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Abstract

Augmented Reality (AR) is the act of overlaying 3D virtual objects into a real-world scene. Using robust computer

vision algorithms, it is possible to perform AR using only a single video camera. However, these algorithms are

very computationally expensive, and most proposed systems have to sacrifice accuracy for speed.

Graphics Processing Units (GPUs), originally designed to power graphics-intensive 3D video games and

now commonplace on most gaming PCs, can also be used for general purpose computations. We developed a

computer vision-based AR system accelerated by a single GPU, allowing robust feature detection and matching

to be performed in every frame.

We conducted performance evaluations in both indoor and outdoor environments, with parameters optimized

for maximum possible accuracy of recovered poses. Our AR system achieves a stable 10-12 frames per second at

640×480 resolution on a laptop.
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Chapter 1

Introduction

1.1 Augmented Reality

Augmented Reality (AR) combines computer-generated virtual objects together with live imagery in the real
world. Unlike Virtual Reality (VR) where its entire environment is computer generated, the AR environment is
the real world with computer-generated objects placed into it, to give the illusion that such virtual object exists in
real life. For example, in Figure 1.1 a large virtual cross appears as if it were positioned in front of a fence in the
real world, even as the camera moves around. AR systems need to be able to localize themselves in the real world
in order to augment the virtual objects, and therefore are much more complicated than VR systems.

(a) (b)

Figure 1.1: Example of aligning computer-generated graphics in the real world with two camera angles.

1



CHAPTER 1. INTRODUCTION 1.2. APPLICATIONS OF AR

1.2 Applications of AR

A simple example of AR would be a virtual 3D object to appear on top of a marker that moves along with it, when
viewed on a mobile device equipped with a video camera.

AR has been demonstrated its potential for outdoor gaming. ARQuake is a modification to a first-person
shooting game where the gameplay takes place outdoors in the real world. The user moves around outdoors while
wearing an optical see-through head-mounted display (HMD), connected to a backpack computer equipped with
a GPS receiver and a digital compass, allowing it to determine the player’s location and orientation in the real
world. Computer-generated monsters and other objects are rendered on the HMD [2].

AR can be deployed for medical use too. For example, in a biopsy operation, the operators would wear a
video see-through HMD, which shows a Magnetic Reasonance (MR) image overlay on top of the subject, with
markings to indicate the proper location, angle and depth for needle insertion [3].

AR has also been used during production of movies such as Avatar, where computer-generated 3D characters
were superimposed on the live actors while they were being filmed in real time, allowing filmmakers to see how
the end result would have looked like on the viewfinders of the cameras during shooting [4].

AR techniques have also been proposed to be used to provide guidance for technicians, engineers, or mechan-
ics working on assembly tasks. For example, an automotive service technicians could wear an HMD that displays
the names of the parts under the hood, and/or indicate what parts are to be installed or removed.

1.3 Important Components of an Augmented Reality System

Common features of an Augmented Reality system include:

• A view of the real world: the user sees the real scene in front of them - either through a transparent screen
at the actual scene (optical see-through AR) [2], or at a computer display that is showing live video from a
video camera (video see-through AR). The latter configuration, which this thesis currently uses, is the most
widely used. With video see-through AR, the display can either be the display on mobile device (such as a
gaming console, cell phone, or tablet) or the eyepiece displays in a helmet-mounted display (HMD).

• Some ways to calculate the equipment’s pose, which may be accomplished using various kinds of sensors
like accelerometers, compasses, or GPS, or using computer vision algorithms, or a combination thereof.

• 2D or 3D graphics added to the view. Augmenting the real world imagery by projecting virtual objects on
top of the real world. For video see-through AR this is by combining the virtual objects with the real video
(often simply overlaying the virtual over the real). For optical see-through AR this is simply shown on the
see-through visor.

For our system is a video see-through system with a camera that calculates pose using computer vision, and
displays 3D augmentations on a screen. Our system uses a single monocular camera because most consumer-
grade mobile electronic devices are only equipped with one camera (if any).

2



CHAPTER 1. INTRODUCTION 1.4. COMPUTER VISION

1.4 Computer Vision

Computer vision refers to software algorithms that allow computers or electronic devices to extract information
from images. By incorporating computer vision techniques, it is possible to compute the camera’s pose from the
video imagery alone without the use of any sensors, reducing it to a software process as many mobile devices
are now equipped with video cameras. For AR systems using computer vision solely to achieve its localization, a
typical approach might consist of the following major steps, all of which are computationally expensive:

• Using a feature detector to locate 2D interest points from the image.

• Matching these 2D interest points with 3D points.

• Using pose recovery algorithms to calculate the camera’s pose using the matches in the previous step.

In most AR systems, interest point detectors are only used in occasional frames with optical flow tracking
performed in order to reduce the computation cost and to allow the system to run in real time. A prominent
optical flow tracker is Lucas Kanade (LK) tracker [5], which is designed for fast estimation, not accuracy of the
optical flow [6]. However, noise is a major problem in optical flow tracking [7], and optic flow is said to produce
multiple flow tracks that are often broken [8]. Additionally, whenever the tracked features leave the camera’s field
of view, matching with them is no longer possible unless feature detection is performed again. The same applies
when these features are lost due to occlusion too.

Our AR system utilizes a single monocular RGB camera without the use of any other sensors, operating solely
through computer vision. As most of the existing smartphones, tablets, or other handheld electronic devices have
only one camera, the results of our single-camera computer vision-based AR can be potentially useful for these
applications.

Our system differs from most AR systems in that interest point processing is performed for every frame, made
possible with GPU acceleration (Section 1.8.1). This provides a higher level of robust performance compared
with other AR systems that only find features occasionally and use simpler algorithms to track from frame to
frame.

1.5 Marker-based Systems

Traditionally, Computer Vision-based AR systems rely on markers to calculate poses, such as in Figure 1.2 where
virtual objects appear on top of markers.

Examples of marker-based AR systems include ArToolKit [9] and ARTag [1]. ARToolKit markers consist of
a square of black and white image surrounded by a black border. As of time of writing, it is currently available
online under a GPL license.

ARTag was another marker-based system developed to eliminate the false positives that ARToolKit suffered,
by using markers that resemble two-dimensional bar codes. Goblin XNA [10] is a 3D AR (and VR) platform with
an emphasis on gaming that incorporate ARTag.

3



CHAPTER 1. INTRODUCTION 1.6. MARKERLESS SYSTEMS

Recently marker-based AR have been employed on commercially released handheld gaming consoles, such
as Nintendo 3DS [11] and PlayStation Vita [12]. Both systems employ augmented reality cards using markers
similar to ARTag.

Marker-based AR systems are well suited for tabletop usage, where markers can be conveniently placed and
virtual objects easily manipulated by moving the markers around.

Figure 1.2: Examples of marker-based AR with ARTag [1].

1.6 Markerless Systems

While pose can be reliably determined with markers, mounting markers in the scene on most occasions is not
possible or convenient. Ideally we should be able to use the features of objects already occurring in the scene.
Achieving markerless AR is much more difficult than marker-based AR, but there have been many different
approaches to it. Feature detection is computationally expensive, and this goes particularly to the most robust ones
such as SIFT and SURF. A Graphics Processing Unit (GPU) can be used to accelerate most of such operations in
order to become useful for real-time AR applications.

1.7 OpenCV

OpenCV [13] is a free and open-source library of many different classes of computer vision algorithms such as
corner and edge detection, face detection, optical flow tracking, pose recovery, and others. It also includes many
image and video processing functions, such as image resizing, color-grayscale conversion, and image filters such
as blur or smoothing. It also has the useful matrix data structure and its manipulation functions.

Performance-minded developers do sometimes rewrite certain OpenCV algorithms when they are not satisfied
with such particular function’s performance. The way we utilize OpenCV functions in our AR system is detailed
in Section 3.2.

4



CHAPTER 1. INTRODUCTION 1.8. THE GRAPHICS PROCESSING UNIT (GPU)

1.8 The Graphics Processing Unit (GPU)

A GPU is traditionally used for processing graphical information, especially 3D graphics in games that have very
high computational demands, where a very large number of textured polygons have to be rendered in every frame
in real time, in high resolutions of 1920× 1080 or greater. As newer games are released, they usually demand
even higher polygon counts than before, driving up the development of the GPU’s processing power. Graphics
processing is highly parallel in nature, and GPUs are designed as such.

1.8.1 General Purpose Computing on the GPU (GPGPU)

The regular x86 CPU in each computer contains between 1 to 6 cores, each operating at about 2-3 GHz but heavily
depending on the CPU’s architecture. In certain Intel CPUs, hyperthreading permits each CPU core to execute
two concurrent threads.

In contrast, GPUs are massively parallel processing units capable of thousands of threads executed concur-
rently, but the exact number of parallel threads varies between different models. One of NVIDIA’s later GPU
architectures, Fermi [14], has a high emphasis on general purpose computation.

One Fermi microprocessor is capable of executing 48 warps concurrently, where a warp is a group of 32
threads capable of executing a common instruction concurrently. An entry-level NVIDIA mobile GPU, say a
GeForce GT 520M with just a single microprocessor, is capable of executing 1,536 threads in parallel 1[15].
On the other hand, the top-end consumer mobile GPU in the same product series, a GeForce GTX 580M with
eight microprocessors allows 12,288 concurrent threads to be executed at the same time 2[15]. The more recent
NVIDIA GPU architecture, Kepler [16], emphasis is on reduced power consumption which is essential for mobile
applications.

