
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2011

Effective Quality Of Service Browsing For Web
Service Selection
Shilpi Verma
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Verma, Shilpi, "Effective Quality Of Service Browsing For Web Service Selection" (2011). Theses and dissertations. Paper 1648.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1648&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1648&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1648&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1648&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/1648?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1648&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

Toronto, Ontario, Canada, 2011

© Shilpi Verma 2011

EFFECTIVE QUALITY OF SERVICE BROWSING FOR

WEB SERVICE SELECTION

by

Shilpi Verma

B.Tech – Computer Science and Engineering,

National Institute of Technology (NIT), India, 2008

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the Program of

Computer Science

ii

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

SHILPI VERMA

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

SHILPI VERMA

iii

EFFECTIVE QUALITY OF SERVICE BROWSING FOR WEB SERVICE SELECTION

Master of Science, 2011

Shilpi Verma

Computer Science

Ryerson University

ABSTRACT

The growing number of Services on the Web has made locating desired Web Services a

sizeable challenge. Web Service requestors deem a Quality of Service (QoS) based Web Service

selection important in terms of providing a relevant and user centric service selection experience.

In this thesis an interactive QoS based Web Service browsing mechanism is proposed, which

makes use of three clustering algorithms including vector-based, preference-based and weighted

clustering. We use symbolic interval data as the principle representation of QoS attributes. The

browsing mechanism which was implemented as part of this research allows service requestors

to prioritize their search by hierarchically clustering their web services. This is done in the order

of their preferences and also by attaching a weight to each QoS attribute, which is a beneficial

compromise between performance-high preference-based clustering and time-efficient vector-

based clustering. Along with several extensive experiments, a user study was conducted in order

to test the usability of this browsing mechanism and to test the overall efficiency and

performance of the three clustering algorithms in comparison. The result of the experiment led to

evidences that preference-based browsing approach was the most efficient one when compared

to vector-based or weighted clustering approaches.

iv

ACKNOWLEDGEMENTS

It gives me great pleasure to be able to express my heartfelt gratitude to all the people

who have helped me complete this significant milestone. Firstly, I am humbly indebted to my

supervisor Dr. Chen (Cherie) Ding, whose support, patience and guidance has made a

monumental contribution to my thesis. She has steered me in the right direction by giving me her

valuable ideas, her time and constant guidance. Her intellectual thoughts and innovative ideas

have always inspired and driven me to accomplish challenging tasks. I will always be deeply

obliged to Dr. Ding for making this possible and staying by my side, helping me achieve this

milestone.

I would like to sincerely thank my Co-supervisor Dr. Isaac Woungang for his support and

his valuable time in reviewing my thesis. I would also like to thank the members of my thesis

defence committee, Dr. Vojislav Misic, Dr. Abdolreza Abhari and Dr. Eric Harley for their

valuable time, support and suggestions.

I am grateful to all the professors at the Department of Computer Science in Ryerson

University, for dedicating their time in keeping me inspired and educated.

I am very thankful to Alex Yakobovich for his immense help, guidance and

encouragement in helping me with the implementation of my ideas. I’d also like to take this

opportunity to thank some key people who helped me stay on track with my goals and steered

me towards the right path and they are: Sonal, Alexey, Kian, Lev, Patrick, Peter and Preethy.

Finally and most importantly, I would like to thank my parents Ms. Meera Verma and Mr.

Chandra Shekhar Verma, and my older sister Nidhi, for always being there for me and

supporting me through every walk of my life. It is their dedication, encouragement, selflessness,

and prayers that keep me going.

v

TABLE OF CONTENTS

ABSTRACT ...iii

ACKNOWLEDGEMENTS .. iv

TABLE OF CONTENTS .. v

LIST OF FIGURES ... vii

LIST OF ALGORITHMS ... viii

LIST OF TABLES .. ix

GLOSSARY OF ACRONYMS ...x

CHAPTER 1- INTRODUCTION ... 1

1.1 Background ... 1

1.2 Motivation ... 2

1.3 Problem Statement .. 4

1.4 Proposed Solution ... 5

1.5 Objectives of the Thesis .. 5

1.6 Organization of the Thesis .. 8

CHAPTER 2 – LITERATURE REVIEW... 10

2.1 QoS for Web Services ... 10

2.2 Data Definition.. 12

2.3 Data Clustering ... 12

2.4 Web Service Discovery and Selection... 15

2.5 Summary ... 19

CHAPTER 3 - CLUSTERING PROCESSES FOR WEB SERVICES ... 20

3.1 Motivating Scenarios .. 20

3.2 Quality of Service and Web Service Discovery .. 22

3.3 QoS data representation .. 25

3.4 Clustering Processes for QoS data .. 28

3.4.1 Overview .. 28

3.4.2 K-means clustering for Interval data .. 29

3.4.3 Three Comparative Clustering approaches ... 31

vi

3.4.4 Weighted Clustering approach ... 34

3.5 Chapter Summary ... 36

CHAPTER 4 - EXPERIMENTS AND PERFORMANCE EVALUATION ... 38

4.1 Overview... 38

4.2 QoS Data Generation .. 38

4.2.1 Data simulation scenarios and Input Parameters .. 40

4.3 Implementation of service selection browsing tool ... 41

4.4 Performance evaluation of QoS based Web Service selection methods .. 45

4.4.1 Experiments conducted based on accuracy .. 45

4.4.1.1 Vector-based clustering applied to dataset1 and dataset2 .. 48

4.4.1.2 Preference-based clustering applied to dataset1 and dataset2 .. 50

4.4.1.3 Weighted clustering applied to dataset1 and dataset2.. 52

4.4.1.4 Inference from experiments conducted based on dataset scenarios 56

4.4.2 Efficiency of the proposed Browsing Methods through Experiments 57

4.4.2.1 Comparison module for time consumed vs. dataset size ... 57

4.4.2.2 Comparison module for time consumed vs. number of attributes...................................... 59

4.4.2.3 Comparison module for time consumed vs. number of clusters .. 62

4.4.2.4 Inference from experiments conducted to evaluate efficiency ... 64

4.4.3 Experiments conducted for usability study... 64

4.4.3.1 Experiment design and results ... 65

4.5 Result analysis and summary .. 73

CHAPTER 5 - CONCLUSION .. 75

5.1 Summary and Results .. 75

5.2 Future Work .. 76

APPENDIX A: DATA GENERATION ... 80

APPENDIX B: SOLUTION CODE ... 92

REFERENCES ... 99

vii

LIST OF FIGURES
Figure 1 Web Service publish-bind-find model (Ran, 2003) ... 2

Figure 2 - Sample tModel (Xu Z. , Martin, Powley, & Zulkernine, 2007) 26

Figure 3 - User menu for clustering (preference-based and weighted) .. 42

Figure 4 - Vector-based clustering with two selected clusters ... 43

Figure 5 - Weighted clustering with one selected cluster ... 44

Figure 6 - Vector-based clustering applied to dataset1 .. 48

Figure 7 - Vector-based clustering applied to dataset2 .. 49

Figure 8 - Preference-based clustering applied to dataset1 .. 50

Figure 9 - Preference-based clustering applied to dataset2 .. 51

Figure 10 - Weighted clustering applied to dataset1 .. 53

Figure 11 - Weighted clustering applied to dataset2 .. 54

Figure 12 - Time taken for each clustering method vs. Size of dataset .. 59

Figure 13 - Time taken for each clustering method vs. Number of attributes 61

Figure 14 - Number of clusters (k-value) vs. Time taken for each clustering method 63

Figure 15 - User success rate for Search Tasks .. 69

Figure 16 - Time efficiency for search tasks .. 70

Figure 17 - Average number of clicks for Search Tasks .. 71

Figure 18 – Evaluation of program usability criteria .. 72

viii

LIST OF ALGORITHMS
Algorithm 1 - Algorithm depicting the steps for K-means clustering for QoS data Error!

Bookmark not defined.6

Algorithm 2 - Algorithm explaining the Steps for Vector-based clustering on QoS data Error!

Bookmark not defined.

Algorithm 3 - Algorithm explaining the steps involved in preference-based clustering for QoS

data .. 30

Algorithm 4 - Algorithm explaining the steps involved in weighted clustering for QoS data 32

ix

LIST OF TABLES
Table 1 - Example of drawbacks of vector-based clustering .. 21

Table 2 - Sample dataset1 with distinct clusters .. 46

Table 3 - Sample values of first cluster within dataset2 ... 47

Table 4 - Time vs. dataset size and cluster grouping within dataset... 58

Table 5 - Number of attributes vs. time taken by each of the clustering methods........................ 60

Table 6- K-value vs. time taken by each of the clustering methods ... 62

Table 7 - Dataset specification for usability study.. 66

Table 8 - Sample search tasks for usability test .. 67

Table 9 - Some results acquired from usability testing... 68

x

GLOSSARY OF ACRONYMS

W3C World Wide Web Consortium

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

HTTP Hyper Text Transfer Protocol

WSDL Web Service Description Language

RPC Remote Procedure Call

XML Extensible Mark-up Language

UDDI

Universal Description, Discovery and

Integration

QoS Quality of Service

MCDM Multiple Criteria Decision Making

WSM Weighted Sum Model

GUI Graphical User Interface

SLA Service Level Agreement

WSLA Web Service Level Agreement

UML Unified Modeling Language

WSCE Web Service Crawler Engine

QWS Quality of Web Service

CPC Cost Per Click

1

CHAPTER 1

INTRODUCTION

1.1 Background

he World Wide Web today has evolved into a dynamic mesh of integral Websites, Web

applications, and Web Services. The W3C (World Wide Web Consortium, 1991) defines

Web Services as “a software system designed to support interoperable machine-to-

machine interaction over a network” (Brugger, 2010). Web Services are based on SOA (Service

Oriented Architecture) which is basically a set of principles that are followed when designing

software systems, with characteristics such as reusability, interoperability, autonomy and

platform independency, etc.

With SOA as a building block, a set of protocols called SOAP (Simple Object Access

Protocol) was evolved. Web Service use the SOAP as an envelope to exchange all their

messages. Since SOAP is an XML-based protocol which uses RPC (Remote Procedure Call)

dialogues and HTTP (Hyper Text Transfer Protocol) as its transfer protocol, it is fairly versatile

and supports interoperability. The behaviour of the Web Service however, is left to be described

by WSDL (Web Service Description Language). The WSDL specification provides an XML

format for documents that define services as an assortment of ports and messages that are bound

together in a reusable manner. A WSDL document provides any client an overview of all the

operations available on the Server.

In order to link services from providers to clientele, UDDI (Universal Description,

Discovery and Integration) was created. UDDI specifies the standard for a service where Web

T

http://en.wikipedia.org/wiki/Interoperability
http://en.wikipedia.org/wiki/Machine-to-Machine
http://en.wikipedia.org/wiki/Machine-to-Machine
http://en.wikipedia.org/wiki/Computer_network

2

Service providers list themselves over the Internet enabling clients to find them and also keep

track of all the services available. Over the years, UDDI has become stagnant, tedious with

obsolete metadata structure. Several service providers like IBM, SAP and Microsoft have

unlisted their listings from the public UDDI nodes (SAP NEWS DESK, December 18, 2005).

1.2 Motivation

Figure 1 Web Service publish-bind-find model (Ran, 2003)

The Web Service publish-bind-find model (Figure 1) is largely dependent on the UDDI

registries which often contain obsolete metadata, incorrect or broken links and incorrect

information (Clark, 2001) and have a big drawback of based only on functional parameters. Even

though several attempts are being made to advance from using UDDI, it is still considered to the

central repository for all service specifications and therefore, a better search and discovery model

is called for.

With fast moving technologies, the demand for interactive and adaptive Web Services

has become preordained. Search engines like Woogle (Dong, Madhavan, & Halevy, Mining

structures for semantics, 2004) and Seekda (Seekda corporate author, 2007) have come up with

efficient crawls based on similarity searches and pattern matching. The biggest limitations with

Web Service search engines however are not only the browsing experience but also the fact that

3

they do not address non-functional searches amongst other things. Non-functional requirements

specify the operational aspects or the behaviour of a system, in other words, non-functional

requirements indicate how the system should be as opposed to functional requirements which

state what the system should do.

It was thus ascertained that QoS based Web Service selection and browsing mechanisms

fall at the core of competent and powerful Web Service search. To address the challenges of an

efficient QoS based search, clustering Web Services based on their attributes in an interactive

browsing system was established to be an effective resolution. Clustering is a method used to

group similar data together. It was adopted as a measure to group similar Web Services together

based on their functionality and requesters’ selection criteria.

Amongst one of the prime motivating factors was also to provide the users with the

option to have a say in the service selection process. The promise user interaction, coupled with

QoS awareness would make people more confident in the use of Web Service selection for

critical tasks. This adds to the foundation of trustworthy service-oriented computing. The idea of

using Multiple Criteria Decision Making (MCDM) (which has been addressed in the Preference-

based model) and a weighted-sum model (WSM) (which has been reflected in the Weighted

model) diversifies the users’ prospects further.

Given the fact that QoS attributes are not always expressed in single numerical variables;

and the fact that clustering is an evolved data analysis process capable of handling any objects,

including symbolic variables in a vector form – it was promptly decided to opt for it for the

purpose of simulating the browsing tool.

4

1.3 Problem Statement

In the light of the current dynamic Web environment, it was ascertained that merely

performing syntactical service search is not enough and it only adds a functionality filter to the

user’s search process. With increasing service populace over the Internet, there exist a number of

non-trivial services with similar functionalities. Therefore, a QoS based service selection

approach is much called for and even though there have been a number of research efforts on

QoS aware Web service discovery and selection, much is to be said about the user’s experience

and involvement in the process.

Service requestors are usually known to have vague quality constraints and requirements

due to which searching on fixed numerical values have posed a problem for several solutions

proposed in the past. An important factor which is often overlooked is that the service requestors

may not have the full knowledge of QoS attributes, or query forming skills which would match

them to their desired Web Services. The need for a browsing tool which interacts with the user,

as well as adapts to the user’s fastidious decisions, has been made evident.

The next problem is that of the data representation of QoS attributes since they are non

functional values which do not have any consistent representation. QoS attributes are best

depicted symbolically, for which reason, interval variables were chosen because interval data is

the most common type of symbolic data. Then the QoS data can be expressed in the form of a

vector, where each vector consists of all the attributes of a particular Web Service, and every

attribute value is represented as an interval. In order to extract patterns from these QoS vectors or

organize them in an effective way, the clustering technique is considered.

5

Lastly, a selection system could support multiple QoS attributes; however, a single user

may not be interested on all of them. It would be important for the system to provide a way for

users to define their preferences so that the data analysis could emphasize on these preferred

attributes.

1.4 Proposed Solution

In order to resolve the problems stated in section 1.2, we propose an approach which

would ease the process of browsing through the functionally similar services on their QoS values

so as to facilitate the later service selection process.

Streamlining the user requirements and helping end-users understand and filter their

constraints is addressed with the help of the browsing tool which, with the aid of a step-by-step

interactive approach and a visualization feature, eases the process.

Since QoS attributes are best depicted symbolically and because Web Services are known

to have a range of values, interval type was considered to be the best representation for each

attribute.

Finally, since vector-based clustering techniques do not provide any flexibility and often

yield only partially satisfactory results, a preference based and weight based mechanism is used

to provide the user with a better browsing and selection experience.

1.5 Objectives of the Thesis

The main purpose of this thesis is to design and implement a QoS browsing tool as a

complement to the existing QoS-based searching and selection techniques. Due to the various

data distribution patterns present in the QoS dataset, the popular vector-based clustering process

6

may not work well for all the datasets. Therefore we take into consideration another two

clustering processes – preference-based clustering and weighted clustering. The former allows

users to define their preferences on QoS attributes and takes a multi-levelled approach to cluster

the dataset and present the result, so that the most preferred attribute values would be clustered

first. Also by clustering on one or a small number of attributes at a time, it puts less cognitive

overload on users to comprehend the presented information. The latter also allows the preference

definition in the form of the attribute weights, and the clustering is done on the whole vector,

however, with different weight on different dimensions. All three clustering processes are

implemented and their effectiveness of dealing with different datasets are investigated and

compared. In order to make a viable contribution in the domain of Web Services, a usability

experiment was conducted to test the capability, performance and feasibility of the implemented

tool. This experiment provided the research with a quality assurance and a tangible concept in

the field of Web Service selection.

The browsing tool which was implemented has a Graphical User interface (GUI) for the

user to navigate through and also has a visualization component where users can see the Web

Service clusters and their distribution in the search space at every step. The GUI has built-in

tracking mechanism for time taken at each step as well as a counter for the number of steps taken

by the user to arrive at the final result.

The contributions made by this work, are listed as follows:

1. Web Service selection has been taken one step further by introducing QoS based

browsing to functionally filtered Web Services. This allows for a more precise and user-

oriented result which is one step over traditional service matching.

7

2. Three service selection browsing methods – vector-based, preference-based and weighted

QoS browsing methods were investigated and implemented for comparison. Earlier,

vector-based clustering method has already been investigated (Sambamoorthy, QoS

Browsing for Web Service Selection, 2009) using a pre-packaged software called

SODUS©. This work uses the base model of that work only for vector-based clustering

approach.

2.1 The vector-based browsing method, although exists in practice, was implemented so a

comparison model could be developed to evaluate the performance of all three

methods.

2.2 The preference-based method breaks the constraints of the vector-based approach and

allows the requestor to prioritize the order of the QoS attributes based on their

personal preferences. This allows for an iteratively tapered process which leaves the

requestor with cluster(s) of desired services.

2.3 The weight-based approach is a compromised solution between vector and preference

based methods and it takes advantages from both sides – allowing users to define

their preferences on various QoS attributes as well as the time-efficiency of the

vector-based method.

3. In order to provide the user with as near a real experience as possible, symbolic data was

used to signify each attribute variable as opposed to single numeric data, thus adding

another dimensionality of range to the data. It was confirmed that K-means clustering

would be the most scalable clustering algorithm since it requires fewer passes on the

entire dataset as opposed to other clustering algorithms.

8

To keep the experience as real as possible, the data sets used were all simulated and

compiled based on inspirations from values of several real data and use-cases respectively. The

use-cases, data distribution patterns and dataset values were all inspired from real time Web

Service found on Web Service search engines like Seekda (Seekda corporate author, 2007).

1.6 Organization of the Thesis

The remainder of the thesis is organized as follows:

Chapter 2 – Literature Review: This chapter is dedicated to providing a narrative of all

the relevant research efforts made in this field. It encompasses the various Web Service selection

methods which are relevant to this study; the various features and characteristics of Web

Services and their functional and non-functional categorization; and among other concepts, Data

clustering, symbolic data types, and various clustering algorithms have also been discussed.

Finally, all ends are tied together to the theory behind the three browsing mechanisms

implemented in this thesis.

Chapter 3 – Different Comparative Clustering Processes for Web Service Selection:

This chapter explains each of the algorithms for vector-based, preference-based and weighted K-

means clustering which was implemented for the interval data. Here, the case of data clustering

is stated with detailed explanations of K-means and the each of the subsequent algorithms.

