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Abstract 

Signal Analysis for Cardiac Electrical Activation 
Studies 

@Elnaz Shokrollahi, 2009 

Masters of Applied Science 
Electrical and Computer Engineering 

Ryerson University 

The aim of this study is to determine if some of the characteristics of reconstructed 
unipolar electrograms from the noncontact mapping system can be used to detect epicardial 
and to diff~rl!ntiatl! it from endocardial elr!ctrical activation in a canine heart. This would 
help the electrophysiologist know where exactly the origin of ventricular tachycardia or the 
critical point in tissue is located. Following this, arrhythmia can be successfully treated by 
ablating that part of the tissue of heart. Virtual electrograms were recorded while pacing 
the right ventricle of an open-chest dog at multiple endocardial and epicardial sites using the 
commercially available noncontact mapping system (EnSite Array™ Catheter 3000). The 
endocardial and epicardial paced virtual electrograms from the juxtaposing sites allow for 
analy7,ing systematically the differences in their morphologies. Maximal dV /dt, area under 
the depolarization curve and latency extracted from unipolar electrograms demonstrated 
significant difference between epicardial and endocardial pacing sites with a p-value of less 
than 0.01 in all three cases. The above features were fed to a linear discriminant analysis 
basr!d classifier and high classification accuracy was achieved. Therefore, reliable criteria can 
be proposed to allow for discrimination of an endocardial versus epicardial origin of electrical 
activation. 

And also the endocardial and epicardial paced virtual electrograms from the juxtaposing 
sites allows for an estimate of the transfer function of the myocardium in different positions 
of the right ventricles of a canine heart. The transfer function estimation will aid in bet­
ter mathematical modeling of myocardium and could be a sensitive measure of myocardial 
homogeneity and arrhythmic foci localization. 

Another study was done on human heart. This study was to evaluate the ability of 
virtual electrograms to predict abnormal bipolar electrograms. We tested the hypothesis 
of max dV / dt, filtering and optimized DSM threshold. This allow better identification of 
abnonnal rnyocardial substrate traditionally defined by contact bipolar mapping in human 
RVOT. 
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Chapter 1 

Introduction 

FOR much of recorded history, humans have viewed cardiac arrest as irreversible. For 

religious and scientific reasons it was considered irnpossible, to attempt to reverse 

death. It was not until the latter part of the eighteenth century that humans began to believe 

that resuscitation was possible. Another 200 years passed before the skills for resuscitation 

were developed to a degree that made the reversibility of cardiac arrest a practical reality 

in the 1960s. Many important observations and much real progress had nevertheless been 

made during the intervening years. But the clinical problems were poorly understood, the 

implications of new discoveries were not always appreciated, single components of life-saving 

were attempted in isolation, procedures that were potentially effective were often displaced 

by those of no value, and suitable technology was lacking. Resuscitation had to await its 

time. As medicine advanced and people lived longer, heart disease became a serious health 

issue. In fact, according to the Heart and Stroke Foundation, every 7 minutes, someone dies 

from heart disease or stroke in the USA. Sudden cardiac arrest (SCA) is a major public 

health concern, as it claims the lives of more than 350,000 Americans every year more than 

breast cancer, accidents, homicide, AIDS and, stroke (Figure 1.1) [12]. The last 70 years have 

seen considerable refinement of our understanding of the electrophysiology, hemodynamics, 

and metabolic consequences of ventricular fibrillation. Despite intensive study, however, 

our understanding of the pathophysiology of this lethal ventricular arrhythmia is far from 

complete. Knowing exactly how the heart functions and utilize the technology available may 

1 
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help in discoveries of lethal arrhythmias. 

c.u-• of Death Anm...lly fur all American• 

Figure 1.1: Death rate in the USA [1]. 

1.1 Motivation Behind this Study 

The study of sustained ventricular tachycardia is often frustrating and frequently unsuccess­

ful. Recently, considerable emphasis in the therapy of this arrhythmia has been placed on 

surgical, pacemaker modalities and drug therapy. Also the modern mapping systems, like the 

electroanatomic mapping system and the noncontact mapping has significantly improved the 

understanding of complex atrial and ventricular arrhythmias by allowing the direct associa­

tion of electrical activity at a particular location with the corresponding anatomic structures. 

This combination finally resulted in a more effective targeting of RF energy applications in 

patients with atrial reentrant tachycardias and VTs. Both systems allow for reliable proof of 

the completeness of the induced RF current lesion lines, a major prerequisite for a successful 

procedure. Another decisive factor for a successful RF ablation procedure, beside the exact 
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identification of the critical zone for initiation and perpetual of the tachycardia, is the local-

ization of the anatomic substrate within the atrial or ventricular wall. In this thesis, studying 

both temporal and spectral characteristics of the reconstructed unipolar electrograms may 

predict the origin of electrical activation with in ventricular walls. 

1.2 Electrophysiology of Heart 

Rhythmic contraction begins in the Sino-Atrial Node (also called the Sinus Node located on 

the superior posterolateral wall of the Right Atrium) due to its leaky membrane and larger 

concentration of extracellular N a+ ions. This action potential is conducted throughout 

the atria; the atria contract filling the ventricles through the atrioventricular (mitral and 

tricuspid) valves. Transmission of the action potential is stalled at the atrioventricular node 

(AV node) to allow filling of the ventricles; it then proceeds quickly along the Purkinje 

fibers to the entire left and right ventricular walls, triggering coordinated contraction of the 

ventricles (Figure 1.2). This part of the cycle, which forces blood out of the heart to both 

the general and the pulmonary circulation is called Systole. 

Heart is a muscular organ responsible for pumping blood through the blood vessels by 

repeated and rhythmic contractions. The average human heart beats 72 beats per minute 

(BPM). The function of right side of the heart is to collect de-oxygenated blood, in the 

right atrium, from the body and pump it, via the right ventricle, into the lungs so that 

the carbon dioxide can be dropped off and oxygen picked up. The left side of the heart 

collects oxygenated blood from the lungs into the left atrium. From the left atrium the 

blood moves to the left ventricle, which pumps it out to the body. This blood pumping is 

all electrical activities that help the heart muscles to contract and pass blood through the 

body (Figure 1.3). 

Every living cardiac cell undergoes a regular sequence of electrical changes that initiate 

the contractile activity (systole) and the relaxation (diastole) of the cell. Thus, the contrac­

tion of the heart is associated with a compound action potential that is initiated at the sinus 
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Figure 1.2: Heart Rhythm Structure [2]. 
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Figure 1.3: Heart Electrical Activity. Relation of action potential from the various cardiac regions 
to the body surface ECG [3]. 
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node and sweeps over the conduction path of the heart, preceding the mechanical contrac-

tion of the cardiac fibers. During this depolarization and repolarization of the myocardium, 

a potential difference is created between different regions on the surface of the heart. A 

separation of charge or potential difference is called a dipole. The electrical potential of the 

dipole is conducted through an electrolyte solution, such as the interstitial fluid and blood 

plasma, and eventually reaches the surface of the skin. By placing electrodes on the skin 

surface, we are able to detect and record the electrical activity over the heart surface prior 

to its contraction. The electrocardiogram (EKG /ECG) is a graphic record of the action 

potentials of the heart. It is recorded with an electrocardiograph, and the study of this 

cardiac electrical activity is called electrocardiography. By measuring the potential changes 

in various directions across the heart, it is possible to detect abnormalities. 

1.3 Heart Arrhythmia 

If the conduction path does not work properly it will produce different types of life-threatening 

abnormalities, which are called arrhythmias. An irregular heart beat is an arrhythmia. Heart 

rates can also be irregular. There are different types of arrhythmias. One type of arrhyth­

mia that originated in the ventricles of the heart is called ventricular tachycardia (VT). 

This happens when the lower part of the heart starts beating faster than usual (Figure 1.4). 

Therefore, blood is not pumped efficiently through the body and even heart itself. So heart 

won't deliver enough blood to its own muscle and heart attack will happen. 

The heart beats when electrical signals move through it. Ventricular fibrillation (VF) is a 

condition in which the heart's electrical activity becomes disordered. When this happens, the 

heart's lower (pumping) chambers contract in a rapid, unsynchronized way. The ventricles 

"flutter" rather than beat. The heart pumps little or no blood. 

VF is very serious, collapse and sudden cardiac death will follow in minutes unless medical 

help is provided immediately. If treated in time, VF and VT (extremely rapid heartbeat) 

can be converted into normal rhythm. This requires shocking the heart with a device called 

a defibrillator. 
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Figure 1.4: Ventricular Tachycardia [4]. 

Figure 1.5: Ventricular Fibrillation [4]. 
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Physicians and electro-physiologist are working on these abnormalities to find out where 

exactly these abnormalities start. If they know where exactly is its origin, they can burn 

that part of the tissue so heart will work properly again. Diagnosing this tachycardia usually 

is troublesome as it is usually a diagnosis of exclusion after multiple ablation attempts on 

the endocardium. In order to study these abnormalities some definitions needs to be covered 

here. 

1.4 Definition of Electrogram 

The term electrogram, as opposed to the term electrocardiogram (ECG) , denotes a recording 

of cardiac potentials from electrodes directly in contact with the heart [13]. Electrograms 

form the raw data for cardiac mapping, which has been defined as: "a method by which 

potentials recorded directly from the surface of the heart are spatially depicted as a function 

of time in an integrated manner," and which is important as both a research tool and a 

method for guiding therapy. 

1.5 Baseline Measurements 

1.5.1 Intra-cardiac Electrograms 

While the surface ECG records, a summation of the electrical activity of the entire heart , 

intra-cardiac electrograms recorded by the electrode catheter represent only the electrical 

activity of the local cardiac tissue in the immediate vicinity of the catheter 's electrodes. 

Cardiac electro grams are generated by the potential (voltage) differences recorded at two 

recording electrodes during the cardiac cycle. A clinical electrogram is connected to the 

anodal (positive) input of the recording amplifier and a second source that is connected 

to the cathodal (negative) input [14]. Recorded electrograms can provide three important 

pieces of information: 
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1. The local activation time that is, the time of activation of myocardium immediately 

adjacent to the recording electrode relative to a reference; 

2. The direction of propagation of electrical activity activation within the field of view of 

the recording electrode; 

3. The complexity of myocardial activation within the field of view of the recording elec­

trode. 

There are two major cardiac electrogram recordings which their definitions are covered 

in the following section. 

1.5.2 Unipolar Recordings 

Unipolar recordings are obtained by positioning the exploring electrode in the heart and the 

second electrode (usually referred to as the indifferent electrode) distant from the heart so 

that is has little or no cardiac signal. The precordial ECG leads, for example, are unipolar 

recordings that use an indifferent electrode created by connecting the arm and left leg elec­

trodes through high-impedance resistors. By convention, the exploring electrode in contact 

with the cardiac tissue is connected to the positive input of the recording amplifier. In this 

configuration, an approaching wavefront creates a positive deflection that quickly reverses 

itself as the wavefront passes directly under the electrode, generating an RS complex. In 

a normal homogeneous tissue, the maximum negative slope ( dV / dt) of the signal coincides 

with the arrival of the depolarization wavefront directly beneath the electrode, because the 

maximal negative dV/ dt corresponds to the maximum Na+ channel conductance. 

The unfiltered unipolar recordings provide information about the direction of impulse 

propagation; positive deflections (R waves) are generated by propagation toward the record­

ing electrode, and negative deflections ( QS complexes) are generated by propagation away 

from the electrode. The unipolar electrograms are generally unfiltered (0.05 to 300 Hz) , 

but are usually filtered at comparable settings to those of bipolar electrograms (10 to 40 

to 300 Hz or more) when an abnormal tissue (scars or infarct areas) is studied, for which 
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local electrograms can have very low amplitude and can be masked by larger far-field sig-

nals. Filtering the unipolar electro grams can help eliminate far- field signals; however, filtered 

unipolar recordings lose the ability to provide directional information [14], [15], [16). 

The major disadvantage of unipolar recordings is that they contain substantial far-field 

signals generated by depolarization of tissue remote from the recording electrode. Another 

disadvantage is the inability to record an undisturbed electrogram during or immediately 

after pacing [ 1 7) . 

1.5.3 Bipolar Recordings 

Bipolar recordings are obtained by connecting two electrodes that are exploring the area 

of interest to the recording amplifier. At each point in time, the potential generated is 

the sum of the potential from the positive input and the potential at the negative input. 

The potential at the negative input is inverted; this is subtracted from the potential at the 

positive input so that the final recording is the difference between the two. Unlike unipolar 

recordings, bipolar electrodes with short interpolar distance are relatively unaffected by 

far-field events. The bipolar electrogram is simply the difference between the two unipolar 

electrograms recorded at the two poles. Because the far-field signal is similar at each instant 

in time, it is largely subtracted out, leaving the local signal [14], [16). Therefore, compared 

with unipolar recordings, bipolar recordings provide an improved signal-to-noise ratio, and 

high-frequency components are well picked-up. 

Several factors can affect bipolar electrogram amplitude and width, including conduc­

tion velocity (the greater the velocity, the higher the peak amplitude of the filtered bipolar 

electrogram), the mass of the activated tissue, the distance between the electrode and the 

propagating wavefront, the direction of propagation relative to the bipoles, the inter-electrode 

distance, the amplifier gain, and other signal processing techniques that can introduce arti-

facts [14), [16). 

