

MIXED SIGNAL TESTING SYSTEM TECHNIQUE WITH ALGEBRAIC

SIGNATURE ANALYZER WITHOUT CARRY PROPAGATION

by

Mohammed Faruque Ahmed

B.Sc, Ahsanullah University of Science & Technology, Bangladesh, Dhaka, 2007

 A project

 presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Engineering

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2017

© Mohammed Faruque Ahmed 2017

ii

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A PROJECT

I hereby declare that I am the sole author of this Project. This is a true copy of the Project, including

any required final revisions.

I authorize Ryerson University to lend this Project to other institutions or individuals for the purpose

of scholarly research.

I further authorize Ryerson University to reproduce this Project by photocopying or by other means,

in total or in part, at the request of other institutions or individuals for the purpose of scholarly

research.

I understand that my Project may be made electronically available to the public.

iii

MIXED SIGNAL TESTING SYSTEM TECHNIQUE WITH ALGEBRAIC

SIGNATURE ANALYZER WITHOUT CARRY PROPAGATION

 Mohammed Faruque Ahmed

Master of Engineering

Electrical and Computer Engineering

Ryerson University, Toronto, 2017

Abstract

Signature Analyzer is an analyzer which is widely used for mixed-signal system testing. But its

hardware has high complexity in implementation as the application technique is a system with rules

of an arithmetic finite field with arbitrary radix. It’s a challenging task. To avoid this complexity here

the project is made based on Algebraic Signature Analyzer that can be used for mixed signal testing

and the analyzer doesn’t contain carry propagation circuitry. It improves performance and fault

tolerance. This technique is simple and applicable to systems of any size or radix. The hardware

complexity is very low compared to the conventional one and can be used in arithmetic/ algebraic

cryptography as well as coding.

iv

TABLE OF CONTENTS

Declaration for Electrical Submission... ii

Abstract .. iii

Table of Figures ... iv

Chapter 1 Introduction ... 1

Chapter 2 Conventional Signature Analyzer .. 3

Chapter 3 Novel Approach... 15

Conclusion to Chapter 3 ... 24

Chapter 4 Experimental Results and Tests ... 25

Conclusion .. 36

Appendix ... 37

References ... 41

v

 TABLE OF FIGURES

Figure 1 Signature Analyzer...1

Figure 2 Built-in signature analysis of a circuit under test 2

Figure 3 A t-Stage polynomial division Circuit 2

Figure 4 A Symbolic Presentation of a one-stage arithmetic. .. 3

Figure 5 Digital Integrator 6

Figure 6 Aliasing in Signature Analysis 7

Figure 7 A logic Level Presentation of the algebraic 3-input signature Analyzer………………... 9

Figure 8 A symbolic presentation of a one-stage arithmetic excluding adder 13

Figure 9 A 3-input arithmetic compactor ... 14

Figure 10 A symbolic form of an algebraic SA for a mixed-signal CUT 16

Figure 11 A more detailed symbolic form of the SA ... 17

Figure 12 A register transfer level implementation of the SA ... 18

Figure 13 An n-bit comparator ... 21

Figure 14 A binary-weighted version of the SA .. 22

Figure 15 A register transfer level implementation of the 3-bit SA .. 23

Figure 16 The experimental setup .. 25

Figure 17 Circuit design for 3 bit SA for a register transfer level ... 28

Figure 18 Altera DE2 115 FPGA Board .. 28

Figure 19 A Resister transfer level implementation of the 8-bit signature Analyzer 29

Figure 20 Compilation result of coding in Altera DE2 115 ... 30

Figure 21 Designed Block diagram from Altera DE2 115 .. 30

Figure 22 Experiment for nominal Value in input stimuli of the Designed device 31

Figure 23 Experiment for Maximum Value in input stimuli of the Designed device 31

Figure 24 Experiment for Minimum Value in input stimuli of the Designed device 32

Figure 25 The combination “1” is detected: ADC is operating Properly 32

Figure 26 The combination “1” is not detected: ADC should be faulty .. 33

Figure 27 The combination “1” detected, so ADC properly operating.. 33

Figure 28 The combination “1” not detected, so ADC faulty. ... 34

Figure 29 The combination “1” detected, so ADC properly operating.. 34

Figure 30 The combination “1” not detected, so ADC faulty. ... 35

1

Chapter 1

INTRODUCTION

Mixed signal system consists of both analog and digital circuit but the analysis method is only

applicable to the subset of these systems that have digital outputs. Signature analysis can be

employed to embedded into the system under test solution or can be used for the external test.

Figure 1: Signature Analyzer

In the case of implementation, a reference signature will be used which nothing but a fault-free

circuit. On the other hand, a circuit under test (CUT) of mixed signal nature will be fed by test

stimuli and output will be compacted by the algebraic signature analyzer (ASA).

The signature analyzer formulates an ideal form of a test instrument for analyzing digital or logic

patterns in a circuit in some conditions. It is often ideal for field repair and applications where it

can perceive logic patterns in a circuit under given or fix conditions, in so doing enabling detection

of correct or incorrect operation of a circuit or board.

2

Figure 2: Built-in signature analysis of a circuit under test

The signature analyzer which is algebraic is designed on the basic concept of a polynomial division

circuit. It's which is shown in figure 3 This circuit divides the incoming sequence of non-binary

symbols, am-1, ….,a1, a0 and this non-binary symbols are treated as a polynomial:

 a(y)=am-1y
m-1+...…. +a1y+ a0 …………………………...………. (1)

by the polynomial

 p(y)= Pt y
t +……. +P1y+P0 t<<m ……………………………. (2)

the reminder

 s(y)=st-1y
t-1+ …. +s1y+s0 …………………………………………... (3)

Normally A microprocessor board is use for

Figure: 3 A t-Stage polynomial division Circuit

checking data in signature analyzer on given nodes within a logic system testing. An operational

scenario is set up, e.g. a test mode and the data on various nodes are monitored. The signature

analyzer transforms the serial data into a hexadecimal data pattern - this is the equivalent signature.

Typically, this signature has digits depending on different signature analyzer’s different lengths.

3

Chapter 2

Conventional Signature Analyzer

The basic signature analyzer takes in the input from the node under test and uses a clock from the

system for synchronization. Start and stop pulses are seized to start and end the sample.

Figure 4: A Symbolic Presentation of a one-stage arithmetic.