Chapter 4 – Experimental analysis and performance evaluation: This chapter

accounts the experiments and evaluations conducted in order to analyze the performance of each

of the browsing methods in comparison with each other. Firstly, the data generation and the

simulation scenarios are explained based on which the datasets were simulated for the

experiments.

9

Next, the experiments are divided into three parts – the first one is to evaluate the accuracy of

each of the three service selection methods with the help of certain datasets; the second

experiment records the efficiency of the algorithms and their performance when certain metrics

were tweaked and the third experiment is a usability study conducted over a small demographic

to test the performance and viability of the browsing tool. The inferences of all the evaluations

are then summed up as the result.

Chapter 5 – Conclusion: This chapter concludes by summarizing the key achievements

of this research work with potential recommendations and future work.

10

CHAPTER 2

LITERATURE REVIEW

In this chapter, the various related works which were investigated for this research study

have been discussed. Some of the different domains which will be tackled in this section are:

QoS for Web Services, Data clustering, and Web Service discovery and selection.

2.1 QoS for Web Services

With the advent of increasingly large number of Web Services exchanging hands

between service providers and subscribers, functional and syntactical service discovery methods

yield qualitatively similar Web Services in significant numbers. The term Quality of Service

refers to all non-functional features of a service that may be used to evaluate its quality and

performance characteristics. With a number of services match-made to functionalities, a

semantic solution based on QoS-based Web Service discovery is in high demand. Syntactical

service discovery mechanisms make use of SOA, which is a major software framework which

when used with standard protocols such as SOAP and WSDL help compose Web Services with

same functionalities. However, various services may have different practical applications such as

a banking system that requires services providing a high level of security as opposed to a health

care information system requiring quicker response time (XQ, X.W., & C-J, 2011); yet another

example would be a hotel-car rental system requiring high availability. Service requestors’

global restrictions to functionally composite services may be met effectively by making use of

QoS based service discovery and selection methods.

11

QoS attributes have been classified into separate domains in order to quantify and

organize them and drawing from several research studies (Liu, Ngu, & Zeng, 2004), (Ran, 2003),

the following are the four main classifications:

 Run time related: These QoS-based attributes are related to the run-time of the Web

Services and include scalability, capacity, performance, reliability, avail-ability,

robustness, exception handling, and accuracy.

 Transaction support related: These QoS-based attributes are related to the core

characteristics of the Web Services and include integrity, atomicity, consistency, isolation

and durability.

 Configuration management and cost related: These QoS-based attributes are based on the

configurations and cost management of the Web Services and include regulatory features,

supported standard, stability, cost, and completeness.

 Security related: These QoS-based attributes are based on the security parameters of the

Web Services and include authentication, authorization, confidentiality, accountability,

traceability, data encryption, and non-repudiation.

Composite Web Services are composed from a set of abstract Web Services using the

SOA paradigm, from which a concrete service is selected and used. This ensures flexibility and

loose coupling within this process. QoS parameters play a significant role in determining the

success or failure of the composed application. Therefore, a Service Level Agreement (SLA) is

often used as a contractual agreement between service providers and service users (Alrifai,

Skoutas, & Risse, April 2010). Along the same lines, is the important matter in the subject of

QoS is the service actually rendered to the consumers by service providers. In order to ensure the

delivery and quality of the service, just as advertised in the WSDL of the Web Service, a

12

framework is put in place which caters to the terms, conditions and agreements between the

service providers and the service requestors. This is known as the Web Service Level Agreement

(WSLA) which not only monitors the SLA that binds the two parties but also specifies risk and

failure mitigations. The WSLA essentially provides a runtime architecture and language for

SLAs specification and also determines the logistics and negotiations throughout the SLA life-

cycle. Apart from SLAs, service registries, service consumer feedback and third party

monitoring agents also provide information about web services’ quality attributes (Farhana &

Patrick, 2011).

2.2 Data Definition

In order to perform well-rounded experiments in a QoS aware browsing environment, the

data used had to be drawn from multiple sources verified by publishers, UDDI registry listings,

verified third party engines and SLAs. For this reason, QoS data was examined from various

sources such as Woogle (Dong, Halevy, Madhavan, Nemes, & Zhang, 2004), Seekda (Seekda

corporate author, 2007), (Vu, Hauswirth, Porto, & Aberer, 2006) and Amazon (Amazon Web

Services, 2006).

The processes of data representation and data generation conducted for the purpose of

this research have been explained in section 3.3 and section 4.2 respectively. The software

chosen for simulating these datasets was MATLAB
®
 (MathWorks), which is a MathWorks™

product.

2.3 Data Clustering

Cluster analysis is an expansive domain which deals with various types of data and

application areas. For this purpose of this research study, a survey on cluster analysis was carried

13

out by initiating on a broad base with fundamental concepts and algorithms existing currently.

With a view of focussing solely on clustering semantic relationships and performing QoS based

clustering for Web Service data, this survey provides an insight to the type of clustering methods

finally employed along with its benefits and limitations.

Clustering is defined as the process of grouping together similar objects with an objective

of increasing intra cluster similarity and inter cluster dissimilarity. Clustering is an important

technique since it helps mine useful data from large databases and determines meaningful

relationships between the data in various fields (Han & Kamber, 2001). The two main

categorizations used for data clustering are partitioning clustering and hierarchical clustering

method. Partitioning method allows for a dataset of n objects to be partitioned into k clusters,

(where k <= n) and where each group contains at least one object belonging to exactly one

group. An example of this heuristic approach is K-means clustering, where the each group or

cluster is iteratively calculated based on the collective mean of the group.

Hierarchical methods create a hierarchical decomposition of the given data set either in

an agglomerative approach of a divisive approach. In an agglomerative approach a bottom up

technique is used where each object belongs to a group and eventually these groups are merged

together based on their similarity. In a divisive approach all objects belong to the same group and

eventually they are divided into sub groups based on their similarity measure.

K-means is a type of Partitioning clustering method where n objects (x1, x2,... xn) can be

partitioned into k clusters (S1, S2,... Sk) so as to increase the intra-cluster similarity. In order to

proceed with clustering any given set of data using K-means, the initial prototypes (also known

as mean and later known as centroid) must be determined. The simplest way to select the initial

14

prototypes is through a random selection. For k clusters, k number of prototypes must be selected

(m1, m2... mk). The following are the steps followed to perform K-means clustering:

Step 1: Every data object is assigned to any one mean or centroid located nearest to it.

This distance is measured using any standard distance measurement depending upon the type of

data (for example - Euclidean distance measurement, Manhattan distance measurement,

Minkowski distance measurement etc).

Step 2: The centroid of each cluster is re-calculated by taking the mean of the distances

between each object and the centroid for that cluster. The data objects are re-assigned to the

centroid nearest to them as shown in the assignment step below:

(MacKay, 2003)

Once the new centroid has been calculated, the re-assignment is done as follows:

Si
(t)

 = { xj : || xj – mi
(t)

 || ≤ || xj – mi*
(t)

 || for all i
*
 = 1,... ,k}

(MacKay, 2003)

Step 3: Step 2 is repeated until the algorithm converges such that the centroid no longer

changes from the previous iteration.

Since QoS attributes have a wide range of data types and the nature of the aggregated

data is symbolic, it is was important to consider to a class of clustering algorithms which would

be able to handle symbolic and interval data. Interval data is a collection of continues data values

which represent a variable or a token. QoS attributes often have values which are better

expressed as interval variables since it is not often accurate to take an average, mean or median

15

of variables and express them as single points of reference when they are better expressed as a

series of values.

Interval data clustering (Carvalho, Brito, & Bock, Dynamic clustering for interval data

based on L2 distance, 2006) (Carvalho, Souza, Chavent, & Lechevallier, 2006) (Peng & Li,

2006) has had several applications in dynamic and symbolic data clustering. However, since

interval data which is symbolic makes use of similarity and dissimilarity measures which are

based on location, range and content of the symbolic data type rather than only its numerical

value.

One of the dynamic clustering algorithms explored (Souza & Carvalho, 2004) makes use

of interval data for clustering using a two-step relocation process. Once the initial prototypes

have been identified and the data objects have been assigned allocated to the cluster centers

based on their proximity to the prototypes, the algorithm iteratively locally optimizes the cluster

allocations until the adequacy function converges. The distance between data objects and the

cluster center is measured by two adaptive versions of the city-block distance. In another paper

(Chavent, Carvalho, Lechevallier, & Verde, 2006), the dynamic clustering algorithm is used with

Hausdorff distance measure and the two-component dissimilarity measure. These distance

measures have been known to perform exceedingly better when compared to other forms of

distance measurement which better handle numerical or other data types (Marie & Lechevallier,

2002).

2.4 Web Service Discovery and Selection

With prolific growth in the service discovery and selection area, choosing the most

suitable method given the number of techniques based on the structural and semantic information

16

of services has become a daunting task. Service requestors are often faced with information

overload or tedious syntactical mechanisms or rudimentary search engine crawls.

The domain of Web Service discovery and selection is ever evolving but may be

classified with the following sub-domains (Abramowicz, Haniewicz, Kaczmarek, & Zyskowsk,

2007) (Ran, 2003) (L.Vu, Hauswirth, Porto, & Aberer, 2006) (Wang & Stroulia, 2007) (Xu Z. ,

Martin, W.Powley, & Zulkernine, 2007):

 Functionality Based Selection Methods

 QoS-based Selection Methods

 Trust and Reputation Based Methods

Functionality based methods refer to search and discovery processes that deal with

syntactical and match-making service discovery based on the functionality offered by the Web

Service. QoS-based methods focus on discovering Web Services on a more qualitative scale by

finding services based on their non-functional, performance related attributes. Trust is a

subjective entity which refers to a personalized single-user score or rating on the performance of

a service (Wang & Vassileva, 2007); reputation on the other hand is the public opinion

aggregated on a service gathered by the collective scores from individuals about a particular

service (Keller & Ludwig, March 2003).

There are several research works and studies that have been carried out in the field of

preference-based Web Service selection and weight-based algorithms. One such study (Fan,

Zhang, Shen, & Wang, 2010) focuses on selecting Web Services based on the user’s perspective

of the qualitative and quantitative constraints. In this paper, the authors have suggested that

although the user may know which qualitative factor is important for them, they may not know

17

what quantitative values these factors should have. Thus, two methods have been explored where

subjective weights are assigned to the qualitative factors of the Web Service using the

indifference curve of Cobb-Glass method of preference (Cobb & Douglas, 1928). The service

selection model is based on a cloud model. The important aspect about this paper was the focus

on selecting Web Services based on the QoS factors and then assigning weights based on user-

preference.

Another QoS-based model based on user preference (Cao, Huang, Wang, & Gu, 2009)

employs Q-WSEM (QoS-based Web Service Evaluation Model) which arrives at suitable Web

Services by making use of Web Service evaluation center strategically placed in the middle of a

three layer framework. The first and second layer of service evaluations narrow the constraint

based results on the basis of QoS attributes by using normalization and multi-criterion

optimization. Here, “the preference weight algorithm takes the relative importance judgment of

users about QoS attributes as input parameter.” A decision matrix is used to organize the multi-

attribute decision making and to facilitate the third layer of the service selection model.

Multi criteria decision making (MCDM) is another important aspect which is important

to consider when dealing with multiple QoS attributes and user preference. MCDM is a decision

supporting discipline which strategizes arriving at decisions based on user preferences with the

help of a decision matrix when several criterions exist. There are some research studies that have

been carried out based on the principle of MCDM (Li-Li & Yan, 2009) where the QoS ontology

is transformed into the OWL-S standards and multi criteria decision matrices help extend

weights assigned to QoS attributes based on user preferences into generating suitable Web

Services. The values of the quality parameters are normalized here, and a comparison study

proves that higher numbers reflect higher levels of service. Another technique (Herssens, Jureta,

18

& Faulkner, 2009) uses a UML (Unified Markup Language) based model to gather and represent

the users’ preference and priority relationships between QoS parameters. A fuzzy MCDM

technique is then used to build a set of references, which when assigned with weights provides a

ranking and comparison model.

Another important contribution in the field of selection Web Services based on QoS

parameters is the usage of Top-k Skyline algorithm (Borzsonyi, Kossmann, & Stocker, 2001).

The authors of the research study in consideration (Alrifai, Skoutas, & Risse, April 2010) have

proposed a way to reduce the search space of the candidate services from which to select the

most suitable Web Service; the Skyline method has then been used to break down the end-to-end

QoS constraints specified in the SLA and a hybrid approach is used to locally select only the

most desirable QoS levels of each class. This is achieved by first representing a skyline of the

services in each service class, and then uses K-means clustering to recursively cluster the

services from which one service is chosen as a representative and presented to the user. This

paper also focuses on which service needs attention on which QoS level so as not ot get

dominated by other services.

Another research work which was proposed in the field of QoS based Web Service

selection (Sambamoorthy, QoS Browsing for Web Service Selection, 2009) is considered to be

an important background material for this research. In this study, the author proposed a browsing

method for QoS based Web Service selection using symbolic data analysis and the SODUS

software (Diday & Noirhomme-Fraiture, 2008). In this study, the nature of data related to Web

Services is considered to be symbolic and therefore dealt with as vector-based sets of data

representing the various types of QoS values. Allowing the array of values Web Services can

have, interval based data is used for which purpose the dynamic clustering algorithm based on k-

19

means, called SCLUST, within SODUS software is used for clustering Web Services. This

method also goes on to determining the optimal K-value by making use of certain statistical

indices called C-H index, C index and Γ-index (Hardy & Baune, 2007), (Mali & Mitra, 2003).

This work, although considered vital, had its limitations in that the datasets chosen were drawn

from a single source and were neither drawn from real QoS agents, search engines or SLAs nor

simulated to reflect real scenarios and use cases. Due to the nature of the dynamic clustering

algorithm SCLUST in the SODUS software, only vector-based data was considered which

coupled with the lack of a visual interface yielded only partially useful results. The lack of a

multi-level approach and any user interaction further isolated the results.

2.5 Summary

In this chapter, the various related works that were studied as background material and

considered precedential were accounted. The four main sections in which this chapter was

divided were QoS for Web Services, Data definition, Data Clustering and Web Service discovery

and selection. The motivation giving way to semantic service discovery and the various non-

functional QoS domains have been explain in the first section, following which the various

works in the field of data clustering and symbolic data analysis relevant to this study were

explained. The research leading to the simulation of data sets and the implementation of a

graphical browsing system was explained in the next two sections where various studies

conducted in the field of QoS based Web Service selection as well as in user-centric, preference

and weight-based techniques were divulged.

20

CHAPTER 3

CLUSTERING PROCESSES FOR WEB SERVICES

This chapter focuses on three different clustering processes for implementing QoS

browsing on Web Services. It starts from a few motivating examples showing the necessity of

using different clustering algorithms for the effective QoS browsing. In order to better

understand the QoS browsing and the purpose behind its mechanism, certain areas such as QoS

parameters and the attributes chosen for the purpose of this study; clustering, its types and

specifically k-means clustering algorithm; data definition, representation and its distribution, will

be discussed.

3.1 Motivating Scenarios

Oftentimes, service requestors may not have a set constraint or requirement; they may not

know how to form search queries or have only vague pre-requisites. Furthermore, there is little

chance that the user would know and understand which QoS attributes should have which values.

This indicates towards the need for a browsing tool which would interact with the user to help

narrow down their requirements and help locate desired service(s).

Let us consider an example where a user is interested in subscribing to a Web Service

which provides him/her with the daily weather forecast of his/her city. The requestor would use

keywords to describe the functional requirement on the service by searching on a web service

search engine such as Seekda (Seekda corporate author, 2007). When it comes to searching on

non-functional constraints such as its QoS values, the following are some plausible scenarios:

a) The user may not know the range of the QoS attributes (i.e. the cost range of subscription

for weather related services is from $40 to $100, however the user puts down the

21

requirement as “cost < $30”). In the event that the user does have some idea of what the

ranges of the service QoS values are like, if they provide a query with multiple

requirements, (e.g. “cost < $100” and “response time < 20ms” and “reliability > 95%”),

the result may be null because no service fulfills all the constraints in rigid terms.

However, if the user was exposed to the minimum and maximum ranges of the values,

they may have been able to make an intelligent query with desirable results.

b) If the user were to form a query for a Web Service with the value of reliability >=99%

and cost < $100, the result may be null because all services have a reliability of 97% or

less. This alone is a justification for providing the users with a clustered result so if their

query was to view results with services having reliability >95%, they would see all the

services between 95% and 100% reliability and thus be able to pick one.

c) An important drawback of using vector-based clustering would be the fact that it ties the

user to only one attribute of choice. In vector-based clustering, should the user desire

attribute values which fall into different clusters, the user would have to choose only one.

However, if the user is provided with the clusters on an attribute by attribute basis, in the

order of the most preferred attribute(s), the user will get their pick every step of the way.

For example, if there are three clusters as shown in Table 1, the user would not be able to

choose the desired values as marked below:

Cluster Cost Response Time Reliability

Cluster 1 100-199 30-39 60-69

Cluster 2 200-299 20-29 70-79

Cluster 3 300-399 40-49 80-89

Table 1 - Example of drawbacks of vector-based clustering

22

However, as denoted in Table 1, if the user was presented every cluster for every

attribute separately, in the order of preference, it would allow them to choose their

desired value for every attribute. Alternately, to be more time-efficient, if a weight was

attached to each attribute signifying the preference order, the user would be able to get a

customized vector-based clustering clustered in the desired priority.

d) It can also be inferred from table one that if a user wished to have different number of

clusters to choose from for each attribute, it would not be possible in vector-based

clustering. However, a step-by-step multi-level approach provisioned by preference-

based clustering does allow users to vary the number of cluster they desire for each

attribute.

e) Another aspect to consider here is the tendency to trigger an information overload on

service requestors. A query result with a list of Web Services having multi dimensional

vectors with a number of different values could overburden the requestor and lead to ill-

formed decisions.

A lot of research has been done in this field and other clustering based, Web Service

discovery tools have been proposed (Sambamoorthy, Interactive QoS bowsing for web service

selection, 2009). However, the need for a unique browsing system which exceeded the

limitations of integer data type, vector based clustering and yet be effective and efficient in terms

of CPU expense, time and customer satisfaction were the key driving elements for this study.

3.2 Quality of Service and Web Service Discovery

The term “Quality of Service” is an expression used to state non-functional requirements

for different areas such as network research community and in real time issues (Cruz, 1995)

(CLARK, 1992). For the purpose of this study, Quality of Service (QoS) is defined as a set of

23

non-functional attributes which depict the quality delivered by a Web Service. QoS of web

services can be organized into several categories such as run-time related, security related or

transaction related [reference]; some of the most popular ones (and the ones used for data

simulations in this study) are listed as follows:

1. Cost – Cost describes the price of the service listed by the service provider. More often

than not, this price is determined by the number of invocations or simply for a flat time

period of subscription. For the sake of simplicity, this attribute will be measured in U.S.

Dollars ($).

2. Response Time – Response time is the time taken by a Web Service to complete a request

made by a user. This time is either the guaranteed max or the average time required to

complete a service task (Gunther, 1998). This attribute is measured in milliseconds (ms).

