
USING HONEYPOTS IN A DECENTRALIZED FRAMEWORK TO DEFEND AGAINST

ADVERSARIAL MACHINE-LEARNING ATTACKS

by

Fadi Younis

B.Sc. Ryerson University, Toronto (ON), Canada, 2009

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the program of

Computer Science

Toronto, Ontario, Canada, 2018

c© Fadi Younis, 2018

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the
purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other
means, in total or in part, at the request of other institutions or individuals for the purpose
of scholarly research.

I understand that my thesis may be made electronically available to the public for the
purpose of scholarly research only.

ii

Abstract

Using Honeypots in a Decentralized Framework to Defend Against Adversarial Machine-Learning

Attacks

Fadi Younis

Master of Science, Computer Science

Ryerson University, 2018

The market demand for online machine-learning services is increasing, and so to have

are the threats to them. Adversarial inputs represent a new threat to Machine-Learning-

as-a-Services (MLaaSs). Meticulously crafted malicious inputs can be used to mislead and

confuse the learning model, even in cases where the adversary only has access to input and

output labels. As a result, there has been increased interest in defence techniques to combat

these types of attacks.

In this thesis, we propose a network of high-interaction honeypots as a decentralized

defence framework that prevents an adversary from corrupting the learning model, primarily

through the use of deception. We accomplish our aim by 1) preventing the attacker from

correctly learning the labels and approximating the architecture of the black-box system;

2) luring the attacker away, towards a decoy model, using HoneyTokens; and 3) creating

infeasible computational work for the adversary.

iii

Acknowledgements

Many people have contributed to my work here at Ryerson University. First I thank my

supervisor Dr. Ali Miri for guiding my research, as well as providing many helpful suggestions

throughout my time here. I would like to acknowledge the Department of Computer Science

for providing me funding while I did my research.

iv

To

To my friends, my dear family and wonderful

colleagues, without whom none of my success would

be possible.

v

Table of Contents

Abstract

List of Figures

1 Introduction 1

1.1 Setting . 1

1.2 The Problem at a Glance . 2

1.3 Motivation . 2

1.4 Thesis Goals and Contributions . 4

1.5 Overview . 4

2 Background 6

2.1 Security of Deep Learning Network . 6

2.1.1 Deep Neural Networks . 6

2.1.2 Adversarial Deep Learning . 8

2.1.3 Deep Learning Threats . 9

2.2 Adversarial Examples . 10

2.2.1 Adversarial Example Definitions . 10

2.2.2 Adversarial Example Properties . 11

2.2.3 Adversarial Example Origins . 12

2.2.4 Generating Adversarial Examples . 13

vi

iii

x

2.2.5 The Adversarial Optimization Problem 16

2.2.6 Impact of Adversarial Examples on Deep Neural Networks 17

2.2.7 Combating Adversarial Examples - defenses 18

2.3 Transferability and Black-Box Learning Systems 20

2.3.1 Adversarial Transferability . 20

2.3.2 Black-Box Threat Model . 22

2.3.3 Black-Box Threat Model Vs. Blind Threat Model 23

2.3.4 Transferability in Black-Box Attacks 24

2.3.5 Transferability of Adversarial Examples in Black-Box Attacks 25

2.3.6 Black-Box Attack Approach . 25

2.3.7 Defense Strategies Against Black-Box Attacks 28

2.4 Honeypots . 29

2.4.1 Concept of Honeypots . 29

2.4.2 Classification of Honeypots . 29

2.4.3 Honeypot Deployment Modes . 31

2.4.4 Honeypot Role and Responsibilities 31

2.4.5 Honeypots Level of Interaction . 33

2.4.6 Uses of Honeypots . 34

2.5 Honeypots in our Solution . 35

3 Related Work 37

4 Proposed Defense Approach 41

4.1 Problem Definition . 42

4.2 Assumptions . 43

4.3 Design Decisions . 45

4.4 The Threat model . 49

4.4.1 Attack Specificity . 49

vii

4.4.2 Exploited Vulnerabilities . 50

4.4.3 Attacker Capabilities . 50

4.4.4 Attack Setting . 51

4.5 Adversarial Honeypot Network (Adversarial Honeynet) 52

4.5.1 Overview and General Architecture 52

4.5.2 Functional System Components . 53

4.5.3 HoneyPeer Node Inter-communication 55

4.6 Individual Honeypot Node . 57

4.6.1 Node Overview and Architecture . 57

4.6.2 Critical Components . 57

4.7 Attracting The Adversary . 58

4.7.1 Phase 1: Adversarial HoneyTokens 58

4.7.2 Phase 2: Accessible Honeypot . 59

4.7.3 Phase 3: Decoy Target Model . 60

4.8 Monitoring and Detecting the Adversary . 61

4.9 Launching the Attack . 67

4.9.1 Accessing the Honeypot . 67

4.9.2 Initiating the Attack . 68

4.9.3 Defining the Architecture F . 68

4.9.4 Labeling the Initial Training Set S0 69

4.9.5 Training the Substitute Model F (S0) 69

4.9.6 Generating the Example ~x∗ . 70

4.9.7 Example Transfer ~x∗ . 72

4.9.8 Flipping the Target Label . 72

4.10 Defending Against the Attack . 73

4.10.1 Luring and Baiting the Adversary . 73

4.10.2 Inside the Honeypot . 74

viii

4.10.3 Hard Optimization Problem . 74

4.11 Significance and Novelty . 75

5 Implementation of Adversarial HoneyTokens Component 78

5.1 Background . 78

5.2 Project Structure . 80

5.3 Architecture . 80

5.4 Features . 82

5.5 Functionality . 83

5.6 Usage . 87

5.7 External Dependencies . 89

5.8 Integration . 91

5.9 Benefits . 92

6 Conclusions and Future Work 94

6.1 Conclusion . 94

6.2 Signature-Based Classifiers for Adversarial Detection 95

6.3 Reduced-Risk Alternatives to Honeypots . 96

6.4 Defending Against White-Box Attacks . 96

A Appendices 97

A.1 Adversarial HoneyToken Source Code . 97

A.1.1 contentgen.go . 97

A.1.2 txtemail template . 101

A.1.3 hbconf.yaml . 102

A.1.4 honeybits.go . 108

Bibliography 121

ix

List of Figures

2.1 A typical DNN architecture. In this particular model, the DNN recognizes
images of handwritten digit integers 1...9 and calculates the probability of
that image being in one of the N=10 classes [27]. 8

2.2 Adversarial Examples - Input ~x (left), modification δ+~x controlled by ε (mid-
dle) which controls the magnitude of modification in the image, generating
the adversarial evading sample ~x∗(right). As you can see, both bus images
look astoundingly similar. 11

2.3 An Adversarial Example is generated by modifying a legitimate input sample
~x, in such a way which would cause to the classifier to mislabel it as z instead
of y, where as a human wouldn’t notice a difference. 11

2.4 Adversarial Regions in Classifier Decision Space - adversarial examples are
not scattered out randomly, but are systematic in nature and occur in large
and continuous regions in the decision space. 13

2.5 Convex vs. non-convex optimization, where one solution exists as the global
minimum(left), and multiple solution exist local minimums(right) 17

2.6 Cross-Technique Transferability Matrix: cell (i,j) is the percentage of adver-
sarial samples crafted to mislead a classifier learned using machine learning
technique i that are misclassified by a classifier trained with technique j [26]. 21

2.7 A Simple black-box System - construed in terms of inputs x and outputs y,
with the internal mechanisms of the system f(x) = y transforming x into y
remains invisible . 22

2.8 Classic Honeypot Architecture . 30
2.9 Classical Low-Interaction Honeypot Architecture 34
2.10 Classical High-Interaction Honeypot Architecture 35

4.1 Adversarial Targeted Attack Violating; Input ~x (left) represented by different
features x1,2,3, perturbation ~x+ δ~x controlled by ε (middle), generated adver-
sarial example ~x∗(right). The adversary then forces the classifier to output
the example with a different label, flipping it 49

4.2 Modeling the adversary’s attack capability 51
4.3 Adversarial Honeynet Architecture . 54
4.4 Individual Honeypot Component . 58
4.5 Non-convex adversarial solution surface. where multiple solution exist for the

right allocation of perturbation . 61
4.6 abnormal model activity indicating adversarial malicious behavior 63
4.7 Targeted Attack Causes Decrease in Accuracy 63

x

4.8 Sysdig-Falco Architecture . 64
4.9 Initiating the Attack and Building the Initial Training set 68
4.10 Training the Substitute Model with Initial Set 70
4.11 Data Augmentation to build the training set Sp to Sp+1 71
4.12 Jacobian Saliency Map Approach to Generate Adversarial Example 72
4.13 Adversarial Transferability . 73

5.1 Adversarial HoneyToken Architecture . 81
5.2 Adversarial Token Leakage . 85
5.3 Dockerize Adversarial HoneyToken Application 86
5.4 Scenario 1 - Luring Away Attacker from Target Model 88
5.5 Scenario 2 - discourage future attacks . 89
5.6 Scenario 3 - apprehend an internal adversary 90

xi

Chapter 1

Introduction

In this chapter, we introduce the thesis: adversaries maliciously target classification models

(Section 1.1). Then, we provide an overview of the problem subject matter (Section 1.2),

the motivation for solving the problem follows (Section 1.3). We then outline the goals of

our proposed solution by the end of this thesis (Section 1.4). Finally, we end the chapter

with an outline for the remainder of this thesis giving a few details about each chapter,

(Section 1.5).

1.1 Setting

Machine learning as we know it is exploding in development and demand, with utilization

in critical applications, services and domains, and not confined to one area of industry.

With each day, more applications are harnessing the suitability of machine learning in their

tract. To meet the ever increasing demand that this field is witnessing. Tech giants, such as

Amazon, Google, Uber, Netflix, Microsoft, and many others, are providing their adjuncted

machine learning products and services in the form of online cloud services, otherwise known

as Machine-Learning-as-a-Service (MLaaS) [31]. While easily accessible machine learning

tools are becoming more popular, the desire to personally customize and build these compos-

ite services from the ground up is actually decreasing and less relied upon. This is because

users do not wish to spend countless hours training, testing and fine-tuning their machine

learning models, when they simply desire to use them. While some more experienced users

still prefer to control how their models are constructed and deployed, companies have un-

dergone the effort to hide the complex internal mechanisms from most of their users, and

simply package the services in non-transparent and obfuscated ways. Essentially, they pro-

vide their services in the form of a black-box [19] [27]. This opaque system container accepts

some input and produces an output, but in this system the internally abrasive details of

1

CHAPTER 1. INTRODUCTION

the prediction model are hidden for the user. However, like any deployable application, we

cannot assume it is situated in a safe environment, just because the sensitive details are now

hidden from all user and potential adversary. There are security flaws and vulnerabilities

in every man-made system and machine learning services are no exception. These unseen

application details still introduce susceptibility to malicious attack.

1.2 The Problem at a Glance

As stated in the previous section, adversarial machine learning threats exist and are lurking

close by. In such an instance, these threats transpire when an attacker misleads and con-

fuses the prediction model inside the cloud computing application, which allow malicious

activities to slip-by and go undetected [27]. This drives up the rate of false negatives FN,

violating model integrity. We call these masqueraded inputs - called Adversarial Examples

[19], and they represent one of serious threats to cloud services providing MLaaS, such as

classifiers. These non-linear inputs look astoundingly similar to the input normally accepted

by a linearly designed classifier. However, they only appear this way. They are maliciously

crafted to exploit blind spots in the classifier boundary space. Designed to be injected to

then exploit, mislead and confuse the learning mechanism acquired by the classifier post-

training. They can then compromise the classification model integrity, during the testing

phase, when the model handles unseen input. Most known defenses aim at strengthening

the classifier’s discriminator function by training it on adversarial malicious input ahead of

time to make it resistant to these type of inputs. Current proposed defense methods such

as Regularization and Adversarial Training have proven unsuccessful and ineffective [38],

and they cannot be relied upon since they do not generalize well on newer and more potent

adversarial inputs. This is particularly true in the case of a black-box setting, where the

adversary is limited in knowledge to only input and output labels. Hence, in this thesis we

propose a different approach. Our aim will be to develop an adversarial defense framework

that poses as a secondary-level of prevention to curb adversarial examples from corrupting

the classifier, and it will be used to deceive the attacker.

1.3 Motivation

The market demand for online machine learning services is increasing, and with that the risk

of adversarial threats has increased, also. For example, an attacker can maliciously fool an

Artificial Neural Network (ANN) classifier into allowing malicious activities to go undetected,

without direct influence on the classifier itself [24]. These masqueraded inputs (Adversar-

2

CHAPTER 1. INTRODUCTION

ial Examples) represent a recent threat to cloud services providing machine-learning-as-a-

service. They are maliciously crafted to exploit blind spots in the classifier boundary space.

Exploiting these blind sports can be used to mislead and confuse the learning mechanism in

the classifier, post model training, for purposes of violating model integrity. As a result, there

has been an increased interest in defense techniques to combat them and fortify classifiers

against attacks.

Our challenge here lies in constructing an adversarial defense technique capable of deceiv-

ing an intrusive attacker in order to lure him away from the target model. For the purposes

of our approach, we have decided to primarily use Adversarial HoneyTokens as of the one

of methods to accomplish this. They act as fictional digital breadcrumbs designed to lure

the attacker. They are made conspicuously detectable, to be discovered by the adversary.

It is possible to generate a unique token for each item (or sequence) to deceive the attacker

and track his abuse. However each token must be strategically designed, generated and

deliberately embedded into the system to, misinform and fool the adversary.

As stated earlier, some of the previous research on adversarial defense methods has aimed

at strengthening the classifier’s discriminator function by training it on malicious input

beforehand to make it robust. Defense methods, such as Regularization and Adversarial

Training have had their limitations, as we will show later [33]. This is in particular the case

for a black-box (blind-model) setting, where the adversary has only access to input and output

labels. We believe it is necessary to develop an adversarial defense framework to act as a

fore-fronting secondary-level of protection to prevent adversarial examples from fooling and

evading the classifier, by deceiving the attacker and mitigate the risk of attack. The majority

of our efforts are focused on designing a decentralized network of High-Interaction Honeypots

(HIHP), as an open target for adversaries, acting as a type of perimeter defense. This

decentralized network of honeypot nodes act as self-contained sandboxes, to contain the decoy

neural network, collect valuable data, and potentially gain insight into adversarial attacks.

We believe this can also confound and deter adversaries from attacking the target model to

begin with. Other adversarial defenses can also benefit by utilizing this framework as an

additive layer of security to their techniques to protect production servers where learning

models reside. Unlike other defense models proposed in literature, we have designed our

defense framework to deceive the adversary in three consecutive steps, occurring in strategic

order. The information collected from the attacker’s interaction with the decoy model could

then potentially be used to learn from the attacker, re-train and fortify the deep learning

model in future training iterations, but for now this falls out outside on scope. Our defense

approach is motivated by trying to answer the following question:

“Is there a computationally feasible and practical way, within a black-box setting, to fool

3

CHAPTER 1. INTRODUCTION

an adversary and prevent him/her from interacting and learning the behavior of a prediction

model before an actual attack occurs?”

At its core, our intention is to devise a defense technique to both fool and prevent the

attacker from interacting with the model.

1.4 Thesis Goals and Contributions

Our thesis is as follows:

“Given a deep learning classification model T, within a private black-box setting, and

a intrusive attacker with an adversarial input ~x∗, capable of violating model integrity and

misclassifying target label y; there exists a defense framework Ddefenses to support existing

defenses systems, to fool and deter the attacker’s attempts. If building such a defense frame-

work is possible, then there exists a way to mislead and prevent the attacker from initially

learning model’s T behavior and then corrupting it.”

The purpose of this work is to investigative the thesis above and work towards an appro-

priate defense framework that implements it. The following are our objectives and contri-

butions:

• Propose and work towards an adversarial defense approach that will act as a secondary-

level of protecting to cloak and reinforce existing adversarial defense mechanisms. It

aims to: 1) prevent an attacker from correctly learning the classifier labels and ap-

proximating the correct architecture of the black-box system; 2) lure attackers away

from the target model towards a decoy model, and re-channel adversarial transfer-

ability ; 3) create infeasible computational work for the adversary, with no functional

use or benefit, other than to waste his resources and distract him while learning his

techniques.

• Provide an architecture and extend implementation of the Adversarial Honey-Tokens,

their designs, features, usage, deployment benefits, and evaluations.

1.5 Overview

This thesis has 6 chapters. It is divided as follows:

• Chapter 1 - gives a brief introduction to the problem at hand and its contextual setting.

This chapter also gives an overview of the thesis goals, contributions, and a breakdown

of the thesis outline.

4

CHAPTER 1. INTRODUCTION

• Chapter 2 - introduces relevant concepts and background knowledge, such as Deep Neu-

ral Networks (DNN), Adversarial Transferability, Adversarial Examples, black-box Sys-

tems, and Honeypots.

• Chapter 3 - gives a summary and critical evaluation of the related work authored by

other researchers on the topic of adversarial black box defenses, as well as specific work

done with honeypot technologies.

• Chapter 4 - outlines the design and architecture of the decentralized defense approach. It

also gives insight into the approach’s assumptions, setup,design decisions, environment

and limitations. It gives a break down of the how adversary launches an attack, and

how the frameworks fares in defending against it.

• Chapter 5 - provides an extended implementation of the Adversarial Honey-Tokens, its

features, usage, deployment and benefits.

• Chapter 6 - summarizes the thesis, gives an overview of the contribution made, and

suggests future research directions.

5

Chapter 2

Background

The aim of this chapter is to introduce the main problems and challenges involved in de-

fending against adversarial examples. We formulate and explain important concepts so that

they can be used to understand and navigate the upcoming chapters. First, we discuss deep

neural networks, as well as their security, architecture, and design, and briefly mention the

threats that imperil them (Section 2.1). Then, we explore the concept of adversarial exam-

ples, as well as their properties, origins, processes of generation, impact and known defenses

against them (Section 2.2). Next in (Section 2.3), we discuss adversarial transferability,

the black-box threat model, transferability in black-box attacks and the black-box attack

approach, as well as defenses against black-box attacks. Finally, we end the chapter with

an in depth background section on Honeypots, their classification, deployment modes, roles

and responsibilities, advantages and disadvantages, levels of interaction, uses, and notably

how honeypots fit into our defense solution (Section 2.4).

2.1 Security of Deep Learning Network

We cannot start discussing attacks on deep neural networks without first exploring what

a Deep Neural Network (DNN) actually is, and how it behaves. Moving forward, we will

thoroughly discuss to the threats that jeopardize the integrity of deep neural networks.

2.1.1 Deep Neural Networks

According to [27], a Deep Neural Network (DNN) is a widely known machine learning tech-

nique that utilizes n parametric functions to model an input sample ~x, where ~x could be

an image tensor, a stream of text, video, etc. These structures (DNNs) are used to allow

computers to sovereignly learn from prior knowledge and experience, without any explicit

6

CHAPTER 2. BACKGROUND

intervention or guidance from a human being. The Deep keyword in the title stems from

the number of deep hidden learning layers inside the underlying neural network architecture.

They differ from conventional neural networks in the sense that conventional neural networks

are non-deep or shallow. This means that they contain only one or two hidden layers. Having

a few layers limits the ability of the model to learn and adapt to intricate features and solve

complex problems. Amongst the countless uses for DNNs’ is their utility in building image

classification systems that can identify an object from the its intricate edges, features, depth

and colors. All of that information is processed in the hidden layers of the model, known

as the deep layers. As the number of these deep layers increases, so does the capability of

the DNN to model and solve complex tasks. For a detailed illustration of a typical DNN

architecture, see Figure 2.1 from [27]. Simply expressed, a DNN is composed of a series of

parametric functions. Each parametric function fi represents a hidden layer i in the DNN,

where each layer i compromises a sequence of perceptrons (artificial neurons), which a pro-

cessing units that can be modeled into chain sequence of computation. Each neuron maps

an input x to an output y, f : x −→ y, using an activation function f(ϕ). With each layer,

every neuron is influenced by a parameterized weight vector represented by θij. The weight

vectors holds the knowledge of the DNN when it comes to training and preparing the model

F. A DNN computes and defines model a F for an input ~x as follows [27]:

F (~x) = fn(θij, fn−1(θn−1,j, · · · , f2(θ2j, f1(θ1j, ~x))))

The training phase in the DNN occurs when model F learns the values for the hidden

layer neuron weights θF = {θ1j, θ2j, ..., θnj}. The model is given a large of set of input

and output pair examples represented by (x
′
, y

′
), and works by adjusting the weights and

reducing (minimizing) the difference (error) in the cost function C[f] between the predicted

value of F (x(i)) example and what its true labeled output F (y(i)) should be (usually done

using back propagation) [27]. The testing phase occurs when DNN model F is done training

and is deployed with fixed parameters θij to make generalized predictions on inputs not seen

during training. The weighted parameters represent DNN knowledge progressively acquired

in the training phase. What usually happens is that the DNN would generalize on this

unseen input and make accurate predictions for the output, using only what it’s learned

during training [27].

There are several types of deep neural network architectures that define the network lay-

ers, which vary in functionality and dexterity, depending on the problems they are called upon

to solve. Some of the most popular types include (but are not limited to): 1) Convolution

Neural Networks (CNN); 2) Recurrent Neural Networks (RNN); 3) Sequence-to-Sequence

Models (another type of RNN) which models sequential information in a Time Series se-

7

CHAPTER 2. BACKGROUND

quence; 4) Auto-Encoders ; 5) Re-enforcement Learning ; 6) Generative Artificial Networks

(GAN). We do not spend time going into depth explaining each type as it falls out of scope.

However, our thesis relies heavily on using a DNN model (as a decoy), which we will explore

all this further in Chapter 4.

Figure 2.1: A typical DNN architecture. In this particular model, the DNN recognizes images
of handwritten digit integers 1...9 and calculates the probability of that image being in one
of the N=10 classes [27].

2.1.2 Adversarial Deep Learning

In recent deep learning literature, there has been a lot of works that has focused on deploying

deep neural networks in malicious environments, in which the network is potentially exposed

to numerous attacks [13] [19] [38]. At the center of these threats are Adversarial Examples.

Please note, because we dedicate an entire later section to depicting what these examples

are, we will focus only on the essential idea behind them for now. Adversarial examples are

perturbed or modified versions of input samples ~x, that are used by adversaries to mislead

and exploit deep neural networks, during test time, after training of the model is completed

[29]. They are injected in order to circumvent the learning mechanism acquired by the DNN

with the goal of misclassifying a target label. They are crafted with carefully articulated

8

CHAPTER 2. BACKGROUND

perturbations, added to the input ~x+δ~x, that forces the DNN to display a different behavior

than intended, chosen by the adversary [29]. It is important to note that the magnitude of

perturbations must be kept small enough to have a significant effect on the DNN, yet remain

unnoticed by a human being. These adversarial exploitations vary in their motivation for

corrupting a DNN classifier, however some of the most common incentives range from simply

reducing the confidence of a target label to a arbitrary source-label misclassification [29].

Confidence reduction entails reducing the accuracy on a label y for a particular input x in a

the testing pair (x
′
, y

′
). By contrast, source label misclassification involves having the model

classify an input x as a chosen target label ytarget, different from the original (and intended)

true source label ytrue.

For any attack to be successful, it requires the adversary to have previous knowledge

of the DNN architecture, preferably a strong one. This knowledge can perfect white-box

attacks, partial black-box attacks or no-knowledge blind. However, it is possible to attack

a DNN model F with limited knowledge in hand. In past work, such as [29], the attacker

was able to approximate the architecture of a target model, Ftarget, in a black-box setting,

and create a substitute training model, which was then used to craft adversarial examples

that generalize on both models. These example were transferred back to target model, by

way of adversarial transferability [29] - a very powerful property, which enables an adversary

to transfer malicious examples between models to evade a target classifier model (please see

Section 2.3 for more details).

2.1.3 Deep Learning Threats

While deep learning networks have gathered much attention in terms of capability to solve

complex and hard to solve problems, there are perilous threats that can erode and inhibit

their potential [37]. It is believed that deep neural networks can be exploited from these

three directions. Our thesis focuses on combating the last kind:

• Modified Training Data - commonly known as a causative or poisoning attack, in which

the adversary influences or manipulates the training data set χ, with a transformation.

This modification could entail control over a small portion or an important determinant

feature dimension Di in the training data. With this type of attack advance, the

attacker can mislead the learner in order to produce a badly classifier, which the

adversary exploits post training [16].

• Poorly Trained DNN Models - although considered an oversight, rather than blamed

on an external adversary. A perfunctory trained DNN could be due to several reasons.

Most of the time, developers credulously use DNNs prepared and trained by others.

9

CHAPTER 2. BACKGROUND

These same DNNs could have hidden vulnerabilities ripe for exploitation, which can

become easy targets for manipulation by adversaries during deployment [37].

• Perturbed Input Image - commonly known as adversarial examples [19], attackers are

also known to attack DNN models, during testing, by constructing malformed input

to evade the learning mechanism learned of the DNN classifier. This is known as an

evasion attack [16].

2.2 Adversarial Examples

In this section, we provide a thorough definition of adversarial examples. Also, relevant in

this context, we describe the properties that give adversarial examples their potency, which

has earned them their place as one of the most notorious threats to deep learning classifiers.

However, we can’t discuss adversarial examples without delving into the techniques used to

generate them, as well as the impact they have on deep neural networks. We also explore

the known defense techniques against adversarial examples from the literature.

2.2.1 Adversarial Example Definitions

As mentioned, machine learning models are vulnerable to adversarial attacks that seek to

destabilize the neural network’s ability to generalize new input; which jeopardizes the security

of the model. From what we learned from the authors in [16], these attacks can either occur

during the training phase as a poisoning attack, or testing phase as an evasive attack, on

the classification model. In a test-time attack scenario, the attacker actively attempts to

circumvent and evade the learning process achieved by training the model. This is done by

inserting inputs that exploit blind spots in a poorly trained model, which cannot be easily

detected. These disruptive anomalies are known as adversarial examples. See Figure 2.2

below for an illustration of adversarial examples

Adversarial examples are slightly perturbed versions of regular input samples normally

accepted classifiers. They are maliciously designed to have the same appearance as regular

input, from a human’s point of view, at least. These masquerading inputs are designed

to confuse, mislead, and force the classifier to output the wrong label [15], violating the

integrity of the model. These examples can be best thought of as “glitches” that can fool

the deep learning model. These glitches are difficult to detect and are widely exploitable, if

left unattended. To better understand them, consider this example: given an input sample

~x classified with function C, such that C(~x) = `, producing output `, that was correctly

classified by model A(·), we say the perturbed input sample ~x∗, so that C(~x∗) = `, we say x
′

10

CHAPTER 2. BACKGROUND

Figure 2.2: Adversarial Examples - Input ~x (left), modification δ+~x controlled by ε (middle)
which controls the magnitude of modification in the image, generating the adversarial evading
sample ~x∗(right). As you can see, both bus images look astoundingly similar.

is an adversarial example of x such that A(x
′
) = A(x). For an illustration of what adversarial

examples are, see Figure 2.3 below for a better understanding of what is construed by an

adversarial example [26]. Classification models are considered robust if their classification

ability is unaffected by the presence and exploits of adversarial examples.

Figure 2.3: An Adversarial Example is generated by modifying a legitimate input sample ~x,
in such a way which would cause to the classifier to mislabel it as z instead of y, where as a
human wouldn’t notice a difference.

2.2.2 Adversarial Example Properties

In the beginning of the previous section, we mentioned that adversarial examples ~x∗ possess

an appearance similar or close to the original input samples ~x. Normally used, although not

the only form of measurement. This measure of closeness or similarity between the pair of

original and modified input is known as the p-norm distance ‖ x ‖p. This degree of closeness

11

CHAPTER 2. BACKGROUND

could be l2, which is the Euclidean Distance between two pixels in an input sample x, l∞,

which is the absolute or max change made to a pixel in x, or l1; which is the total number

of pixel changes made to the input sample x [9]. If the measure of distortion in any of the

previous metrics of closeness is small, then those input samples must be visually similar to

each other, which made them a prime candidate for adversarial example generation. Another

interesting property, which our thesis topic is heavily based on, and which we are trying use

with our defense approach, is the transferability property. This property states that given

two models F (·) and G(·), an adversarial example on F (·) will misclassify on model G(·),
even if they are trained with two different neural net architectures, or dissimilar training

training sets [9]. This intriguing property of transferability enables the target and original

model to both generalize on the same adversarial example and allow both models F (·) and

G(·) to assign the adversarial example to the same class. This is because the perturbation

examples has found the perfect balance of distortion to align itself with both models. In

order to understand how this property of transferability is possible, we must first understand

why it occurs and where these adversarial examples originate from.