The pulses from the node under test are then passed into a shift register to provide the hexadecimal

equivalent of the waveform. The multiple input signature register compression (MISR) is the prime

technique used in the signature analysis. The outputs of the circuit under test (CUT) are connected

to the inputs of the MISR while the test patterns are applied to the CUT. The final contents of the

MISR are compared to that expected for a fault-free circuit to determine whether the CUT is faulty.

Before starting the implementation and design, some theoretical knowledge should be Marge on

the process to handle some typical factor. Aliasing Probability is one of it. More input to the

analyzer is formulated an expression for estimating the aliasing probability. Multiple input use

provides a more accurate error model by relating the analysis q- ary code where q= 2m ; m =

number of output for the circuit under test (CUT).

Let C be an n-tuple (Cn-1 * Cn-2 * …C0) where Ci € GF(q) .

Let C(x) = Cn-1 Xn-1 + … + . . + C1X +C0. be the polynomial representation of the n-tuple.

4

The vector and polynomial representations shall be used interchangeably. All polynomial

representations and operations will be assumed to be over GF(q) where q = 2m.

Thus, all additions and multiplications in this piece will be assumed to be over GF(2m). The terms

of the polynomials can be characterized as only positive terms.

Definition I: The generator polynomial g(x) of a code C is that polynomial g(x) which divides

every code word polynomial in C. The degree of g(x) is equal to n - k where n is the length of the

code and k is the number of information symbols. [2]

Two key observations should be made here. First, when g(x) divides xn - 1, only then does the

code become a cyclic code of length n. On the other hand, when g(x) does not divide xn - 1, then

the code is not cyclic. The results derived here are applicable to cyclic and noncyclic codes. [2]

In the following, the Galois field elements 0 = (0, 0) and 1 = (0, 1) are denoted by boldface to

distinguish from the binary 0, 1.

The uniqueness of our formulation is that it not only allows a uniform model for analysis of both

LFSR and MISR techniques but also provides for the development of new signature techniques.

Using this a new compression scheme for multiple output circuits are developed. This new scheme,

referred to here as multi-input LFSR (MLFSR), has the potential to achieve lower aliasing than

other existing schemes with analogous hardware complexity.

New error models are discussed for multioutput circuits. It is shown how these can utilize circuit-

specific information to obtain realistic error models. This paper presents several new aliasing

probability results, using the coding theory framework. Specifically, exact closed-form

expressions of aliasing probability for both LFSR and MISR are presented for certain test lengths.

To the best of our knowledge, an exact closed-form countenance for MISR aliasing probability

5

under independent error model had not been previously reported. Also presented are algorithms to

compute aliasing probabilities of LFSR’s and MISR’s for any arbitrary test length.

The aliasing probability of MLFSR, the new compression scheme proposed here, is studied. It is

shown that the MLFSR achieves lower aliasing compared to other schemes of comparable

hardware complexity such as multiple MISR.

Finally, a theoretical question is that of significant importance is whether not zero aliasing

compression is possible. We show that it is not only possible but there exist design techniques

which achieve aliasing-free compression with compression efficiency (1 - the length of the

signature length of test response) no less than half. Next, we present a result which states that any

desired compression efficiency can also be attained, asymptotically.

This result is of theoretical significance because previously, it was commonly believed that zero

aliasing is impossible.

There has been a significant volume of research on the problem of test data compaction for digital circuits

using special hardware that is usually implemented in a built-in self-test (BIST) environment [6], [8].

Several compaction schemes have been developed which are based on transition counting [9], checksums

[10], syndrome testing [11] and single- and multiple-input linear feedback shift registers (LFSR’s) [7].

Recently, Rajski and Tyszer [12] have analyzed the properties of digital integrators for test response

compaction for digital circuits.

As opposed to LFSR’s, the scheme using integrators introduces very small hardware overhead. Although

there has been a considerable amount of progress in test response compaction for digital circuits, there has

not been any past work in this direction for analog/mixed-signal circuits, to the best of our knowledge.

The integrator for computing the signature is shown in Fig. 4. The input to the integrator consists

of a sequence x of sampled data words of length N: An integral (summation) of x over N samples

6

is given by S(x) which consists of an integer part I(x); and a fractional part R(x) represented by m

and n bits, respectively.

For simplicity, we assume that the register in Fig. 4 represents numerical data normalized to lie

between 0 and 1 (including 0 but not including 1).

The data is represented as fixed-point

Figure 5: Digital Integrator

fractions. An overflow occurs if the value in the register exceeds its full-scale value (greater than

or equal to 1). The remaining value in the register, R(x) constitutes the signature. If desired, the

signature analyzer can be designed to handle numbers with integer and fractional parts, rather than

just the latter as considered in this analysis. Let the WORDSIZE be given by n: As an example,

the data word .111 000 00 representing the number 0.875 is specified by WORDSIZE = 8: The

signature is given by the bit values stored in the register and consists of the decimal fraction of the

integral.

Let the maximum tolerance of the response signal at any given time-point be denoted by β and let

N be the total number of samples over which the signal is integrated. Then the tolerance for the

good signature (for the nominal response and those within tolerance) is bounded by € = N X β; As

discussed in the previous section, β must lie within the range of values that can be represented by

the register. This condition is equivalent to €<1: However, if the nominal signature is such that by

7

adding the tolerance margin €; the register overflows, the remaining signature would no longer be

good. This will cause a response within tolerance to be incorrectly rejected as bad (false reject).

On the other hand, if a faulty response maps to a signature within a tolerance of the nominal (good

signature) it results in incorrectly passing a faulty response (aliasing). Both phenomena are

undesirable and the signature analyzer should be designed such that it minimizes the probability

of occurrence of these incorrect judgments. [5] a new framework is presented for shift register-

based test response compressors.

Next, consider the signature analyzer at the output of the CUT. Aliasing occurs when the error

Figure 6: Aliasing in Signature Analysis

vector, which is defined as the sum of the faulty circuit response and good circuit response, is

divisible by the feedback polynomial, as shown in Fig. 5.

Using the communication channel analogy, one can state that aliasing occurs precisely when the

error vector corresponds to a code vector in the code generated by the feedback polynomial of the

signature analyzer.

8

Hence, the probability of aliasing in GLFSR is precisely equal to the probability of undetected

error in the following equivalent communication scheme. Let the good circuit response be

transmitted over a noisy channel where the characteristics of this noisy channel are defined by the

error model used for estimating the aliasing probability. (For example, the well-known

independent error model [9], [10] will correspond to the binary symmetric channel model [12]

used frequently in communication theory.) The receiver then divides this received vector by g(x),

where g(x) = Ø(x), the feedback polynomial. If the resulting remainder (syndrome) equal to the

remainder (syndrome) obtained by dividing the good circuit response with Ø(x) then no error is

detected. This happens only when the added noise in the channel corresponds to a code vector in

the code generated by g(x) = Ø(x).