The direction of wavefront propagation cannot be reliably inferred from the morphology 

of the bipolar signal. Moreover, bipolar recordings do not allow simultaneous pacing and 
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recording from the same location. The difference in unipolar and bipolar recordings can 

be used to assist in mapping by simultaneously recording bipolar and unipolar signals from 

the mapping catheter. Although bipolar recordings provide sufficient information for most 

mapping purposes in clinical EP laboratories, simultaneous unipolar recordings can provide 

an indication of the direction of wavefront propagation and a more precise measure of the 

timing of local activation [17]. 

1.6 Electrophysiology (EP) Studies 

Electricity flows throughout the heart in a regular measured pattern. As mentioned earlier, 

this electrical system brings about heart muscle contractions. A problem anywhere along 

the electrical pathway causes an arrhythmia, or healthy rhythm disturbance. Arrhythmias, 

by their very nature, are unpredictable and intermittent , which makes it unlikely that an 

ECG will capture the underlying electrical pathway problem. An electrophysiologic, or 

EP, is somewhat invasive and provides information that is key to diagnosing and treating 

arrhythmias. During this study a specially trained cardiac specialist may provoke arrhythmia 

events and collect data about the flow of electricity during actual events. 

The study is performed after giving local anesthesia and conscious sedation (twilight 

sleep) to keep the patient as comfortable as possible. The procedure involves inserting a 

catheter - a narrow, flexible tube- attached to electricity monitoring electrodes, into a blood 

vessel, often through a site in the groin or neck, and winding the catheter wire up into the 

heart. The journey from entry point to heart muscle is navigated by images created by a 

fluoroscope, an x-ray-like machine that provides continuous, "live" images of the catheter 

and heart muscle. Once the catheter reaches the heart, electrodes at its tip gather data and a 

variety of electrical measurements are made (Figure 1.6). These data pinpoint the location of 

the faulty electrical site. During this "electrical mapping", the cardiac arrhythmia specialist, 

an electrophysiologist, may instigate, through pacing (the use of tiny electrical impulses), 

some of the very arrhythmias that are the crux of the problem. The events are safe, given 

the range of experts and resources close at hand and are necessary to ensure the precise 
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location of the problematic tissue. 

Figure 1.6: Electrophysiology Study on Human Heart. 

Current techniques of mapping potentials directly from the endocardium present certain 

difficulties. Limited in the number of recording sites, intravascular multi-electrode catheter 

mapping is time consuming, and data are collected over many beats. Therefore, this ap­

proach cannot be used on a beat by beat basis to study dynamic changes in the activation 

process [18]. Multi-electrode endocardial balloons or sponges, although capable of map­

ping the entire endocardium, occlude the cavity and require open heart surgery, heart-lung 

bypass, and other complicated and risky procedures [18], [19], [20]. Conventional contact 

catheter mapping procedure is dependent on myocardial contact and the multiple regions 

sampled as it relies on recording of endocardial electrograms sequentially from a small, local­

ized area of myocardium. The noncontact mapping system, using the inverse solution, can 

create a voltage map based on reconstructed far- field signals from the noncontact catheter. 
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In recent studies, a mathematical method is used to reconstruct the endocardial potential 

distribution from cavitary potential measured with a multi-electrode array (MEA) that is 

not in direct contact with the endocardium. The mapping system (EnSite; Endocardial So­

lutions Inc., St. Paul, Minnesota, USA) is a computerized (Silicon Graphics, Mountain View 

California) and custom-built amplifier electrophysiology recording system that consists of 

a 9 French catheter with a distally located braided 64 electrode array that is deployed by a 

7.5 mL balloon filled with a mixture of saline and contrast medium (Figure 1.7). The probe 

was inserted via a femoral vein (9 French sheath) and advanced into the right atrium (RA) 

and into the right ventricle (RV). Each wire has a 0.025-in break in insulation, producing 

a noncontact unipolar electrode [21]. The raw far-field electrographic data from the MEA 

are acquired and fend into a multichannel recorder and amplifier system, sampled at 1.2 

kHz, and filtered with a bandwidth of 0.1 to 300 Hz. The amplifier also has 16 channels for 

contact catheters and 12 for surface ECG. A ring electrode located on the proximal shaft of 

the MEA catheter in the descending aorta is used as a reference for both noncontact and 

contact unipolar electrogram recordings. Intravenous heparin is infused to keep activated 

clotting time (ACT) at 250 - 300 seconds. 

The system can locate any conventional mapping-ablation catheter in space with respect 

to the array catheter (and thus with respect to the cardiac chamber being mapped). A low 

current ( 5.68 H z ) locator signal is passed between the contact catheter electrode being 

located and reference electrodes on the noncontact array. This creates a potential gradient 

across the array electrodes, which is then used to position the source. This locator system is 

also used to construct the 3-D computer model of the endocardium that is required for the 

reconstruction of endocardial electrograms and isopotential maps. This model is acquired 

by moving a conventional contact catheter around the endocardial surface of the cardiac 

chamber; the system collects the location information, building up a series of coordinates 

for the endocardium, and generating a patient-specific, anatomically contoured model of 

its geometry. During geometry creation, only the most distant points visited by the roving 
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Figure 1.7: Noncontact mapping catheter. The noncontact mapping catheter is shown with its 
braided microelectrode array and 7.6 ml balloon deployed [5]. 

catheter are recorded to ignore those detected when the catheter is not in contact with the 

endocardial wall. 

Using mathematical techniques to process potentials recorded from the array, the system 

is able to reconstruct more than 3000 unipolar electrograms simultaneously and superim­

pose them on the virtual endocardium, producing isopotential maps with a color range 

representing voltage amplitudes (Figure 1.8). Additionally, the locator signal can be used to 

display and track the position of any catheter on the endocardial model and allows mark­

ing of anatomical locations identified using fluoroscopy and electrographic characteristics. 

Therefore, by moving the ablation catheter around endocardium with respect to the MEA, 

low-current "locator" signal between the catheter being located and alternately between 

ring electrodes proximal and distal to the MEA on the noncontact catheter, multiple spatial 

points are identified. 

These points were collected from multiple RV endocardial sites, and a three-dimensional 

(3-D) RV geometry was generated by interpolation between the mapped sites and defining 

boundaries. Anatomic structures were labeled on the 3-D geometry by determining the 
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Figure 1.8: Isopotential maps recorded during ventricular tachycardia. The virtual endocardium 
may be rotated and the orientation in 3D space is depicted by the torso in the corner of the image. 
These maps are translucent allowing visualization of the entire activation map and the MEA [6]. 
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catheter position from fluoroscopy and electrogram recordings, and defining those structures 

on the 3-D geometry at those sites. Using inverse solution mathematics, the system cal­

culates the real-time endocardial potentials simultaneously at more than 3000 virtual sites 

these electrograms are of lower amplitude and frequency than the source on the endocardium. 

The technique to enhance and resolve these far- field potentials has been devised based on 

an inverse solution to Laplace's equation by use of a boundary element method (BEM). The 

inverse solution considers how a signal detected at a remote point will have appeared at the 

source, and the BEM is a method for applying the inverse solution to resolve a matrix of 

such signals from a source at a known boundary (e.g. the blood-endocardial boundary). 

Laplace equation can describe the potential distribution on the MEA created by potentials 

at the blood -endocardial boundary. The potential field at any 1 electrode is influenced to a 

degree by the potentials from the entire endocardium, the degree of influence being inversely 

proportional to the distance between the electrode and each endocardial point. 

The potential field created on the MEA surface is therefore related to the MEA -endocardial 

geometry matrix. When the geometry matrix is known, it is possible to compute with 

inverse solution of Laplace's equation the endocardial electrograms from the MEA po­

tentials. Because inverse solution is inherently ill posed which means inaccuracy in the 

MEA -endocardial geometry matrix results in large errors, regularization technique based 

on Tikhonov is used [22). The accuracy of reconstruction of endocardial electro grams is there­

fore dependent on the solution to Laplace's equation, the regularization technique used, and 

the accuracy of the geometry matrix. Errors in geometry will still occur and may be related 

to the number of endocardial points sampled and the complexity of the geometry of the 

chamber. 

In addition, the most recent version of the EnSite software provides the capability of 

point by point contact mapping, allowing the creation of activation and voltage maps by 

acquiring serial contact electrograms and displaying them on the virtual endocardium. This 

is useful for adding detail, familiarity, and validation of the information obtained by the 

noncontact method [23). 
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1.7.1 Clinical Implications with EnSite 

The MEA has been successfully deployed in all four chambers. The biggest advantage of 

noncontact endocardial mapping is its ability to recreate the endocardial activation sequence 

from simultaneously acquired multiple data points over a few tachycardia beats, without re­

quiring sequential point-to-point acquisitions, obviating the need for prolonged tachycardia 

episodes that the patient might tolerate poorly. The animated spread of the depolarization 

wave can be visualized by the isopotential maps generated at successive cross sections of 

time. These maps are particularly useful for identifying slowly conducting macroreentrant 

pathways. 

Mapping multiple cardiac cycles in real time is also the advantage of noncontact mapping. 

Mapping cardiac cycles will disclose changes in the activation sequence from one beat to the 

next. Because mapping data are acquired without conventional electrode catheters being 

in direct contact with the endocardium, use of noncontact mapping can help avoid the 

mechanical induction of ectopic activity that is frequently seen during conventional mapping. 

The device enables interpolation and analysis of unipolar electrograms. It also provides 

information on focus localization and signal morphology. These parameters are set with 

different filter settings. 

1.8 Signal Filtering 

The signal sampling processing may require filter settings that are sensitive and selective to 

enable visualization of early low amplitude signal components and suppress repolarization 

related far-filed signal elements. The surface ECG is usually filtered at 0.1 Hz to 100 Hz. 

The bulk of the energy is in the 0.1 Hz to 20 Hz range. Because of interference from al­

ternating current (AC), muscle twitches, and similar relatively high-frequency interference, 

it is sometimes necessary to record the surface ECG over a lower frequency range or to 

use notch filters. Amplifiers are also used to filter the low and high frequency content of 
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the intracardiac electrograms. Intracardiac electrograms are usually filtered to eliminated 

far-field noise, typically at 30 Hz to 500 Hz. 

High-Pass Filtering: High-pass filtering helps attenuate the frequencies that are slower 

than the specified cutoff of the filter. If intracardiac recording were not filtered, the signal 

would oscillate up and down as this potential fluctuated with respiration, catheter movement, 

and variable catheter contact. 

For bipolar electrograms, high-pass filters with corner frequencies between 10 and 50 

Hz are commonly used. Filtering can distort the electrogram morphology and reduce its 

amplitude. Unipolar signals are commonly filtered at 0.05 to 0.5 Hz to remove baseline 

drift. Filtering at higher cutoff frequencies (e.g. 30 Hz) alters the morphology of the signal 

so that the morphology of the unipolar signal is no longer an indication of the direction of 

wavefront propagation. However filtering the unipolar signal does not affect its usefulness 

as a measure of the local activation time. 

Low-Pass Filtering: Low-pass filters attenuate frequencies that are faster than the 

specified cutoff frequency (usually 250 to 500Hz). This is useful for reducing high-frequency 

noise and, at these frequencies, does not substantially affect electrograms recorded with 

clinical systems because most of the signal content is lower than 300 Hz. 

Band-Pass Filtering: Defining a band of frequencies to record, such as setting the high­

pass filter to 30 Hz and the low-pass filter to 300 Hz, defines a band of frequencies from 

30 to 300 Hz that are not attenuated (i.e. band-pass filtering). A notch filter is a special 

case of band pass filtering, with specific attenuation of frequencies at 50 or 60 Hz to reduce 

electrical noise introduced by the frequency of common AC current. 

Identification of true local activation and its differentiation from far- filed signals or re­

polarization waves is essential to successful utilization of EnSite system. This problem may 

be emphasized with unipolar, noncontact mapping because signals detected by the array 

initially are amplified to derive the endocardial map. Thus, low-frequency noise, repolar­

ization waves, or far- field signals in the measured cavity will be magnified into larger signals 

on the reconstructed chamber. Therefore, filter setting is required to enable visualization 
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of early low amplitude signal components and suppress repolarization related to far-field 

signal elements. 

1. 9 Organization of the Thesis 

This project mostly focuses on the differentiating the endocardial and epicardial electrical 

activation. This will help find the origination of arrhythmia (mostly VT) and thus a selection 

of appropriate therapeutic intervention and ablation strategies. To this end, Chapter 2 

explains the fundamental and some of the algorithms. The remainder of this report is 

organized as shown in Figure 1. 9. 

In this thesis, two sets of data were collected. One set was gathered at TGH where 

combined contact and noncontact mapping are performed in 6 consecutive patients with 

symptomatic right ventricle outflow track (RVOT) morphology premature ventricular beats 

and structurally normal beats. All procedures were performed in the fasting, non -sedated 

state with continuous electrocardiograph and noninvasive haemodynamic monitoring. The 

signal analysis on this data will construct Chapter 3. The other set was gathered at St. 

