the first stage, which 

will have four actuators and two locked passive members. The two locked passive 

members are needed to provide the necessary constraints to attain isostaticity. In 

addition, a third constraint needs to be imposed which is the desired final length of 
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one of the two unlocked passive members. This yields a total of three constraints. 

Any intermediate pose that satisfies these constraints would be a possible solution. 

Once this final length is obtained, the corresponding member, i.e. the one imposing 

the third constraint, will be locked and remains locked for the remainder of the 

actuation. This locked member will be one of the two locked members used for the 

second stage. The same procedure will be repeated to obtain the final length of 

another passive member. At this point, there are two locked passive members that 

have their final lengths realized. In the third and the final stage of the actuation 

with these two locked passive members and the four actuators the final desired 

lengths of the two remaining passive members, and subsequently the final pose, can 

be realized.  

 

Figure 7.2: Four isostatic topologies used for actuation. 
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It should be noted that there are special cases where certain poses may be 

achieved with only two or even one stage(s). However, in general three stages will 

cover any reachable motion in the workspace of the mechanism. In addition, only 

three of the four isostatic topologies are required in the under-actuation. This 

provides the opportunity for optimization. By taking into account all the possible 

combinations and sequences, one can have 16 possible paths to get from an initial 

pose ( �0� �+1) to a final one ( �3� �+1), where the left subscript notation refers to the 

stage of the actuation. Subscript 0 refers to the initial pose prior to the start of the 

actuation; subscripts 1 and 2 refer to the two intermediate poses; subscript 3 refers 

to the final pose. All 16 paths are summarized in Table 7.1. 

Table 7.1: 16 Actuation sequences used for optimal motion control. 

Path  Stage 1  Stage 2  Stage 3 

1  Use A to get 73 7   Use B to get 73 8   Use D to get 73 5  and 73 6  

2  Use A to get 73 7   Use D to get 73 5   Use B to get 73 6  and 73 8  

3  Use A to get 73 8   Use D to get 73 6   Use C to get 73 5  and 73 7  

4  Use A to get 73 8   Use C to get 73 7   Use D to get 73 5  and 73 6  

5  Use B to get 73 6   Use A to get 73 8   Use C to get 73 5  and 73 7  

6  Use B to get 73 6   Use C to get 73 5   Use A to get 73 7  and 73 8  

7  Use B to get 73 8   Use C to get 73 7   Use D to get 73 5  and 73 6  

8  Use B to get 73 8   Use D to get 73 6   Use C to get 73 5  and 73 7  

9  Use C to get 73 5   Use A to get 73 7   Use B to get 73 6  and 73 8  

10  Use C to get 73 5   Use B to get 73 6   Use A to get 73 7  and 73 8  

11  Use C to get 73 7   Use B to get 73 8   Use D to get 73 5  and 73 6  

12  Use C to get 73 7   Use D to get 73 5   Use B to get 73 6  and 73 8  

13  Use D to get 73 5   Use B to get 73 6   Use A to get 73 7  and 73 8  

14  Use D to get 73 5   Use A to get 73 7   Use B to get 73 6  and 73 8  

15  Use D to get 73 6   Use A to get 73 8   Use C to get 73 5  and 73 7  

16  Use D to get 73 6   Use C to get 73 5   Use A to get 73 7  and 73 8  
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Similarly, the left subscript notation for q refers to the stage of the actuation. 

For example 73 7  refers to the length of the seventh member in the third and the final 

pose. Figure 7.2 illustrates the limb numbering convention. Each path presents a 

complete motion summary of how to get from some initial pose to some final pose. 

For example if one uses path 1, isostatic topology A must be initially used to get 

the final desired length for passive member 7, that is, 73 7 . Then, while keeping 73 7  

locked for the remainder of the actuation, isostatic topology B must be used to get 

73 8 . With 73 7  and 73 8  locked one can only use isostatic topology D to obtain 73 5  and 

73 6 . During the last stage, the actuators will also achieve their desired final lengths. 

With all the passive members and the actuators at their final desired lengths, the 

final pose is simply realized. At this point, it can be seen that the higher the number 

of isostatic topologies, the higher the number of combinations and potential solutions 

will be. Although not guaranteed, the higher the number of solutions, the higher the 

chances of obtaining the most optimal motion will be.  

It should also be noted that 16 is the minimum number of potential paths. This 

number could be increased by introducing more mid-poses, thus increasing the 

number of stages. If implemented at a relatively high frequency, the under-actuation 

will appear seamless in practice.  

7.3 Minimum Energy Actuation  

Various objectives could be used to determine the most optimal sequence, including 

the minimization of the overall actuation energy, the minimization of the maximum 

actuator force, or the maximization of stiffness for improved stability. Here, the 

minimum actuation energy is used as the objective. The actuation energy of an 

actuator can be defined as its capacity to do work, which is equal to the product of 

the required actuation force and the stroke length. 
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Determining the intermediate poses that satisfy the three constraints is required 

before obtaining the stroke lengths. As previously explained, there will generally be 

three equality constraints corresponding to the stroke lengths of the two locked 

passive members required to maintain isostaticity and the final desired stroke length 

of the unlocked passive member. This general form will be maintained for all the 

actuation stages. However, it should be noted that when going from the second last 

to the last stage, the third equality constraint will disappear, since based on the 

inverse kinematics, the final pose is guaranteed to give the desired final lengths for 

the two remaining unlocked passive members.  

With three constraint equations and six variables to solve, one has the freedom 

to add more constraints to the set of equations for finding the intermediate poses. 

These additional constraints can be imposed in the form of equality, inequality, or 

side constraints. In general, the constraints can be classified into three groups: 

actuation, pose, and stroke constraints. The actuation constraints, which are of the 

equality form, are required for realizing the under-actuation scheme. These 

constraints cannot be removed or changed as they are needed to obtain the final 

pose. The pose constraints are imposed to limit certain motions of the wing. They 

could be driven by a variety of criteria such as stability or stiffness, and are more 

flexible than the actuation constraints. Without loss of generality, for the proposed 

formulation this constraint is imposed on the twist motion of the wing to limit it to 

the range between the initial and the final pose of each module. The last group 

contains the stroke constraints. These side constraints are imposed to account for 

the physical limits on the stroke lengths of the actuators and the passive members. 

Equation (7.1) summarizes the optimization problem for minimum energy actuation:  
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 (7.1) 

where i, j, and s refer to the number of the module, the limb, and the actuation 

stage, respectively; a represents the total number of modules considered. The 

actuation energy refers to the work done by a force produced by the actuator to 

move it a certain distance. This can be defined through the movement of a point on 

the jth member of the ith module, along a trajectory & � % , with a velocity of ḟ� % defined 

in the ith coordinate system, not to be confused with f�̇ , that is, the vector of joint 

rates associated with module i, expressed in the joint space. The infinitesimal amount 

of work, ² �� % , that occurs over an instant of time, ²�, can be expressed as 

 ² �� % = ³%∗� � (�) ḟ� %²� (7.2) 

where ³%∗� (�) is the force for the jth member of the ith module as a function of time 

defined in the ith coordinate system, not to be confused with ³� , that is, the vector 

of internal loads associated with module i, expressed in the joint space. The 

summation of these small amounts of work over trajectory &�� % , representing the 

movement of some point of interest on the actuator between stages (s-1) and s, yields 

 ��� % = ∫ ³%∗� � (�) f� %
� �	�

	�−1
= ∫ ³%� � ( f� %)  f� %

(�� . 
 (7.3) 
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where ��� %  represents the work done by the jth member of the ith module between 

stages (s-1) and s, while �I  and �I−1 are the times corresponding to stages s and       

(s-1), respectively. Furthermore, the trajectory & � %  is always aligned with the 

actuator line of motion, that is, the joint coordinate. Therefore, one can simplify the 

integration over trajectory & � %  by using the stroke lengths. Subsequently, ³%∗ � (�) can 

be transformed to ³% � ( 7% � ): 

  ³%∗� (�I) = ³%� ( 7%I� ) (7.4a) 

 ³%∗� (�I−1) = ³%� ( 7%I−1� ). (7.4b) 

Similarly, the force vector can be replaced by a scalar, )% � , representing that of the 

jth member of the ith module, leading to the following simplification for Eq. (7.3):   

 ��� % = ∫ )%� ( 7%� )  7%�§.��

§.�−1�
. (7.5) 

Using a trapezoidal approximation, the above integral can be expressed as 

 ��� % = )%I� �*º∆ 7%I�  (7.6) 

where 

  ∆ 7%I� = 7%I� − 7%I−1�  (7.7) 



146 
 

 )%I� �*º = )%I−1� + )%I�2  (7.8) 

where )%I� �*º is the average force of the jth member of the ith module while going from 

the (s-1)th to the sth actuation stage; similarly, ∆ 7%I�  represents the change in the 

stroke length for that member between the two stages. Figure 7.3 schematically 

illustrates the forces and strokes associated with the two actuation stages.  

 

 Figure 7.3: Representation of the stroke length and force associated with various 

stages of under-actuation. 

 

As it can be observed from Eq. (7.6), one needs to know the force and the stroke 

length to evaluate the actuation energy. This requires the use of the kinematic and 

kinetostatic relationships of the mechanism, which were developed and presented in 

Chapters 4 and 5. The amount of actuation energy for the jth member of the ith 

module, required to do work when going from the (s-1)th to the sth stage, can be 

classified by accounting for the external loads acting on the system and the desired 

motion. In general, there are a total of six possible scenarios that can take place 

when considering the force and stroke length associated with an actuator. These are 

summarized in Eq. (7.9): 
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{{{
{⎧A:   ∣ )%I� �*º∆ 7%I� ∣  if )%I� �*º < 0 and ∆ 7%I� > 0

 
 

B:   ∣ )%I� �*º∆ 7%I� ∣  if )%I� �*º > 0 and ∆ 7%I� < 0
 

C:   0 if )%I� �*º < 0 and ∆ 7%I� < 0
 

D:  0 if )%I� �*º > 0 and ∆ 7%I� > 0
 

E:   0 if )%I� �*º = 0
 

F:   0 if ∆ 7%I� = 0

. (7.9) 

Positive values for )%I� �*º and ∆ 7%I�   imply a tension force and an increase in the 

stroke, whereas negative values imply a compression force and a reduction in the 

stroke. A value of zero for )%I� �*º or ∆ 7%I�  implies no load and no stroke change, 

respectively. This simplified evaluation of the actuation energy does not account for 

overcoming friction or any other resisting loads other than the internal load acting 

on the member, resulting from the aerodynamic and inertia loads acting on the wing. 

Table 7.2 illustrates the six scenarios. 

Table 7.2: Six scenarios capturing all possible combinations of loading conditions 

and motion requirements. 

 

Scenario Stage ‘s-1’ Stage ‘s’

A

B

C

D

E

F
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If the member is seeing a compression load and it is required to increase its length, 

i.e. scenario A, or if the member is seeing a tension load and it is required to decrease 

its length, i.e. scenario B, actuation energy is required. However, if the member is 

seeing a compression load and it is required to decrease its length, i.e. scenario C, or 

if the member is seeing a tension load and it is required to increase its length, i.e. 

scenario D, no actuation energy would be required. In scenarios C and D, the 

actuation force is not to be confused with the average force in the actuator, which 

would not be equal to zero. Finally, if either of the internal load or the required 

stroke is equal to zero, i.e. scenario E or F, no actuation energy would be required.  