The following is a direct consequence of the above observations.

Let AC (aliasing code) represent the code C generated by g(x) = Ø(x) (the feedback polynomial

of the GLFSR) of length n = 1, where I is the length of the test response compressed by the GLFSR

(β, m).

An error polynomial E(z) causes aliasing in GLFSR (β, m) if E(x) belongs to the code AC defined

above. The following examples motivate the results subsequently presented.

Let the test response from a single output circuit be compressed into a 3-bit signature, using a

GLFSR (1, 3) shown in Fig. 6, with primitive feedback polynomial over GF (2):

 g(x) = x3 + x + 1.

This corresponds to a three-stage simple LFSR.

9

Figure 7: A Logic Level Presentation of the algebraic 3-input Signature Analyzer

In this case, we assume there are L=7 tests applied to the CUT. Since m =3 one has the degree of

Ø(x), L = (2m - 1). Thus, the code words in the code AC generated by Ø(x) of length 7 constitute

the cyclic Hamming code from Corollary 3. These are given

AC ={0, x3+ x+ l, x4+ x2+x, x4+ x3+x2
 +1, x5+ x2+x+1, x5+ x3+x2

, x5+ x4+1, x5+ x4+x3+x, x6+ x2+1,

x6+ x3+x2+x, x6+ x4+x+1, x6+ x4+x3, x6+ x5+x, x6+ x5+x3+1, x6+ x5+x3+x2+ x+1}.

In Table I(a), (b), and (c), we illustrate the states of the LFSR in Fig. 6, in response to input

sequences 0101110, 0100101, and 0100100, respectively. Let the first sequence, 0101110,

corresponding to the good circuit response, and the other two correspond to faulty circuit

responses. It may be seen that the first faulty circuit response 0100101 will cause aliasing since it

produces the same signature, 010, as the good circuit response. This is because 0001011, the bit

by bit EXOR sum of the good circuit response and this faulty circuit response, is a code word in

the code AC.

Now consider the second faulty response 0100100. The signature in response to this sequence is

110 which is different from 010, the good circuit signature. This is because 0001010, the bit-by-

bit EXOR sum of 0101110 and 0100100, is not a code word in the code AC. Thus, the faulty

response (c) will be detectable, whereas the response (b) will cause aliasing.

10

Therefore, a fault f can cause aliasing if and only if the tests for f are such that the error polynomial

is a code word in the above code. The number of 1's in the code words has important implications.

For example, consider a test sequence T = { t5,t4,t3,t2,t1,t0}. It may be noted that if t; is a test for the

fault f, then the error vector (error polynomial) corresponding to f will have a 1 in the i-th position

(the term xi).

For example, if a fault f is tested by three tests t3, t1, and to, then f will be aliased because the

corresponding error vector x3+ x+ 1 is a code word in the above code. However, any fault that has

either two or five test will not cause any aliasing, since there is no code word with two or five 1's

in it. It may also be noted that all the nonzero codewords in the above code have at least three 1's.

Therefore, any fault that is detected by only one or two tests will not cause aliasing. A fault to

cause aliasing should be detectable by at least three tests.

Table: 1 a) Good Circuit Response

Test Shift R(X) Register value

Stage 0 Stage 1

 0 = (0
0
) 0= (0

0
)

t4 1 α = (1
0
) α = (1

0
) 0 = (0

0
)

t3 2 β = (1
1
) β = (1

0
) α = (1

0
)

t2 3 0 = (0
0
) β = (1

0
) 1 = (0

1
)

t1 4 1 = (0
1
) β = (1

0
) α = (1

0
)

t0 5 α = (1
0
) 1 = (1

0
) 1 = (0

1
)

11

Table: 1 b) Faulty Circuit Response

Test Shift R(X) Register value

Stage 0 Stage 1

 0 = (0
0
) 0= (0

0
)

t4 1 α = (1
0
) α = (1

0
) 0 = (0

0
)

t3 2 α = (1
0
) α = (1

0
) α = (1

0
)

t2 3 1 = (0
1
) α = (1

0
) 0 = (0

0
)

t1 4 β = (1
1
) β = (1

1
) α = (1

0
)

t0 5 α = (1
0
) 1 = (0

1
) 1 = (0

1
)

Table: 1 c) Faulty Circuit Response

Test Shift R(X) Register value

Stage 0 Stage 1

 0 = (0
0
) 0= (0

0
)

t4 1 α = (1
0
) α = (1

0
) 1 = (0

1
)

t3 2 α = (1
0
) α= (1

0
) α = (1

0
)

t2 3 0 = (0
0
) β = (1

1
) 0 = (0

0
)

t1 4 0 = (0
0
) 0 = (0

0
) β = (1

1
)

t0 5 β = (1
1
) α = (1

0
) β = (1

1
)

12

A multiple-input signature analyzer normally contains only one stage. It is presented in Figure 8

where α is a primitive element of the field GF(2n), i.e. a root of a primitive polynomial

 g(x) = gn-1xn-1 +……+g1x+g0…………………………………………...… (4)

All elements of the field can be represented by a power of α. Assume αi be the incoming digit and

αj be the content of the analyzer. Then, each operational cycle of the analyzer is described by the

following expression:

 αj α ⊕ αi = αk ……………………………………………………………………………………………. (5)

Without a loss of generality, we will consider a 3-bit signature register (n = 3), with α being a

primitive element of GF (23), in particular, a root of a primitive polynomial is

 g(x) = x 3 + x + 1.

Then, a symbolic scheme of Figure 4 will transfer to the logic level circuit of Figure 8, where

 αl=a2
(l)x2+a1

(l)x +a0
(l), ai

(l) ∈ {0,1},………………………………………...(6)

 0≤i≤2 , 0≤l≤6

The above expression indicates the relationship between the power and vector representations of

a field element.

For example, If the preliminary “cleared” analyzer receives, the following sequence of 3-bit output

responses from a digital CUT, α5 , α6 ,α4 ,α4 ,α2 ,α1 ,α0 then after the 6-th shift its content will

become:

 (((((0.α + α5)α + α6) α+ α4)α +α2)α + α1)α + α0 =α……….……………………(7)

If in the above sequence of output responses, the least significant bit in the first response changes

from 1 to 0 (i.e. the vector 111 changes to 110, or power α5 changes to α4, then the actual

signature will change from 010 to 101or from α to α6 in power form.