Limitations

However, GPUs operate at a much lower clock speed than CPUs, for example, Fermi GPUs run at approximately 1
GHz for the units that perform general purpose computing, and Kepler GPUs run at approximately half of Fermi’s
clock speeds.

The transfer of memory between the computer’s main memory (host memory) and the GPU’s dedicated mem-
ory (device memory) have limited bandwidth and high latency. This can result in performance bottlenecks in
poorly optimized GPU-acceleration applications Therefore, GPGPU programmers must strive to minimize mem-
ory transfers between host memory and device memory as much as possible.

GPUs are not ideal for algorithms that require a large amount of execution divergence [15]. As mentioned
earlier, each warp consisting of 32 threads can only execute the same instruction concurrently. Whenever the exe-
cution flow within a warp branches into two different paths, they have to be executed separately in two sequential
steps, resulting in wasted computational capabilities. For example, if the 32 threads in a warp run into an if

/ else statement, N threads get branched into the if branch and 32−N threads get branched into the else

1http://www.geforce.com/hardware/notebook-gpus/geforce-gt-520m/specifications
2http://www.geforce.com/hardware/notebook-gpus/geforce-gtx-580m/specifications
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CHAPTER 1. INTRODUCTION 1.8. THE GRAPHICS PROCESSING UNIT (GPU)

Quadro 2000M

Microprocessor

Warp

Maximum 48 resident warps per microprocessor

32 threads in a warp executing a common instruction

4 Microprocessors in a Quadro 2000M

Figure 1.3: NVIDIA Quadro 2000M is a Fermi GPU with four microprocessors. Each microprocessor of a Fermi
GPU can execute 48 concurrent warps. A warp consists of 32 parallel threads. Thus, an NVIDIA Quadro 2000M
is capable of running 6,144 concurrent threads.

branch. The N threads for the if branch are executed in parallel with the other 32−N threads doing nothing.
Then, the 32−N threads for the else branch are then executed in parallel and the other N threads doing nothing.

Programming on the GPU

There are several GPU programming frameworks available to write GPU-accelerated programs using program-
ming languages similar to C:

• CUDA [17] is NVIDIA’s parallel programming architecture on their GPUs. The CUDA framework allows
GPU-accelerated program to be written in CUDA C, CUDA FORTRAN, and OpenCL. GPU cards designed
solely for general purpose applications without capability to display graphics have been manufactured as of
this writing. NVIDIA Tesla-branded GPUs are an example of such, designed for scientific applications that
demand very large parallel computation workloads. Since version 2.2, the OpenCV library includes GPU-
accelerated versions of various algorithms and supporting functions for NVIDIA GPUs through CUDA,
allowing programmers with no GPU programming experience to benefit from GPU acceleration.
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• ATI Stream [18] is AMD’s equivalent to CUDA, launched in late 2008. However GPU code written for
ATI Stream is not compatible with NVIDIA hardware and vice versa. Since its launch, ATI Stream by itself
received almost no attention [19], but it also supports OpenCL just like NVIDIA.

• OpenCL is an open standard for parallel computing, including GPUs, that is supported by both NVIDIA
and ATI, as well as other hardware manufacturers [20].

According to Karimi et al. an NVIDIA CUDA GPU operating through OpenCL does suffer performance
penalty in the range from 16 to 67 percent increased end-to-end computation time, when compared with the
same GPU operating on the native CUDA framework [21]. In addition, they also found that OpenCL code
designed for NVIDIA CUDA GPU will not always compile on an ATI GPU due to differences within their
OpenCL implementations. Also, executables compiled for NVIDIA GPUs using OpenCL are not compatible with
ATI GPUs, and vice versa. OpenCL is useful when developing consumer-oriented GPU-accelerated applications
that require compatibility with multiple brands of GPUs.

According to SimplyHired as of this writing [19], there have always been more CUDA-related jobs than
OpenCL-related jobs, though the difference is not pronounced. The number of job opportunities related to
OpenCL is catching up with CUDA.

As of version 2.3.1 of OpenCV, the GPU-accelerated portion is available exclusively for NVIDIA’s CUDA
GPUs. However, an OpenCL implementation of SURF is available [22] as of this writing.

1.9 Summary of Contributions

• Implemented the architecture of a markerless computer vision-based augmented reality system, which uti-
lizes a single monocular RGB camera without any other sensors.

• Modified the source code of Speeded Up SURF (GPUSURF) [23], a GPU-accelerated CUDA implemen-
tation of SURF (Speeded Up Robust Features), to gain compatibility with Fermi and later GPUs (Section
3.7).

• Implemented GPU-accelerated brute force interest point matching, where CUBLAS library used for calcu-
lating dot products through matrix multiplication, and written new CUDA code to implement maximum dot
product selector.

• Added GPU acceleration to front end image undistortion.

• Consistent frame rates of 10.5-12 frames per second with 640× 480 pixels resolution, using only robust
algorithms without resorting to problematic optical-flow tracking as most other systems do.

We also developed the following additional programs to support our AR system:

• A camera calibration program, using OpenCV’s checkerboard detection functions, to find necessary camera
parameters.
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• A 3D map generation program, where the maps are created from one or more planar surfaces from the
real world. The 3D points are captured using GPUSURF interest points from a camera image, assuming
all points to lie on a plane, and their 3D world coordinates are calculated using pixel coordinates and two
manually-measured reference world points at either the camera’s bottom corners or midpoint of vertical
edges.

We have written approximately 1505 lines of code for the main AR system, 480 lines for the 3D map generator,
and 178 lines for camera calibration.

In the main AR system, we have also written an additional 336 lines of code to implement GPU-accelerated
RANSAC reprojection, for the ePnP pose recovery algorithm [24], which was not used for our experiment results.
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Chapter 2

Literature Review

2.1 Feature Detectors

The most important component of our markerless computer vision-based AR system is robust feature detection,
where interest points are detected in every video frame, and their image coordinates are matched to the correspond-
ing 3D points in the real world, and these matches are used to calculate the camera’s position and orientation.

To understand feature detectors, we need to first describe corner detectors which predated modern feature
detectors.

2.1.1 Corner Detection

One major class of computer vision algorithms is corner detection, which finds a set of 2D interest points from an
image. The two prominent basic corner detectors include the Harris / KLT detector [25] and the FAST detector
[26, 27]. Figure 2.1 shows an example of interest points detected by Harris / KLT and FAST corner detectors
respectively. These points are also called interest points as they mark potentially useful image coordinates that
are useful for other computer vision operations.

However, these detected 2D image points are not unique as they contain only their x and y coordinates within
the image.

Harris / KLT

The Harris corner detector, originally proposed by Harris and Stephens in 1988 [25], is one of the most widely
known corner detectors. It measures the ”cornerness” of each pixel using the partial derivatives of the pixel
intensity values, in the horizontal and vertical directions; Pixels that are corners have the largest cornerness values.
As a simple corner detector, the details of the algorithms are very often included in university course notes in
Computer Vision courses. It was rather computationally expensive for what it did [28], but there were many
variants built on top of it to increase its ability to be matched, such as adding scale invariance or affine-invariance
[29], illumination invariance [30], or reducing computation cost by incorporating techniques employed by SURF
[28].

9
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(a) (b)

Figure 2.1: Interest points (purple crosses) detected using corner detectors. Left: Harris / KLT. Right: FAST.

FAST

FAST detector is a much simpler corner detection algorithm, intended to reduce the computational cost of corner
detection when compared to Harris/KLT. For each point in the image, FAST checks the pixels in a circle of a
certain radius (typically 3 pixels) surrounding it. If at least a number of them are either all brighter or all darker
than the pixel by a certain threshold (typically 12 out of 16), then it is a feature [26, 27].

2.1.2 Interest Points Matching

Interest points detected from two different images using plain corner detectors such as above, can be matched
together using square patch correlation. That is, by comparing intensities of pixels around the interest point
in a 5× 5 or a 11× 11 square patch, for example. Larger comparison windows provide better matching result
than smaller windows, but increase computational complexity. Comparison criteria include Sum of Absolute
Differences (SAD), Sum of Squared Differences (SSD), or Normalized Cross Correlation (NCC) [31].

However, the possibility of matching without unique identification for each interest point is very limited.
Matching by image patch comparison alone will work only if objects in both images have almost the same scale,
orientation as shown in the top image of Figure 2.2, and a few false matches were made due to illumination
changes. Otherwise the matching will fail, as shown in bottom of Figure 2.2 in a failed attempt to match two
images have different scales. This was the primary method for matching interest points before robust descriptor-
based detectors such as SIFT [32] was invented in 1999.

2.1.3 Detectors with Descriptors

To uniquely identify each interest point in an image, descriptors consisting of many dimensions are added, where
each dimension is represented by a number. The two most prominent interest point detectors with descriptors are
SIFT [32] and SURF [33]. For example, a 64-dimensional SURF descriptor consists of 64 numbers. The detected
interest points can have descriptors attached to allow matching while under changes in rotation, scale, viewpoint
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Figure 2.2: Limitations of matching corners using square patches with NCC comparison criteria. In the bottom
image, change of scale resulted in complete matching failure.