At this point, it is noteworthy to discuss how the previously mentioned 

directional lockability can be used as a measure against load uncertainties. This 

feature will allow an unlocked passive member to be load-bearing in the direction 

opposite to the pre-defined motion, in the case of a reversal while morphing. For 

example, consider a passive member that is unlocked and extending. Although, it is 

not load-bearing during this event, it can still be thought of as seeing an imaginary 

tension load. In other words, if a tension load was acting on it, the member would 

not be required to react to this load; instead it would just move wherever the 

platform would direct it as long as it would be extending. However, if the external 

loads changed such that the loads acting on the platform wanted to push this 

unlocked member back, the directional lockability would not allow this. At that 

point the passive member would react to the compression load. The member would 

remain locked in that position for as long as the reversal persists. The opposite would 

hold if the member was retracting, that is, it would react to any sudden tension loads 

that may arise while retracting. The novel design of the passive member, which 

enables the directional lockability, is presented in Appendix D. 
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7.4 Control Implementation 

In addition to the actuation efficiency of the proposed robot, one major advantage 

of using the proposed under-actuated motion control is that conventional control 

schemes can be used while maintaining multiple degrees of static redundancy in the 

mechanism. The control can be set up using analogue position and speed inputs for 

the actuators, and digital inputs for the passive members. The digital inputs are 

determined using the proposed optimization algorithm presented in Sec. 7.3. The 

position inputs are determined using the kinematics of the VGW, presented in 

Chapter 4. The speed input for each actuator is determined via  

 -%� = ∆ 7% �
∆�  (7.10) 

where -%�  and ∆ 7% �  are the speed and the stroke change of the jth member of the ith 

module, respectively, and ∆� is the specified time period, during which actuation is 

to occur. The time period is common to all actuators within the module for any given 

stage. This implementation will guarantee that all the actuators will start and stop 

simultaneously while going from one pose to another. 

7.5 Variable Topology and Internal Loads  

As demonstrated earlier, the proposed system can produce four distinct isostatic 

topologies. For any given external load, the internal loads can vary both in direction, 

i.e. tension or compression, and magnitude, as a function of the topology, as 

demonstrated in Figs. 7.4 through 7.9. The solid lines in Figs. 7.4 through 7.9 

represent load-bearing limbs, whereas the dashed lines represent unlocked passive 

limbs.  
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Figure 7.4: Internal loads under �� �+1 = [��   0   0   0   0   0]� . 

 

 

Figure 7.5: Internal loads under �� �+1 = [0   ��   0   0   0   0]� . 
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Figure 7.6: Internal loads under �� �+1 = [0   0   ��   0   0   0]� . 

 

 

Figure 7.7: Internal loads under �� �+1 = [0   0   0   ��   0   0]� . 
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Figure 7.8: Internal loads under �� �+1 = [0   0   0   0   ��   0]� . 

 

 

Figure 7.9: Internal loads under �� �+1 = [0   0   0   0   0   ��]� . 
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By inspecting the variation in internal loads as a function of topology, it can be 

appreciated that if the right sequence of topologies is used for a given set of external 

loads, the module can actuate with very little energy.  

7.6 Case Study: Simulation, Validation, and 

Implementation   

In this section, the implementation of the design will be demonstrated using a 

simulation for a wing tip morphing application, followed by the presentation of a 

multi-module prototype built as a proof of concept to validate the simulation for the 

under-actuated motion control. The design is applied to the outboard portion of a 

wing using two morphing modules as illustrated in Fig. 7.10. For clarity in 

demonstration, only two morphing modules are used. However, it should be 

highlighted that the proposed modular design is applicable to any number of modules 

within practical means. All wing sections are constructed using SC(2)-0518 airfoils 

[119]. 

 

Figure 7.10: Wing tip layout in initial pose (view looking down on the left wing). 

1.00 m

0.25 m

3.00 m

Wing Base (Ref)

Wing Tip

Actuating
Non-actuating

AA (0.25 c)

10 deg

EA / MA (0.4 c)

Non-actuating

1
2

A

A

AA: Aerodynamic Axis
AC: Aerodynamic Center
EA: Elastic Axis
EC: Elastic Center
MA: Mass Axis
MC: Mass Center
c: Chord Length
L: Lift
W: Weight
Mc/4: Aerodynamic Moment

: Normalized Span

Section A-A

0.30 m

L

Mc/4 W

EC / MCAC

z

x

η

η



154 
 

Figure 7.10 identifies the two morphing modules and the geometrical features of 

the wing tip in its home pose. The wing tip has a taper ratio of 0.25, with a sweep 

of 10 deg. The external loads acting on each section are identified in Fig. 7.10. The 

aerodynamic and inertia loads are applied at 0.25 c and 0.4 c of each section, 

measured from the leading edge, respectively. 

To simplify the analysis, initial sweep-induced torsional moments and drag forces 

have been ignored when determining the intrinsic loads. However, induced 

drag/thrust forces and the torsional moments caused by changes in the pose have 

been considered in the formulation. Additionally, it is assumed that the elastic 

center, the mass center, and the center of rotation are all the same and lie at about 

0.4 c, and remain there throughout morphing.  

To minimize the variation in axis definitions, the same axis convention 

introduced earlier for the wing has been adopted. Using this definition a positive 

value for �¸ 4⁄   will cause the leading edge to rotate down. 

As illustrated in Fig. 7.11, the goal is to go from the initial pose to one with an 

overall additional 40 deg of cant (Γ), 20 deg of sweep (Λ), 10 deg of twist ("), i.e. 

toe-out, and 0.07 m of span (!�). For the auxiliary motions, the modules are allowed 

to translate 0.05 m along !� and 0.10 m along !�. The ratio between the translational 

cant and sweep motions has been arbitrarily chosen to correspond to the ratio 

between the cant and the sweep angles. The simplified derivation of the loads for the 

1-g loading condition is included in Sec. 7.6.3. 

Although for a particular application there may not be a need to change the 

values of all six DOFs, the ability to control all DOFs gives the VGW the capability 

to achieve any desired pose without dependent motions, which would traditionally 

result where conventional lower mobility manipulators are used.  
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7.6.1 Simulation 

Using the minimum actuation energy control scheme, the optimal sequence is 

determined to be path 16 for both modules. Using this sequence, initially isostatic 

topology D is used to obtain the final length for member 6. Subsequently, isostatic 

topology C is used to obtain the final length for member 5. Finally, isostatic topology 

A is used to simultaneously obtain the final lengths for members 7 and 8. For this 

particular motion, the external loads presented in Sec. 7.6.3 yield a total actuation 

energy of approximately 0.6 kJ. 

 

Figure 7.11: Initial and final configurations. 

 

Generally, the sequence in which the modules will actuate can also be included 

in the optimization problem. However, for brevity it is assumed that both modules 

morph simultaneously. The proposed algorithm has been implemented using 

MATLAB® and CATIA®. Figure 7.12 and Table 7.3 illustrates the simulation for the 

optimal motion control under the assumed loading condition (see Sec. 7.6.3). Table 

7.4 summarizes the pose variables for each stage for module 1.  

Initial Configuration

Final Configuration
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Figure 7.12: Simulation for minimum energy actuation. 

 

Table 7.3: Different views showing the wing shape by stage for the case-study. 
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Table 7.4: Pose variables for the case-study. 

 
Pose !� �+1j [m] !� �+1k  [m] !� �+1l  [m] Γ�+1�  [deg] Λ�+1�  [deg] "�+1�  [deg] 

M
od

u
le

 1
 

0 0.056 0.000 0.300 0.0 0.0 0.0 

1 0.065 0.024 0.298 1.8 -0.5 5.0 

2 0.061 0.022 0.278 -19.1 -3.1 5.0 

3 0.081 0.050 0.333 -20.0 10.0 5.0 

 

Module 2 (not shown in Table 7.4) has similar values for poses 0 and 3 and 

comparable values for poses 1 and 2 due to the similar motion and loading condition.   

The average forces, stroke lengths, and the actuation energy for all three stages 

for each module are summarized in Tables 7.5 and 7.6. 

Table 7.5: Forces and stroke lengths by stage for the case-study. 

 Stage 

)1I� �*º 

[N] 

)2I� �*º 

[N] 

)3I� �*º 

[N] 

)4I� �*º 

[N] 

∆ 71I�  

[m] 

∆ 72I�  

[m] 

∆ 73I�  

[m] 

∆ 74I�  

[m] 

M
od

u
le

 1
 

0-1 -371 +6800 +1401 +3938 -0.015 +0.010 +0.013 -0.002 

1-2 -37733 -27548 -87202 -65447 +0.002 -0.041 -0.001 -0.029 

2-3 -8293 -1786 -2516 +367 +0.001 +0.071 +0.015 +0.035 

M
od

u
le

 2
 

0-1 -486 +6623 -341 +1849 -0.010 +0.009 +0.014 -0.002 

1-2 -31800 -20609 -73702 -55167 +0.002 -0.038 0.000 -0.028 

2-3 -4850 +3637 -7275 -4154 +0.001 +0.069 +0.015 +0.037 
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Table 7.6: Actuation energy by stage for the case-study. 

 Stage 
ℰI� 1    

[J] 

ℰI� 2   

[J] 

ℰI� 3    

[J] 

ℰI� 4    

[J] 

∑ ℰI� %4
%=1  
[J] 

M
od

u
le

 1
 

0-1 0 0 0 7.9 7.9 

1-2 75.5 0 0 0 75.5 

2-3 8.3 126.8 37.7 0 172.9 

M
od

u
le

 2
 

0-1 0 0 4.8 3.7 8.5 

1-2 63.6 0 0.0 0 63.6 

2-3 4.9 0 109.1 153.7 267.7 

 

Table 7.7 summarizes the locking sequence for the passive members in both 

modules during the actuation using the three available modes. Mode LE+R refers to 

complete locking of a passive member, i.e. both in extension and retraction. Mode 

LR implies locked only in retraction, whereas mode LE implies locked only in 

extension. For more details on how the passive members operate see Appendix D.  

Table 7.7: Locking sequence for the passive members for the case-study. 

 Stage 
Passive Member 

5 6 7 8 

M
od

u
le

 1
 /

 2
 0-1 L R L R L E+R L E+R 

1-2 L E L E+R L E L E+R 

2-3 L E+R L E+R L R L R 
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7.6.2 Motion Control Validation 

To validate the proposed under-actuated motion control, as shown in the simulation 

(Fig. 7.12), the proposed motion was implemented on the multi-module prototype. 

Simulink® was used to implement the robot control. For any requested motion, the 

optimal outputs were determined by MATLAB® using the proposed formulations 

and fed to Simulink® as control inputs to drive the robot. The Simulink® outputs to 

the control board included the analogue position and speed signals for the four 

actuators, and the digital signals for the locking control of the four passive members 

for each module. The actuators were set up using electromechanical linear actuators 

with position and speed controls. The passive members were set up using hydraulic 

cylinders along with a series of solenoid and check valves. Figure 7.13 illustrates the 

prototype going through the proposed under-actuated motion. 

 

Figure 7.13: Side and front views of the prototype showing poses 0, 1, 2, and 3. 
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As illustrated in Fig. 7.13, the proposed motion control algorithm was successfully 

implemented on the prototype to carry out the under-actuated motion shown in the 

simulation (Fig. 7.12).  

7.6.3 External Loads 

To calculate the total external loads acting at each platform, a chordal distribution 

for the lift (�), the weight (. ), and the aerodynamic moment (�¸ 4⁄ ) is assumed. 

For some arbitrary aircraft weight and configuration in steady level flight, it is 

assumed that the wing tip section produces 10 kN of lift and 2 kN.m of aerodynamic 

moment in the position shown in Fig. 7.11 (Initial). Additionally, it is assumed that 

the actuating modules have a total weight of 0.7 kN, and the non-actuating modules 

(tip section only) have a weight of 0.8 kN. Using the presented wing geometry (Fig. 