13

Figure 8: A symbolic presentation of a one-stage arithmetic excluding adder

In the known methods, output responses of mixed-signal circuits are compacted by a circuit

referred to as a modulo adder. It should be noted that a modulo adder is a special case of a residue

computing circuit. A residue computing circuit is represented in Figure 9. Here aj is the current

content of the register, ai is the incoming (arithmetic) symbol and b are the bases of the system.

This circuit divides the incoming sequence of symbols, am-1 ……. a1, a0, treated as a number:

 a = am-1b
m-1 + …… + a1b + a0 …………………………………………..… (8)

by the modulus

 p = pt-1 b
m-1 + …….. + p1b + p0 ; t << m ………………………………... (9)

we consider a single stage device, i.e. t = 1; p = p0 < b = 2n, where n is the number of bits occupied

by the symbol. The residue, s0, constitutes a signature.

An operational cycle of the circuit in Figure 9 can be described by the expression:

 ajb + ai = a+
j (mod p)…………………………………………………..…. (10)

Although the circuits of Figures 4 and look similar, their implementation is quite different. In

general case, the designing procedure for the arithmetic circuits is more complicated and their

hardware complexity is greater.

Figure 10 represents the circuit that computes a modulo 5 residues of the incoming sequence of 3-

bit symbols treated as an octal number.

14

Here ai is the incoming octal digit and C is a combinational circuit which generates the following

next state signals:

Figure 9: A 3-input arithmetic compactor

The shift of this circuit implements the operation aj x
8+ai (mod 5). For high hardware complexity,

the arithmetic compactor contains carry propagating circuitry. It's shown in red color in Figure 9.

This circuitry delays the operation and aggravates the effect of a single fault.

In figure 9, it designed an algebraic circuit that can be employed for mixed-signal data compaction

and it does not contain carry propagating circuitry.

15

Chapter 3

NOVEL APPROACH

When the polynomial connected with the reference signature then it can be considered as a code

word of the code whose minimal distance is defined by the g(x). Here this distance is called the

Hamming distance. This distance characterizes algebraic error-detecting properties of the code and

It is not convenient for arithmetic errors that occur in mixed-signal systems.

A small permissible deviation of the data to be compacted causes the reference signature to span

the entire space. The circuit which can be called decision making is in Figure 2. This circuit must

be able to compare the actual signature with the entire set of possible reference signatures, under

these conditions. Analyzer’s complexity increases for this. If try to decrease the complexity, an

arithmetic SA treats the sequence of output responses from a mixed-signal circuit as a number.

In conjunction with the reference residue, this is considered as a code word of an arithmetic error-

control code. The properties of this code depending on the arithmetic minimal distance. The

arithmetic minimal distance depends on the modulus p. The arithmetic residue calculating analyzer

does not search the entire space. For taking a decision, it employs a window comparator. This

simplifies the circuitry but the hardware complexity of the arithmetic SA can still be quite high.

The distance between two vectors will be calculated as the arithmetic difference between the

corresponding exponents. The distance between the signatures 010 and 101 will be 5 because the

exponents of powers α6 and α differ by 5.

16

 Fig. 10. A symbolic form of an algebraic SA for a mixed-signal CUT

We can interpret these exponents as output responses of a mixed-signal CUT since they possess

arithmetic properties and at the same time, the corresponding vectors or signatures possess

algebraic properties so an arithmetic data is mapped into an algebraic data. Figure 10 shows the

circuit which performs the mapping and computes an algebraic signature.

The circuit of Figure 10 can be obtained from the circuit of Figure 4 if we do the following

transform:

 ……………. (11)

This mapping will not change the probability of undetected error since the finite field GF(2n) is

closed and errors are independent.

In Figure 10, the logic level implementation of the circuit is more complex compared to the circuit

of Figure 4, but it is less complex than that of the circuit of Figure 9. Before designing the circuit,

we have to make a few observations.

The first observation is that

17

 ………………………….…… (12)

Assume an output response from a mixed-signal CUT as i. The second observation is that the

response i can be considered as an exponent of the power, i.e. αi, it means that the arithmetic values

i are mapped into algebraic values αi.

we can design a signature analyzer in the way shown in Figure 11, based on these observations.

Here α is a primitive element of a finite field GF(2n) and n is the bit length of the output responses.

Figure 11: A more detailed symbolic form of the SA

If we consider the case when the analyzer is fed by 3-bit data, its more detailed implementation

will have the form of Figure 12.

In figure12, the buses consist of 3 lines, as indicated by the appropriate number. The initial content

of the SA before the shift is αj , or a2x
2 + a1x + a0 in the polynomial form. The notations ak and ak

+,

where index k can be one of the 0, 1, 2, indicate the present and next states, respectively

18

Fig. 12. A register transfer level implementation of the SA

A multiplier by α in GF (23) is realized bearing in mind that g(x) = x3 + x + 1, α corresponds to x,

and

This operation is shown by cross-lines in Figure 10. The multiplexer inputs “0” and “7” are tied

together, because α7 =α0 in the field GF (23).

To demonstrate how to use this analyzer, we will have to consider that it receives only two values

from a CUT, j and i. Since the CUT is of a mixed-signal nature, there is an unavoidable deviation

19

of these values by ±1. The analyzer will map the received data into , αi+1, respectively. If

the initial content of the SA is 001, then after the first shift the content becomes α0 αj+1 = αj+1.

After the second shift, it changes to αj+1 αi+1 = αj+i+2.

It states that for the fault-free CUT the actual result must match one of the values from the interval

αj+i-2 , αj+i+2. that is one of the following:

 αj+i-2 , αj+i-1 αj+i, αj+i+1 , αj+i+2………………………………... (13)

In order to simplify the SA operation, we will assume that instead of α0 the initial SA content is α-

(j+i). We will refer to this value as the seed value. Then, by the same reasoning, the SA content after

two shifts will match one of the following powers:

 α-2 , α-1 ,α0 ,α1 α2.. (14)

For the closure property of the field GF (23), this power set is equivalent to:

 α5 , α6 ,α0 ,α1 α2... (15)

Since these values are ordered in the decision-making circuit can employ a comparator, reducing

the hardware complexity of the SA.