Work in [13] shows seems to shed some light on their origins. The authors found that

adversarial examples are not scattered out randomly, but are systematic in nature and occur

in large and continuous regions in the decision space, see Figure 2.4 below for an illustration.

The latter property might explain why transferability is possible in this regard, the authors in

[13] argue that as the higher dimensionality space of any adjacent two models, the more likely

that the subspaces in these two models will intersect significantly, and an adversarial example

will be found that can be assigned to the same class label in both models. Furthermore, the

authors in [36] argue that due to the shared dimensionality property, the decision boundary

of any two models that have an adversarial example between them, will transfer from model

F (·) and G(·), and must be very close to each other for adversarial transferability to be

successful.

2.2.3 Adversarial Example Origins

Researchers cannot agree on where these perturbations originate from, or on the more press-

ing question, which is simply why they even exist. Many papers have offered hypotheses on

their origin. The most popular propositions includes work in [13], which states that some

models trained are too linear for a n-dimensional data set χ with very little non-linearity.

Non-linearity here refers to the discontinuous mappings between output, y, and input, x,

where one input can possibly have multiple solutions, which the model is the unprepared

for. This could explain why adversarial examples are common in small regions within the de-

12

CHAPTER 2. BACKGROUND

Figure 2.4: Adversarial Regions in Classifier Decision Space - adversarial examples are not
scattered out randomly, but are systematic in nature and occur in large and continuous
regions in the decision space.

cision space. Opposed to the latter, work in [26], explains that adversarial examples could be

the result of deep learning models not being “flexible” for certain tasks and inputs. Tramér et

al. in [36] suggested that perhaps adversarial examples exist simply due the p-norm distance

in the model’s separating decision boundary being in some cases longer than the distance

between two models F and G decision boundaries, in the same direction.

2.2.4 Generating Adversarial Examples

There are several techniques and methods to generating adversarial examples used in exper-

iments, such as those in [19] [27]. In order for us to understand how these minatory objects

are generated, we must first understand the individual components needed in their creation.

Consider the following notation [19]:

x - a clean input (untampered) from some testing dataset Dtest, typically a 3-D tensor (width

13

CHAPTER 2. BACKGROUND

× height × depth). Generally, the input sample image pixel values range between 0 and 255.

y(true) - the corresponding true label for input x .

J(x, y) - the cross-entropy cost function used to train the model, given as an input image

x, which we wish to maximize the loss function J() for, in the direction of its gradient.

ε, n - the hyper-parameters added to influence the model F to create the adversarial exam-

ple ~x∗. ε represents the magnitude of perturbation in the image, with respect to the metric

norm of closeness (l1, l2, or l∞). We want to keep ε small, to a degree, to remain undetected

by the human observer.

As mentioned, there are several methods to generate adversarial examples. We won’t ex-

pand and explain each one, however we will focus most of our efforts exploring the Jacobian-

based Salience Map Approach (JSMA) [28], which the adversary in our thesis uses as the

main adversarial training algorithm to generated the adversarial examples in his attack, af-

ter the construction of the substitute model. The following are some methods to generate

adversarial examples:

Fast Gradient Sign Method (FGSM) - introduced by Goodfellow et al., in [13], and

considered to be one of the fastest (and most successful) ways to generate adversarial ex-

amples. The idea behind this attack approach is to linearize the cost function J() used

to train the prediction model, by taking the gradient of the model F, with respect to every

feature xm,n found in the neighborhood of training input sample ~x, which the adversary

wants to force a label misclassification of. The best adversarial example or perturbed image

~x∗ is computed from the input ~x by solving the following optimization problem [25]:

~x∗ = ~x+ ε· sign(5~xJ (x, y(true)))

Here, the ε represents the factor responsible for calibrating magnitude of perturbation in

the input sample ~x, while J (x, y(true)) represents the cost function we wish to maximize

loss for input sample ~x, while keeping ε small. The value of ε needs to be optimized, since

a large value of ε to compute the adversarial example will cause the sample to be misclas-

sified by F, however will be easily detected by a human, foiling the attack. This method is

considered fast because it does not require an iterative procedure to compute ~x∗ and can be

completed in 1 iteration step.

14

CHAPTER 2. BACKGROUND

Basic Iterative Method (BIM) - considered to be an extension of the FGSM method

above. Contrastingly, it is an iterative procedure in the sense that it is applied multiple times

with small step size n+1 in each iteration, while applying small feature modification to the

input sample ~x during each intermediate step. The most optimized adversarial example is

computed in its final form by solving the following optimization problem [25]:

~x∗n+1 = ~xn + εsign(5~xJ (x, y(true)))

Jacobian-based Salience Map Approach (JSMA) - introduced first by Papernot at

al. in [28]. This non-iterative (but slower) and computationally intensive generation ap-

proach works by perturbing the feature of an input sample ~x that has large adversarial

saliency scores, this method is used in our targeted attack. Basically, the saliency score

represents the goal of taking a sample ~x with a important or noticeable features from its

source class f(~x) = y1(true) across the decision boundary to a target class f(~x) = y2(true).

First, the adversary computes the Jacobian Matrix J(f)(~x) ∈ R(m×n), which are all the

first-order derivatives f ′(~x) and evaluates the inputs. The latter returns a matrix of first-

order derivatives [
∂fi
∂xi

~x]i,j, where the component i, j is the derivative of class j with respect

to input feature i in ~x. To compute our saliency map, the adversary computes the following

for each input feature matrix item i, given to us by, see equation below [25].

S(~x, t)[i] =

 0 if ∂fi(~x)
∂ ~xi

< 0 or
∑

j 6=t
∂fi(~x)
∂ ~xi

> 0

(∂fi(~x)
∂ ~xi

) |
∑

j 6=t
∂fi(~x)
∂ ~xi
| otherwise

(2.1)

The value t is the target class y(target) that we wish to assign the input sample ~x instead

of the source class label y(true). The adversary then selects from the pool of adversarial

samples a sample i with the highest saliency score S(~x, t)[i] and maximizes its value. The

latter process is repeated in several iterations until we cause the misclassification to occur

on the target class y(true), or we reach the maximum number of perturbed features.

There also other adversarial examples generation methods, such as the iterative-less-

likely-class-method [19]. Other lesser known methods exist such as, DeepFool, CPPN EA

Fool, C&W’s attack and BFGS-L attack mentioned in [38]. However, we will not spend time

explaining these methods, as they fall out of scope in our thesis.

15

CHAPTER 2. BACKGROUND

2.2.5 The Adversarial Optimization Problem

As we saw in the previous section, whether the adversary is generating the adversarial

examples using JSMA, or any other of the adversarial example generation methods, one

thing is for certain, there is a computational cost involved. In the general case, adversarial

examples are generated by solving a hard optimization problem similar to the one below

[27]:

~x∗ = ~x+ argmin{~z : Ô(~x+ ~z) 6= Ô(~x)} = ~x+ δx

Where ~x+δ~x represents the least possible amount of noise added to cause a perturbation,

while remaining unnoticeable by humans. The adversary wishes to produce adversarial

examples ~x∗ for a specific input sample ~x that will cause a misclassification by the target

model Ttarget, with a queried adversarial sample, such that O{~x + δ~x} = O{~x}. This

misclassification proves that the classifier has been compromised, and is no longer usable.

The misclassification error and drop in target label accuracy the attacker is after is achieved

by adding the least amount of possible noise δ~x to the input ~x, in order to be unnoticeable

by humans, but just enough to mislead the DNN. Solving for ~x∗ is an optimization problem

that is not easy to solve since it is non-linear, where multiple true solutions exist, and non-

convex, where there not so easy to find. An optimization problem is considered to be convex

if convex optimization methods can be used on the cost function J(θ), that if minimized

minx J0(x), for the best possible and unique outcome can guarantee a global optimal solution.

In convex-type problems, optimization is likely a well-defined problem here with one optimal

solution or global optimum across all feasible search regions. On the other hand, a non-convex

problem is one where multiple local minimums exist (solutions) exist for the cost function

J(θ). Computationally, it is difficult to find one solution that satisfied all constraints. Here,

optimality has become a problem, and an exponential amount of time and variables are

required to find a feasible solution, where many indeed exist. Figure 2.5 illustrates convex

vs. non-convex optimization. By preventing the attacker from learning anything about

the model Ttarget in a black-box System setting; it makes it more difficult to solve this

computational challenge. In our approach, we introduce this difficulty by deceiving the

adversary and allowing him to attempt in solving this optimization problem, as an infeasible

task for a decoy model Tdecoy, which has no real value. Generating these adversarial examples

is already exhaustive in computational cost time, as well as approximating and training the

substitute decoy model to craft the examples. And if the attacker does indeed succeed in

generating these examples, it would a highly infeasible task done in vanity.

16

CHAPTER 2. BACKGROUND

Figure 2.5: Convex vs. non-convex optimization, where one solution exists as the global
minimum(left), and multiple solution exist local minimums(right)

2.2.6 Impact of Adversarial Examples on Deep Neural Networks

As it is known, a machine learning application could be in severe jeopardy if the underlying

model were to fall in the hands of an adversary, with intentions on launching an attack.

However, there are certain measures taken to prevent the latter from occurring. However,

equally menacing, and as likely, is if an adversary were able insert an input, image or query

that would bypass the model’s learning mechanism, and cause a misclassification attack,

in full view of the defender. Adversarial Examples have the ability to do just that. As

mentioned in (section 2.1), deep neural nets depend on the discriminative features Xm,n =

(x1,1, x1,2, x1,3,. . . , x1,n), embedded within the image that the DNN model recognizes and

learns, which it then assigns to its correct class label. However, according to [24] it was

shown that the DNN models can be tricked and convinced that a slightly perturbed image

or input that should otherwise be unrecognizable and consequently rejected by the neural

network, can be forced to be generalized and accepted as a recognizable member of a class in

the targeted model. The consequence of this is that many state-of-the-art machine learning

systems deployed in a real-world setting are left vulnerable to adversarial attacks, at any

point in time from any user. This creates calamity, because any chosen input unrecognizable

to the model can be transformed and classified with high confidence causing a (false positive),

and an input recognizable to the model can be classified with low confidence (false negative),

violating the integrity of a prediction model, eventually making it unusable.

For instance, some of the most striking examples are in the case of audio inputs that

17

CHAPTER 2. BACKGROUND

sound unintelligible (to human), but contain voice-command instructions that could mislead

the deep neural network [19]. In the case of facial recognition scenario, where the input is

subtly modified with markings that a human being would recognize their identity correctly,

but the model identifies them as someone else [19].

2.2.7 Combating Adversarial Examples - defenses

There are numerous countermeasures to defend and fortify a model against adversarial exam-

ples, some of which are reactive, while others are proactive. Some of these methods include

augmenting training data set examples D with added adversarial examples, better known as

adversarial training. The latter essentially works as follows: the model F is trained on both

clean x and perturbed samples x́. The purpose of this method is to increase the robustness

of the training model in all gradient directions, which means it should be able to classify an

input sample to its true class label ytrue, and detect any perturbations ~x∗ it may encounter.

Below, we briefly explain some of the other proposed methods:

• Network Distillation: also know as defensive distillation [29] [38], originally designed

as defense method to reduce the size of a DNN by transferring knowledge from a large

DNN to a smaller one, to improve robustness. The authors in [29] found that the

adversary usually targets the model’s surface sensitivity to perturbations, which is

what their solution attempted to rectify and block.

• Adversarial Re-training: proposed by Papernot, considered to be another way to

make deep neural networks more robust, by regularizing the neural network [13], as

well as improving the precision.

• Input Reconstruction: adversarial examples can be reclaimed and transformed to

clean data, and make them harmless to the deep neural network. The authors in [38]

used a de-noiser that detects adversarial examples and removes the perturbation from

the input and converts it to its original form.

• Classifier Robustifying: a robust DNN architecture can help fortify the model and

protect it against adversarial attacks. Due to the uncertain nature of adversarial

examples, the authors in [38] mention a lot of the models are equipped with Radial

Basis Function (RBF) kernel K(xi, xj) = exp(−γ‖xi − xj‖)2, γ > 0 to improve the

distribution of data samples and robustify the model. This is done by filtering the

input features that similar and dissimilar to the features space against a constraint,

removing with that unwanted perturbations.

18

CHAPTER 2. BACKGROUND

• Network Verification: verifying the properties of deep neural network offers a

promising path towards robustifying neural networks [38]. This method might give

insight into unknown and unseen attacks, that could be prevented in pre-training. The

authors in [38] suggested using DeepSafe, which uses RELU-plex in their defensee. The

authors also suggest using targeted robustness to make the target class robust against

adversarial attacks.

• Ensemble defenses: this defense approach suggests using multiple defenses, grouped

together to curb adversarial attacks. Some examples of ensemble defense include Pixel

Defend and MagNet. However, as mentioned in [38] showed using ensemble defenses

does not robustify or make the neural network any stronger.

19

CHAPTER 2. BACKGROUND

2.3 Transferability and Black-Box Learning Systems

The section focuses on the concept of black-box learning systems. We will offer a detailed

definition of what a black-box threat model is, as well as how it contrasts from the blind

threat model. We explore the functionality of the black-box attack approach, as well the

hypothesis responsible for allowing black-box attacks to occur - Adversarial Transferability.

This section also offers insight into how Adversarial Transferability is utilized to exploit and

launch black-box attacks using adversarial examples on classification models. Let us first

introduce the concept of Adversarial Transferability.

2.3.1 Adversarial Transferability

According to the authors in [36], the hypothesis of Adversarial Transferability is formulated

as the following:

“If two models achieve low error for some task while also exhibiting low robustness to

adversarial examples, adversarial examples crafted on one model transfer to the other.”

In simple terms, the idea behind Adversarial Transferability is that for an input sam-

ple ~x, the adversarial examples ~x∗ generated to confuse and mislead one model m can be

transfered and used to confuse other models n1, n2, n3, ..., ni, that are of homogeneous or

even heterogeneous classifier architectures. This mysterious phenomena is mainly due to

the determining property commonly shared by most, if not all machine learning classifiers,

which states that predictions made by these models vary smoothly around the input samples

making them prime candidates for adversarial examples [15]. It is also worth noting these

perturbed samples, referred to here as adversarial examples, do not exist in the decision

space as a mere coincidence. But according to one hypothesis in [13], they occur within

large regions of the classification model decision space. Here, dimensionality of the data is

a crucial factor associated with the transferability of adversarial examples. The authors hy-

pothesize that the higher dimensionality of the training data example set D, the more likely

that the subspaces will intersect significantly, guaranteeing the transfer of samples between

the two subspaces [13].

According to the above hypothesis, transferability holds true between two models as long

as both models share a similar purpose or task [26]. Knowing this, an attacker can leverage

the property of transferability to launch an preemptive attack, by training a local substitute

classifier model F on sample testing data pairs (x
′
, y

′
), that the chosen remote target classi-

fier Ttarget were generalized on. Collecting these testing pairs can be formed into a training

dataset Dtraining of size N of similar dimensions and content. With the latter we can pro-

duce adversarial examples ~x∗. It is also worth noting that the success rate of transferability

20

CHAPTER 2. BACKGROUND

Figure 2.6: Cross-Technique Transferability Matrix: cell (i,j) is the percentage of adversarial
samples crafted to mislead a classifier learned using machine learning technique i that are
misclassified by a classifier trained with technique j [26].

varies depending on the type of remote target classifier the examples ~x∗ are being transferred

to. The Figure 2.6 above [26] illustrates the transferability matrix for adversarial examples

generated with a classifier of various types of prediction techniques i and transfered to a

target classifier trained with technique j. As it can be seen in Figure 2.6 (darkened box)

the success rate of transferability is higher in some classification models such as Support-

Vector-Machines (SVM) and Linear Regression (LR), but not others. The latter might be

associated with the purity of data samples being used in generating the examples transferred

[15].

These modified examples can then be transferred to the target classifier. Hence, the same

perturbations that influence model n also effect model m. Knowing that the above hypoth-

esis is true in the general case, Papernot used this very same concept to attack learning

systems using adversarial examples generated and transferred from a substitute classifier in

[27], which is the same attack we also used for our designed adversary. This transfer property

is an anomaly, and creates an obstacle in the face of deploying and securing machine learning

services on the cloud, enabling exploitations and ultimately attacks on black-box systems

[36], as we’ll see in the coming sections.

Adversarial Examples cannot always be transferred, but to measure the success of trans-

ferability of adversarial examples between m and other models ni, we use two points of

measurement, which are: 1) transferability rate, 2) success rate. These two relationships of

21

CHAPTER 2. BACKGROUND

semblance are used to benchmark the transferability of the adversarial samples transfered

from the substitute model back to the original model [27]. The success rate refers to the

portion of perturbations that will be misclassified by the substitute training model F, while

the transferability rate refers to those same perturbation samples that will misclassified and

generalized by the target model, when transferred form the substitute model after training

is done.

2.3.2 Black-Box Threat Model

To explain a black-box threat model, we start by the term black-box system concept. A

black-box is essentially a system that can be construed in terms of inputs x and outputs

y, with the internal mechanisms of the system f(x) = y transforming x into y remaining

invisible. The functionality of the black-box can only be understood by observation, which

is what the attacker depends on to begin his attack. Figure below 2.7 illustrates a basic

black-box system.

Figure 2.7: A Simple black-box System - construed in terms of inputs x and outputs y, with
the internal mechanisms of the system f(x) = y transforming x into y remains invisible

The black-box threat model is by extension a black-box system. In our thesis, we are

attempting to prevent the attacker from polluting the target classifier Ttarget, by blocking

transferability and access to the target model to change the prediction on the class label y.

Here, we consider the adversary to be weak with limited knowledge, as in he can only observe

the inputs inserted and outputs produced, while possessing little knowledge of the classifier

itself. The adversary possesses very little, if no knowledge at all of the classifier architecture,

22

CHAPTER 2. BACKGROUND

structure, number or type of hyper-parameters, activation function, node weights, etc. Such

an environment is considered to be a black-box system and the type of attacks are called

black-box attacks. The adversary need not know the internal details of the system to exploit

and compromise it [27].

Generally, in order to attack the model, in a black-box learning setting, the adversary

attempts to generate adversarial examples, which are then transferred from the substitute

classifier F to the target classifier Ttarget, in an effort to successfully distort the classification

of the output labels [15]. The intension of the attacker is to train a substitute classifier in

a way that is to mimic or simulate the decision space of the target classifier. For the latter

purpose, the attacker continuously updates the substitute learning model and queries the

target classifier (represented by the Oracle) for labels to train the substitute model, craft

adversarial examples and attack the black-box target classifier.

Generally, the model being targeted is a multi-class classifier system, otherwise known

as the Oracle O. Querying the Oracle represents the only capability which the attacker

possesses. Querying the Oracle O for input ~x, which represents the only capability available

to the attacker, as in the black-box model no access to the Oracle internal details is possible

[27]. The goal of the adversary is to produce a perturbed version of any input ~x, known

as an adversarial sample after modification, denoted ~x∗. This represents an attack on the

integrity of the classification model (oracle) [27]. What the adversary attempts to do is solve

the following optimization problem to generate the adversarial samples, as seen below:

~x∗ = ~x+ arg min{~z : Ô(~x+ ~z) 6= Ô(~x)} = ~x+ δx

The adversary must able to solve this optimization problem by adding a perturbation at

an appropriate rate with δ~x, to avoid human detection. The magnitude ε of the rate must be

generated in such a way with the least perturbation possible in δ~x to influence the classifier,

as well remain undetected by a human [27]. This is considered a hard optimization problem,

since finding a minimal value to δ~x is no trivial task, as mentioned in the above (section

2.2.5). Further more, removing knowledge of the architecture and training data makes it

difficult to find a perturbation that satisfied the condition for successful adversarial examples

secretion, where O{~x+ δ~x} = O{~x} [27].

2.3.3 Black-Box Threat Model Vs. Blind Threat Model

Although our research mainly focuses on curbing adversarial attacks on black-box learning

systems, it is also worth mentioning that other threat models exist. The different ones differ

depending on how the adversary knows in order to attack the target system. We have already

23

CHAPTER 2. BACKGROUND

been introduced to the first system, as mentioned above, the black-box Threat Model. While

the more constrained second one is the Blind Model, which is out of scope but still interesting

to compare against.

Opposite to the black-box model, the blind model possesses a very limited (small) set

of exposed knowledge to the attacker. This limited access applies to the labeled training

data and its distribution. Unlike the black-box model, the adversary is blind to the target

system he is attacking [15], this means virtually no access. The internal details of the

classifier are essentially shielded from the attacker. However, both threat models share

some commonalities between them, for instance, both models involve the attacker training a

substitute classifier and use the perturbations generated to attack the target model [15]. They

share their an innate vulnerability to adversarial attacks, due to adversarial transferability,

whose effect is more potent in the black-box model than its adjacent Blind Model [15]. Also,

the threat model being blind does not prevent it from being exposed to external attacks.

Another interesting shared trait is the lack of robustness that the adversarial defense known

as distillation [29] has inside both models. It was shown that in both models the attacker can

evade the effect of its defense method of distillation by adversarial feature blocking which

the defense depends on to thwart attacks [10].

2.3.4 Transferability in Black-Box Attacks

Adversarial Transferability is critical for black-box Attacks, to say the least. In fact black-

box systems are dependent on its success. In [37], it is suggested that the adversary can build

a substitute training model F with synthetic labels S0 collected by observing the labeling

of test samples by the Oracle O, despite the DNN model and dataset being inaccessible.

The attacker can build a substitute model F from what he learns from O. The attacker will

can then craft adversarial samples that will be misclassified by the substitute model F [29].

Now that the attacker has approximated the knowledge of the internal architecture of F, he

can use it to construct adversarial examples using one of the method described in (section

2.3.3). For as long as adversarial transferability holds between F (S0) and Ttarget. adversarial

examples misclassified by F will be misclassified by the target as well. In our thesis, we find

a way to re-channel adversarial transferability and prevent an attack. We plan to accomplish

the latter via deception.

24

CHAPTER 2. BACKGROUND

2.3.5 Transferability of Adversarial Examples in Black-Box At-

tacks

It was Papernot in [27] [26], who proposed that transferability can be used to transfer ad-

versarial examples from one neural network to the other that share a common purpose or

task, yet are dissimilar in network architecture. Transferability is essential for the success

of black-box attacks on deep neural nets, which is due to the limitations imposed on the

adversary, such as lack of architecture, model and training dataset knowledge. Even with

limited knowledge, the adversary with the aid of the transferability property in the ad-

versary’s armaments, the adversary can train a substitute model and generate transferable

examples, then transfer them to the unprepared target model, making the victim’s trained

model vulnerable to attack [38].

There has been much work focused on the abilities possessed by adversarial examples, and

its ability to transplant itself between machine learning techniques (DNN, CNN, SVM, etc.).

Work, namely in [9] [21] [27], all reached the same conclusion - adversarial examples will

transfer across different models trained on different dataset implementations, with different

machine learning techniques.

2.3.6 Black-Box Attack Approach

The adversary wishes to compromise the integrity of the classification model by querying the

labels provided by the Oracle O for the input ~x. The adversary’s plan is use the labels, col-

lected by observing the Oracle O to generate an initial substitute model training set S0. The

adversarial goal of finding a minimal perturbation to misclassify a targeted classifier model

Ttarget is a difficult problem (section 2.2.5), which happens to be non-convex, where multiple

solutions exist for the global minimum of the optimization problem [27]. What the adversary

can do is attempt to mimic or approximate the target Oracle O model’s architecture, but

this requires internal knowledge of the classifier structure, which is not possible considering

the inaccessibility under a black-box model scenario [27]. Another benefit to this approach

is the fact that most machine learning models require large and expensive training datasets

D. This makes incredibly difficult for the attacker to attack a system in such a environment

[27], but there are ways around this. The black-box attack strategy consists of the following

steps:

25

CHAPTER 2. BACKGROUND

Substitute Model Training:

Here, the attacker queries the Oracle O with testing sample example input x
′

and observes

the predicted output y
′
. generated using one of the adversarial samples selected by one of

the adversarial training algorithms to build a substitute model F, which will be used to

misclassifying the target model due to the adversarial transferability property [27]. The

notion of creating a substitute model F is considered challenging due to two main reasons:

1) selecting an architecture F is difficult since we have no knowledge of the Oracle O model;

2) the number of queries to the Oracle O is limited to remain undetected [27]. The authors

in [27] emphasize that their black-box approach is not meant to increase substitute model F

accuracy, but to approximate the decision boundaries as best as possible, with fewer query

for labels [27].

Substitute Architecture:

According to the authors in [27], this step is considered crucial in constructing the model,

because the author must experiment with different model architectures until he finds the

correct one. This is due to the notion that without knowledge of the target model Ttarget

architecture, the attacker knows very little about how the system learns and processes input

(text, images, or media) and produces output (label or probability vector). One potential

way, suggested by the authors, to select an appropriate architecture F for the substitute

training model F (S0) is to simply explore and try different variations of the substitute

architecture, this continues until we find one that causes a misclassification on the target

label [27].

Generating Synthetic Dataset:

Considered as another complication in the path of constructing a successful black-box attack

is crafting the dataset used to train the substitute training model F. We could potentially

request an infinite number of queries to get the oracle’s output O(x) = y for an input sample

x [27]. However, this method, although effective in the sense that it creates a suitable training

set, it is actually not methodical. This is due to the explicit exposure by interaction and

querying Oracle O. Creating a large number of queries attracts attention from the defender

and makes the adversarial attempts to query suspicious [27].

Substitute Model Training:

Here, we describe the five step algorithm procedure described in [27]. The algorithm is

outlined in full in the algorithm above. For a better understanding of how this algorithm is

26

CHAPTER 2. BACKGROUND

Algorithm 1 - Substitute DNN Training: for oracle Ô, a maximum number maxp of
substitute training epochs, a substitute architecture F, and an initial training set S0.

1: Input: Ô,maxρ−1, Sρ, λ
2: Define architecture F
3: for ρ ∈ 0...maxρ−1 do
4: // Label the substitute training set
5: D ← {(~x, Ô(~x)) : ~x ∈ Sρ}
6: // Train F on D to evaluate parameter θF
7: θF ← train(F,D)
8: // Perform Jacobian-based dataset augmentation

9: Sρ+1 ← {~x+ λ· sign(JF [ˆO(~)x]) : ~x ∈ Sρ} ∪ Sρ
10: end for
11: return θF

used to train substitute model, see below for a brief description of the steps involved [27]:

Initial Collection (step 1): the adversary collects a small set of test samples example

(x
′
, y

′
) pairs that will later used to create the initial training set S0. The test samples

are taken by querying Oracle O and observing its behavior. These inputs resemble training

domain of the target model, in the sense that are taken from the same statistical distribution.

Architecture Selection (step 2): the adversary approximates and selects a model ar-

chitecture to be trained as the substitute model F.

Substitute Training (super step) the adversary selects more appropriate substitute

models Fp until he finds the most appropriate one, by repeating the following steps:

Labeling (step 3): the labeled samples are collected by querying the Oracle O in step

1. These labels are then used to compose the first of several substitute model training set

Sp to train the substitute model F in F (S0).

Training (step 4): the adversary gradually trains the substitute architecture training

model F (Sp) selected in step 2 above using known supervised adversarial training techniques

with using labeled data Sp collected from step 3.