3. Reliability – The ability of a Web Service to deliver successfully as stated in its WSLA

(Web Service Level Agreement) is known as its reliability. It may be measured by:

“Mean time between failure (MTBF), Mean time to Failure (MTF), and Mean time to

transition (MTTT)”. It is closely related to the availability of a Web Service (Gunther,

1998). It is measured in percentage (%).

4. Availability: The probability of a system to be up and accessible is known as availability.

It may be measured by:

where:

<upTime> is the total time the system has been up during the measurement period.

<downTime> is the total time the system has been down during the measurement period.

24

<totalTime> is the total measurement time, is the sum of <upTime> and <downTime>

(Gunther, 1998). It is measured in percentage (%).

5. Accessibility: Accessibility may be defined as the probability of successful reach and

installation by service requestors at a given point of time. It is measured in percentage

(%).

6. Security: Security may be defined as the level of privacy a web service provides to its

subscribers. These may include confidentiality measures, third party access to user

information, message encryption and providing access control. This attribute may be

measured on a scale of 100, 100 being the most secure, private and rigid in terms of

access control and 1 being the most lenient.

7. Compliance: Compliance relates to the successful accordance of the service i.e. the

percentage of times the users’ requests have been understood and complied with

successfully. It is measured in percentage (%).

8. Latency: Latency is measured as the delay time of the service itself, or the amount of

first-response time taken by the service to acknowledge the receipt of a request (it is

different from response time, as response time is the actual time taken by the service to

complete the users’ request). It is measured in milliseconds (ms).

9. Flexibility: Flexibility of a Web Service is the degree to which it functions correctly even

in the presence of invalid or conflicting inputs (Gunther, 1998). It is measured in

percentage (%).

QoS attributes also function as a benchmark which distinguishes one service provider

from the other and build its trust and reputation. Research efforts have been made where users

would be allowed to submit a rating or feedback on their experiences of service qualities or third

25

party agents would perform non-biased surveys and monitoring on service qualities in order to

avoid service providers from promoting incorrect and conflicting QoS values.

In order to follow industry best practises and to achieve a standard for these QoS

attributes, major efforts such as Web Service Level Agreements (WSLA) [(IBM Corporation,

2003), (Keller & Ludwig, March 2003), (Ludwig, A., Dan, & King, March, 2003)] and Web

Service Policy Framework (Bajaj, 2006) were put in place. These standards represent a complex

framework focusing not only on QoS specifications, but also on a complete set of aspects related

to Web Services. WSLA documents refer to contracts signed between service providers and

subscribers upon agreeing to the terms of service with respect to quality. The challenge however

remained in the assurance of compliance of such contracts and agreements. Monitoring agencies

and third party agents are therefore used as policing agents who account for QoS deliveries and

their accuracy levels.

3.3 QoS data representation

It has been established that QoS data has been categorized and defined to cater to the

service providers and requestors. These attributes, by their very nature, are dynamic and in order

to describe and represent them correctly, any single valued data variable is unsuitable and

inappropriate.

A tModel is a data structure defining a Web Service in the UDDI registry. It organizes

the specifications of the Web Service and makes it available on the service registry. There have

been studies [(Devis, Antonellis, & Melochiori, 2004), (Lamparter, Ankolekar, Studer, &

Grimm, 2007), (Ran, 2003)] where the value of the QoS variable is represented as a single

valued integer variable, for example, in the tModel given below:

26

<categoryBag>

<keyedReference

tModelKey="uddi:uddi.org:QoS:Price"

keyName="Price Per Transaction"

keyValue=" 0.01" />

<keyedReference

tModelKey="uddi:uddi.org:QoS:ResponseTime"

keyName="Average ResponseTime"

keyValue="0.05" />

<keyedReference

tModelKey="uddi:uddi.org:QoS:Availability"

keyName="Availability"

keyValue="99.99" />

<keyedReference

tModelKey="uddi:uddi.org:QoS:Throughput"

keyName=" Throughput"

keyValue="500" />

</categoryBag>

</tModel>
Figure 2 - Sample tModel (Xu Z. , Martin, Powley, & Zulkernine, 2007)

In the tModel shown in Figure 2, values for services have been simplified and thus

compromised in their accuracy. Often, services may have more than one value for a particular

constraint. Furthermore, users often have range requirements instead of a requirement of a fixed

single value, e.g. a service with cost greater than $50 but less than $ 100 or a service with

27

reliability > 95%. A single value or measurement unit may not accurately identify the value of

the service or its magnitude on a scale. Service providers often have to provide the average,

mean or median of the actual deliverables, which sometimes completely deviates from the real

picture. It would be more suitable from the requestor’s perspective, to provide them with a range

of values which indicate the promised assortment of values. This would not only increase the

accuracy and assurance value of the quality but also align with the compliance clauses of the

respective WSLA. Another positive outcome of adapting attributes with a range would be

incorporating scenarios where publishers need only provide a maximum and minimum value of

their services which would allow potential subscribers to gauge their minimum and maximum

values (for example their performance or reliability highs and lows) and make an informed

decision.

Since QoS attributes have a wide range of data types in which they can be expressed;

such as Boolean, real, integer, enumeration, etc. [(Devis, Antonellis, & Melochiori, 2004), (Liu,

Ngu, & Zeng, 2004)]. It can thus be ascertained that QoS attributes are best represented as

symbolic data type, among which the interval type is the most common one. Interval data is

described as “a group of variables, each of which contains a range of continuous values instead

of the traditional single continuous or discrete values” (Peng & Li, 2006). An Interval data type

would resolve the inaccuracy problem caused by representing QoS values with the average or

mean value, and in the meantime, provide the user with the ability to define their requirements in

unrestrictive or vague terms such as a service with “$40 < price < $100”, a “response time < 300

milliseconds” and “reliability > 95%”. Since WSLAs already have the provision of representing

QoS attributes as interval values (Ludwig, A., Dan, & King, March, 2003), the datasets used to

in this study have made use of interval variables of a symbolic data type which have eliminated

28

the need to normalize the data, thus adding the robustness other standardized, manipulated or

normalized data may lack.

As discussed in previous works (Liu, Ngu, & Zeng, 2004), due to the dynamic nature of

Web Services, it isn’t feasible to maintain a single, static central repository for all QoS

parameters, some of which may be domain specific applicable to certain Web Services and not

the others. Therefore, a number of generic QoS criteria, such as cost, response time, reliability

and other attributes already discussed and defined would be stored in a matrix of data where each

row would represent a Web Service and each column a QoS attribute. Thus, each row would

consist of a vector of QoS attribute values.

3.4 Clustering Processes for QoS data

3.4.1 Overview

As mentioned earlier, QoS data of web services can be represented as vectors of interval

data. In normal clustering process, a data object (in our case a vector) is the unit for clustering.

So the vector-based clustering is the first clustering process we are going to study. We have

presented in Section 3.1 that in some use case scenarios, vector-based clustering would not work

properly to reveal the true pattern in the dataset. And therefore, we propose another two

clustering processes we could follow according to the data distribution patterns – preference-

based clustering and weighted clustering. In preference-based clustering, a QoS vector will be

segmented into a few parts based on user’s preferences. Services will be clustered based on one

or a few QoS attributes at a time, following their preference orders, starting from the most

preferred ones to the least preferred ones. In this way, if a dataset has natural groupings on one or

a few attributes instead of the whole attribute set, the pattern could be revealed from the

clustering result. Since preference-based clustering may take longer time to achieve the final

29

result compared with the vector-based clustering, weighted clustering is considered as a

compromised solution between the two clustering processes. In weighted clustering, weights will

be assigned to different attributes based on user preferences, in the hope that the pattern on most

important attributes could be revealed more clearly. Weighted clustering also forms clusters on

the whole vectors, and thus its efficiency level should be comparable to the vector-based

clustering.

3.4.2 K-means clustering for Interval data

K-means clustering is a type of partitioning clustering algorithm. It is probably the most

well-known and commonly used clustering algorithm. It is chosen as the clustering algorithm for

our vector-based clustering process due to its simplicity and its provision to allow users to fix the

number of clusters a priori. Initially, k objects are chosen randomly as the centroids (cluster

centres or cluster prototypes) of k clusters where each object is placed into any one of these k

clusters depending on which centroid is closer in distance. Based on this distribution of objects,

the algorithm then calculates new k centroids which are the bary-centres of the clusters from the

previous step [(Han, Taehwan, & J.). The redistribution of objects within these new k centroids

recurs iteratively until the centroids are stable and the algorithm has converged. In order to

perform the distance measurements to determine the dissimilarity between interval data objects,

the most commonly used distance measures are city block or Hausdorff distance measure.

The steps for K-means algorithm can be described as follows:

1. The number of required clusters k is determined where each data object is placed in its own

cluster and random k values are chosen as the cluster centres of the dataset. These initial

cluster centres are also known as cluster prototypes.

30

2. Based on an appropriate distance measure, city block or Hausdorff in case of interval-based

vector data, the data objects are each assigned to the centroid nearest to them.

3. Once all the data objects have been assigned to a cluster, a recalculation of centroids occurs

where cluster centres are now determined as the arithmetic-mean or average of all the points

in the cluster.

4. The data objects are now reassigned to centroids based on the new distance calculations and

the last two steps are repeated iteratively until the new centroids no longer change and are the

same as the old centroids and the algorithm’s convergence criteria is met.

Algorithm 1 - Algorithm depicting the steps for K-means clustering for QoS data

Since the input to the clustering algorithm is in the form of a vector, a set of n QoS

vectors, QS = {Q1, Q2, …,Qn} are described by p interval variables. Each QoS vector Qi (i=1, 2,

…,n) is represented as xi = (xi
1
, xi

2
, …,xi

p
) where, xi

y
 = [ai

y
, bi

y
] (y=1,2,…,p) represent the start

and end points of the interval values.

The convergence criterion is defined by:

 ∑ ∑

where,

P = (C1 + C2 +... +Ck) of Qs in k clusters and a set of cluster prototypes G = (G1, G2,… GK)

D(CQi,Gk) is the dissimilarity measure between CQi ϵ Ck and the cluster centre Gk of Ck.

The city block distance is defined as the sum of the differences between the upper and the

lower bounds of the interval which represent each attribute in the QoS vector. Hausdorff distance

31

is given by the maximum value of the upper and lower bound values of the interval for the two

QoS vectors.

The city block distance and the Hausdorff distance are described as follows:

 () ∑

 | | |)

 () ∑

 | | |)

where, qs and qe refer to corresponding interval bounds of the QoS attribute of the i
th

 and j
th

quality vectors.

3.4.3 Three Comparative Clustering approaches

In previous works done in this field where vector-based clustering has been used to

browse and select Web Services based on non-functional parameters, some of the key drawbacks

have been the inability to cluster and browse uninhibitedly between attributes, choosing and

select any clusters in desired order to preference. Information overload on users and the inability

to reveal true data patterns have also been significant limitations.

In order to understand the preference-based and weighted clustering processes on QoS

data, it is important to understand the schema of vector-based clustering process. The following

are the steps followed in an interactive vector-based clustering:

32

1. Let N = Number of functionally similar services.

2. Let QS = {Q1, Q2, …, QN} be a set of N QoS vectors and p the number of QoS attributes in

QSi for (i=1,2,…N).

3. Input QS to the interval clustering algorithm. Present the clustering results of k clusters to

requestors as i) Gk given by ([gq1s,k, gq1e,k], ([gq2s,k, gq2e,k], …, [gqps,k, gqpe,k]) prototypes in

(C1, C2, …, Ck) clusters ii) n; the size of cluster Cj for (j = 1…, k) and iii) Range [qmaxs,i,

qmaxe,i] for entire partition P(k) and (i = 1,2…,p).

4. Input condn; (where condn- requestor’s input)

5. While (condn = yes)

6. Requester selects (k*); where k* is the requestor’s selection from K clusters based on QoS

attribute values.

7. Repeat steps 3-4 for QSk*

8. End browsing.

Algorithm 2 - Steps for Vector-based clustering on QoS data

In vector-based algorithm, each vector (which is made up of several interval attribute

values) is treated as a whole and clustered using K-means. The above steps are similar to the

dynamic clustering algorithm for QoS data implemented in the SODUS software package as seen

in similar research efforts previously (Sambamoorthy, Interactive QoS bowsing for web service

selection, 2009). However, several drawbacks in that study apart from the drawbacks of vector-

clustering itself were the absence of any user interaction, the ambiguity in cluster distinction due

to the lack of clear visualization and the lack of control over the service selection decisions.

In comparison with vector-based clustering, preference-based and weighted clustering

methods have a more open approach to interaction and multi-level selection process. The steps

for preference-based clustering will now be explained which will allow a better understanding of

33

the framework that has been put in place for the service selection tool. The general scheme of the

algorithm is as follows:

1. Let QS = {Q1, Q2, …,Qn} be a set of n QoS vectors described by p interval variables.

2. Each QoS vector Qi (i=1, 2, …,n) is represented as xi = (xi
1
, xi

2
, …,xi

p
)

where:

xi
y
 = [ai

y
, bi

y
] (y=1,2,…,p) represent the start and end points of the interval values.

 If preference-based clustering method is chosen,

then

The requestor is asked to order the QoS attributes according to his preference from 1

to z (1<=z1<=z2 <=… <=z) where (z <= p)

 Set j=1 for the attribute with first priority and set QSj = QS.

3. The user is asked to input the number of clusters k.

4. Random k mean values (centroids) are chosen from the set QS (m1, m2, …, mk).

5. Each interval object is assigned to its closest mean using city block distance measurement

for symbolic interval objects.

Si
(t)

 = { xj || d(xj, mr
(t)

|| <= || d(xj, mr*
(t)

}

For all r* = 1, 2,…, k.

Where, d(xj, mr) = ∑y=1p φ (xi
y
 , mr

y
) such that;

φ (xi
y
 , mr

y
) = | aj

y
 – αj

y
 | + |bj

y
 – βj

y
 |

6. Now, the new mean of the centroid of the observations in the cluster is calculated:

mr(t+1) = 1 / (Si(t) ∑x(j) € Si (t) xj

7. Step 6 and step 7 are repeated until convergence has reached and all objects belong to a

certain cluster.

34

8. The result of Si clusters is presented to the requestor with related information such as size

and prototype.

9. The requestor may then make an informed decision and choose h (0 < h <=Si) clusters

and then continue with step 12. However, if j > 1, the user may choose to go back to the

previous level to change a previous decision. In this case, j is set to j-- and the user is

taken back to step 5.

10. 11: j is set to j++ and QSj = {Qi | Qi € the h selected clusters). As long as j <= p1 and QSj

is not empty, steps are repeated from step 4 to step 11.

11. End.

Algorithm 3 - Algorithm explaining the steps involved in preference-based clustering for QoS data

For preference-based clustering, each attribute in the vector is independently controlled

based on the preference value entered by the user. Once the user has prioritized this order, the

attributes get clustered in that order iteratively. Each time the results of clustering is presented to

the user, they have the option of selecting one or more clusters which will form the basis for the

search space for the next attribute in order.

 3.4.4 Weighted Clustering approach

As seen in section 3.4.3, the user ends up with a set of desired services which fit their bill

of requirements. This process, although construed as an intuitive method with time-efficient

performance, was more time consuming on the user’s end due to its multi-level nature. Weight

based clustering on the other hand, with a few minor compromises, proved to an effective solder

between vector-based and preference-based clustering. The steps followed in the weighted

clustering are as follows:

35

1. Let QS = {Q1, Q2, …,Qn} be a set of n QoS vectors described by p interval variables.

2. Each QoS vector Qi (i=1, 2, …,n) is represented as xi = (xi
1
, xi

2
, …,xi

p
)

where,

xi
y
 = [ai

y
, bi

y
] (j=1,2,…,p) represent the start and end points of the interval values.

3. If weighted clustering method is chosen,

then

A weight wb is assigned to each attribute where 0 < w < 1 and b = (1,2,..., n) correspond

to each attribute.

4. The user is asked to input the number of clusters k.

5. Random k mean values are chosen in the set QS (m1, m2, …, mk).

6. Each interval object is assigned to its closest mean using city block distance measurement for

symbolic interval objects.

Si
(t)

 = { xj || d(xj, mr
(t)

|| <= || d(xj, mr*
(t)

}

For all r* = 1, 2,…, k.

Where, d(xj, mr) = ∑y=1p φ (xi
y
 , mr

y
) such that,

For weighted clustering method:

φ (xi
y
 , mr

y
) = |w1 (aj

y
) – w2 (αj

y
)| + | w1(bj

y
) – w2 (βj

y
) |

assuming w1 is the weight assigned to xj i.e. aj,bj and w2 is the weight assigned to mr i.e. αj,βj.

7. Now, the new mean of the centroid of the observations in the cluster is calculated:

mr(t+1) = 1 / (Si(t) ∑x(j) € Si (t) xj

8. Step 6 and step 7 are repeated until convergence has reached and all objects belong to a

certain cluster.

36

9. The result of Si clusters is presented to the requestor with related information such as size

and prototype.

10. The requestor may then make an informed decision and choose h (0 < h <=Si) clusters and

then continue with step 12. However, if j > 1, the user may choose to go back to the previous

level to change a previous decision. In this case, j is set to j-- and the user is taken back to

step 5.

11. j is set to j++ and QSj = {Qi | Qi € the h selected clusters). As long as QSj is not empty, steps

are repeated from step 4 to step 11.

12. End.

Algorithm 4 - Algorithm explaining the steps involved in weighted clustering for QoS data

In the weighted clustering process, the user is asked to assign a weight to each attribute

according to its importance level. Although the clustering is performed on the whole vector,

compared with the vector-based clustering, the natural groupings on those important attributes

are more likely to be revealed due to the higher weights assigned to them. It keeps the same level

of efficiency as the vector-based clustering process, whereas avoid the problem of its inability of

identifying the pattern for indistinguishable dataset.

3.5 Chapter Summary

In conclusion, this chapter presents the framework of the Web Service selection tool

implemented; the algorithms which substantiate its functions, namely – vector-based clustering

approach, preference-based clustering approach and weighted clustering approach. Having

established that K-means was the most adaptive algorithm to use with QoS-based, symbolic

interval data type, use cases were described demonstrating the need to augment from vector-

based approach to more interactive and efficient methods like preference-based and weighted

37

clustering. On the basis of the algorithms described, the service selection tool was implemented

complete with a dataset repository and a visualization tool. The chapter was concluded with

screen captures of the service selection tool to point indicate the steps and workings of the

browsing tool.

38

CHAPTER 4

EXPERIMENTS AND PERFORMANCE EVALUATION

4.1 Overview

 This chapter illustrates the experiments and the usability studies carried out to analyse the

performance of the browsing mechanism proposed and evaluate its viability. Before the

experiments are carried out, the datasets which were generated for the purpose of this study will

be explained in detail along with the data distribution and cases used to simulate these datasets.

Following this, the implementation of the tool and the programming sequence will be explained.

The evaluation of the QoS based browsing tool was conducted in three segments –

evaluation of the accuracy of three clustering processes, evaluation of their efficiencies and

evaluation based on the usability study. The evaluation on and the system efficiency

demonstrates the time efficacy and the performance of each of clustering approaches in

comparison with each other based on certain metrics. The evaluation based on the simulation

scenarios and use cases was conducted to demonstrate the ease and clarity with which

preference-based and weight-based approaches trump over the vector-based approach in terms of

identifying relevant services. Finally, a user study was conducted to test the usability of the

implemented browsing mechanism and to evaluate the real-time results recorded.