As in any signature analyzer, some errors in the CUT output responses may escape detection. The

aliasing rate can be estimated and will coincide with the aliasing rate of the conventional analyzer.

20

Example: Here we consider a 3-bit CUT, which is fed by two input stimuli. Under the fault-free

operation, the CUT produces the output responses j = 101±1 and i = 110 ±1. The seed value

will be

α-(j+i) = α-(5+6) = α -11 = α3,

 or 011 in the vector form. If the CUT is fault-free, then after 2 shifts the SA content must match

one of the elements in the set (6). If the actual responses are 101+1=110 (or α6) and 110+1=111

(or α7), the signature will be α3α6α7=α2 which belong to the set (6). And the decision-making circuit

will generate a pass signal. The validity of such a decision is determined by the aliasing rate.

Now assume that a fault in the CUT has made the following changes in the output responses: 110

⤇ 011 (α6 ⤇α3) and 111 ⤇ 100 (α7⤇α4). Then the actual signature will become α3 α3 α4 = α3. This

element does not belong to the set (6), so the fault is detected. There are two distinct ways of

designing the decision-making circuit depending on the optimization criteria.

Hardware overhead: The following approach can be employed if performance is paramount and

time overhead is not desirable. Let m be the number of output responses. All of the 2m+1 α-

multiplier outputs that belong to the set (6), are connected to the first inputs of the

2m+1comparators of a similar type. The second inputs of these comparators are shared and fed by

the vector 0…01. If the CUT is fault-free, one of the comparators will produce a logic “1” signal.

The logic OR of the comparator outputs will constitute a pass / fail signal.

21

Fig 13: An n-bit comparator

The logic diagram of the n-bit comparator is shown in Figure 11.

This procedure is based on the fact that the fault-free CUT produces one of the signatures from the

set (6). If the actual signature is α0, the comparator connected directly to the signature register

produces a logic “1”, thus indicating that the CUT is fault free. If the actual signature is α6, then

the product α6α generated at the output of the first α-multiplier equals to 1, which is detected by

the next comparator. The same n reasoning applies to the rest of signatures from the set (6).

Time overhead: The hardware complexity can be further reduced if time overhead is allowed, for

implementation use the following seed value:

 α-(j+i+m+1), where m is the number of output responses.

For the above example, α-(11+3) = α0, and the set (6) will transform to:

 α2, α3, α4 ,α5 ,α6

After the last output response has been shifted in, the SA continues to shift its content 2m+1 more

times, while the input i is forced to 1. This ensures that the SA content is multiplied by α with each

shift. For the above example, 2m+1=5. If within this time, the match with an element of the set (7)

has been determined, the CUT is considered to be fault-free. Otherwise, it is faulty.

If the CUT is fault free and its output responses have not exceeded their tolerances, then while

cycling through the states during the extra 2m+1 shifts, the output of the multiplexer in Figure 9

will go through the power α0 or vector 0… 01. The match with the vector 0… 01 is detected by

22

the comparator of Figure 13 connected to the multiplexor’s output. The comparator output is

producing a pass / fail signal.

In figure 11, the implementation complexity increases significantly with the growth of n. This

circuit can only be implemented for the output responses with relatively low values of n. For

greater values of n, we will modify the circuit of Figure 11 to the one shown in Figure 14.

Fig. 14. A binary-weighted version of the SA

The modified circuit contains binary-weighted stages and is more economical in terms of

hardware. The complexity of the multiplier xαi is comparable with that of the multiplier xα,

whereas the number of multipliers drops from 2n to n. The economy increases with the growth of

n.

For the case of 3-bit data, the circuit of Figure 14 transfers to the one shown in Figure 15. This

circuit operates much in the same way. The αi-multipliers structure is determined from the

following expressions:

 x(a2x
2 + a1x + a0) mod g(x) = a1x

2 + (a2 + a0)x + a2,

 x2(a2x
2 + a1x + a0) mod g(x) = (a2 + a0)x

2 + (a2+ a1)x + a1

 x4(a2x
2 + a1x + a0) mod g(x) = (a2 +a1+ a0)x

2 + (a1+ a0)x+ (a2+ a1)

23

Fig. 15. A register transfer level implementation of the 3-bit SA

24

Conclusion to Chapter 3

The main idea is to remove the adder from the arithmetic signature analyzer and it becomes just a

multiplying device. we supply I to the analyzer, but it interprets it as αi{α}^{i} and multiplies the

current content, αj{α}^{j}, by αi{α}^{i}. The operation of this analyzer is equivalent to the normal

analyzer, whose input data are shuffled (i.e., what is important, the probability of error detection

is not changing). An outcome from the main idea is that the reference signatures (5 signatures that

are discussed in the paper) are contagious. So, if we go through them, it will always include 001.

If this code is not found, the circuit is faulty.

For a fault-free ADC, your actual signature drops into the range

α3{α}^{i+1}, α4{α}^{i+1}, α5{α}^{i+1},..., α12{α}^{i+1}, α13{α}^{i+1},α14{α}^{i+1}, ...

, α21{α}^{i+1}, α22{α}^{i+1}, α23{α}^{i+1}. So, you take α23{α}^{i+1} and compare the

actual signature with it. If they match, then the ADC is fault-free. If not, then you multiply this

actual signature by α and see if the result of multiplication now matches α23{α}^ {i+1, etc. If we

clock it 20 times and it never matches α23{α}^{i+1}, then the ADC is faulty. Multiplication of

the register content by α can be easily done by the same circuit; you just keep i=1 and apply one

clock (shift). For avoid the carry propagation to the main circuit, it is one of the most favorable

conceptions for the future Signature analyzer. It’s easy to use, operate and implementation.

25

Chapter 4

Experimental Results and Tests

In Figure 16, the experimental setup to test the proposed method of signature analysis is shown.

 Fig. 16. The experimental setup

From the figure 16, we can see, the setup includes the microcontroller system board Adapt9S12D

which is based on the Freescale’s 9S12DG128 microcontroller and the Altera DE2 Development

Board based on the Cyclone II EP2C35F672C6 FPGA device. 16 input test stimuli (voltages Vin,)

equally distributed over the range (0 ~5.12) V and applied them to the analog-to-digital converter

(ADC) of the 9S12 microcontroller which served as a mixed-signal system [1]. Input voltage was

measured by a high-precision voltmeter and regarded as a nominal test input value.