7.10), the intrinsic shear force (��), bending moment (��), and torsional moment 

(��) acting on the ith module are obtained via 

 (���Ø�J)� �@- = ∫ ×:(/)/0(�+1)
0(�)

 (7.11) 

 (���SØ�	��)J �@- = ∫ ×1 (/)/0(�+1)
0(�)

 (7.12) 

 (���Ø�J)� �@- = ∫ (���Ø�J)� �@-/0(�+1)
0(�)

 (7.13) 

 (���SØ�	��)� �@- = ∫ (���SØ�	��)� �@-/0(�+1)
0(�)

 (7.14) 

 (���Ø�J)� �@- = ∫ ×Ô2 4⁄ (/)/0(�+1)
0(�)

 (7.15) 
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 (���SØ�	��)� �@- = ∫ (0.153(/))×1 (/)/0(�+1)
0(�)

 (7.16) 

where 

 ×:(/) = �n 3(/) (7.17) 

 ×1 (/) = .n 3(/) (7.18) 

 ×Ô2 4⁄ (/) = �¸ 4⁄n 3(/) (7.19) 

 3(/) = (1 − 0.75/) (7.20) 

where × represents the load distribution as a function of the chord (3(/)); / and n 

are the normalized span and the wing area, respectively. The term /(�) implies / at 

platform i. 

7.6.4 MATLAB® Interface/Implementation  

MATLAB® and Simulink® were used to implement the control scheme for the 

prototype. Figure 7.14 illustrates the Graphical User Interface (GUI). 

The schematic representations of all four types/configurations of the limbs are 

summarized in Table 7.8. These schematics are used in the presented simulations 

(Fig. 7.15). 
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Figure 7.14: Snapshot of the MATLAB® GUI used for pose input. 

 

Table 7.8: Schematics of limb types/configurations. 

Schematic Description 

 Actuated Limb 

 Locked Passive Limb 

 
Unlocked Passive Limb 

without Virtual Constraint 

 
Unlocked Passive Limb 

with Virtual Constraint 

  

Figure 7.15 illustrates the results for the optimal motion control (only Module 1 

is illustrated). There are a total of seven steps5 in each simulation, where each step 

represents a change in either the topology or the pose.  

                                                           
5 A step is not to be confused with the previously defined stage, which only represents a change in the pose. 
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Figure 7.15: Schematic illustration of the VGW undergoing the under-actuated 

motion with the status of each member identified for each step using the scheme 

presented in Table 7.8. 

 

7.7 Conclusion 

The optimal motion control of modular under-actuated robots for wing morphing 

applications were presented in this chapter. The optimal motion control algorithm 

which is based on minimum energy actuation was implemented on a wing with two 

actuating modules. The actuator forces and stroke lengths were obtained through 

simulation to determine the optimal path for actuation with minimal energy. The 

under-actuated motion determined by the simulation was then validated using a 

prototype. 
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Chapter 8  

Concluding Remarks 

Design, analysis, and optimization of a new family of reconfigurable parallel robots 

with applications in wing morphing have been presented in this thesis. In the 

proposed design, a total of eight truss members form a rectangular box, four of which 

are actuated. The other four are passive members, which could be locked and 

unlocked to provide rigidity for the structure, while accommodating the kinematic 

requirements. The main feature of the design is the utilization of these active and 

passive linearly adjustable members to replace the structure of a conventional wing-

box, subsequently providing the necessary stiffness and load-bearing capabilities for 

the wing. Hence, with the exception of the non-structural skin, no additional 

structure would be required, leading to a relatively light-weight design for the 

morphing wing.  

Although the presented design is theoretically applicable to any part of the wing, 

in practice it is best suited for regions closer to the wing tips, as most conventional 

commercial/business aircraft use a large segment of the wing (usually up to the 

vicinity of the ailerons) as a fuel tank, leaving the most outboard portions dry. 

However, if a larger scope of implementation is envisioned then suitable compromises 



165 
 

must be made using less conventional configurations to make the application 

practical. 

8.1 Summary of Contributions  

A new family of under-actuated robots, referred to as Parallel Robots with Enhanced 

Stiffness (PRES) were introduced based on the concept of static redundancy. 

Additionally, the kinematic and kinetostatic analyses of these robots were presented. 

A novel motion control approach referred to as Under-actuation with Virtual 

Alternating Constraints (UVAC) was developed utilizing the redundancy present in 

the system to provide full finite mobility. This contribution led to the following peer-

reviewed journal publication:  

• Moosavian, A., Xi, F., “Design and Analysis of Reconfigurable Parallel 

Robots with Enhanced Stiffness,” Mechanism and Machine Theory, Vol. 77, 

pp. 92-110, 2014.  

 

The framework for designing the Variable Geometry Wing-box (VGW) was 

developed using PRES and UVAC. This included the development of the local and 

global static and kinematic formulations specific to a morphing wing. Based on this 

framework, the concept of minimal-energy actuation was introduced and used to 

generate a novel optimal motion control algorithm for the VGW. This contribution 

led to the following peer-reviewed journal publication:  

• Moosavian, A., Xi, F., and Hashemi, S. M., “Design and Motion Control of 

Fully Variable Morphing Wings,” AIAA Journal of Aircraft, Vol. 50, No. 4, 

pp. 1189-1201, 2013.  
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The optimal configuration design for the VGW was presented. The optimal 

configuration design consisted of 1) the optimal limb configuration, seeking the 

optimal design of the kinematic joints and links, and 2) the optimal topological 

configuration, seeking the minimal compliance solution to the placement of the limbs 

within the design space. This contribution led to the following peer-reviewed journal 

publication:  

• Moosavian, A., Xi, F., and Hashemi, S. M., “Optimal Configuration Design 

for the Variable Geometry Wing-Box,” AIAA Journal of Aircraft, Vol. 51, 

No. 3, pp. 811-823, 2014.  

 

Modular design of the proposed robots with specific applications to wing 

morphing was presented. This included the study of the connectivity and mobility 

of the system to accommodate limb modularity in the design of the PRES. This 

approach provided the modular building blocks for designing the VGW. This 

contribution led to the following submission: 

• Moosavian, A., Xi, F., “Modular Design of Parallel Robots with Static 

Redundancy,” (submitted).  

8.2 Future Work  

As an extension of this work, it is deemed useful that the future efforts would include 

the evaluation of responses with respect to stability and the inclusion of dynamic 

parameters in the motion control algorithm. In addition to the previously discussed 

application types such as maximizing the lift to drag ratio for different flight regimes, 

the proposed mechanism can be used as a means for active aeroelastic tailoring or 

flutter suppression. Generally, this could be done in conjunction with range 
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improvement. In addition, from a structural design point of view, the development 

of a suitable methodology for detailed design and sizing of the active and passive 

members will also be valuable extensions to the current work. Furthermore, to build 

upon the work presented in this thesis with respect to the development and testing 

of the prototype, additional efforts in the area of calibration are deemed extremely 

valuable. The calibration efforts will help to increase the fidelity of the proposed 

under-actuated motion control. 

Although further development of several areas such as investigating the stability 

of the VGW in motion, or accounting for the dynamic response of the system in the 

design, appear fitting to advance the theory and application presented in this thesis, 

they do not conceal the fact that a suitable skin concept must be developed in order 

to utilize the VGW design. Despite being beyond the scope of this thesis, some 

preliminary suggestions are included here to lay the groundwork for future research 

in the area of morphing skins.  

From a structural perspective, the aircraft skins in contact with the air flow can 

be categorized into two classes: a) structural and b) non-structural. Structural skins 

assist in providing rigidity for the structure and transferring loads between primary 

structures. Non-structural skins, or fairings, do not generally participate in 

transferring loads between primary structures due to the fact that much stiffer load 

paths already exist between these structures being joined by the skins. The VGW 

has been designed with the aforementioned design philosophy in mind, in which the 

limbs provide the required stiffness and thus load-carrying capabilities for the wing, 

without having to rely on any structural skin elements such as those used on a 

conventional non-morphing wing-box. Therefore, primarily the morphing skin for the 

VGW will have to provide enough rigidity to handle the local aerodynamic loads. 
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Additionally, the non-structural skins may be subjected to some form of pre-load to 

minimize/avoid separation in areas where a high negative pressure (suction) exists 

(typically closer to the leading edge regions). Lastly, the skins must be able to 

withstand the loads brought about due to changes in the shape of the wing. 

Therefore, the loads required for structural analysis of the morphing skins can be 

categorized into three main types: 1) aerodynamic loads in the form of local suction 

and pressure, 2) pre-loads by design to minimize separation under suction, and 3) 

loads caused by the morphing motion of the wing. 

Generating a systematic approach that can capture these various loadings and 

assess the structural responses can serve as a valuable tool to methodically evaluate 

different skin concepts. Ultimately, the proposed structural analysis approach would 

have to be combined with the required range of motion and the aerodynamic 

requirements to determine the suitable discretization of the skins. 
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Appendix A 

VGW Under-actuation 

The following MATLAB® code was created to numerically obtain solutions for the 

VGW under-actuation problem: 

1     %%% A. MOOSAVIAN, Mar 2014 
2     clear; clc; 
3      
4     % joint coordinates (module 1) [in]: 
5     Ab{1} = [11.15; 2.708; 0.75]; 
6     Ab{2} = [-1.073; -2.603; 0.75]; 
7     Ab{3} = [-0.21; -2.679; 0.75]; 
8     Ab{4} = [10.287; 2.782; 0.75]; 
9      
10    Pb{1} = [11.895; 2.645; 0.75]; 
11    Pb{2} = [11.895; -2.018; 0.75]; 
12    Pb{3} = [-1.819; 2.602; 0.75]; 
13    Pb{4} = [-1.819; -2.538; 0.75]; 
14     
15    Ap{1} = [10.105; -1.981; -0.75]; 
16    Ap{2} = [-1.227; 2.4; -0.75]; 
17    Ap{3} = [9.254; -2.141; -0.75]; 
18    Ap{4} = [-0.366; 2.489; -0.75]; 
19     
20    Pp{1} = [10.84; 2.406; -0.75]; 
21    Pp{2} = [10.84; -1.843; -0.75]; 
22    Pp{3} = [-1.971; 2.324; -0.75]; 
23    Pp{4} = [-1.971; -2.266; -0.75]; 
24     
25    % upper pose limit [in,deg]:    
26    Upper_Pose_Limit = [6; 6; 16; deg2rad(5); deg 2rad(20); 

deg2rad(15)]; 
27     
28    % lower pose limit [in,deg]:  
29    Lower_Pose_Limit = [-6; -6; 8; deg2rad(-30); deg2rad(-5); 

deg2rad(-5)]; 
30     
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31    % upper bounds on actuators [in]: 
32    Upper_Limit_qA{1} = 14.0; 
33    Upper_Limit_qA{2} = 14.0; 
34    Upper_Limit_qA{3} = 17.0;  
35    Upper_Limit_qA{4} = 17.0;  
36     
37    % lower bounds on actuators [in]: 
38    Lower_Limit_qA{1} = 10.0; 
39    Lower_Limit_qA{2} = 10.0; 
40    Lower_Limit_qA{3} = 13.0; 
41    Lower_Limit_qA{4} = 13.0;  
42     
43    % upper bounds on passive members [in]: 
44    Upper_Limit_qP{1} = 14.0; 
45    Upper_Limit_qP{2} = 14.0; 
46    Upper_Limit_qP{3} = 14.0; 
47    Upper_Limit_qP{4} = 14.0; 
48     
49    % lower bounds on passive members [in]: 
50    Lower_Limit_qP{1} = 8.0; 
51    Lower_Limit_qP{2} = 8.0; 
52    Lower_Limit_qP{3} = 8.0; 
53    Lower_Limit_qP{4} = 8.0; 
54     
55    % initial pose [in,deg]: 
56    Pose_0_0 = [0; 0; 11.811; 0; 0; 0];   
57     
58    % moving platform axis origin in the stationa ry platform system 

for Pose_0_0: 
59    h_0 = [Pose_0_0(1,1) ; Pose_0_0(2,1); Pose_0_ 0(3,1)];   
60     
61    % rotation matrix (Pose_0_0): 
62    Rx_0 = Pose_0_0(4,1);  
63    Ry_0 = Pose_0_0(5,1); 
64    Rz_0 = Pose_0_0(6,1); 
65     
66    RX_0 = [1 0 0; 0 cos(Rx_0) -sin(Rx_0); 0 sin( Rx_0) cos(Rx_0)]; 
67    RY_0 = [cos(Ry_0) 0 sin(Ry_0); 0 1 0; -sin(Ry _0) 0 cos(Ry_0)]; 
68    RZ_0 = [cos(Rz_0) -sin(Rz_0) 0; sin(Rz_0) cos (Rz_0) 0; 0 0 1]; 
69     
70    R_0 = RX_0 * RY_0 * RZ_0; 
71     
72    % loop closure equations (Pose_0_0):    
73    for i = 1:4 
74        QA_0{i} = h_0 + R_0*Ap{i} - Ab{i}; 
75        QP_0{i} = h_0 + R_0*Pp{i} - Pb{i}; 
76        qA_0{i} = norm(QA_0{i}); 
77        qP_0{i} = norm(QP_0{i}); 
78    end 
79         
80    % final pose [in,deg] (supplied by user): 
81    Pose_3_0 = [3.2; 2.0; 13.0; deg2rad(-20); deg 2rad(10); 

deg2rad(5)];    
82     
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83    % moving platform axis origin in the stationa ry platform system 
for Pose_3_0: 