Augmentation (step 5): the authors augmentation technique in [27] is used on the

updated training set Sp in order to produce a much larger training set Sp+1 with more

training data points. Step3 and step4 are repeated for the augmented dataset. Step 3 is

27

CHAPTER 2. BACKGROUND

repeated several times to increases the substitute model F accuracy reaches satisfaction and

mimics the decision boundaries of the Oracle O. Here, λ is the parameter of augmentation,

which represents the step taken in the direction to augment from Sp to Sp+1 .

2.3.7 Defense Strategies Against Black-Box Attacks

According to [27], there are two main methodologies which aim to defend against Adversarial

Attacks in black-box systems. The first one is reactive and the second is proactive. Here,

reactive refers to defenses where the defender seeks to detect adversarial examples, while

proactive refers to defenses where the defender seeks to make the classifier more robust.

Some of the known defense strategies used to curb black-box oriented adversarial attacks

in [15] include: 1) Preprocessing Methods; 2) Regularization and Adversarial Training; 3)

Distillation Methods; 4) Classification with Rejection. Let us review a few of these methods:

Preprocessing Methods:

The authors in [29] mention this method as way filter out input ~x determined to be adver-

sarial. The authors argue that input samples images have natural properties, such as high

correlations between adjacent pixels or low energy in high frequency. Assuming that adver-

sarial examples and regular input do not lie in the same decision spaces can be used a pretext

to filter out malicious perturbations δ~x. According to the authors, this method is possibly

not the best way to defend against adversaries since the process of filtering could potentially

reduce the classifier’s accuracy on harmless input samples, not deemed adversarial.

Regularization and Adversarial Training:

The authors have suggested using Regularization, Adversarial Training or smoothing as a

technique to robustify the classifier against adversarial attacks. The authors in [13] mention

one experiment where the accuracy of the classifier fell to 17.9% with adversarial training.

This type of defense cannot be relied upon when deploying security sensitive machine learning

services. Regularization and Adversarial training has been shown in [15] to be ineffective for

both black-box and Blind Threat Models against adversarial examples.

Distillation Methods:

In [29] Papernot proposed using a method called defensive distillation to counter adversarial

examples in a black-box setting. This method proved useful since it limits the attacker’s

ability to select adversarial examples. However, there has been research which indicates that

28

CHAPTER 2. BACKGROUND

the effect of distillation can be reverted, such as work in [10]. This was made evident in the

previous section where it was shown that in both threat models (black-box and Blind), the

attacker can evade the effect of the defense method of distillation of an adversarial feature,

by blocking the defense method depends on to thwart attacks [10]. The authors suggest

that this lack of robustness is due to that notion that defensive distillation only works in the

general case, but fails to protect the classifier in cases where the features are all modified at

once.

2.4 Honeypots

The section focuses on the concept of Honeypots, we’ll start with a basic definition of what a

honeypot is. Then, we dissect and explain the different types of honeypots and evaluate each

types intrinsic value, as well as the various deployment types. This section also offers insight

into how other security researchers have proposed using honeypots as a tool in infrastructure

security and protection, as well as how we plan to use it in our thesis.

2.4.1 Concept of Honeypots

A honeypot can be thought of as a single or group of fake systems to collect intelligence

on an adversary, by inducing him/her to attack it. A honeypot is meant to appear and

respond like a real system, within a production environment. However, the data contained

within the honeypot is both falsified and spurious, or better understood as fake. A honeypot

has no real production value, instead its functionality is meant to record information on

malicious activity. In the scenario that it should become compromised it contains no real

data and therefore poses no threat on the production environment [20] [35]. As mentioned,

honeypots can be deployed with fabricated information, this can be an attractive target to

outside attackers, and with the correctly engineered characteristics can be used to re-direct

attackers towards decoy systems and away from critical infrastructure [14]. See Figure 2.8

below for a typical architectural design of a honeypot system.

2.4.2 Classification of Honeypots

Honeypots can be classified using several different criteria. However, for purposes of this

thesis we classify them based on functionality and operation.

• Research Honeypots - they are honeypots deployed with the highest level of risk

associated with them, this is in order to expose the full range of attacks initiated by

29

CHAPTER 2. BACKGROUND

Figure 2.8: Classic Honeypot Architecture

the adversary. They are mainly used to collect statistical data on adversarial activities

inside the honeypot [20]. They are more difficult to deploy, but this does not hinder

from their use by organizations to study attacks and develop security countermeasures

against them. Research honeypots help understand the trends, strategies and motives

behind adversarial attacks [23].

• Production Honeypots - they are honeypots known for ease of deployment and

utility, and use in company production environment [23]. Closely monitored and

maintained, their purpose lies in their ability to be used in an organization’s secu-

rity infrastructure to deflect probes and security attacks. They are attractive as an

option for ease of deployment and the for sheer value of information collected on the

adversary.

• Physical/Virtual Honeypots - physical honeypots are locally deployed honeypots,

being part of the physical infrastructure. considered to be intricate and difficult to

properly implement [20]. On the other hand, virtual honeypots are simulated systems

(virtualized) by the host system to forward network traffic to the virtual honeypot [23].

• Server/Client Honeypots - the main different between server and client honeypots

is the former will wait until the adversary initiates the communication, while client hon-

eypots contact malicious entities and request an interaction [23]. However, traditional

30

CHAPTER 2. BACKGROUND

honeypots are usually server-based.

• Cloud Honeypots - they are honeypots deployed on the Cloud. This type of honeypot

has many advantages, as well as restrictions. They are used by companies that at least

have one part of their infrastructure on the Cloud. Having the system (or part of it)

in the cloud has its advantages, it makes it easy to install, update, as well as recover

the honeypot in case of a corruption [20].

• Honey-tokens - can be thought of as a digital pieces of information. It can manifested

from a document, database entry, E-mail, or a credentials. In essence, it could be

anything considered valuable enough to tokenize, in order to lure and bait the adversary.

The benefit with these tokens is that they can be used to track stolen information and

level of adversarial abuse in them system [7]

2.4.3 Honeypot Deployment Modes

Honeypots can be deployed in one of three deployment modes [8], they are:

• Deception - this mode manipulates the adversary into thinking the responses are

coming from the actual system itself. This system is used as a decoy and contains

security weaknesses to attract attackers. According to researchers, a honeypot is in-

volved in deception activities if its responses can deceive an attacker into thinking that

the response returned is from the real system.

• Intimidation - this mode used when the adversary is aware of the measures in place

to protect the system. A notification may inform the attacker that the system is

protected and all activity is monitored. This countermeasure may ward or scare off any

adversarial novice, and leave only the experienced adversaries with in-depth knowledge

and competent skills to attack the system.

• Reconnaissance - this mode is used to record and capture new attacks. This in-

formation is used to implement heuristics-based rules that can be applied in intrusion

detection and prevention systems. With reconnaissance, the honeypot is used to detect

both internal and external adversaries of the system.

2.4.4 Honeypot Role and Responsibilities

The true value of honeypots lay in their ability to address the issue of security in production

system environments, they mainly focus ons:

31

CHAPTER 2. BACKGROUND

• Interaction - the honeypot should be responsible for interacting with the adversary.

this pertains to acting as the main environment where the adversary becomes active

and executes his attack strategy.

• Deception - the honeypot should be responsible for deceiving the adversary. This

pertains to the disguising itself as a normal production environment, when in fact it is

a trap or sandbox designed to exploit the adversary.

• Data Collection - the honeypot should be responsible for capturing and collecting

data on the adversary. This information will potentially be useful for studying the

attacker and his motivations.

Advantages of Honeypots

Honeypots, alone, do not enhance the security of an infrastructure. However, we can think

of them as subordinate to measures already in place. However, this level of importance does

not take away from some distinct advantages when compared to other security mechanisms

in place. Here, we highlight a few [23]:

• Valuable Data Collection - honeypots collect data which are not polluted with noise

from production activities and which are usually of high value. This makes data sets

smaller and data analysis less complex.

• Flexibility - honeypots are a very flexible concept to comprehend, as can be seen

by the wide array of honeypot software available in the market. The indicates that a

well-adjusted honeypot tool can be modified and used for different tasks, which further

reduces architecture redundancy.

• Independent from Workload - honeypots do not need to process traffic directed

or which originates from them. This means they are independent from the workload

which the production system experiences.

• Zero-Day-Exploit Detection - honeypots capture any and every activity occurring

within them, this could give indication to unseen adversarial strategies, trends and

zero-day-exploits that can be identified from the session data collected.

• Lower False Positives and Negatives - any activity that occurs inside the server-

honeypot is a considered to be out-of-place and therefore an anomaly, which is by

definition an attack. Honeypots verify attacks by detecting system state changes and

activities that occur within the honeypot container. This helps to reduce false positives

and negatives (FP/FN).

32

CHAPTER 2. BACKGROUND

Disadvantages of Honeypots

Ultimately, no security system or tool that exists is faultless. Honeypots suffers from some

disadvantages, some of them are [23]:

• Limited Field of View - a honeypot is only useful if an adversary attacks it, and

worthless if no one does. If the honeypot is evaded by the adversary, and attacks the

production system or target environment directly, it will not be detected.

• Being Fingerprinted - here, fingerprinting signifies the ability of the attacker to

identify the presence of a honeypot. If the honeypot behaves differently than a real

system, the attacker might identify and consequently detect it. If their presence is

detected, the attacker can simply ignore the honeypot and attack the targeted system

instead.

• Risk to the Environment - honeypot might introduce a vulnerability to the produc-

tion infrastructure environment, if exploited and compromised. And naturally, as the

level of interaction (freedom) that the adversary has within the environment increases,

so does the level of potential misuse and risk associated with it. The honeypot can be

monitored, and the risk mitigated, but not completely eliminated.

2.4.5 Honeypots Level of Interaction

A honeypot is considered to be an fake system, with no real value. It is built and designed to

emulate the same tasks that a real production system can accomplish. However, these tasks

are of no significance, hence compromising the honeypot poses no threat on the production

environment. Honeypot systems functionality can be categorized according to the level

interaction the adversary has with the honeypot system environment [20]:

• Low-Interaction Honeypot (LIHP) - these type of system emulate only simple

services like Secure Shell (SSH), Hypertext Transfer Protocol (HTTP) or File Trans-

fer Protocol(FTP). These systems are easily discoverable by attackers and provide the

lowest possible level of security. However, they have a promising advantage, they are

easy to install, configure and monitor. They should not be used in production environ-

ments, but for education and demonstration purposes. Some examples of such systems

include Honeyperl, Honeypoint, and mysqlpot. See a typical architectural design of a

low-interaction honeypot in Figure 2.9 below.

• Medium-Interaction Honeypots (MIHP) - this type of system is a hybrid, which

lays in the middle ground between low/high interaction honeypots. This means that

33

CHAPTER 2. BACKGROUND

Figure 2.9: Classical Low-Interaction Honeypot Architecture

the honeypot is still an instance that runs within the operating system. However it

blends in so seamlessly into the environment that it becomes difficult to detect by

attackers lurking within the network. Some examples of such systems are Kippo and

Honeypy.

• High-Interaction Honeypot (HIHP) - the main characteristic regarding High-

Interaction Honeypots is that they are using a real live operating system. It uses

more hardware resources and poses a major level risk on the rest of the production

environment and infrastructure, when deployed. In order to minimize risk and prevent

exploitation by an adversary, it is constantly under monitoring. Some examples of

such systems are Pwnypot and Capture-HPC. See a typical architectural design of a

high-interaction honeypot in Figure 2.10 below.

2.4.6 Uses of Honeypots

As mentioned above, honeypots have a wide array of enterprise applications and uses. Cur-

rently, honeypot technology has been utilized in detecting Internet of Things (IoT) cyber-

attack behavior, by analyzing incoming network traffic traversing through IoT nodes, and

gathering attack intelligence [11]. In robotics, a honeypot was built to investigate remote

network attacks on robotic systems [17]. Evidently, there is an increasing need to install red

herring systems in place to thwart adversarial attacks before they occur, and cause damage

to production systems.

34

CHAPTER 2. BACKGROUND

Figure 2.10: Classical High-Interaction Honeypot Architecture

One of the most popular type of honeypots technologies witnessing an increase in its

popularity is High-Interaction Honeypots (HIHP). This type of honeypot is preferred, since

it provides a real-live system for the attacker to be active in. This property is valuable, since

it can potentially capture the full spectrum of attacks launched by adversaries within the

system. It allows to learn as much as possible about the attacker, the strategy involved and

tools used. Gaining this knowledge allows security experts to get insight into what future

attacks might look like, and better understand the current ones.

In the next chapter, we will explore and discuss the work done by other researchers in

the areas of black-box systems defense, as well as work in using deception-as-a-defense.

2.5 Honeypots in our Solution

We formulate the problem of devising an supplementary method of defense against adver-

sarial examples. This secondary level of defense will shield the black-box learning system,

using honeypots as one of the primary components of deception in building the framework.

This decentralized framework must consist of H high-interaction honeypots. Each of

these honeypots is embedded with a decoy target model Tdecoy, designed to lure and prevent

an adversary with adversarial input ~x from succeeding in causing a mislabeling attack f(x) =

ytrue on the target model Ttarget. Essentially, the framework must perform the following tasks

below.

Firstly, prevent the adversary from mimicking the neural network behavior in the learning

35

CHAPTER 2. BACKGROUND

function f() and replicating the decision space of the model. This will be done by block-

ing adversarial transferability, prevent the building of the correct substitute training model

F (Sp) from occurring and the transfer of samples from the substitute model F to the target

model Ttarget. This makes it difficult to find a perturbation that satisfies O{~x+δ~x} = O{~x},
since target model duplicated is fake.

Secondly, the framework must lure the adversary away from the target model T, using de-

ception techniques. These methods consist of using: 1) deployment of uniquely generated

digital breadcrumbs (HoneyTokens) TKn, 2) making the network of honeypot nodes easily

accessible 3) set up decoy target models Tdecoy, deployed inside the honeypots for the attacker

to interact with, instead of the actual target model Ttarget.

Finally, create an infeasible amount of computational work for the attacker, with no useful

outcome or benefit. This can be accomplished by presenting the attacker with the non-

convex, non-linear, and hard optimization problem, which is generating adversarial samples

to transfer to the remote target model Ttarget, which in this case is a decoy; a decoy of the

same optimization problem we saw in the earlier sections:

~x∗ = ~x+ argmin{~z : Ô(~x+ ~z) 6= Ô(~x)} = ~x+ δx

This strenuous task is complicated further for the attacker because in order to generate

the synthetic samples, the attacker must approximate the unknown target model architec-

ture and structure F to train the substitute model F (Sp), which is challenging. Evasion

is further complicated as the number of deployed honeypots in the framework increases.

Therefore, building this system consists of solving three problems in one, preventing of ad-

versarial transferability, deceiving the attacker and creating immense computational work

for adversary targeting the system to waste the computational time and resources. All the

later, while keeping the actual target model Ttarget out of reach.

36

Chapter 3

Related Work

The purpose of this chapter is to summarize and evaluate earlier work in the literature on the

techniques and frameworks designed to defend black-box learning systems from adversarial

attacks. This chapter also covers discussions on how the deception-as-a-defense technique

can used to protect security systems, specifically with the use of fake digital entities to

attract, lure, and deceive adversaries.

The literature review below focuses directly on the concept of defending against adver-

sarial examples, aimed at misleading the classifier. Most of the known defense methods are

mainly based on data pre-processing and sanitation techniques, employed during the training

phase of DNN model preparation. Pre-processing and sanitation typically mean influencing

the effect that sample training-set data, X, has on neuron weights of the underlying DNN

model, by distinguishing and filtering out malicious perturbations, inserted by an adver-

sary that may mislead and/or confuse the classifier causing a misclassification or violation of

model integrity. Other notable work in this section focus on the role of cyber-security defense

through means of deception, specifically with the use of decoys and fake entities to deceive

the attacker. Our challenge here lays in constructing a secondary-level of protection and

defense, designed not to replace known adversarial defense techniques, but to supplement

and reinforce existing ones, with the use of adversarial deception re-enforcing the application

perimeter.

As an alternative, but conceptually close to the data pre-processing technique, is the

use of distillation as-a-defense against adversarial perturbations [29], to reduce the impact

impurities made on the neural net features. The authors use this simple technique to reduce

the dimensionality of the DNN classification model, while maintaining accuracy. However,

the work in [10] suggests that a model protected using defensive-distillation is no more secure

than a model without no defense. While the latter method is able to defend against some

cases of adversarial attack, it cannot protect the model’s neural net against all types of

37

CHAPTER 3. RELATED WORK

attack, especially the ones that simultaneously target the different features, learned by the

model.

The following is some of the research that deals with defenses against adversarial exam-

ples, or with defense-through-deception using digital breadcrumbs and tokens:

i. Efficient Defenses Against Adversarial Attacks - this paper [39] focuses on addressing

the lack of efficient defenses against adversarial attacks that undermine and then fool

deep neural networks (DNNs). The need to tackle this issue has been amplified by the

fact that there is no unified understanding of how or what makes these DNN models so

vulnerable to attacks caused by adversarial examples. The authors propose an effective

solution which focuses on reinforcing the existent DNN model and making it robust

against adversarial attacks, attempting to fool it. The proposed solution focuses on

utilizing two strategies to strengthen the model, which can be used separately or to-

gether. The first strategy is using a bounded ReLU activation function,fR(x)→ y, in

the DNN architecture to stabilize the overall model prediction ability. The second is

based on augmented Gaussian data for training. Defenses based on data augmentation

improve generalization since they consider both the true input and its perturbed ver-

sion. The latter enables a broader range of searches in the input, then say adversarial

training, which is limited in its partial of the input, causing it to fall short. The result

of applying both strategies results in a much smoother and more stable model, without

significantly degrading the model’s performance or accuracy.

ii. Blocking Transferability of Adversarial Examples in black-box Learning Systems - this

paper, [15], is the most relevant academic paper, with regards to motivation and

stimulus for the purpose of developing our proposed auxiliary defense technique, us-

ing honeypots. The authors in [15] propose a training approach aimed at building

adversarial-resistant black-box learning systems against adversarial perturbations, by

blocking transferability. The proposed method of training, called NULL-labeling works

by evaluating input ~x and lowers confidence on the true label y, if ~x is suspected to

be perturbed and rejecting it as invalid input. The criteria on which the method eval-

uates ~x is if it spans out of the training-data data distribution area. The training

method smoothly labels, filters out, and discards invalid input (NULL), which does

not resemble training-data. This is to prevent from allowing it to be classified into

intended target label. The ingenuity of this approach lies in how it is able to decisively

distinguish between clean and malicious input. NULL labeling proves its capability

in blocking adversarial transferability and resisting the invalid input that attempts to

exploit it. The latter is achieved by mapping malicious input to a NULL label and

38

CHAPTER 3. RELATED WORK

allowing clean test data to be classified into its original true label, all while maintaining

prediction accuracy.

iii. Towards Robust Deep Neural Networks with BANG - this paper, [33], is another train-

ing approach for combating adversarial examples and fortifying the learning model.

The authors propose this defense technique in response to adversarial examples, with

their abnormal and ambiguous nature. The authors argue that model adversarial train-

ing still makes the model vulnerable and exposed to adversarial examples. For this very

purpose, the authors present a data-training approach, known as Batch Adjusted Net-

work Gradients or BANG. This method works by attempting to balance the causality

that each input element has on the node weight updates. This efficient method achieves

enhanced stability in the model by forming smoother areas concentrated in the clas-

sification region that has classified inputs correctly and has become resistant against

malicious input perturbations that aim to exploiting and violating model integrity.

This method is designed to avoid instability brought about by adversarial examples,

which work by pushing the misclassified samples across the decision boundary into in-

correct classes. This training method achieves good results on DNNs with two distinct

datasets, and has low computational cost while maintaining classification accuracy for

both sets.

iv. HoneyCirculator: Distributing Credential HoneyToken for introspection of Web-Based

Attack Cycle - in this paper, [7], the authors suggest a framework that actively and

purposefully leaks digital entities into the network to deceive adversaries and lure them

to a honeypot that is covertly monitors, tracks token access, and records any new

adversarial trends. In a period of one year, the monitored system was compromised

by multiple adversaries, without being identified as a controlled decoy environment.

The authors argue that this method is successful, as long as the attacker does not

change his attack strategy. However, a main concern for the authors is designing

convincing fake data to deceive, attract, and fool an adversary. The authors also argue

that the defender should design fake entities that are attractive enough to bait the

attacker, while not revealing important or compromising information to the attacker.

The defender’s goal is to learn as much as possible about the attacker. The message

that the authors try to convey is that as the threat of adversarial attacks increases, so

will the need for novelty in the defense approaches to combat it.

v. A Survey on Fake Entities as a Method to Detect and Monitor Malicious Activity - this

survey paper, [30], serves as an examination of the concept of fake entities and digital

tokens, which my framework partially relies upon. Fake entities, although primitive,

39

CHAPTER 3. RELATED WORK

are an attractive asset in any security system. The authors suggest fake entities could

be files, interfaces, memory, database entries, meta-data, etc. For the authors, these

inexpensive, lightweight, and easy-to-deploy pawns are as valuable as any of the other

security mechanisms in the field, such as firewalls or a packet analyzers. Simply, they

are digital objects, embedded with fake divulged information, intended to be found

and accessed by the attacker. The authors advocate that operating-system based fake

entities are the most attractive and fitting to become decoys, due to the variety of ways

the operating system interface can be configured and customized. Once in possession of

the attacker, the defender is notified and can begin monitoring the attacker’s activity.

Later in this work, the authors implement a framework that actively leaks credentials

and leads adversaries to a controlled and monitored honeypot. However, the authors

have yet to build a functioning proof-of-concept.

There is also extensive work done on utilizing adversarial transferability in other forms

of adversarial attacks, deep learning vulnerabilities in DNNs, and black-box attacks

in machine learning. Among other interesting work that served as motivation for this

thesis include: utilizing honeypots in defense techniques, such as design and imple-

mentation of a honey-trap [12]; deception in decentralized system environments [34];

and using containers in deceptive honeypots [18].

As mentioned at the end of Chapter 2, our approach using honeypots, does not seek

to replace any of the existing methods to combat adversarial examples in a black-box

attack context. However, it can be used effectively as an auxiliary method of protection

that strengthen existing defense methods in production systems.

40

Chapter 4

Proposed Defense Approach

In this chapter we introduce an architecture for a first-of-its-kind decentralized defense frame-

work geared towards reducing risk and combating adversarial examples, within the context

of a black-box attack setting. This proposed framework - Adversarial Honeynet lays a foun-

dation for superimposing a defense system that blankets existing robust adversarial defense

techniques, such adversarial training or distillation. At its core, it utilizes a computer secu-

rity tool, known as High-Interaction Honeypots (HIHP), filled with fabricated information

to deceive, lure, exploit and eventually learn from the actions of the adversary. This plan

of artful misrepresentation and swindle is aimed at blocking adversarial transferability from

being used to transfer maliciously perturbed examples created by the attacker, as well as to

prevent a targeted misclassification attack from violating the target model’s integrity. Al-

though the aforementioned framework increases defense costs if the attacker suspects a trap

and aborts his exploits, there is still a high chance that an attacker will not disregard it and

will still be drawn to it. The latter is one of the assumptions we have made while designing

this system.

To the best of our knowledge, this is the first time the high-interaction honeypots have

been used to address the issue of adversarial attacks in machine learning. As mentioned in

the previous chapter, the proposed framework has the following advantages: 1) preventing

target model interaction with an adversary, through means of deception to block adversarial

transferability from occurring, leading the adversary away from the target model Ttarget

towards a decoy model Tdecoy instead; 2) supplementing less-than-secure defense techniques

by providing a fail-safe approach which works by augmenting existing security measures

and enticing the adversary with elaborate deception techniques. This method does not add

any extra complexity, but simply obstructs efforts of adversaries; 3) adversarial information

reconnaissance through the use of high-interaction honeypots. The data collected can be

used to analyze adversarial motives and techniques. Also, this proposed system is easily

41

CHAPTER 4. PROPOSED DEFENSE APPROACH

implementable, but due to time and resource constraints we were only able to implement

one integral component, Adversarial HoneyTokens (please see Chapter 5).

This chapter starts with Section 4.1 ; a formulation of the problem definition that forms

the basis of our thesis. We also highlight the design decisions and assumptions made prior

to building this system in the sections that follows. section 4.4 presents the threat model,

which consists of the attack specificity, attacker capabilities, attack settings, and exploited

vulnerabilities. Section 4.5 and Section 4.6 provides an overview and breakdown of the

Adversarial Honeynet decentralized framework, wherein we discuss its functionality, archi-

tecture, and individual components. Section 4.7 focuses on attracting the adversary to

the honeypot through methods of deception. In Section 4.8 we discuss how the framework

monitors and detects malicious behavior. Section 4.9 and Section 4.10 explores how the

adversary launches his attack and defends against an attack. Finally, Section 4.11 focuses

on the significance and novelty of our approach.

4.1 Problem Definition

To recap the thesis goal from Chapter 1 of our thesis we want to determine whether a de-

centralized adversarial defense framework is possible to build, which utilizes high-interaction

honeypots and several deception techniques, as well as operates within a black-box threat

setting. This supplementary layer of defense protects learning systems from adversarial ex-

amples ~x∗ that seek to destabilize the DNN learning model, by causing a targeted misclassifi-

cation post training, jeopardizing the models integrity. However, the notion that adversarial

examples simply destabilize is not well articulated, when the nature of this phenomena is

more compelling and comprehensive.

These nonlinear input samples look familiar to the regular input samples ~x, normally

accepted by a DNN classifier, but they only superficially appear that way. If we recall,

a black-box threat model is one where the adversary possess limited, if in fact no internal

knowledge at all, of the learnings system architecture, structure, hyper-parameters, etc. One

would assume a targeted attack to distort and compromise the acquired DNNs prediction

ability through training would be unlikely, but that is obtuse without knowing all the details.

This is because even with the little knowledge possessed by a potential adversary, a targeted

attack in a black-box setting is still in fact probable. The latter is due to the foible concept

known as Adversarial Transferability ; which perpetuates its potency even in a black-box

setting. From what we learned in Chapter 2, transferability states (in simple terms): that

for an input sample ~x, the adversarial examples ~x∗ generated to confuse and mislead a target

model m1 can be transfered and used to target and confuse other models mn+1, that are of

42

CHAPTER 4. PROPOSED DEFENSE APPROACH

homogeneous or even heterogeneous DNN architectures.

With the above postulate in mind, the adversary can build a substitute architecture F,

with approximated model knowledge and synthetic labels collected Sp, by observing how

the Oracle O labels the test samples (x
′
, y

′
). From what the adversary garners, he can

build a substitute model F from what he learns from O, and train F (So) that resembles

the target model Ttarget in behavior. Now, with the ability to simulate and craft adversarial

samples ~x∗ that will be misclassified by the substitute model F (Sp) and the target model

Ttarget, when transferred. For as long as adversarial transferability principle holds, the same

adversarial examples misclassified by F() substitute model will be misclassified by the target

model. At its core, our intention is to devise a defense technique to both fool and prevent

the attacker from interacting with the model. But before we begin to examine and break-

down the components of our proposed framework we must present some assumptions and

design decisions we made during the deliberation process, which will help shape our defense

solution.

4.2 Assumptions

Adversarial Knowledge - We construct a black-box attack environment by assuming

the following about what knowledge the adversary is bounded by, shaping the attack model.

The attacker has limited or little knowledge of: 1) surrogate decoy DNN testing pair dataset

(x
′
, y

′
) sampled from the same distribution as the training set; 2) queries allowed to ask the

Oracle O, q = {q1, q2, q3, ..., qn}; 3) data features representation f = {f1, f2, f3, ..., fn}. We

also assume the attacker has partial or no knowledge of the following, 1) purpose of DNN

model; 2) DNN input and output layers of the DNN, represented by X = {X1, X2, X3, ..., Xn}
and Y = {Y1, Y2, Y3, ..., Yn} respectively; 3) existence of our honeypot (disguised as another

production server) system weak ports for easy access entry.