Michael's hospital on a canine heart. This was an open chest experiment in which both 

endocardially paced and epicardially paced electrograms were recorded for further analysis. 

The signal analysis in both time and frequency domain on the data will construct Chapter 

4. Chapter 5, the last chapter, presents the conclusions, recommendations, and future works 

resulting from the presented studies. 
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Chapter 2 

Background 

P ATIENTS who survive sudden cardiac death are often then found to have ischaemic 

heart disease (a disease characterized by reduced blood supply to the heart muscle) 

and inducible VT. Treatment of these patients is difficult. Pharmacologic treatment sup­

presses less than half of them [24]. Implantable defibrillators only offer partial treatment of 

arrhythmia and as such are not ideal particularly for patients with frequent arrhythmias, 

slow VT, or atrial fibrillation with a rapid ventricular response. Catheter ablation is an at­

tractive alternative treatment as it offers the potential for long term prevention of VT with 

a lower risk than surgical ablation [25]. Catheter ablation is an invasive procedure used to 

remove a faulty electrical pathway from the hearts of those who are prone to developing car­

diac arrhythmias. Only 10% of patients with re-entrant VT have been considered suitable 

for catheter ablation using conventional techniques [26), mainly because of hemodynamic 

intolerance of the tachycardia which limits the time available for mapping by conventional 

sequential catheter techniques. This is reflected in the success rate of catheter ablation us­

ing conventional techniques. Although 69-90% of VT are not inducible immediately after 

catheter ablation, long term recurrence rates are high. 

Mapping of endocardial potential is an important procedure for studying normal and 

pathologic characteristics of the cardiac excitation process. Mapping the endocardial poten­

tial distribution and its evolution in time is useful for analyzing activation patterns, locating 

arrhythmogenic sites, and identifying areas of abnormal activity and slow conduction. Accu-

20 
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rate localization of the arrhythmogenic site in patients with ventricular arrhythmias is critical 

to the success of non-pharmacologic interventions, such as catheter ablation, to abolish the 

arrhythmia. Furthermore, analyzing the activation pattern is critical to understanding the 

underlying mechanism of an arrhythmia and thus to the selection of appropriate therapeutic 

intervention and ablation strategies [12]. 

Much has been learned from animal models using multielectrode arrays attached to the 

epicardial surface of the heart and optical mapping; however, these techniques cannot be eas­

ily applied in humans. Mapping the human arrhythmia has been limited to multielectrode 

arrays applied to small ares of one of the chambers of the hearts during nonphysiological 

conditions of cardiac surgery [27], [28]. In this Chapter, two mapping techniques will be cov­

ered but before that, the motivation behind this study and fundamental concepts should be 

covered. 

2.1 Fundamental Concepts 

Essential to the effective management of any cardiac arrhythmia is: thorough understanding 

of the mechanisms of its initiation and maintenance. Conventionally, this has been achieved 

by careful study of the surface ECG and correlation of the changes therein with data from 

intra-cardiac electrograms recorded by catheters at various key locations within the cardiac 

chambers (i.e., activation mapping). A record of these electrograms documenting multiple 

sites simultaneously is studied to determine the mechanisms of an arrhythmic event. 

The main value of intra-cardiac and surface ECG tracings is the timing of electrical 

events and determining the direction of impulse propagation. Additionally, electrogram 

morphology can be of significant importance during mapping. Interpretation of recorded 

electrograms is fundamental to the clinical investigation of arrhythmias during EP studies. 

Establishing electrogram criteria, which permits accurate determination of the moment of 

myocardial activation at the recording electrode, is critical for construction of an area map 

of the activation sequence. Bipolar recordings are generally used for activation mapping. 
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Unipolar recordings are used to supplement the information obtained from bipolar recordings. 

The recordings can be used to assist in mapping by simultaneously recording bipolar and 

unipolar signals from the mapping catheter [23], [14]. 

2.1.1 Unipolar Recordings 

Unipolar electrograms represent electrical activity form the entire heart, although contri­

bution from distant events decreases in proportion to the square of the distance from the 

unipolar electrode. 

Timing of Local Activation. The major component of the unipolar electrogram allows 

determination of the local activation time, although there are exceptions. The point of max­

imum amplitude, the zero crossing, the point of maximum slope (maximum first derivative), 

and the minimum second derivative of the electrogram have been proposed as indicators for 

underlying myocardial activation. The maximum negative slope (i.e., maximum change in 

potential, dV I dt) of the signal coincides best with the arrival of the depolarization wave­

front directly beneath the electrode because the maximal negative dV I dt corresponds to the 

maximum sodium channel conductance [15]. In normal tissue the maximum negative slope 

is a good indication of local depolarization. In abnormal regions, such as infarct scars, the 

tissue beneath the recording electrode may be small relative to the surrounding myocardium 

outside the scar. 

Direction of Local Activation. The morphology of the unfiltered unipolar recording 

indicates the direction of wavefront propagation. By convention, the mapping electrode 

that is in contact with the myocardium is connected to the positive input of the recording 

amplifier. In this configuration, positive deflections (R waves) are generated by propagation 

toward the recording electrode, and negative deflections ( QS complexes) are generated by 

propagation away from the electrode. If a recording electrode is at the source from which all 

wavefronts propagate (at the site of initial activation), depolarization produces a wavefront 

that spreads away from the electrode, generating a monophasic QS complex. When the 

unipolar is not in contact with the myocardium but floating in the cavity, the initial negative 
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slope of the recording is typically slow. This will suggest that the electrogram is a far- field 

signal, generated by tissue some distance from the recording electrode. 

Filtering at higher corner frequencies (e.g. 30 Hz) alters the morphology of the signal, 

so that the morphology of the unipolar signal is no longer an indication of the direction of 

wavefront propagation and the presence or absence of a QS complex cannot be used to infer 

proximity to the site of earliest activation [15], [29]. 

Advantages of Unipolar Recordings. One important value of unipolar recordings is 

that they provide a more precise measure of local activation. This is true for filtered and 

unfiltered unipolar electrograms. In addition, unfiltered unipolar recordings provide infor­

mation about the direction of impulse propagation. Using the unipolar configuration also 

eliminates a possible anodal contribution to depolarization and allows pacing and recording 

at the same location. This generally facilitates the use of other mapping modalities. 

Disadvantages of Unipolar Recordings. The major disadvantage of unipolar record­

ings is that they have poor signal-to-noise ratio and contain substantial far-field signal 

generated by depolarization of tissue remote from the recoding electrode. Therefore, distant 

activity can be difficult to separate from local activity. This is especially true when recording 

from areas of prior myocardial infarction, where the fractionated ventricular potentials are 

ubiquitous and it is often impossible to select a rapid negative dV / dt when the entire QS 

potential is slowly inscribed-that is, cavity potential [15], [29]. 

2.1.2 Bipolar Recordings 

Bipolar recording is useful for recording local activity and fractionated potentials. 

Timing of Local Activation. Algorithms for detecting local activation time from 

bipolar electrograms have been more problematic, partly because of generation of the bipo­

lar electrogram by two spatially separated recording poles. In homogeneous sheet of tissue, 

the initial peak of a filtered (30 to 300 or more Hz) bipolar signal, the absolute maxi­

mum electrogram amplitude, coincides with depolarization beneath the recording electrode, 
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appears to correlate more consistently with local activation time, and corresponds to the 

maximal negative dV / dt of the unipolar recording. To acquire true local electrical activity, 

a bipolar electrogram with an interelectrode distance less than 1 em is desirable. Smaller 

interelectrode distances record increasingly local events. Elimination of far- field noise is 

usually accomplished by filtering the intracardiac electrograms typically at 30 to 500 Hz 

[15], [29]. 

Direction of Local Activation. The morphology and amplitude of bipolar electro­

grams are influenced by the orientation of the bipolar recording axis to the direction of 

propagation of the activation wavefront. A wavefront that is propagating in the direction 

exactly perpendicular to the axis of the recording dipole produces no difference in potential 

between the electrodes, and hence no signal [15], [29]. The direction of wavefront propaga­

tion however cannot be reliable to the morphology of the bipolar signal although a change 

in morphology can be useful findings [15], [29]. For example, when recoding from the lateral 

aspect of the cavotricuspid isthmus during pacing from the coronary sinus (CS), a reversal 

in the bipolar electrogram polarity from positive to negative at the ablation line indicates 

complete isthmus block. 

Advantage of Bipolar Recordings. Bipolar recordings provide an improved signal-to-noise 

ratio, and high frequency components are more accurately seen, which facilitates identifica-

tion of local depolarization, especially in abnormal areas of infarction or scar. 

Disadvantages of Bipolar Recordings. In contrast to unipolar signals, the direction 

of wavefront propagation cannot be reliably inferred from the morphology of the bipolar 

signal. Furthermore, bipolar recordings do not allow simultaneous pacing and recording 

from the same location. 

Example of unipolar and bipolar electrogram is in Figure 2.1. 
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Unipolar (1) ~ 

Bipolar (1-2) -..111---

Bipolar (3-4) •\----

Bipolar(l-6) 

Figure 2.1: Example of Unipolar and Bipolar Electrogram Recorded with Multipolar Electrode 
Catheter. The red dot is the point source of activation [7]. 
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2.1.3 Comparison During Cardiac Mapping 

Both unipolar and bipolar configurations have been used by various investigators to record 

cardiac electrical activity [30], [31]. However, controversy exists as to which is the preferred 

electrode configuration for the detection of local cardiac activation. The characteristics of 

the two electrode configurations suggest that they may provide complementary informa­

tion during cardiac mapping studies, although direct comparisons of the relative merits of 

unipolar and bipolar recordings have not been undertaken in the clinical setting. Therefore, 

different mapping techniques use either of the two configurations. 

2.2 Two Different Mapping Techniques 

Accurate mapping is the corner stone to successful ablative therapy of cardiac arrhythmias 

because it provides insight into the arrhythmia mechanism and identifies the location of a 

suitable target for ablation. Ablation of these arrhythmias is critically dependent on locat­

ing the abnormal depolarization that completes the diastolic pathway. Using conventional 

mapping techniques it has been possible to treat a wide range of arrhythmias with high 

success and low complication rates. However, identification of the target diastolic pathway 

is difficult and time consuming because conventional methods of mapping involve sequential 

recording from a limited number of sites by moving a deflectable catheter. The concept of 

noncontact mapping was introduced by Taccardi [32]. This technique employs mathematical 

methods to compute electrograms simultaneously and produce high resolution color maps of 

activation in the intact beating heart. 

2.2.1 Conventional Mapping 

Bipolar electrograms can also be recorded from the distal electrode pair sequentially during 

sinus rhythm along the endocardial noncontact geometry. Detecting low amplitude bipolar 

signals and creating myocardial surrogate maps have become a corner stone in interven­

tional electrophysiology [33]. This technique has some disadvantages one is that, it is time 
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consuming as endocardial bipolar electrograms are recorded sequentially and is also heav-

ily dependent on density of areas interrogated. Second, focal lesion creation may not be 

sufficient to ablate VT conducting through a broad isthmus region. And also, with the lin­

ear ablation technique, confirming continuity of linear lesion and identification of points of 

breakthrough may be challenging. However, conventional mapping offers the advantage of 

direct voltage mapping to identify regions of low voltage or scar area. 

2.2.2 Dynamic Substrate Mapping 

Noncontact mapping uses the dynamic substrate mapping (DSM) to mark the areas of low 

voltage. DSM marks the areas of substrate of activation by observing how isopotential maps 

display the wavefront moving around lines of block, anatomic barriers, zones of slow conduc­

tion, or diseased tissue. After 3-D geometry is created a high -density virtual electro grams 

is displayed as sequential isopotential maps. Electrograms are filtered between 2 Hz and 

100 Hz. Noncontact mapping uses the unipolar virtual electrograms to define the areas 

of abnormal myocardial substrate. This is unlike the conventional contact mapping which 

defines substrate using the amplitude of bipolar electrograms. Substrate is defined as area 

of consistently low peak negative voltage (PNV) ( < 50 % of the largest peak negative). 

DSM is one such algorithm that is thought to identify abnormal myocardial substrate 

using electrogram amplitude feature. DSM is color coded voltage display on the mapping 

system. DSM defines a certain percentage of the maximum recorded virtual electrograms 

amplitude as abnormal myocardium. In DSM in order to focus on the interval encompassing 

local activation and the receding wave-front, all positive potential are coded purple. As the 

voltage becomes more negative, the display progresses through the color scheme and back 

after the peak negative voltage has occurred. The color range is set by the operator, with 

white being the most negative and purple the most positive. If an electrogram does not 

generate a sufficiently low peak negative voltage, it will not progress to white but peaks at 

an intermediate color. 
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During one cardiac cycle a negative peak voltage which is the largest unipolar deflection 

on the endocardium during the duration of the surface QRS, is recorded. This PNV is then 

used to normalize all other voltages. If 20%, 30% or 50% of the PNV is set as threshold to 

define areas of substrate voltages less than these threshold values will be the areas of low 

voltage. Therefore, DSM uses a ratio-metric comparison of the PNV of unipolar virtual 

electrogram to the maximal PNV of unipolar virtual electrogram recorded over a single beat. 