84    h_3 = [Pose_3_0(1,1) ; Pose_3_0(2,1); Pose_3_ 0(3,1)];   
85     
86    % rotation matrix (Pose_3_0): 
87    Rx_3 = Pose_3_0(4,1);  
88    Ry_3 = Pose_3_0(5,1); 
89    Rz_3 = Pose_3_0(6,1); 
90     
91    RX_3 = [1 0 0; 0 cos(Rx_3) -sin(Rx_3); 0 sin( Rx_3) cos(Rx_3)]; 
92    RY_3 = [cos(Ry_3) 0 sin(Ry_3); 0 1 0; -sin(Ry _3) 0 cos(Ry_3)]; 
93    RZ_3 = [cos(Rz_3) -sin(Rz_3) 0; sin(Rz_3) cos (Rz_3) 0; 0 0 1]; 
94     
95    R_3 = RX_3 * RY_3 * RZ_3; 
96     
97    % loop closure equations (Pose_3_0):   
98    for i = 1:4 
99        QA_3{i} = h_3 + R_3*Ap{i} - Ab{i}; 
100       QP_3{i} = h_3 + R_3*Pp{i} - Pb{i}; 
101       qA_3{i} = norm(QA_3{i}); 
102       qP_3{i} = norm(QP_3{i}); 
103   end 
104    
105   % checking the stroke lengths for Pose_3_0:  
106   if qA_3{1}>Upper_Limit_qA{1} || qA_3{2}>Upper _Limit_qA{2} ||... 
107      qA_3{3}>Upper_Limit_qA{3} || qA_3{4}>Upper _Limit_qA{4} ||... 
108      qA_3{1}<Lower_Limit_qA{1} || qA_3{2}<Lower _Limit_qA{2} ||... 
109      qA_3{3}<Lower_Limit_qA{3} || qA_3{4}<Lower _Limit_qA{4} ||...      
110      qP_3{1}>Upper_Limit_qP{1} || qP_3{2}>Upper _Limit_qP{2} ||... 
111      qP_3{3}>Upper_Limit_qP{3} || qP_3{4}>Upper _Limit_qP{4} ||... 
112      qP_3{1}<Lower_Limit_qP{1} || qP_3{2}<Lower _Limit_qP{2} ||... 
113      qP_3{3}<Lower_Limit_qP{3} || qP_3{4}<Lower _Limit_qP{4}  
114      disp(' '); 
115      disp('You have surpassed the stroke limits  for Pose_3_0.'); 
116      disp('Let’s try again!'); 
117   else 
118    
119   % 16 possible paths to choose from for under- actuation:  
120   Order{1}  = [1 2 3 3 1 4]; % Path 1 
121   Order{2}  = [1 2 3 3 4 1]; % Path 2 
122   Order{3}  = [1 2 4 4 3 2]; % Path 3 
123   Order{4}  = [1 2 4 4 2 3]; % Path 4 
124   Order{5}  = [1 3 2 2 1 4]; % Path 5 
125   Order{6}  = [1 3 2 2 4 1]; % Path 6 
126   Order{7}  = [1 3 4 4 2 3]; % Path 7 
127   Order{8}  = [1 3 4 4 3 2]; % Path 8 
128   Order{9}  = [2 4 1 1 2 3]; % Path 9 
129   Order{10} = [2 4 1 1 3 2]; % Path 10 
130   Order{11} = [2 4 3 3 1 4]; % Path 11 
131   Order{12} = [2 4 3 3 4 1]; % Path 12 
132   Order{13} = [3 4 1 1 3 2]; % Path 13 
133   Order{14} = [3 4 1 1 2 3]; % Path 14 
134   Order{15} = [3 4 2 2 1 4]; % Path 15 
135   Order{16} = [3 4 2 2 4 1]; % Path 16 
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136    
137   % initiating a starting point for the solver (the pose mid-way 

between the initial and final poses is used here): 
138   Pose_MID = Pose_0_0 + (0.5*(Pose_3_0 - Pose_0 _0));    
139    
140   for PATH = 1 %input the desired path (1-16) 
141    
142   % calculating the first intermediate pose (Po se_1_0): 
143   S_1 =@(X_1)... 
144   [(norm([X_1(1); X_1(2); X_1(3)]- Pb{Order{PATH}(1,1)}))^2 +                                             

2*(([X_1(1); X_1(2); X_1(3)]-Pb{Order{PATH}(1,1)})'  * 
[cos(X_1(5))*cos(X_1(6)), -cos(X_1(5))*sin(X_1(6)),  sin(X_1(5)); 
sin(X_1(4))*sin(X_1(5))*cos(X_1(6))+cos(X_1(4))*sin (X_1(6)), -
sin(X_1(4))*sin(X_1(5))*sin(X_1(6))+cos(X_1(4))*cos (X_1(6)), -
sin(X_1(4))*cos(X_1(5)); -
cos(X_1(4))*sin(X_1(5))*cos(X_1(6))+sin(X_1(4))*sin (X_1(6)), 
cos(X_1(4))*sin(X_1(5))*sin(X_1(6))+sin(X_1(4))*cos (X_1(6)), 
cos(X_1(4))*cos(X_1(5))] * Pp{Order{PATH}(1,1)}) + 
(norm(Pp{Order{PATH}(1,1)}))^2 - qP_0{Order{PATH}(1 ,1)}^2 ; ...  

145   (norm([X_1(1); X_1(2); X_1(3)]-Pb{Order{PATH} (1,2)}))^2 + 
2*(([X_1(1); X_1(2); X_1(3)]-Pb{Order{PATH}(1,2)})'  * 
[cos(X_1(5))*cos(X_1(6)), -cos(X_1(5))*sin(X_1(6)),  sin(X_1(5)); 
sin(X_1(4))*sin(X_1(5))*cos(X_1(6))+cos(X_1(4))*sin (X_1(6)), -
sin(X_1(4))*sin(X_1(5))*sin(X_1(6))+cos(X_1(4))*cos (X_1(6)), -
sin(X_1(4))*cos(X_1(5)); -
cos(X_1(4))*sin(X_1(5))*cos(X_1(6))+sin(X_1(4))*sin (X_1(6)), 
cos(X_1(4))*sin(X_1(5))*sin(X_1(6))+sin(X_1(4))*cos (X_1(6)), 
cos(X_1(4))*cos(X_1(5))] * Pp{Order{PATH}(1,2)}) + 
(norm(Pp{Order{PATH}(1,2)}))^2 - qP_0{Order{PATH}(1 ,2)}^2 ; ... 

146   (norm([X_1(1); X_1(2); X_1(3)]-Pb{Order{PATH} (1,3)}))^2 + 
2*(([X_1(1); X_1(2); X_1(3)]-Pb{Order{PATH}(1,3)})'  * 
[cos(X_1(5))*cos(X_1(6)), -cos(X_1(5))*sin(X_1(6)),  sin(X_1(5)); 
sin(X_1(4))*sin(X_1(5))*cos(X_1(6))+cos(X_1(4))*sin (X_1(6)), -
sin(X_1(4))*sin(X_1(5))*sin(X_1(6))+cos(X_1(4))*cos (X_1(6)), -
sin(X_1(4))*cos(X_1(5)); -
cos(X_1(4))*sin(X_1(5))*cos(X_1(6))+sin(X_1(4))*sin (X_1(6)), 
cos(X_1(4))*sin(X_1(5))*sin(X_1(6))+sin(X_1(4))*cos (X_1(6)), 
cos(X_1(4))*cos(X_1(5))] * Pp{Order{PATH}(1,3)}) + 
(norm(Pp{Order{PATH}(1,3)}))^2 - qP_3{Order{PATH}(1 ,3)}^2 ; ... 

147   (X_1(6)-Pose_3_0(6,1));...   % this minimizes  unwanted twist 
148   ]; % ...add more constraints as required 
149      
150   X_1_0 = Pose_MID; %starting guess 
151   options = optimset('Algorithm', 'Levenberg-Ma rquardt', 'MaxIter', 

50000,... 
152   'MaxFunEvals', 1000, 'Diagnostics', 'on', 'Di splay', 'on', 

'TolFun', 1e-2); 
153   [X_1,fval] = fsolve(S_1, X_1_0, options);  % calling the solver 
154    
155   Pose_1_0{PATH} = [X_1(1);X_1(2);X_1(3);X_1(4) ;X_1(5);X_1(6)]; 
156    
157   % moving platform axis origin in the stationa ry platform system 

for Pose_1_0: 
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158   h_1 = [Pose_1_0{PATH}(1,1); Pose_1_0{PATH}(2, 1); 
Pose_1_0{PATH}(3,1)];   