26

The circuit in Figure 16 operates as follows. Every time the switch Sw is closed, the system

performs 8 measurements of the same test signal and averages the result by accumulating the sum

of the eight 8-bit measurements and shifting it right three times, which eliminates noise. Each

conversion result for a properly operating device can deviate from the nominal value by ±1, For

example, if Vin = 40mV, the conversion result can as the TABLE A.

Table: Input stimuli generation using different voltage level

Input voltage output code

 mv Min Nom Max No fault Fault

80 3 4 5 3 3

400 19 20 21 21 21

720 35 36 37 37 37

1040 51 52 53 53 53

1360 67 68 69 68 70

1680 83 84 85 85 85

2000 99 100 101 99 99

2320 115 116 117 117 117

2640 131 132 133 133 133

2960 147 148 149 148 150

3280 163 164 165 165 165

3600 179 180 181 179 179

3920 195 196 197 197 197

4240 211 212 213 212 240

4560 227 228 229 229 230

4880 243 244 245 244 244

Therefore, each of the thirty-two 8-bit average results contains an error of at most ±1 count. The

test stimuli have been selected equal to the midpoints of the quantization bins, thereby increasing

the uncertainty and worsening the probability of undetected error. If the test stimuli would have

been selected at the transition points of the characteristic, the probability of undetected error

(aliasing rate) would improve. This follows from the observation that each conversion would result

in 2 possible values as opposed to 3 possible values in the previous case.

27

As soon as average values of the conversion results are computed by the microcontroller, they are

transferred to the DE2 board. The transfer of each data is accompanied by a high-to-low transition

of the strobe signal Str. The Str signal serves as a clock for the state machine that implements the

signature analyzer (in its 8-bit configuration). The signature, D, is displayed on a two-digit 7-

segment display in the hexadecimal form.

The first experiment was performed on the properly operating device. In the second experiment,

the average results were corrupted digitally in the microcontroller (thereby simulating random

faults in the ADC) and sent to the analyzer. The analyzer has correctly identified the faulty device.

The relationship between input voltages and output codes is presented in Table II. Based on this

Table and taking into consideration that g(x) = x8 + x4 + x3 + x2 + 1, the seed value is calculated

as follows.

4 + 20 + …. + 244 = 1984 = 199 mod (28 -1) = 199 mod;

α-199
 =α56 =01011101

Seed Value = α56 α-16 = α40 = 01101010 = 106.

In addition to test experiments, the operation of the analyzer (the DE2 part of the test setup) was

simulated using Altera Quartus II software. Based on the two experiments represented in Table II,

the signatures that correspond to fault-free and faulty ADCs are respectively 233 and 201 (in

decimal form). The process of calculation of these signatures is demonstrated in Figures 15 and

16. Figures 22 and 23 represent the fault detection process. The actual final signatures are shifted

additionally 32 times. If the value 1 appears in the analyzer during these shifts, the system is fault

free. Otherwise, it is faulty.

The simulation results matched the experimental results.

28

But in this project, I used Altera board switches as an input of stimuli in lieu of Microcontroller

output. That’s why it was changed manually for putting input to the FPGA Altera board. The Altera

Board DE2 115 has 18 input PINs.

Figure 17: Circuit design for 3 bit SA for a resister transfer level

Figure 18: Altera DE2 115 FPGA Board

29

FI
G

:1
9

A
 r

es
is

te
r

tr
an

sf
er

 le
ve

l i
m

p
le

m
en

ta
ti

o
n

 o
f

th
e

8
-B

it
 S

ig
n

at
u

re
 A

n
al

yz
er

30

Coding Compilation result in Altera.

Figure20: Compilation result of coding in Altera DE2 115

Block Diagram of designed algorithm

Figure 21: Designed Block diagram from Altera DE2 115

31

Figure 22: Experiment for nominal Value in input stimuli of the Designed device

Figure 22 & 23 is a graphical representation of input stimulus in CUT for Nominal and

Maximum value. Figure 24 is the minimum value of input stimulus. In this case, seed value was

always 106.

32

Figure 23: Experiment for Maximum Value in input stimuli of the Designed device

Figure 24: Experiment for Minimum Value in input stimuli of the Designed device

In Figure 25, we are getting combination “1” is detected in “sout” as input stimuli in CUT are 1.

So the CUT/ ADC is ok. This time seed value was 233. But in Figure 26, the input “1” is not

detected

For seed value 201. Here ADC should be Faulty.

33

Figure 25: The combination “1” is detected: ADC is operating Properly

Figure 26: The combination “1” is not detected: ADC should be faulty

Again, when seed value is 251in Figure 27, we are getting the input in output. So, for the seed

value 251, the operation is ok and we are getting the perfect output. So we can see that actual

seed value is important for getting a perfect result.

34

Figure 27: The combination “1” detected, so ADC properly operating

Figure 28: The combination “1” not detected, so ADC faulty.

Another example for wrong seed value ADC showing as a faulty. On the contrary, Figure 29 with

seed value 250, showing the CUT/ ADC as a good device. Input stimuli’s decimal is in output as

35

an unsigned Decimal form. We can get those value as a Binary also just changing the setting in

Altera software.

Figure 29: The combination “1” detected, so ADC properly operating

Figure 30: The combination “1” not detected, so ADC faulty

36

Conclusion:

So, we examined and testing an algebraic signature Analyzer (ASA) technique that can be

employed for mixed-signal circuit testing. Here we just tried to demonstrate the strategy of

appropriate device design. This device is not carrying arithmetic carry and here is less susceptible

to errors. This obstacle of carry propagation providing a better performance to the device.

In future, this schemed can be used as an arithmetic and algebraic error-control coding. So it can

be suggested as a future work on arithmetic compactor design.

For this test, we found seed value in 250, 251 and 233. Rest of the value are not seed value and

that’s why our simulation showing ADC is faulty. So there factor here Proper seed value, the range

of seed and productive value of ADC.