The areas of substrate are defined by an adjustable ratio (percentage) of all unipolar virtual 

electrogram compared to the maximal PNV of unipolar virtual electrogram. A distinct cutoff 

value of abnormal myocardium has not been clearly defined [34). 

An example of DSM figure can be found in Figure 2.2 the color scale on the left represents 

a voltage descriptor. The white line delineates the low-voltage area identified during sinus 

rhythm. These markers were placed on the 3-D volume to identify the borders of the 

low voltage regions. Because noncontact mapping uses the inverse solution to generate 

electrograms, filtering must be employed to eliminate high amplitude repolarization signals. 

Figure 2.2: Dynamic substrate mapping defining scar within the light blue border. 

Zou et al. [34] were one of the first to study and define abnormal anatomical VT substrate 

using DSM. In this paper, they mapped the abnormal EP with DSM and marked the areas of 

substrate to understand the mechanism of tachycardia and ablation strategy. They concluded 
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that noncontact mapping and linear ablation appears to be an effective strategy for the 

management of recurrent VT. 

2.3 Localizing the Site of Origin 

Noncontact mapping has been demonstrated to facilitate radio frequency (RF) ablation 

of ventricular arrhythmias, but the reproducibility in localization of endocardial exit sites 

during focal VT originating from defined myocardial layers has not been systematically 

studied. Therefore, to optimize the success rate of VT ablation, the ability to assign the 

source of an arrhythmia to a specific myocardial layer would be of major interest [35]. The 

potential to identify foci located deep in the myocardium would be particularly valuable. 

Theoretically, unipolar electrograms obtained from the subendocardium should display an 

initial positive waveform like a broad, low-amplitude leasing R-wave morphology in case 

of a subepicardial focus. Lacroix et al. [36] who tried to identify epicardial VTs from 

the endocardium with unipolar electrograms, analyzed 111 tachycardias and found R wave 

morphologies only in two subepicardial and five subendocardial VTs. 

Voss et al. [37] experimented to verify whether noncontact mapping can distinguish be­

tween endo- or epicardial foci. Constant pacing was applied through octopolar needle 

electrodes in the left ventricle to mimic VT of subendocardial, midmyocardial or subepicar­

dial origin. Using the noncontact mapping they measured the site of origin of 50 consecutive 

beats of all VTs and also the variation between respective exit sites. They concluded that 

morphological criteria such as the transition of virtual waveforms appear inappropriate to 

identify epicardial foci with noncontact mapping. In contrast, a former study [32] investi­

gating the feasibility of noncontact mapping already shows that the site of origin could be 

determined relating to spatial location and intramural depth. The deeper in the myocardium 

a focus is located, the greater the distance between the site of origin and the endocardial 

exit site. 

Ching man et. al [38] studied the accuracy of the unipolar ventricular electrogram in 

identifying the site of origin of a ventricular depolarization. They realized the absence of 
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R-wave in the unipolar electrogram is not likely to be an accurate indicator of the site of 

origin of ventricular tachycardia of right ventricle. 

The present study is first to evaluate the ability of virtual electrograms to predict ab­

normal bipolar electrograms in human RVOT. And also to report on what is the optimized 

threshold of DSM that traditionally defines the areas of substrates by bipolar contact map-

ping. Because, characteristics of recorded unipolar virtual electrograms have not been related 

to traditional contact bipolar mapping in right ventricular outflow tract (RVOT). The fol­

lowing sections in this Chapter is dedicated to the explanation of backbone mathematics 

of this thesis. Chapter 3 is more on the clinical findings, therefore some of the tests and 

diagnostic computations is explained in the following sections. 

2.4 t-Test 

The t-Test assesses whether the means of two groups are statistically different from each 

other. Statistically different means: when we are looking at the differences between values 

for two groups, we have to judge the difference between their means relative to the spread or 

variability of their values. Figure 2.3 below shows three cases with same mean but different 

t-Test result because the overlap between the bell-shaped curves are different. Therefore, 

the most different or distinct case would be the low-variability case. 

The formula for the test is as follows: 

Signal _ Difference_between_Group_Means 
Noise - Variability _oLGroups 

- -

t = Xr - Xc (2.1) 
~+~ 
ny nc 

The top part of the ratio is the difference between the two means/ averages. Xr is the 
-

mean of one group and Xc is the mean of another group. The denominator is a measure 

of the variability or dispersion of the values. To calculate the denominator, we take the 

variance of each group and divide it by the number of people in that group. varr variance 
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Figure 2.3: Three scenarios for differences between means [8]. 
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of one group and nr is number of people in that group. Then we add these two values and 

then take their square root as in Equation 2.1. 

We also need to determine the degrees of freedom ( df) for the test. In the t-test, the 

degrees of freedom is the sum of the number of in both groups minus 2. Given the df, and 

the t-value, one can look the t-value up in a standard table of significance (available as 

an appendix in the back of most statistics texts) to determine whether the t-value is large 

enough to be significant. 

2.5 Measure of Diagnostic Accuracy 

Perhaps the simplest measure of diagnostic decision quality in the medical world is the 

fraction of cases for which the classification is correct; this is called "accuracy". ROC curve 

was calculated based on the percentage of hits and false alarms. In other words, ROC curve 
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describes the inherent tradeoff between sensitivity and specificity of a diagnostic test by 

plotting the sensitivity vs. specificity points obtained for a decision threshold or cut points 

of the decision stage of the proposed algorithm. Measure of effectiveness of an algorithm is 

then given by the area under the ROC curve. The closer the value of area under ROC curve 

to 1, the higher the diagnostic accuracy. 

100% f--------::-:-ro--.... 

P(TP) 
: 

0% P(FP) 100% 

Figure 2.4: Fundamental Concept of ROC 

2.5.1 Sensitivity and Specificity 

Let Pi be the probability that patient i will get a positive diagnosis (i.e., the patient is ill) 

and qi be the patient i's probability of a positive test. The prevalence, P of the positive 

diagnosis in the population is theoretically P = mean (Pi). The level of the test, Q, is Q = 

mean (qi)· And alsop' = 1 - P and Q' = 1 - Q 

In general, four possible decisions and two types of errors are made when comparing a 

test result with a diagnosis as shown in Table 2.1. If both diagnosis and test are positive, it 



Diagnosis 
Positive 

Negative 

Test result 
Positive Negative 

TP FN 

FP TN 

Q 
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p 

p' 

II 1 

Table 2.1: Relationships between the measurement probabilities of the outcome, prevalence, and 
level of a test defined in the text. 

is called a true positive (TP). The probability of a TP to occur is estimated by counting the 

true positives in the sample and divide by the sample size. If the diagnosis is positive and the 

test is negative it is called a false negative (FN). False positive (FP) and true negative (TN) 

are defined similarly. The values described are used to calculate different measurements of 

the quality of the test. The first one is sensitivity, SE, which is the probability of having 

a positive test among the patients who have a positive diagnosis. Specificity, SP, is the 

probability of having a negative test among the patients who have a negative diagnosis. The 

SE and SP is defined below. 
TP 

Sensitivity= TP + FN 

TN 
Specificity= TN+ F p 

(2.2) 

(2.3) 

ROC curve therefore is a plot of the sensitivity vs. ( 1 - specificity) for a binary classifier 

system as its discrimination threshold is varied. Figure 2.5 shows a typical example of a ROC 

curve. As it is seen from the Figure 2.5, conventional ROC curves of the kind described here 

inevitably must pass through lower left corner of the graph because all test can be called 

negative, and through the upper right corner of the graph because all tests can be called 

positive. 

Especially the ROC curve was used in this thesis for Chapter 3. Because, the character-
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Test dataset 

1 /.,---

~ optimum -·s; performance ~ ·u; 
c: 
Q) 

(J) 

0 
0 1 - Specificity 1 

Figure 2.5: Example of ROC curve with Optimum Performance 

istics of recorded unipolar virtual electrograms have not been related to traditional contact 

bipolar mapping in RVOT. In order to identify an optimal value of DSM threshold that can 

best describe the substrate localization comparable to bipolar electrogram, the ROC was 

drawn. ROC curve represents a pattern of responding values expected for a particular but 

arbitrary bipolar threshold (BT) at the range values of DSM threshold. Recognizing the 

arbitrary nature of decision threshold selection might seem to complicate out problem. We 

resolve this dilemma by intentionally forcing the decision threshold to vary and by observing 

the resulting changes in the various decision fractions. 

2.6 Spectral Analysis 

Relating signals in time domain is intuitively grasped by most people, whether it be an 

ECG tracing or a company's stock rate. In time domain, the x-axis represents time, while 
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the y-axis represents amplitude. Frequency domain plots, where the x-axis represents fre-

quency, are less commonly used in everyday life. However, spectral analysis of biomedical 

signals is of considerable interest in the investigation and understanding of the workings of 

human physiology. The detection and resolution of frequencies, which may be time varying 

due to mechanical actions correlated to the electrical signals of the body, is a major moti­

vation for this analysis. Conventional analysis in the time domain has important limitation 

[39]. Spectral analysis, most commonly with fast Fourier transform (FFT) has been proposed 

which overcomes major limitations of time domain techniques [39], [40]. This transform takes 

advantage of the fact that continuous signals can be decomposed to a sum weighted sinu­

soidal functions. Equation 2.4 calculates the frequency component of each segment using 

FFT. 

N 

X (k) = 2: x(j)wt- l)(k- 1) (2.4) 
j=l 

2.6.1 Autoregressive Modeling 

FFT has a major drawback in that they require large quantities of data to produce significant 

results. As a result, any variation or perturbation in frequency can be smoothed out by the 

action of the algorithm; for example, the FFT will give a 'broad' spectral peak centered at 

the frequency of interest, particularly if using zero padding. To resolve these problems, the 

most attractive method is to use autoregressive analysis. The algorithms have proven to be 

effective in many fields, including biomedicine. 

Autoregressive modeling (AR) has been used in various applications, including classifica­

tion of physiological signals like ECG, EEG, heart rate etc. The advantage of AR modeling 

is its simplicity and is suitable for real-time classification monitoring. AR models are popu­

lar due to the linear form of the system, simultaneous equations involving the unknown AR 

model parameters and the availability of efficient algorithm for computing the solution [41]. 

AR modeling has been used extensively for power spectrum estimation of ECG signals [42]. 

In an AR process of order (Pi) the output Xn at time n depends linearly, via coefficients 
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ai, on the previous p outputs and an additive white noise excitation. Specially, the process 

is modeled as 
i=p 

Xn = Wn - L aiXn- i 
i=l 

(2.5) 

In the given interval the signal requires to be stationary for AR modeling. The recorded 

electrograms are stationary signals. There are various proposed methods for determining 

the coefficients in an autoregressive process. We chose to use Burg method to fit[43] a pth 

order autoregressive model to the input signal by minimizing (least squares) the forward 

and backward prediction errors while constraining the AR parameters to satisfy the Levin­

sane Durbin recursion. The Burg method was preferred over the YuleWalker(43] and the 

covariance methods, as it has been documented that it provides higher frequency resolution, 

and avoids frequency estimation biases and spectral line splitting problems that are associ­

ated with one or more of the above power spectral estimators [43]. Vector a contains the 

normalized estimate of the AR system parameters, A (z), in descending powers of z. 

(2.6) 

The spectrum of the model can also be estimated from Equation 2. 7 as: 

(2.7) 

Since the method characterizes the input data using an all-pole model, the correct choice 

of the model order pis important. The Akaike information criterion (AIC) [44], was used for 

estimating the optimum AR model order. The model order which minimized the criterion 

function was selected. The formula for this criterion is as follows: 

AIC(p) = N ln(pp) + 2p (2.8) 

where pP is the estimated linear prediction error variance for the model with order p. Low 

orders result in smoothed spectra, whereas high orders might introduce spurious detains to 

the spectrum [ 45]. 
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AR models effectively capture spectral peaks and model the correlation in sequences. 

After calculating the AR coefficients, the AR model parameters can be used as features of 

the classifier. AR spectral parameters may also reflect the underlying difference in the struc­

ture. AR coefficients can be used to calculate the following measurement described below: 

1) Cepstral Coefficients. 2) Spectral Estimation. 3) Classification. 

2.6.2 Cepstral Analysis 

Cepstral Analysis is an inverse Fourier transform of the logarithm of the magnitude of the 

Fourier transform (or power spectrum of the signal). This value is real and nonnegative 

which is not invertible because the phase is missing. Cepstral coefficients can be derived 

directly from the AR coefficients using the formula below (46]: 

n - 1 

Cn = -an- 2: (1- k/n)akCn- k for 1 < n ~ p 
k=l 

n - 1 

Cn = - 2: (1- k/n)akCn- k for n > p 
k=l 

(2.9) 

where an and en denote the nth AR and cepstral coefficients respectively. Cepstral coeffi­

cients have rather different dynamics, the higher coefficients showing the smallest variances. 

In fact cepstral approach requires fewer coefficients than traditional approaches such as 

FFT and discrete wavelet transform (DWT). The discrimination, using analysis of temporal 

spectral and cepstral parameters of unipolar virtual electrograms may determine relevant 

parameters needed for the classification of endocardial vs epicardial electrical activation. 