4.2 QoS Data Generation

The QWS (Quality of Web Service) dataset is one of the more well known datasets which

are used by Web Service researchers to conduct experiments for their research efforts. There are

approximately 5000 Web Services collected for this dataset with a subset of 365 real Web

Service implementations as of March 2008 (Al-Masri & Mahmoud, 2008). These services were

39

collected using the Web Service Crawler Engine (WSCE) which crawls over a variety of public

sources including the UDDI registries, search engines, and service portals. This dataset formed

the basis of the experiments conducted in Interactive QoS browsing for Web Services

(Sambamoorthy, QoS Browsing for Web Service Selection, 2009).

A search engine like Seekda (Seekda corporate author, 2007) is also a popular portal for

searching for real Web Services and relevant measures attached to them. However, it was

concluded that neither of the existing sources met with all the dataset requirements of the

experiments conducted in this thesis since they consisted of no real data patterns. For the purpose

of this thesis it was considered important to simulate datasets which reflected real datasets and

also incorporated various use cases and scenarios. Since this is a comparative study for various

types of Web Service clustering methods, it was considered important to have a variety of

datasets for a keener performance evaluation.

In order to simulate these datasets, MATLAB
®
 (MATrix LABoratory) (MathWorks),

which is a MathWorks ™ product, was used. MATLAB is a widely recognized tool for

numerical computing and statistical analysis. The functions used for data simulation were –

normrnd (mu, sigma, m, n) and sort (x, y); where, normrnd generates random numbers following

the normal distribution with mean parameter mu (µ) and standard deviation parameter sigma (σ)

in an mxn array; sort is a function used to used scalar x in y columns in ascending or descending

order. These functions were chosen because the datasets were determined to best have a

multivariate normal distribution.

There were a total of 24 datasets which were officially used to the purpose of

performance analysis and usability study. The datasets were generated in MATLAB and

40

exported to a Microsoft Excel file from where it was saved as a tab delimited text file which was

directly fed into the Web Service selection program.

4.2.1 Data simulation scenarios and Input Parameters

 The following are the simulation scenarios and the use-cases considered when generating

the datasets with the following cluster distributions:

 Distinct clusters: These datasets were generated keeping in mind data where the cluster

would be clearly distinct and far apart from each other, with a large difference in mean

values and relatively smaller deviations.

Datasets with distinct cluster groupings were generated with variations like different data

size (with 300, 3000 or 30,000 objects in each), different number of attributes (such as 3,

4, 6 or 9 attributes) and different number of sub-cluster groupings within each cluster

grouping (such as 1, 3, 4, 6 etc).

 Indistinct clusters: These datasets were generated with indistinct, overlapping cluster

groupings with smaller difference in mean values and larger deviations. These datasets

also had variations with respect to size and number of attributes.

 Distinct clusters with indistinct sub-clusters: These sample datasets were

generated with three main clusters within which overlapping sub clusters were

created with large standard deviations.

 Partially overlapping clusters: These were datasets where some of the attributes

had overlapping cluster groupings while others had distinctly aligned cluster

groupings.

 Completely overlapping clusters: These datasets were generated with completely

overlapping clusters with almost continuous mean-values and large deviations.

41

 Redundant clusters: These datasets was generated with the view that more than

one dataset could contain one or more attributes having duplicate values present

in more than one QoS vectors which may fall under different clusters and produce

different results for different clustering methods.

 Different number of clusters for different attributes: These datasets were

simulated with different number of clusters within each attribute.

4.3 Implementation of service selection browsing tool

The implementation of this tool was done in C# language using Microsoft Visual Studio.

It was chosen as the most suitable platform due to its object oriented support and graphical user

interface (GUI) design support. Along with implementing each of the algorithms cohesively into

a sound GUI, it was also considered important to implement a visualization feature to present the

user with a visual of the distribution of clusters and to simply the process of choosing the

cluster(s) significantly.

The structure of the tool maybe well explained with the help of a few screen captures of

the tool. For the purpose of this representation, the dataset chosen had a three attributes – Cost,

Response Time and Reliability with pre-defined cluster groupings of 3 distinct clusters and 3

distinct sub-clusters each.

1. A user is first presented with the data selection menu where the user can browse all the

datasets present in the repository which matches the required format of the dataset.

2. If a user wishes to cluster the services using the vector-based clustering approach, the desired

dataset is selected and the preference order of the attributes is, by default, uniformed to 1.

42

3. If a user wishes to cluster the services using the preference-based clustering approach, the

desired dataset is selected and the order of preference is chosen from the drop down menu as

required.

4. If a user wishes to cluster the services using the weighted clustering approach, the desired

dataset is selected and, under the weighted clustering tab, the order of weights may be

adjusted as desired such that the sum total of the weights is 1.

Figure 3 - User menu for clustering (preference-based and weighted)

 If the user has chosen to opt for vector-based clustering, the user menu for clustering

will open up, prompting them to enter the number of clusters they require and to

calculate the clusters. As soon as the results are clustered, the user now has the option

to select any number of clusters and also visualize them on the plotting feature

implemented. Every cluster is represented with its number, size and centroid interval

values and clicking on it plots its distribution of the visualization feature.

43

Figure 4 - Vector-based clustering with two selected clusters

 The same process is also followed for weighted clustering, except for the order in

which the attributes are presented – which is in descending order of the weights

assigned to each attribute.

44

Figure 5 - Weighted clustering with one selected cluster

 For preference-based approach, the user will be presented with each attribute in the

order of preference where the user will only be prompted to enter the number of

clusters they want to see for current attribute. When the user has selected the number

of clusters they wish to proceed with for the current attribute, they may go to the next

attribute until all the attributes have been exhausted.

 After each cluster has been calculated, the user is also provided with the time taken to

calculate the clusters and the total number of clicks or steps acquired. The user may

choose a different number of clusters at any time and re-calculate the clusters.

45

Finally, when the user gets to the results page, a summary of the service selection is presented

along with the time taken (in milliseconds) and number of steps taken to reach the results (this

includes any backtracking the user may have done).

4.4 Performance evaluation of QoS based Web Service selection methods

As discussed in section 4.1, three groups of experiments were carried out to determine the

performance of each of the browsing mechanisms developed namely – vector-based clustering

approach, preference-based clustering approach and weight-based clustering approach.

The evaluations have been divided into three parts – the first was to evaluate the accuracy

and effectiveness of the browsing methods with different dataset scenarios; the second

experiment was carried out to evaluate the efficiency of different browsing methods; the third

one was a user study carried out to draw a comparison among these three approaches regarding

their performance from users’ perspectives.

4.4.1 Experiments conducted based on accuracy

This experiment was conducted to draw a comparison between the clustering results

produced by vector-based, preference-based and weighted clustering methods. In order to

analyze the accuracy of these methods, different data distribution patterns of the datasets should

be considered. The purpose of generating these different datasets was to investigate the

effectiveness of the three clustering processes when being used on data following different

distribution patterns, e.g. multi-dimensional data vectors naturally forming into groups, datasets

with natural groupings found in one or a few but not all dimensions, datasets with data in each

dimension formed into a small number of groups whereas as a vector scattered into a large

number of sparse groups due to the combinatory effect, etc. As we all know, clustering

46

algorithms may not work well for all data distribution patterns, e.g. data following a uniformed

distribution pattern. Even when there is a certain level of natural groupings found in the dataset,

depending on the actual pattern, one clustering approach may work better than the other.

For a multi-dimensional dataset, the chance to identify natural groupings among the data

vectors is very low, however, the chance for data on individual dimensions to have some natural

groupings is much higher, and definitely, it is possible that we cannot find any natural grouping

patterns on some dimensions. There would be many possible data distribution patterns to follow.

In our experiment, to simplify the testing scenarios and emphasize more on scenarios when

clustering works, we generate the datasets such that data in one dimension can be grouped into a

small number of clusters, whereas vectors may or may not be easily grouped into a reasonable

number of clusters. Below, we use two sample datasets to illustrate the comparison results.In

order to analyze the results, two different types of sample datasets were considered:

Dataset 1: This dataset was generated in accordance with the distribution of all the other

datasets generated for this study i.e. it followed a multivariate normal distribution.

Clust 1 (1000)

(330,330,340)

Cost ($) Response Time (ms) Reliability (scale of 100)

µ11 = 55 σ11 = 2.0 µ11 = 100 σ11 = 2.0 µ12 = 10 σ11 = 1.0

µ12 = 80 σ12 = 2.0 µ12 = 140 σ12 = 1.8 µ13 = 17 σ12 = 1.2

µ13 = 125 σ13 = 2.0 µ13 = 170 σ13 = 3.0 µ14 = 23 σ13 = 0.9

Clust 2 (1000)

(330,330,340)

µ21 = 310 σ21 = 3.0 µ21 = 400 σ21 = 3.0 µ22 = 42 σ21 = 0.8

µ22 = 360 σ22 = 3.6 µ22 = 450 σ22 = 2.4 µ23 = 49 σ22 = 1.3

µ23 = 420 σ23 = 4.0 µ23 = 510 σ23 = 4.0 µ24 = 56 σ23 = 0.6

Clust 3 (1000)

(330,330,340)

µ31 = 660 σ31 = 2.5 µ31 = 760 σ31 = 3.6 µ31 = 77 σ31 = 1.2

µ32 = 700 σ32 = 3.9 µ32 = 800 σ32 = 3.0 µ32 = 83 σ32 = 1.0

µ33 = 740 σ33 = 2.0 µ33 = 830 σ33 = 2.0 µ33 = 89 σ33 = 0.9
Table 2 - Sample dataset1 with distinct clusters

Table 2 shows all the mean values and the deviations used to generate the dataset1. This

dataset was generated with three attributes, namely cost, response time and reliability; 3 distinct

47

clusters, each having 3 distinct sub-clusters within it. Each cluster had 1000 data objects and

each of the three sub-clusters had 330, 330 and 340 data objects respectively. In this dataset, the

clusters for all three attributes as a whole are consistent with the clusters for each individual

attribute.

Dataset 2: In this dataset, the mean and the variance values for each attribute are the

same as those in dataset1, however, the vectors on each dimension take values from different

clusters randomly and inconsistently. With the purpose of clearly illustrating this dataset, the

values of some of the QoS vectors within the first cluster are shown as follows:

Vector Cost Response Time Reliability

V11 51.4106 52.0168 827.5879 828.9999 15.01601085 16.40055445

V12 53.5154 56.6808 513.1627 515.6502 90.25130957 90.44658655

V13 52.8768 53.2239 507.8527 513.4168 82.1930349 83.2157025

V14 55.2002 59.7009 139.5173 142.0652 82.91533743 83.36551409

V15 53.7688 53.9109 171.5768 174.6953 87.82043318 88.56912676

V21 76.8459 80.6151 171.5768 174.6953 41.55582789 42.37364703

V22 77.4858 81.0159 138.9387 140.8081 82.18391199 82.32017882

V23 78.2691 80.564 168.6518 175.3955 48.76342773 49.48131977

V24 79.6469 80.067 164.92 174.5698 82.36917166 83.43738986

V25 77.3326 81.5828 97.1511 101.7728 89.31024055 90.43079527

V31 125.1599 125.9433 511.4156 513.3135 22.96826917 24.58403481

V32 122.5743 123.103 400.375 402.3721 9.453811319 10.27951506

V33 125.1324 125.823 801.6929 804.2689 56.21122461 56.35002629

V34 126.3047 126.354 794.5096 804.0235 48.82107482 49.93053083

V35 125.6541 126.7155 398.6144 399.1517 89.15412145 89.38059961
Table 3 - Sample values of first cluster within dataset2

From Table 3, we could see that on the dimension of cost, the data distributions are the

same as in dataset1, which clearly shows 3 groups of data, whereas on the other two dimensions,

for vectors with cost values falling into a same cluster, their response time or reliability values

may come from all different clusters.

48

4.4.1.1 Vector-based clustering applied to dataset1 and dataset2

With the purpose of observing how vector-based clustering fairs with the above dataset

cases, it was applied to both the datasets. The number of clusters (k-value) were limited to 3

since the dataset was designed to produce best results with k = 3. The results of the experiment

are as follows:

Figure 6 - Vector-based clustering applied to dataset1

In Figure 6, vector-based clustering is applied to dataset1 where the clusters predictably

fall into cohesive groups since all the attributes had vectors with values which were aligned to be

in the same clusters.

With the purpose of observing how vector-based clustering fairs with the above dataset

cases, it was applied to both the datasets. With the purpose of observing how vector-based

clustering fairs with the above dataset cases, it was applied to both the datasets. It is important to

49

analyze the k-value in this case since, in this case, k <=27 will give clear results of clustering but

for a larger k value, the clusters will be much smaller and indistinguishable thus losing the

combinatory effect of clustering. For example, had there been 5 groupings of value for each

attribute, the apt k value would be 125 which would be too large and cumbersome for the user

thus increasing its cognitive overload.

Figure 7 - Vector-based clustering applied to dataset2

In Figure 7 the inaccuracy of vector-based clustering is depicted with incorrect and

overlapping cluster values for response time and reliability. It may be seen that clusters 1, 2 and

3 for both response time and reliability have overlapping values, thus providing indistinguishable

clusters. This proves to be a significant drawback when using vector-based clustering. Since it

treats all the attribute values of a Web Service as a whole within a vector, it may not always be

possible to cluster the values on a fair basis since their values may fall into different clusters. In

cases such as this, the requestors may get confused and discontented with the choices presented

50

to them and ultimately unable to make a decision or be able to proceed with the selection

process.

4.4.1.2 Preference-based clustering applied to dataset1 and dataset2

 Preference-based clustering considers each attribute individually in the order of the

requestor’s preference. This allows similar values within each attribute to be grouped together,

irrespective of their order within each vector. The sample dataset cases were also tested with

preference-based clustering to yield the following results:

Figure 8 - Preference-based clustering applied to dataset1

51

In Figure 8Figure 8, preference based clustering was applied to dataset1 with cost having

the highest preference (1), response time with a lower preference (2) and reliability with the

lowest preference (3) as seen in clockwise order from top left in Figure 8. In order to show the

distribution of clustering, all three clusters were chosen to go to the next attribute.

Next, preference-based clustering was tested on dataset2 and the results were observed as

follows:

Figure 9 - Preference-based clustering applied to dataset2

52

In Figure 9, it is observed that the clusters are able to naturally fall into the groups based

on their similarities. The clustering process is not hampered here by ties of the QoS vectors and

this may be counted as one of the significant advantages of using preference-based clustering. As

it may be seen, response time and reliability have clear and distinguishable clusters despite the

randomized order within the vectors of dataset2.

4.4.1.3 Weighted clustering applied to dataset1 and dataset2

 Weighted clustering considers each QoS vector in the dataset rather than each attribute

value for clustering; however, the clustering is heavily dependent on the weights assigned to

each attribute. These weights are assigned to each attribute in the order of attribute preference

where greater weights signify higher importance. Various weight combinations were tried on

each attribute and tested on both dataset1 and dataset2. The results from each case are as

follows:

Case I:

Cost = 0.3 (average importance),

Response time = 0.6 (most important),

Reliability = 0.1 (low importance).

The results of the clustering were observed as follows:

53

Figure 10 - Weighted clustering applied to dataset1

In Figure 10 above, the results of weighted clustering for dataset1 have been shown. The

clustering results are shown in the order of the weights where response time is is the dominant

attribute. All the clusters are clearly and distinctly defined in this case owing to the nature of

dataset1. The results of the same when performed on dataset2 are as follows:

54

Figure 11 - Weighted clustering applied to dataset2

In Figure 11, the results of weighted clustering tested with dataset 2 have been shown.

Since response time was the dominant attribute, its clusters are clear and distinct. Reliability was

observed to have some anomalies in its result, which most likely occured due to the lower

weights assigned to it and the nature of dataset2. The boundaries of the clusters have been

compromised since reliability had the least importance and thus it was not given as much

importance .

Case II:

Cost = 0.2 (low importance),

Response time = 0.8 (most important),

Reliability = 0.2 (low importance); (cost and reliability have same importance).

55

When Case II was applied to dataset1, the results were identical to Figure 10 where

reliability is the dominant attribute and owing to the distinctly defined nature of the clusters

within dataset1, each attribute is sparingly clustered.

The results obtained from repeating this exercise on dataset2 is similar to Figure 11; the

only difference in this case was that both cost and reliability had some disparity in their clusters

owing to the nature of the dataset and the low weights assigned to both cost and reliability.

Case III:

Cost = 0.4 (high importance),

Response time = 0.2 (low importance),

Reliability = 0.3 (moderate importance);

In Case III, response time is assigned the lowest importance with the least weight. When

applied to dataset1, the results are organized in the order of the weights. The results for dataset1

are again identical to the results observed for Case I and Case II, as seen in Figure 10. The results

obtained from applying this case to dataset2 are as follows:

The results acquired in this case favor cost owing to its high importance. Distinctly

distributed clusters may be observed for both cost and reliability. There are certain anomalies in

the clusters generated for response-time owing to its low importance. The values within response

time are thus forced to tie to the vectors that have already fallen into clusters owing to the

weights of the more important attributes.

56

4.4.1.4 Inference from experiments conducted based on dataset scenarios

 Having observed and analysed the results obtained by each of the clustering methods

when tested on two sample datasets representing two case scenarios, it was noted that

preference-based clustering delivered the most accurate clusters. The following are the key

points surmised from this experiment:

 Vector-based clustering shows a significant disadvantage when the attribute values within

a vector tend to fall under different clusters. The same can also be said for redundant

values since it is possible for two services to have the same cost but different response

time and reliability values.

 Preference-based clustering succeeds in being the most accurate clustering method,

providing clear and distinct clusters for both the case scenarios presented in the

experiment. In this case, the attributes are clustered step by step and based on the user’s

current selection; the search space for clustering the next attribute is chosen. This is an

intuitive and precision centric experience which countermands the constraints faced by

vector-based approaches.

 Weighted clustering helps relax the constraints of vector-based clustering in that it allows

for each attribute to have a certain weight attached to it which determines its importance

while clustering. Where it succeeds in time efficiency, it also fails to be completely

accurate. The dominant attribute (with the largest weight), which in effect is most

important for the user does provide clear and distinct cluster groupings, however the

same cannot be said for the less important attributes although in effect, that does not

hamper the user experience as much since these attributes had low importance assigned

to them to begin with.

57

4.4.2 Efficiency of the proposed Browsing Methods through Experiments

In order to test the efficiency and compare the three browsing methods with each other,

each of the browsing methods were compared by the time taken to cluster all the services and

yield the final result with respect to the different sizes of the datasets used, the different number

of attributes in each of the datasets used, and different number of clusters (k-value) requested.