37

APPENDIX

Part of the VHDL code that generated the combinational unit

VHDL Coding:

library ieee;

use ieee.std_logic_1164.all;

ENTITY ASigAnalyzer IS

 PORT (sin : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 res, clk : IN STD_LOGIC ;

 seed : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 sout : BUFFER STD_LOGIC_VECTOR(7 DOWNTO 0));

END ASigAnalyzer;

ARCHITECTURE Behavior OF ASigAnalyzer IS

 SIGNAL w128, w64, w32, w16, w8, w4, w2, w1 : STD_LOGIC_VECTOR(7

DOWNTO 0);

 SIGNAL f128, f64, f32, f16, f8, f4, f2, f1 : STD_LOGIC_VECTOR(7 DOWNTO 0);

 COMPONENT mux2to1

 PORT (w0,w1 : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 s : IN STD_LOGIC;

 f : OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

 END COMPONENT;

BEGIN

 PROCESS (res, clk)

 BEGIN

 IF res = '0' THEN

 sout <= seed;

 ELSIF Clk'EVENT AND Clk = '0' THEN

 sout <= f128;

 END IF;

 END PROCESS;

 stage128: mux2to1 PORT MAP (f64, w128, sin(7), f128);

 stage64: mux2to1 PORT MAP (f32, w64, sin(6), f64);

 stage32: mux2to1 PORT MAP (f16, w32, sin(5), f32);

 stage16: mux2to1 PORT MAP (f8, w16, sin(4), f16);

 stage8: mux2to1 PORT MAP (f4, w8, sin(3), f8);

 stage4: mux2to1 PORT MAP (f2, w4, sin(2), f4);

 stage2: mux2to1 PORT MAP (f1, w2, sin(1), f2);

 stage1: mux2to1 PORT MAP (sout, w1, sin(0), f1);

38

--

 w128(7) <= f64(7) XOR f64(6) XOR f64(4) XOR f64(0);

 w128(6) <= f64(6) XOR f64(5) XOR f64(3);

 w128(5) <= f64(7) XOR f64(5) XOR f64(4) XOR f64(2);

 w128(4) <= f64(6) XOR f64(4) XOR f64(3) XOR f64(1);

 w128(3) <= f64(7) XOR f64(6) XOR f64(5) XOR f64(4) XOR f64(3) XOR f64(2);

 w128(2) <= f64(5) XOR f64(3) XOR f64(2) XOR f64(1) XOR f64(0);

 w128(1) <= f64(6) XOR f64(2) XOR f64(1);

 w128(0) <= f64(7) XOR f64(5) XOR f64(1) XOR f64(0);

--
 w64(7) <= f32(7) XOR f32(4) XOR f32(3) XOR f32(1);

 w64(6) <= f32(6) XOR f32(3) XOR f32(2) XOR f32(0);

 w64(5) <= f32(7) XOR f32(5) XOR f32(2) XOR f32(1);

 w64(4) <= f32(7) XOR f32(6) XOR f32(4) XOR f32(1) XOR f32(0);

 w64(3) <= f32(7) XOR f32(6) XOR f32(5) XOR f32(4) XOR f32(1) XOR f32(0);

 w64(2) <= f32(7) XOR f32(6) XOR f32(5) XOR f32(1) XOR f32(0);

 w64(1) <= f32(6) XOR f32(5) XOR f32(3) XOR f32(1) XOR f32(0);

 w64(0) <= f32(5) XOR f32(4) XOR f32(2) XOR f32(0);

--

 w32(7) <= f16(6) XOR f16(3) XOR f16(0);

 w32(6) <= f16(5) XOR f16(2);

 w32(5) <= f16(7) XOR f16(4) XOR f16(1);

 w32(4) <= f16(7) XOR f16(6) XOR f16(3) XOR f16(0);

 w32(3) <= f16(5) XOR f16(3) XOR f16(2) XOR f16(0);

 w32(2) <= f16(7) XOR f16(6) XOR f16(4) XOR f16(3) XOR f16(2) XOR f16(1) XOR

f16(0);

 w32(1) <= f16(5) XOR f16(2) XOR f16(1);

 w32(0) <= f16(7) XOR f16(4) XOR f16(1) XOR f16(0);

--
 w16(7) <= f8(7) XOR f8(6) XOR f8(4) XOR f8(1);

 w16(6) <= f8(7) XOR f8(6) XOR f8(5) XOR f8(3) XOR f8(0);

 w16(5) <= f8(6) XOR f8(5) XOR f8(4) XOR f8(2);

 w16(4) <= f8(5) XOR f8(4) XOR f8(3) XOR f8(1);

 w16(3) <= f8(7) XOR f8(6) XOR f8(3) XOR f8(2) XOR f8(1) XOR f8(0);

 w16(2) <= f8(5) XOR f8(4) XOR f8(2) XOR f8(0);

 w16(1) <= f8(6) XOR f8(3);

 w16(0) <= f8(7) XOR f8(5) XOR f8(2);

--
 w8(7) <= f4(5) XOR f4(4) XOR f4(3);

 w8(6) <= f4(4) XOR f4(3) XOR f4(2);

 w8(5) <= f4(7) XOR f4(3) XOR f4(2) XOR f4(1);

39

 w8(4) <= f4(6) XOR f4(2) XOR f4(1) XOR f4(0);

 w8(3) <= f4(4) XOR f4(3) XOR f4(1) XOR f4(0);

 w8(2) <= f4(7) XOR f4(5) XOR f4(4) XOR f4(2) XOR f4(0);

 w8(1) <= f4(7) XOR f4(6) XOR f4(5) XOR f4(1);

 w8(0) <= f4(6) XOR f4(5) XOR f4(4) XOR f4(0);

--

 w4(7) <= f2(7) XOR f2(3);

 w4(6) <= f2(7) XOR f2(6) XOR f2(2);

 w4(5) <= f2(7) XOR f2(6) XOR f2(5) XOR f2(1);

 w4(4) <= f2(6) XOR f2(5) XOR f2(4) XOR f2(0);

 w4(3) <= f2(7) XOR f2(5) XOR f2(4);

 w4(2) <= f2(6) XOR f2(4);

 w4(1) <= f2(5);

 w4(0) <= f2(4);

--
 w2(7) <= f1(5);

 w2(6) <= f1(4);

 w2(5) <= f1(7) XOR f1(3);

 w2(4) <= f1(7) XOR f1(6) XOR f1(2);

 w2(3) <= f1(7) XOR f1(6) XOR f1(1);

 w2(2) <= f1(6) XOR f1(0);

 w2(1) <= f1(7);

 w2(0) <= f1(6);

--

 w1(7) <= sout(6);

 w1(6) <= sout(5);

 w1(5) <= sout(4);

 w1(4) <= sout(7) XOR sout(3);

 w1(3) <= sout(7) XOR sout(2);

 w1(2) <= sout(7) XOR sout(1);

 w1(1) <= sout(0);

 w1(0) <= sout(7);

END Behavior;

--8-bit mux2to1 component

library ieee;

40

use ieee.std_logic_1164.all;