(Figure 2.3), illumination, motion blur, and the combination of the first four conditions (Figure 2.4).
To allow the robust matching of interest points in such scenarios, detection is performed at multiple image

scales, where the scale and orientation of each interest points is computed. A descriptor composed of many
dimensions is then computed around each interest point. The descriptors are rotation invariant if the orientation
of the respective interest point is computed [32].

Descriptor Matching

To calculate the matching score for a particular pair of descriptors, a typical approach includes calculating the
Sum of Squared Difference (SSD) or the dot product of all dimensions between the two descriptor sets of their
respective interest points.

Early descriptors used simply the pixel values around the interest point to describe the interest point, known
as ”patch comparisons”. More modern descriptors use a more abstract description of the pixels around a corner
or interest point detector instead of using the actual pixel values.

The most basic method of descriptor matching is the brute force approach, where every single possible com-
bination of interest points between the source and destination is checked to find the best matches. This method
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Figure 2.3: GPUSURF feature matching with rotation, scale, and viewpoint changes.

yields the maximum number of correct matches, but is extremely computationally expensive to the point where
matching a pair of images with approximately 2,000 interest points can take over two seconds for 128-dimensional
SIFT descriptors, or over one second for 64-dimensonal SURF descriptors.

Thus, typical approaches to descriptor matching would involve binary tree-based methods [34] and Approx-
imate Nearest Neighbor (ANN) [35, 36] searches, which greatly speed up computation but with a drawback of
returning fewer matches.

With GPU acceleration, brute force matching can now be performed in real-time. Our AR system employs
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Figure 2.4: GPUSURF feature matching with illumination, motion blur, and combination changes.

brute force matching to achieve as many correct matches as possible between the camera’s images and the 3D
point databases.

SIFT

The original Scale-invariant Feature Transform (SIFT) algorithm by David Lowe [32] introduced the approach
of combining feature detection along with descriptors, which enabled detection of keypoints that can be matched
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even when subjected to changes in scale, rotation, or illumination. The image coordinates of detected interest
points have sub-pixel precision. It became very popular, at least until SURF became available. Many different
implementations of this algorithm by various authors are now available today. This is achieved by inserting
additional attributes to the interest points detected: scale, orientation, and a 128-dimension descriptor.

The biggest drawback of this difference-of-Gaussian (DoG) feature detector is that its computational time
is very slow, particularly the scale-space computations necessary to achieve scale invariance [37]. A GPU-
accelerated implementation of SIFT exists [38], but according to the author of Speeded Up SURF [23] real time
performance is not achievable even with GPU acceleration [23].

The descriptor has 128 dimensions by default, and the number of dimensions can be decreased to improve
performance, with a small sacrifice in matching accuracy [39].

SURF

Speeded Up Robust Features (SURF), first published in 2007 by Herbert Bay et al. [33] draws upon the idea of
SIFT and makes several approaches to speed up the computation. Its feature detector is based on the Hessian
matrix, and detected interest points have sub-pixel precision.

Its use of integral images allows calculation of sum of image intensities in any rectangular area to be done
with only three additions and four memory accesses. The integral images, combined with box filters, are used for
approximating the second order Gaussian derivatives without actually calculating them. The descriptor has been
reduced to 64 dimensions, compared with SIFT’s default of 128. This allows significant speedup to be achieved
when compared with SIFT, but comes with a decrease of matching capability (repeatability) when subjected to
rotations of approximately 45 or 135 degrees.

But even then SURF by itself does not have real-time computational speed. By employing GPU acceleration,
real-time performance has finally been achieved [23]. Our AR system employs UTIAS’s Speeded Up SURF

(GPUSURF) [23], a GPU-accelerated version of SURF for feature detection.
Figure 2.5 illustrates the process of matching an image pair using SURF (specifically, GPUSURF).

ORB

Both SIFT and SURF are patented. Oriented FAST and Rotated BRIEF (ORB) [40] is designed to be a patent-
free alternative to these detectors. It builds upon the FAST corner detector, but adds orientation computation and
rotation-invariant version of BRIEF binary descriptors to allow robust matching. Its major drawback is the lack
of scale invariance.

Combining plain corner detectors with descriptors

As mentioned before, interest points detected using plain corner detectors have to rely on square patch correlation,
which work only if both images are oriented exactly the same way without any differences in scale or illumination.

Fortunately, all interest point detectors including the traditional corner detectors, such as Harris or FAST,
can be combined with any descriptor generators, including but not limited to SIFT or SURF’s descriptors. For
instance, the Harris corner detector can be combined with either SIFT [37] or SURF [41] descriptors to gain
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(a) (b)

(c)

(d)

Figure 2.5: Matching two images using GPUSURF. 2.5a, 2.5b: Two source images to be matched. 2.5c:
GPUSURF interest points detected for each image, and their descriptors computed. 2.5d: Matching interest
points using their descriptors.

rotation invariance. However it takes extra work in order to make such combinations scale-invariant. For example,
Harris-SIFT performs corner detection on multiple resized copies of the image to gain scale-invariance [37].

2.1.4 Pose Recovery

Pose is a term describing both position and orientation, typically defined as translation (position) and rotation
(orientation). Pose is a six degree measure and requires at least 6 numbers to define it: x, y, z coordinates for
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position, and the angle of rotation in the x-y, y-z, and x-z planes.
Pose recovery algorithms take a list of 2D features / 3D points correspondences and computes the camera’s

pose, which contains the rotation and translation of the camera, that can be combined to form a projection matrix
that is useful for AR systems to project computer-generated virtual objects onto the display.

In OpenCV, an iterative pose recovery algorithm based on Levenberg-Marquardt optimization is the default
algorithm used by the solvePnP function. While relatively slow, it has good accuracy on the recovered pose,
and works even if all 3D points lie on the same plane. Thus this is the pose recovery algorithm we use for our AR
system.

EPnP [24] is a non-iterative pose recovery algorithm intended to lower computational cost. We considered
incorporating this pose recovery algorithm into our AR system at some point, but it was not able to compute
the correct angle of the camera when all the 2D-3D correspondences lie on a plane, as our 3D map generation
captures 3D points only on planar surfaces. In the future work, with more sophisticated multi-view 3D map we
can consider to use the faster ePnP, instead of the slower iterative algorithm as used by our AR system.

RANSAC

To take account of incorrect matches (outliers) between 2D features and 3D points, a RANSAC [42] loop is
incorporated. RANSAC stands for RANdom SAmple Consensus, and pose recovery functions incorporating
RANSAC loops are included in the OpenCV library, as the solvePnPRansac [43] function.

The following is an example of incorporating RANSAC in pose recovery, as used by OpenCV’s solvePnPRansac
[43] function:

1. Pick four random 2D-3D correspondences.

2. Calculate camera’s pose using these four correspondences.

3. Using this camera pose, reproject the 3D points back to 2D image coordinates.

4. Calculate the reprojection error for each reprojected 2D points and their actual 2D coordinates. If the error
is less than a specified threshold in pixels, it is counted as an inlier. Otherwise, it is counted as an outlier.

The above progress is repeated for a specified number of times with different sets of four random 2D-3D corre-
spondences. Optionally the loop may end early when a satisfactory inlier ratio is reached. Finally the calculated
pose that yields the highest number of inliers is returned as the final result.

2.2 Related Works

A paper from year 2000 by Simon, Fitzgibbon, and Zisserman [44] proposed a general workflow for markerless
AR that tracks planar surfaces, which our AR system generally follows upon. Initialization steps include setup of
camera calibration parameters, feature detection in the initial image, and manual indication of planar surface in
the initial image. For the main loop, the computations are feature detection for every frame. These are matched to
the initial image to create 2D-3D correspondences, and are then used to compute the homography matrices, and
in turn used for computation of the camera’s pose.
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Skrypnyk and Lowe 2004 [45] proposed a markerless AR system that uses SIFT for robust feature detection,
and k-d trees based feature matching. These processing were computed in every frame, and the high computation
cost of SIFT resulted in major performance limitations.

To achieve real-time speeds using only a GPU, a typical approach for markerless approach as presented by
Lee, Lee, Lee, and Choi [46], performs feature detection using a Harris-like detector [5] during initialization
only, and the rest handled by tracking using a Lucas-Kanade (LK) [47] tracker. When the tracked features are
lost, feature detection is performed again which momentarily slowed down the system. This approach came with
major drawbacks as mentioned by their paper, as image brightness between frames has to be consistent, and only
small camera movements are permitted.

Alternatively, the PTAM system [48] presented a two-threaded approach, where one thread detects FAST inter-
est points [49] in every frame, while another thread performs pose recovery over multiple frames with occasional
bundle adjustment for correction.

Lee and Hollerer [50] presented another multithreaded solution. The user’s hand is tracked in one thread while
feature detection with SIFT is running in a separate thread. Yet another thread is responsible for using optical flow
to track movement of the SIFT features, along with pose recovery supported by RANSAC [42] to remove outliers
and off-plane features.

Markerless AR had been demonstrated on a mobile phone, which used SIFT for feature detection but did not
use descriptors matching, and instead used a classicification-based Ferns tracker to perform the tracking. They
had to reduce the number of SIFT descriptors from 128 to 36 to speed up computation, and the Ferns sizes to
reduce memory requirements. Orientation computations were added to compensate for the above compromises
[39].

Another approach toward markerless AR on a mobile phone, was the use of panorama images combined with
the use of GPS for outdoor use [51].