4.4.2.1 Comparison module for time consumed vs. dataset size

This experiment was conducted with a view of serving two purposes – establishing the

time consumption of each of the clustering methods with respect to varying dataset sizes and

establishin the effect different distribution of cluster groupings may have on the time

consumption. The reason behind this exercise was to see if a dataset with clear and distinctly

identified cluster groupings took less time than clustering a dataset with scattered and

haphazardly distributed values. The time taken is the time taken by the system to calcute the

clusters when the program was allowed to run in the debug-free mode to be as CPU cost-

effective as possible. The results are as follows:

58

S.No Clustering Type Cluster

distribution

Dataset Size Number of

Attributes

K-Value Time (ms)

1 Vector-based Distinct 300 3 3 41

2 “ “ 3000 “ “ 320

3 “ “ 30000 “ “ 16154

4 “ Indistinct 300 “ “ 39

5 “ “ 3000 “ “ 401

6 “ “ 30000 “ “ 16136

1 Preference-based Distinct 300 3 3/per attr 201

2 “ “ 3000 “ “ 426

3 “ “ 30000 “ “ 22689

4 “ Indistinct 300 “ “ 203

5 “ “ 3000 “ “ 464

6 “ “ 30000 “ “ 22614

1 Weighted Distinct 300 3 3/per attr 53

2 “ “ 3000 “ “ 302

3 “ “ 30000 “ “ 15535

4 “ Indistinct 300 “ “ 49

5 “ “ 3000 “ “ 361

6 “ “ 30000 “ “ 16043
Table 4 - Time vs. dataset size and cluster grouping within

dataset

The experiment has been designed such that the type of dataset cluster distribution, the

total number of attributes in the dataset and the number of clusters have been kept constant,

while the size of the dataset has been kept as a variable. In Table 4, it can be clearly seen by the

time taken by each of the clustering methods, be it vector-based method, preference-based

method or weighted method, that the type of cluster distribution within the dataset does not

hamper or improve the time taken to perform the clustering. The difference between the time

taken to cluster distinctly or indistinctly distributed datasets is none to negligible. Therefore, it is

established that the distribution of the data objects within the dataset do not affect its

performance and therefore, for the sake of simplicity and standardization, only datasets simulated

with distinct clusters will be used for testing purposes.

59

The time taken by each of the clustering methods increases exponentially as the dataset

sizes are increased from 300 to 3000 to 30,000. However, since preference-based clustering

approach is a step by step approach, the cumulative time taken is greater than the time taken by

vector-based or weighted approach which take comparateively the same amount of time for each

of the datasets.

Figure 12 - Time taken for each clustering method vs. Size of dataset

In Figure 12, a bar graph has been drawn to compare the time-taken by each of the

clustering methods for different dataset sizes. With this visual, it is clear that with larger dataset

sizes, preference-based clustering tends to accumulate more time to yield the final result.

Weighted clustering emerges as a winner in this case since it provides a preference-oriented

result to some extent with a one-step, time-efficient approach.

4.4.2.2 Comparison module for time consumed vs. number of attributes

This experiment was conducted with a view of drawing a comparison between each of

the three browsing methods keeping the number of attributes as a variable and, the dataset size

60

and the number of clusters constant while recording the time. The size of the dataset used was

3000 and the k-value was kept constant at 3 for each clustering method. When the numbers of

attributes increase or decrease in a dataset it is essentially a size variation from a primary point of

view. However, the calculation of clusters is dependent on the number of attributes and

therefore, it is important to observe the time-consumption for each of the browsing methods

when clustering datasets with varying number of attributes. The result from each of methods is

listed as follows:

Table 5 - Number of attributes vs. time taken by each of the clustering methods

In Table 5, the time taken by each of the clustering methods to cluster datasets with

different number of attributes has been illustrated. It is noted that the time taken to cluster each

of the datasets increases linearly with increase in the number of attributes. It is also observed that

preference-based clustering not only comes at par with the time-taken to cluster the datasets, but

also decreases with increase in the number of attributes.

S.No Clustering Type Dataset

Type

Dataset

Size

Number of

Attributes

K-Value Time (ms)

1 Vector-based Distinct 3000 1 3 332

2 “ “ “ 3 “ 442

3 “ “ “ 4 “ 538

4 “ “ “ 6 “ 898

5 “ “ “ 9 “ 1221

1 Preference-based Distinct 3000 1 3/per attr 330

2 “ “ “ 3 “ 420

3 “ “ “ 4 “ 470

4 “ “ “ 6 “ 564

5 “ “ “ 9 “ 700

1 Weighted Distinct 3000 1 3 338

2 “ “ “ 3 “ 440

3 “ “ “ 4 “ 535

4 “ “ “ 6 “ 848

5 “ “ “ 9 “ 1192

61

Figure 13 - Time taken for each clustering method vs. Number of attributes

In Figure 13, preference-based clustering is observed to be just as time efficient as vector-

based and weighted clustering methods for lower number of attributes (1, 3 and 4); however for

larger number of attributes, there is a smaller rise in time-taken for preference-based clustering

when compared to the other two. Preference-based method clusters attributes one step at a time,

where the clustering space for the next attribute(s) is defined by the selected clusters chosen in

the previous step. Therefore, as the selection process progresses, the amount of data to be

clustered reduces, thus taking less time to calculate the clusters.

Therefore in this case, preference-based clustering emerges as the most beneficial service

selection method providing both accuracy and time efficacy with increase in number of attributes

when compared to the other two clustering methods.

62

4.4.2.3 Comparison module for time consumed vs. number of clusters

This experiment was conducted to determine the effect on the total time taken to cluster

the services for varying number of clusters. The dataset size and the number of attributes were

kept constant at 3000 and 3 respectively. The results of the experiment are as follows:

S.No. Clustering Type Dataset

Type

Dataset Size Number of

Attributes

K-Value Time (ms)

1 Vector-based Distinct 3000 3 3 421

2 “ “ “ “ 6 523

3 “ “ “ “ 9 679

4 “ “ “ “ 20 1351

5 “ “ “ “ 30 2363

6 “ “ “ “ 40 3200

1 Preference-based Distinct 3000 3 3 331

2 “ “ “ “ 6 581

3 “ “ “ “ 9 683

4 “ “ “ “ 20 884

5 “ “ “ “ 30 ~1332

6 “ “ “ “ 40 ~1990

1 Weighted Distinct 3000 3 3 412

2 “ “ “ “ 6 551

3 “ “ “ “ 9 651

4 “ “ “ “ 20 1308

5 “ “ “ “ 30 2492

6 “ “ “ “ 40 3278
Table 6- K-value vs. time taken by each of the clustering methods

In Table 6, the time taken to yield the clusters for each of the k-values has been listed. As

in section 4.3.2.2, it is noted once again, that the time taken to perform preference-based

clustering has a progressively shallow gradient when compared to the time consumed by vector-

based and weighted clustering. This may be attributed to the fact that as the k-values increase at

each step, the selection is limited to one or a few clusters at each step which form the basis for

clustering the next attribute(s).

63

Figure 14 - Number of clusters (k-value) vs. Time taken for each clustering method

Figure 14 shows the bar-graph comparing the time-consumption of each clustering method

with respect to the varying number of clusters. With increase in the number of clusters (per

attribute in case of preference-based clustering), the increase in time is observed to be steeper in

vector-based and weighted clustering when compared to preference-based clustering method. For

example, if a requester decided to cluster the given dataset with three attributes with each

attribute assigned to a preference level, then at the first step if the desired number of clusters k =

20, then the requester will be presented with 20 clusters for the first attribute. Each of these

clusters will have a small number of services. In all realistic probability, the requestor will select

a one or a few clusters and move to the next attribute. The values to be considered for clustering

have now been reduced to only those attached to the vectors from the previous attribute. This

reduces the time complexity exponentially. Therefore, where vector-based and weighted

clustering methods were clustering the entire dataset into 20 clusters, preference-based method

reduced the clustering space iteratively.

This is observed as another significant advantage for the preference-based browsing

approach where both accuracy and time-efficiency are concurred.

64

4.4.2.4 Inference from experiments conducted to evaluate efficiency

From the experiment conducted to evaluate the efficiency of the three service browsing

methods, the following are the conclusions drawn based on the results:

 Vector-based clustering is time efficient in case of tackling large datasets but since it

compromises on accuracy as well as imposes constraints on several case scenarios, it is

not considered a very competent browsing method.

 Preference-based clustering may be more time-intensive than the other two clustering

algorithms when it comes to tackling large datasets, but it competes and supersedes the

other two clustering methods (vector-based and weighted approach) when handling

flexible number of attributes or varying number of clusters. Together with its precision

oriented methodology, it supplants the other two browsing techniques.

 Weighted clustering is time efficient as well as flexible and adaptable to the user’s needs

which places it second in the rank when compared to vector-based and preference-based

approaches in terms of efficiency. It was noted to be the most productive browsing

method in terms of handling increasingly large sized data. Since weighted clustering is a

one-step approach, it reduces the total time taken when cumulated with the total time

taken by the user to make cluster selection decisions.

4.4.3 Experiments conducted for usability study

A usability study was conducted on a sample demographic of 12 volunteers to test the

viability of the browsing techniques presented in this research and to draw a comparison between

them from the Web Service requestors’ standpoint.

65

4.4.3.1 Experiment design and results

Who: A total of 12 volunteers were recruited with the purpose of conducting this usability

test. 10 of these volunteers were graduate students pursuing a Masters’ degree in Computer

Science and were therefore well versed in this particular area. The two remaining volunteers

were well literate in Computer Sciences but had an academic background in Finance

Administration. The academic background of the users did not however make a significant

impact on the browsing studies once the experiment and the objectives of this research were

explained. An Online Ethics Submission and Review System (Ryerson University) was followed

as per University protocol; which deemed this study a negligible risk and impact study out of the

scope of the ethics board.

Why: The target demographic was conscripted to perform certain tasks and provide

feedback about the program, which then contributed to the performance evaluation of the

browsing mechanism put in place. Having an audience support the claims made by this research

study would not only strengthen the conclusions and inferences drawn from the experiments but

also secure the contributions made by this study. Feedback from the users is also an important

factor used to improve the employed service selection tool.

What: The experiment was designed such that each user was given a set of tasks to

perform using the browsing tool and their experience was recorded in terms of the total time

taken to perform the task, the Cost Per Click (CPC) or the total number of steps taken to arrive at

the desired result (including backtracking) and the successes or failures encountered during these

tasks.

A set of 3 sample datasets were considered for this study with the following specifications:

66

Dataset Cluster distribution Size Number of attributes Specifications

Dataset 1 Indistinct 3000 3

(Cost, Response time,

Reliability)

All clusters were

indistinctly

distributed such that

values within a

vector may belong in

different clusters.

Dataset 2 Distinct 3000 3

(Cost, Response time,

Reliability)

All clusters were

clearly and distinctly

distributed.

Dataset 3 Partially distinct 3000 3

(Cost, Response time,

Reliability)

All clusters were

clearly distributed

for one attribute

(Cost) and

indistinctly

distributed for all

other attributes.
Table 7 - Dataset specification for usability study

Table 7 shows the dataset specification of the three datasets considered for this usability

test. The idea was to form a few service selection search tasks such that each user would be

given a set of tasks to perform. Depending upon their success or failure to reach the target

service (or the cluster within which it exists), the usability factor of the browsing method would

also be evaluated. The search tasks given to users were simply certain QoS vectors from within

the dataset and based on the cluster values, the user had to indicate which cluster the service may

be in. Following are some sample search tasks provided to the users:

67

Search Task Dataset Cost ($) Response time (msec) Reliability (%)

Search Task 1 Dataset 1 55.607 - 56.4962 99.2928 - 103.8888 10.15 - 10.40

Dataset 2 120.45 - 122.32 23.08 - 24.99 12.399 - 17.463

Dataset 3 155.607 - 156.4962 34.292 - 36.888 50.15 - 50.40

Search Task 2 Dataset 1 180.9338 - 183.311 317.787 - 319.553 82.399 - 87.463

Dataset 2 40.9338 - 43.311 119.456 – 121.219 91.399 - 94.463

Dataset 3 200.325 – 202.298 233.276 – 235.909 78.33 – 81.98

Search Task 3 Dataset 1 90.3872 - 93.231 217.667 - 219.532 53.439 - 56.328

 Dataset 2 110.476 - 113.229 90.757 – 93.177 95.395 - 97.613

 Dataset 3 329.781 – 322.843 127.703 – 130.267 72.366 – 74.198

Table 8 - Sample search tasks for usability test

Table 8 contains some of the search tasks which were provided to the usability study

volunteers. These users were then familiarized with the three datasets provided in Table 7 and

asked to locate the clusters within which these vectors may exist. The selection of these QoS

vectors have been made such that finding these clusters in some cases would be straightforward

in some cases and dubious in some, thus testing the decision making process on the users’ end.

The results of the usability study are as follows:

68

Task User Clustering method Time Number of

Steps/CPC

Result

Task 1 for

Dataset 1

User 1 Vector-based 65 sec 1 Success

Preference-based 78 sec 3 Success

Weighted 60 sec 1 Success

User 2 Vector-based 75 sec 1 Success

Preference-based 90 sec 3 Success

Weighted 65 sec 1 Success

User 3 Vector-based 34 sec 1 Failure

Preference-based 45 sec 3 Success

Weighted 35 sec 1 Success

Task 2 for

dataset 2

User 1 Vector-based 80 sec 3 Failure

Preference-based 78 sec 3 Success

Weighted 75 sec 1 Failure

User 2 Vector-based 60 sec 3 Failure

Preference-based 69 sec 3 Success

Weighted 55 sec 1 Success

User 3 Vector-based 71 sec 1 Failure

Preference-based 82 sec 5 Success

Weighted 70 sec 1 Success

Task 3 for

dataset 3

User 1 Vector-based 60 sec 1 Success

Preference-based 75 sec 3 Success

Weighted 55 sec 2 Success

User 2 Vector-based 80 sec 4 Failure

Preference-based 110 sec 6 Failure

Weighted 75 sec 2 Failure

User 3 Vector-based 69 sec 1 Success

Preference-based 80 sec 3 Success

Weighted 62 sec 1 Success

Table 9 - Some results acquired from usability testing

69

Table 9 shows some of the results acquired during the usability testing. Only three search

tasks tested with three users have been shown here in order to get oriented with the result criteria

and the quality of results attained from this study. It was noted that most users tended to achieve

success in finding the correct clusters with preference-based method and had moderate success

with weighted method when compared to vector-based method. Preference-based clustering did

assume more time due to its multilevel approach, but it was trade-off for achieving the desired

result with accuracy and a higher probability. In order to analyze the results obtained from all the

12 participants of this study, a few gradients and chart-analysis were carried out. Some of the

useful trends were studying the success rate of the users for each of the search tasks.

Figure 15 - User success rate for Search Tasks

Figure 15 is a comparison between each of the browsing methods and the success rate

users had with respect to finding the given query. It was observed that users had a much higher

chance of finding the right cluster in any given dataset scenario or use case and a greater failure

rate when using vector-based clustering in terms of handling different kinds of search tasks.

70

Weighted clustering fared in between preference-based and vector-based methods with respect to

success rate but still had a greater advantage when compared to vector-based browsing method.

Having discussed the success rates achieved by each of the clustering algorithms, it was

also important to study the time expended by each user to perform these search tasks. In order to

draw a comparison module, the average time taken by each of the 12 participants was calculated

and charted against the respective search tasks.

Figure 16 - Time efficiency for search tasks

Figure 16 depicts the average time taken to complete each of the search tasks for each

browsing method. It was observed that preference-based clustering was more time-consuming

when compared to the other two methods. Even though it was proved that the run-time of the

preference-based method is at par and even better in several case compared to vector-based and

weighted browsing methods, it is noted here that due to the multi-level step by step approach the

user tended to take more time in studying the results and choosing the most suitable (in this case

71

the given Search Task) cluster. This may not be deemed entirely as a wasteful exercise since the

trade-off for a few extra seconds leads to a highly satisfied service requestor. However, weighted

clustering was observed to be more time-efficient as well as goal-oriented, which allowed users

to choose their preferred attribute(s) as well as save time on the clustering process in most cases.

The trade-off here was a significant amount of time saved for a small amount of inaccuracy or

inability to handle all scenarios and situations.

It was also considered important to measure the number of clicks incurred for each

clustering method as a performance metric for the expense of the tool. This included any

backtracking the participant may have done during the browsing process since it provides an

insight into the decision making process of the user. The comparison module for each browsing

method was drawn against the average measure of the number of clicks (also known as Cost per

Click or CPC).

Figure 17 - Average number of clicks for Search Tasks

 Figure 17 illustrates the average number of steps encountered for each search task when

testing each of the browsing methods. It was clearly indicated that preference-based approach

72

claimed more clicks from the user as compared to vector-based or weighted clustering method.

Since weighted method has a higher accuracy rate, it may be considered as the most suitable

browsing method with regards to the cost of clicks.

The participants of the usability study were also asked for their opinion about some the

quality aspects of the program such as ease of use, navigation through the tool, accessibility to

each component, exception handling and the visualization work done in the program. The

participants were asked to rate the tool with respect to each of these factors on a scale of 1-10, 10

being the highly successful in fulfilling the program usability criterion.

Figure 18 – Evaluation of program usability criteria

Figure 18 illustrates the average rating assigned to each program usability criteria.

Exception handling and visualization components were given graded higher than accessibility,

navigation and ease of use. User Interaction also scored highly over other criterions. This

73

feedback was important to improve as well as gain an insight into what the participants’

estimated to be the quality aspects of the program.

4.5 Result analysis and summary

This chapter focused upon thoroughly investigating vector-based, preference-based and

weighted service selection browsing methods by accounting for the various experiments

conducted to evaluate their performance. The evaluation was carried out in three segments –

evaluation based on clustering accuracy and adaptability to different dataset scenarios, evaluation

based on efficiency and evaluation based on a usability study. Evaluation based on accuracy was

conducted based on two common dataset scenarios encountered in real datasets. Evaluation

based on efficiency was conducted based on the time efficiency for several performance metrics

such as varying dataset size, number of attributes and number of clusters. Evaluation based on

the usability study was conducted to compare the three browsing methods from the users’

perspective and to gain feedback on the performance of the three clustering methods as well as

the program usability criteria for the implemented tool.

The results obtained from the experiment conducted to evaluate the accuracy of the

clusters proved that preference-based clustering was the most adaptable as well as accurate in

terms of finding the desired and the most suitable service in a methodological way. Weighted

clustering was also deemed accurate; however it wasn’t entirely adaptable with all dataset

scenarios and case studies. Vector-based clustering presented several constraints with regards to

locating the desired clusters in datasets which do not already have distinctly defined natural

groupings within them.

74

The result obtained from the experiment conducted to evaluate the efficiency of the

clusters established that preference-based clustering was the most efficient browsing method and

fared well even when the number of clusters per attribute or the number of attributes were made

variant. It did not show promising results when the size of the datasets were increased, in which

case, weighted clustering rose to the top and delivered not only quality results but also managed

a better measure of time. Vector-based clustering also had a good measure of time owing to its

single-step approach, however, the quality of results and restrictive accessibility did not compete

with the performance of preference-based or weighted browsing methods.

The feedback obtained from the usability experiment confirmed that the users preferred

accuracy over transactions of small amounts of time-loss and were satisfied with the

performance of preference-based clustering, however, the time taken by the participants and the

cost of clicks incurred were both evaluated to be higher in the case of preference-based

clustering when compared to the other two browsing methods. Another segment of the usability

study also required the participants to rate the implemented tool in terms of quality criterions

where user interaction, exception handling and visualization component scored marginally

higher over accessibility, navigation and ease of use of the program.