ENTITY mux2to1 IS

 PORT (w0,w1 : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 s : IN STD_LOGIC;

 f : OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

END mux2to1;

ARCHITECTURE Behavior OF mux2to1 IS

BEGIN

 f <= w0 WHEN s='0' ELSE w1;

END Behavior;

41

References

1. Vadim Geurkov; Lev Kirischian

 Designing of an algebraic signature analyzer for mixed-signal systems

 2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS) Year: 2014

 Pages: 165 - 168, DOI: 10.1109/NEWCAS.2014.6934009

2. DHIRAJ K. PRADHAN, SANDEEP K. GUPTA, AND MARK G. KARPOVSKY

 Aliasing Probability for Multiple Input Signature Analyzer

 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 4, APRIL 1990

3. Dhiraj K. Pradhan, Fellow, IEEE, and Sandeep K. Gupta

 A New Framework for Designing and Analyzing BIST Techniques and Zero Aliasing

 Compression, IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 6, JUNE 1991

4. Janusz Rajski, Member, IEEE, and Jerzy Tyszer, Member, IEEE

 The Analysis of Digital Integrators for Test Response Compaction

 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-11: ANALOG AND DIGITAL

 SIGNAL PROCESSING, VOL. 39, NO. 5, MAY 1992

5. Naveena Nagi, Abhijit Chatterjee, Heebyung Yoon, and Jacob A. Abraham

 Signature Analysis for Analog and Mixed-Signal Circuit Test Response Compaction

 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND

 SYSTEMS, VOL. 17, NO. 6, JUNE 1998

6. P. Bardell, W. McAnney, and J. Savir,

 Built-in Test for VLSI: Pseudorandom Techniques. New York: Wiley, 1987.

7. D. K. Pradhan and S. Gupta,

 “A new framework for designing and analyzing BIST techniques and zero aliasing

 compression,” IEEE Trans. Compute., June 1991, pp. 743–763.

8. E. J. McCluskey, “Built-in self-test techniques,” IEEE Design & Test

 Mag., Apr. 1985, pp. 21–28. 90 J. P. Hayes, “Transition count testing of combinational logic

 circuits,” IEEE Trans. Compute., June 1976, pp. 613–620.

10. J. P. Hayes, “Checksum test methods,” in Proc. FTCS-6, 1976, pp. 114–120.

11. J. Savir, “Syndrome-testable design of combinational circuits,” IEEE Trans. Compute., June

http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Vadim%20Geurkov.QT.&newsearch=true
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Lev%20Kirischian.QT.&newsearch=true
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/document/6934009/
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/xpl/mostRecentIssue.jsp?punumber=6919808
https://doi-org.ezproxy.lib.ryerson.ca/10.1109/NEWCAS.2014.6934009

42

 1980, pp. 442–451.

12. J. Rajski and J. Tyszer, “The analysis of digital integrators for test response compaction,”

 IEEE Trans. Circuits Syst. II, May 1992, pp.293–301.

13. N. Nagi, A. Chatterjee, and J.A. Abraham, “Fault simulation of linear analog circuits,”

 Analog Integrated Circuits and Signal Processing: An International Journal, vol. 4, pp. 245–

 260, 1993.

14. Ivanov and V.K. Agrawal. “An iterative technique for calculating aliasing probability of

 linear feedback shift registers,” in Proc. 18th Inr. Symp. Fault Tolerant Compute., Tokyo,

 Japan, 1988.

15. T. W. Williams, A. Daehn, M. Gruetzner, and C. W. Starke, “Aliasing errors in signature

 analysis registers,” IEEE Design Test Compute., vol. C-36, no. 4, pp. 39-45, Apr. 1987.

16. D. K. Pradhan, M. Y. Hsiao, A.M. Patel, and S.Y. Su, “Shift Register designed for on-line

 fault detection,” in Proc. FTCS, 1978, pp. 173-17X.

17. S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications.

18. Vadim Geurkov; Vladimir Dynkin; Reza Sedaghat

 An error-locating signature analyzer to identify faulty units in digital systems

 2008 Canadian Conference on Electrical and Computer Engineering; Year: 2008

 Pages: 001073 - 001076, DOI: 10.1109/CCECE.2008.4564702

 IEEE Conference Publications

19. I. Murashko; V. Yarmolik; M. Puczko

 The power consumption reducing technique of the pseudo-random test pattern generator and

 the signature analyzer for the built-in self-test

 The Experience of Designing and Application of CAD Systems in Microelectronics, 2003.

 CADSM 2003. Proceedings of the 7th International Conference.; Year: 2003

 Pages: 141 - 144, DOI: 10.1109/CADSM.2003.1255008; Cited by Papers (2)

 IEEE Conference Publications

20. Abu Khari bin A'ain; C. T. Lim; Kok Hong Ng; Sheng-Kwang Ng;

 A study on signature analyzer for design for test (DFT)

 2004 IEEE International Conference on Semiconductor Electronics

 Year: 2004; 5 pp., DOI: 10.1109/SMELEC.2004.1620855 IEEE Conference Publications

http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Vadim%20Geurkov.QT.&newsearch=true
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Vladimir%20Dynkin.QT.&newsearch=true
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Reza%20Sedaghat.QT.&newsearch=true
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/document/4564702/
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/xpl/mostRecentIssue.jsp?punumber=4554522
https://doi-org.ezproxy.lib.ryerson.ca/10.1109/CCECE.2008.4564702
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.I.%20Murashko.QT.&newsearch=true
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.V.%20Yarmolik.QT.&newsearch=true
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.M.%20Puczko.QT.&newsearch=true
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/document/1255008/
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/document/1255008/
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/xpl/mostRecentIssue.jsp?punumber=8888
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/xpl/mostRecentIssue.jsp?punumber=8888
https://doi-org.ezproxy.lib.ryerson.ca/10.1109/CADSM.2003.1255008
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/document/1255008/citations?tabFilter=papers
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Abu%20Khari%20bin%20A%27ain.QT.&newsearch=true
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.C.%20T.%20Lim.QT.&newsearch=true
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Kok%20Hong%20Ng.QT.&newsearch=true
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sheng%20Kwang%20Ng.QT.&newsearch=true
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/document/1620855/
http://ieeexplore.ieee.org.ezproxy.lib.ryerson.ca/xpl/mostRecentIssue.jsp?punumber=10782
https://doi-org.ezproxy.lib.ryerson.ca/10.1109/SMELEC.2004.1620855