159    
160   % rotation matrix (Pose_1_0): 
161   Rx_1 = Pose_1_0{PATH}(4,1);  
162   Ry_1 = Pose_1_0{PATH}(5,1); 
163   Rz_1 = Pose_1_0{PATH}(6,1); 
164    
165   RX_1 = [1 0 0; 0 cos(Rx_1) -sin(Rx_1); 0 sin( Rx_1) cos(Rx_1)]; 
166   RY_1 = [cos(Ry_1) 0 sin(Ry_1); 0 1 0; -sin(Ry _1) 0 cos(Ry_1)]; 
167   RZ_1 = [cos(Rz_1) -sin(Rz_1) 0; sin(Rz_1) cos (Rz_1) 0; 0 0 1]; 
168    
169   R_1 = RX_1 * RY_1 * RZ_1; 
170    
171   % using Pose_1_0 to obtain the stroke lengths : 
172   for i = 1:4 
173       QA_1{i} = h_1 + R_1*Ap{i} - Ab{i}; 
174       QP_1{i} = h_1 + R_1*Pp{i} - Pb{i}; 
175       qA_1{i} = norm(QA_1{i}); 
176       qP_1{i} = norm(QP_1{i}); 
177   end 
178    
179   % checking the stroke lengths for Pose_1_0:  
180   if qA_1{1}>Upper_Limit_qA{1} || qA_1{2}>Upper _Limit_qA{2} ||... 
181      qA_1{3}>Upper_Limit_qA{3} || qA_1{4}>Upper _Limit_qA{4} ||... 
182      qA_1{1}<Lower_Limit_qA{1} || qA_1{2}<Lower _Limit_qA{2} ||... 
183      qA_1{3}<Lower_Limit_qA{3} || qA_1{4}<Lower _Limit_qA{4} ||...      
184      qP_1{1}>Upper_Limit_qP{1} || qP_1{2}>Upper _Limit_qP{2} ||... 
185      qP_1{3}>Upper_Limit_qP{3} || qP_1{4}>Upper _Limit_qP{4} ||... 
186      qP_1{1}<Lower_Limit_qP{1} || qP_1{2}<Lower _Limit_qP{2} ||... 
187      qP_1{3}<Lower_Limit_qP{3} || qP_1{4}<Lower _Limit_qP{4}  
188      disp(' '); 
189      disp('You have surpassed the stroke limits  for Pose_1_0.'); 
190      disp('Let’s try again!'); 
191       
192   elseif  Pose_1_0{PATH}(1,1)>Upper_Pose_Limit( 1,1) ||... 
193           Pose_1_0{PATH}(1,1)<Lower_Pose_Limit( 1,1) ||... 
194           Pose_1_0{PATH}(2,1)>Upper_Pose_Limit( 2,1) ||... 
195           Pose_1_0{PATH}(2,1)<Lower_Pose_Limit( 2,1) ||... 
196           Pose_1_0{PATH}(3,1)>Upper_Pose_Limit( 3,1) ||... 
197           Pose_1_0{PATH}(3,1)<Lower_Pose_Limit( 3,1) ||...     
198           Pose_1_0{PATH}(4,1)>Upper_Pose_Limit( 4,1) ||... 
199           Pose_1_0{PATH}(4,1)<Lower_Pose_Limit( 4,1) ||... 
200           Pose_1_0{PATH}(5,1)>Upper_Pose_Limit( 5,1) ||... 
201           Pose_1_0{PATH}(5,1)<Lower_Pose_Limit( 5,1) ||... 
202           Pose_1_0{PATH}(6,1)>Upper_Pose_Limit( 6,1) ||... 
203           Pose_1_0{PATH}(6,1)<Lower_Pose_Limit( 6,1)  
204           disp(' '); 
205           disp('You have surpassed the pose lim its for Pose_1_0.'); 
206           disp('Let’s try again!'); 
207   else 
208        
209   % calculating the second intermediate pose (P ose_2_0): 
210   S_2 =@(X_2)... 
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211   [(norm([X_2(1); X_2(2); X_2(3)]-Pb{Order{PATH }(1,4)}))^2 + 
2*(([X_2(1); X_2(2); X_2(3)]-Pb{Order{PATH}(1,4)})'  * 
[cos(X_2(5))*cos(X_2(6)), -cos(X_2(5))*sin(X_2(6)),  sin(X_2(5)); 
sin(X_2(4))*sin(X_2(5))*cos(X_2(6))+cos(X_2(4))*sin (X_2(6)), -
sin(X_2(4))*sin(X_2(5))*sin(X_2(6))+cos(X_2(4))*cos (X_2(6)), -
sin(X_2(4))*cos(X_2(5)); -
cos(X_2(4))*sin(X_2(5))*cos(X_2(6))+sin(X_2(4))*sin (X_2(6)), 
cos(X_2(4))*sin(X_2(5))*sin(X_2(6))+sin(X_2(4))*cos (X_2(6)), 
cos(X_2(4))*cos(X_2(5))] * Pp{Order{PATH}(1,4)}) + 
(norm(Pp{Order{PATH}(1,4)}))^2 - qP_1{Order{PATH}(1 ,4)}^2 ; ...  

212   (norm([X_2(1); X_2(2); X_2(3)]-Pb{Order{PATH} (1,5)}))^2 + 
2*(([X_2(1); X_2(2); X_2(3)]-Pb{Order{PATH}(1,5)})'  * 
[cos(X_2(5))*cos(X_2(6)), -cos(X_2(5))*sin(X_2(6)),  sin(X_2(5)); 
sin(X_2(4))*sin(X_2(5))*cos(X_2(6))+cos(X_2(4))*sin (X_2(6)), -
sin(X_2(4))*sin(X_2(5))*sin(X_2(6))+cos(X_2(4))*cos (X_2(6)), -
sin(X_2(4))*cos(X_2(5)); -
cos(X_2(4))*sin(X_2(5))*cos(X_2(6))+sin(X_2(4))*sin (X_2(6)), 
cos(X_2(4))*sin(X_2(5))*sin(X_2(6))+sin(X_2(4))*cos (X_2(6)), 
cos(X_2(4))*cos(X_2(5))] * Pp{Order{PATH}(1,5)}) + 
(norm(Pp{Order{PATH}(1,5)}))^2 - qP_1{Order{PATH}(1 ,5)}^2 ; ... 

213   (norm([X_2(1); X_2(2); X_2(3)]-Pb{Order{PATH} (1,6)}))^2 + 
2*(([X_2(1); X_2(2); X_2(3)]-Pb{Order{PATH}(1,6)})'  * 
[cos(X_2(5))*cos(X_2(6)), -cos(X_2(5))*sin(X_2(6)),  sin(X_2(5)); 
sin(X_2(4))*sin(X_2(5))*cos(X_2(6))+cos(X_2(4))*sin (X_2(6)), -
sin(X_2(4))*sin(X_2(5))*sin(X_2(6))+cos(X_2(4))*cos (X_2(6)), -
sin(X_2(4))*cos(X_2(5)); -
cos(X_2(4))*sin(X_2(5))*cos(X_2(6))+sin(X_2(4))*sin (X_2(6)), 
cos(X_2(4))*sin(X_2(5))*sin(X_2(6))+sin(X_2(4))*cos (X_2(6)), 
cos(X_2(4))*cos(X_2(5))] * Pp{Order{PATH}(1,6)}) + 
(norm(Pp{Order{PATH}(1,6)}))^2 - qP_3{Order{PATH}(1 ,6)}^2 ; ... 

214   (X_2(6)-Pose_3_0(6,1));...   % this minimizes  unwanted twist 
215   ]; % ... add more constraints as required 
216                
217   X_2_0 = Pose_MID; %starting guess 
218   options = optimset('Algorithm', 'Levenberg-Ma rquardt', 'MaxIter', 

50000,... 
219   'MaxFunEvals', 1000, 'Diagnostics', 'on', 'Di splay', 'on', 

'TolFun', 1e-2); 
220   [X_2,fval] = fsolve(S_2, X_2_0, options);  % calling the solver 
221    
222   Pose_2_0{PATH} = [X_2(1);X_2(2);X_2(3);X_2(4) ;X_2(5);X_2(6)]; 
223    
224   % moving platform axis origin in the stationa ry platform system 

for Pose_2_0: 
225   h_2 = [Pose_2_0{PATH}(1,1); Pose_2_0{PATH}(2, 1); 

Pose_2_0{PATH}(3,1)];   
226    
227   % rotation matrix (Pose_2_0): 
228   Rx_2 = Pose_2_0{PATH}(4,1);  
229   Ry_2 = Pose_2_0{PATH}(5,1); 
230   Rz_2 = Pose_2_0{PATH}(6,1); 
231    
232   RX_2 = [1 0 0; 0 cos(Rx_2) -sin(Rx_2); 0 sin( Rx_2) cos(Rx_2)]; 
233   RY_2 = [cos(Ry_2) 0 sin(Ry_2); 0 1 0; -sin(Ry _2) 0 cos(Ry_2)]; 
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234   RZ_2 = [cos(Rz_2) -sin(Rz_2) 0; sin(Rz_2) cos (Rz_2) 0; 0 0 1]; 
235    
236   R_2 = RX_2 * RY_2 * RZ_2; 
237    
238   % using Pose_2_0 to obtain the stroke lengths : 
239   for i = 1:4 
240       QA_2{i} = h_2 + R_2*Ap{i} - Ab{i}; 
241       QP_2{i} = h_2 + R_2*Pp{i} - Pb{i}; 
242       qA_2{i} = norm(QA_2{i}); 
243       qP_2{i} = norm(QP_2{i}); 
244   end 
245    
246   % checking the stroke lengths for Pose_2_0:  
247   if qA_2{1}>Upper_Limit_qA{1} || qA_2{2}>Upper _Limit_qA{2} ||... 
248      qA_2{3}>Upper_Limit_qA{3} || qA_2{4}>Upper _Limit_qA{4} ||... 
249      qA_2{1}<Lower_Limit_qA{1} || qA_2{2}<Lower _Limit_qA{2} ||... 
250      qA_2{3}<Lower_Limit_qA{3} || qA_2{4}<Lower _Limit_qA{4} ||...      
251      qP_2{1}>Upper_Limit_qP{1} || qP_2{2}>Upper _Limit_qP{2} ||... 
252      qP_2{3}>Upper_Limit_qP{3} || qP_2{4}>Upper _Limit_qP{4} ||... 
253      qP_2{1}<Lower_Limit_qP{1} || qP_2{2}<Lower _Limit_qP{2} ||... 
254      qP_2{3}<Lower_Limit_qP{3} || qP_2{4}<Lower _Limit_qP{4}  
255      disp(' '); 
256      disp('You have surpassed the stroke limits  for Pose_2_0.'); 
257      disp('Let’s try again!'); 
258      
259   elseif  Pose_2_0{PATH}(1,1)>Upper_Pose_Limit( 1,1) ||... 
260           Pose_2_0{PATH}(1,1)<Lower_Pose_Limit( 1,1) ||... 
261           Pose_2_0{PATH}(2,1)>Upper_Pose_Limit( 2,1) ||... 
262           Pose_2_0{PATH}(2,1)<Lower_Pose_Limit( 2,1) ||... 
263           Pose_2_0{PATH}(3,1)>Upper_Pose_Limit( 3,1) ||... 
264           Pose_2_0{PATH}(3,1)<Lower_Pose_Limit( 3,1) ||...     
265           Pose_2_0{PATH}(4,1)>Upper_Pose_Limit( 4,1) ||... 
266           Pose_2_0{PATH}(4,1)<Lower_Pose_Limit( 4,1) ||... 
267           Pose_2_0{PATH}(5,1)>Upper_Pose_Limit( 5,1) ||... 
268           Pose_2_0{PATH}(5,1)<Lower_Pose_Limit( 5,1) ||... 
269           Pose_2_0{PATH}(6,1)>Upper_Pose_Limit( 6,1) ||... 
270           Pose_2_0{PATH}(6,1)<Lower_Pose_Limit( 6,1)  
271           disp(' '); 
272           disp('You have surpassed the pose lim its for Pose_2_0.'); 
273           disp('Let’s try again!'); 
274   else 
275        
276   end    % corresponding to: if stroke lengths are OK for Pose_2_0 
277   end    % corresponding to: if stroke lengths are OK for Pose_1_0 
278   end    % corresponding to: for PATH Loop 
279   end    % corresponding to: if stroke lengths are OK for Pose_3_0 
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Appendix B 

VGW Kinetostatics 

The following MATLAB® code was created for obtaining the kinetostatic 

relationships for the VGW: 