75

CHAPTER 5

CONCLUSION

5.1 Summary and Results

This thesis was written with the proclivity to make a contribution in the field of semantic

and QoS based Web Service discovery and selection.

The current e-commerce industry calls for dynamic and quality-driven service discovery,

browsing and selection mechanisms. This research work has been focussed upon user-centric

requirements and preferences without causing information overload or a highly involved multi

level process. Clustering was used as a means to group and streamline the various functionally

relevant Web Services in order to browse through them efficiently. The three main clustering

algorithms investigated in this thesis work were Vector-based approach, Preference-based

approach and weight-based approach. Vector-based clustering method has already been

investigated earlier however, in order to draw a fair comparison; the base model from that

implementation was considered and re-implemented along with Preference-based and weighted

clustering methods in this thesis.

It was determined, with the help of the performance analysis conducted on the

experiments and a usability study carried out to assess and compare the three methods

implemented, that preference-based browsing method was more efficient that the other methods

in comparison. It was widely accepted and fared better in most experiments in terms of quality of

cluster, accuracy and ease of discovery as well as average time taken. Weight-based method was

the next best method in the performance charts owing to its ease of cluster identification and time

efficiency.

76

5.2 Future Work

There have been several studies and research works that have been done in the field of

Web Service discovery and selection. This study was conducted with a view of easing that

process with the aid of a browsing mechanism which uses clustering as its basis for grouping

qualitatively similar Web Services together. Several issues and drawbacks which were observed

in previously existing and comparable methods were addressed with this browsing mechanism.

The idea behind this study was also to provide an extensive comparison model of three main

clustering based methods used for service discovery.

As observed earlier, one of the more comparable recent works done in this particular field

(Sambamoorthy, Interactive QoS bowsing for web service selection, 2009) was that of an

interactive QoS based browsing method where a pre-packaged tool was used to implement

dynamic clustering for QoS based Web Service data sets. Some of the key shortcomings

observed in that study have been addressed and beyond in this research work, and are listed as

follows:

a) The lack of a visual interface prohibited the users from making an informed decision

since users could only guess the span of the clusters and their locality. This problem has

been addressed in this dissertation since a complete GUI has been implemented with

interactive features built to improve the user experience.

b) The lack of standard datasets was a clear limitation in Sambamoorthy’s (Sambamoorthy,

QoS Browsing for Web Service Selection, 2009) exposition. The study was incomplete

without standardized data sets which would help provide a comparative performance

evaluation of the cluster analysis. In this study, a step has been taken towards simulating

77

data sets which have been inspired from various real sources as well previously

established norms of data set formats and distributions.

c) The clustering performed using the SODUS package was one dimensional and did not

cater or multi-dimensional clustering where users may contribute to the process of

clustering with a preference or weighted clustering browsing method. This has been a key

element in the current study where comparisons have also been drawn between each

clustering type in terms of performance and efficiency.

d) In Sambamoorthy’s work, only three QoS attributes were considered in each experiment,

thereby limiting the search space and reducing the field within which the users could

browse. In this study, upto nine attributes have been provided to the users in some

experiments should they choose to have them. Each QoS domain was studied before

incorporating the most prominent attributes into the datasets.

Although forethought has been put towards achieving a comparative and cohesive browsing

mechanism for Web Service requestors, there are certain limitations of this work which may be

addressed as part of a future study or continuing research. Some of these future works are listed

as follows:

a) The performance evaluation performed as part of this comparative study could not

incorporate a standard index co-efficient (such as C-H index, C-index and Γ-index (C

Ding, 2009)) due to the multi-level and interactive nature of the clustering methods. It

would be a considerable contribution if a standardized performance index could be

developed for this purpose.

b) The data sets used for this study were simulated and inspired from several real data

sources and use case scenarios because the purpose of this study was to compare the three

78

different clustering methods, however, if such a browsing method were to be used in real

time, real data sets must be collected and implemented in such a system.

c) Although all datasets generated were in text (.txt) or tab separated (.csv) format, they

should be converted to XML since it is closer to Web Standards and is easier to use with

machine languages.

d) It is also important to keep in mind that K-means, although suitable for this study, does

have several drawbacks especially its tendency to optimize locally and choice of random

prototypes resulting in different clusters every time. Future studies may also include

performing a comparative study or research in other dynamic clustering algorithms.

79

80

APPENDIX A: DATA GENERATION

The following data specifications and corroborating details specify the datasets generated for

user study, use case scenarios and testing purposes.

 All datasets are generated using Matlab functions.

 Each dataset follows random, multi-variate, normal distribution.

 The filenames have been given using the following format.

(Type of main clusters (distinct/ indistinct)_(Type of sub clusters)_(Number of data in

each column)_(version (in case more than one file with same distribution is generated

again))

Example: Distinct_distinct_900_2 denotes distinct clusters containing distinct sub

clusters with 900 data points and the second of this kind of distribution.

 The first column denotes the cluster, size of cluster and the respective sizes of each sub

cluster. It is easy to determine the start and end of each sub cluster in the dataset, in order

to calculate accuracy.

Example: Clust 1 (1000) (330, 330, 340) means that row 1 - row 330 are 1
st
 sub cluster,

the next 330 data points (i.e. row 331 – 660) denote the 2
nd

 sub cluster and the next 340

(row 661-1000) are the 3
rd

 sub cluster.

Dataset 1:

Filename: distinct_distinct_3000_1

In this dataset we have generated random data following a multivariate normal distribution for

three interval variables Cost ($), Response time (ms) and Reliability (scale of 100) respectively.

Even though this data is simulated, the idea was to base it on a hypothesis so real data following

these distributions may actually exist in almost all cases. The following were the specifications

followed. The idea was to generate 3 main clusters, each with its own set of 3 sub clusters. We

have generated a total of 3000 data points with an equal distribution spread in each cluster.

Clust 1

(1000)

(330,330,340)

Cost ($) Response Time (ms) Reliability (scale of 100)

µ11 = 55 σ11 = 2.0 µ11 = 100 σ11 = 2.0 µ12 = 10 σ11 = 1.0

µ12 = 80 σ12 = 2.0 µ12 = 140 σ12 = 1.8 µ13 = 17 σ12 = 1.2

µ13 = 125 σ13 = 2.0 µ13 = 170 σ13 = 3.0 µ14 = 23 σ13 = 0.9

Clust 2

(1000)

(330,330,340)

µ21 = 310 σ21 = 3.0 µ21 = 400 σ21 = 3.0 µ22 = 42 σ21 = 0.8

µ22 = 360 σ22 = 3.6 µ22 = 450 σ22 = 2.4 µ23 = 49 σ22 = 1.3

µ23 = 420 σ23 = 4.0 µ23 = 510 σ23 = 4.0 µ24 = 56 σ23 = 0.6

Clust 3

(1000)

(330,330,340)

µ31 = 660 σ31 = 2.5 µ31 = 760 σ31 = 3.6 µ31 = 77 σ31 = 1.2

µ32 = 700 σ32 = 3.9 µ32 = 800 σ32 = 3.0 µ32 = 83 σ32 = 1.0

µ33 = 740 σ33 = 2.0 µ33 = 830 σ33 = 2.0 µ33 = 89 σ33 = 0.9

81

Dataset 2:

Filename: distinct_distinct_300_1

In this dataset, the same distribution and order is followed as in Dataset 1, only this time, we

have generated only 300 data points. The idea behind this dataset generation was to test the

efficiency of our clustering algorithm and its computation capability regarding different sized

datasets.

Clust 1

(100)

(33,33,34)

Cost ($) Response Time (ms) Reliability (scale of 100)

µ11 = 55 σ11 = 2.0 µ11 = 100 σ11 = 2.0 µ11 = 10 σ 11 = 1.0

µ12 = 80 σ12 = 2.0 µ12 = 140 σ12 = 1.8 µ12 = 17 σ12 = 1.2

µ13 = 125 σ13 = 2.0 µ13 = 170 σ13 = 3.0 µ13 = 23 σ13 = 0.9

Clust 2

(100)

(33,33,34)

µ21 = 310 σ21 = 3.0 µ21 = 400 σ21 = 3.0 µ21 = 42 σ21 = 0.8

µ22 = 360 σ22 = 3.6 µ22 = 450 σ22 = 2.4 µ22 =49 σ22 = 1.3

µ23 = 420 σ23 = 4.0 µ23 = 510 σ23 = 4.0 µ23 = 56 σ23 = 0.6

Clust 3

(100)

(33,33,34)

µ31 = 660 σ31 = 2.5 µ31 = 760 σ31 = 3.6 µ31 = 77 σ31 = 1.2

µ32 = 700 σ32 = 3.9 µ32 = 800 σ32 = 3.0 µ32 = 83 σ32 = 1.0

µ33 = 740 σ33 = 2.0 µ33 = 830 σ33 = 2.0 µ33 = 89 σ33 = 0.9

Dataset 3:

Filename: Distinct_distinct_30000_1

The following dataset follows the same distribution pattern as the above data sets, only, here the

dataset contains 30,000 data points. A larger dataset is generated to compare the time taken,

effectiveness and efficiency of our algorithm.

Clust 1 (10,000)

(3300,3300,3400)

Cost ($) Response Time (ms) Reliability (scale of 100)

µ11 = 55 σ11 = 2.0 µ11 = 100 σ11 = 2.0 µ11 = 10 σ11 = 1.0

µ12 = 80 σ12 = 4 µ12 = 140 σ12 = 1.8 µ12 = 17 σ12 = 1.2

µ13 = 125 σ13 = 4 µ13 = 170 σ13 = 3.0 µ13 = 23 σ13 = 0.9

Clust 2 (10,000)

(3300,3300,3400)

µ21 = 310 σ21 = 3.0 µ21 = 400 σ21 = 3.0 µ21 = 42 σ21 = 0.8

µ22 = 360 σ22 = 3.6 µ22 = 450 σ22 = 2.4 µ22 =49 σ22 = 1.3

µ23 = 420 σ23 = 4.0 µ23 = 510 σ23 = 4.0 µ23 = 56 σ23 = 0.6

Clust 3 (10,000)

(3300,3300,3400)

µ31 = 660 σ31 = 2.5 µ31 = 760 σ31 = 3.6 µ31 = 77 σ31 = 1.2

µ32 = 700 σ32 = 3.8 µ32 = 800 σ32 = 3.0 µ32 = 83 σ32 = 1.0

µ33 = 740 σ33 = 2.0 µ33 = 830 σ33 = 2.0 µ33 = 89 σ33 = 0.9

82

Dataset 4:

Filename: Distinct_undistinct_3000_1

Here, we have generated a 3000 data point dataset following a multivariate normal distribution

such that there are 3 distinct clusters however each cluster has 3 indistinct sub clusters even

though each sub cluster has its own mean and std. deviation. The following were the

specifications used to generate this dataset.

Clust 1

(1000)

(330,330,340)

Cost ($) Response Time (ms) Reliability (scale of 100)

µ11 = 150 σ11 = 10 µ11 = 100 σ11 = 4 µ11 = 50 σ11 = 2

µ12 = 170 σ12 = 9 µ12 = 110 σ12 = 5 µ12 = 55 σ12 = 3

µ13 = 200 σ13 = 12 µ13 = 120 σ13 = 6 µ13 = 57 σ13 = 3

Clust 2

(1000)

(330,330,340)

µ21 = 410 σ21 = 10 µ21 = 250 σ21 = 4 µ21 = 66 σ21 = 2

µ22 = 430 σ22 = 20 µ22 = 260 σ22 = 6 µ22 =69 σ22 = 2.5

µ23 = 460 σ23 = 15 µ23 = 275 σ23 = 7 µ23 = 73 σ23 = 3

Clust 3

(1000)

(330,330,340)

µ31 = 700 σ31 = 12 µ31 = 370 σ31 = 8 µ31 = 80 σ31 = 3

µ32 = 730 σ32 = 11 µ32 = 385 σ32 = 10 µ32 = 85 σ32 = 2

µ33 = 750 σ33 = 8 µ33 = 400 σ33 = 10 µ33 = 88 σ33 = 3

Dataset 5:

Filename: Distinct_undistinct_300_1

Clust 1

(100)

(33,33,34)

Cost ($) Response Time (ms) Reliability (scale of 100)

µ11 = 150 σ11 = 10 µ11 = 100 σ11 = 4 µ11 = 50 σ11 = 2

µ12 = 170 σ12 = 9 µ12 = 110 σ12 = 5 µ12 = 55 σ12 = 3

µ13 = 200 σ13 = 12 µ13 = 120 σ13 = 6 µ13 = 57 σ13 = 3

Clust 2

(100)

(33,33,34)

µ21 = 410 σ21 = 10 µ21 = 250 σ21 = 4 µ21 = 66 σ21 = 2

µ22 = 430 σ22 = 20 µ22 = 260 σ22 = 6 µ22 =69 σ22 = 2.5

µ23 = 460 σ23 = 15 µ23 = 275 σ23 = 7 µ23 = 73 σ23 = 3

Clust 3

(100)

(33,33,34)

µ31 = 700 σ31 = 12 µ31 = 370 σ31 = 8 µ31 = 80 σ31 = 3

µ32 = 730 σ32 = 11 µ32 = 385 σ32 = 10 µ32 = 85 σ32 = 2

µ33 = 750 σ33 = 8 µ33 = 400 σ33 = 10 µ33 = 88 σ33 = 3

83

Dataset 6:

Filename: Distinct_undistinct_30000_1

Clust 1 (10,000)

(3300,3300,3400)

Cost ($) Response Time (ms) Reliability (scale of 100)

µ11 = 150 σ11 = 10 µ11 = 100 σ11 = 4 µ11 = 50 σ11 = 2

µ12 = 170 σ12 = 9 µ12 = 110 σ12 = 5 µ12 = 55 σ12 = 3

µ13 = 200 σ13 = 12 µ13 = 120 σ13 = 6 µ13 = 57 σ13 = 3

Clust 2 (10,000)

(3300,3300,3400)

µ21 = 410 σ21 = 10 µ21 = 250 σ21 = 4 µ21 = 66 σ21 = 2

µ22 = 430 σ22 = 15 µ22 = 260 σ22 = 4 µ22 =69 σ22 = 2.5

µ23 = 460 σ23 = 20 µ23 = 275 σ23 = 7 µ23 = 73 σ23 = 3

Clust 3 (10,000)

(3300,3300,3400)

µ31 = 700 σ31 = 12 µ31 = 370 σ31 = 8 µ31 = 80 σ31 = 3

µ32 = 730 σ32 = 11 µ32 = 385 σ32 = 10 µ32 = 85 σ32 = 2

µ33 = 750 σ33 = 8 µ33 = 400 σ33 = 10 µ33 = 88 σ33 = 3

Dataset 7:

Filename: Case_1_distinct_900_1

For this data generation we have followed certain use case scenarios to show the difference

between our clustering algorithm in comparison with methods that cluster the entire vector. With

this dataset, our browsing system lets the requestor choose each cluster for each parameter as

opposed to being able to choose only one desired parameter in a cluster. This dataset also follows

a multivariate normal distribution with 900 data points.

Clust 1

(300)

(33,33,34)

Cost ($) Response Time (ms) Reliability (scale of 100)

µ11 = 50 σ11 = 2.5 µ11 = 90 σ11 = 1.2 µ11 = 60 σ11 = 1.8

µ12 = 75 σ12 = 2.8 µ12 = 100 σ12 = 2 µ12 = 67 σ12 = 1.6

µ13 = 98 σ13 = 3 µ13 = 115 σ13 = 1.8 µ13 = 74 σ13 = 1.5

Clust 2

(300)

(33,33,34)

µ21 = 310 σ21 = 4 µ21 = 185 σ21 = 2.2 µ21 = 80 σ21 = 1.4

µ22 = 340 σ22 = 2.8 µ22 = 200 σ22 = 2 µ22 = 86 σ22 = 1.1

µ23 = 365 σ23 = 2.6 µ23 = 220 σ23 = 2.1 µ23 = 93 σ23 = 1.2

Clust 3

(300)

(33,33,34)

µ31 = 210 σ31 = 2.5 µ31 = 285 σ31 = 3 µ31 = 49 σ31 = 1

µ32 = 235 σ32 = 2.9 µ32 = 300 σ32 = 2.7 µ32 = 55 σ32 = 1.2

µ33 = 260 σ33 = 4 µ33 = 315 σ33 = 2.5 µ33 = 58 σ33 = 0.8

84

Dataset 8:

Filename: Complete_overlap_1500_1

In the following dataset, the idea was to generate three sub clusters as in the previous data sets.

However, the last sub cluster is generated such that it contains data points with large intervals,

thus engulfing the other sub clusters into it. This dataset has 1000 data points in it.

500 data

points

(170,170,160)

Cost ($) Response Time (ms) Reliability (scale of 100)

µ11 = 100 σ11 = 2 µ11 = 125 σ11 = 2.4 µ11 = 50 σ11 = 2.5

µ12 = 125 σ12 = 2.8 µ12 = 140 σ12 = 2 µ12 = 63 σ12 = 3

µ13 = 155 σ13 = 3.2 µ13 = 160 σ13 = 2 µ13 = 74 σ13 = 2

500 data

points

(170,170,160)

µ21 = 210 σ21 = 4 µ21 = 185 σ21 = 2.2 µ21 = 80 σ21 = 1.4

µ22 = 245 σ22 = 3 µ22 = 200 σ22 = 2.2 µ22 = 87 σ22 = 1.5

µ23 = 265 σ23 = 2.5 µ23 = 220 σ23 = 2 µ23 = 95 σ23 = 1.5

500 data

points

(500)

µ31 = 160 σ31 = 40 µ31 = 150 σ31 = 25 µ31 = 70 σ31 = 15

In the above case, our algorithm still works better than when compared to vector based clustering

because vector based clustering would have massive overlapping (in fact it would not be able to

distinguish any sub clusters).

Dataset 9:

Filename: Partial_overlap_1500_1

Another example of this kind of data can be seen below. Here, only one parameter is generated

with data points having large intervals, all other parameters are normal. In this case, vector

clustering would still yield the same results whereas, in preference based clustering, distinct sub

clusters may be seen for other parameters thus minimizing the anomaly.

500 data

points

(170,170,160)

Cost ($) Response Time (ms) Reliability (scale of 100)

µ11 = 100 σ11 = 2 µ11 = 125 σ11 = 2.4 µ11 = 60 σ11 = 1.8

µ12 = 125 σ12 = 2.8 µ12 = 140 σ12 = 2 µ12 = 67 σ12 = 1.6

µ13 = 155 σ13 = 3.2 µ13 = 160 σ13 = 2 µ13 = 74 σ13 = 1.5

500 data

points

(170,170,160)

µ21 = 210 σ21 = 4 µ21 = 185 σ21 = 2.2 µ21 = 80 σ21 = 1.4

µ22 = 245 σ22 = 3 µ22 = 200 σ22 = 2.2 µ22 = 86 σ22 = 1.1

µ23 = 265 σ23 = 2.5 µ23 = 220 σ23 = 2 µ23 = 93 σ23 = 1.2

500 data

points

(170,170,160)

µ31 = 180 σ31 = 40 µ31 = 285 σ31 = 3 µ31 = 49 σ31 = 1

 µ32 = 300 σ32 = 2.7 µ32 = 55 σ32 = 1.2

µ33 = 315 σ33 = 2.5 µ33 = 58 σ33 = 0.8

85

Dataset 10:

Filename: Complete_Meshed_900_1

Let us consider a dataset where there is absolutely no possibility of having distinct clusters. Such

dataset reveals no pattern and provides enmeshed, overlapped clusters each time.