There appear to be no reports directly comparing spectral with cepstral features for classi­

fication. It is possible that spectral moments may perform better than cepstral features for 

classifying some classes of segments. If so, this could lead to improvements in feature ex­

traction and would also serve to validate the use of spectral moments analysis in the clinical 

literature. On the other hand, should cepstral features prove equally or more effective for 

classifying obstruent spectra, it may lead to recommendations to alter analysis techniques 

common among clinical phoneticians and speech language pathologists. To examine this 
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issue, the present study directly compared cepstral features and spectral moments features 

for the classification of burst spectra. 

Computer aided signal processing saves time, standardizes the measurements and enables 

the extraction of features which could not be calculated manually. Considerable work has 

been carried out in time domain for classification and identification of electrical activity of 

unipolar virtual electrogram. Quantitative signal analysis in the frequency domain using 

classical power spectrum analysis techniques has been well documented over recent years 

for biomedical signals. However, spectral analysis and parametric modeling techniques such 

as AR has not as yet been investigated in detail for clinical diagnostics. AR modeling is 

currently by far the most popular method of time series analysis. It has several advantages: 

1. Generally, any signal can be modeled as an AR process as long as an appropriate model 

order is selected. 

2. Availability of many algorithm to estimate the model parameters and find a solution 

to the linear system equations. 

3. Shows better resolution than traditional Fourier spectrum (explained more in the AR 

modeling section). 

As mentioned in previous section of this Chapter, the estimation of AR parameters were 

derived by the Burg method[43]. Burg method has some advantages as well. First, it results 

in high frequency resolution. Second, yields a stable AR model. And third, it is computa­

tionally efficient. Furthermore, cepstral analysis that has been applied to speech recognition 

for a long time and more recently to surface electromyograms (EMG) movement patterns 

[4 7], has not yet been applied to unipolar virtual electrogram. The objective of this work 

was to investigate the usefulness of AR and cepstral analysis in the diagnostic assessment of 

recorded electrograms from both endocardial and epicardial paced myocardium. 

~ 
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2.7 Pattern Classification 
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Pattern classification by definition is the organization of patterns into groups of patterns 

sharing the same set of properties. The motivation for the pattern classification is to au­

tomatically group signals of same characteristics using the discrirninatory features derived 

as explained in previous section. In classification and other data analytical tasks it is often 

necessary to utilize pre-processing on the data before applying the algorithm at hand and 

it is common to first extract features suitable for the task to solve. Feature extraction for 

classification differs significantly from feature extraction for describing data. Discriminant 

analysis addresses the following question: Given a data set with two classes, say, which is 

the best feature or feature set (either linear or non -linear) to discriminate the two classes? 

Pattern classification was carried out by a linear discriminant analysis (LDA) based 

classifier (48]. LDA is used in machine learning to find the linear combination of features 

which best separates two or more classes of object or event. The resulting combinations may 

be used as a linear classifier before later classification. The following is review of discriminant 

analysis. 

Let xl = XI,···,xll and x2 = XI,···,Xl2 be samples from two different classes we have (i.e. 

endocardially paced vs. epicardially paced (more explanation in chapter 4.)) and with some 

abuse of notation X = xl u x2 = XI, ... ,Xz. Fisher's linear discriminant is given by the vector 

w which maximizes [49] 

(2.10) 

where 

(2.11) 

(2.12) 

are the between and within class scatter matrices respectively and rn;, is defined by 

·- 1 '\'t i i 
mi.- t";uj=lxj (2.13) 
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where mi is the mean of each class. The intuition behind maximizing J(w) is to find a 

direction which maximizes the projected class means (the numerator) while minimizing the 

classes variance in this direction (the denominator). 

The classification accuracy was estimated using the leave-one-out method, which is 

known to provide a least bias estimate [50]. In leave-one-out-method, one sample is 

excluded from the data-set and the classifier is trained with the remaining samples. Then 

the excluded signal is used as the test data and the classification accuracy is determined. 

This is repeated for all samples of the data-set. Since each signal is excluded from the 

training set in turn, the independence between the test and the training sets are maintained. 

Leave-one-out cross-validation is normally restricted to applications where the amount 

of training data available is severely limited, such that even a small perturbation of the train­

ing data is likely to result in a substantial change in the fitted model. In this case, it makes 

good sense to adopt a leave-one-out cross-validation strategy as it minimizes the per­

turbation to the data in each trial. Leave-one-out cross-validation is rarely adopted in 

large-scale applications simply because it is computationally expensive. The training algo­

rithms for kernel machines, including that for the Fisher kernel discriminant, typically have 

a computational complexity of O(l3 ), where l is the number of training patterns. In this 

case, the leave-one-out cross-validation process has a computational complexity of O(l4
}, 

which quickly becomes impractical as the number of training patterns increases. Note how­

ever that minimizing an upper bound on the leave-one-out error has proved an effective 

means of model selection for support vector machines (e.g. [51]). 

2.8 Transfer Function Studies 

Now that a mathematical function or model that accurately produces myocardial time-frequency 

curves from the right ventricle (RV) is presumed to contain information specific to RV -myocardial 

transport processes [52]. The transport processes would help to better estimate the existing 

mathematical models of the heart and aid in better localization of arrhythmia focus. 
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Transfer function can provide information on the physical properties of the regionally 

ischemic right and left ventricle. In addition, transfer function method can reveal changes of 

the instantaneous physical properties of both the normal and ischemic myocardium moment 

by moment during the cardiac cycle. When we consider the clinical importance of regional 

myocardial ischemia, it would be of value to add new information on the pathophysiology of 

regional ischemia that has been gained by this transfer function method. 

Therefore, our aim for the study of transfer function is to characterize the basic features 

of RV (explained in Chapter 4) during cardiac cycle. "Transfer function" is a widely used 

technical term. If a stimulation (sinusoidal) is applied to a linear system, the output is also 

sinusoidal. If X (w )and Y(w) are Fourier transforms of the input and output respectively, at 

angular frequency w, then the ratio Y(w)/ X(w) is the transfer function at that frequency. A 

full description of the transfer function includes both its magnitude and phase; in this thesis, 

however, we restrict our attention only to the magnitude. The transfer function completely 

characterizes the system and includes the viscoelastic properties of the myocardium. 

The validity of the transfer function approach is dependent upon the assumption that 

the system being described is linear and stationary. The linearity of the system was con­

firmed that right ventricle could be taken as linear if the magnitude of acceleration in input 

oscillation was kept constant and small throughout the frequency range from 50 to 200 Hz. 

Stationarity can only be evaluated in terms of the repeatability of the measurements and the 

extent to which the transfer functions, calculated in the frequency domain, can be used to 

retrieve the original information. The transfer function approach described here has several 

distinct advantages over conventional methods of measuring myocardial physical properties: 

First if nearly identical sampling systems are used, the calculated transfer function will be 

independent of the characteristics of the sampling apparatus itself and thus represent 

only the dispersion that occurs in the vascular system under study [53). 

Second the transfer function method possesses higher temporal resolution. This is prob­

ably the greatest advantage of the method because in that transfer function contain 

information which is not normally seen in the recorded electrogram. 
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Third the transfer function method can be used in the ejecting heart preparation, even 

though additional signal processing is required to eliminate the effects of heart sounds 

[54], [55]. 

Fourth the transfer function can be applied to the heart with heterogeneous myocardial 

properties such as regional ischemia with clear differences in the curve characteristics, 

whereas the interpretation of more classical methods in the heterogeneous setting is 

more difficult [55]. 

Therefore, transfer function completely characterizes the system and it may include the 

viscoelastic properties of the myocardium of the RV. The transport processes would help to 

better estimate the existing mathematical models of the heart and aid in better localization 

of arrhythmia focus. Because the important feature is that in the frequency domain, the 

input and output of a linear system are multiplicatively related via the transfer function. A 

full description of the transfer function includes both its magnitude and phase; in this thesis, 

however, we restrict our attention only to the magnitude. 

Chapter 4 will cover all this analysis and classifications in detail. Chapter 3 and 4 is the 

contribution of my work and applying the explained mathematics on the gathered data. 



Chapter 3 

Signal Analysis for Cardiac Studies in 
Human Heart 

3.1 Motivation Behind the Study 

M OST electrophysiologists are familiar with unipolar or bipolar voltage mapping to 

reflect underlying tissue integrity and pathophysiology in patients with a prior my­

ocardial infarction. Characteristics of recorded unipolar virtual electrograms (noncontact 

mapping) have not been related to traditional contact bipolar mapping in RVOT. A distinct 

cutoff value of abnormal myocardium has not been clearly defined [34] . This study was 

performed on humans. DSM during sinus rhythm was performed on 6 patients with symp­

tomatic RVOT tachycardia. Within the same electroanatomic geometry bipolar electrograms 

were recorded with peak-to-peak voltages as a reference for substrate identification. The 

optimal threshold for DSM, the effect of high-pass filter, and the role of dV /dt were de­

termined for accurately identifying bipolar defined substrate using noncontact mapping. In 

order to identify a range of fixed values of bipolar threshold, different relative threshold 

values to peak negative voltages (P NV) of DSM were appointed to draw the ROC. 

43 



3.2 Catherization Lab ( Cath-Lab) 
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The cardiac catheterization laboratory provides the region's highest level of diagnostic and 

treatment options in interventional cardiology. During a catheterization procedure, the 

patient is lying on a bed and a thin, flexible tube, or catheter, is inserted into an artery 

or vein in the patient's arm or leg. The catheter is then gently moved further into the 

arteries and then to the heart. It can be used as a diagnostic tool to figure out what is 

wrong with a patient's cardiovascular system or it can also be used as a form of treatment 

for coronary artery disease. 

The technique of noncontact mapping has been described previously in Chapter 2. For 

this analysis, the 9-French 64 electrode balloon catheter was passed over a guide wire into 

RVOT. Heparin was used to maintain the activated clotting time (ACT) to be 250 sec­

onds. A quarto polar ablation (Biosense Webster) catheter was roved around the MEA and 

multiple spatial points along the endocardial surface of the RVOT were annotated on the 

electroanatomic geometry. Key anatomic landmarks such as the pulmonary valve annulus 

were marked on the geometry. The 64 recording electrodes of the MEA pick up far field 

electrogram information during sinus rhythm. The system calculates real-time endocardial 

potentials at more than 3000 virtual sites by using inverse solution mathematics. Simultane­

ous virtual unipolar electrograms were mathematically reconstructed and displayed on the 

anatomic model, capable of producing isopotential or isochronal color maps at the opera­

tor's discretion. Unipolar electrograms were filtered with a bandwidth of 1 Hz to 300 Hz. 

It is possible, at any given interval of the cycle, to display the virtual unipolar endocardial 

electrograms from a chosen site of the endocardial surface [56]. 

The most recent version of the EnSite software provides the capability of point-by-point 

contact mapping, allowing the creation of activation and voltage maps by acquiring serial 

contact electrograms and displaying them on the virtual endocardium. This has utility in 

adding detail , familiarity, and validation of the information obtained by the noncontact 

method. Bipolar electrograms from the distal electrode pair were then recorded sequentially 

during sinus rhythm along the endocardial noncontact geometry. Peak-to-peak voltage 
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amplitude of the bipolar electrograms were automatically calculated and displayed in an 

adjustable color isopotential map. 

All procedures were performed in the fasting, non-sedated state with continuous electro­

cardiograph and noninvasive hemodynamic monitoring. In this study three male and three 

female had premature ventricular beat of RVOT origin were included. Premature ventric­

ular contractions (PVCs) are premature heartbeats originating form the ventricles of the 

heart. PVCs are premature because they occur before the regular heartbeat. During PVCs, 

the ventricle electrically discharges (and contracts) prematurely before the normal electrical 

discharges arrive from the SA node. These premature discharges are due to electrical 'irri­

tability' of the heart muscle of the ventricles, and can be caused by heart attacks, lack of 

oxygen, or medications. Immediately after a PVC, the electrical system of the heart resets. 

Example of a PVC in Figure 3.1. 

Figure 3.1: Example of a premature ventricular contraction [9]. 



3.3 Data Preparation 
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The comparison analysis between contact and noncontact mapping to define abnormal endo­

cardium was performed in all 6 patients. The clinical and electrophysiological characteristics 

of the patients are shown in Table 3.1. Establishing the RVOT landmarks on the con­

structed geometry was accomplished in 20 ± 9 minutes. Figure 3.2 is a snap shot of a three 

dimensional geometry of the RVOT generated by noncontact mapping of a typical patient. 

Fluoroscopy and anatomic markers confirmed that there was no significant movement of the 

MEA during each procedure. The mean numbers of the bipolar contact electrograms were 

100 ± 15. 