Honeypot Node Compromise and System Expropriation - It is reasonably sound

to assume that no system is temper-resistant. This leads us to believe that one or any of

the honeypot nodes in the decentralized framework can become compromised, at any point

in time during an adversarial attack. The following are only some of the possible worse-case

scenarios: 1) overwhelming the node, embedded with the DNN decoy model Tdecoy with query

requests qn+1, causing a type of DoS attack. This can be handled by limiting or setting a

threshold on the number of queries an adversary can send to the Oracle O, as well as limit the

number of queries the Oracle O can accept per session. However, certain counter-measures

need to be set, in order prevent the case where an adversary sends parallel connects/queries

43

CHAPTER 4. PROPOSED DEFENSE APPROACH

to more than one DNN decoy model Tdecoy1 , Tdecoy2 to build the substitute training-set Sρ;

2) Another possibility is the falsification of communication messages between the different

honeypot nodes in the network topology. Although a signed certificate and public/private

key (Diffie-Hellman key exchange for example) can handle this issue. However, we should

never underestimate the attacker, as he could get access and override security entries in

the Sampa database, which is why administrative authorization and certificates should be

required to change any entries in the data log.

Deception-in-Defense-as-a-Proxy - as oppose to the frameworks in [39] [15] [22], which

focus on curbing adversarial attacks by normalizing the input samples ~x injected into the

target model Ttarget, our defense framework follows a different method of protection. We

attempt to deceive the adversary by luring him away from the target classification model

Ttarget, to a decoy model decoyed replica Tdecoy, deployed within a honeypot node. Inside this

environment, the attacker interacts with and queries a decoy Oracle Ô and build a substitute

model F similar to Tdecoy, then using the samples from F and transfers them to model Tdecoy,

and cause a targeted misclassification T (x) = yfalse. Our method of defense must be used

as a supplemented or proxy-tier of protection. This is imperative since alone it maybe

rendered ineffective if the adversary is not deceived or duped by our decoy. But deployed in

conjunction with a different weak defense method or one which uses reinforcement learning

can be a powerful cohort to help in boosting defensive measures against adversarial attacks.

Adversarial Token Plausibility - The adversarial honeytokens

Hadversarial = {H1, H2, ..., Hn}

generated by our framework are meant to be designed with high subjectivity in mind. Artic-

ulately, they must appear convincing to lure outside adversaries and match their exploitive

intentions. These items must be fascinating to the adversary, otherwise there is no inclination

to reasonably believe in their apparent authentic contents, or if they were leaked by mistake.

Believability is intuitive and would vary on a per adversarial-attacker-basis, making it diffi-

cult to simulate. Deception in this case is personalized, this means the same adversarial token

might trick one adversary but not the other. These adversarial tokens were not meant to

be generated generically. In consequence, the defender must have a thorough understanding

of the adversary’s nature and intentions in order to design an individualized digital token,

targeted at the attacker. This can be an issue especially if the learning model being attacked

is by dynamic adversary, who never attacks or uses the same attack technique twice. It

becomes more difficult to artificially simulate legitimate objects, as adversaries become more

44

CHAPTER 4. PROPOSED DEFENSE APPROACH

cautious and cunning in their methods.

Unwanted Congested Noise - As mentioned, this decentralized framework is designed

to classify any system intrusion as a potential adversarial attack, since it is concealed. This

leaves room for an increased rate of false positives. In our thesis, we have not accounted for

regular users sniffing-out our tokens and accessing the honeypot node, with no intentional

adversarial attack in mind. In order to infer that an attack is preemptive, we need to be

detect an adversarial signature, such as a set of behaviors, anomalies or sequence of events

that would indicate an adversarial attack has occurred and classify it as malicious or normal.

We have attempted to account for this limitation in our thesis, by utilizing tools that validate

actions as adversarial or pre-adversarial by monitoring whether the attacker violates policies

and action specific protocols, which are then compared against a white-list. For this very

purpose, we are utilizing tools, such Sysdig [?] for data capture, Falco data control, Samba

[?] data storage and Kibana [?] for data analysis. The latter four are designed to work in

synchronization with each other.

Wasted System Resources - Our decentralized defense framework focuses on deploying

H honeypots in a structured topology for the adversary to interact with. The system’s success

depends on the number of honeypot nodes deployed in the environment, as more honeypots

create more uncertainty for the attacker. A potential adversary is unaware that none of these

deployed honeypots contain the actual target model Ttarget, only decoyed replicas of the model

Tdecoy. The only disadvantage is that if attacker suspects that he is being deceived, and no

legitimate classification model exists to exploit. The latter would likely lead the attacker to

a) abort the attack session; b) aggressively hijack one of the honeypot nodes. Let it be noted,

that this framework is potentially wasteful in terms of infrastructure resources, especially in

the case of using high-interaction honeypots, which simulate a real computing environment,

heavy in computational spending.

4.3 Design Decisions

Using High-Interaction Honeypots - as mentioned in (Section 2.4.5), high-interaction

honeypots (HIHP) simulate an actual and full system for an adversary to interact with and

exploit. The latter includes a real OS, real applications, real input/output and real services.

But simulating a live system make it time consuming and complex to build, especially if

not virtualized using a VM. A synthetic environment might make it sound like an attractive

characteristic, but these type of honeypots utilize more resources than its other honeypots

45

CHAPTER 4. PROPOSED DEFENSE APPROACH

counterparts, exhausting the infrastructure. This imposes a high level of risk on the rest of

the host environment when deployed, should it become compromised. Despite all the latter,

HIHPs were used in our work for the following reasons. For one, the quality of data it can

collect is far more extensive and detailed than that of low and medium interaction honeypots,

which are limited in their data recording abilities. Also, high-interaction honeypots allows

the defender to discover unknown adversarial strategies and exposed system vulnerabilities,

such as zero-day-attacks. The latter is not possible in low and medium interaction types

since they only simulate and give limited access to the OS services. These type of systems

are not suited for our plan of defense.

Decentralized Systems vs Distributed Systems - Generally, a decentralized system

is one where the individual nodes are connected to its peers in the network, while a dis-

tributed system has the nodes distributing work to the sub-nodes. We designed our defense

framework to be decentralized for obvious security concerns. Firstly, we wanted the honeypot

system and the decoy within to exist as a copy on every nodes interconnected in the sys-

tem, independently. Secondly, should the adversary’s activities within the honeypot become

anomalous and illegitimate, the node has a message-passing protocol to send a distress call

to the nearest neighboring nodes on network cluster route. These peer nodes will intercept

the distress message, verify the certificate sender distress using the public key, then add the

IP adversarial information to the central database, and notify other neighboring adversarial

honeypot nodes. Memory-Sharing used in distributed system was not a benefit we sought in

our system, since for privacy concerns we did not want any internal honeypot information

to be shared between different honeypots, as it should be easy to exploit all the honeypots

with the same attack strategy.

Use of a Sysdig-Falco-Samba-Kibana Framework - These 4 tools were selected for

data capture, control, storage and analysis restrictively. Generally, Sysdig [?] is used for

which can save and capture Linux machine system state and activity within the machine;

Falco detects anomalous behavior and their arguments that occurs within the system; Samba

[?], an open source log recorder that records the the anomalous events. Kibana [?], a browser

based monitor and is used for analysis, which analyzes the data from each individual Samba

database component. The latter four tools work efficiently with each other, using one without

the other creates extra and unnecessary work during set-up.

Utilizing Honeybits - this auxiliary tool is used to generate deception credentials, used

to enhance the effectiveness of the adversarial honeypot defense system. It works by creat-

46

CHAPTER 4. PROPOSED DEFENSE APPROACH

ing breadcrumbs and digital items on production servers to attract the attackers towards a

desired honeypot or trap. It will create tokens pertaining to neural networks and machine

learning such as data scientist comments, back-up files and data files, etc. All of which are

attractive to an adversary. The reason for using them is because they provide a great degree

of freedom by allowing us to use the violated integrity of an artificial item to monitor mali-

cious access and signal a compromise. Any item, whether a string, file or email can be made

into a token. It is worth noting that the more you plant false or misleading information in

response to the post-compromise techniques, the greater the chance of catching the attackers

[6].

Black-Box Models vs Blind Models - it has been clearly shown that an adversary

can thwart defenses in both context settings, black-box and blind-models, as seen in [15]

[29] [10] in Chapter 2. The Blind model is more constrained and possesses a very limited

(small) set of exposed knowledge to the adversary. but In order for the adversary generate

adversarial examples, he must query the Oracle O and craft his training-set D to train his

substitute classifier F(S) and transfer the examples to a target classifier Ttarget, to distort

the classification of the output labels, as explained in (section 2.3.2). Having the capability

of querying the Oracle is only available in a black-box setting, making it imperative that we

establish the attack setting in that matter. For the adversary to be successful in his attack,

we must consider the adversary to be at least weak, with limited knowledge, overall. The

adversary only possess limited information because he only observes how the model labels

inputs and outputs are produced, with little knowledge of the classifier itself, which is what

we assume the attacker has in his disposal in a black-box setting.

Optimization Problem - part of what attracts the adversary to our net of honeypots is

the notion of querying the Oracle O of the target learning system Ttarget for input/output

pairs (x́, ý) to build the substitute model F and then generate the adversarial examples ~x∗.

Generating these examples incurs an expensive cost, seen in the hard optimization problem in

(section 2.2.5). Solving this hard convex optimization problem is computationally intensive.

Ideally, we decided to utilize the same optimization problem in order to engage the adversary

for duration of the attack session in order to collect valuable intelligence. However, the only

difference here is that the target learning system the adversary is attacking Ttarget is a decoy

and was specifically designed to attract the adversary to the honeypot, cloaked as a trap.

Scale-out instead of Scale-up - the framework nodes communicate with other peers in

the decentralized network, as well as the individual Samba databases. Scalability in this

47

CHAPTER 4. PROPOSED DEFENSE APPROACH

context, depends on the of decoys we wish to add to the decentralized network to reinforce

our defense against adversarial examples. Adding more nodes lowers the probability that an

adversary will interact with the actual target model, and lowering the number of nodes in-

creases that same probability. Each adversarial honeypot node will store a moderate amount

information, and since high-interaction honeypot only records/stores essential information

about the session, we will store the bulk of the attack data in the central database. Some

of the extra data/information stored inside the adversarial honeypot nodes is the Peer-To-

Peer authentication key, the software to run Falco and Sysdig, and private key, which is not

modest to say the least. The scaling-out model, done horizontally entails increasing elastic-

ity by adding more system resources to the existing decentralized framework and increasing

it in size by adding more honeypot nodes. Scaling-out becomes a problem if no attackers

decide to find and exploit the decoy DNN model Tdecoy, as it would be exhaustive in re-

sources. However, in the long run, this might be a better decision, since adversarial attacks

are projected to increase over time. Scaling-up, done vertically, would be more costly since

additional resources need to be added to the existing honeypot VM node, increasing avail-

ability. Although, this would be unnecessary, unless of course the adversarial threats and

the examples become more sophisticated and potent with every new attack. However, this

means increased maintenance, costs and research with every new discovered threat, making

management and monitoring very complex.

Using Public-Private Key Management - utilizes an asymmetric key algorithm to se-

cure intercommunication between two neighboring nodes, Sender and Receiver. Each node

has a key pair, a Public Encrypting Key to Sign and a Private Decryption Key to Decrypt

communication messages, known only to the node. To combat adversarial attackers from

exploiting and hijacking the nodes, we instantiate honeypot intercommunication messages

and distress calls to be sent and delivered at any instance of danger. This, as a security

measure, to indicate that a node may have become compromised, gone rogue, and prevent

any launch of a full DoS attack on the system. Also, with each message sent, an authenti-

cation message is relayed back from one node to another to insure the sender/receiver nodes

meets the required security criteria and is not captured. The neighboring adversarial nodes

connected to the primary node vote on whether or not to keep the adversarial node in the

network, if it becomes unresponsive to the pulse messages send or does not verify it. Each

control message will be signed with an authentication token (Private Key), where a Public

Key that both nodes will agree on will then be exchanged between them. Generating these

Public/Private Keys could be a factor that increases computational cost should the system

scale-out, this something that must be discussed later in future work.

48

CHAPTER 4. PROPOSED DEFENSE APPROACH

4.4 The Threat model

4.4.1 Attack Specificity

Generally, for an adversary to succeed in his attack, and whether the attacker has his sight

set on violating the availability or integrity of the model, adversarial transferability needs to

be successful. For purposes of our thesis, we have decided to design our adversarial attack

to be a targeted exploratory one in nature [16]. A targeted attack is when the adversary has

a specific set of data samples in mind, and is discriminatory in his attack. This means the

adversary wants to force the DNN to output a specific target label ytarget, f(x) −→ ytarget,

instead of the correct label ytrue, f(x) 9 ytrue. Please see Figure 4.1 below for an illustration

of a adversarial targeted attack, violating model integrity. Hence, the adversarial examples

Figure 4.1: Adversarial Targeted Attack Violating; Input ~x (left) represented by different
features x1,2,3, perturbation ~x + δ~x controlled by ε (middle), generated adversarial example
~x∗(right). The adversary then forces the classifier to output the example with a different
label, flipping it

generated need to have such an effect on the classifier, that it explicitly lowers the confidence

on the target label. Misclassification attacks, to us, were less attractive since they do not

make for interesting adversaries, not to mention the fact that these type of attacks appear

random in nature, focusing on an arbitrary set of data samples. With no fringe inconsistencies

to dispute, it becomes difficult to discern failures brought about by non-malicious factors

effecting the classifier. Building on the latter, misclassification attacks make it all the more

difficult to design defenses and robust frameworks to thwart adversaries when the attack

itself seems arbitrary in nature.

49

CHAPTER 4. PROPOSED DEFENSE APPROACH

4.4.2 Exploited Vulnerabilities

The cogent properties of adversarial examples ~x∗ make them a prime candidate for adversar-

ial attacks on deep learning systems. It should be anticipated that an ambitious and equally

resourceful adversary will conspire to use these perturbations for malicious purposes. Gen-

erally, deep neural nets (DNN) work by extracting and learning the key multi-dimensional

discriminate features Xm,n = {xn,1, xn,2, xn,3, ..., xn,m} embedded within the input sample x

pixels, to correctly classify it with the correct output label ytrue. However, with adversarial

examples entities, the acuity of a DNNs classification ability becomes slightly manipulable,

and the adversary is aware of this weaknesses.

In our thesis, the designed adversary’s attack depends on the successful exploitation of a

fundamental vulnerability found in most, if not universally all DNN learning systems. This

vulnerability is acquired during faulty model training. This weakness is embodied by a lack

of non-linearity in poorly trained DNN models, that these visually indistinguishable adver-

sarial examples, born in a high-dimensional space, epitomize. Other factors may also be

responsible, such as poor model regularization. This inability to cope with non-linearity

makes the DNN classifier insensitive to certain blind-spots in the high-dimensional clas-

sification region. Knowing the latter, an adversary can generate impressions of the input

samples with slight perturbations. These examples can then be transferred between adjacent

models, due to cross-model generalization property which allow the transfer of adversarial

examples between the original and target model the adversary desires to exploit. The above

vulnerability is manifested after the examples are synthesized and injected during the testing

phase.

4.4.3 Attacker Capabilities

Each honeypot node in the decentralized defense framework contains a decoy target model

Tdecoy, presented to the adversary as the legitimate target model. Here, an Oracle O repre-

sents the means for the adversary to observe the current state of the DNN classifier learning

by observing how a target model Ttarget handles the testing sample set (x
′
, y

′
). In our attack

environment, querying the Oracle O with queries q = {q1, q2, q3, ..., qn} is the exclusive and

only capability an adversary possesses for learning about the target model and collecting

his synthetic dataset Sp to build and gradually train his DNN substitute model F. See the

Figure 4.2 below for an illustration of the adversary’s capabilities, represented by the only

capability, being able to query to Oracle O.

The adversary can create a small synthetic set of adversarial training samples from the

50

CHAPTER 4. PROPOSED DEFENSE APPROACH

Figure 4.2: Modeling the adversary’s attack capability

initial set S0 with output label y
′

for any input x
′

by sending qn > 1 queries to the Oracle

O. The output label y
′

recurred is the result of assigning the highest probability assigned

a label y
′

which maps back to a given x
′

is the only capability that the attacker has for

learning about presumed target model Ttarget through its Oracle O. The attacker has virtually

no information about the DNN internal details. The adversary is restrained by the same

restrictions a regular user querying the Oracle O has. The latter is something an adversary

should adhere to make his querying attempts seem harmless, while engaging the decoy model

within the adversarial honeypot. Finally, we anticipate that the adversary will not restrict

himself to querying one model and will likely connect to multiple nodes and DNN model

classifiers from the same connection for purposes of parallelizing synthetic data collection.

This should trigger an alarm within our framework, indicating multiple access and that

something abnormal is occurring.

4.4.4 Attack Setting

As mentioned in the assumption part of this chapter (section 4.2), our envisioned profile

for the adversary targeting our black-box learning system does not possess any internal

knowledge regarding the core functional components of the target model Ttarget DNN. This

restriction entails no access to model’s DNN architecture, model hyper-parameters, learning

rate, etc. We have already established that an adversary can prepare for an attack by simply

51

CHAPTER 4. PROPOSED DEFENSE APPROACH

monitoring target model Ttarget through its Oracle O and use the labels to replicate and

train an approximative architecture F.

The ad-hoc approach at the adversary’s disposal is that he can learn the corresponding

labels by observing how the target model Ttarget classifies them during the testing phase. The

adversary can then build his own substitute training model F and use this substitute model

F in conjunction with synthetic labels Sp to generate adversarial examples propped against

the substitute classifier, which the attacker has access to. Even if the substitute model S

and target model Ttarget are different in architecture, the adversarial examples x~∗ generated

for one can still tarnish the other if transferred using adversarial transferability. Since the

adversarial examples between both models are only separated by added tiny noise ε, the

examples look similar in appearance. The latter is true even if both models, original Ttarget

and substitute model F, differ in architecture and training data. As long as both models

have the same purpose and model type. Although the Adversarial transferability phenomena

is discouraging, but alone it is advantageous for the adversarial attackers to launch targeted

attacks, with little or no constraint on their attack blueprint. Adversarial transferability

eventually becomes a serious concern because attacks will grow in sophistication and potency

over time. It is challenging to design a model that can generalize against more advanced

attacks, if not all. Also, it is difficult to dismantle and reverse-engineer how these attacks

propagate and cause harm, since no tools exist to expedite the process to learn from the

attack in time to re-train the network.

4.5 Adversarial Honeypot Network (Adversarial Hon-

eynet)

4.5.1 Overview and General Architecture

The proposed Adversarial Honeynet framework is considered as an added layer of protection

to blanket a deployed deep learning system, in order to combat imperceptible adversarial

examples, within a black-box attack setting. There are several advantages and benefits that

this framework can bring in the protection of existing learning systems. A single adversarial

honeypot node in this decentralized framework may offer the following benefits: 1) adver-

sarial re-learning ; conceptually, it is a pragmatic method of collecting intelligence on the

adversary, such as attack patterns, propagation, frequency and evolution. The latter results

can be used to learn and reverse-engineer adversarial attacks; 2) an anomalous classifier used

to identify whether the attackers actions are malicious or benign, this will help to determine

whether or not to record the attacker’s session information based on behavior patters against

52

CHAPTER 4. PROPOSED DEFENSE APPROACH

a white-list ; 3) a decoy target model, used as a placeholder for the adversary to engage and

interact in case his intention are indeed malicious in nature. The attacker’s interaction with

model is represented by the Oracle Ô, that an adversary observes and queries, re-channeling

his efforts; 4) an Adversarial Database, used to collect and securely store attack session

data on the adversarys actions and maneuvers, used later to research and understand the

adversary in adversarial re-learning.

All honeypot nodes are deployed with identical decoy models Tdecoy that resemble the

original target DNN model Ttarget. Also all services and applications on the high-interaction

honeypot are real and not simulated, prompting the attacker to assume the model is indeed

real, published or leaked by mistake. Neighboring adversarial honeypots are called Hon-

eyPeers, these nodes are always active and have a weak non-privileged TCP/IP port open

that is known to attract adversaries, spoored with adversarial honeytokens. The docker

container node begins recording information when the anomalous classifier detects that the

attacker is attempting to do something malicious and discretely notifies the neighboring

HoneyPeers that an attacker is active within the network. HoneyCollectors are used to ag-

gregate and collect information from each individual adversarial honeypot node and store it

in the central Adversarial Database. All activities on the node are collected and stored with a

public-key hashed time-stamp. In our framework, the central database is a Samba database

is used to collect structured,unstructured, and semi-structured session data to record the

adversary-honeypot-decoy interaction. An analysis module, used to aggregate adversarial in-

formation and use that to learn about the attacker, this learned information can potentially

be used to perform inference for future attacks. See below for Figure 4.3 - an illustration of

the Adversarial Honeynet architecture:

4.5.2 Functional System Components

• HoneyPeers - are a series of interconnected high-interaction honeypots joined in a

decentralized network topology. Each HoneyPeer is an autonomous high-interaction

honeypot contained node, with a copy of the decoy learning model Tdecoy, embedded

within a monitored Linux container, powered by Docker. Encrypted communication

messages are passed between the nodes in order to notify adjacent nodes that an

attack is occurring or has occurred. All communication is governed by our message-

passing-protocol defined in section (4.5.4). Each node-to-node interaction is initiated

by exchanging a HoneySession Key, which is used to authenticate a node’s identity with

each of its peers and is reused in verify future interactions. If a node should become

unresponsive, it is assumed that the node has been compromised and is infected. In the

53

CHAPTER 4. PROPOSED DEFENSE APPROACH

Figure 4.3: Adversarial Honeynet Architecture

case that a node should become infected, it can be assumed has been compromised by

the adversary, in which case all neighboring nodes will severe all future communication

with it, flag any local session HoneySession keys, and the infected honeypot will be

cautionary labeled. Furthermore, all node-to-node interactions are securely stored and

recorded in the central adversarial database.

• Decoy Classifier - represents our solution for preventing the adversary from inter-

acting with the target classifier learning model Ttarget, and block transferability from

occurring by re-channeling it to the honeypot. We distribute fake decoy learning sys-

tems throughout the enterprise or specifically in the anterior of a production system,

acting as a type of sentinel. In our thesis, we hypothesize that legitimate users query-

ing the learning system have no cause to interact with decoys or take notice of our

adversarial honeypot. We decided to experiment with deception-as-a-defense using

honeypot and decoys because we wanted to give the adversary a false sense of assur-

ance, then identify and study them, and greatly reduce the rate of false-negatives FN

violating classifier integrity.

We suspect the adversary will attack our decoy learning classier system Tdecoy once he

54

CHAPTER 4. PROPOSED DEFENSE APPROACH

infiltrates the tailored honeypot container. It’s purpose is to simply simulate and mimic

value, in order to distract the adversary and prevent him from interacting with the

legitimate target model Ttarget. If we consider the adversary to be weak with reference

to (section 4.2), we see that the designed adversary only has partial knowledge of

the model’s purpose. This means the adversary does not have possess any internal

details of the architecture, hidden layers, or hyper-parameters, etc. Knowing that the

adversary is in a black-box setting and can only access input/output gives us great

leverage over him. Before the adversary launches his attack, the adversarial actor in

this case is like any other regular user in the system, with no systematic knowledge of

the classifier.

Here, the adversary’s capability to interact with the decoy model Tdecoy is represented

by the Oracle Ô. Ô represents the means for an adversary to interact with and learn

from decoy model. Since the adversary wishes to produce adversarial examples ~x∗ for

a specific set of input samples x̄, collected by querying the Ô, and then transfer them.

However, adversarial transferability can be re-channeled if we can switch the target

model Ttarget and the Oracle O with a decoy model Tdecoy and thereupon Oracle Ô,

and convince the adversary that no tampering has occurred.

• HoneyCollector - is the component responsible for collecting all the adversarial ses-

sion information on the adversary within each of the honeypot nodes in the network,

it is the Samba component within our system.

• Anomaly Classifier - used to predict whether the adversary’s actions inside the

honeypot are considered abnormal or not. It depends on indicators, such as 1) Number

of DNN labeling requests ; 2) execution of unusual scripts ; 3) irregular outbound traffic

from source; 4) sporadic DNN querying ; 5) persistent activity on the DNN ; 6) use of

foreign synthetic data for labeling.

• Adversarial Tokens - to summarize from section 2.4.2, it can be thought of as a

digital pieces of information. It can manifested from a document, database entry, E-

mail, or a credentials. In essence, it could be anything considered valuable enough to

lure and bait the adversary. More on this component will be discussed in Chapter 5.

4.5.3 HoneyPeer Node Inter-communication

This section describes the message passing protocol between the nodes in the adversarial

Honeynet framework. A message can only be sent and received between two HoneyPeer

nodes in the network that have exchanged HoneySession key between them. Any message

55

CHAPTER 4. PROPOSED DEFENSE APPROACH

that has been received or sent spontaneously should not be accepted. A reliable message

passing technology must be set in place to avoid congestion and bottleneck at one of many

parts of the network. Also, all messages sent, received, and dropped are time-stamped and

recorded within the adversarial central database for bookkeeping purposes.

• HoneyPeerALRM - a distress message indicating that host node (Sender) has been

compromised. The message is broadcast to the nearest adversarial honeypot node in

the network. The neighboring nodes (Receivers) are responsible for intercepting and

passing the message to all neighboring nodes in the network. For obvious security con-

cerns and as fault-resistance, another HoneyPeerALRM message is sent on behalf of

the anomalous classifier, in the case an adversary manages to seize control of the node

and hijack it after detection. Each HoneyPeerALRM message must receive an Hon-

eyPeerACK to indicate that the distress HoneyPeerALRM message has been received

and acknowledged. Failure to reply might indicate one or several neighboring nodes

have also been compromised. To add, nodes should not receive unsolicited HoneyPeer-

ALRM reply messages from other adversarial nodes, as this may indicate malicious

misrepresentation.

• HoneyPeerAck - this is a message sent corresponding to each HoneyPeerALRM

message sent on behalf of the node. A HoneyPeerACK indicates that the distress

HoneyPeerALRM message has been received and confirmed by the endpoint node.

Failure to receive and acknowledge one ore more Acks might indicate that one or all

the surrounding neighboring nodes have been compromised. Also, nodes should not

receive unsolicited HoneyPeerALRM reply messages from other adversarial nodes.

• HoneyPeerSafePulse - Periodically, a honeypot node will send a pulse indicating

that it is still active and part of the decentralized network, and not compromised. If the

node neighboring it does not reply in 180 seconds with an HoneyPotSafeAck response,

it is assumed that the node has been compromised.

• HoneyPeerSafeAck - A confirmation message sent to indicate that the node is active.

After 3 consecutive (60 second interval) no replies, it can be assumed that either the

receiving node is down or has been compromised, in which case, all neighboring nodes

will severe all communication with it, purge any HoneySession keys, and the infected

honeypot will be labeled as an InfectedPeer.

• HoneySession Key - An adversarial session key is exchanged between two Hon-

eyPeer nodes. This HoneySession Key is exchanged at the beginning of a node-to-node

56

CHAPTER 4. PROPOSED DEFENSE APPROACH

interaction and will be used an authentication method in future node-to-node commu-

nications.

4.6 Individual Honeypot Node

4.6.1 Node Overview and Architecture

We can say the focal point of our adversarial Honeynet framework are the many deception

nodes that comprise it. Each individual node castles a high-interaction honeypot (HIHP),

complete with operating system services and resources that are made available to the adver-

sary. In contrast to medium interaction and low interaction honeypots, nothing is simulated

or fake. Also, here, the factor of realism lowers the risk of fingerprinting. Inside each of the

deployed honeypots resides the decoy DNN model Tdecoy, which the adversary will engage and

exploit with his generated adversarial examples. However, with any deployed HIHP tech-

nology there is an inherent risk factor involved, one which cannot be ignored. Since all the

service, applications and I/O are real and not simulated, there is a potential risk for leaving

a vulnerable entry into the network. This means capturing and converting the vulnerable

machine can be used to launch attacks from within the decentralized network. However,

the great benefit here is that since all services and applications are real, the adversary is

not inclined to suspect that this environment is indeed a trap. In order to maintain this

cloak of deception the designer of this defense framework must find the appropriate balance

between effectiveness of containment and the adversarial range of freedom within the hon-

eypot. See below for Figure 4.4 which gives an illustration of the individual high-interaction

node architecture:

4.6.2 Critical Components

• Docker Image - is the isolated vessel the encapsulates our decoy DNN model Tdecoy

and the software dependencies the DNN classifier depends on. A typical docker image

is comprised of these components: 1) writable container which contains the binary files

and external libraries; 2) a copy of the software or application; 3) a base OS which

the application utilizes; 4) a Kernel, the Linux Kernel which manages the OS and all

other programs, docker typically uses the kernel of the host OS it is built on.