The following is an example where all values are chaotic.

300 data

points

(100,100,100)

Cost ($) Response Time (ms) Reliability (scale of 100)

µ11 = 55 σ11 = 5 µ11 = 100 σ11 = 10 µ11 = 30 σ11 = 2.5

µ12 = 70 σ12 = 5 µ12 = 140 σ12 = 10 µ12 = 43 σ12 = 2

µ13 = 85 σ13 = 5 µ13 = 170 σ13 = 10 µ13 = 35 σ13 = 2.5

300 data

points

(100,100,100)

µ21 = 50 σ21 = 5 µ21 = 110 σ21 = 10 µ21 = 42 σ21 = 2.8

µ22 = 65 σ22 = 5 µ22 = 155 σ22 = 10 µ22 =45 σ22 = 2.5

µ23 = 80 σ23 = 5 µ23 = 180 σ23 = 10 µ23 = 37 σ23 = 2

300 data

points

(100,100,100)

µ31 = 52 σ31 = 5 µ31 = 125 σ31 = 10 µ31 = 48 σ31 = 2.5

µ32 = 63 σ32 = 5 µ32 = 165 σ32 = 10 µ32 = 36 σ32 = 2

µ33 = 78 σ33 = 5 µ33 = 195 σ33 = 10 µ33 = 33 σ33 = 2

86

Dataset 11:

Filename: Partial_meshed_900_1

The following table is a diminutive from the above example where only one parameter is

distributed chaotically and the others are distributed in a sound normal way. The difference

between the two datasets is that in this case our algorithm would contain the overlapping

distribution only to one parameter. This however does not mean that the browsing process would

go smoothly. If the chaotically distributed parameter is higher up in the preference order, the user

will be provided with overlapping list of clusters. The chosen cluster will trigger the set of

clustering for other parameter(s) which will lead to increasingly inaccurate results. Therefore

these kind of datasets do not work perfectly with our algorithm, though they do have an upper

hand over vector based clustering.

300 data

points

(100,100,100)

Cost ($) Response Time (ms) Reliability (scale of 100)

µ11 = 55 σ11 = 5 µ11 = 100 σ11 = 2.0 µ11 = 10 σ11 = 1.0

µ12 = 70 σ12 = 5 µ12 = 140 σ12 = 1.8 µ12 = 14 σ12 = 1.1

µ13 = 85 σ13 = 5 µ13 = 170 σ13 = 3.0 µ13 = 17 σ13 = 0.9

300 data

points

(100,100,100)

µ21 = 50 σ21 = 5 µ21 = 400 σ21 = 3.0 µ21 = 42 σ21 = 0.8

µ22 = 65 σ22 = 5 µ22 = 450 σ22 = 2.4 µ22 =45 σ22 = 1.3

µ23 = 80 σ23 = 5 µ23 = 510 σ23 = 4.0 µ23 = 48 σ23 = 0.6

300 data

points

(100,100,100)

µ31 = 52 σ31 = 5 µ31 = 760 σ31 = 3.6 µ31 = 82 σ31 = 1.2

µ32 = 63 σ32 = 5 µ32 = 800 σ32 = 3.0 µ32 = 85 σ32 = 1.0

µ33 = 78 σ33 = 5 µ33 = 830 σ33 = 2.0 µ33 = 88 σ33 = 0.9

Dataset 12:

Filename: Redundant_3000_1

In the following datasets we have depicted redundancy issues which can be effectively taken care

of in parameter based clustering and which lead to storage wastage in vector based clustering.

Clust 1

(1000)

(330,330,340)

Cost ($) Response Time (ms) Reliability (scale of 100)

µ11 = 30 σ11 = 3 µ11 = 400 σ11 = 3.0 µ11 = 55 σ11 = 1.0

µ12 = 30 σ12 = 3 µ12 = 430 σ12 = 3.8 µ12 = 57 σ12 = 1.2

µ13 = 55 σ13 = 2.5 µ13 = 455 σ13 = 2.0 µ13 = 60 σ13 = 0.9

Clust 2

(1000)

(330,330,340)

µ21 = 310 σ21 = 3.0 µ21 = 400 σ21 = 3.0 µ21 = 42 σ21 = 0.8

µ22 = 360 σ22 = 3.6 µ22 = 450 σ22 = 2.4 µ22 =45 σ22 = 1.3

µ23 = 420 σ23 = 4.0 µ23 = 510 σ23 = 4.0 µ23 = 47 σ23 = 0.6

Clust 3

(1000)

(330,330,340)

µ31 = 660 σ31 = 2.5 µ31 = 760 σ31 = 3.6 µ31 = 55 σ31 = 1.2

µ32 = 700 σ32 = 3.9 µ32 = 800 σ32 = 3.0 µ32 = 47 σ32 = 1.0

µ33 = 740 σ33 = 2.0 µ33 = 830 σ33 = 2.0 µ33 = 42 σ33 = 0.9

87

Dataset 13:

Filename: Partial_redundant_3000_1

Following the above example, some more datasets were generated with different patterns to

observe how the algorithms perform in each case. Below is a case where only one parameter has

redundancy and others are all discrete.

Clust 1

(1000)

(330,330,340)

Cost ($) Response Time (ms) Reliability (scale of 100)

µ11 = 150 σ11 = 2 µ11 = 100 σ11 = 4 µ11 = 45 σ11 = 1.5

µ12 = 170 σ12 = 2.5 µ12 = 100 σ12 = 4 µ12 = 52 σ12 = 1.5

µ13 = 200 σ13 = 3 µ13 = 120 σ13 = 6 µ13 = 59 σ13 = 1

Clust 2

(1000)

(330,330,340)

µ21 = 310 σ21 = 2 µ21 = 250 σ21 = 2 µ21 = 68 σ21 = 1

µ22 = 325 σ22 = 2 µ22 = 275 σ22 = 3 µ22 =73 σ22 = 1.5

µ23 = 350 σ23 = 3 µ23 = 275 σ23 = 2 µ23 = 79 σ23 = 1

Clust 3

(1000)

(330,330,340)

µ31 = 420 σ31 = 2 µ31 = 100 σ31 = 4 µ31 = 84 σ31 = 1.4

µ32 = 435 σ32 = 3 µ32 = 160 σ32 = 5 µ32 = 89 σ32 = 1

µ33 = 460 σ33 = 1.8 µ33 = 275 σ33 = 6 µ33 = 96 σ33 = 1.2

Dataset 14:

Filename: fourAttribute_Distinct_distinct_3000_1

The following are specifications for a dataset generated for 4 attributes namely, Cost, Response

Time, Reliability and Availability (%).

Clust 1

(1000)

(200 x 5

(cost),33

0,330,34

0 (res,

rel)

Cost ($) Response Time (ms) Reliability (scale of

100)

Availability (%)

µ11 = 50 σ11 = 1.2 µ11 = 120 σ11 = 1.8 µ11 = 65 σ11 = 1.2 µ11 = 56 σ11 = 1.2

µ12 = 65 σ12 = 1.5 µ12 = 130 σ12 = 1.5 µ12 = 75 σ12 = 1.2 µ12 = 65 σ12 = 1.2

µ13 = 80 σ13 = 2 µ13 = 150 σ13 = 2 µ13 = 81 σ13 = 1.1 µ13 = 62 σ13 = 1

µ14 = 95 σ14 = 2

µ15 = 120 σ15 = 2.2

Clust 2

(1000)

(500 x

2)/

(330,330

,340)

µ21 = 170 σ21 = 2.1 µ21 = 200 σ21 = 2 µ21 = 46 σ21 = 1.5 µ21 = 75 σ21 = 1.5

µ22 = 195 σ22 = 1.5 µ22 = 220 σ22 = 2.5 µ22 = 55 σ22 = 1.8 µ22 = 78 σ22 = 0.5

 µ23 = 80 σ23 = 1

Clust 3

(1000)

(330,330

,340)

µ31 = 230 σ31 = 2 µ31 = 56 σ31 = 1.6 µ31 = 87 σ31 = 2 µ31 = 92 σ31 = 1.2

µ32 = 240 σ32 = 2.4 µ32 = 60 σ32 = 1.8 µ32 = 96 σ32 = 1 µ32 = 96 σ31 = 1.3

µ33 = 255 σ33 = 2 µ33 = 75 σ33 = 2 µ33 = 99 σ31 = 0.8

 µ34 = 88 σ34 = 2.2

(Note: Here are the row distribution of the sub clusters in case they aren’t clear above).

88

Clust 1

Cost: 1-200, 201-400,401-600,601-1000

Resp time: 1-330, 331-660,661-1000

Reliability: 1-330,331-660, 661-1000

Availability: 1-330,331-660, 661-1000

Clust 2

Cost: 1-500, 501-1000

Resp time: 1-500, 501-1000

Reliability: 1-500,501-1000

Availability: 1-330,331-660, 661-1000

Clust 3

Cost: 1-330,331-660, 661-1000

Resp: 1-250, 251-500, 501-750, 751-1000

Reliability: 1-500, 501-1000

Availability: 1-330,331-660, 661-1000

Dataset 15:

fourAttribute_undistinct_3000_1

The following dataset was generated with the same specifications as above, only it has

completely overlapping values for each cluster (and hence, no sub-clusters exist, or even if they

did, they would still have completely overlapping values).

Clust

(3000)

(1000,10

00,1000)

Cost ($) Response Time (ms) Reliability (scale of

100)

Availability (%)

µ11 = 50 σ11 = 20 µ11 = 120 σ11 = 30 µ11 = 78 σ11 = 10 µ11 = 80 σ11 = 5

µ12 = 100 σ12 = 35 µ12 = 150 σ12 = 20 µ12 = 85 σ12 = 7 µ12 = 85 σ12 = 5

µ13 = 75 σ13 = 28 µ13 = 180 σ13 = 20 µ13 = 90 σ13 = 3 µ13 = 88 Σ13 = 3

Datasets 16:

singleAttribute_distinct_3600_1

The following dataset was generated following the trend for having datasets with different

number of attributes. It’s been generated for a single attribute (cost) and has distinct clusters and

sub clusters. There are four main clusters here, each with 900 data points. Within each cluster

three sub clusters have been generated each containing 300 data points. Here, some main clusters

have distinct sub clusters and some have indistinct sub clusters. (c1 and c4 have distinct, c2 and

c3 have indistinct.)

89

900 data

points

(300,300,300)

Cost ($)

µ11 = 55 σ11 = 3

µ12 = 70 σ12 = 2

µ13 = 85 σ13 = 3

900 data

points

(300,300,300)

µ21 = 240 σ21 = 4

µ22 = 260 σ22 = 2

µ23 = 275 σ23 = 3

900 data

points

(300,300,300)

µ31 = 125 σ31 = 4

µ32 = 140 σ32 = 2

µ33 = 155 σ33 = 3

900 data

points

(300,300,300)

µ31 = 325 σ31 = 3

µ32 = 340 σ32 = 3

µ33 = 360 σ33 = 2

Dataset 17:

Filename: sixAttribute_partial_redundant_3000_1

The following dataset was generated for some additional QoS attributes such as Accessibility,

which we will define as the probability of successful reach and installation by service requestors

at a given point of time. It will be measured in %. Another QoS parameter may be Security,

which may be defined as the level of privacy a web service provides to its subscribers. These

may include confidentiality measures, third party access to user information, message encryption

and providing access control. This attribute may be measured on a scale of 100, 100 being the

most secure, private and rigid in terms of access control and 1 being the most lenient. The

following distribution follows a distinct cluster with redundant values in some attributes,

multivariate normal distribution and has been generated for all 6 attributes consisting of 3000

data points.

90

Clust 1

(1000)

(330,330,340)

Cost ($) Response Time (ms) Reliability (scale of 100)

µ11 = 150 σ11 = 2 µ11 = 100 σ11 = 3 µ11 = 45 σ11 = 2

µ12 = 170 σ12 = 2 µ12 = 100 σ12 = 3 µ12 = 50 σ12 = 1.5

µ13 = 200 σ13 = 2.5 µ13 = 120 σ13 = 2 µ13 = 55 σ13 = 1

Clust 2

(1000)

(330,330,340)

µ21 = 310 σ21 = 2 µ21 = 250 σ21 = 3 µ21 = 64 σ21 = 1.2

µ22 = 325 σ22 = 3 µ22 = 275 σ22 = 2 µ22 =69 σ22 = 1

µ23 = 350 σ23 = 3.5 µ23 = 275 σ23 = 2.5 µ23 = 76 σ23 = 1.2

Clust 3

(1000)

(330,330,340)

µ31 = 420 σ31 = 2 µ31 = 100 σ31 = 4 µ31 = 83 σ31 = 1

µ32 = 435 σ32 = 3 µ32 = 160 σ32 = 3 µ32 = 89 σ32 = 0.5

µ33 = 460 σ33 = 3 µ33 = 275 σ33 = 3 µ33 = 95 σ33 = 1

Dataset 18:

Filename: nineAttribute_distinct_distinct_3000_1

The following dataset has been generated for nine attributes. It has been generated for distinct

clusters and sub clusters. The three additional attributes added are Compliance, Latency and

Documentation. Compliance, measured in percentage, relates to the successful accordance of the

service i.e. when the % of times the users’ requests have been understood and complied with

successfully. Latency, measured in ms, is the delay time of the service itself (it is different from

response time, as response time is the actual time taken by the service to respond to the users’

request). Documentation is measured on a scale of 100.

Clust 1

(1000)

(330,330,340)

Availability (%) Accessibility (%) Security (scale of 100)

µ11 = 82 σ11 = 1.5 µ11 = 100 σ11 = 0 µ11 = 48 σ11 = 2

µ12 = 89 σ12 = 1.8 µ12 = 92 σ12 = 3 µ12 = 54 σ12 = 3

µ13 = 95 σ13 = 1 µ13 = 95 σ13 = 1 µ13 = 60 σ13 = 3

Clust 2

(1000)

(330,330,340)

µ21 = 62 σ21 = 1.8 µ21 = 58 σ21 = 2 µ21 = 72 σ21 = 2

µ22 = 77 σ22 = 1 µ22 = 65 σ22 = 2 µ22 =77 σ22 = 1.8

µ23 = 70 σ23 = 1.5 µ23 = 50 σ23 = 1.8 µ23 = 83 σ23 = 2

Clust 3

(1000)

(330,330,340)

µ31 = 52 σ31 = 1.2 µ31 = 75 σ31 = 1.2 µ31 = 88 σ31 = 1.1

µ32 = 45 σ32 = 1.2 µ32 = 80 σ32 = 0.8 µ32 = 96 σ32 = 1

µ33 = 40 σ33 = 1.5 µ33 = 85 σ33 = 1.2 µ33 = 54 σ33 = 3

91

Clust 1

(1000)

(330,330,340)

Cost ($) Response Time (ms) Reliability (scale of 100)

µ11 = 70 σ11 = 1.8 µ11 = 15 σ11 = 1.8 µ11 = 45 σ11 = 2

µ12 = 95 σ12 = 1.5 µ12 = 30 σ12 = 1.5 µ12 = 50 σ12 = 1.5

µ13 = 115 σ13 = 1.5 µ13 = 50 σ13 = 2 µ13 = 55 σ13 = 1

Clust 2

(1000)

(330,330,340)

µ21 = 250 σ21 = 2 µ21 = 250 σ21 = 2 µ21 = 64 σ21 = 1.2

µ22 = 270 σ22 = 1.5 µ22 = 275 σ22 = 1.8 µ22 =69 σ22 = 1

µ23 = 285 σ23 = 1.8 µ23 = 288 σ23 = 2 µ23 = 76 σ23 = 1.2

Clust 3

(1000)

(330,330,340)

µ31 = 340 σ31 = 1.8 µ31 = 100 σ31 = 2 µ31 = 83 σ31 = 1

µ32 = 365 σ32 = 2 µ32 = 120 σ32 = 1.5 µ32 = 89 σ32 = 0.5

µ33 = 380 σ33 = 2 µ33 = 140 σ33 = 2 µ33 = 95 σ33 = 1

Clust 1

(1000)

(330,330,340)

Availability (%) Accessibility (%) Security (scale of 100)

µ11 = 45 σ11 = 1.2 µ11 = 46 σ11 = 1.8 µ11 = 45 σ11 = 2

µ12 = 52 σ12 = 1 µ12 = 51 σ12 = 1.5 µ12 = 50 σ12 = 1.5

µ13 = 57 σ13 = 1 µ13 = 57 σ13 = 1 µ13 = 55 σ13 = 1

Clust 2

(1000)

(330,330,340)

µ21 = 66 σ21 = 1.3 µ21 = 67 σ21 = 1.5 µ21 = 64 σ21 = 1.2

µ22 = 71 σ22 = 1 µ22 = 74 σ22 = 1.2 µ22 =69 σ22 = 1

µ23 = 77 σ23 = 1.2 µ23 = 79 σ23 = 1 µ23 = 76 σ23 = 1.2

Clust 3

(1000)

(330,330,340)

µ31 = 84 σ31 = 1.5 µ31 = 87 σ31 = 1.2 µ31 = 83 σ31 = 1

µ32 = 90 σ32 = 1 µ32 = 92 σ32 = 1 µ32 = 89 σ32 = 0.5

µ33 = 96 σ33 = 0.8 µ33 = 97 σ33 = 1 µ33 = 95 σ33 = 1

Clust 1

(1000)

(330,330,340)

Compliance (scale of 100)

Latency (ms)

Documentation (scale of

100)

µ11 = 82 σ11 = 1.2 µ11 = 4 σ11 = 0.5 µ11 = 40 σ11 = 1.5

µ12 = 89 σ12 = 1.2 µ12 = 10 σ12 = 1.5 µ12 = 46 σ12 = 1.5

µ13 = 95 σ13 = 1 µ13 = 18 σ13 = 2 µ13 = 52 σ13 = 1.5

Clust 2

(1000)

(330,330,340)

µ21 = 60 σ21 = 1.4 µ21 = 40 σ21 = 1.5 µ21 = 62 σ21 = 1

µ22 = 66 σ22 = 1 µ22 = 46 σ22 = 1 µ22 =69 σ22 = 1

µ23 = 71 σ23 = 1.5 µ23 = 52 σ23 = 1.2 µ23 = 75 σ23 = 1.2

Clust 3

(1000)

(330,330,340)

µ31 = 52 σ31 = 1.2 µ31 = 75 σ31 = 1.2 µ31 = 84 σ31 = 1.1

µ32 = 45 σ32 = 1 µ32 = 80 σ32 = 0.8 µ32 = 90 σ32 = 1.3

µ33 = 40 σ33 = 1.3 µ33 = 85 σ33 = 1.2 µ33 = 97 σ33 = 1

92

APPENDIX B: SOLUTION CODE
The code used to implement K-means clustering in various forms as Vector-based,

Preference-based and weighted clustering has been included in this section. The language used

was C#.