VT 
Patients Age Gender CL Diagnosis Medications 

years msec 
PVB Beta 

1 51 F 366 Paroxysmal Blocker 
Atrial Flutter Aspirin 

Beta 
2 53 M 378 PVB of Blocker ACE 

RVOT Inhibitor & Aspirin 
PVB of Beta 

3 61 M 389 RVOT(high) Blocker 
Anteroseptal Aspirin 

PVB of 
4 41 F 323 RVOT(basal) Estrogen & 

Postrerolateral Aspirin 
PVB & non-

5 35 F 277 Sustained VT None 
of RVOT 

PVB & non-
6 30 M 342 Sustained VT None 

RVOT 

Table 3.1: VT = Ventricular Tachycardia; CL = Cycle Length; PVB = Premature Ventricular 
Beats; RVOT = Right Ventricular Outflow Track . 
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Figure 3.2: Example of the geometry and DSM map of one of the patients. DSM marks the areas 
of low voltage. By using an ablation catheter the geometry of heart for each patient is constructed. 
Color represents relative unipolar voltage level at each chamber location. The DSM tool can be 
used to place adjustable isopotential substrate markers based on either relative or absolute voltages. 
DSM locates the most negative signal within a user-defined caliper range and can often organize 
voltage information from a single beat of each rhythm. This figure is a snap shot of the third 
patient three dimension geometry before ablation: The low voltage areas are colored as white up 
to blue which has the largest voltage value. 



3.4 Signal Processing 
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Based on early work from the University of Pennsylvania, bipolar voltage mapping has 

become the standard for substrate localization in the electrophysiology laboratory. Statistical 

analysis of patients with normal left ventricles suggested that a bipolar electrogram voltage 

of< 3mV was abnormal [57). With the advent of 3-D electroanatomic mapping (EAM) 

systems, refinement of the voltage threshold for scar has been performed in both animals 

and humans. Callans et al [58) have compared bipolar voltage mapping with intracardiac 

echocardiography in porcine infarctions with the CARTO system, finding that an electrogram 

< 2.0 m V correlated with akinetic areas. The same group went on to evaluate EAM with 

CARTO in humans, finding 95% of all LV electro grams were > 1.55 m V [59). Therefore, a 

threshold of 1.5 m V was set for definition of abnormal myocardium and a value of< 0.5 m V 

was arbitrarily set for the definition of dense scar. 

DSM as explained in Chapter 2 is a method of marking the areas of substrate of activa­

tion by observing how isopotential maps display the wavefront moving around lines of block, 

anatomic barriers, zones of slow conduction, or diseased tissue. Noncontact mapping uses 

unipolar virtual electrograms to define these areas of substrate, unlike conventional contact 

mapping which defines substrate using the amplitude of bipolar electrograms. Marking these 

substrates can be useful in identifying a critical isthmus of VT conduction and determining 

an ablation strategy. This study investigates whether "virtual electrograms" from a noncon­

tact mapping system (EnSite 3000) can identify abnormal myocardial substrate boundary 

defined by bipolar contact mapping in the human right ventricular outflow tract (RVOT). 

3.4.1 Preprocessing 

The signals recorded from the noncontact mapping system as well as the contact electro­

grams were exported from the EnSite system for further analysis. The contact and noncon­

tact electrograms were simultaneously displayed and analyzed. The number of the contact 

electrograms was much less than the number of unipolar virtual electrograms. Therefore, 
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for each bipolar contact electrode a corresponding virtual electrode was identified for com-

parison. This was achieved by calculating the Euclidean distance, given in the Equation 3.1, 

of any bipolar contact electrode to any of the virtual electrode based on their spatial co­

ordinates. The virtual electrode that has the minimum distance to a given bipolar contact 

electrode would be its corresponding virtual electrode. This was achieved because EnSite 

system extract relevant features from electrograms such as the exact coordinates of each of 

the electrograms. 

(3.1) 

x1 , y1 , z1 = the Cartesian coordinate of a bipolar electrogram. 

x2 , y2 , z2 = .the Cartesian coordinate of a virtual unipolar electrogram. 

The bipolar electrograms with their corresponding virtual electrograms were saved for 

further analysis. The following parameters of unipolar virtual electrograms were examined 

to determine optimal settings for identifying contact defined scar. 

1. DSM was performed during the sinus rhythm with thresholds from 10 - 90% of the 

maximal PNV unipolar virtual electrograms. 

2. Max dV / dt of all unipolar electrograms was identified. 

3. The high-pass filter was adjusted between 1 and 32 Hz. 

3.4.2 Peak Negative Voltage of Unipolar Electrograms 

DSM was performed during sinus rhythm. The peak negative voltages of all virtual electro­

grams were identified. Abnormal EP substrate were defined as regions with voltage magni­

tude less than defined percentage of the peak negative voltage. Markers were placed on the 

three-dimensional volume to identify the borders of these low voltage regions. Scar area by 

virtual geometry depends on threshold adjustments. As MEA measures cavity potential and 

the fact that unipolar electrograms have a large "field of view", an absolute voltage threshold 

for scar definition is not accurate for noncontact mapping [60]. Therefore, a threshold from 
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10 to 90% of maximum negative voltage was used to define the areas of low voltage. More 

specifically the DSM thresholds were [0.1 0.2 0.25 0.28 0.3 0.45 0.5 0.6 0. 7 0.8 0.9] of the 

maximum negative voltage. Figure 3.3 shows the fundamental definitions underlying the 

operating mode of the DSM algorithm. 

Normalized Negative Unipolar 
Voltage 

.____ R tio to the maxim I peak 
n gative vol·tage 

.____ Maximal pea negative 
voltage of a selected beat 

Figure 3.3: Schematic illustration of unipolar electrograms and the fundamental operating mode 
of dynamic substrate mapping (DSM). PNV =peak negative voltage [10]. 

3.4.3 First Derivative of Unipolar Electrograms 

The first derivative of the unipolar electrogram (dVIdt) represents the velocity of local ac­

tivation. Usually analysis of initial dV I dt of unipolar ventricular electro grams may enhance 

the specificity of earliest site of activation. The slope, dV I dt, is been used quantitatively 

to assess the distance from ventricular activation [38]. However, the application of dV I dt 

may not be clinically useful for determining ventricular activation in the ventricle in patients 

with structural disease. Because, in diseased states the slope of the unipolar electrogram 

is decreased, the duration prolonged and the maximal negative value of the derivative is 

reduced. For substrate mapping these features provide additional details of tissue viability 

compared to electrogram voltage. 
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The voltage deflection was measured by subtracting the lowest voltage value from the 

highest. The electrogram slope (first differential of the electrogram) was calculated for each 

value by subtracting the data point from its adjacent data point. In the literature unipolar 

electrograms, signals associated with high conduction velocity (i.e., His-Purkinje system) 

possess a greater slope ( -dV / dt), and thus are characterized by higher-frequency compo-

nents (> 32Hz) [61]. 

3.4.4 High-Pass Filtering Unipolar Electrograms 

The signal sampling processing may require filter settings that are sensitive and selective to 

enable visualization of early low amplitude signal components and suppress repolarization 

related far-field signal elements. Adjusted low high-pass filtering enables an improved 

display of early and slow rising activation and a display of the wavefronts, whereas higher 

values of high-pass filters reduce repolarization related signal components and noise. At 

high-pass filtering of 1 to 2 Hz, slow and fast activation wavefronts are displayed including 

potential repolarization components. At about 4 to 12 Hz high-pass filter setting, the 

wavefront is sharpened, unwanted signal component become more suppressed. A high-pass 

filter of 16Hz and more displays mainly wavefront changes. The objective of the study was 

to evaluate the potential impact of different high-pass filter on the accuracy of mapping 

of abnormal myocardium using DSM. Table 4.4 shows the high-pass filter settings used in 

noncontact mapping system. 

It is widely known that changing the filter settings used to display virtual electrograms 

can have a profound effect on the morphology of the electrogram (as it can do to contact 

electro grams). Adjustment of filtering is necessary to differentiate true electrical activity 

from noise especially when trying to identify and display the low amplitude unipolar signals 

associated with diastolic potentials. It is widely accepted that the maximum negative first 

derivative defines local activation on a unipolar electrograms. However, the effect of inverse 

solution and reconstruction of electrograms appears to lower the frequency of low amplitude 
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Repolarization Slow Conduction Normal Myocardium Fascicular 
Signal Type atrial/ventricular scar border atrial or ventricular His - Purkinje 

Spectral Components 0.05 - 4Hz 1 - 4Hz 4 - 16Hz 8 - 32Hz 
High-Pass Filter 

Typical > 4 Hz 1Hz 8Hz 16Hz 
Range 8 - 12Hz 1 - 4Hz 4 - 6Hz 8 - 32Hz 

Advantage eliminates far fie ld visualize slow conduction minimal repolarization eliminates far fi eld, 
myocardial cond. 

Disadvantage eliminates slow potential repolarization eliminates slow conduction eliminates myocardial 
conduction artifact conduction 

Table 3.2: High-pass filter settings by signal type (Estimated for unipolar virtual electrograms.). 

potentials somewhat, therefore it would be difficult to distinguish the deflections of a unipolar 

virtual electrogram from baseline wander. Increasing the value of high-pass filter would help 

distinguish such noise from true electrical activation on the isopotential maps but it may filter 

out the virtual electrograms associated with true activation for this reason. It is therefore 

needed to try different filter settings with the operator looking at the electrograms produced 

at region of interest on the isopotential map rather than relying on the isopotential map 

alone to guide ablation. 

The effect of filtering is shown as an example in Figure 3.4. In this figure each row 

shows waveforms and its corresponding isopotential map. The blue waveform is the surface 

ECG, the red waveform is the right ventricular electrogram and the yellow waveforms are the 

virtual electrograms generated from the MEA. The virtual electrogram recording sites may 

be positioned retrospectively by the operator anywhere on the virtual endocardium. The 

positions of the selected recording sites in this instance are shown by numbers on the upper 

isopotential map. These correspond to the virtual electrograms with the same number on 

the waveform views (dashed oval). 

3.4.5 Bipolar Contact Electrograms 

Contact mapping system allows ventricular scars to be identified by measuring the voltage of 

bipolar electrograms during sinus rhythm. Peak-to-peak voltage values of bipolar electro-
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Figure 3.4: In panel a, the high-pass filter is set at 32Hz, low-pass filter at 300Hz. A deflection 
can be seen on the virtual electrograms between QRS during the diastolic interval which could be 
a diastolic potential. Panel b high-pass filter is 12 Hz. In panel b it is more difficult to identify 
a discernible potential. High-pass filter is set to 2 Hz and low-pass of 300 Hz for panel c. The 
virtual electrogram amplitude are changed again which is reflected in the isopotential map also 
[11]. 
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gram is needed to identify the areas of low voltage or scar. Usually, a bipolar peak-to-peak 

voltage value of< 0.5mV is considered a dense scar and > 1.5mV normal myocardium [62]. 

The threshold value for defining the scar voltage may slightly change in different studies. In 

this study, for comparing the bipolar threshold of [0.15 0.25 0.5 0.75 1 1.25 1.5] m V was used 

both to compare with the DSM threshold and to draw the ROC (Figure 3.5 ) . 

Figure 3.5: Bipolar color scale extracted from one the patients. Color scale is set with dense scar 
( < 0.5 m V) red, and normal myocardium (> 1.5 m V) magenta. The yellow dots are the bipolar 
recording points. 

Figure 3.6 gives the clear definition of areas of scar defined by unipolar or bipolar elec-

trograms. 
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Figure 3.6: Illustration of scar electrogram by both unipolar and bipolar recordings. 
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3.4.6 Receiver Operating Characteristics 

ROC curves were constructed to identify the optimal decision threshold for the slow conduc­

tion zone in the derivation sets (a fixed PNV or normalized voltage), defined as the value 

on the ROC curve with the best sensitivity-specificity trade-off. The ROC curve plots the 

true-positive rate (sensitivity) against the false positive rate (1 - specificity) over a range 

of cut points. The points along the diagonal indicate results that are no better than chance. 

When comparing tests , the test with the largest area under the ROC curve is preferred, 

assuming that the goal is to balance the sensitivity and specificity. 

In order to draw ROC curve a fixed value of bipolar threshold with different value of DSM 

threshold were appointed. ROC curve represents a pattern of responding values expected 

for a particular bipolar threshold at the entire values of DSM threshold. ROC curve was 

calculated based on the percentage of hits and false alarms. In this case, a hit was defined 

as finding the points in which both the bipolar electrogram and unipolar virtual electrogram 

have found a scar (TP). A false was defined as finding points of which both the bipolar and 

unipolar virtual electro grams define the point to be normal (TN). Similarly, FN is when 

bipolar electrogram define the points to be scar but the unipolar virtual electrogram define 

the points to be healthy. The result for the ROC curve is in the following sections. 

3.5 Clinical Findings 

3.5.1 ROC of Virtual Electrogram DSM to predict bipolar ampli­
tude 

To identify abnormal endocardium with the noncontact mapping system, we used previously 

described techniques that suggest the area where local electrogram amplitude is less than a 

pre-defined percentage of the maximum peak negative voltage. Analyzing the ROC curve 

in Figure 3.7, abnormal myocardial substrate defined by contact bipolar mapping can be 

optimally identified when we selected a cutoff of 25% of the maximum peak negative voltage 
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as the criteria for low voltage area. In all the ROC curves plotted with different bipolar 

threshold 25% DSM threshold was considered to be statistically significant (Figure 3.8). 
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ROC for different value of DSM Threshold 

\ I DSMThreshold = 25% 

0.3 0.4 0.5 
1-Specificity 

0.6 0.7 0.8 0.9 

Figure 3. 7: ROC curve for 0.25 m V of bipolar threshold: To better understand the ROC curve 
plotted in for this study; different values of unipolar threshold that allows plotting the ROC curve 
is marked in this ROC. 