 
1     %%% A. MOOSAVIAN, Mar 2014 
2     clear; clc; 
3      
4     % user input [in,deg]:  
5     Pose = [2.215; 0; 11.811; deg2rad(0); deg2rad (0); deg2rad(0)]; 
6      
7     x = Pose(1,1); y = Pose(2,1); z = Pose(3,1); 
8     Rx = Pose(4,1); Ry = Pose(5,1); Rz = Pose(6,1 ); 
9      
10    k_const = 1.1e7; % stiffness constant  
11     
12    % joint coordinates (module 1) [in]: 
13    Ab{1} = [11.15; 2.708; 0.75]; 
14    Ab{2} = [-1.073; -2.603; 0.75]; 
15    Ab{3} = [-0.21; -2.679; 0.75]; 
16    Ab{4} = [10.287; 2.782; 0.75]; 
17     
18    Pb{1} = [11.895; 2.645; 0.75]; 
19    Pb{2} = [11.895; -2.018; 0.75]; 
20    Pb{3} = [-1.819; 2.602; 0.75]; 
21    Pb{4} = [-1.819; -2.538; 0.75]; 
22     
23    Ap{1} = [10.105; -1.981; -0.75]; 
24    Ap{2} = [-1.227; 2.4; -0.75]; 
25    Ap{3} = [9.254; -2.141; -0.75]; 
26    Ap{4} = [-0.366; 2.489; -0.75]; 
27     
28    Pp{1} = [10.84; 2.406; -0.75]; 
29    Pp{2} = [10.84; -1.843; -0.75]; 
30    Pp{3} = [-1.971; 2.324; -0.75]; 
31    Pp{4} = [-1.971; -2.266; -0.75]; 
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32     
33    % moving platform axis origin in the stationa ry platform system: 
34    h = [x; y; z];  
35     
36    % rotation matrix: 
37    RX = [1 0 0; 0 cos(Rx) -sin(Rx); 0 sin(Rx) co s(Rx)]; 
38    RY = [cos(Ry) 0 sin(Ry); 0 1 0; -sin(Ry) 0 co s(Ry)]; 
39    RZ = [cos(Rz) -sin(Rz) 0; sin(Rz) cos(Rz) 0; 0 0 1]; 
40    R = RX*RY*RZ; 
41     
42    % loop closure equations:  
43    for i = 1:4 
44        QA{i} = h + R*Ap{i} - Ab{i}; 
45        QP{i} = h + R*Pp{i} - Pb{i}; 
46        qA{i} = norm(QA{i}); 
47        qP{i} = norm(QP{i}); 
48    end 
49     
50    % Jacobians: 
51    for i = 1:4 
52        JA{i} = [QA{i}'/qA{i}, (cross(R*Ap{i},QA{ i}))'/qA{i}]; 
53        JP{i} = [QP{i}'/qP{i}, (cross(R*Pp{i},QP{ i}))'/qP{i}]; 
54    end 
55     
56    J_ISO_A = [JA{1};JA{2};JA{3};JA{4};JP{1};JP{2 }]; 
57    J_ISO_B = [JA{1};JA{2};JA{3};JA{4};JP{1};JP{3 }]; 
58    J_ISO_C = [JA{1};JA{2};JA{3};JA{4};JP{2};JP{4 }]; 
59    J_ISO_D = [JA{1};JA{2};JA{3};JA{4};JP{3};JP{4 }]; 
60    J_HYPER = [JA{1};JA{2};JA{3};JA{4};JP{1};JP{2 };JP{3};JP{4}]; 
61     
62    % limb stiffness: 
63    for i = 1:4 
64        KJA{i} = k_const/qA{i}; 
65        KJP{i} = k_const/qP{i}; 
66    end 
67     
68    K_J_ISO_A = blkdiag(KJA{1},KJA{2},KJA{3},KJA{ 4},KJP{1},KJP{2}); 
69    K_J_ISO_B = blkdiag(KJA{1},KJA{2},KJA{3},KJA{ 4},KJP{1},KJP{3}); 
70    K_J_ISO_C = blkdiag(KJA{1},KJA{2},KJA{3},KJA{ 4},KJP{2},KJP{4}); 
71    K_J_ISO_D = blkdiag(KJA{1},KJA{2},KJA{3},KJA{ 4},KJP{3},KJP{4}); 
72  K_J_HYPER = blkdiag(KJA{1},KJA{2},KJA{3},KJA{4} ,KJP{1},KJP{2}, 

KJP{3},KJP{4});  
73     
74    % Cartesian stiffness: 
75    K_G_ISO_A = J_ISO_A' * K_J_ISO_A * J_ISO_A; 
76    K_G_ISO_B = J_ISO_B' * K_J_ISO_B * J_ISO_B; 
77    K_G_ISO_C = J_ISO_C' * K_J_ISO_C * J_ISO_C; 
78    K_G_ISO_D = J_ISO_D' * K_J_ISO_D * J_ISO_D; 
79    K_G_HYPER = J_HYPER'*K_J_HYPER*J_HYPER; 
80     
81    % external loads: 
82    F=[0 ; 1000 ; 0 ; 0 ; 0; 0];  % modify as req uired 
83     
84    % platform displacement: 
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85    DX_ISO_A = K_G_ISO_A \ F; 
86    DX_ISO_B = K_G_ISO_B \ F;      
87    DX_ISO_C = K_G_ISO_C \ F; 
88    DX_ISO_D = K_G_ISO_D \ F; 
89    DX_HYPER = K_G_HYPER \ F; 
90     
91    % internal loads (isostatic cases): 
92    f_ISO_A = J_ISO_A' \ F; 
93    f_ISO_B = J_ISO_B' \ F; 
94    f_ISO_C = J_ISO_C' \ F; 
95    f_ISO_D = J_ISO_D' \ F; 
96     
97    % internal loads (hyperstatic case): 
98    DQ_HYPER = J_HYPER * DX_HYPER; 
99    f_HYPER = K_J_HYPER * DQ_HYPER; 
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Appendix C 

Alternative Stiffness Model Using FEM 

The FE method can be alternatively used to obtain the structural response of the 

VGW. This model is composed of a series of truss elements simulating the 

actuated/locked passive members, a series of Single Point Constraints (SPCs) 

simulating the constrained ith platform, and a Multi Point Constraint (MPC) 

simulating the rigid (i+1)th platform. The ith Cartesian coordinate system is used to 

define all the nodes and vectors presented in this appendix. This is denoted by the 

use of superscript i. Figure C.1 illustrates the general setup for the FE model.  

 

  Figure C.1: FE representation for one module of the VGW. 
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C.1 Limb Element Formulation 

Two axial DOFs are assumed for the limb element as identified in Fig. C.2.  

 

Figure C.2: Typical limb element with the associated DOFs. 

 

In Fig. C.2, f and d are the nodal displacements and forces, respectively; q is the 

length of the element, u is the displacement along Þ,̂ that is, representing the local 

element axis. The following elementary relationships from solid mechanics are used 

to derive the limb element formulations: 

Hooke’s law: 

 5�̂ = 67�̂ (C.1) 

strain/displacement relationship:   

 7�̂ = 8
Þ ̂ (C.2) 

normal stress/force relationship:  

 £ = 5�̂2 (C.3) 
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where 5�̂, 7�̂, and E represent the normal stress, strain, and modulus of elasticity of 

the limb element, respectively; £  and 2 are the normal force and the cross sectional 

area of the element, respectively. By substituting Eq. (C.2) into Eq. (C.1), and then 

inserting that into Eq. (C.3), one can obtain  

 £ = 26 8Þ.̂ (C.4) 

Equation (C.4) assumes constant A and E over the whole element. By assuming a 

linear shape function, the displacement of the element can be represented by   

 8(Þ)̂ = -1 + -2Þ ̂ (C.5) 

where the number of coefficients is equal to the number of DOFs, represented by 1�̂ 

and 2�̂. To obtain the values of -1 and -2 the boundary conditions are applied to 

Eq. (C.5) yielding the following solutions: 

 -1 = 1�̂ (C.6a) 

 -2 = 2�̂ − 1�̂7 . (C.6b) 

By substituting -1 and -2 into Eq. (C.5) and differentiating with respect to Þ,̂ one 

can obtain  

 
8
Þ ̂ = [−17 17] [1�̂2�̂]. (C.7) 

Also, corresponding to Fig. C.2, 
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 )1�̂ = −£ (C.8a) 

 )2�̂ = £. (C.8b) 

Therefore, by substituting Eqs. (C.7) and (C.8) into Eq. (C.4) one has 

 [)1�̂)2�̂] = ;Ø [1�̂2�̂] (C.9) 

where  

 ;Ø = 267 [ 1 −1−1 1 ] (C.10) 

is the stiffness of a limb element in its local axis. For the VGW application, the term 

26/7 is simply replaced by an equivalent stiffness constant denoted by κ%, that is, 

the stiffness constant of the jth element, which is the same as the one used in Sec. 

5.1. The element stiffness matrix of the jth element, defined in the element local 

coordinate, is then transformed into the Cartesian coordinate, that is, the axis 

corresponding to platform i: 

 ;Ø� % = =� %� ;Ø =%  � %. (C.11) 

The derivation of this transformation is similar to the one for obtaining the global 

stiffness of the VGW as presented in Sec. 5.3. Matrix =� % is the transformation 

matrix for the jth element represented by 
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 =� % = [ Z%�0 Z%� 0 Z%� 0
0Z%�

0Z%�
0Z%� ] (C.12) 

where Z%� , Z%� , and Z%�  represent the direction cosines of the local x axis of the 

jth element with respect to the ith Cartesian coordinate system. After the 

transformations are complete, the global FEM stiffness matrix, ´�>

� , of the 

module is assembled by the superposition method using MATLAB®. The MATLAB® 

code is presented in this appendix following the presentation of the formulation for 

the platform element. 

C.2 Platform Element Formulation 

An MPC is used to generate a rigid element to represent the rigid platform. To 

incorporate the rigid element formulation, one can start with the general formulation 

for expressing force and displacement relationships for the 54-DOF system, that is, 

six per limb element plus six for the independent node of the platform element: 

 ��>

� = ´�>


�
54×54

û�>

�

54×1  (C.13) 

where û�>

�  and ��>


�  represent the displacement and load vectors associated with 

the 54-DOF system defined in the ith coordinate frame. The load vector can be 

decomposed into three components:   

 ��>

� = ��>


� � + ��>

� T + ��>


� ½  (C.14) 

where ��>

� T , and ��>


� ½  represent the loads associated with the rigid element, and 

the SPCs, respectively; ��>

� �  represents the loads associated with any other nodes. 
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Vector ��>

� �  is effectively null since all DOFs not associated with the SPCs are 

included in ��>

� T ; thus, it can be removed. Furthermore, by eliminating the single-

point constrained DOFs from the relationship, Eq. (C.13) can be reduced to  

 
��>


� T = ´�>

�

30×30  û�>

�

30×1  (C.15) 

and further decomposed in terms of dependent and independent components:  

  [ ´�>

� ?Ø] Ì
Ì ´�>


� �S?
][ û�>


� ?Ø]û�>

� �S?

] = [ ��>

� T?Ø]��>

� T�S?

] (C.16) 

where dep and ind correspond to the dependent and the independent DOFs, 

respectively. Using a dependency matrix, denoted by @� , the dependent DOFs can 

be expressed in terms of the independent ones:  

 
û�>


� ?Ø] = @�24×6 û�>

� �S?6×1 . (C.17) 

The derivation of @�  will be presented shortly. Since one must have equilibrium 

across the rigid element, the total work done must be zero. Therefore,  

 û�>

� ?Ø]�  ��>


� T?Ø] − û�>

� �S?�  ��>


� T�S? = 0. (C.18) 

By substituting Eq. (C.17) into Eq. (C.18) one can obtain  

  ��>

� T�S? = @� �  ��>


� T?Ø] . (C.19) 
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Furthermore, by substituting Eqs. (C.17) and (C.19) into Eq. (C.16), the following 

relationship could be developed to express the 6 × 6 stiffness matrix associated with 

the independent node of the platform element:  

 ´�>

� �S? = @� � ´�>


� ?Ø] @� . (C.20) 

Matrix ´�>

� ?Ø] is assembled using the MATLAB® code presented at the end of this 

appendix. Matrix @�  is derived by relating the translational and rotational DOFs 

associated with the independent node to the translational DOFs associated with the 

nodes on the moving platform, as illustrated by Fig. C.3. The term e�>

� º represents 

the coordinates of the gth node belonging to platform (i+1) defined in the ith 

coordinate frame.  

 

Figure C.3: Rigid element used to model the platform with the corresponding node 

numbering.  