• Sysdig-Falco Component - a rule-based behavior activity monitor designed to de-

tect anomalous activity within contained applications [?]. The rules used filtering

expressions. Falco, an add-on to Sysdig, used detect anomalous behavior and their

57

CHAPTER 4. PROPOSED DEFENSE APPROACH

Figure 4.4: Individual Honeypot Component

arguments that occurs within the system. Sysdig-Falco is supported by Docker item

Kibana Component- a browser based monitoring software which provides data vi-

sualization abilities for the content collected by the Samba database [?].

• Samba Component - an open source log recorder that records the anomalous and

sysdig events [?]

4.7 Attracting The Adversary

4.7.1 Phase 1: Adversarial HoneyTokens

The first phase of our defense plan is soliciting the adversary. To re-channel the adversary’s

attention from the target model Ttarget, we need to provide an alternative target for him to

focus his efforts on. The first-line in doing so is by planting fake digital information in the

part of the production system where the adversary is most active.

Since we have dedicated an entire chapter towards implementing the adversarial honey-

tokens, we will not delve into this level of defense. Please see Chapter 5 for all details on

the adversarial honeytokens.

58

CHAPTER 4. PROPOSED DEFENSE APPROACH

4.7.2 Phase 2: Accessible Honeypot

The subsequent phase of our defense plan is more logistical in nature. To attract the ad-

versary to our network of high-interaction honeypots, we need to invite the adversary to

take advantage and exploit the honeypot, by illicitly accessing it. The latter is challenging

to resolve, since beckoning the adversary is subjective to the type of attacker we want to

attract. The following are some of the considerations we took into account:

Non-privileged Network Ports - We assume that the adversary will be using network

scanning software such as scan and nmap. In order to make our honeypot nodes easier to

access, we intentionally leave vulnerable and well-known ports open for the adversary to

access.

Use of Correct Bait - attributed to (section 4.7.1), the quality and location of adversarial

tokens generated to lure the adversary is vital to the success of re-channeling the adversary’s

attack on the model. Regarding quality, though artificial and falsified in nature these digital

pieces of information take any form or structure the creator chooses for it. Risk in lack of

attacker interest is the reason for its use; to enhance the effectiveness of finding honeypots

by the adversaries. This is why the token must be of high quality, to increase effectiveness,

which is subjective in nature. Location is also important, placing the adversarial token in

an ambiguous or hidden location might lowers the chances of its discovery by the adversary,

which is why it is vital to place the tokens in a location or part of the production server

frequented by the adversary.

Minimizing Risk of Fingerprinting - It is widely known that the fabricated information

and resources inside a honeypot must resemble the real resource, i.e, Ttarget, the defender is

tasks protecting. This is in order to avoid getting fingerprinted. According to section (2.4.4),

fingerprinting signifies the ability of the attacker to identify the presence of a honeypot.

If the honeypot behaves differently than a real system, the adversary might identify and

consequently detect it. And if its presence is detected, the attacker may simply ignore the

honeypot and aggressively attack the entire network instead. In order to mitigate this risk,

the environment where the artificial resource resides must seem realistic, i.e, same look and

feel as a real production server , same server type and version as the production server,

etc. However, it is extremely challenging to mimic the actual production server where the

target model resides. However, in our case we are using high-interaction honeypots, which

are preferred since it provides a real-live system for the attacker to be active in, nothing

59

CHAPTER 4. PROPOSED DEFENSE APPROACH

is artificial or simulated. However, there have been rare instances where the adversary was

able to identify that environment was not real by identifying presence of VMware.

4.7.3 Phase 3: Decoy Target Model

The final and most important level of our deception-as-a-defense system is the decoy model

Tdecoy. Although unconventional, this model is supposed to delude the adversary into think-

ing he has accessed target model Ttarget. The goal of having the adversary interact with

the Tdecoy model is to engage the adversary in a hard optimization problem. The hard

optimization problem is defined below.

Hard Optimization Problems

Ultimately, when the adversary accesses the Tdecoy model embedded within the high-interaction

honeypot, he possesses very little knowledge of its internal functionality. To produce the ad-

versarial examples ~x∗, he will need to observe the Oracle and gradually built a training set

from (x
′
, y

′
) to train the substitute model F. The latter is dependent on successfully ap-

proximating an architecture for model F . What the adversary does not ration is that the

training domain D he is collecting his samples (x
′
, y

′
) from to build his substitute model is

collected from the a decoy target model Tdecoy embedded by the defender, and not the legit-

imate model Ttarget accessed and queried by normal users. Unknowing to our set trap, the

adversary collects the training set, gradually builds his substitute model form the synthetic

dataset. With the least possible noise, represented by ~x + δ~x and making it indistinguishable

to humans, the adversary generates the adversarial examples ~x∗. However, crafting these

examples has a high computational cost overhead on the adversary since its expensive to

generate the adversarial example. The latter is precisely what we use against the adver-

sary. The targeted misclassification error the adversary is pursuing can only be achieved by

crafting these perturbations with the least possible noise δ, to remain unnoticed. Finding

the symmetry between the right amount of noise and sample indistinguishably signals an

optimization problem, one that is non-convex and non-linear in nature. As mentioned in

(section 2.2.5), a non-convex problem is one is where multiple solutions (local minimums)

exist for the cost (loss) function minx J0(θ) the adversary wishes to maximize. Theoretically,

there is no one optimal guaranteed solution S that satisfies all, especially in high-dimensional

adversarial data, see Figure 4.5 above for the adversarial solution surface. The adversary

requires an exponential amount of time and variables to exhaustively find a feasible maxima

solution.

The adversary original goal was to produce adversarial examples ~x∗ for a specific input

60

CHAPTER 4. PROPOSED DEFENSE APPROACH

Figure 4.5: Non-convex adversarial solution surface. where multiple solution exist for the
right allocation of perturbation

sample ~x to be misclassified by the Oracle O : (Ttarget(~x∗ = y) 6= (Ttarget(~x = y)). This

misclassification proves that the classifier has been compromised and is no longer usable.

In our approach, we introduce difficulty, by deceiving the adversary and allowing him to

attempt in solving this optimization problem (as he originally intended). However, these

infeasible task for a decoy model Tdecoy has no real value. Generating these adversarial

examples is exhaustive in computational cost time, as well as approximating and training

the substitute decoy model F (S0) to craft the examples. And if the attacker does indeed

succeed in generating these examples, it would an highly infeasible task done in vanity.

4.8 Monitoring and Detecting the Adversary

One of the greatest challenges in our thesis was deciding how to adequately detect, classify

and label adversarial behavior as malicious. Not to mention building the actual classification

model that would be responsible for doing so would have been a great undertaking on

its own. However, there were other practical detection methods at our disposal, such as

using signature-based detection to compare an object’s behavior against a blacklist, and

anomaly-based detection to compare an object against a white-list. We chose to lean towards

61

CHAPTER 4. PROPOSED DEFENSE APPROACH

the former method (white-list) over blacklisting since we did not have reliable adversarial

data that could have been used to generate a signature to fingerprint a potential adversary.

White-list detection works best when attempting to detect entity behavior that falls out of

anticipated and well-defined user actions, such as over-querying the DNN model, or causing a

sudden decline in the classification model performance. White-list based anomaly detection

fits perfectly into our defense framework since we can characterize any pattern of activities

deviating from the norm as an intrusion. The latter is in our favor since we are trying to

detect actions to exploit the classifier which are novel in nature.

Adversarial Behavior

In order detect adversarial anomaly behavior, we have surmised a list of adversarial actions

and indicators that may signal an-out-of the-ordinary on the learning model. We will later

use this indicators to build our white-list security rules. The following are some of those

indicators:

• Persistent DNN Querying - while normal (non-adversaries) users will be querying

the DNN Tdecoy model with 1 or 2 queries per session, the adversary will be sending

hundreds, if not thousands per session. All this in effort to build his synthetic training

dataset Sp, the adversary will need to continuously collect training data, augment it

and gradually train his substitute adversarial model F(S0). Repetitive queries Q̃ from

the same source user within a set unit of time might indicate the adversary is query-

thrashing the DNN model for labels (x
′
, y

′
). The latter could be a possible indication

of adversarial attack on the prediction model.

• Spontaneous DNN Activity - In order for the adversary to craft adversarial exam-

ples ~x∗, he will need to collect an initial set of labels S0 from labeling (x
′
, y

′
). Then,

he needs to build a substitute training model F that mimics the learning mechanism

inherent in the decoy model Tdecoy. naturally, collecting enough sample labels to ac-

curately train the model F requires a large number of queries Q̃ solicited from the

Oracle Õ. Consequently, in order to avoid raising suspicions, the adversary will try to

build this initial substitute model training set S0, as quickly and discretely as possible.

The latter could be a possible indication of adversarial attack on the prediction model.

This is true since a few queries is within normal user behavior, who have no malicious

intent in mind. But spontaneously querying the oracle falls out of normal activity. See

Figure 4.6 above for an illustration.

• High number of DNN Labeling Requests - an abnormally high number of query

requests to the Oracle Õ is not normal either. Let us not forget, that training of

62

CHAPTER 4. PROPOSED DEFENSE APPROACH

Figure 4.6: abnormal model activity indicating adversarial malicious behavior

the substitute model F(S0) is repeated several times in order to increase the DNN

model accuracy and similarity to Tdecoy. With each new substitute training epoch e,

the adversary returns to Õ and queries to augment (enlarge) the substitute model

training set S0 produced from labeling. This will produce a large training set with

more synthetic data for training. With the correct model architecture F, the enlarged

dataset is used to prototype the models decision boundaries separating the classification

regions.

Figure 4.7: Targeted Attack Causes Decrease in Accuracy

• Sudden Drop in Classification Accuracy - Building on the above and as men-

tioned in (Section 4.4.1), our designed adversary seeks to cause a misclassification

63

CHAPTER 4. PROPOSED DEFENSE APPROACH

attack on the target decoy model Tdecoy, by inserting malicious input(adversarial ex-

ample, ~x∗) in the testing phase. Because of this, an input unrecognizable to the model

discriminate function can be classified with high confidence (false positive), and an

input recognizable to the model can be classified with low confidence (false negative),

violating the integrity of the model. Other factors may influence a drop in accuracy,

such as a poor learning or added bias in the data. This does not normally occur in a

production environment, which indicates that our classification model is under attack.

See Figure 4.7 for more details.

- other known indicator are more network related, such as execution of unusual scripts

alongside the DNN, Irregular outbound traffic or source, any sensitive or privileged path

accessed during the interaction, and any spawning of suspicious child process.

Detecting Malicious Behavior using Sysdig-Falco

Architecture: see Figure 4.8 below for an illustration of a typical architecture.

Figure 4.8: Sysdig-Falco Architecture

Components:

• syslog listener (alterer) - A syslog server needs to receive messages sent over the

network. A listener process gathers syslog data sent using UDP protocol. UDP mes-

64

CHAPTER 4. PROPOSED DEFENSE APPROACH

sages arent acknowledged or guaranteed to arrive, so some adversarial data maybe

lost.

• syslog Samba (database) - each node within our large decentralized network can

generate a huge amount of adversarial Syslog data. We decided to utilize a samba

database to store and quickly retrieve adversarial syslog data.

• syslog filter expression and rule building - because of the potential for large

amounts of adversarial data collected, it can be cumbersome to find specific log entries

when needed. The solution is to use a syslog server that both automates part of the

work, and makes it easy to filter and view important log messages. Syslog servers should

be able to generate alerts, notifications, and alarms in response to select messages so

that administrators will promptly know that an abnormality has occurred and can take

swift action!

Configuration and Setting

• All abnormal events will be output in plain-text and securely stored within logs in the

Samba (syslog) database.

• Adversarial falco monitoring rules are loaded startup initialization of the system.

• Security notifications and updates will not be output to the user in the Docker con-

tainer. Instead, stored in a log file, whose contents are securely stored inside the Samba.

database.

Security Rules -

Generally, there are 3 types of security rules: 1) Macro; 2) List; 3)Rules. For purposes of

defining the white-list security rules in our thesis, we decided to define them using the Rules

standard.

- Format The Rules security rules has the following format:

• rule name - the identifier of the rule.

• desc - a description of the rule, e.g. rule for alerting on network traffic”.

• condition - a filter expression written in the simple Sysdig filtering language. It can

contain macro components.

65

CHAPTER 4. PROPOSED DEFENSE APPROACH

• output - the output message emitted when the rule is triggered. Written in Sysdigs

output formatting. Note: you can use fields from the event which will get interpolated.

• priority - severity of rule (WARNING, INFO, etc.)

Example:

classifier-query-limit(rule name).

an attempt to send more then 250 queries per the session limit(desc).

query-limit 5 250 (condition).

The user has exceeded the set query limit per session(output)

ERROR(priority)

Limitations -

There are some limitations to utilizing the syslog-falco architecture in our framework:

• Falco rule format inconsistency - syslog falco provides a customized way of formatting

an output message emitted when the rule is triggered by the adversary’s action. The

latter proves problematic, since different sysdig-falco architectures will be set up by

different defenders, hence set with various output message formats. Some messages will

be clear, while some aren’t. While this data will be used to learn from the adversary’s

interaction with the target model, it will have to be standardized in all honeypot nodes.

• UDP transport protocol - syslog-falco architecture uses UDP transport protocol to

transport messages and then store them. However, it is widely known that UDP

protocol is unreliable due to packet loss and overall network congestion. This may lead

to the loss of some messages between the nodes. Switching to a more reliable message

passing method, such as Kafka or MQS might be a better option.

• No centralized way to collect data - aggregating the reconnaissance from each docker

container in each honeypot is the sole responsibility of each honeypot node to do so.

Since our framework is a decentralized one, there is no parent node or centralized

collector to collect data, this is in order to avoid a single point of failure. All data

aggregations are integrated separately.

• White-list rules are stored inside a file - syslog-falco only provides the core components

of what is needed to monitor and detect adversarial anomaly behavior. This means

there is no access-control protocol or verification process in place to limit access to

the white-list rule file. if an adversary were to detect a trap and aggressively seek to

66

CHAPTER 4. PROPOSED DEFENSE APPROACH

hijack the honeypot, he could simply access the white-list file and modify the rules to

disable the pitfalls designed to monitor him. This suggests the defender should devise

a method to lock unauthorized access to the white-list rule file.

• Log files are fairly large - the syslog files generated by collecting anomaly related

information on the adversary are fairly large and too complex to comprehend, most of

all manually. It might prove difficult, with an automation process, to catalog all the

information collected for purposes of adversarial re-learning.

4.9 Launching the Attack

In this section, we describe the typical adversarial synopsis our attacker will orchestrate to

inject adversarial examples ~x∗ into the the target model Ttarget during the testing phase.

This culminates in a targeted misclassification Ttarget(~x) 6= ytrue. As mentioned, this attack

occurs within a black-box system context, is characterized by the following steps:

4.9.1 Accessing the Honeypot

We assume at this instance, that the adversary has successfully maneuvered himself and

accessed one of the numerous high-interaction adversarial honeypot node systems H1 in

the set of nodes Hadversarial = H1, H2, H3, ..., Hn, actively deployed within our decentralized

network. We assume that:

• the adversary has scanned (via scan, nmap, etc), identified and accessed one of the

honeypot node system, through intentional illegal access of one the many vulnerable

non-privileged network ports that we have kept accessible (refer to section 4.7.2 for

more details).

• we have successfully gained the adversary’s attention and trust, sufficiently enough to

re-channel his interest away from the production systems. With the correct qualitative

adversarial deception honeytokens Token planted in a strategic location, the adversary

has shifted focus fo attack. We assume that the adversary’s attention is now focused

on and interacting with the Tdecoy in the H1, which he has conveniently found deployed

in the honeypot (refer to section 4.7.2 for more details).

• There is no risk of the adversary fingerprinting our decoy system honeypot H1 true

identity as a decoy trap. The adversary presumes that the high-interaction H1 system

resources are real, and the decoy target model Tdecoy has been legitimately leaked, by

virtue of negligence (refer to section 4.7.2 for more details).

67

CHAPTER 4. PROPOSED DEFENSE APPROACH

4.9.2 Initiating the Attack

As mentioned in the attack setting (see section 4.4.4), our adversary is now interacting with

a black-box learning system. As per our assumptions, the adversary does not possess any

internal vital knowledge regarding the core functional components of the decoy target DNN

model Tdecoy. Our adversary is weak, limited by what he knows, with no assumed knowledge

of hidden layer architecture, model hyper parameters, learning rate, etc (see section 4.2), see

Figure 4.9 below. He has limited knowledge of the features dataset f = f1, f2, f3, ..., fn, has

only the ability to effectively monitor the surrogate decoy target model Tdecoy through means

of querying its implicit Oracle Ô (outlined in the first step of the attacker’s capabilities -

section 4.4.3). In the next step, we see how the adversary approximates and selects a model

architecture F to train the substitute training model.

Figure 4.9: Initiating the Attack and Building the Initial Training set

4.9.3 Defining the Architecture F

This first step is considered crucial in constructing the substitute training model to craft ad-

versarial examples. This is because the adversary must experiment with different substitute

68

CHAPTER 4. PROPOSED DEFENSE APPROACH

model architectures F1..n until he finds the most appropriate one. This is due to the notion

that without knowledge of the target decoy model Tdecoy architecture, the attacker knows

very little about how the system learns, processes input ~x (text, images, or any media), and

produces output y (label or probability vector). One way is to explore and experiment with

different ones, until we find one that forces a misclassification on the target label ytarget with

successful results, which is what the authors did in the designed attack in [27].

Algorithm 2 - Substitute DNN Training: for oracle Ô, a maximum number maxp of
substitute training epochs, a substitute architecture F, and an initial training set S0.

1: Input: Ô,maxρ−1, Sρ, λ
2: Define architecture F
3: for ρ ∈ 0...maxρ−1 do
4: // Label the substitute training set
5: D ← {(~x, Ô(~x)) : ~x ∈ Sρ}
6: // Train F on D to evaluate parameter θF
7: θF ← train(F,D)
8: // Perform Jacobian-based dataset augmentation

9: Sρ+1 ← {~x+ λ· sign(JF [ˆO(~)x]) : ~x ∈ Sρ} ∪ Sρ
10: end for
11: return θF

4.9.4 Labeling the Initial Training Set S0

At this stage, the adversary begins amassing a training set S0, manufactured by using the

small test sample (x
′
, y

′
) set pairs at his disposal. The collected test samples are used to query

Oracle Ô of the hidden decoy, observe and record its labeling behavior {(~x, Ô(~x)) : ~x ∈ Sp}.
This assembled training set S0 shares many of the statistical properties as the target model

data domain D, such as data distribution and variance. The initial training set S0 will

continue to expand through the maximum number epoch cycles maxp, as the training model

slowly converges.

4.9.5 Training the Substitute Model F (S0)

The adversary gradually trains and updates the weights θ of substitute training model F (S0).

Using a continually updated set D set(collected from the step above) the model F is trained,

θF ←− train(F,D), see Figure 4.10 above. In order to expand the training set, a data

augmentation technique is used on the updated training set Sp in order to produce a much

larger training set Sp+1, with more training data points. Labeling and Substitute training are

69

CHAPTER 4. PROPOSED DEFENSE APPROACH

Figure 4.10: Training the Substitute Model with Initial Set

repeated for the augmented dataset. This continues several times in order to increase the ad-

versarial substitute model F accuracy, until it is satisfactory and mimics the decision bound-

aries of the decoy target Oracle Ô. The augmentation method is Jacobian-based dataset

augmentation where the new training division Sp+1 by {~x+ λ· sign(JF [ˆO(~)x]) : ~x ∈ Sp}∪Sp.
Here, λ is the parameter of augmentation, which represents the step taken in the direction

to augment from Sp to Sp+1, see Figure 4.11 for an illustration.

4.9.6 Generating the Example ~x∗

At this point, the adversary has trained his substitute DNN training model, now it is ready

to craft adversarial examples ~x∗. For purposes of generating the adversarial examples, we

have decided to use the Papernot Algorithm, titled Jacobian-based Salience Map Approach

(JSMA), referenced in (section 2.2.4). The reason for selecting JSMA is because we wanted

to design our adversary with a disadvantage, as this method requires less added perturbations

δ~x, but requires greater computational cost, which is an advantage for the defender.

Compute the Jacobian Matrix - First, the adversary computes the Jacobian Matrix

J(f)(~x) ∈ R(m×n) for the input ~x the adversary wishes to create an adversarial example of,

70

CHAPTER 4. PROPOSED DEFENSE APPROACH

Figure 4.11: Data Augmentation to build the training set Sp to Sp+1

~x∗. The result of which are first-order derivatives f ′(~x) of ~x. From this, the adversary gets

a matrix i× j of first-order derivatives [
∂fi
∂xi

~x]i,j, where the component i, j is the derivative

of class label j with respect to feature i in the input ~x.

Find the Saliency Map of each Input Feature - The adversary then computes the

saliency map, and computes the score S for each input feature matrix item i for input ~x,

given to us by [25].

S(~x, t)[i] =

 0 if ∂fi(~x)
∂ ~xi

< 0 or
∑

j 6=t
∂fi(~x)
∂ ~xi

> 0

(∂fi(~x)
∂ ~xi

) |
∑

j 6=t
∂fi(~x)
∂ ~xi
| otherwise

(4.1)

The value t is the target class label ytarget, that we wish to assign the input sample ~x instead

of the source class label ytrue, to fulfill our misclassification goal. The Jacobian Matrix here

is
δfj~x

δ ~xi
. See Figure 4.12 below for an illustration.

Maximize Loss - The adversary then selects from the a sorted list of decreasing saliency

value item i. Then one by one, The adversary adds the component i, where S(~x, t)[i] to

the perturbation of the sample δ~x + ~x. The latter process is repeated several times until

the adversarial sample ~x∗ causes a misclassification in the substitute model F (see section

4.9.7).

71

CHAPTER 4. PROPOSED DEFENSE APPROACH

Figure 4.12: Jacobian Saliency Map Approach to Generate Adversarial Example

4.9.7 Example Transfer ~x∗

As mentioned in (section 2.3.5), It was proposed that transferability can be used to transfer

adversarial examples from one DNN model to another, that share a common purpose or task,

yet are dissimilar in network architecture. Here, we see that transferability is essential for

adversary’s black-box attacks on the target decoy model Tdecoy. With the adversarial example

generated above ~x∗, adversary with the aid of the transferability property can launch a

targeted classification attack. The adversary has trained a substitute model F (Sp), generated

transferable examples ~x∗ using JSMA, and can now transfer them to the deployed target

model, misclassifying the victim’s trained model. See Figure 4.13 below for an illustration.

4.9.8 Flipping the Target Label

Once the adversary has his adversarial example ready, it is time to inject it into the decoy

target model Tdecoy at test time, assuming adversarial transferability holds.

At this stage, the adversary has all he needs to succeed in his targeted attack. The

adversary has decided to design his adversarial attack to be a targeted exploratory one in

nature. The adversarial example selected ~x∗ is infused with a perturbation ~x + δ· ~x, which

he will maximize the error on the false negative (FN) in the classifier. This means the

adversary will exploit the vulnerability mentioned in (section 4.4.2) to force the DNN to

output a specific target label ytarget. Hence, the adversarial examples ~x∗ generated using

72

CHAPTER 4. PROPOSED DEFENSE APPROACH

Figure 4.13: Adversarial Transferability

JSMA need to have such an effect on the decoy target classifier Tdecoy, that it explicitly

lowers the confidence on the true label ytrue.

4.10 Defending Against the Attack

In this section, we describe the typical adversarial defense our adversarial Honeynet frame-

work will provide to supplement existing adversarial defense systems. This is in order to

combat malicious adversarial examples ~x∗ and unwanted adversaries, during the deployment

of a target model Ttarget we wish to protect. With this, we hope to thwart, contain and

learn from the adversary with a first-line-of-defense, culminating with the goal of blocking

adversarial transferability from learning the true behavior of the target model Ttarget. The

defense is characterized by the following steps:

4.10.1 Luring and Baiting the Adversary

We assume at this instance, that the adversary has discovered, accessed and been deceived by

one or two of the adversarial honeytokens TK = {TK1, TK2, TK3, ..., TKn} generated and

deployed in one the production systems. The adversary is now in the process of locating one

of the numerous high-interaction adversarial honeypot node systems H1 in the set of nodes

Hadversarial = {H1, H2, H3, ..., Hn}, actively deployed within our decentralized network. See

Chapter 5 for a more detailed implementation

73

CHAPTER 4. PROPOSED DEFENSE APPROACH

4.10.2 Inside the Honeypot

Inside the adversarial honeypot Hadversarial, the adversary operates within a high-interaction

virtual environment with OS real applications, services and devices. Any action the adver-

sary takes, malicious or benign is monitored and stored inside the Samba-Sysdig database.

Within the honeypot itself, several defense mechanisms have been put in place to thwart any

unhanded attempts by the adversary, consider the following:

Message-Passing to Prevent any Adversarial Takeover: All HoneyPeer nodes in the

decentralized network are in constant inter-communication between each other. Encrypted

messages are passed between the nodes in order to notify adjacent nodes that an adver-

sarial attack is occurring or has occurred. These time-stamped messages can only be sent

between two nodes in the network, which have exchanged a honey-session between them.

Explained in section 4.5.4, these messages include the HoneyPeerALRM, HoneyPeerAck,

HoneyPeerSafePulse, and HoneyPeerSafeAck. See Figure 4.3 above for more details.

HoneySession Key to Authenticate Node Identities: An adversarial session key is

initial exchanged between two HoneyPeer nodes. This HoneySession Key is exchanged at

the beginning of a node-to-node interaction and will be used an authentication method in

future node-to-node communications.

Anomaly-based Detection Using a White-list: White-list based anomaly detection

used perfectly into our defense framework to characterize any pattern of activities deviating

from the norm as an intrusion. This latter is in our favor since we are trying to detect actions

to exploit the classifier which are novel in nature, such as zero-day-attacks.

4.10.3 Hard Optimization Problem

Inside the VM, when the adversary accesses the Tdecoy model embedded within the high-

interaction honeypot, he possesses very little knowledge of its internal functionality. To

produce the adversarial examples ~x∗, he will need to observe the Oracle and gradually built

set of training samples (x
′
, y

′
) in order to build the training set for the substitute model F.

The latter is dependent on successfully approximating an architecture for model F . What

the adversary does not ration is that the training domain D he is collecting his samples

(x
′
, y

′
) from to build his substitute model is collected from the a decoy target model Tdecoy

embedded by the defender, and not the legitimate model Ttarget accessed and queried by

normal users. Unknowing to our set trap, the adversary collects the training set, gradually

74

CHAPTER 4. PROPOSED DEFENSE APPROACH

builds his substitute model from the synthetic dataset. With the least possible noise, rep-

resented by ~x + δ~x and making it indistinguishable to humans, the adversary generates the

adversarial examples ~x∗. However, crafting these examples has a high computational cost

overhead on the adversary. The latter is precisely what we use against the adversary. The

targeted misclassification error the adversary is pursuing can only be achieved by crafting

these perturbations with the least possible noise δ, to remain unnoticed. Finding the symme-

try between the right amount of noise and sample indistinguishably signals an optimization

problem, one that is non-convex and non-linear in nature. As mentioned in section 2.2.5,

a non-convex problem is one is where multiple solutions (local minimums) exist for the cost

(loss) function minx J0(θ) the adversary wishes to maximize. Theoretically, there is no one

optimal guaranteed solution S that satisfies all, especially in high-dimensional adversarial

data, see Figure 4.5 above for the adversarial solution surface. The adversary requires an

exponential amount of time and variables to exhaustively find a feasible maxima solution.