The calculate area under the ROC curver for the optimum value of the DSM threshold 

( =25%) is presented in Table 4.5. The largest area under the ROC curve was seen when the 

bipolar threshold was 0.25m V. 

3.5.2 ROC of Virtual Electrogram dVjdt to predict bipolar ampli­
tude 

The minimum unipolar electrogram slope is the most useful indices for distinguishing the 

presence of myocardial scar. From the noncontact mapping electrode, the value and location 
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Figure 3.8: ROC Curve for different value of bipolar threshold and DSM threshold: Different 
values of unipolar threshold (ex. 10%, 25%, 30%, 45% and etc.) with a fixed bipolar threshold (ex. 
0.125 mV, 0.25 mV, 0.5 mV and etc.) is used to draw each of these ROC curves. The best area 
under the curve is for the ROC curve shown in red with the elbow point of 25% of DSM threshold 
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Bipolar Threshold Area Under the Curve 
mV AUC 

0.15 0.794 
0.25 0.862 
0.5 0.824 
0.75 0.716 

1 0.669 
1.25 0.631 
1.5 0.625 

Table 3.3: Area Under the Curve of the Optimal Value (25% DSM Threshold). 

of the most negative slope were calculated (minimum dV I dt ). The ability of unipolar virtual 

electrogram to define the areas of scarring was assessed with ROC curve (Figure 3.9). The 

ROC curve was the result of bipolar threshold by looking at different dVIdt threshold= [0.1, 

0.2, 0.25, 0.28, 0.3, 0.4, 0.5, 0.6, 0.75, 0.8, and 0.9]. In detail, a fixed bipolar threshold (E.g. 

0.5m V) was used to define the areas of low voltage detected by the contact bipolar electro­

grams. Then, in order to draw the ROC curve the set of dV I dt threshold was appointed. 

ROC therefore, represents a pattern of responding values expected for a particular bipolar 

threshold at the entire values of dV I dt threshold. As a result, dV I dt threshold of that could 

best describe the bipolar voltage defined scar was 0.25mVIs. The resulted ROC curve is 

drawn in Figure 3.9. 

3.5.3 ROC of unipolar filters in optimizing substrate prediction 

The virtual electrograms were extracted from the EnSite system with the adjustment of 

different high-pass filter. Three values for the high-pass filter were chosen. 1 Hz which 

is the lowest value of the high-pass filter, 8 Hz which is the common value in RVOT 

VT mapping, and the last extreme 32 Hz. The ROC curve of all these three values were 

drawn which was the result of the bipolar threshold by looking at different DSM threshold 

(Figure 3.10). ROC curve resulted from the 2 Hz high-pass filter on the unipolar virtual 
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Figure 3.9: ROC for dV / dt of unipolar virtual electrogram vs bipolar threshold. The points 
along the diagonal indicate results that are no better than chance. When comparing test, the test 
with the largest area under the ROC curve is preferred, assuming that the goal is to balance the 
sensitivity and specificity. Bipolar threshold of O.Sm V has the largest area under the curve. This 
provided us a useful predictor for areas of substrate within the unipolar virtual electrogram. 
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electrogram has the largest area under the curve. 

ROC for different value of DSM Threshold 

- ROC curve for UVE with High-pass filter 1Hz 
- ROC curve for UVE with High-pass filter 8Hz 
-ROC curve for UVE with High- pass filter 32Hz 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
1 - SpecifiCity 

Figure 3.10: ROC for three values of high-pass filter The three set of high-pass filter is compared 
in this ROC curve. The best area under the curve was found to be for the 1 Hz. The AUC for 1 
Hz , 8 Hz and 32Hz were as follows respectively 0.8369, 0.8056 and 0.8690. 

3.6 Discussion 

The ability to localize RVOT VT with sequential point to point mapping is restricted to 

a subset of patients with hemodynamically stable VT [63]. To overcome this limitation 

noncontact single beat activation mapping has been employed and has produced excellent 

ablation results [64]. However, the role of RVOT substrate in the initiation and maintenance 

of these arrhythmias has not been elaborated, and the combination of noncontact substrate 

and activation mapping may further improve ablation outcomes. To the best of our knowl­

edge, this is the first study that determines the optimum settings for noncontact DSM to 

identify RVOT substrate with comparison to contact bipolar electrograms. 
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On the basis of the outcome of earlier clinical studies [65], [66] abnormal endocardium 

was defined as: 

• scar (no identification electrograms or bipolar amplitude < 0.05m V [67],[68]) and 

• low-voltage endocardium with bipolar contact amplitude of< 0.5mV [69], [67]. 

For the following reasons contact bipolar electrogram voltage was used as the benchmark 

for assessing RVOT substrate in this study: 

(1) Bipolar contact electrograms remain the most commonly used and clinically estab­

lished method to define the areas of abnormal endocardium [62] and arrhythmia mapping in 

the context of inherited and structural heart disease [66], [70], [71] and [72]. In human stud­

ies bipolar electrograms remain the electrophysiological gold standard for comparing other 

substrate assessment modalities, as assessment of tissue pathology is not possible. 

(2) Most of the 3-D mapping systems including the EnSite system can import high 

quality structural information from CT or MR imaging studies [73]. Although both of these 

imaging modalities can detect areas of myocardial thinning consistent with prior infarction, 

delayed enhancement MRI can also provide excellent tissue differentiation allowing myocar­

dial scar to be clearly recognized [7 4]. However, the role of advanced imaging techniques 

such as MR and PET to identify substrate have not been described for the RVOT. 

Sivagangabalan et al. [62] demonstrated that noncontact DSM is comparable to the es­

tablished CARTO contact system in differentiating normal myocardium and scar in chronic 

ovine model using rigorous method of direct comparison with transmural histology at plunge 

needle sites. DSM in that study was used to define post infarct LV scar, as opposed to evalu­

ation of patchy endocardial substrate in structurally normal hearts within the current study. 

Further, the current study was able to compare significantly more unipolar virtual electro­

grams and bipolar electrogram points as both were collected on the same electroanatomic 

system. With the parameter settings we have defined, DSM can localize substrate within 

the RVOT with similar accuracy to contact bipolar electrograms. 

Carrado et al. suggested that electroanatomic scar within the RVOT maybe an early 



63 
manifestation of arrhythmogenic right ventricular cardiomyopathy (ARVC) which was con-

firmed with endomyocardial biopsy [75]. A significant number of patients referred for RVOT 

tachycardia ablation may have this distinct entity. ARVC RVOT tachycardia is more diffi­

cult to ablate and results in poorer long term post ablation outcomes. This form of ARVC 

imitated idiopathic RVOT tachycardia and highlights the important role of accurate sub­

strate mapping of the RVOT. The DSM parameters defined in our study provide the ability 

to combine noncontact activation mapping with accurate substrate identification, which may 

improve procedural success in the group of ARVC patients. 

The conclusion of the above results and discussions will be carried out in Chapter 5. 

In that Chapter, the importance of the findings is also covered. The next Chapter studies 

the origin of electrical activation within the ventricular walls using the unipolar virtual 

electrograms. This will help localization of ventricular tachycardia and would finally help in 

successful ablation of focal arrhythmias. 



Chapter 4 

Signal Analysis for Cardiac Electrical 
Activation Studies in Canine Heart 

T HE purpose of the present thesis was to study the characteristics of the reconstructed 

unipolar electrograms generated by the EnSite system. This may distinguish the origin 

of electrical activation within the ventricular walls whether it is endocardial or epicardial. Ac­

tivation sequence mapping has been used to understand the mechanisms of various ventricle 

rhythms and arrhythmias. As explained in Chapter 2 there exists wide variety of DSP meth­

ods and ideas for studying the endocardial vs epicardial electrical activation. An underlying 

assumption has been that the ventricle acts electrophysiologically as a two-dimensional sur­

face. Therefore, investigators have recorded either from the epicardial or from the endocar­

dial surface. Mapping of canine ventricle arrhythmia by extra-stimulation has occasionally 

demonstrated a focal activation pattern. Studies involving the mapping of ventricle fibril­

lation in humans have also shown similar focal patterns [76]. The purpose of this Chapter 

IS: 

1. To determine whether the epicardial and endocardial activation of canine right ventricle 

are concordant. 

2. To relate any differences between the activation of the epicardium and endocardium 

to the underlying anatomy. 

3. To determine whether these differences result in any re-entrant pathways outside the 

64 
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epicardial or endocardial plane. 

Clinical data using the noncontact mapping system suggest that characteristics of the 

reconstructed unipolar electrograms may predict the origin of electrical activation within the 

atrial and ventricular walls (endocardial vs epicardial origin.) This will facilitate the surgical 

treatment of these arrhythmias [77, 78, 79, 80, 81]. Understanding the complex ventricular 

arrhythmias result in more effective targeting of RF energy applications in patients with 

VTs [82 , 83, 84, 64]. 

The advent of computer technology in the last twenty years allowed scientists to renew 

their efforts in the analysis of myocardial electrograms especially the virtual electrograms 

to improve the assessment of arrhythmias. Computer aided analysis has been carried out 

both in the time domain and in the frequency domain. Time domain techniques that rely 

on extracting features for classification directly from the electrogram, such as duration, are 

somewhat difficult to measure automatically [85]. On the other hand, signal analysis in the 

frequency domain reveals the spectral characteristics of the electrogram. 

The combination of both results finally will help in a more effective targeting of RF 

energy applications in patients with atrial reentrant tachycardias and VTs [86]. Methods 

applied in this Chapter is found in the block diagram 4.1. 

4.1 Database Analysis 

In this Chapter, data was gathered from the right ventricle of a canine heart. This was done 

in St. Michael 's Hospital in Toronto. 

4.1.1 Model Preparation of the Canine Heart 

The canine data was used to study whether some of the characteristics of reconstructed 

unipolar electrograms from the noncontact mapping can be used to detect epicardial electrical 

activation. The preparation and recording of the data was as follows: 

The dog was anaesthetized with sodium pentobarbital (30 mg/kg IV) and maintained 

with 1-2% isoflurane. The protocol was approved by the Animal Care Committee of St 
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Michaels Hospital, Toronto, ON, Canada. The investigation conforms to the Guide for the 

Care and Use of Laboratory Animals, US National Institutes of Health (NIH Publication 

No. 85-23, revised 1996). Buprenorphine 0.3 mg IV was administered before starting any 

procedure. ECG leads I, II, and a VF and aortic blood pressure were monitored continuously 

using a VR12 physiological signal recorder (Electronics for Medicine, Pleasantville, NY, 

USA). 

The technique of noncontact mapping which has been described in previous section was 

deployed in the right ventricle (RV). Activation clotting time was maintained over 250 sec­

onds with the use of Heparin. An incorporated locator system was used in conjunction with 

fluoroscopy to position the conventional electrode catheter. By moving the ablation catheter 

around endocardium, multiple spatial points were identified; with this a 3-D geometry was 

generated. Simultaneous virtual unipolar electrograms were mathematically reconstructed 

and displayed on the anatomic model. A rectangular unipolar stimulus using basic drive 

cycle lengths of 350ms, 400ms and 600ms cycle length was used to pace the heart. 

First, the pacing catheter was placed in different positions in the endocardium. The pac­

ing amplitude was 0.5 m V to 0.9 V for different sites. The value was varied until the stimulus 

captured the ventricular conduction. The position of the pacing catheter was marked on the 

RV geometry. During the pacing, the noncontact array catheter records the endocardial elec­

trograms for one minute. Following pacing several positions all around the RV, the pacing 

catheter was removed from the chamber and moved to the epicardium. For this iteration 

the pacing catheter was positioned on epicardial sites corresponding transmurally to the 

locations used on the endocardium. Figure 4.2 also shows an example of epicardially paced 

electrogram superimposed on the endocardially paced electrogram. 

In order to capture the ventricular conduction and record it using the EnSite Array TM 

catheter, the amplitude of pacing was a bit higher than the endocardial pacing sites. The 

recording for each site was again 1 minute. The data set therefore consisted of two sets of 

virtual electrograms: one set was obtained during endocardially pacing recorded with MEA. 

The second data set was obtained during epicardially paced and also recorded with MEA. 



15 

10 

5 

0 

i ·5 
Ql 

'"0 
:::1 

~ -10 
~ 

-15 

-20 

·25 

·30 
0 2 

Example of Virtual Electrograms 

3 4 
Time (mS) 

5 

--Endocatdially Paced Electrogram 
--Epicardially Paced Electrogram 

6 7 

68 

8 

Figure 4.2: Example of Endocardially and Epicardially paced electrograms superimposed in one 
Plot 



69 
The detected electrograms by the MEA were amplified and digitally transferred to a com-

puter workstation. Figure 4.3 shows the exact sites where the pacing took place. 

Figure 4.3: Figure on Left is the position of the EnSite Array in the RV; Figure on Right: 
Illustration of the geometry and positions of the paced areas. This is color-coded isopotential 
map which shows the range of voltages across the RV at a given time; this is created by moving 
the ablation catheter around the RV geometry. At a nominal setting the purple represents +5 
mV (resting potential) and white represents -5 mV (depolarization). The worldview reference is 
a user-selected torso which shows the exact position of the MEA in the chamber. The six paced 
points are demonstrated in green. 