In the commercial field, Sony has demonstrated markerless AR running on a PlayStation Vita in a technology
demo, known as Magnet [52].
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Chapter 3

Augmented Reality System

3.1 System Description

Our markerless Augmented Reality (AR) system uses a single video camera to track natural features (through
prepared 3D maps) to localize the position and orientation in the real world. It does not use any additional
sensors such as GPS, compasses, or accelerometers. By using GPU acceleration on most of the algorithms in the
workflow, computational speed can be increased to near real time levels.

As the video camera connected to the laptop moves around an area, it utilizes computer vision techniques to
calculate the camera’s pose and orientation within the real world, and then overlays virtual objects aligned to the
real world onto the display, such as in Figure 3.2.

This AR system was developed with just a laptop and a Firefly camera, held on the user’s hand while walking
around, and displayed augmented results on the laptop’s display. However it is envisaged that future work will
turn this into a hands-free system similiar to to ARQuake [2], where a user walks around wearing a laptop on the
back, and the augmented results displayed in a HMD worn on the user’s head.

3.1.1 System workflow

Figure 3.1 is a flowchart that describes the working process of the AR system in each frame. The tasks performed
by the AR system are as follows:

• Camera input: At the start of the loop, the program reads a video frame captured from the camera, and
undistorts the captured image with GPU acceleration. Additionally a grayscale copy of the image is created
as required for feature detection (Section 3.4)

• Feature detection: GPU-accelerated SURF is used for finding robust interest points from the camera image,
and generating their 64-dimension descriptors.

• 3D Point-Descriptor Map: A database of 3D points in the real world space. Each of the 3D points also
has a set of 64-dimension descriptors. Map file generation is an offline process implemented in a separate
program. (Section 3.3)
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Feature Detection

Descriptor Matching

Camera Input

3D Point-Descriptor Map

Pose Recovery

Project Virtual Objects

Display

Image Unwarping Camera Matrix
Distortion Coefficients

Figure 3.1: Overview of AR system’s execution tasks

• Descriptor matching: The detected points are matched to the 3D map’s world coordinate points, by match-
ing their descriptors using GPU-accelerated brute force algorithm.

• Pose recovery: After the 2D-3D correspondences are made, the camera’s position and orientation in the real
world can be estimated. Only the RANSAC reprojection portion is accelerated by the GPU.

• Draw projected graphics: Virtual objects, defined in real world coordinates, are projected onto the display
using the camera’s position and orientation estimated in the previous step.

• Display: The projected virtual objects are displayed on the screen, as though they were part of the real
world. Figure shows an example of augmented output.

3.2 Algorithms

3.2.1 Image Undistortion

The Firefly MV camera has noticeable radial distortion, as shown in Figure 3.3a. Correcting the camera’s distor-
tion serves three purposes. First, it reduces the effective viewpoint angle in the corner of the images. Second, it
improves the accuracy of pose recovery. And finally, the user sees a more pleasant augmented image.

Image undistortion has two parts:
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(a)

Figure 3.2: Augumented output after completion of AR loop.

1. Calculation of the two undistortion maps during AR system’s startup. The two undistortion maps are lookup
tables for x and y coordinates respectively, on how the pixels from source image should be mapped to the
undistorted image.

2. The actual image undistortion during each frame in the AR loop. For each pixel in the destination image,
the two undistortion maps calculated during AR system’s startup are used for finding its corresponding pixel
from the source image and takes its value.

OpenCV has a function called undistort[53] that performs both of the above at the same time, which
actually calls the initUndistortRectifyMap function and the remap function [53]. The undistort
function is very computationally inefficient for our purpose because the undistortion maps will be calculated in
every frame wasting 10 milliseconds each, while resultant undistortion maps are exactly the same result for every
frame.

In our AR system, to calculate the undistortion maps during program startup, we call an OpenCV function
initUndistortRectifyMap, which requires the camera matrix and non-linear distortion parameters. The
camera calibration procedure in Section 3.4 is used to obtain these parameters.
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(a) (b)

Figure 3.3: Left: Uncorrected camera image of a checkerboard showing the effects of distortion in the lenses.
Right: After applying undistortion.

In the main AR loop, the actual undistortion for every frame is performed on the GPU. Our implementation
of the CUDA kernel is based on the OpenCV remap[53] function.

GPU-accelerated Image Undistortion

The two undistortion maps (lookup tables for undistortion) are copied into the GPU’s memory before the AR loop
begins, and remains there for the lifetime of the program. This avoids costly memory transfer from system memory
to GPU’s memory during each frame. The GPU memory for the distorted source image and undistorted destination
image are also preallocated during startup, saving processing power from the need of constantly allocating and
deallocating memory.

For each frame, the memory transfers between host and device associated with this section consist of:

• The transfer of the distorted source image from host memory to device memory.

• The transfer of the undistorted image from device memory back to host memory.

The CUDA kernel is launched in thread blocks of 256×1 threads each, with the grid dimension of ( Image width−1
256 ×

Image Height) blocks. Each thread is associated with a pixel in the source image, where each of them finds the
undistorted coordinates of its coresponding pixel for the destination image, using the two undistortion maps cal-
culated using initUndistortRectifyMap:

dst(x,y) = src(mapx(x,y),mapy(x,y))

Note that the pixel’s destination coordinates are not integers, which means they actually lie somewhere in
the middle of two pixels. The OpenCV implementation of remap uses bilinear interpolation [54] by default to
resolve this. To match the results of OpenCV we needed to implement bilinear interpolation in this kernel as well.

21



CHAPTER 3. AUGMENTED REALITY SYSTEM 3.2. ALGORITHMS
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Figure 3.4: Bilinear Interpolation.

Each thread reads the blue, green, and red intensity values of four (4) discrete pixels within the rounding
neighbor of the non-integer destination coordinates. These are scattered reads from the global memory, so the
Fermi GPU’s caches help in this situation.

• Top left pixel is located at (floor(dstX), floor(dstY))

• Top right pixel is located at: (ceil(dstX), floor(dstY))

• Bottom left pixel is located at: (floor(dstX), ceil(dstY))

• Bottom right pixel is located at: (ceil(dstX), ceil(dstY))

Now, the thread calculates the distance fraction that is above and below from nearest integer coordinate:

Top fraction = dst(Y )− f loor(dstY )

Bottom fraction = ceil(dstY )−dst(Y )

And for the distance fraction on the left and right from the nearest integer coordinate:

Left fraction = ceil(dstX)−dst(X)
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Right fraction = dst(X)− f loor(dstX)

Now we use the weighted average to calculate the horizontal average color intensities:

Bottom x-axis average = Left fraction×Bottom left color value+Right fraction×Bottom right color value

Top x-axis average = Left fraction×Top left color value+Right fraction×Top right color value

And combine the two horizontal averages vertically to get the pixel’s final color intensity:

Final color = Bottom fraction×Bottom x-axis average+Top fraction×Top x-axis average

The last three formulas are applied three times each, for each of the blue, green, and red intensity values.
After this kernel finishes, the corrected destination image is copied back to the host memory.

GPU-accelerated Color-Grayscale Conversion

The undistorted image still resides on the GPU’s memory, we take this opportunity to perform color to grayscale
image conversion on the GPU, without having to transfer memory data from the host to the device.

Our GPU implementation of this conversion is based on OpenCV’s cvtColor[55] function, where each
color is weighted differently in the following formula:

Gray = Red×0.299+Green×0.587+Blue×0.114

The CUDA kernel is launched in thread blocks of 256×1 threads each, with the grid dimension of ( Image width−1
256 ×

Image Height) blocks. Each thread is responsible for converting one pixel from 24-bit color to grayscale using the
above calculation, where they read their respective pixel’s red, green, and blue intensity values from the source
image in global memory, calculate the new grayscale using the formula above, and write their respective grayscale
pixel into the destination image residing in global memory.

When the kernel finishes, the grayscale image is copied back to the host memory.
Overall, with GPU acceleration the combined undistortion and color-grayscale conversion takes about 2.2ms

per frame on our hardware, including the time spent copying the original distorted image from the host to the
device, the corrected color image from device to host, and the corrected grayscale image from device to host.
This is roughly half the time of OpenCV’s original CPU implementations. The low bandwidth and high latency
of memory transfers between host and device limited the performance gain achieved using GPU acceleration.

3.2.2 Feature Detection

The first step of the AR system after receiving the camera’s image, is to detect interest points. The purple circles in
Figure 3.5 illustrate several examples of interest points detected from their images. The size of the circle indicates
the scale of each interest point, and the line inside the circle indicates the computed orientation of the point. These
circles are not displayed in the actual AR system, but are used for matching 3D points in the next step.
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Figure 3.5: Interested points detected with GPUSURF, and using its descriptors to match.

Feature detection and descriptor generation is performed using Speeded Up SURF [23], which is an imple-
mentation of SURF to take advantage of the GPU’s parallel processing power. It is implemented with NVIDIA’s
CUDA, and requires a CUDA-compatible NVIDIA GPU to run. From here onward, we will refer to this CUDA
SURF implementation as GPUSURF.

In the laptop used for development of this AR system, for 640×480 sized images and default parameters,
GPUSURF is capable of performing keypoint detection and descriptor generation in less than 20 milliseconds
when plugged to AC power, and approximately 40 milliseconds when running on batteries.