Platform ‘i+1’
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yi
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Vectors û�>

� ?Ø] and û�>


� �S? from Eq. (C.17) can be expressed as 

 û�>

� ?Ø] =

⎣⎢
⎢⎡

A�>

� 9

⋮
A�>


� 16⎦
⎥⎥
⎤ (C.21) 

where  

 A�>

� º =

⎣⎢
⎡ �>


� ºj�>

� ºk�>

� ºl ⎦⎥

⎤ = A�>

� º�CÐD� + A�>


� ºCE�   ∀ F = 9, ⋯16 (C.22) 

and  

 û�>

� �S?  = [ A�>


� 17G�>

� 17] = [[ �>


� 17j �>

� 17k �>


� 17l ]�[ ��>

� 17j ��>


� 17k ��>

� 17l ]� ] (C.23) 

where �>

� ºj , �>


� ºk , and �>

� ºl represent the translational displacement of the 

gth node, and ��>

� ºj, ��>


� ºk, and ��>

� ºl represent its rotational displacement. The 

translational displacements of nodes 9 to 17 have been broken up into a component 

due to the translational displacement of the independent node (node 17), denoted by 

A�>

� º�CÐD� , and a component due to the rotational displacement of the independent 

node, denoted by A�>

� ºCE� . Vector A�>


� º�CÐD� is simply equal to that of node 17:  

 A�>

� º�CÐD� = A�>


� 17 (C.24) 

whereas vector A�>

� ºCE� can be related to G�>


� 17 by assuming infinitesimal 

rotations:   
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 A�>

� ºCE� = ẽ�>


� º G�>

� 17 (C.25) 

where 

 ẽ�>

� º =

⎣⎢
⎢⎡

0 ( ®� ºl
∗ − ®� 17l

∗ ) −( ®� ºk
∗ − ®� 17k

∗ )
−( ®� ºl

∗ − ®� 17l
∗ ) 0 ( ®� ºj

∗ − ®� 17j
∗ )

( ®� ºk
∗ − ®� 17k

∗ ) −( ®� ºj
∗ − ®� 17j

∗ ) 0 ⎦⎥
⎥⎤. (C.26) 

By repeating the same procedure for every dependent node, the dependency matrix 

can be expressed as follows:   

 @� =
⎣⎢
⎢⎢⎡

¼3×3
⋮

 ¼3×3 

ẽ�>

� 9

⋮
ẽ�>


� 16⎦
⎥⎥⎥
⎤. (C.27) 

Using the above formulations for the limb and the platform elements, the global 

stiffness matrix is assembled using MATLAB®, where the 6 × 6 Cartesian stiffness 

matrix is simply equal to ´�>

� �S?. The multi-module stiffness can be derived using 

the method presented in Sec. 5.3.  

C.3 Stiffness Matrix Assembly 

A short MATLAB® program was written to assemble the stiffness matrix of the 

VGW. The matrix assembly methodology has been adopted from [120]. 

1     %%% A. MOOSAVIAN, Mar 2014 
2     clear; clc; 
3      
4     NE = 8;       % number of elements 
5     NN = 2;       % number of nodes per element 
6     ND = 3;       % number of DOFs per node 
7     NNS = 17;     % total number of nodes 
8     TD = NNS*ND;  % total DOFs 
9      
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10    % node coordinates (module 1) [in]: 
11    node(1,1)=11.15;   node(1,2)=2.708;   node(1, 3)=0.75; 
12    node(2,1)=-1.073;  node(2,2)=-2.603;  node(2, 3)=0.75; 
13    node(3,1)=-0.21;   node(3,2)=-2.679;  node(3, 3)=0.75; 
14    node(4,1)=10.287;  node(4,2)=2.782;   node(4, 3)=0.75; 
15    node(5,1)=11.895;  node(5,2)=2.645;   node(5, 3)=0.75; 
16    node(6,1)=11.895;  node(6,2)=-2.018;  node(6, 3)=0.75; 
17    node(7,1)=-1.819;  node(7,2)=2.602;   node(7, 3)=0.75; 
18    node(8,1)=-1.819;  node(8,2)=-2.538;  node(8, 3)=0.75; 
19     
20    node(9,1)=12.32;   node(9,2)=-1.981;  node(9, 3)=11.061; 
21    node(10,1)=0.988;  node(10,2)=2.4;    node(10 ,3)=11.061; 
22    node(11,1)=11.469; node(11,2)=-2.141; node(11 ,3)=11.061; 
23    node(12,1)=1.849;  node(12,2)=2.489;  node(12 ,3)=11.061; 
24    node(13,1)=13.055; node(13,2)=2.406;  node(13 ,3)=11.061; 
25    node(14,1)=13.055; node(14,2)=-1.843; node(14 ,3)=11.061; 
26    node(15,1)=0.244;  node(15,2)=2.324;  node(15 ,3)=11.061; 
27    node(16,1)=0.244;  node(16,2)=-2.266; node(16 ,3)=11.061; 
28     
29    node(17,1)=2.215;  node(17,2)=0;      node(17 ,3)=11.811; 
30     
31    % properties: 
32    for i = 1:NE 
33        Mod(i,1) = 1.1e07;  % modulus of elastici ty [psi] 
34        Area(i,1) = 1;      % area [in^2]  
35    end 
36     
37    % nodal connectivities: 
38    El(1,1)=1;  El(1,2)=9;  % element 1 connects nodes 1 and 9 
39    El(2,1)=2;  El(2,2)=10; % element 2 connects nodes 2 and 10  
40    El(3,1)=3;  El(3,2)=11; % element 3 connects nodes 3 and 11 
41    El(4,1)=4;  El(4,2)=12; % element 4 connects nodes 4 and 12 
42    El(5,1)=5;  El(5,2)=13; % element 5 connects nodes 5 and 13 
43    El(6,1)=6;  El(6,2)=14; % element 6 connects nodes 6 and 14 
44    El(7,1)=7;  El(7,2)=15; % element 7 connects nodes 7 and 15 
45    El(8,1)=8;  El(8,2)=16; % element 8 connects nodes 8 and 16 
46     
47    % boundary conditions (the nodes on the stati onary platform): 
48    for i = 1:24 
49        bcdof(i) = i; 
50        bcval(i) = 0;    %ith DOF constrained (wi th a value of 0) 
51    end 
52     
53    % initiating the arrays: 
54    ff = zeros(TD,1); 
55    kk = zeros(TD); 
56    index = zeros(NN*ND,1); 
57     
58    % element transformation and matrix construct ion:  
59    for i = 1:NE 
60        nd(1) = El(i,1); 
61        nd(2) = El(i,2); 
62         
63        x1=node(nd(1),1);   y1=node(nd(1),2);   z 1=node(nd(1),3); 
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64        x2=node(nd(2),1);   y2=node(nd(2),2);   z 2=node(nd(2),3); 
65         
66        Leng = sqrt((x2-x1)^2+(y2-y1)^2+(z2-z1)^2 ); 
67        Cx = (x2-x1)/Leng;    Cy=(y2-y1)/Leng;    Cz=(z2-z1)/Leng; 
68         
69        ED = NN*ND; 
70        k = 0; 
71        
72        for i = 1:NN 
73            start = (nd(i)-1)*ND; 
74                for j = 1:ND 
75                    k = k+1; 
76                    index(k) = start+j; 
77                end 
78        end 
79         
80        k = (Area(i,1)*Mod(i,1)/Leng)*... 
81          [Cx*Cx Cx*Cy Cx*Cz -Cx*Cx -Cx*Cy -Cx*Cz ;... 
82           Cx*Cy Cy*Cy Cy*Cz -Cx*Cy -Cy*Cy -Cy*Cz ;... 
83           Cx*Cz Cy*Cz Cz*Cz -Cx*Cz -Cy*Cz -Cz*Cz ;... 
84          -Cx*Cx -Cx*Cy -Cx*Cz Cx*Cx Cx*Cy Cx*Cz; ... 
85          -Cx*Cy -Cy*Cy -Cy*Cz Cx*Cy Cy*Cy Cy*Cz; ... 
86          -Cx*Cz -Cy*Cz -Cz*Cz Cx*Cz Cy*Cz Cz*Cz] ; 
87        ED = length(index); 
88        
89        for i = 1:ED 
90            ii = index(i); 
91                for j = 1:ED 
92                    jj = index(j); 
93                    kk(ii,jj) = kk(ii,jj)+k(i,j);  
94                end 
95        end     
96    end 
97     
98    % row and column elimination: 
99    n = length(bcdof); 
100   TD = size(kk); 
101    
102   for i = 1:n 
103       c = bcdof(i); 
104       for j = 1:TD 
105           kk(c,j) = 0; 
106       end 
107       kk(c,c) = 1;   % to avoid numerical diffi culties  
108       ff(c) = bcval(i); 
109   end 
110    
111   % matrix reduction: 
112   for i = 1:24 
113       for j = 1:24 
114           kk_red(i,j) = kk(i+24,j+24); 
115       end 
116   end 
117    



190 
 

118   % generating the dependency matrix:  
119   for i = 1:8 
120       b_skew{i}=... 
121          [0,(node(i+8,3)-node(17,3)),(node(17,2 )-node(i+8,2));... 
122          (node(17,3)-node(i+8,3)),0,(node(i+8,1 )-node(17,1));... 
123          (node(i+8,2)-node(17,2)),(node(17,1)-n ode(i+8,1)),0]; 
124   end 
125    
126   G = [eye(3) b_skew{1}; eye(3) b_skew{2}; eye( 3) b_skew{3};... 
127        eye(3) b_skew{4}; eye(3) b_skew{5}; eye( 3) b_skew{6};... 
128        eye(3) b_skew{7}; eye(3) b_skew{8}]; 
129    
130   % generating the equivalent 6 x 6 matrix base d on the FEM:  
131   K = G'*kk_red*G; 
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Appendix D 

Designing for Uncertainties  

The presented wing morphing mechanism in this thesis has been designed to offer 

multiple degrees of fault tolerance in response to uncertainties. These design 

provisions can be categorized in response to two groups of uncertainties: 1) failure 

related, and 2) load related. The provisions for the first category respond to internal 

uncertainties, whereas those of the latter respond to external ones. 

The points discussed and presented here are meant to serve as high-level 

provisions to accommodate the preliminary design of the VGW. Furthermore, the 

uncertainties are approached from a structural perspective in order to accommodate 

the conceptual design. Specific implementation of the detection provisions and the 

systems details will vary depending on the type of actuation and are beyond the 

scope of what is presented here.  

D.1 Designing for Failure (Internal Uncertainties) 

Failures can be grouped into two categories: 1) those that will affect the functionality 

of the system, and 2) those that will affect the safety of the system. Herein, the 

functional failures will be referred to as minor failures, whereas the safety failures 

will be referred to as major failures. Both minor and major failures are not considered 

catastrophic, as they would not prevent continued safe flight and landing.  
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D.1.1 Functional Failures 

Functional failures can be contributed to possible systems failures, for example due 

to the failure of a valve or an electrical unit, or structural failures, such as the 

jamming of the movable skin. Any such event may lead to the jamming of a limb, 

causing loss of its functionality. However, the rigidity of the limb will not be affected 

due to such events. Furthermore, depending on the application, the system can be 

designed to be fail-jam or fail-operate. In the fail-jam case the system will no longer 

operate, but will be locked in its current position. In the fail-operate case the system 

will continue to operate after failure, but in a degraded mode, that is, with less 

controllable DOFs. The degraded operation mode is possible due to the redundant 

nature of the motion control, as discussed in Chapter 7.  

The designation of fail-jam or fail-operate is entirely up to the particular 

application, as in general the VGW is meant for performance improvement, and not 

control. If the VGW is designated to be fail-jam, that is, no change of motion would 

be expected after a single failure, the response of the system would be the same 

regardless of the number of limbs jammed. In this case the VGW will maintain the 

position in which the first failure is detected until the problem is resolved. On the 

other hand, if the VGW is designated to be fail-operate, then the permanent locking 

of any actuated limb or a passive limb will reduce the controllable DOFs by the 

number of jammed limbs. As established in Chapter 4 each permanently locked 

member will impose a kinematic constraint, permanently reducing the number of 

controllable DOFs. However, the system can still operate in this mode, if required. 

If the system is to be designated as fail-operate, all possible scenarios must be 

anticipated during design and sizing so the safe operation of the system is not 

impacted. 
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D.1.2 Safety Failures  

Safety failures occur when an actuated or a passive limb permanently loses its load-

bearing capability. The optimal topology (Fig. 6.15) offers a single degree of tolerance 

in such an event. In Chapter 6, the optimization formulation was set up to capture 

the possible failure of any of the eight members. The configurations that were 

produced were referred to as fail-safe topologies. With the proposed optimal 

configuration, one can obtain eight of such topologies, all of which are illustrated in 

Fig. D.1.  