The adversary original goal was to produce adversarial examples ~x∗ for a specific input

sample ~x to be misclassified by the Oracle O : (Ttarget(~x∗ = y) 6= (Ttarget(~x = y)). This

misclassification proves that the classifier has been compromised and is no longer usable.

In our approach, we introduce difficulty, by deceiving the adversary and allowing him to

attempt in solving this optimization problem (as he originally intended). However, these

infeasible task for a decoy model Tdecoy has no real value. Generating these adversarial

examples is exhaustive in computational cost time, as well as approximating and training

the substitute decoy model F (S0) to craft the examples. And if the attacker does indeed

succeed in generating these examples, it would an highly infeasible task done in vanity.

4.11 Significance and Novelty

Prevent Target Substitute Example Transferability via Deception - the ingenuity

of our approach lies in how we solve the problem of blocking adversarial transferability from

occurring. Our decentralized proxy defense framework behaves as an extra layer of security

for learning systems within a black-box setting. The latter is achieved by deceiving and

exploiting the adversarial attacker and not blocking the adversary from querying the Oracle

O of the true target model TTarget. A series of deception methods are deployed to lure, trap

and exploit the adversary. To be concise, once an adversary is contained within the honeypot,

and while under the notion that contained environment is real, our system already anticipates

an attack using adversarial examples. The unsuspecting attacker generates his adversarial

samples ~x∗ from observing how the Oracle O labels input and output (x
′
, y

′
) to build his

substitute model F. The adversary, assuming his attempts are successful has been led into a

75

CHAPTER 4. PROPOSED DEFENSE APPROACH

trap. The adversarial examples generated are from the decoy substitute model F not usable

per-se, in the sense that they are only useful against the deployed decoy model TDecoy. Even

though the non-linear optimization problem of generating suitable perturbations is solved,

and the adversarial examples are generated and ready for insertion it has been done so as

wasted labor for a decoy.

Fail-Safe to supplement less-than-secure defense techniques - literature regarding

adversarial defense techniques such as Adversarial Training [13] and Defensive Distillation

[10] [29] have been considered to be insufficient in their capacity to bar an adversary from

using adversarial examples to influence the classification model. For instance, even under

the blind-model where the adversary’s knowledge on the DNN model is virtually absent, the

attacker was still about to mount a successful attack, as seen in [15]. In our framework, we

designed a helper layer to screen and filter potential adversaries who are looking to exploit

the model. It works by augmenting existing security measures by using methods of deceit

and deception to entice the advancing attacker by luring him away from the target model

towards a decoy model Tdecoy. Our method does not, in anyway, increase the complexity of

deploying security sensitive machine learning systems in the real-world. Simply put, it works

by obstructing the efforts and fazing adversaries, by reciprocating the adversary efforts with

deception.

Adversarial Information Reconnaissance - we decided to use high-interaction honey-

pots, not solely for the purpose of fooling or baiting the adversary, but for more practical

reasons as well, such as watching adversarial behavior. Some types of honeypots possess

the ability to monitor the adversary’s malicious activities within the honeypot, and record

information about the exploitation session. The latter was the reason for selecting high-

interaction honeypots. This data can potentially used to analyze the adversary’s motives,

as well as trends, new tool being used adversaries, and any personal motives. This can be

immensely useful if the adversary decides to return in the future. Honeypots as a tactic have

never been used before in the fight against adversarial examples in black-box systems, until

now.

A 3 tier Deception Mechanism - Our method of defense focuses on deception as a

method to prevent transferability from occurring, this 3-tier deception system helps us to do

that:

• Adversarial Honey-Tokens (between attacker and network) - These adversarial tokens

will be uniquely generated fictional words or data records deployed on production

76

CHAPTER 4. PROPOSED DEFENSE APPROACH

servers, which will be used to lure the attacker to the honeypots running on the servers.

These tokens do not normally appear in normal network traffic, which is exactly why

it will seem alluring to the attacker. These tools will allow the defender to attract

the adversary towards a prepared trap. We will use an extended version honeybits [6]

repository to generate tokens pertaining to the DNN classifier and use the Linux based

tool Auditd to monitor token access.

• Honeypot Accessibility (between attacker and honeypot) - We assume the attacker will

find and interact with our desired honeypot VM if we leave a vulnerable way in. This

is done by taking the following considerations, keeping a non-privileged network port

open, use of correct token bait, and minimizing risk of fingerprinting. We assume the

attacker is using port scanning software such as Nmap or Nessus tools.

• decoy DNN model - (between attacker and environment) The final and most impor-

tant level of our deception-as-a-defense system is the decoy model Tdecoy. Although

unconventional, this model is supposed to delude the adversary into thinking he has

accessed target model Ttarget. The goal of this is having the adversary interact with

the Tdecoy model in order to engage the adversary in a hard optimization problem, with

no profitable outcome.

77

Chapter 5

Implementation of Adversarial

HoneyTokens Component

In this chapter, we provide a detailed breakdown of the adversarial honeytoken implementa-

tion mentioned in Chapter 4. This component was built as an extension to the pre-existing

honeybits Github repository [6]. Firstly, in (section 5.1) we provide a background to these

tokens, as well as explain the nature and purpose of the honeytoken bits. Then in (section

5.2), we provide an outline of the individual project components and the project’s hierar-

chical structure. The rest of this chapter focuses on the software architecture and design

(section 5.3), functional features (section 5.4), functionality (section 5.5), usage, deploy-

ment scenarios and strategies (section 5.6). We then end this chapter with a highlight of

the external dependencies (section 5.7) which our extension - Adversarial Honeytokens and

its predecessor depends on, integration, and benefits.

5.1 Background

The honeybits open-source software provided in [6] is a simple tool developed in 2017 by a

software developer named Adel Karimi, with alias 0x4d31. The initial purpose behind the

design of this tool, according to the developer in [6] was in verbatim to: ”initially to enhance

the effectiveness of your traps by spreading breadcrumbs & honeytokens across your systems

to lure the attacker toward your honeypots”. From the view of the defender, one can see the

reasoning behind designing the initial version of this tool - to solve the problem that plagues

most networking scanning tools used by adversaries to survey and monitor the network,

which is that it did not effectively filter out unwanted noise from the external environment.

This problem meant that adversaries using these network scanners cannot identify the hidden

honeypots masqueraded as legitimate targets in the production environments that security

78

CHAPTER 5. IMPLEMENTATION OF ADVERSARIAL HONEYTOKENS
COMPONENT

personnel wanted the adversaries to fall victim to. Lack of attacker interest was the very

reason for the inception of this tool; to enhance the effectiveness of finding honeypots by the

adversaries, so they may be lured, deceived, trapped, and their methods techniques studied

[6].

The honeybit tool can be used for various tasks and purposes. However, it’s main purpose

is to cease the pursuit of adversaries, and instead allow them to come to the honeypot

independently. It appears the designer of this system intended it to be used as a simple

and cost effective deception technique to generate, distribute and plant falsified and bogus

information. This cost-effective system is in response to find an affordable way to re-channel

risk of compromise or intrusion on the production environments. This tool can be quite

useful if used strategically, especially since it can be said that the more falsified information

is planted, the greater chance an attacker, internal or external, will be deceived by this

information and fall victim to our deception [6]. The honeybits tool enables the defender to

automate the design and creation of electronic decoys, which are hard to distinguish from

real objects. In a way, these tokens behave just like honeypots, in the sense they not useful

unless interacted with, and the subject interacting with them being someone with malicious

intent or with unauthorized access, such as an adversary. As mentioned in (section 2.4.2),

these digital pieces of information can take any form or structure the creator chooses. But

regardless of what form the tokens are, they are fake, bogus and of no real value. For instance,

the token could be that of a Canadian Social Insurance Number (SIN), this number could

be embedded inside a database system as a honeytoken, if the number is accessed, we know

that someone is attempting to violate the integrity of the system. It is worth noting that

these tokens must seem authentic and real, to seem attractive to the attacker. An Intrusion-

Detection-System (IDS) could be used to detect when the digital token is unauthorizedly

accessed, and the simply “call home”.

The novelty with this bait distribution software is in the wide variety of tokens it is able

to generate and customize, as well as the embedding options associated with them. This

software is able to generate tokens pertaining to ssh, ftp, rsync, ftp, mysql, wget, and aws,

as well as enable the use of custom tokens and those based on templates.

The honeybit software was designed with a set of features and functionality in mind.

Initially, the honeybits breadcrumb software was used to generate, distribute and plant: 1)

Fake Bash history commands; 2) Fake AWS credentials; 3) Fake configuration, backup and

connection files; 4) Fake entries in host and ARP table; 5) Fake browser history, bookmarks

and saved passwords; 6) Fake registry keys.

In this thesis, we utilize these tokens as part of a proposed auxiliary defense method, used

to enhance the effectiveness of my adversarial honeypot defense system to prevent adversarial

79

CHAPTER 5. IMPLEMENTATION OF ADVERSARIAL HONEYTOKENS
COMPONENT

transferability from transpiring, by re-channeling it to a decoy see (section 4.10). We decided

to extend the existing API in order to generate custom breadcrumbs and digital tokens on

production servers that attract adversaries towards the desired honeypot, and the decoy

DNN target model within. Hence, we extended the current architecture to create tokens

pertaining to training and testing of the machine learning model, data scientist comments,

emails, back-up and data files, etc. These tokens in their variants are fake objects (that look

real) which would not normally appear in network traffic; this makes them very attractive

to an adversary.

5.2 Project Structure

The honeybits project and by extension the adversarial honeytokens project has the follow-

ing hierarchical structure:

x——–LICENSE

x——–README.md

x——–adversarial-honytokens

x——–hbconf.yaml

x——–honeybits.go

x– contentgen/

x——–contentgen.go

x– docs/

x——–honeybits.png

x– template/

x——–rdpconn

x——–trainingdata

x——–testingdata

x——–txtemail

5.3 Architecture

Here, we discuss the role and responsibility of each source code file in the project. See

Figure 5.1 below for the general architecture of the adversarial honeytokens. In Figure 5.1

we can see how the different components interact with each other to generate the adversarial

honeytokens:

80

CHAPTER 5. IMPLEMENTATION OF ADVERSARIAL HONEYTOKENS
COMPONENT

Figure 5.1: Adversarial HoneyToken Architecture

• contentgen/contentgen.go - this source code file is responsible for instantiating the

IP address and other and information from .yaml configuration file. Also, it works on

collecting formatted content from the templates to generates the file tokens, such as

the txtmail and trainingdata token. Please see Appendix A in Chapter 7 for source

code.

• template /txtemail - is the sample template used to generate the txtmail file token to

entice the attacker. It details the interaction between the security system administrator

and resident data scientist. Please see Appendix A in Chapter 7 for source code.

• template /trainingdata - is the sample template used to generate the trainingdata

file token to entice the attacker.

• template /testingdata - is the sample template used to generate the testingdata file

token to entice the attacker.

• hbconf.yaml - this .yaml (Yet-Another-Markup-File) markup language file is respon-

sible for the configuration settings of the adversarial honeytokens. Through this file,

the defender can customize and add file tokens, as well as the individual network to-

kens of the commands, such as ssh, scp, ftp, wget, aws etc. Also, we can customize

the individual custom tokens pertaining to the DNN design, configuration, testing and

training. It is also possible to customize the paths of where the tokens will be generated

81

CHAPTER 5. IMPLEMENTATION OF ADVERSARIAL HONEYTOKENS
COMPONENT

and embedded for the attacker to find. Please see Appendix A in Chapter 7 for source

code.

• honeybits.go - used to create the file, general and custom honeytokens specified in

the .yaml configuration file. It is responsible for collecting all the formatted informa-

tion provided in the .yaml file, creating the tokens, and deploying them inside their

respective embedding locations. Please see Appendix A in Chapter 7 for source code.

5.4 Features

This section is divided as follows, existing features originally implemented by the developer

(Adel 0x4D31 Karimi) in [6], and features and additions added by the thesis author (Fadi

Younis):

• Existing Features:

i. Creating honeytokens that can be monitored.

ii. Template based generator for honeyfiles.

iii. Insert honeybits into /etc/hosts.

iv. Insert different honeybits into ”bash-history”, including the following sample com-

mands.

v. Modifying the code base to allow generation of honeytokens related to machine

learning model configuration, testing, training and deployment, that would seem

attractive to an adversary.

• Added and Extended Features:

i. Design and deployment of the custom adversarial honeytokens related to the deep

learning model, inserted into the bash history file of the operating system. Tokens,

such as those related to the deployment, configuration of the model, as well as

testing and training.

ii. Design and deployment of adversarial file tokens, such as training data and email.

iii. Design and writing Linux auditd rules for monitoring, accessing, and accounting

of the adversarial tokens.

iv. Deployment of the adversarial tokens inside the Linux container for purpose of

running the application in a controlled and monitored environment, to be deployed

anywhere within the operating system.

82

CHAPTER 5. IMPLEMENTATION OF ADVERSARIAL HONEYTOKENS
COMPONENT

5.5 Functionality

We extended the honeybit token generator in [6] to create the adversarial honeytokens gener-

ator, which acts as an automatic monitoring system that generates adversarial deep learning

related tokens. It is composed of several components and processes, as seen in Figure 5.1

above. In order to understand how the system functions, one must have an understanding

of the individual operative components and processes. The following points offer an insight

into how the system functions used to create token and decoy digital information to bait the

adversary.

Baiting the Attacker - In order for the digital tokens generated by the application to bait

the attacker successfully they should have the following properties: 1) be simple enough to be

generated by the adversarial honeytokens application, 2) difficult to be identified and flagged

as a bait token by the adversary, 3) sufficiently pragmatic to pass itself as a factual object,

which makes it difficult for the adversary to discern it from other legitimate digital items.

The purpose of these monitored (and falsified) resources is to persuade and lure the adversary

away from the target DNN model Ttarget, and bait him to instead direct his attack efforts

towards a decoy model Tdecoy residing within the honeypot trap. The goal here is to allow the

adversary’s malicious behavior to compromise the hoaxed model, preventing the adversarial

examples transferability to the Ttarget model from occurring, and forcing the attacker to

reveal his strategies, in a controlled environment. The biggest challenge associated with

designing these tokens is adequate camouflaging to mimic realism, to prevent being detected

and uncloaked by the adversary.

Adversarial Token Configuration - the configuration of the adversarial honeypot gen-

erator occurs within the .yaml markup file (hbconf.yaml). Here, the administrator sets the

honeypot decoy host IP address, deployment paths, and content format. The configuration

file, through the path variables, set where the tokens will be leaked inside the operating sys-

tem, offering by that a large degree of freedom. Also, the administrator can customize the

individual file tokens, as well as the general honeytokens and the adversarial machine learning

tokens added. As mentioned, this file allows the building of several types of tokens. The first

type of tokens are the honeyfiles, which include txtmail, trainingdata, and testingdata. These

type of tokens are text-based and derive their formatted content from the template files

stored in the templates folder. The second type of tokens include network honeybits, which

include fake records deployed inside the UNIX configuration file or any arbitrary folder. The

latter include general type tokens such ssh, wget, ftp, aws, etc, These tokens usually consist

of an IP, Password, Port, and other arguments. The third type of tokens deployed are the

83

CHAPTER 5. IMPLEMENTATION OF ADVERSARIAL HONEYTOKENS
COMPONENT

custom honeytokens which are deployed in the bash history; these tokens are much more

interesting since they take any structure or format the defender desires.

Adversarial Token Generation - through the extended adversarial token framework we

compile the tokens using go build command. The following are only some of the tokens that

can be generated using the adversarial honeytokens framework:

• General Honeybit Tokens

– ssh token

– host configuration token

– ftp token

– scp token

– rsync token

– sql token

– aws token

• File Tokens

– txtmail token

– training data token

– testing data token

– data scientist comments tokens

• Custom Honeybit Tokens

– ssh password token

– training data copy token

– testing data copy token

– start cluster node token

– prepare python DNN model token

– train python DNN model token

– test python DNN model token

– deploy python DNN model token

84

CHAPTER 5. IMPLEMENTATION OF ADVERSARIAL HONEYTOKENS
COMPONENT

Token Leakage - the most dominant feature of the adversarial honeytoken generator is

its ability to inconspicuously implant artificial digital data (credentials, files, commands, etc)

into the productions server’s file system. The embedding location can be set inside the .yaml

configuration file (hbconf.yaml) using the PATHS: bashhistory, awsconf, awscred and hosts.

After the defender compiles and builds the adversarial tokens they are stealthily deployed

at set path / locations within the designated production server’s operating system. There,

the tokens reside until they are found and accessed by the adversary. The Docker container

at this point records intelligence on the attacker’s interaction with the token. See Figure

5.2 below for an illustration of the adversarial token leakage into the adjacent production

systems.

Figure 5.2: Adversarial Token Leakage

Audit and Control Rules - the auditd daemon was used to monitor activities within

the docker container. It can be used to monitor anything from system calls to wide net-

work traffic. Among the many capabilities this tool has, it can do the following: 1) see

who accessed/changed a particular file within the file system; 2) monitor system calls and

functions; 3) detect anomalies such as running and crashing processes; 4) set trip wires for

intrusion detection; 5) record any commands entered. However, it used for a specific task in

mind, which was to monitor access to adversarial honeytokens deployed in a specific location

within the file system. Configuration and customization of the daemon is done through the

configuration daemon file audit.conf, while the control file audit.rules controls customization

85

CHAPTER 5. IMPLEMENTATION OF ADVERSARIAL HONEYTOKENS
COMPONENT

of the monitoring rules.

Figure 5.3: Dockerize Adversarial HoneyToken Application

Docker to Monitor the Adversary Access - Docker was selected since it provides a

free and practical way to contain application processes and simulate file system isolation,

where the adversarial tokens application image will be run. In our defense framework, the

numerous production servers not open to the public domain will be reserved for adversarial

research to capture intelligence and analyze attacks. See Figure 5.3 above for an illustration

of the Deodorized HoneyToken Environment. They will open via an exposed TCP/IP port

open to the public, with weak non-privileged access points. The docker container will act as

the sandbox, acting as entire layer to envelop the honeytoken application image. Using the

insight gained from the adversaries later lured to the honeypots will be used study emergent

adversarial strategies, input perturbations and discovering techniques used by adversaries in

their exploits. Docker will create a new container object for each new incoming connects

and set up a barrier represented as the sandbox. An unsuspecting attacker that connects to

the container and finds the tokens is presumably lured to the honeypot containing the decoy

DNN model Tdecoy. If the adversary decides to leave, he is already keyed to that particular

container using his IP address, which connects him to the same container if he decides to

disconnect and then reconnect.

86

CHAPTER 5. IMPLEMENTATION OF ADVERSARIAL HONEYTOKENS
COMPONENT

5.6 Usage

In this section, we present three attack and exploitation scenarios where the adversarial

honeytokens will prove themselves to be useful. In the first of these speculative situations,

we present the setting in which the attack occurs, the objectives achieved by deploying the

tokens, the environment set-up required to deploy the tokens, the tokens themselves, as well

as token generation, building and compilation. Then we delve into how the audit rules are

set to monitor token access, as well as what results we achieve from deploying these tokens.

Consider the following scenarios below:

scenario 1 - Luring Away an Unwanted Adversary

• Setting

- Security informatics company CyberLink has deployed a deep learning binary classifi-

cation system to classify network traffic data. CyberLink has recently been a victim of

several cyber attacks targeting their classification system. System Administrator Jane

Doe has decided to deploy a high-interaction honeypot embedded with a decoy DNN

model, in an attempt to divert the attacker away from the target model using custom-

designed fake digital tokens called Adversarial HoneyTokens. These tokens contain

information to entice the adversary and lure him away from the target model towards

the decoy within the honeypot. Once the honeybits are installed inside a Docker con-

tainer along with auditd scripts to monitor token access. The Docker software creates

a new container for each connection. Finding what he, or she, thinks is an easy target,

the attacker let’s call him John Doe accesses the tokens. the falsified information

inside the token lured the attacker to a production system embedded with the decoy

DNN model. Figure 5.4 below illustrates the typical adversary interaction with the

honeytokens manifested in scenario 1 (Luring Away an Unwanted Adversary).

• Objectives

– generate falsified digital tokens and breadcrumbs that appear tempting to an ad-

versary. Then package and deploy the tokens within the file system to discovered

and mislead the adversary.

– use the tokens to keep attacker at bay and to protect the deployed classification

system from exploitation.

– prepare tokens that give the defender the freedom to design, deploy and monitor

tokens that signal an exploit once an adversary accesses them.

87

CHAPTER 5. IMPLEMENTATION OF ADVERSARIAL HONEYTOKENS
COMPONENT

Figure 5.4: Scenario 1 - Luring Away Attacker from Target Model

• Tools Used

– Adversarial HoneyTokens generator

– VM Player

– GoEnv Virtual Environment

– Linux OS Auditd Daemon

– Docker

• Accomplishments

- Generate adversarial tokens and deploy them within a part in the production server

file system, where the attacker is most likely to search for.

- Customize the adversarial tokens for neural net, including tokens pertaining testing/-

training and configuration.

- Monitor token access and manipulation through the auditd monitoring daemon, as

well track and record the attackers user information.

scenario 2 - Discourage Future Attacks Cyber Security company CyberLink has

deployed an multi-class classification system to classify security footage as either incrimi-

nating activity or benign. However, recently there has been a slew of adversarial attacks

compromising the integrity of their classification systems and exploiting their DNN with ad-

versarial examples that cause mislabeling. As a countermeasure and an attempt to combat

88

CHAPTER 5. IMPLEMENTATION OF ADVERSARIAL HONEYTOKENS
COMPONENT

and bewilder the adversarial threats, the defender has decided on deploying high-interaction

honeypots masqueraded as production systems in the environment. Accordingly, in order

to attract the attacker the defender has decided to leak an obscure SSH token indicating

the deployment and existence of 1000 honeypots deployed within the system. An adversary,

knowing the latter, would be discouraged from launching further attacks since the type of

deployed honeypot can be used reverse-engineer the attacker’s strategies. For an illustration

of scenario 2, please refer to Figure 5.5 below

Figure 5.5: Scenario 2 - discourage future attacks

scenario 3 - Apprehend an Internal Adversary Cyber Security company CyberLink

suspects that an internal malicious attacker is compromising their multi-class classification

system. The administrators suspect the attacker is interested in violating the integrity

of their classification system. A high-interaction honeypot is deployed in a subnet of the

network mimicking a genuine production server host with a decoy DNN model. A Token

is inserted into the bash history indicating the classification system was recently updated

and redeployed into the production environment. The adversary maybe very hard to catch

since his activities resemble real traffic. This is why the tokens are deployed in plain sight

of the adversary’s path on the internal network. The token can be designed to attract the

adversary to a newly deployed decoy classifier. For an illustration of scenario 3, please refer

to Figure 5.6 below.

5.7 External Dependencies

The adversarial honeytokens project has the following outside external dependencies:

89

CHAPTER 5. IMPLEMENTATION OF ADVERSARIAL HONEYTOKENS
COMPONENT

Figure 5.6: Scenario 3 - apprehend an internal adversary

• G0 Lang - an open source programming language [32] which was used as the main

development language for building the honeytokens API. Also, the same language was

used to extend the same API to build the adversarial honeytokens.

• GO-env Virtual Environment - a Go version management utility software tool [1]

which allows the user to setup an isolated Go virtual environment on a per-project

basis, per shell basis. It allows the user to install different Go compiler versions, as

well as set up isolated Go environment variables, such as ROOT and DEBUG.

• Viper - a configuration solution for GO applications [4]. It is designed to work within

an application, and can handle all types of configuration needs and formats. Viper

can be thought of as a registry for all of the GO application’s configuration needs. It

supports the following features [4]:

1) setting defaults

2) reading from JSON (JavaScript Object Notation), TOML (Tom’s Obvious, Minimal

Language) , YAML (Yet Another Markup Language), and Java properties

3) config. files

4) live watching and re-reading of config files (optional)

5) reading from environment variables

6) reading from remote config. systems (etcd and Consul) 7) watching changes

8) reading from command line flags

9) reading from buffer

10) setting explicit values.

• Crypt - a configuration library, used to compress, encrypt, and encode encrypted GO

90

CHAPTER 5. IMPLEMENTATION OF ADVERSARIAL HONEYTOKENS
COMPONENT

application configuration files using a secure public key [3]. It can be thought of as a

kind of key ring, created from a batch file.

• Linux Auditd Daemon - used to monitor security level events in the Linux operat-

ing system, it be used for the following tasks [2]:

1) monitor accessed/changed a particular file

2) detect system calls and functions

3) record anomalies, such as running and crashing processes

4) set trip wires for intrusion detection

5) record any commands entered

• Docker Container Software - an open source tool designed to simplify the process

of creating, deploying, and running applications by using containers [5]. Docker allows

a developer to package up an application with all of the parts it needs, such as libraries

and other dependencies, and ship it all out as one package.

5.8 Integration

The adversarial honeytokens generator, as an added separate component, can be used in a

variety of different domains and areas, here are just some of them:

• catching inside/outside adversaries in the act - outside the scope of adversarial ex-

amples and black-box systems, an organization suspecting that an internal malicious

adversary compromising their classification system, can benefit from using our de-

ception tool. A honeypot can be masqueraded as a production system in one of the

network subnets, mimicking a genuine host system deployed with a deep learning decoy

classifier. Since the attacker is an unknown insider, he could potentially be difficult to

apprehend since his activity signature resembles that of benign network traffic, which

might pose as a challenge to differentiate from an actual adversary. A defender can

use the token generator to craft digital items potentially attractive to an attacker, that

would be placed in plain sight to bait and draw-out the adversary from his hiding place

.

• unanticipated attacks on MLaaS - we know that self-learning systems in the form of a

service are vulnerable to well-crafted adversarial attacks. The latter opens the possi-

bilities for the type of aggressive security risks that can target and evade these online

services, leaving organizations vulnerable. One way to combat this is with using the

91

CHAPTER 5. IMPLEMENTATION OF ADVERSARIAL HONEYTOKENS
COMPONENT

adversarial token generator, which counters the adversary’s aggression and keeps the

attacker at bay using deception, as a method of defense.

• protecting privatized classification systems vulnerable to attack - some classification

system are publicly available for querying, and instead reside as an hidden internal

component of an organization’s domain. An adversary haphazardly lurking within the

system can still potentially debase the deep learning model. However, if the attacker

has less than ideal knowledge of the classifier, it can make designing the honeytokens

a lot easier since the attacker will have great difficulty identifying the genuine model

and discerning it from a decoy.

5.9 Benefits

The adversarial honeytokens generator tool has multiple benefits that can significantly im-

prove the security of a classification system, residing in any organization. The greatest yield

from its usage lays in the freedom associated with the ability to create, design and deploy

these entities. The defender has a great advantage to potentially use this tool with the ac-

quired knowledge of the adversary he might already possess. Knowledge of the adversary’s

techniques, methods and motives might help others design more sophisticated and pragmatic

tokens to bait the adversary. Here are some of the other benefits associated with using this

tool:

• this tool provides the ability to generate falsified digital tokens and deploy them within

a masqueraded production system, sandboxed’ within docker container. These tokens

are designed to be embedded almost anywhere, but in order for well-minded adversary

to discover them (and be deceived by them) these tokens must be deployed in a location

or PATH frequented and known by the adversary.

• honeytokens, if designed strategically, can mislead and keep an attacker at bay. This

supplementary tool can potentially be used with other defense to protect classification

systems deployed within public and private environments. Some of the conjectural

scenarios where a benefit can be seen are mentioned above in (section 5.6) (Usage).

• this tool gives the defender ability to hide traps among legitimate files within the pro-

duction system. This affordable and efficient tool enables us to exploit the adversary’s

strategy, which is based on trust - trust that there is no confusion or misdirection by

the defender.

92

CHAPTER 5. IMPLEMENTATION OF ADVERSARIAL HONEYTOKENS
COMPONENT

• through the use of Docker containers, this allows we can generate, deploy, and mon-

itor access of the adversarial tokens practically on any system, giving this extended

framework high portability.

93

Chapter 6

Conclusions and Future Work

We have shown it to be possible is to use deception to prevent an adversary from mimicking a

target model’s classification behavior, if we successfully re-channel adversarial transferability.