3.2.3 Descriptor Matching

After the interest points from the camera image have been detected, they can now be matched to the 3D map’s
points using each of their descriptors. Figure 3.5 illustrates two examples of descriptor matching, where different
coloured lines represent different matches of interest points in each of the image pairs. As the images show, a few
of the matches are incorrect, but in the pose recovery step, these outliers are taken care of by RANSAC.
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The GPUSURF implementation does not include any functionality to actually perform descriptor matching,
so we had to write our function to perform GPU-accelerated matching.

In this AR system, exhaustive keypoint matching, where all vectors are compared (also known as brute force),
is used with dot product as the comparison criteria. This is a highly data-parallel operation well suited for GPUs.
Recursive tree-based matching algorithms such as Kd-trees [34] that are often mentioned in the literature are not
exactly suitable to be coded for GPUs, and matching accuracy is sacrificed due to their approximative natures.

Step 1: Dot product calculation

By putting the two sets of descriptors into their respective matrices, the resulting matrix contains the dot product
for all of the descriptor comparisons.

The descriptor sets are as follow:

• The first descriptor set represents keypoints from the image captured by the camera, arranged as a N× 64
matrix where N is the number of keypoints in the camera’s image. The descriptors in this matrix is different
for every frame, and the contents are copied from host memory to device memory in every frame.

Camera Descriptors Matrix =



dp0,0 dp0,1 dp0,2 ... dp0,63

dp1,0 dp1,1 dp1,2 ... dp1,63

dp2,0 dp2,1 dp2,2 ... dp2,63

dp3,0 dp3,1 dp3,2 ... dp3,63

dp4,0 dp4,1 dp4,2 ... dp3,63

dp5,0 dp5,1 dp5,2 ... dp3,63

... ... ... ... ...

dpN,0 dpN,1 dpN,2 ... dpN,63


• The second descriptor set comes from the map file, arranged as a 64×M matrix where M is the number of

3D points in the database. The descriptors in this matrix is the same during the lifetime of the program, so
the contents are copied from host memory to device memory during program startup only.

Transposed 3D Map Descriptors Matrix =


dm0,0 dm1,0 dm2,0 dm3,0 dm4,0 ... dmM,0

dm0,1 dm1,1 dm2,1 dm3,1 dm4,1 ... dmM,1

dm0,2 dm1,2 dm2,2 dm3,2 dm4,2 ... dmM,2

... ... ... ... ... ... ...

dm0,63 dm1,63 dm2,63 dm3,63 dm4,63 ... dmM,63


The GPU memory space for both matrices is pre-allocated during program startup, avoiding the need to

constantly freeing and reallocating memory for the descriptors of camera images in every frame.
These two matrices are multiplied together on the GPU using function cublasSgemm provided by the

CUBLAS library (CUDA Basic Linear Algebra Subprograms) [56]. CUBLAS is a library of optimized GPU-
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accelerated matrix operations that runs on CUDA, which is included with the CUDA Toolkit.

Matching Scores Matrix = (Camera Descriptors Matrix)(Transposed 3D Map Descriptors Matrix)

The result of this brute-force operating is an N ×M matrix containing the dot products from each of the
keypoint combinations in the pair. The rows are the keypoint indices for the camera image and columns are the
index to a 3D point in the map file:

Matching Scores Matrix =


Scorep0,map0 Scorep0,map1 Scorep0,map2 ... Scorep0,mapM

Scorep1,map0 Scorep1,map1 Scorep1,map2 ... Scorep1,mapM

Scorep2,map0 Scorep2,map1 Scorep2,map2 ... Scorep2,mapM

... ... ... ... ...

ScorepN,map0 ScorepN,map1 ScorepN,map2 ... ScorepN,mapM


Step 2: Picking best matches

The second step of keypoint matching is to select the best match between each keypoint in the camera image and
each 3D point in the map file, using the calculated dot product results in the previous step. The resultant matrix
from the previous step remains in GPU’s memory to be used for this step, avoiding time-consuming memory
transfers between host and device.

A CUDA kernel function is launched with N threads on the GPU, where N is the number of keypoints in the
camera’s image. Each keypoint in the camera’s image is assigned a thread, where the ith thread is responsible
for the ith keypoint. The threads perform an exhaustive search through their keypoint’s row in the dot product
matrix, searching for the best and second best matches. Two thresholds are compared before the chosen matches
are accepted or rejected:

• The relative threshold is the minimum ratio between the best and second best match.

• The absolute threshold is the minimum in order to discard weak matches.

Where a match is accepted, the index of the matching map file point is put into the matches array. Where no best
match meets the thresholds, it will be deemed to have no match, and is assigned a -1 in the matches array instead.

Step 3: Removing multiple matches to the same 3D point

The last step of keypoint matching is to scan through the array of matching indices, to eliminate duplicate matches
to the same 3D point, keeping the one with the best matching score. This ensures that only one keypoint from the
camera image is matched to any given 3D point in the map.

This step is implemented as a CUDA kernel executed on the GPU, with the same number of threads as the
previous step, which is the number of keypoints in the camera’s image. For each thread, if its respective keypoint
has a match, then it searches through the entire array concurrently for any other keypoint that has the same
matching target as its, and compares their matching score. If the thread’s own keypoint has a better matching
score than the other keypoint, then that keypoint’s matching index is set to -1, and the loop continues for this
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thread. Otherwise, if the other keypoint has a better matching score than the thread’s own keypoint, then the
thread’s own keypoint has its matching index set to -1, and the loop ends for this thread. All memory operations
in this kernel are performed on global memory.

The final result, an array of indices of matches, is transferred from the GPU to the host, to be used by the
remainder of the AR system.

3.2.4 Pose Recovery

After the descriptor matching step, a number of the interest points in the camera image now have correspondence
to a 3D world point, allowing the estimation of the camera’s pose in the real world.

Pose recovery is performed by OpenCV solvePnPRansac from the GPU module [43], using the iterative
algorithm based on Levenberg-Marquardt optimization. This function takes at least four 2D-3D correspondences
and the camera matrix, and utilizes RANSAC (Random Sample Consensus) [42] to reduce the effects of outliers
that result from incorrect correspondences between image points and 3D points. In the OpenCV’s implementation,
in each RANSAC iteration, it picks four random 2D-3D correspondences and estimates the camera’s position and
orientation, and calls OpenCV’s solvePnP function which is not GPU-accelerated.

The function then searches for the best result, which is the RANSAC iteration that contains the highest number
of inliers. It then returns the best estimate of camera’s pose and orientation in the 3D world. The computation
time for pose recovery is proportional to the number of RANSAC iterations chosen.

We also experimented with a different pose recovery algorithm, ePnP [24] with this AR system, combined
with our own GPU-accelerated RANSAC loop. Though it is clearly faster, it has a drawback. It is unable to
recover the camera’s direction correctly when all of the matched 3D points lie on the same plane, which is the
case with most of our AR system’s test scenarios.

3.3 3D Maps

The 3D map file for this AR system is a collection of 3D points in the real-world space, and each 3D point has
a set of 64-dimensional GPUSURF descriptors to allow the matching between 2D image points and 3D world
points. Map files are created as an offline process using a separate program. This will be elaborated in Section
3.3.1.

3.3.1 3D Map Generator

Our map creation program captures Speeded Up SURF interest points from locally planar vertical surfaces, such
as the garage door or the brick arches in Figure 3.8. The user manually measures two 3D world points, and aligns
the camera to the two world points. The 3D coordinates of each detected interest point are calculated using their
image coordinates and the two manually-entered 3D world points,

The program assumes all interest points from each camera image lie upon a flat plane. Off-plane interest
points, such as the snow on the ground in Figure 3.8a, the objects behind the arches in Figure 3.8b, can be
manually removed using a graphical user interface.

27



CHAPTER 3. AUGMENTED REALITY SYSTEM 3.3. 3D MAPS

(a)

(b)

Figure 3.6: 3D visualizations of map files. Top: Single scene map. Bottom: Multi scene map
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Figure 3.7: Camera loop of the map file generation program.

(a) (b)

Figure 3.8: The z-coordinates of the input reference can be either at the bottom white corners, or the cyan marks
in the middle of the sides.

Step 1: Capturing a scene

The map file generation program begins the scene capturing phase with a camera input loop. Images captured
from the camera are corrected for distortion in the same way done by our main AR system. The undistorted
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camera images, along with GPUSURF features, are displayed the on the screen as shown in Figure 3.7.
The user points the camera to a reasonably planar wall that returns a good number of SURF features, say as

a poster, and aligns the two reference markers on the sides into two chosen targets that are useful to be manually
measured, such as a the corner or edge of a bookshelf. The reference markers can be either the cyan markers in
the midpoint of the left/right camera edge, or the white markers in the bottom corners. The user then hits any key
to capture the scene.

This program assumes the entire image from the camera is on a plane, and the vertical (z) axis is perpendicular
to the horizon.

The circles are the GPUSURF detected features, where the size of the circle represents the size of the feature,
and the lines inside the circle are the orientation of the feature. The white corner markings at the bottom left and
bottom right of the image are the two points in the world coordinates to be physically measured. The center green
cross is an aid to indicate the center of the image.

Step 2: Entering world coordinates

The program will ask the user whether to use the middle cyan markers or the bottom white markers as the reference
world points. The user will then be asked for the x and y horizontal world coordinates of the two desired reference
markers, which are manually measured by the user. Both reference world points are assumed to have the same
z-position, so the program asks the user to input the z-coordinates once.