 

 Figure D.1: Eight fail-safe topologies representing all possible one-member 

configurations that could be tolerated in the event one of the limbs loses its load-

bearing capability permanently. 

Active Limb
Locked Passive Limb

Failed Limb

Fail-safe Topology 1 Fail-safe Topology 2 Fail-safe Topology 3

Fail-safe Topology 4 Fail-safe Topology 5 Fail-safe Topology 6

Fail-safe Topology 7 Fail-safe Topology 8
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Although the system may still be able to operate in a degraded mode after the 

loss of the load-bearing capability of a limb, this is generally not recommended. 

Additionally, both in the case of functional (minor) and safety (major) failures, the 

detection provisions can be set up to annunciate the failure to the cockpit so the 

pilot can take the necessary measures. 

D.2 Designing for Uncertainty in Loading (External 

Uncertainties) 

As it was shown in the case-study in Chapter 7, the optimal motion can be 

determined for a given loading condition. However, any shift in the magnitude of the 

external loads caused by, for example, a sudden gust, can change the anticipated 

loading. Generally, during actuation there are two scenarios that could be taking 

place: 1) the actual internal loads will match those predicted, or 2) the actual internal 

loads deviate from the predicted loads. Depending on the fidelity and complexity of 

the on-the-fly internal load calculation required for the optimal motion control, some 

deviation from the predicted values may result. These deviations can be further 

amplified if the aircraft encounters sudden gust fields during actuation. Therefore, it 

is valuable to have some measures in place to deal with such uncertainties; just as 

valuable would be the autonomous application of such measures. In other words, it 

would be desirable to have a system in place that passively reacts to any 

uncertainties in loading without any additional sensors or active provisions.  

This passive provision is addressed through the design of the passive members, 

which are directionally locked at all times. This is useful for restoring the required 

stiffness and providing the additional structural support when encountering 

uncertainties in external loading, which may alter the anticipated loading for the 

optimal motion control.  
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D.2.1 Passive Member Design 

While actuation is occurring, a change in the external load may drive the actuators 

to reach their operational limits, after which they can only hold the applied load. 

Generally, a typical hydraulic or electro-mechanical actuator can support the 

additional load up to a structural limit, after which structural failure should be 

expected. In such a case, it would be desirable to reduce the load on the actuators 

by switching to the hyperstatic configuration. It would be highly beneficial to have 

a passively implemented system in place that could accomplish a similar effect 

without the complexity and potential reaction delay of an actively controlled one. 

Although there exist flow control valves designed for conventional hydraulic 

systems, that is, those with a supply and a return, to the best of the author’s 

knowledge no such system/package exists that can offer directional locking for a self-

circulating hydraulic cylinder. Thus, a new type of valve is proposed here. The 

implementation of this type of valve has been carried out using a circuit with two 

two-way two-position solenoid valves and two check valves. The two positions of the 

solenoid valves include on and off, where in this setup the on position, that is, 

energized, corresponds to an open valve, and the off position, that is, de-energized, 

corresponds to a closed valve. Figure D.2 schematically illustrates the proposed 

circuit in the de-energized state. 

There are four possible positions that could be generated with the proposed 

circuit. Table D.1 presents these positions. Terms A and B correspond to the two 

solenoid valves, while terms 1 and 0 represent the on and off states, respectively. 

The state in Table D.1 describes the functionality of the system for the corresponding 

position. The physical interpretation of each state in terms of its effect on the 

cylinder is described in Table D.2.  
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 Figure D.2: Proposed circuit for directional flow control of a self-circulating 

cylinder. 

 

Table D.1: Four positions generated using two solenoid valves. 

Position Solenoid Valve A Solenoid Valve B State 

1 0 0 L E+R 

2 0 1 L R 

3 1 0 L E 

4 1 1 U E+R 

 

The first three positions are used in operation, while the fourth position is not. 

The fourth position provides the complete unlocking of the cylinder, which is useful 

for initial setup and calibration.  

Table D.2: Physical interpretations for the four circuit configurations. 

�Ò+T Locked in Extension; Locked in Retraction 

�T Locked in Retraction; Unlocked in Extension 

�Ò Locked in Extension; Unlocked in Retraction 

HÒ+T Unlocked in Extension; Unlocked in Retraction 

A B
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When a cylinder is locked in extension and retraction, i.e. position 1, it can react 

to loads both in tension and compression; when it is locked in retraction, i.e. position 

2, it can only react to loads in compression; when it is locked in extension, i.e. 

position 3, it can only react to loads in tension; and when it is unlocked in extension 

and retraction, i.e. position 4, it cannot react to any loads.  

The proposed circuit can effectively be represented as a two-way four-position 

valve, pictorially illustrated in Fig. D.3. The four positions are obtained through the 

actuation of the two solenoid valves.  

 

Figure D.3: Cutaway view of the proposed valve schematic in four positions to 

enable directional locking of a self-circulating cylinder. 

A=0 B=0 A=1 B=0

A=0 B=1 A=1 B=1

Position 1: 
Locked in Extension
Locked in Retraction

Position 2: 
Unlocked in Extension
Locked in Retraction

Position 3: 
Locked in Extension

Unlocked in Retraction

Position 4: 
Unlocked in Extension
Unlocked in Retraction
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With the current setup, if no power is supplied to the system, the passive 

members will remain locked in both directions. Figure D.4 illustrates the realization 

of the aforementioned circuit used on the prototype.  

  

Figure D.4: The implementation of the directional lockability for one lockable 

cylinder. 

 

Although this particular setup is only applicable to hydraulic systems, the same 

philosophy could be adopted to develop a mechanical setup using clutches and gears. 

Furthermore, it should be noted that the design of the VGW is not dependent on 

the ability of the passive members to offer directional lockability.  

Check Valve
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D.3 Sizing Guidelines  

Both static and dynamic loads must be considered for the purpose of sizing the 

actuators, the lockable passive members, and the joints. Although this thesis is 

intended to provide a conceptual framework for the design of the VGW without 

much focus on the detailed design and sizing of these morphing modules, some 

general remarks about sizing are included here.  

There are three scenarios that should be considered for sizing the actuators, the 

lockable passive members, and the joints: 1) ultimate loads applied to the hyperstatic 

(8-member) topology for all given poses for all flight and ground load-cases, 2) 

ultimate loads applied to the isostatic (6-member) topologies for all given poses for 

the pre-determined actuating flight and ground load-cases, and 3) limit loads applied 

to the fail-safe (7-member) topologies. Ultimate loads are equal to limit loads 

multiplied by an appropriate factor of safety, typically 1.5, while limit loads are the 

maximum loads to be expected in service (Federal Aviation Regulation (FAR) 25.301 

[121]). It is recommended for the failures to be annunciated, so the pilot can take 

corrective action following the incident. The combination of all the above scenarios 

will provide minimum and maximum design loads for the actuators, the lockable 

passive members, and the joints, to be used for the purpose of structural sizing.  

Although the proposed VGW is not intended for control, it is foreseen that it 

could be adopted for such an application. In such an event, the system should be 

sized/designed to adhere to the regulations of FAR 25.671 [121].  

D.4 Conclusion  

The incorporated features in the design can increase the robustness of the system by 

improving its ability to deal with uncertainties. The uncertainties discussed here 



200 
 

were broken up into those brought about by internal factors as well as those due to 

external factors. Figure D.5 summarizes these features.  

 

Figure D.5: Summary of approaches used in the VGW design to address internal 

and external uncertainties. 

 

In the internal cases the system is set up to deal with safety failures through the 

fail-safe topological design of the VGW. Additionally, it can be set up to operate in 

a degraded mode in the case of a functional failure. In the external cases, the design 

of the passive members allows for a passive provision to be in place to automatically 

react to loads not anticipated during actuation.

Uncertainties

Internal External

LoadingFunctional Safety

Fail-safeFail-jam Fail-operate Self Lock
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Appendix E 

SC(2)-0518 Airfoil Definition  

The following table provides the definition for airfoil SC(2)-0518 (Fig. E.1)  [119]:  

Table E.1: SC(2)-0518 airfoil definition. 

x/c (y/c)u (y/c)l  x/c (y/c)u (y/c)l  x/c (y/c)u (y/c)l 

0.000 0.000 0.000  0.160 0.078 -0.079  0.340 0.090 -0.090 

0.002 0.014 -0.014  0.170 0.080 -0.080  0.350 0.090 -0.090 

0.005 0.021 -0.021  0.180 0.081 -0.081  0.360 0.090 -0.090 

0.010 0.029 -0.029  0.190 0.082 -0.082  0.370 0.090 -0.090 

0.020 0.039 -0.039  0.200 0.083 -0.083  0.380 0.090 -0.089 

0.030 0.046 -0.046  0.210 0.084 -0.084  0.390 0.090 -0.089 

0.040 0.051 -0.051  0.220 0.085 -0.085  0.400 0.090 -0.089 

0.050 0.055 -0.055  0.230 0.085 -0.086  0.410 0.090 -0.088 

0.060 0.059 -0.059  0.240 0.086 -0.086  0.420 0.090 -0.088 

0.070 0.062 -0.062  0.250 0.087 -0.087  0.430 0.090 -0.087 

0.080 0.064 -0.064  0.260 0.087 -0.088  0.440 0.089 -0.087 

0.090 0.067 -0.067  0.270 0.088 -0.088  0.450 0.089 -0.086 

0.100 0.069 -0.069  0.280 0.088 -0.088  0.460 0.089 -0.085 

0.110 0.071 -0.071  0.290 0.089 -0.089  0.470 0.088 -0.084 

0.120 0.073 -0.073  0.300 0.089 -0.089  0.480 0.088 -0.083 

0.130 0.074 -0.074  0.310 0.089 -0.089  0.490 0.087 -0.082 

0.140 0.076 -0.076  0.320 0.090 -0.090  0.500 0.087 -0.081 

0.150 0.077 -0.077  0.330 0.090 -0.090  0.510 0.086 -0.079 
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x/c (y/c)u (y/c)l  x/c (y/c)u (y/c)l  x/c (y/c)u (y/c)l 

0.520 0.085 -0.078  0.690 0.065 -0.042  0.860 0.033 -0.004 

0.530 0.085 -0.076  0.700 0.063 -0.040  0.870 0.031 -0.003 

0.540 0.084 -0.074  0.710 0.062 -0.037  0.880 0.028 -0.002 

0.550 0.083 -0.073  0.720 0.060 -0.035  0.890 0.026 -0.001 

0.560 0.082 -0.071  0.730 0.058 -0.032  0.900 0.024 0.000 

0.570 0.081 -0.069  0.740 0.057 -0.030  0.910 0.022 0.001 

0.580 0.080 -0.067  0.750 0.055 -0.028  0.920 0.019 0.001 

0.590 0.079 -0.065  0.760 0.053 -0.025  0.930 0.017 0.001 

0.600 0.078 -0.063  0.770 0.051 -0.023  0.940 0.015 0.001 

0.610 0.076 -0.060  0.780 0.049 -0.021  0.950 0.012 0.000 

0.620 0.075 -0.058  0.790 0.047 -0.018  0.960 0.009 -0.001 

0.630 0.074 -0.056  0.800 0.045 -0.016  0.970 0.007 -0.002 

0.640 0.072 -0.054  0.810 0.043 -0.014  0.980 0.004 -0.004 

0.650 0.071 -0.051  0.820 0.041 -0.012  0.990 0.001 -0.006 

0.660 0.070 -0.049  0.830 0.039 -0.010  1.000 -0.001 -0.008 

0.670 0.068 -0.047  0.840 0.037 -0.008     

0.680 0.067 -0.044  0.850 0.035 -0.006     

 

 

Figure E.1: Illustration of the SC(2)-0518 airfoil.

x/c ( y/c )u

( y/c )l
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