We have also presented a novel defense framework that essentially lures an adversary away

from the target model, and blocks adversarial transferability, using various deception tech-

niques. As discussed in Chapter 4, we can create an infeasible amount of computational work

for the adversary, with no useful outcome or benefit to him. This can be accomplished by

presenting the attacker with a hard non-convex optimization problem, similar to the one used

for generating adversarial samples. Our framework allows the adversary to transfer these

examples to a remote decoy learning model, deployed inside a high-interaction-honeypot. We

believe the deception techniques in our framework are sufficient enough to fool adversaries,

but we understand that other superior methods may exist. For the problems mentioned

below it will be necessary to conduct direct research on adversarial defenses.

Firstly, in (section 6.1) we provide a conclusion to the work in our thesis. Then in (section

6.2), (section 6.3), and (section 6.4) we provide future research directions for our work.

6.1 Conclusion

In this thesis, we have discussed adversarial transferability of malicious examples, and pro-

posed a defense framework to counter it, using deception derived from existing cyber-security

techniques. Our approach is the first of its kind to use methods derived from cyber-security

deception techniques to combat adversarial examples. We have also provided an implemen-

tation of one of the components in our framework (adversarial honeytokens). In this final

chapter, we have highlighted some of the areas we believe to be important for the develop-

ment of our framework and other defense techniques, such as such as the proposed use of

94

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

signature trained classifier and using low-risk alternatives to honeypots.

We have it to be possible to develop an adversarial defense framework that poses as a

secondary-level of prevention to curb adversarial examples from corrupting the classifier,

used to deceive the attacker. we proposed a decentralized network of high-interaction hon-

eypots as a decentralized defense framework that prevents an adversary from corrupting the

learning model, primarily through the use of deception. We accomplish our aim by prevent-

ing the attacker from correctly learning the labels and approximating the architecture of the

black-box system, luring the attacker away, towards a decoy model, using HoneyTokens, and

creating infeasible computational work for the adversary.We hope what we propose in this

chapter will help provide an interesting starting-point for future research in the field.

6.2 Signature-Based Classifiers for Adversarial Detec-

tion

As mentioned in Chapter 4, one of the greatest challenges in our thesis was deciding how

to adequately detect, classify and label adversarial behavior as malicious. Simply building

and training the actual classification model that would be responsible for doing so would

have been a great undertaking on its own. However, there were other practical detection

methods at our disposal, such as using signature-based detection to compare an object’s

behavior against a blacklist, and anomaly-based detection to compare an object against a

white-list. We chose to lean towards the latter method (white-list) over blacklisting since we

did not have reliable adversarial data that could have been used to generate a signature to

fingerprint potential adversarial behavior.

Using a custom-built classifier trained with malicious behavior signature data could po-

tentially provided a better alternative to white-list anomaly detection. The training-data

set would not necessarily have needed to be complete, it could contain partial signatures, as

long as it could help aid the classifier in detecting activity manifesting as malicious behavior,

such as injecting adversarial examples or querying the Oracle O. Building and deploying this

type of classifier can be extremely useful, as it can help detect new trends and variants in

adversarial example attacks whose behavior might resemble or partially match the signatures

learned by the classifier.

95

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.3 Reduced-Risk Alternatives to Honeypots

As we saw in Chapter 4, our framework utilizes High-Interaction Honeypots (HIHP) which

simulate an actual full system for an adversary to interact with and exploit. These simulated

systems include real OS, applications, input/output and services. However, simulating a live

system is time-consuming and increasingly complex to build. A synthetic environment might

make it sound like an attractive characteristic, but these types of honeypots utilize more

resources than other honeypots, exhausting the production infrastructure. Deploying high-

interaction honeypots imposes a high level of risk on the production system host environment

when deployed. This becomes more of an issue if the adversary detects a trap and decides not

to interact with the honeypot. But the more pressing matter is if the adversary decides to

aggressively launch an attack against the entire production system in retaliation. It would be

beneficial to find an alternative to high-interaction honeypots, which still maintain the same

realistic environment, to entice the adversary. The greater issue is being able to mitigate the

risk should a honeypot be overtaken by an advanced adversary. Perhaps the solution is to

use a high and medium interaction hybrid, which would lower the level of risk since medium

interaction honeypots only provide partial-access to the system.

6.4 Defending Against White-Box Attacks

Adversarial transferability is critical for black-box attacks, as adversaries attacking these

systems are dependent on the high-rate of its success. In Chapter 4, we designed a frame-

work to defend against an adversary with the ability to build a substitute training model

with synthetic labels augmented from observing and collecting the labels of test samples

from the Oracle O, despite the DNN model and training dataset being inaccessible. How-

ever, it is interesting to know how our deception framework would fare against an adversary

with full-knowledge of the implementation of the learning model, except that it’s deployed

inside a honeypot. This means the adversary would have knowledge of the learning algo-

rithm, training data, parameters, and full-access to the feature representation. Obviously

adversarial transferability would become unnecessary to the adversary since he can build the

examples directly on the target model. It would be interesting to see if it is possible to build

a defense framework to thwart adversaries with perfect knowledge. There is no doubt that

adversaries are becoming more advanced, and an adversary with perfect knowledge would

not be out of the ordinary in the near future.

96

Appendix A

Appendices

A.1 Adversarial HoneyToken Source Code

The following section details the source code used to generate the adversarial tokens, along

with the extended functionality to extend it to build the adversarial honeytokens. The source

code displayed in this section includes: 1) contentgen.go, 2) hbconf.yaml, 3) textemail token

and 4) honeybits.go.

A.1.1 contentgen.go

// Copyright (C) 2017 Adel ”0x4D31” Karimi

//

// This program i s f r e e so f tware : you can r e d i s t r i b u t e i t and/ or

modify

// i t under the terms o f the GNU General Publ ic L i cense as

pub l i shed by

// the Free Software Foundation , e i t h e r v e r s i on 3 o f the License ,

or

// (at your opt ion) any l a t e r v e r s i on .

//

// This program i s d e c e n t r a l i z e d in the hope that i t w i l l be

u se fu l ,

// but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Publ ic L i cense f o r more d e t a i l s .

//

97

APPENDIX A. APPENDICES

// You should have r e c e i v e d a copy o f the GNU General Publ ic

L i cense

// along with t h i s program . I f not , s e e <http ://www. gnu . org /

l i c e n s e s />.

package contentgen

// imports

// format , Viper repo , I /O, OS

import (

” fmt”

” github . com/ spf13 / v ipe r ”

” i o / i o u t i l ”

” os ”

)

\
//READ TEMPLATE

//Opens the f i l e template , d i sp l ay e r r o r in s t d e r r o r i f no f i l e

// Else s t o r e f i l e in s t r i n g v a r i a b l e

func readtemplate (tp ∗ s t r i ng , fp s t r i n g) {
i f f i , e r r := i o u t i l . ReadFile (fp) ; e r r != n i l {
os . Stder r . WriteStr ing (fmt . S p r i n t f (” Error : %s\n” , e r r . Error ()))

} e l s e {
∗ tp = s t r i n g (f i)

}
}

//GENERATE Text us ing c o n f i g u r a t i o n v ipe r f i l e , and 2 s t r i n g s

func Textgen (conf ∗ v ipe r . Viper , ctype s t r i ng , ctemp s t r i n g) s t r i n g

{
// i n i t i a l i z e address o f the honeypot from the con fgura t i on f i l e

addr := conf . GetStr ing (” honeypot . addr ”)

// i n i t i a l i z e honeypot data to ” ”

data := ””

// i n i t i a l i z e template data to ” ”

template := ””

98

APPENDIX A. APPENDICES

//Use Defau l t template

t := &template

// switch case statement f o r template

switch ctype {
//REMOTE DESKTOP CONNECTION CASE

case ” rdpconn ” :

i f ctemp == ” c o n f i g ” {
//Get the template data from RDP template

∗ t = conf . GetStr ing (” contentgen . rdpconn . template ”)

} e l s e {
readtemplate (t , ctemp)

}
//SET INFORMATION

i f ap := &addr ; conf . I s S e t (” contentgen . rdpconn . s e r v e r ”) {
∗ap = conf . GetStr ing (” contentgen . rdpconn . s e r v e r ”)

}
p := &data

//PRINT INFORMATION

∗p = fmt . S p r i n t f (template , addr , conf . GetStr ing (” contentgen .

rdpconn . user ”) , conf . GetStr ing (” contentgen . rdpconn . domain ”) ,

conf . GetStr ing (” contentgen . rdpconn . pass ”))

//TEXT EMAIL CASE

case ” txtema i l ” :

//Get the template data from textema i l template

i f ctemp == ” c o n f i g ” {
∗ t = conf . GetStr ing (” contentgen . tx tema i l . template ”)

} e l s e {
readtemplate (t , ctemp)

}
//SET INFORMATION

i f ap := &addr ; conf . I s S e t (” contentgen . tx tema i l . s e r v e r ”) {
∗ap = conf . GetStr ing (” contentgen . tx tema i l . s e r v e r ”)

}
p := &data

//PRINT INFORMATION

99

APPENDIX A. APPENDICES

∗p = fmt . S p r i n t f (template , addr , conf . GetStr ing (” contentgen .

tx tema i l . use r ”) , conf . GetStr ing (” contentgen . tx tema i l . pass ”))

//TESTING

case ” t e s t i n g ” :

//Get the template data from t e s t i n g template

i f ctemp == ” c o n f i g ” {
∗ t = conf . GetStr ing (” contentgen . t e s t i n g . template ”)

} e l s e {
readtemplate (t , ctemp)

}
//SET INFORMATION

i f ap := &addr ; conf . I s S e t (” contentgen . t e s t i n g . s e r v e r ”) {
∗ap = conf . GetStr ing (” contentgen . t e s t i n g . s e r v e r ”)

}
p := &data

//PRINT INFORMATION

∗p = fmt . S p r i n t f (template , addr , conf . GetStr ing (” contentgen .

t e s t i n g . path ”) , conf . GetStr ing (” contentgen . t e s t i n g . path ”))

∗p = fmt . S p r i n t f (template , addr , conf . GetStr ing (” contentgen .

t e s t i n g . date ”) , conf . GetStr ing (” contentgen . t e s t i n g . date ”))

//TRAINING

case ” t r a i n i n g ” :

//Get the template data from t e s t i n g template

i f ctemp == ” t r a i n i n g ” {
∗ t = conf . GetStr ing (” contentgen . t r a i n i n g . template ”)

} e l s e {
readtemplate (t , ctemp)

}
//SET INFORMATION

i f ap := &addr ; conf . I s S e t (” contentgen . t r a i n i n g . s e r v e r ”) {
∗ap = conf . GetStr ing (” contentgen . t r a i n i n g . s e r v e r ”)

}
p := &data

//PRINT INFORMATION

100

APPENDIX A. APPENDICES

∗p = fmt . S p r i n t f (template , addr , conf . GetStr ing (” contentgen .

t r a i n i n g . path ”) , conf . GetStr ing (” contentgen . t r a i n i n g . path ”))

∗p = fmt . S p r i n t f (template , addr , conf . GetStr ing (” contentgen .

t r a i n i n g . date ”) , conf . GetStr ing (” contentgen . t e s t i n g . date ”))

//DEFAULT CASE − HELLO WORLD

d e f a u l t :

p := &data

∗p = ” He l lo World ! ”

}
// re turn the data

re turn data

}

A.1.2 txtemail template

From : admin <adel@example . com>

Subject : Re : password change

Date : Apr i l 18 th , 2017 at 21 : 59 : 15 GMT+11

To : JOHN DOE <JOHN. DOE@example . com>

Cc : s e c u r i t y <security@example . com>

Hi ,

Ah, so r ry I f o r g o t to send you the new address : http ://% s

I a l s o r e s e t your password (user : %s) to the d e f a u l t pass : %s

Please s e t the MFA (multi−f a c t o r au then t i c a t i on) ASAP.

Cheers ,

Adel

On Apr i l 18 th 2017 , at 9 :57 pm, admin <dave . cohen@example . com>

wrote :

Hi admin ,

I j u s t wanted to l o g i n to the Monitoring system , but I get 404

101

APPENDIX A. APPENDICES

e r r o r . Could you p l e a s e have a look at i t ?

Thanks

Dave

The in fo rmat ion conta ined in t h i s e m a i l a n d any attachments i s

c o n f i d e n t i a l a n d / or p r i v i l e g e d . This emai l and

a n y a t t a c h m e n t s are intended to be read o n l y b y the person

named above . I f t h e r e a d e r o f t h i s email , and a n y a t t a c h m e n t s

, i s not the i n t e n d e d r e c i p i e n t , you are hereby n o t i f i e d

t h a t a n y review , d i s s eminat i on or copying o f t h i s emai l and

any attachments i s p r o h i b i t e d . I f you have r e c e i v e d

t h i s e m a i l and any attachments in e r ro r , p l e a s e n o t i f y the

sender by emai l o r t e l e p h o n e and d e l e t e i t from your

e m a i l c l i e n t .

A.1.3 hbconf.yaml

#PATHS

path :

bashh i s to ry : /home/ t e s t / . ba sh h i s t o ry

awsconf : /home/ t e s t /aws/ c o n f i g

awscred : /home/ t e s t /aws/ c r e d e n t i a l s

hos t s : / e t c / hos t s

#WHAT FILES TO USE

randomline :

bashh i s to ry : t rue

c o n f i l e : t rue

#HONEYPOT ADDRESS

honeypot :

addr : 1 9 2 . 1 6 8 . 1 . 6 6

#FAKE FILES

h o n e y f i l e :

enabled : t rue

102

APPENDIX A. APPENDICES

monitor : auditd # Options : go−audit , auditd , none

goaudit−conf : / e t c /go−audit . yaml # Only i f you use go−audit

t raps :

Format : − f i l e p a t h : content type : template

content type : rdpconn , txtemai l ,

template : c o n f i g (read from c o n f i g f i l e : contentgen . xxx .

template) , template f i l e path (/tmp/ sampletemplate . txt)

− /tmp/ t e s t . rdp : rdpconn : c o n f i g

− /tmp/ emai l . txt : tx t ema i l : template / txtema i l

− /tmp/ t e s t i n g : t e s t i ng−data : template / t e s t i n g

− /tmp/ t r a i n i n g : t r a in ing−data : template / t r a i n i n g

Content genera to r f o r h o n e y f i l e s or f i l e honeybi t s

contentgen :

#Neural Network D e t a i l s

rdpconn :

user : admin

pass : 12345

domain : example . com

template : ” s c r e en mode id : i : 2\ ndesktopwidth : i :1024\ ndesktophe ight :

i :768\ nuse multimon : i : 1\ n s e s s i o n bpp : i :24\ n f u l l address : s :%s\
ncompress ion : i : 1\ naudiomode : i : 2\ nusername : s :%s\ndomain : s :%s\
nauthent i ca t i on l e v e l : i : 0\ n c l e a r password : s :%s\ nd i s ab l e

wal lpaper : i : 0\ nd i s ab l e f u l l window drag : i : 0\ nd i s ab l e menu anims

: i : 0\ nd i s ab l e themes : i : 0\ n a l t e r n a t e s h e l l : s :\ n s h e l l working

d i r e c t o r y : s :\ nauthent i ca t i on l e v e l : i : 2\ nconnect to conso l e : i : 0\
ngatewayusagemethod : i : 0\ nd i s ab l e cu r so r s e t t i n g : i : 0\ nal low font

smoothing : i : 1\ nal low desktop compos it ion : i : 1\ n r e d i r e c t p r i n t e r s

: i : 0\ nprompt f o r c r e d e n t i a l s on c l i e n t : i : 1\ nuse r e d i r e c t i o n

s e r v e r name : i : 0”

s e r v e r : 1 9 2 . 1 6 8 . 1 . 6 6 # Defau l t i s ’ honeypot addr ’

#EMAIL

txtema i l :

use r : JOHN DOE

pass : iLoveMachineLearning

103

APPENDIX A. APPENDICES

#From : admin<adel@example . com>Subject : Re : passwordchangeDate :

Apri l18th ,2017 at21 : 5 9 : 1 5GMT+11To :JOHNDOE<dave . cohen@example . com

>Cc : s e cu r i t y<security@example . com>Hi ,Ah,

so r ry I fo rgot to sendyouthenewaddres s : http ://%

s Ia l s o r e s e tyou rpa s sword (user :%s) t o t h e d e f a u l t p a s s :%

sPleasesettheMFA (multi−f a c t o r a u t h e n t i c a t i o n)ASAP. Cheers ,

AdelOnApril18th2017 , at9 : 57pm, admin<dave . cohen@example . com>wrote

: Hiadmin , I jus twantedto log intotheMoni tor ingsys tem ,

but I g e t404e r r o r . Cou ldyoup leasehavea lookat i t ?

ThanksDaveThe in format ionconta ined inth i semai landanyattachments i sconf ident ia land

/ o r p r i v i l e g e d .

Thisemai landanyattachmentsare intendedtobereadonlybythepersonnamedabove

. I f t h e r e a d e r o f t h i s e m a i l , andanyattachments ,

i s n o t t h e i n t e n d e d r e c i p i e n t , youareherebynot i f i edthatanyrev i ew ,

d i s s emina t i ono r copy ingo f th i s ema i l andanyat tachment s i sp roh ib i t ed .

I fyouhaverece ivedth i s ema i l andanyat tachments ine r ro r ,

p l e a s e n o t i f y t h e s e n d e r b y e m a i l o r t e l e p h o n e a n d d e l e t e i t f r o m y o u r e m a i l c l i e n t

.

#t r a i n i n g d a t a

t r a i n :

path : /tmp/ t ra in ing−data

change date : 21−4−2018

#t e s t i n g d a t a

t e s t :

path : /tmp/ t e s t i ng−data

change date : 21−4−2018

honeybi t s :

#FAKE reco rd s in c o n f i g f i l e s

#FAKE AWS FILES

awsconf :

enabled : t rue

#

104

APPENDIX A. APPENDICES

ENABLED TRUE

p r o f i l e : devsecops

#USER

PROFILE

reg i on : us−east−1

#REGION

acce s skey id : AKIAIOSFODNN7EXAMPLE

#ACCESS KEY

s e c r e t a c c e s s k e y : wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

#SECRET KEY

#FAKE host c o n f i g u r a t i o n

ho s t s con f :

enabled : t rue #ENABLED

ip : 1 9 2 . 1 6 8 . 1 . 6 6 # Defau l t i s ’ honeypot addr ’

name : mysql−s rv #name o f

c o n f i g u r a t i o n

#Fake r e co rd s in ba sh h i s t o ry

ssh :

enabled : t rue #

ENABLED

s e r v e r : 1 9 2 . 1 6 8 . 1 . 6 6 # Defau l t i s ’ honeypot . addr ’

port : 2222 #

LISTENS ON PORT 2222

user : root #

ROOT USERNAME

sshpass : t rue #

PASSWORD ENABLED

pass : admin #

PASSWORD

#F i l e get FAKE COMMAND

wget :

enabled : t rue #

ENABLED

105

APPENDIX A. APPENDICES

u r l : http : / / 1 9 2 . 1 6 8 . 1 . 6 6 : 8 0 8 0 / backup . z ip #URL

GET

u r l : http : / / 1 9 2 . 1 6 8 . 1 . 6 6 : 8 0 8 0 / Training−Examples . z ip

u r l : https : // Dropbox . org /Back−up . z ip

u r l : http :// Dropbox . com/ Training−Examples . z ip

#F i l e Trans fe r Protoco l FAKE COMMAND

ftp :

enabled : t rue #ENABLED

s e r v e r : 1 9 2 . 1 6 8 . 1 . 6 6 # Defau l t i s ’ honeypot . addr ’

port : 2121 #FTP

l i s t e n s in on port 2121

user : admin #

USERNAME

pass : admin #

PASSWORD

#OS f i l e synching FAKE COMMAND

rsync :

enabled : t rue

s e r v e r : 1 9 2 . 1 6 8 . 1 . 6 6 # Defau l t i s ’ honeypot . addr ’

port : 2222 # f i l e t r a n s f e r port

l i s t e n s on l o c a l 2222

user : root # root user

remotepath : /path/ to / source # REMOTE PATH

l o c a l p a t h : /path/ to / d e s t i n a t i o n # DESTINATION PATH

sshpass : t rue # PASSWORD ENABLED

pass : 12345 # PASSWORD

#FILE TRANSFER FAKE Command

scp :

enabled : t rue

s e r v e r : 1 9 2 . 1 6 8 . 1 . 6 6 # Defau l t i s ’ honeypot . addr ’

port : 2222 # f i l e t r a n s f e r port l i s t e n s

on l o c a l 2222

user : root # root user

106

APPENDIX A. APPENDICES

remotepath : /path/ to / source # REMOTE PATH

l o c a l p a t h : /path/ to / d e s t i n a t i o n # DESTINATION PATH

#MYSQL FAKE COMMAND

mysql :

enabled : t rue

s e r v e r : 1 9 2 . 1 6 8 . 1 . 6 6 # Defau l t i s ’ honeypot . addr ’

port : 3306 # MYSQL port l i s t e n s on l o c a l 3306

user : admin # username

pass : admin # password

command : show databases # LIST ALL DATABASES

command : SELECT ∗ from TRAINING−DATA

dbname : mach ine l earn ing data

#Amazon Web S e r v i c e s FAKE INFORMATION

aws :

enabled : t rue

p r o f i l e : devops

r eg i on : us−east−2

command : ec2 desc r ibe−i n s t a n c e s

a c c e s sk ey id : AKIAIOSFODNN7EXAMPLE

s e c r e t a c c e s s k e y : wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

#CUSTOM honeybi t s in ba sh h i s t o ry

custom :

#Telnet to honeypot a p p l i c a t i o n on port 80

− t e l n e t 1 9 2 . 1 6 8 . 1 . 6 6 80

#FTP and grab the t r a i n i n g examples from admin on honeypot

a p p l i c a t i o n on port

− f t p f tp :// Training−Examples :JOHNDOE@192. 1 6 8 . 1 . 6 6 : 8 0

#t r a i n CNN model with va luab l e Train ing Examples

− python t ra in−CNN. py / Training−Examples

#t e s t CNN model with va luab l e Test ing Examples

− python te s t−CNN. py / Testing−Examples

#s t a r t node s l a v e on port 6312

− . / sb in / s ta r t−s l a v e . sh 1 9 2 . 1 6 8 . 1 . 6 9 6321

107

APPENDIX A. APPENDICES

#run node s l a v e on port 6312 on t e s t i n g examples − model−v2000−
back−up

− python model−v2000−back−up Testing−Examples

#change password o f honeypot app to I USE Tensorf low

− s shpass −p ’ IUseTensorf low ’ ssh −p 6321 JOHNDOE@192. 1 6 8 . 1 . 6 6

− s shpass −p JOHNDOE@192. 1 6 8 . 1 . 6 6

− ta r −cv f − TrainingImages /Numbers | ssh JOHNDOE@192. 1 6 8 . 1 . 6 6 ’ (

cd new images ; ta r −xf −) ’

A.1.4 honeybits.go

// Copyright (C) 2017 Adel ”0x4D31” Karimi

//

// This program i s f r e e so f tware : you can r e d i s t r i b u t e i t and/ or

modify

// i t under the terms o f the GNU General Publ ic L i cense as

pub l i shed by

// the Free Software Foundation , e i t h e r v e r s i on 3 o f the License ,

or

// (at your opt ion) any l a t e r v e r s i on .

//

// This program i s d e c e n t r a l i z e d in the hope that i t w i l l be

u se fu l ,

// but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Publ ic L i cense f o r more d e t a i l s .

//

// You should have r e c e i v e d a copy o f the GNU General Publ ic

L i cense

// along with t h i s program . I f not , s e e <http ://www. gnu . org /

l i c e n s e s />.

package main

import (

” fmt”

” github . com/ spf13 / v ipe r ”

108

APPENDIX A. APPENDICES

” github . com/ spf13 / v ipe r / remote”

” i o / i o u t i l ”

”math/rand”

” os ”

” os / exec ”

” runtime ”

” s t r i n g s ”

” time ”

” github . com/0x4D31/ honeybi t s / contentgen ”

)

func check (e e r r o r) {
i f e != n i l {
os . Stder r . WriteStr ing (fmt . S p r i n t f (” Error : %s\n” , e . Error ()))

}
}

func loadCon () (∗ v ipe r . Viper , e r r o r) {
// Reading c o n f i g va lue s from environment v a r i a b l e s and then

g e t t i n g

// the remote c o n f i g (remote Key/Value s t o r e such as etcd or

Consul)

// e . g . $ export HBITS KVSPROVIDER=”consu l ”

// $ export HBITS KVSADDR=”127 .0 .0 .1 :32775”

// $ export HBITS KVSDIR=”/ c o n f i g / hbconf . yaml”

// $ export HBITS KVSKEY=”/etc / s e c r e t s /mykeyring . gpg”

conf := v ipe r .New()

conf . SetEnvPref ix (” hb i t s ”)

conf . AutomaticEnv ()

conf . SetDe fau l t (” kvsprov ider ” , ” consu l ”)

conf . SetDe fau l t (” kvsd i r ” , ”/ c o n f i g / hbconf . yaml ”)

conf . SetDe fau l t (” path . bashh i s to ry ” , ”˜/ . ba sh h i s t o ry ”)

conf . SetDe fau l t (” path . hos t s ” , ”/ e t c / hos t s ”)

conf . SetDe fau l t (” path . awsconf ” , ”˜/ . aws/ c o n f i g ”)

conf . SetDe fau l t (” path . awscred ” , ”˜/ . aws/ c r e d e n t i a l s ”)

109

APPENDIX A. APPENDICES

kvsaddr := conf . GetStr ing (” kvsaddr ”)

kvsprov ider := conf . GetStr ing (” kvsprov ider ”)

kvsd i r := conf . GetStr ing (” kvsd i r ”)

// I f HBITS KVSKEY i s set , use encrypt ion f o r the remote Key/Value

Store

i f conf . I s S e t (” kvskey ”) {
kvskey := conf . GetStr ing (” kvskey ”)

conf . AddSecureRemoteProvider (kvsprovider , kvsaddr , kvsdir , kvskey)

} e l s e {
conf . AddRemoteProvider (kvsprovider , kvsaddr , kvsd i r)

}
conf . SetConfigType (” yaml ”)

i f e r r := conf . ReadRemoteConfig () ; e r r != n i l {

// Reading l o c a l c o n f i g f i l e

fmt . Pr int (” Fa i l ed read ing remote c o n f i g . Reading the l o c a l c o n f i g

f i l e . . . \ n”)

conf . SetConfigName (” hbconf ”)

conf . AddConfigPath (”/ e tc / hb i t s /”)

conf . AddConfigPath (” . ”)

i f e r r := conf . ReadInConfig () ; e r r != n i l {
r e turn n i l , e r r

}
fmt . Pr int (” Local c o n f i g u r a t i o n f i l e loaded .\n\n”)

re turn conf , n i l

}
fmt . Pr int (” Remote c o n f i g u r a t i o n f i l e loaded \n\n”)

re turn conf , n i l

}

func r n d l i n e (l [] s t r i n g) i n t {
s1 := rand . NewSource (time .Now() . UnixNano ())

r1 := rand .New(s1)

r l := r1 . Intn (l en (l))

110

APPENDIX A. APPENDICES

r e turn r l

}

func conta in s (s [] s t r i ng , b s t r i n g) bool {
f o r , a := range s {
i f a == b {
r e turn true

}
}
r e turn f a l s e

}

func l i n e f i n d e r (l [] s t r i ng , k s t r i n g) i n t {
l inenum := 0

f o r i := range l {
i f l [i] == k {
l inenum = i

}
}
r e turn linenum + 1

}

func h o n e y b i t c r e a t o r (conf ∗ v ipe r . Viper , htype s t r i ng , hpath

s t r i ng , rnd s t r i n g) {

switch htype {
case ” ssh ” :

s s h s e r v e r := conf . GetStr ing (” honeypot . addr ”)

i f p := &s s h s e r v e r ; conf . I s S e t (” honeybi t s . s sh . s e r v e r ”) {
∗p = conf . GetStr ing (” honeybi t s . ssh . s e r v e r ”)