After the world coordinates of the plane pointed by the white corners are entered, the world coordinates of
each GPUSURF interest points can be derived. First, find the vector components of the bottom effective edge of
the image:

vectorx = xcorner 2− xcorner 1

vectory = ycorner 2− ycorner 1

vectorcombined =
√

vectorx
2 +vectory

2

Now the world coordinates of each interest point can now be estimated as follows: (u and v are the screen
coordinates of the interest point, after eliminating the outside buffer zone)

xworld = xcorner 1 +vectorx×
u

Screen Width

yworld = ycorner 1 +vectory×
u

Screen Width

zworld = z+vectorcombined +
Screen Height− v−1

Screen Height

For this AR system there is a 20-pixel buffer zone (outside the white brackets) around the edges of the image, so
the outermost 20 pixels around the screen are ”not considered to be part of the image” in these calculations.

30



CHAPTER 3. AUGMENTED REALITY SYSTEM 3.3. 3D MAPS

(a) (b)

(c)

Figure 3.9: Using the GUI to manually remove off-plane interest points.

Step 3: Removing off-plane interest points

After the world coordinates of each interest points are calculated, the user has the option to manually delete
unwanted interest points from the image, particularly the off-plane points.

To select unwanted interest points that are to be deleted, the user clicks and holds the left mouse button and
drags a rectangular selection box on them. The user hits the delete key or backspace to remove the selected interest
points off the 3D map, or clicks the mouse anywhere to unselect the interest points. The user hits any other key to
finish this step, and the remaining 3D points and their descriptors are saved into the 3D map file.
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3.3.2 3D Map format

The 3D map has the following format, for each 3D point in the file: 3dpoint-num desc-num x y z

detector-type num-desc d0 d1 d2 ... d63

Where:

• 3dpoint-num is the ID of this 3D point in the map. This ID starts at 0 for the first 3D point in the map.

• desc-num is always the same as 3dpoint-num in this AR system. In future projects, there may be
multiple descriptors for the same 3D point.

• x, y, z are the 3D world coordinates of this point.

• detector-type is an identifier for the descriptor generator. In this AR system, UT_GPU_SURFis used
for this field.

• num-desc is the number of dimensions for the descriptors. For SURF, this is 64.

• d0, d1, ..., d64 are the 64 descriptors.

3.4 Camera Calibration

This section covers the procedure to obtain the camera matrix (also called K-matrix) and distortion coefficients,
which are needed in order to perform image undistortion and pose recovery. A camera calibration program using
OpenCV was developed to find these matrices.

The camera matrix has 3 rows and 3 columns with the following form:

C =

 fu 0 cu

0 − fv cv

0 0 1


Where fu and fv are the focal length (zoom factor) in the horizontal and vertical axes, and cu and cv are the

image center. The ratio of fu and fv is the aspect ratio of the pixels, which is 1:1 for the Firefly camera, and in
this case these two values are equal.

The camera matrix is a component of the ’projection matrix’ which maps 3D points to 2D points in the image.
The camera matrix is also used to convert a pixel position in the image into angles in space.

As well as the camera matrix, non-linear distortion parameters are also necessary for most computer vision
applications to correct the curvature of the camera image. A calibration procedure is necessary to calculate both
the camera matrix and non-linear distortion parameters.

To find the coefficients of the camera matrix, a checkerboard-based calibration method is used. The OpenCV
library [57] provides the necessary functions to find the camera matrix and the distortion coefficients.

The camera calibration program starts the camera loop, calls findChessboardCorners function to find a
chessboard in the image. If a chessboard is detected, it returns the integer screen coordinates of the interior corners
on the chessboard. Figure 3.10 illustrates the detected chessboard corners. Another function, cornerSubPix
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is called to attain sub-pixel accuracy for each detected corners. The relative world coordinates of each chessboard
corner are calculated from their sub-pixel screen coordinates.

Figure 3.10: Using OpenCV’s findChessboardCorners function to detect a chessboard with 5 rows and 8
columns.

This process is repeated until the chessboard is detected in 30 different images. With the correspondences
between world coordinates and camera coordinates of each chessboard corner in all 30 images, the function
calibrateCamera is finally called to perform the actual camera calibration. This function returns the calcu-
lated camera matrix and the distortion coefficients at the same time.

After the camera matrix is calculated, the user manually verifies the undistortion effects of the calibration. A
camera loop runs again, undistorts the camera image using the undistort function, with the camera matrix
and distortion coefficients just derived, and displays the undistorted results on the screen. If the user finds the
undistortion effects satisfactory, the camera calibration parameters just calculated can be taken as final. Otherwise,
if radial distortion is still noticeable, the camera distortion process should be repeated in order to obtain a new set
of camera calibration parameters.

3.5 Graphic Rendering

After the camera’s pose is retrieved, it is now possible to draw lines defined in world coordinates, and project
them to the output to augment the camera image. This system as developed displays the output on the laptop’s
monitor, but in future work this will be displayed in an HMD. Figure 3.11 shows an example of the final output.
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The two ends of the lines are projected using the following calculations:u

v

w

=C
[
R | T

]x

y

z


Where:

• x, y, z are the world coordinates of the input point.

• C is the camera matrix calculated using the checkerboard method.

• R is rotation matrix, and T is translation matrix, combined into a 3 by 4 projection matrix.

Figure 3.11: Drawing projected lines onto display.

3.6 Hardware

The Lenovo W520 laptop used during the development of this system contains the following hardware:

• CPU: Intel Sandy Bridge running at stock frequency of 2.2 GHz (Core i7 2720QM)

• System (host) memory: 4 GB DDR3
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• GPU: NVIDIA Quadro 2000M 1(see below)

For this AR system, a CUDA-capable GeForce series GPU will suffice. A Quadro’s GPU’s improved double
precision capabilities compared to a GeForce GPU is unnecessary, as none of the GPU-accelerated CUDA ap-
plications in this AR system use any double precision operations, but use single-precision floating point values
[23]instead.

The Quadro 2000M mobile GPU operates at 1.1 Ghz clock. There are 4 Streaming Multiprocessors on the
GPU die. It is built on the Fermi architecture, providing 48 CUDA cores per multiprocessor for a total of 192
CUDA cores, which is the number of warps that can be executed concurrently. As a warp is a group of 32 parallel
threads executing the same instructions, this yields up to 6,144 parallel threads. There are 2 GB of DDR3 memory
for the GPU, where this memory is called global memory in CUDA context.

This is not the fastest CUDA-capable mobile GPU available on the market as of the time this laptop was
acquired. For instance, a GeForce GTX580M contains twice as many microprocessors (thus twice as many
CUDA cores), and a slightly higher GPU clock speed of 1.24 GHz 2. A laptop running with that GPU should
provide faster performance than our laptop.

3.7 Modification of GPUSURF for Fermi Compatibility

Although its developers claimed that GPUSURF is under active development, no update have been made since
April 2010. In particular, with the latest version released as of this writing (0.2.0), it does not work properly with
the latest Fermi architecture GPUs without modification to the CUDA code. In fact, it did not even compile if the
latest CUDA toolkits are used. The Lenovo W520 laptop’s GPU, Quadro 2000M, has a Fermi architecture. It is
designed and optimized for earlier, pre-Fermi GPU architectures.

To make GPUSURF to function properly in Fermi GPUs, its CUDA code was modified as per NVIDIA’s
Fermi Compatibility Guide [58]. The following is an excerpt of the GPUSURF code performing parallel reduction
descriptors.cu, before modifying for Fermi compatibility [23]:

// compute thread IDs (row-major)

int tid = __mul24(threadIdx.y,blockDim.x) + threadIdx.x;

...

// allocate shared memory

__shared__ float smem[2*5*5];

// 2 floats (dx,dy) for each thread

// (5x5 sample points in each sub-region)

...

// sum (reduce) 5x5 area response

__shared__ float rmem[5*5];

// buffer for conducting reductions

...

1http://www.nvidia.com/content/PDF/product-comparison/Quadro_Mobile_Product_Comparison.pdf
2http://www.geforce.com/hardware/notebook-gpus/geforce-gtx-580m/specifications
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// sum (reduce) from 16 to 1 (unrolled - aligned to a half-warp)

if (tid < 16)

{

smem[tid] = smem[tid] + smem[tid + 8];

smem[tid] = smem[tid] + smem[tid + 4];

smem[tid] = smem[tid] + smem[tid + 2];

smem[tid] = smem[tid] + smem[tid + 1];

rmem[tid] = rmem[tid] + rmem[tid + 8];

rmem[tid] = rmem[tid] + rmem[tid + 4];

rmem[tid] = rmem[tid] + rmem[tid + 2];

rmem[tid] = rmem[tid] + rmem[tid + 1];

}

__syncthreads();

...

In each of the reduction steps, it omits the __syncthreads()to improve performance. These take the
advantage of an optimization technique that is mentioned in [58].

GPUSURF performs parallel reduction with this optimization technique in the computation of descriptors
and orientations. To enable this code to work on Fermi or newer GPUs, it is necessary to add a pointer with
the volatile identifier pointing to the shared memory where parallel reduction will take place, and have the
memory operations go through the volatile pointers. The following is the above code with this modification:

// compute thread IDs (row-major)

int tid = __mul24(threadIdx.y,blockDim.x) + threadIdx.x;

...