The code used to implement K-means clustering is follows:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Diagnostics;

using System.Windows.Forms;

namespace QoSKMeans

{

 public enum ClusteringType

 {

 Preference,

 Weighted

 }

 public class KMeans

 {

 /// <summary>

 /// Global random number generator (used to select centroids in the first iteration)

 /// </summary>

 public static Random random = new Random();

 /// <summary>

 /// used to check the precision of Cluster Set Sums in two subsequent iterations.

 /// </summary>

 public const double Epsilon = 0.0001;

 /// <summary>

 /// Global instance of current ClusterSet

 /// </summary>

 ClusterSet currentClusterSet;

93

 /// <summary>

 /// Global instance of previous ClusterSet

 /// </summary>

 ClusterSet previousClusterSet;

 /// <summary>

 /// Global instance of ProcessedAttribute Class (used in GenerateCentroids,

CalculateDistances and PopulateClusters

 /// </summary>

 ProcessedAttribute processedAttribute;

 /// <summary>

 /// The original attribute that was passed to KMeans

 /// </summary>

 Attribute originalAttribute;

 /// <summary>

 /// Calculates given no. of clusters on a given attribute.

 /// </summary>

 /// <param name="attribute"> attribute selected based on the preference order selected in the

interface</param>

 /// <param name="numOfClusters"> number of clusters specified by the user in the

interface</param>

 /// <returns>The resulting ClusterSet</returns>

 public ClusterSet CalculateKMeans(Attribute attribute, int numOfClusters)

 {

 originalAttribute = attribute;

 //keeps a track of the number of iterations

 int iteration = 0;

 //stores the sum of distances in a Cluster Set

 double previousSumOfClusterSet = 0.0;

 while (true)

 {

 //First iteration

 if (iteration == 0)

 {

 currentClusterSet = new ClusterSet(attribute.Label, numOfClusters); // Create new

clusterset with the attribute label and the 'k' clusters chosen by user

 processedAttribute = new ProcessedAttribute(attribute); // Checks for duplicates and

condenses the original attribute into a processed attribute

 GenerateCentroids(); // Generates initial centroids randomly

94

 List<List<double>> distanceSets = CalculateDistances(); // Calculates the distance

between every interval and every centroid

 if (!PopulateClusters(distanceSets)) // Places intervals into clusters with centroids

with which they have MINIMUM distance

 {

 MessageBox.Show("Encountered an empty cluster, reseting K-Means");

#if TRACE

 Trace.WriteLine("Encountered an empty cluster, reseting K-Means");

#endif

 continue;

 }

 previousSumOfClusterSet = CalculateDistanceSum(distanceSets); // Calculates the

total distance sum of a ClusterSet

 previousClusterSet = currentClusterSet; //Stores the current ClusterSet into previous

ClusterSet (for future comparison)

 iteration++; //Moving on to the next iteration

 }

 else

 {

 currentClusterSet = new ClusterSet(attribute.Label, numOfClusters); // Create new

clusterset with the attribute label and the 'k' clusters chosen by user

 RecalculateCentroids(); //Calculates new centroids by taking the mean of the

previous ClusterSet's centroids

 List<List<double>> distanceSets = CalculateDistances(); // Calculates the distance

between every interval and every centroid

 if (!PopulateClusters(distanceSets)) // Places intervals into clusters with centroids

with which they have MINIMUM distance

 {

#if TRACE

 Trace.WriteLine("Encountered an empty cluster, reseting K-Means");

#endif

 iteration = 0;

 continue;

 }

 double currentSumOfClusterSet = CalculateDistanceSum(distanceSets); //

Calculates the total distance sum of a ClusterSet

95

 if (Math.Abs(previousSumOfClusterSet - currentSumOfClusterSet) <

double.Epsilon) // Checks if the Previous ClusterSetSum is equal to the current ClusterSetSum

(within a threshold)

 {

#if DEBUG

 Trace.WriteLine("Ran for " + (iteration + 1) + " iteration(s)");

#endif

 break;

 }

 else

 {

 previousSumOfClusterSet = currentSumOfClusterSet;

 previousClusterSet = currentClusterSet; //Stores the current ClusterSet into

previous ClusterSet (for future comparison)

 iteration++; //next iteration

 }

 }

 }

 return currentClusterSet; //if the Sums of ClusterSets in subsequent iterations are same

then the ClusterSet is returned

 }

 /// <summary>

 /// Generates initial centroids randomly

 /// It scans through the intervals in a processed attribute and chooses given no. of centroids

randomly.

 /// Once centroids have been chosen, their copies in the processed Attribute are removed.

 /// </summary>

 private void GenerateCentroids()

 {

 for (int i = 0; i < currentClusterSet.Count; i++)

 {

 int intervalIndex = random.Next(processedAttribute.Count); //chooses a random

interval from the processed attribute

 currentClusterSet[i].Centroid = processedAttribute[intervalIndex]; // places it as the

centroid of a cluster in a cluster Set

 //if (processedAttribute.IntervalCount[intervalIndex] >= 1)

 //{

 // processedAttribute.IntervalCount[intervalIndex] -= 1;

 //}

 //else

 //{

 // processedAttribute.RemoveAt(intervalIndex); //removes chosen intervals (now

centroids) from processed Attribute

96

 // processedAttribute.IntervalCount.RemoveAt(intervalIndex);

 //}

 }

 processedAttribute.TrimExcess(); //trims processed Attributes to its actual capacity

 processedAttribute.IntervalCount.TrimExcess();

 }

 /// <summary>

 /// Calculates the distance between every interval and every centroid and stores them in a

list

 /// </summary>

 /// <returns></returns>

 private List<List<double>> CalculateDistances()

 {

 List<List<double>> distances = new List<List<double>>();

 foreach (Interval interval in processedAttribute)

 {

 List<double> intervalDistances = new List<double>();

 foreach (Cluster cluster in currentClusterSet)

 {

 intervalDistances.Add(Interval.Distance(interval, cluster.Centroid));

 }

 distances.Add(intervalDistances);

 }

 return distances;

 }

 /// <summary>

 /// Places intervals into clusters with centroids with which they have MINIMUM distance

 /// Uses the list of distances calculated in CalculateDistances() to find the minimum distance

between an interval

 /// and a centroid and places it in a cluster with that centroid

 /// </summary>

 /// <param name="distances"></param>

 private bool PopulateClusters(List<List<double>> distances)

 {

 for (int i = 0; i < distances.Count; i++)

 {

 double minimumDistance = distances[i][0]; //minimum distance between an interval

and a centroid, set to the first distance as default

 int minimumDistanceIndex = 0; //stores the minimum distance index

97

 for (int j = 0; j < distances[i].Count; j++)

 {

 if (Math.Min(minimumDistance, distances[i][j]) < minimumDistance)

 {

 minimumDistance = Math.Min(minimumDistance, distances[i][j]); // storing the

minimum distance between an interval and a centroid

 minimumDistanceIndex = j; //updating the minimum distance index

 }

 }

 currentClusterSet[minimumDistanceIndex].Add(processedAttribute[i]); // placing the

interval in the cluster consisting of the centroid with which it has minimum distance

 }

 foreach (Cluster cluster in currentClusterSet)

 {

 if (cluster.Count == 0)

 {

 processedAttribute = new ProcessedAttribute(originalAttribute);

 return false;

 }

 }

 return true;

 }

 /// <summary>

 /// Calculates new centroids by taking the mean of the previous ClusterSet's centroids

 /// </summary>

 private void RecalculateCentroids()

 {

 List<Interval> intervalSums = new List<Interval>();

 List<int> intervalCounts = new List<int>();

 //calculating the sum of intervals in the previous ClusterSet's clusters

 foreach (Cluster cluster in previousClusterSet)

 {

 Interval sums = new Interval();

 sums.LowerBound = 0.0;

 sums.UpperBound = 0.0;

 foreach (Interval interval in cluster)

 {

98

 sums.LowerBound += interval.LowerBound;

 sums.UpperBound += interval.UpperBound;

 }

 intervalCounts.Add(cluster.Count);

 intervalSums.Add(sums);

 }

 //assigning new centroids as the mean of previous ClusterSet's intervals

 for (int i = 0; i < currentClusterSet.Count; i++)

 {

 Interval newCentroid = new Interval();

 newCentroid.LowerBound = intervalSums[i].LowerBound / intervalCounts[i];

 newCentroid.UpperBound = intervalSums[i].UpperBound / intervalCounts[i];

 currentClusterSet[i].Centroid = newCentroid;

 }

 }

 /// <summary>

 /// Calculates the total distance sum of a ClusterSet

 /// </summary>

 /// <param name="distanceSets"> list of distances between each interval and its centroid for

every cluster</param>

 /// <returns></returns>

 private static double CalculateDistanceSum(List<List<double>> distanceSets)

 {

 double sumOfClusterSet = 0;

 foreach (List<double> distances in distanceSets)

 {

 double sumOfCluster = 0;

 foreach (double distance in distances)

 {

 sumOfCluster += distance;

 }

 sumOfClusterSet += sumOfCluster;

 }

 return sumOfClusterSet;

 }

 }

}

99

REFERENCES

1. Abramowicz, W., Haniewicz, K., Kaczmarek, M., & Zyskowsk, D. (2007). Architecture

for web services filtering and clustering. Second International Conference on Internet

and Web Applications and Services, ICIW'07, Art. Number: 4222920. Mauritius.

2. Alrifai, M., Skoutas, D., & Risse, T. (April 2010). Selecting Skyline Services for QoS-

based Web Service Composition. WWW'10 - 19th international conference on World

wide web. Raleigh, North Carolina, USA: ACM.

3. Amazon Web Services. (2006). Retrieved May 2011, from Amazon :

http://aws.amazon.com/

4. Bajaj, S. e. (2006). Web Services Policy Framework (WSPolicy). Retrieved April 30 ,

2006, from http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-

polfram/wspolicy- 2006-03-01.pdf

5. Borzsonyi, S., Kossmann, D., & Stocker, K. (2001). The Skyline Operator. International

Conference on Data Enginerring (ICDE), (pp. 421--430).

6. Brugger, N. (2010). Web History - Historical perspective on the World Wide Web.

McGraw Hill.

7. C Ding, P. Sambamoorthy. (2009). QoS Browsing for Web Service Selection. Service

Oriented Computing Lecture Notes in Computer Science,Volume 5900/2009 , pp. 285-

300.

8. Cao, H., Feng, X., Sun, Y., Zhang, Z., & Wu, Q. (2007). A Service Selection Model with

Multiple QoS Constraints on the MMKP. IFIP International Conference on Network and

Parallel Computing (p. 584). IEEE.

9. Cao, J., Huang, J., Wang, G., & Gu, J. (2009). QoS and Preference based Web Service.

Eighth International Conference on Grid and Cooperative Computing (pp. 420 - 426).

IEEE.

10. Carvalho, F., Brito, P., & Bock, H. (2006). Dynamic clustering for interval data based on

L2 distance. Computational Statistics, Vol. 21, Issue 2 , 231-250.

11. Carvalho, F., Souza, R., Chavent, M., & Lechevallier, M. (2006). Adaptive Hausdorff

Distances and Dynamic Clustering of Symbolic Interval Data. Pattern Recognition

Letters, 27(3) , 167-179.

12. Chavent, M., Carvalho, F. A., Lechevallier, Y., & Verde, R. (2006). New Clustering

Methods for Interval Data. Computational Statistics. Vol. 21, Issue 2 , pp. 211-229.

100

13. CLARK, D. D. (1992). Supporting Real-Time Applications in an Integrated Services

Packet Network: Architecture and Mechanism. SIGCOMM, (pp. 14-26).

14. Clark, M. (2001). UDDI Weather Report. Retrieved from

http://www.webservicesarchitect.com/content/articles/clark04.asp

15. Cobb, C. W., & Douglas, P. H. (1928). A Theory of Production. American Economic

Review 18 (Supplement).

16. Cruz, R. L. (1995). Quality of service guarantees in virtual circuit switched networks.

Select Areas Commun. 13 (6) (pp. 1048-1056). IEEE J.

17. Devis, B., Antonellis, V. D., & Melochiori, M. (2004). QoS in Ontology-based Service

Classification and discovery. 15th International Workshop on Database and Expert

Systems Applications, (pp. 145-150).

18. Diday, E., & Noirhomme-Fraiture, M. (2008). Symbolic Data Analysis and the SODUS

Software. New York, USA: Wiley-Interscience.

19. Dong, X., Halevy, A., Madhavan, J., Nemes, E., & Zhang, J. (2004). Similarity Search

for Web Services. 30th VLDB Conference (pp. 372--383). Toronto: Canada.

20. Dong, X., Madhavan, J., & Halevy, A. (2004, December). Mining structures for

semantics. ACM Special Interest Group on Knowledge Discovery and Data Discovery

(SIGKDD) Explorations Newsletter , p. Volume 6 Issue 2.

21. Fan, Z., Zhang, L., Shen, J., & Wang, S. (2010). A User’s Preference based Method for

Web Service Selection. Second International Conference on Computer Research and

Development (pp. 39-45). IEEE.

22. Farhana, Z., & Patrick, M. (2011). An Adaptive and Intelligent SLA Negotiation System

for Web Services. IEEE Transactions on Services Computing, Vol 4, Number 1 .

23. Gunther, N. J. (1998). The Practical Performance Analyst. McGraw-Hill.

24. Han, J., & Kamber, M. (2001). Data Mining: Concepts and Techniques. San Diego:

Academic Press.

25. Han, J., Taehwan, K., & J., C. Web Document Clustering By Using Automatic

Keyphrase Extraction. International Conferences on Web Intelligence and Intelligent

Agent Technology.

26. Hardy, A., & Baune, J. (2007). Clustering and Validation of Interval Data. Selected

Contributions in Data Analysis and Classification, Part I , 69-82.

101

27. Herssens, C., Jureta, I. J., & Faulkner, S. (2009). Capturing and Using QoS Relationships

to Improve Service Selection.

28. IBM Corporation. (2003). Web Service Level Agreement (WSLA) Language Specification

Version 1.0. Retrieved from http://www.research.ibm.com/wsla/WSLASpecV1-

20030128.pdf

29. Irpino, A., & Tontodonato, V. (2006). Clustering reduced interval data using Hausdorff

distance. Computational Statistics, Vol. 21, Issue 2 , 271-288.

30. Keller, A., & Ludwig, H. (March 2003). The WSLA Framework: Specifying and

Monitoring Service Level Agreements for Web Services. Journal of Network and

Systems Management , vol. 11, number1.

31. L.Vu, Hauswirth, M., Porto, F., & Aberer, K. (2006). A search engine for QoS-enabled

discovery of semantic web services. International Journal of Business Process

Integration and Management , 244-255.

32. Lamparter, S., Ankolekar, A., Studer, R., & Grimm, S. (2007). Preference based

Selection of Highly Configurable Web Services”, In Proceedings of the. 16th

International Conference on World Wide Web, (pp. 1013-1022).

33. Li-Li, Q., & Yan, C. (2009). QoS Ontology Based Efficient Web Services Selection. 16th

International Conference on Management Science & Engineering (p. 14). Moscow,

Russia: IEEE.

34. Liu, Y., Ngu, A. T., & Zeng, L. (2004). QoS Computation and Policing in Dynamic Web

Service. 13th International Conference on World Wide Web (pp. 66-73). New York:

IEEE.

35. Ludwig, H., A., K., Dan, A., & King, R. (March, 2003). A Service Level Agreement

Language for Dynamic Electronic Services. Electronic Commerce Research , 43-59.

36. MacKay, D. (2003). Chapter 20 - An Example Inference Task: Clustering. In Information

Theory, Inference and Learning Algorithms (pp. 284–292). Cambridge University Press.

37. Mali, K., & Mitra, S. (2003). Clustering and its validation in a symbolic framework.

Pattern Recognition Letters, Vol. 24 , 2367-2376.

38. Marie, C., & Lechevallier, Y. (2002). Dynamical Clustering Algorithm of Interval Data:

Optimization of an Adequacy Criterion Based on Hausdorff Distance. In Sokolowsky,

Bock, & H. (Eds.), Classification, Clustering and Data Analysis (pp. 53-59). Heidelberg:

Springer-Verlag.

102

39. MathWorks . (n.d.). MATLAB Products. Retrieved May 2011, from MathWorks:

http://www.mathworks.com

40. Moor, A. d., & Van den Heuvel, W. (2004). Web service selection in virtual

communities. 37th Hawaii International Conference on System Sciences.

41. Peng, W., & Li, T. (2006). Interval Data Clustering with Applications. 18th IEEE

International Conference on Tools with Artificial Intelligence, (pp. 355-362). Arlington,

VA.

42. Peng, W., & Li, T. (2006). Interval Data Clustering with Applications. 18th IEEE

International Conference on Tools with Artificial Intelligence.

43. Ran, S. (2003). A Model for Web Services Discovery with QoS. CSIRO Mathematical

and Information Sciences, ACM .

44. Sambamoorthy, P., Ding C. (2009). Thesis Dissertation:" Interactive QoS bowsing for

web service selection." Ryerson University.

45. Sambamoorthy, P., Ding C. (2009). QoS Browsing for Web Service Selection.

International Conference on Service Oriented Computing - ICSOC, (pp. 285-300).

46. SAP NEWS DESK. (December 18, 2005). Microsoft, IBM, SAP To Discontinue UDDI

Web Services Registry Effort.

47. Seekda corporate author. (2007). Home: Seekda. Retrieved March 2010, from Seeka:

http://www.webservices.seekda.com

48. Souza, R. d., & Carvalho, F. d. (2004). Clustering of Interval Data Based on City-Block

Distances. Pattern Recognition Letters, Vol. 25, Issue 3 , 353-365.

49. Vu, L.-H., Hauswirth, M., Porto, F., & Aberer, K. (2006). A Search Engine for QoS-

enabled Discovery of Semantic Web Services. International Journal of Business Process

Integration and Management 2006 - Vol. 1, Number4 , 244 - 255.

50. Wang, Y., & Stroulia, E. (2007). Semantic structure matching for assessing web-service

similarity. Lecture Notes in Computer Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics Vol. 2910 , pp. 194-207.

51. Wang, Y., & Vassileva, J. (2007). Toward Trust and Reputation Based Web Service

Selection: A Survey. International Transactions on Systems Science and Applications

(ITSSA) Journal, Vol. 3 , 118-132.

52. XQ, F., X.W., F., & C-J, J. (2011, 02 26). Research on Web service selection based on

cooperative evolution. Expert Systems with Applications 38 , pp. 9736-9743.

103

53. Xu, Z., Martin, P., Powley, W., & Zulkernine, F. (2007). “Reputation-Enhanced QoS –

based Web Services Discovery. Proceedings of the IEEE International Conference on

Web Services (pp. 249-256). IEEE.

54. Xu, Z., Martin, P., W.Powley, & Zulkernine, F. (2007). Reputation-Enhanced QoS-based

Web Services Discovery. IEEE International Conference on Web Services (pp. 249-256).

Salt Lake City, Utah: IEEE .

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2011

	Effective Quality Of Service Browsing For Web Service Selection
	Shilpi Verma
	Recommended Citation