}
honeybit := fmt . S p r i n t f (” ssh −p %s %s@%s ” ,

conf . GetStr ing (” honeybi t s . ssh . port ”) ,

conf . GetStr ing (” honeybi t s . ssh . user ”) ,

s s h s e r v e r)

i n s e r t b i t s (htype , hpath , honeybit , rnd)

111

APPENDIX A. APPENDICES

case ” s shpass ” :

s s h s e r v e r := conf . GetStr ing (” honeypot . addr ”)

i f p := &s s h s e r v e r ; conf . I s S e t (” honeybi t s . s sh . s e r v e r ”) {
∗p = conf . GetStr ing (” honeybi t s . ssh . s e r v e r ”)

}
honeybit := fmt . S p r i n t f (” s shpass −p ’%s ’ ssh −p %s %s@%s ” ,

conf . GetStr ing (” honeybi t s . ssh . pass ”) ,

conf . GetStr ing (” honeybi t s . ssh . port ”) ,

conf . GetStr ing (” honeybi t s . ssh . user ”) ,

s s h s e r v e r)

i n s e r t b i t s (htype , hpath , honeybit , rnd)

case ”wget ” :

honeybit := fmt . S p r i n t f (” wget %s ” ,

conf . GetStr ing (” honeybi t s . wget . u r l ”))

i n s e r t b i t s (htype , hpath , honeybit , rnd)

case ” f tp ” :

f t p s e r v e r := conf . GetStr ing (” honeypot . addr ”)

i f p := &f t p s e r v e r ; conf . I s S e t (” honeybi t s . f t p . s e r v e r ”) {
∗p = conf . GetStr ing (” honeybi t s . f t p . s e r v e r ”)

}
honeybit := fmt . S p r i n t f (” f tp f tp ://% s :%s@%s :%s ” ,

conf . GetStr ing (” honeybi t s . f t p . user ”) ,

conf . GetStr ing (” honeybi t s . f t p . pass ”) ,

f t p s e r v e r ,

conf . GetStr ing (” honeybi t s . f t p . port ”))

i n s e r t b i t s (htype , hpath , honeybit , rnd)

case ” rsync ” :

r s y n c s e r v e r := conf . GetStr ing (” honeypot . addr ”)

i f p := &r s y n c s e r v e r ; conf . I s S e t (” honeybi t s . r sync . s e r v e r ”) {
∗p = conf . GetStr ing (” honeybi t s . r sync . s e r v e r ”)

}
honeybit := fmt . S p r i n t f (” rsync −avz −e ’ ssh −p %s ’ %s@%s :%s %s ” ,

conf . GetStr ing (” honeybi t s . r sync . port ”) ,

conf . GetStr ing (” honeybi t s . r sync . user ”) ,

r sync se rve r ,

conf . GetStr ing (” honeybi t s . r sync . remotepath ”) ,

112

APPENDIX A. APPENDICES

conf . GetStr ing (” honeybi t s . r sync . l o c a l p a t h ”))

i n s e r t b i t s (htype , hpath , honeybit , rnd)

case ” r syncpass ” :

honeybit := fmt . S p r i n t f (” rsync −rsh=\”sshpass −p ’%s ’ ssh − l %s −p

%s \” %s :%s %s ” ,

conf . GetStr ing (” honeybi t s . r sync . pass ”) ,

conf . GetStr ing (” honeybi t s . r sync . user ”) ,

conf . GetStr ing (” honeybi t s . r sync . port ”) ,

conf . GetStr ing (” honeybi t s . r sync . s e r v e r ”) ,

conf . GetStr ing (” honeybi t s . r sync . remotepath ”) ,

conf . GetStr ing (” honeybi t s . r sync . l o c a l p a t h ”))

i n s e r t b i t s (htype , hpath , honeybit , rnd)

case ” scp ” :

s c p s e r v e r := conf . GetStr ing (” honeypot . addr ”)

i f p := &s c p s e r v e r ; conf . I s S e t (” honeybi t s . scp . s e r v e r ”) {
∗p = conf . GetStr ing (” honeybi t s . scp . s e r v e r ”)

}
honeybit := fmt . S p r i n t f (” scp −P %s %s@%s :%s %s ” ,

conf . GetStr ing (” honeybi t s . scp . port ”) ,

conf . GetStr ing (” honeybi t s . scp . user ”) ,

s cpse rve r ,

conf . GetStr ing (” honeybi t s . scp . remotepath ”) ,

conf . GetStr ing (” honeybi t s . scp . l o c a l p a t h ”))

i n s e r t b i t s (htype , hpath , honeybit , rnd)

case ”mysql ” :

mysq l server := conf . GetStr ing (” honeypot . addr ”)

i f p := &mysq l server ; conf . I s S e t (” honeybi t s . mysql . s e r v e r ”) {
∗p = conf . GetStr ing (” honeybi t s . mysql . s e r v e r ”)

}
honeybit := fmt . S p r i n t f (” mysql −h %s −P %s −u %s −p%s −e \”%s \”” ,

mysqlserver ,

conf . GetStr ing (” honeybi t s . mysql . port ”) ,

conf . GetStr ing (” honeybi t s . mysql . use r ”) ,

conf . GetStr ing (” honeybi t s . mysql . pass ”) ,

conf . GetStr ing (” honeybi t s . mysql . command”))

i n s e r t b i t s (htype , hpath , honeybit , rnd)

113

APPENDIX A. APPENDICES

case ”mysqldb ” :

mysq l server := conf . GetStr ing (” honeypot . addr ”)

i f p := &mysq l server ; conf . I s S e t (” honeybi t s . mysql . s e r v e r ”) {
∗p = conf . GetStr ing (” honeybi t s . mysql . s e r v e r ”)

}
honeybit := fmt . S p r i n t f (” mysql −h %s −u %s −p%s −D %s −e \”%s \”” ,

conf . GetStr ing (” honeybi t s . mysql . s e r v e r ”) ,

conf . GetStr ing (” honeybi t s . mysql . use r ”) ,

conf . GetStr ing (” honeybi t s . mysql . pass ”) ,

conf . GetStr ing (” honeybi t s . mysql . dbname”) ,

conf . GetStr ing (” honeybi t s . mysql . command”))

i n s e r t b i t s (htype , hpath , honeybit , rnd)

case ”aws ” :

honeybit := fmt . S p r i n t f (” export AWS ACCESS KEY ID=%s\nexport

AWS SECRET ACCESS KEY=%s\naws %s −−p r o f i l e %s −−r eg i on %s ” ,

conf . GetStr ing (” honeybi t s . aws . a c c e s sk ey id ”) ,

conf . GetStr ing (” honeybi t s . aws . s e c r e t a c c e s s k e y ”) ,

conf . GetStr ing (” honeybi t s . aws . command”) ,

conf . GetStr ing (” honeybi t s . aws . p r o f i l e ”) ,

conf . GetStr ing (” honeybi t s . aws . r eg i on ”))

i n s e r t b i t s (htype , hpath , honeybit , rnd)

case ” ho s t s con f ” :

ho s t ip := conf . GetStr ing (” honeypot . addr ”)

i f p := &hos t ip ; conf . I s S e t (” honeybi t s . ho s t s con f . ip ”) {
∗p = conf . GetStr ing (” honeybi t s . ho s t s con f . ip ”)

}
honeybit := fmt . S p r i n t f (”%s %s ” ,

host ip ,

conf . GetStr ing (” honeybi t s . ho s t s con f . name”))

i n s e r t b i t s (htype , hpath , honeybit , rnd)

case ” awsconf ” :

honeybit := fmt . S p r i n t f (” [p r o f i l e %s]\ noutput=j son \ nreg ion=%s ” ,

conf . GetStr ing (” honeybi t s . awsconf . p r o f i l e ”) ,

conf . GetStr ing (” honeybi t s . awsconf . r eg i on ”))

i n s e r t b i t s (htype , hpath , honeybit , rnd)

case ” awscred ” :

114

APPENDIX A. APPENDICES

honeybit := fmt . S p r i n t f (”[% s]\ naws acc e s s key id=%s\
n a w s s e c r e t a c c e s s k e y=%s ” ,

conf . GetStr ing (” honeybi t s . awsconf . p r o f i l e ”) ,

conf . GetStr ing (” honeybi t s . awsconf . a c c e s sk ey id ”) ,

conf . GetStr ing (” honeybi t s . awsconf . s e c r e t a c c e s s k e y ”))

i n s e r t b i t s (htype , hpath , honeybit , rnd)

// d e f a u l t :

// custom

}
}

func i n s e r t b i t s (ht s t r i ng , fp s t r i ng , hb s t r i ng , rnd s t r i n g) {
i f , e r r := os . Stat (fp) ; os . I sNotExi s t (e r r) {
, e r r := os . Create (fp)

check (e r r)

}
f i , e r r := i o u t i l . ReadFile (fp)

check (e r r)

var l i n e s [] s t r i n g = s t r i n g s . S p l i t (s t r i n g (f i) , ”\n”)

var h b l i n e s [] s t r i n g = s t r i n g s . S p l i t (s t r i n g (hb) , ”\n”)

i f i s c o n t a i n := conta in s (l i n e s , h b l i n e s [0]) ; i s c o n t a i n == f a l s e {
i f rnd == ” true ” {
r l := (r n d l i n e (l i n e s))

l i n e s = append (l i n e s [: r l] , append ([] s t r i n g {hb} , l i n e s [r l :] . . .) . . .)

} e l s e i f rnd == ” f a l s e ” {
l i n e s = append (l i n e s , hb)

}
output := s t r i n g s . Join (l i n e s , ”\n”)

e r r = i o u t i l . Wr i teFi l e (fp , [] byte (output) , 0644)

i f e r r != n i l {
fmt . P r i n t f (” [f a i l e d] Can ’ t i n s e r t %s honeybit , e r r o r : \”%s \”\n” ,

ht , e r r)

} e l s e {
fmt . P r i n t f (” [done] %s honeybit i s i n s e r t e d \n” , ht)

}
} e l s e {

115

APPENDIX A. APPENDICES

fmt . P r i n t f (” [f a i l e d] %s honeybit a l r eady e x i s t s \n” , ht)

}
}

func h o n e y f i l e c r e a t o r (conf ∗ v ipe r . Viper , fp s t r i ng , f t s t r i ng ,

template s t r i n g) {
i f , e r r := os . Stat (fp) ; e r r == n i l {
fmt . P r i n t f (” [f a i l e d] h o n e y f i l e a l r eady e x i s t s at t h i s path : %s\n” ,

fp)

} e l s e {
data := contentgen . Textgen (conf , f t , template)

e r r := i o u t i l . Wr i teF i l e (fp , [] byte (data) , 0644)

i f e r r != n i l {
fmt . P r i n t f (” [f a i l e d] Can ’ t c r e a t e honey f i l e , e r r o r : \”%s \”\n” , e r r

)

} e l s e {
fmt . P r i n t f (” [done] h o n e y f i l e i s c r ea ted (%s)\n” , fp)

}
}
}

func ho ney f i l e mo n i t o r (fp s t r i ng , c f s t r i ng , m s t r i n g) {
switch m {
case ” auditd ” :

i f runtime .GOOS == ” l inux ” {
s e a r chS t r i ng := fmt . S p r i n t f (”−w %s −p rwa −k h o n e y f i l e ” , fp)

out , e r r := exec .Command(” a u d i t c t l ” , ”− l ”) . Output ()

check (e r r)

outSt r ing := s t r i n g (out [:])

i f s t r i n g s . Contains (outStr ing , s e a r chS t r i ng) == f a l s e {
//pathArg := fmt . S p r i n t f (” path=%s ” , fp)

// e r r := exec .Command(” a u d i t c t l ” , ”−a ” , ” ex i t , always ” , ”−F” ,

pathArg , ”−F” , ”perm=wra ” , ”−k ” , ” h o n e y f i l e ”) . Run()

e r r := exec .Command(” a u d i t c t l ” , ”−w” , fp , ”−p” , ”wra ” , ”−k ” , ”

h o n e y f i l e ”) . Run()

check (e r r)

116

APPENDIX A. APPENDICES

fmt . P r i n t f (” [done] auditd r u l e f o r %s i s added\n” , fp)

} e l s e {
fmt . Pr int (” [f a i l e d] auditd r u l e a l r eady e x i s t s \n”)

}
} e l s e {
fmt . Pr int (” [f a i l e d] honeybi t s auditd monitor ing only works on

Linux . Use go−audit f o r Mac OS\n”)

}

case ”go−audit ” :

i f , e r r := os . Stat (c f) ; e r r == n i l {
f i , e r r := i o u t i l . ReadFile (c f)

check (e r r)

var l i n e s [] s t r i n g = s t r i n g s . S p l i t (s t r i n g (f i) , ”\n”)

r u l e := fmt . S p r i n t f (” − −a ex i t , always −F path=%s −F perm=wra −k

h o n e y f i l e ” , fp)

i f i s c o n t a i n := conta in s (l i n e s , r u l e) ; i s c o n t a i n == f a l s e {
r u l e l i n e := l i n e f i n d e r (l i n e s , ” r u l e s : ”)

l i n e s = append (l i n e s [: r u l e l i n e] , append ([] s t r i n g { r u l e } , l i n e s [

r u l e l i n e :] . . .) . . .)

output := s t r i n g s . Join (l i n e s , ”\n”)

e r r = i o u t i l . Wr i teFi l e (c f , [] byte (output) , 0644)

i f e r r != n i l {
fmt . P r i n t f (” [f a i l e d] Can ’ t add go−audit ru le , e r r o r : \”%s \”\n” ,

e r r)

} e l s e {
fmt . P r i n t f (” [done] go−audit r u l e f o r %s i s added\n” , fp)

}
} e l s e {
fmt . Pr int (” [f a i l e d] go−audit r u l e a l r eady e x i s t s \n”)

}
} e l s e {
check (e r r)

}
}
}

117

APPENDIX A. APPENDICES

func main () {

conf , e r r := loadCon ()

check (e r r)

var (

bhrnd = conf . GetStr ing (” randomline . bashh i s to ry ”)

c f rnd = conf . GetStr ing (” randomline . c o n f i l e ”)

bhpath = conf . GetStr ing (” path . bashh i s to ry ”)

hostspath = conf . GetStr ing (” path . hos t s ”)

awsconfpath = conf . GetStr ing (” path . awsconf ”)

awscredpath = conf . GetStr ing (” path . awscred ”)

)

// I n s e r t honeybi t s

// [F i l e]

i f conf . GetStr ing (” h o n e y f i l e . enabled ”) == ” true ” {
switch conf . GetStr ing (” h o n e y f i l e . monitor ”) {
case ”go−audit ” :

c o n f i g f i l e := conf . GetStr ing (” h o n e y f i l e . goaudit−conf ”)

i f t raps := conf . G e t S t r i n g S l i c e (” h o n e y f i l e . t raps ”) ; l en (t raps) !=

0 {
f o r , t := range t raps {
t con f := s t r i n g s . S p l i t (t , ” : ”)

h o n e y f i l e c r e a t o r (conf , t con f [0] , t con f [1] , t c on f [2])

ho ney f i l e mo n i t o r (t con f [0] , c o n f i g f i l e , ”go−audi t ”)

}
}
case ” auditd ” :

i f t raps := conf . G e t S t r i n g S l i c e (” h o n e y f i l e . t raps ”) ; l en (t raps) !=

0 {
f o r , t := range t raps {
t con f := s t r i n g s . S p l i t (t , ” : ”)

h o n e y f i l e c r e a t o r (conf , t con f [0] , t con f [1] , t c on f [2])

ho ney f i l e mo n i t o r (t con f [0] , ”” , ” auditd ”)

118

APPENDIX A. APPENDICES

}
}
case ”none ” :

i f t raps := conf . G e t S t r i n g S l i c e (” h o n e y f i l e . t raps ”) ; l en (t raps) !=

0 {
f o r , t := range t raps {
t con f := s t r i n g s . S p l i t (t , ” : ”)

h o n e y f i l e c r e a t o r (conf , t con f [0] , t con f [1] , t c on f [2])

}
}
d e f a u l t :

fmt . Pr int (” Error : you must s p e c i f y one o f the se opt ions f o r

h o n e y f i l e . monitor : go−audit , auditd , none\n”)

}
}
// [Bash h i s to ry]

//// SSH

i f conf . GetStr ing (” honeybi t s . s sh . enabled ”) == ” true ” {
i f conf . GetStr ing (” honeybi t s . s sh . s shpass ”) == ” true ” {
h o n e y b i t c r e a t o r (conf , ” s shpass ” , bhpath , bhrnd)

} e l s e {
h o n e y b i t c r e a t o r (conf , ” ssh ” , bhpath , bhrnd)

}
}
//// WGET

i f conf . GetStr ing (” honeybi t s . wget . enabled ”) == ” true ” {
h o n e y b i t c r e a t o r (conf , ”wget ” , bhpath , bhrnd)

}
//// FTP

i f conf . GetStr ing (” honeybi t s . f t p . enabled ”) == ” true ” {
h o n e y b i t c r e a t o r (conf , ” f tp ” , bhpath , bhrnd)

}
//// RSYNC

i f conf . GetStr ing (” honeybi t s . r sync . enabled ”) == ” true ” {
i f conf . GetStr ing (” rsync . s shpass ”) == ” true ” {
h o n e y b i t c r e a t o r (conf , ” r syncpass ” , bhpath , bhrnd)

119

APPENDIX A. APPENDICES

} e l s e {
h o n e y b i t c r e a t o r (conf , ” rsync ” , bhpath , bhrnd)

}
}
//// SCP

i f conf . GetStr ing (” honeybi t s . scp . enabled ”) == ” true ” {
h o n e y b i t c r e a t o r (conf , ” scp ” , bhpath , bhrnd)

}
//// MYSQL

i f conf . GetStr ing (” honeybi t s . mysql . enabled ”) == ” true ” {
i f conf . I s S e t (” mysql . dbname”) {
h o n e y b i t c r e a t o r (conf , ”mysqldb ” , bhpath , bhrnd)

} e l s e {
h o n e y b i t c r e a t o r (conf , ”mysql ” , bhpath , bhrnd)

}
}
//// AWS

i f conf . GetStr ing (” honeybi t s . aws . enabled ”) == ” true ” {
h o n e y b i t c r e a t o r (conf , ”aws ” , bhpath , bhrnd)

}
// [Hosts Conf]

i f conf . GetStr ing (” honeybi t s . ho s t s con f . enabled ”) == ” true ” {
h o n e y b i t c r e a t o r (conf , ” ho s t s con f ” , hostspath , c f rnd)

}
// [AWS Conf]

i f conf . GetStr ing (” honeybi t s . awsconf . enabled ”) == ” true ” {
h o n e y b i t c r e a t o r (conf , ” awsconf ” , awsconfpath , c f rnd)

h o n e y b i t c r e a t o r (conf , ” awscred ” , awscredpath , c f rnd)

}
// Custom b i t s in ba sh h i s t o ry

i f cb := conf . G e t S t r i n g S l i c e (” honeybi t s . custom ”) ; l en (cb) != 0 {
f o r , v := range cb {
i n s e r t b i t s (” custom ” , bhpath , v , bhrnd)

}
}
}

120

Bibliography

[1] goenv: Isolated development environments for Go. https://github.com/crsmithdev/

goenv. Accessed on March 13, 2018.

[2] Linux audit userspace repository. https://github.com/linux-audit/

audit-userspace. Accessed on March 25, 2018.

[3] Store and retrieve encrypted configs from etcd or consul. https://github.com/

xordataexchange/crypt. Accessed on March 13, 2018.

[4] viper: Go configuration with fangs. https://github.com/spf13/viper. Accessed on

March 25, 2018.

[5] What is Docker? https://www.docker.com/what-docker. Accessed on March 3, 2018.

[6] Adel Karimi. honeybits. https://github.com/0x4D31/honeybits. Accessed on March

27, 2018.

[7] M. Akiyama, T. Yagi, T. Hariu, and Y. Kadobayashi. HoneyCirculator: Distributing

credential honeytoken for introspection of web-based attack cycle. International Journal

of Information Security, 17(2):135–151, Apr. 2018.

[8] R. M. Campbell, K. Padayachee, and T. Masombuka. A survey of honeypot research:

Trends and opportunities. In Proceedings of the 2015 10th International Conference for

Internet Technology and Secured Transactions (ICITST), pages 208–212, Dec. 2015.

[9] N. Carlini and D. Wagner. Adversarial Examples Are Not Easily Detected: Bypass-

ing Ten Detection Methods. In Proceedings of the 10th ACM Workshop on Artificial

Intelligence and Security, AISec ’17, pages 3–14, New York, NY, USA, 2017. ACM.

[10] N. Carlini and D. Wagner. Defensive Distillation is Not Robust to Adversarial Examples.

In Proceedings of the International Conference on Learning Representations (ICLR),

2017, pages 1–3, 2017.

121

https://github.com/crsmithdev/goenv
https://github.com/crsmithdev/goenv
https://github.com/linux-audit/audit-userspace
https://github.com/linux-audit/audit-userspace
https://github.com/xordataexchange/crypt
https://github.com/xordataexchange/crypt
https://github.com/spf13/viper
https://www.docker.com/what-docker
https://github.com/0x4D31/honeybits

BIBLIOGRAPHY

[11] S. Dowling, M. Schukat, and H. Melvin. A ZigBee honeypot to assess IoT cyberattack

behaviour. In Proceedgings of the 2017 28th Irish Signals and Systems Conference

(ISSC), pages 1–6, June 2017.

[12] A. A. Egupov, S. V. Zareshin, I. M. Yadikin, and D. S. Silnov. Development and

implementation of a Honeypot-trap. In Proceedings of the 2017 IEEE Conference of

Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pages

382–385, Feb. 2017.

[13] I. J. Goodfellow, J. Shlens, and C. Szegedy. EXPLAINING AND HARNESSING AD-

VERSARIAL EXAMPLES. International Conference on Learning Representations,

2017, page 11, 2015.

[14] J. D. Guarnizo, A. Tambe, S. S. Bhunia, M. Ochoa, N. O. Tippenhauer, A. Shabtai,

and Y. Elovici. SIPHON: Towards Scalable High-Interaction Physical Honeypots. In

Proceedings of the 3rd ACM Workshop on Cyber-Physical System Security, CPSS ’17,

pages 57–68, New York, NY, USA, 2017. ACM.

[15] H. Hosseini, Y. Chen, S. Kannan, B. Zhang, and R. Poovendran. Blocking Transfer-

ability of Adversarial Examples in Black-Box Learning Systems. arXiv:1703.04318 [cs],

Mar. 2017. arXiv: 1703.04318.

[16] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar. Adversarial

Machine Learning. In Proceedings of the 4th ACM Workshop on Security and Artificial

Intelligence, AISec ’11, pages 43–58, New York, NY, USA, 2011. ACM.

[17] C. Irvene, D. Formby, S. Litchfield, and R. Beyah. HoneyBot: A Honeypot for Robotic

Systems. Proceedings of the IEEE, 106(1):61–70, Jan. 2018.

[18] A. Kedrowitsch, D. D. Yao, G. Wang, and K. Cameron. A First Look: Using Linux

Containers for Deceptive Honeypots. In Proceedings of the 2017 Workshop on Automated

Decision Making for Active Cyber Defense, SafeConfig ’17, pages 15–22, New York, NY,

USA, 2017. ACM.

[19] A. Kurakin, I. J. Goodfellow, and S. Bengio. ADVERSARIAL EXAMPLES IN THE

PHYSICAL WORLD. International Conference on Learning Representations (ICLR),

2017, page 14, 2017.

[20] M. A. Lihet and V. Dadarlat. How to build a honeypot System in the cloud. In Proceed-

ings of the 2015 14th RoEduNet International Conference - Networking in Education

and Research (RoEduNet NER), pages 190–194, Sept. 2015.

122

BIBLIOGRAPHY

[21] Y. Liu, X. Chen, C. Liu, and D. Song. Delving into transferable adversarial examples

and black-box attacks. In Proceedings of the International Conference on Learning

Representations, 2017, page 14, 2017.

[22] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning

models resistant to adversarial attacks. In Proceeding of the International Conference

on Learning Representations (ICLR 2018), 2018.

[23] M. Nawrocki, M. Whlisch, T. C. Schmidt, C. Keil, and J. Schnfelder. A Survey on

Honeypot Software and Data Analysis. arXiv:1608.06249 [cs], Aug. 2016. arXiv:

1608.06249.

[24] A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High

confidence predictions for unrecognizable images. In Proceedings of the 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 427–436, June

2015.

[25] N. Papernot, N. Carlini, I. Goodfellow, R. Feinman, F. Faghri, A. Matyasko, K. Ham-

bardzumyan, Y.-L. Juang, A. Kurakin, R. Sheatsley, A. Garg, and Y.-C. Lin. cleverhans

v2.0.0: an adversarial machine learning library. arXiv:1610.00768 [cs, stat], Oct. 2016.

arXiv: 1610.00768.

[26] N. Papernot, P. McDaniel, and I. Goodfellow. Transferability in Machine Learning:

from Phenomena to Black-Box Attacks using Adversarial Samples. arXiv:1605.07277

[cs], May 2016. arXiv: 1605.07277.

[27] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami. Practical

Black-Box Attacks Against Machine Learning. In Proceedings of the 2017 ACM on Asia

Conference on Computer and Communications Security, ASIA CCS ’17, pages 506–519,

New York, NY, USA, 2017. ACM.

[28] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The Lim-

itations of Deep Learning in Adversarial Settings. In 2016 IEEE European Symposium

on Security and Privacy (EuroS P), pages 372–387, Mar. 2016.

[29] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation as a Defense to

Adversarial Perturbations Against Deep Neural Networks. In Proceedings of the 2016

IEEE Symposium on Security and Privacy (SP), pages 582–597, May 2016.

123

BIBLIOGRAPHY

[30] S. Rauti and V. Leppnen. A survey on fake entities as a method to detect and mon-

itor malicious activity. In Proceedings of the 2017 25th Euromicro International Con-

ference on Parallel, Distributed and Network-based Processing (PDP), pages 386–390,

Mar. 2017.

[31] M. Ribeiro, K. Grolinger, and M. A. M. Capretz. MLaaS: Machine Learning as a Service.

In Proceedings of the 2015 IEEE 14th International Conference on Machine Learning

and Applications (ICMLA), pages 896–902, Dec. 2015.

[32] Robert Griesemer. The Go programming language. https://github.com/golang/go.

Accessed on March 13, 2018.

[33] A. Rozsa, M. Gunther, and T. E. Boult. Towards Robust Deep Neural Networks with

BANG. Proceedings of the IEEE Winter Conference on Applications of Computer Vision

(WACV), 2018, Nov. 2016. arXiv: 1612.00138.

[34] N. Soule, P. Pal, S. Clark, B. Krisler, and A. Macera. Enabling defensive deception in

distributed system environments. In 2016 Resilience Week (RWS), pages 73–76, Aug.

2016.

[35] X. Suo, X. Han, and Y. Gao. Research on the application of honeypot technology in

intrusion detection system. In Proceedings of the 2014 IEEE Workshop on Advanced

Research and Technology in Industry Applications (WARTIA), pages 1030–1032, Sept.

2014.

[36] F. Tramr, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel. The Space of

Transferable Adversarial Examples. arXiv:1704.03453 [cs, stat], Apr. 2017. arXiv:

1704.03453.

[37] Q. Xiao, K. Li, D. Zhang, and W. Xu. Security Risks in Deep Learning Implementations.

arXiv:1711.11008 [cs], Nov. 2017. arXiv: 1711.11008.

[38] X. Yuan, P. He, Q. Zhu, R. R. Bhat, and X. Li. Adversarial Examples: Attacks and

Defenses for Deep Learning. arXiv:1712.07107 [cs, stat], Dec. 2017. arXiv: 1712.07107.

[39] V. Zantedeschi, M.-I. Nicolae, and A. Rawat. Efficient Defenses Against Adversarial At-

tacks. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security,

AISec ’17, pages 39–49, New York, NY, USA, 2017. ACM.

124

https://github.com/golang/go