// allocate shared memory

__shared__ float smem[2*5*5];

// 2 floats (dx,dy) for each thread

// (5x5 sample points in each sub-region)

...

// sum (reduce) 5x5 area response

__shared__ float rmem[5*5];

// buffer for conducting reductions

...

volatile float *smem2 = smem;

volatile float *rmem2 = rmem;

// sum (reduce) from 16 to 1 (unrolled - aligned to a half-warp)

if (tid < 16)

{
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smem2[tid] = smem2[tid] + smem2[tid + 8];

smem2[tid] = smem2[tid] + smem2[tid + 4];

smem2[tid] = smem2[tid] + smem2[tid + 2];

smem2[tid] = smem2[tid] + smem2[tid + 1];

rmem2[tid] = rmem2[tid] + rmem2[tid + 8];

rmem2[tid] = rmem2[tid] + rmem2[tid + 4];

rmem2[tid] = rmem2[tid] + rmem2[tid + 2];

rmem2[tid] = rmem2[tid] + rmem2[tid + 1];

}

__syncthreads();

...

In addition, GPUSURF utilizes CUDPP [59] to calculate the integral images, distributed together with it. The
version supplied with GPUSURF predated the release of Fermi GPUs, and suffered this problems too, but an
updated version of CUDPP is available. Replacing the included CUDPP with the newest version suffices for this
part.
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Chapter 4

Experiment Results

4.1 Setup

4.1.1 GPUSURF settings

For this AR application, it is necessary to strike a balance between robustness and processing speed. The
GPUSURF parameters used for this AR system, in both map file creation and main AR loop, are as follows:

• 8 octaves, the maximum possible for GPUSURF.

• 9 intervals per octave, the maximum possible for GPUSURF. This is assumed to mean how many scale
levels to be subdivided in each octave as mentioned in the original SURF paper [33].

• Interest operator threshold of 0.2.

• First octave scale of 2 - same as default. Any smaller will result in too many keypoints with scale too small
to be useful for keypoint matching.

• Descriptor computation enabled, which is necessary for matching.

• Orientation computation enabled. The user moves the camera freely including rotation, so we need the
rotational invariance. According to our tests, even without rotating the camera sideways, leaving orientation
computation enabled returned better pose recovery results.

The parameters are chosen through experimentation in indoor and outdoor environments. The online docu-
mentation of GPUSURF only provides very brief descriptions on each of the runtime parameters, and there are no
detailed explanation in their paper [23]. For the interest operator threshold, when this value is increased, fewer in-
terest points are detected. Neither the GPUSURF author’s paper [23] nor the original SURF paper [60] explained
what the thresholds exactly mean. To improve matching performance with different distances between camera
and 2D mapped surfaces, the number of octaves and intervals are set to the maximum supported.
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4.1.2 RANSAC pose recovery settings

In this AR system, the number of RANSAC iterations was chosen at 64 in order to allow for a balance between
stability of pose recovered and frame rate. Any higher number of RANSAC iterations will reduce frame rate
without significant improvement of recovered pose’s stability. The computational time for pose recovery portion
is roughtly proportional to the number of RANSAC iterations used.

4.2 Indoor Experiments

4.2.1 Scenario 1: Bulletin Board in Staircase

Our first evaluation took place in the stairwell of a university campus with a highly occupied bulletin board. The
3D map (Figure 4.1) was taken on three surfaces: the bulletin board itself, the doors next to the bulletin board,
and up one flight of stairs.

The number of GPUSURF features and 2D-3D correspondences over each frame of the test sequence are
indicated in Figure 4.4.

The bulletin board is an ideal target to match 2D-3D correspondences, where the different scales of the interest
points in both the 3D map and the camera image allowed correspondences to be found, whether the camera was
close or far away from the bulletin board. Figure 4.2d shows successful pose recovery under motion blur which
resulted from the camera motion.

Facing the doors without the bulletin board visible (Figures 4.3d), the recovered pose was unstable as very few
3D points from the door could be matched. However when a few 3D points on the bulletin boards were matched
too (Figure 4.3e), the recovered pose became much more stable.

On the flight of stairs (Figure 4.2a, 4.2b), the metal railings look approximately planar when viewed from
a distance, allowing that surface to be recorded to the 3D map and a pose to be recovered. However when the
camera is extremely close to the railings while facing in an angle (Figure 4.2c), pose recovery failed as less than
4 2D-3D correspondences were matched.

4.2.2 Scenario 2: Inside a Lab

Our second evaluation, in a robotics lab, captured 3D points from multiple locally planar surfaces to create a more
complex 3D map (Figure 4.5).

The number of GPUSURF features and 2D-3D correspondences over each frame of the test sequence are
indicated in Figure 4.8.

Among the silver numbered boxes (Figure 4.6a, 4.6b), only the interest points that lie on the black numbers
were useful for matching, and the interest points that lie between the boxes had to be manually deleted during 3D
map creation. With only the silver numbered boxes on the 3D map, the recovered pose was very unstable, but
adding the bricks on the back improved the stability of the pose considerably, but not perfectly.

The back wall with a movie poster, a T-shirt, and a Canadian flag (Figures 4.6d, 4.7a, 4.7b) allowed good
matching performance from close-up and far away distances.
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On the wall with the doors (Figures4.7c-4.7f), only a few interest points from a small spot on the doors were
able to be matched, and none on the nearby walls. This resulted in very poor pose recovery and was very unstable,
and increasing the number of RANSAC iterations did not help.

4.2.3 Scenario 3: Kitchen

In this kitchen, we captured the wall with a calendar, fortune poster, two sides of the refrigerator, the cabinet
around the refrigerator, the front of the stove with surrounding cabinets, and the clock into the 3D map (Figure
4.9a).

The number of GPUSURF features and 2D-3D correspondences over each frame of the test sequence are
indicated in Figure 4.12.

The calendar is not conducive to feature matching due to repetitive features, but the fortune poster on the right
side does permit efficient matching (Figure 4.10a-4.10c). The light reflection has a negative effect on the ability
to match descriptors in Figure 4.10a. The large amount of planar objects attached to the refrigerator allowed good
descriptor matching.

We did capture 3D points from the brown cabinets behind the refrigerator and around the stove, but that were
nearly impossible to match. For the cabinet behind the refrigerator (Figure 4.11d), matches are only possible
when the camera was directly in front of it. For the cabinet around the stove, the interest points were unable to be
matched and pose recovery failed (Figure 4.11c).

4.3 Outdoor Experiments

4.3.1 Scenario 4: Outdoor brick arches

For the first outdoor evaluation, we chose a house with brick arches with irregular brick patterns. To construct a
3D map for this location (Figure 4.13a), we used the brick arches as the reference planar surface, and all interest
points that did not reside in the front of the arches (such as the snow on the ground) are manually deleted.

The number of GPUSURF features and 2D-3D correspondences over each frame of the test sequence are
indicated in Figure 4.16.

These bricks did not allow large-scale interest points to be detected, limiting the maximum distance to conduct
pose recovery, where Figure 4.14a was the furthest distance from the arches to extract camera pose.

When the camera tilted upwards as shown in Figure 4.14d, the camera reduced its exposure and increased
shutter speed, causing the image to darken, and no interest points were available to be matched to the 3D map,
and a pose could not be computed.

4.3.2 Scenario 5: Outside house

In the second outdoor scene we took the front of the house and the wooden fence as the target planar surfaces to
be captured to the 3D map as in Figure 4.17a.

The number of GPUSURF features and 2D-3D correspondences over each frame of the test sequence are
indicated in Figure 4.20.
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The house could be tracked from as far as the sidewalk (Figure 4.18a, 4.18b), but there were abundant trans-
lation errors in the z-position while tracking the front of the house, with the virtual objects constantly bobbing up
and down. However the x and y-positions recovered were accurate.

The recovered pose were much more stable when many 3D points from the wooden fence were matched
(Figure 4.19e, 4.19f), but the fence did not allow much distance for tracking. We already attempted to increase
the possible tracking distance of the fence during the 3D map creating step, by placing the camera at a distance
away from the fence such that the width of the fence took only half the width of the camera image.

4.4 Computation Times

The following tables details the computation time for each processing step of the AR system within each frame.
In each test sequence, 3D maps and raw video from the camera are recorded from the scene. Performance data
for each sequence are generated by running the AR system using these videos as the ”camera input”. The overall
frame rates are averaged over the entire video sequence.

Staircase Lab Kitchen
Number of frames processed 484 229 327
Number of points in 3D map 1987 2328 2355
Number of 2D-3D matches (Fig. 4.4) (Fig. 4.8) (Fig. 4.12)

Image undistortion and grayscale conversion (ms) 1.9 1.9 1.8
Interest point detection and descriptor generation (ms) 29.8 28.2 30.3

Descriptor matching (ms) 4.7 4.5 5.6
Pose recovery (ms) 32.3 36.7 41.3

Graphic rendering (ms) 3.2 3.9 3.2
Overall frame rate (fps) 12.0 11.3 10.9

Table 4.1: Breakdown of computation times of each step for indoor scenes

Brick Arches Driveway
Number of frames processed 299 306
Number of points in 3D map 3024 1925
Number of 2D-3D matches (Fig. 4.16) (Fig. 4.20)

Image undistortion and grayscale conversion (ms) 1.9 1.9
Interest point detection and descriptor generation (ms) 36.9 34.3

Descriptor matching (ms) 10.0 6.3
Pose recovery (ms) 30.5 33.4

Graphic rendering (ms) 3.8 3.6
Overall frame rate (fps) 10.7 10.7

Table 4.2: Breakdown of computation times of each step for outdoor scenes

The three slowest steps within this AR system, in order from longest computation time to shortest computation
times, are:
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• SURF feature detection (28.2-36.9 ms)

• Pose recovery (30.5-41.3 ms)

• Descriptor matching (4.5-10 ms)

In the outdoor brick arches sequence, description matching took longer time to compute when compared to
our other test sets. On average throughout the sequence, there were more SURF features detected in each video
frame, and more 3D points in the map, when compared our other test sets.

In both outdoor sets, GPUSURF feature detection were slightly slower than our indoor sets. One possible
explanation was the higher average number of GPUSURF features detected in both outdoor sequences.

The virtual objects were projected onto the display by multiplying their 3D coordinates with the camera and
projection matrices on the GPU, and drawn using OpenCV’s HighGUI functions.
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(a)

Figure 4.1: 3D map of the campus staircase.

(a) (b)

(c) (d)

Figure 4.2: Augmented results in the campus staircase. 4.2a: Frame 14. / 4.2b: Frame 56. / 4.2c: Frame 65. /
4.2d: Frame 78.



(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Augmented results in the campus staircase (continued). 4.3a: Frame 100. / 4.3b: Frame 147. / 4.3c:
Frame 223. / 4.3d: Frame 299. / 4.3e: Frame 318. / 4.3f: Frame 475.
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Figure 4.4: Staircase set: Number of SURF features detected (Blue) / Number of 2D-3D matches (Red)



(a)

Figure 4.5: 3D map of a lab.

(a) (b)

(c) (d)

Figure 4.6: Augmented results in a lab. 4.6a: Frame 17. / 4.6b: Frame 36. / 4.6c: Frame 58. / 4.6d: Frame 70.



(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Augmented results in a lab (continued). 4.7a: Frame 103. 4.7b: Frame 125. 4.7c: Frame 154. 4.7d:
Frame 160. 4.7e: Frame 212. 4.7f: Frame 227.
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Figure 4.8: Lab set: Number of SURF features detected (Blue) / Number of 2D-3D matches (Red)



(a)

Figure 4.9: 3D map of a kitchen.

(a) (b)

(c) (d)

Figure 4.10: Augmented results in a kitchen.



(a) (b)

(c) (d)

(e) (f)

Figure 4.11: Augmented results in a kitchen (continued).
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Figure 4.12: Kitchen set: Number of SURF features detected (Blue) / Number of 2D-3D matches (Red)



(a)

Figure 4.13: 3D map of a house.

(a) (b)

(c) (d)

Figure 4.14: Augmented results in the outdoors. 4.14a: Frame 23. / 4.14b: Frame 74. / 4.14c: Frame 119. /
4.14d: Frame 135.



(a) (b)

(c) (d)

(e) (f)

Figure 4.15: Augmented results in the outdoors (continued). 4.15a: Frame 207. / 4.15b: Frame 281. / 4.15c:
Frame 298. / 4.15d: Frame 345. / 4.15e: Frame 358. / 4.15f: Frame 432.
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Figure 4.16: Brick arches set: Number of SURF features detected (Blue) / Number of 2D-3D matches (Red)



(a)

Figure 4.17: 3D map of a house.

(a) (b)

(c) (d)

Figure 4.18: Augmented results in the outdoors. 4.18a: Frame 6. / 4.18b: Frame 49. / 4.18c: Frame 93. / 4.18d:
Frame 124.



(a) (b)

(c) (d)

(e) (f)

Figure 4.19: Augmented results in the outdoors (continued). 4.19a: Frame 140. / 4.19b: Frame 192. / 4.19c:
Frame 214. / 4.19d: Frame 227. / 4.19e: Frame 250. / 4.19f: Frame 276.
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Figure 4.20: Driveway set: Number of SURF features detected (Blue) / Number of 2D-3D matches (Red)



Chapter 5

Conclusion, Discussion and Future Work

We implemented a markerless augmented reality system, running on a single CPU, single GPU laptop equipped
with a single monocular RGB camera:

• Modified the source code of Speeded Up SURF (GPUSURF) [23], a GPU-accelerated CUDA implemen-
tation of SURF (Speeded Up Robust Features), to gain compatibility with Fermi and later GPUs (Section
3.7).

• Implemented GPU-accelerated brute force interest point matching, where CUBLAS library used for calcu-
lating dot products through matrix multiplication, and written new CUDA code to implement maximum dot
product selector.

• Added GPU acceleration to front end image undistortion.

• Achieved consistent frame rates of 10.5-12 frames per second with 640×480 pixels resolution, using only
robust algorithms without resorting to problematic optical-flow tracking as most other systems do.

We also developed the following additional support programs for our AR system:

• A camera calibration program, using OpenCV’s checkerboard detection functions, to find necessary camera
parameters.

• A 3D map program generator, created from one or more planar surfaces from the real world. The 3D points
are captured using GPUSURF interest points from a camera image, assuming all points to lie on a plane,
and their 3D world coordinates are calculated using pixel coordinates and two manually-measured reference
world points at either the camera’s bottom corners or midpoint of vertical edges.

5.1 Performance

The three slowest steps within this AR system, in order from longest computation time to shortest computation
times, are:

58



CHAPTER 5. CONCLUSION, DISCUSSION AND FUTURE WORK 5.2. LIMITATIONS

• SURF feature detection (28.2-36.9 ms)

• Pose recovery (30.5-41.3 ms)

• Descriptor matching (4.5-10 ms)

We had to sacrifice some computation speed in GPUSURF to maximize its ability to match its descriptors
by maximizing its scale invariance abilities. Pose recovery is a major performance bottleneck of our AR system,
as the actual pose recovery computations are not GPU-accelerated. The computation time for pose recovery is
approximately proportional to the number of RANSAC iterations used.

With a more powerful mobile GPU such as a GTX 580M 1, given that it has twice as many microprocessors
and a slightly higher clock speed, we expect the computation time of GPU SURF can be reduced to approximately
15-19 ms, and descriptor matching times reduced to approximately 2.8-5.5, after accounting for memory transfers
between host memory and GPU memory.

The projection of virtual objects were performed on the CPU using OpenCV’s HighGUI functions. We expect
the virtual object rendering time to be greatly cut down if this was implemented through OpenGL.

The frame rate performances in our evaluations were performed with the laptop plugged into AC power. While
on battery power, the processing speed of this AR system is reduced to approximately 6 frames per seconds, due to
the Quadro 2000M GPU throttling down its CUDA computing power, presumably a measure to limit power draw
from the laptop’s lithium-ion batteries.We were unable to find any method that can defeat this GPU performance
limiter.

5.2 Limitations

As this AR system depends heavily on the ability to detect and match SURF features, scenarios with only tex-
tureless walls will not work as they do not yield matchable SURF interest points. Repetitive features, such as
a block tiles or wall calendars, did not work well either, as each repetition of the feature will yield very similar
descriptors that did not distinguish from each other well. Additionally, SURF descriptors are not possible to be
matched when subjected to viewpoint differences in excess of 45 degrees.

Though we have demonstrated our AR system in two outdoor scenarios, neither of them were subjected to
direct sunshine. Extreme difference in illumination, such as shadows cast by direct sun exposure on the reference
planar surfaces, will not work, as such situations are way beyond the limits of SURF’s illumination invariance
capabilities, as the shadows result in completely different SURF feature detection results.

5.3 Future Work

As all GPU accelerations used in this AR system are implemented through CUDA, only NVIDIA CUDA-
supported GPU can run it. However, there is a possibility to port this AR system to OpenCL in order to allow ATI
GPUs to run, as an OpenCL implementation of SURF [22] is available as of this writing.

1http://www.geforce.com/hardware/notebook-gpus/geforce-gtx-580m
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Making a GPU-accelerated RANSAC pose recovery based on the OpenCV’s iterative algorithm is another
possibility to speed up this step even further, by having each of the RANSAC pose recovery loops assigned to a
thread to be executed concurrently. These algorithms are complex and their implementation will present major
challenges.

Finally, to enable the creation of 3D maps on non-planar objects, we are considering to incorporate Bundler
[61] into the 3D map making process. Bundler allows 3D point clouds to be built using multiple camera images
taken from different viewpoints.
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Appendix A

Glossary

• AR: Augmented Reality.

• CPU: Central Processing Unit.

• GPU: Graphic Processing Unit.

• GPUSURF: Alternate name of Speeded Up SURF, a GPU-accelerated implementation of SURF by Univer-
sity of Toronto’s UTIAS group.

• Octave: In scale-invariant feature detectors such as SIFT or SURF, 2octaves is the scale of the large image
compared to the smallest image within the image pyramid. For example, an image pyramid with 3 octaves
perform feature detection at 1x, 1/2x and 1/4x-scaled image copies.

• OpenCV: Open Source Computer Vision Library.

• Pose: The position and orientation of the camera in a 3D space.

• Pose recovery: To calculate a camera’s pose in a 3D world, for example this can be achieved using multiple
pairs of 2D image point / 3D world point correspondences.

• RANSAC: RAndom Sample Consensus.

• SIFT: Scale-Invariant Feature Transform, by David Lowe.

• SURF: Speeded Up Robust Featues, by H. Bay et al.
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