4.1. 2 Preprocessing 

20 to 30 virtual electrogram recorded with both endocardial and epicardial pacing were 

selected for analysis and each data set was 4 seconds long. Since the pacing amplitude 

is different for endocardial and epicardial stimulus therefore to make the chosen features 

independent from varying pacing electrograms each sample of the signal was divided by the 

square root of the energy of the signal. Energy of the signal was calculated for each V ( t) 
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electrogram with the following equation. 

t=4 

E = L IV(t)l2 (4.1) 
t=O 

The extracted signals were analyzed and the virtual electrograms for each of the endocar­

dially paced and epicardially paced signals were overlaid. In order to isolate the individual 

heart beat, signals recorded had to be segmented first. 

This segmentation was achieved manually (with approximately 780 samples in each seg­

ment) in such a way that, each segment had only one cycle of the virtual electrogram. 

Moreover, in order to measure and detect the parameters used in this study (explained in 

Section 4.2) the component between the pacing artifact and the depolarization part of virtual 

electrogram had to be segmented. This was done by having an imaginary line in mind (as 

base line) to separate the depolarization part from the rest of the signal. The example of 

the segmented signal can be found in Figure 4.4. The high pass-filter was set at 8 Hz; all 

other filters were not changed (low-pass filter at IC 150 Hz, AutoFocus off, Spatial Filter 

off). 

4.2 Time-Domain Analysis of Electrograms 

The analysis of intracardiac electrogram morphology has been proposed as a complemen­

tary method for accurate discrimination between endocardial and epicardial activation. The 

modern noncontact mapping system has significantly improved the understanding of complex 

atrial and ventricular arrhythmias by allowing the direct association of electrical activity at 

a particular location with the corresponding anatomic structures. In this study, the per­

formance of a traditional time-domain method for electrogram interpretation was used to 

analyze filtered endocardial and epicardial paced waveforms. 
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4.2.1 Interpretation of Cardiac Electrograms 

The objective for this part is to analyze the information contained in the morphologies of 

electrograms to predict the origination of cardiac activation in experimental setting. If we 

consider V(t) to be an electrogram, the following measurements were obtained form each 

electrogram. 

-Peak Negative Voltage (PNV) in (mV): The lowest negative point on the wave. 

The peak negative voltage indicates the maximum negative voltage of the wave. 

-Maximal Negative dV /dt (mV /ms): Greatest amplitude difference in voltage. 

The measurement was made by computing difference in voltage between the two adjacent 

points and computing the slope ( dV / dt) by dividing the difference in voltage by the difference 

in time between the two selected points. 

dV/dt = V(t +h)- V(t) 
h 

(4.2) 

where value of h close to zero will give a good approximation to the slope of the tangent 

line. 

-Area Under the Curve (AUC) from baseline crossing of unipolar electrogram to 

maximal negative voltage and from negative voltage to the baseline crossing. 

PNV 

AUC=2* L V(t) ( 4.3) 
t=O 

-Presence of an initial R-wave versus initial QS pattern: R-wave is the ini­

tial upward deflection of the QRS complex, following the Q-wave in the normal ECG and 

· representing early depolarization of the ventricles. Clinicians mostly think of an acceptable 

R-wave to be ( 2: 5m V [87]). 

-Duration: Electrogram duration assessed from baseline crossing of the unipolar elec­

trogram to PNV (ms). 

-Presence of low-amplitude depolarization preceding the spike of electrical ac­

tivation of the local myocardium. When the mapping electrode is not in contact with the 
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myocardium (noncontact mapping case) if the electrogram is a far-field signal generated 

by tissue some distance from the recording electrode, then the initial negative slope of the 

recording is typically slow. This is known in literature as "Blue Ghost" [88]. 

Figure 4.5 shows an example of how the above features were calculated. 

- Epicardially Paced 8ectrogram 

•• ·• PNV 
-AUC 

X 10 

4 

Time (mS) 

Figure 4.5: Unipolar virtual electrogram paced epicardially. Features described in the text are 
shown on this electrogram. 

The following definitions of unipolar/bipolar waveforms were used: 

• RS: one positive deflection followed by a negative deflection. 

• QS: only one large negative deflection. 

• R: only one large positive deflection. 

4 .2 .2 t-Test 

As explained in Chapter 2, t-Test analysis is appropriate in our case because we are com­

paring the average of the amplitude values of the two signals. In our case, endocardial and 
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epicardially paced signals. The result is presented in Table 4.2. If the noncontact mapping 

system revealed significant differences between the characteristics of endocardial or epicar­

dial origin of activation, in Table 4.2 it is indicated as p < 0.05 or p < 0.01, otherwise non 

significant (NS). 

4.2.3 ROC Analysis 

ROC curves were constructed to assess sensitivity and specificity. True positive (TP) is when 

the specific feature of the signal truly classifies the signal as endocardially paced electrogram. 

If the feature of the signal classifies the signal to be endocardially paced while it is epicardially 

paced this is False positive (FP). True Negative (TN) is when the signal is epicardially paced 

and it is classified to be epicardially paced. 

Given a classifier and a set of instances (the test set), a two-by-two confusion matrix 

can be constructed representing the dispositions of the set of instances as in Table 4.1. 

Table 4.1: ROC Analysis. 

Endocardial Epicardial 
Endocardial TP FP 
Epicardial FN TN 

I Total (1n %) I 100 100 

The total area under the ROC curve is a measure of the performance of the diagnostic 

test since it reflects the test performance at all possible cut-off levels. The larger the area, 

the better the performance. The area under the ROC curves and their standard errors were 

derived as well. 
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4.2.4 Classification 

In the previous section it was explained how the feature vectors consisting of time-domain 

analysis are constructed. In this section, these feature vectors are used as a descriptor 

for classification of unipolar virtual electrograms into endocardially or epicardially paced 

electrograms by the leave-one-out .cross-validation method. In this method, one sample is 

excluded from the data-set and the classifier is trained with the remaining samples. Then 

the excluded signal is used as the test data and the classification accuracy is determined. 

This is repeated for all samples of the data-set. Since each signal is excluded from the 

training set in turn, the independence between the test and the training sets are maintained. 

Leave-one-out cross validation has more subtle deficiencies for model selection. Shao 

(1995) [89] showed that in linear models, leave-one-out cross validation is asymptotically 

equivalent to AIC which is covered in Chapter 2. Leave-one-out should over fit in small 

samples [89]. 

4.2.5 Results 

From the virtual electro grams, we analyzed peak negative voltage, max dV / dt, area under 

the depolarization curve and also detection of R-waves and low-amplitude depolarization. 

Analyzing the maximal negative voltage and duration from the onset of activation to the 

peak negative (-2 ± 1m V and 18.8 ± 6.2ms, respectively) exhibit fairly similar values to the 

epicardially paced electrograms (- 3 ± 5.3mV and 22.2 ± 5.3ms, respectively). Maximal 

dV/ dt of the endocardially paced electrograms (1.6 ± 0.2 m V /ms), however, was significantly 

different from epicardially paced electrograms (P < 0.05 ). 

R-waves were observed on the earliest epicardially paced unipolar signals (80% of the 

times). The area under the curve for the depolarization division of the unipolar electro grams 

for the epicardially paced signals was wider (P < 0.05) than the endocardially paced signals. 

More than 60% of the virtual electrograms recorded for epicardially paced signals had the 

evidence of low-amplitude depolarization preceding the spike of electrical activity. Latency 
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between the pacing artifact and onset of the unipolar electrograms were studied and the 

result showed a significant difference between the epicardially and endocardially stimulated 

signals P < 0.01. 

The result is summarized in Table 4.2. The data are given as mean± SD. 

Table 4.2: Electrocardiographic Parameters Analyzed 

Case Endocardial Epicardial t-Test 
Latency 14.5±5.3ms 18.2±7.8 ms p < 0.01 
Duration 18.8±6.2 ms 22.2± 5.3 ms NS 

PNV -2±1 m V -3±5.3 m V NS 
Low Amp. Depo. 0 % 60% p < 0.05 
Max Neg. dV /dt 1.6±0.2 m V /ms 2.27±0.4 m V/ms p < 0.05 

AUC 881±36 1090±50.5 p < 0.05 
R-Wave 0% 80% p < 0.01 

ROC curves were used to compare the potentially reliable criteria. Each of the variables 

had an area under the ROC curves significantly above 0.5 indicating that all were good tests 

of distinction of activation. 

Table 4.3 below summarize the classification for the best discriminator found: Latency. 

Table 4.3: Cross-validated: Linear discriminant analysis with leave-one-out method, % -
Percentage of classification. 

Method Groups Endocardial Epicardial Total 
Cross-validated Endocardial 131 19 150 

Epicardial 35 115 150 

% Endocardial 87.3 12.7 100 
Epicardial 23.3 76.7 100 

4.3 Frequency-Domain Analysis 

In this investigation we show that the frequency characteristics of the unipolar virtual elec­

trograms recorded with EnSite system may help discern the epicardial origin of electrical 
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Figure 4.6: ROC curve results. The area under the ROC curve for R-wave was 1, latency was 
0.932, area under the depolarization curve was 0.833, maximum negative voltage was 0.698 and 
maximum dV /dt was 0.692. 
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activation. This analysis based on FFT suffers from reduced frequency resolution and spec-

tral leakage effects. To overcome this limitation the parametric modeling techniques such 

as AR, also referred to as all pole modeling, can be used. AR modeling provide parameters 

which could potentially be correlated with the physiological system producing the signals 

(43], (90], (91], (92]. AR modeling is a form of signal compression where the coefficients 

contain the information about the signal characteristics. Using the AR coefficients, cepstral 

analysis has also been applied to investigate the usefulness of it in the diagnostic assessment 

of endocardially paced vs. epicardially paced electrograms. Furthermore, classification per­

formance of the the two features was investigated using LDA. 

4.3.1 Autoregressive Coefficients 

The frequency component of each segment were calculated with Fourier transform (FFT); 

the segments were multiplied point by point with a Hanning window to avoid edge discon­

tinuities. The Burg method was used to compute the AR coefficients, and the model order 

was selected using the AIC criterion. The optimum model order was calculated to be 9. The 

AR coefficients with order p = 9 were normalized to be in the range of -1 < a 1 to a9 < 1. 

The AR coefficients were calculated for all the pacing points from the virtual waveforms. 

The FFT and the AR spectra for both the endocardially and epicardially paced electro­

grams is plotted in Figures 4. 7 and 4.8, respectively. The power spectrum is plotted on right 

top corner. In this plot the frequency in Hz is plotted vs FFT magnitude in a logarithmic 

scale (dB). The AR coefficient is plotted in the bottom left corner with x-axis be the p 

number (model order) andy-axis to be the value for the AR coefficients. 

Generally, the AR spectra either followed closely the FFT spectrum or formed the spectral 

envelope. In order to indicate that the AR model represents adequately the segmented 

electrogram, AR model validity was initially checked by a visual inspection of the residual 

periodogram. The order of the model must be chosen to guarantee that the residual (the 

error between the actual signal and the signal predicted by the model) is nearly white noise. 
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Figure 4. 7: Figure on the top left is an example of a segmented electrogram which is Endocardially 
paced. The top right figure shows the FFT spectrum of the signal. The AR coefficient is plotted 
in bottom left corner. Bottom right is the spectral estimate using the AR coefficients. 

An Example of Segmented Epi Elect. 
Q) 0 

~ -5 
~ 
C:_-10 

~ -15 
:l 
;!: 
15..-20 
E 
c( -25'---~----'"'-"'~--~---'-' 

20 40 60 80 
Sample (time) 

The AR Cofficients of the Signal 

Number ~f C~efficie~t 

~ ·o' 

-~ 
1S.. E ... 
c( 

The spectrum of the signal 

Model Spectrum with AR Coefficients 

~ ... 
=! 
E ... 
c( 

... 

Figure 4.8: Figure on the top left is an example of a segmented electrogram which is Epicardially 
paced. The top right figure shows the FFT spectrum of the signal. The AR coefficient is plotted 
in bottom left corner. Bottom right is the spectral estimate using the AR coefficients. 
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The classification performance of the AR coefficients was examined by LDA as given in 

Table 4.4. 

Table 4.4: Cross-validated: Linear discriminant analysis with leave-one-out method for AR 
coefficients, % - Percentage of classification. 

Method Groups Endocardial Epicardial Total 
Original Endocardial 44 1 45 

Epicardial 9 51 60 

% Endocardial 97.8 2.2 100 
Epicardial 15 85 100 

Cross-Validated Endocardial 42 3 45 
Epicardial 11 49 60 

% Endocardial 93.3 6.7 100 
Epicardial 18.3 81.7 100 

4.3.2 Cepstral Coefficients 

The cepstral coefficients have additional advantage that one can derive from them a set of 

parameters which are invariant to any fixed frequency-response distortions introduced by 

the recording apparatus or the transition system. Therefore, cepstral coefficients improve 

the signal to noise ratio. Nine cepstral coefficients, c1 to eg were determined directly from 

the estimated AR coefficients a 1 to a9 . Although cepstral coefficients are deduced from the 

AR coefficients, it is expected that the nonlinear characteristics of the transformation could 

lead to an improvement in signal classification using the former than the later. In literature 

cepstral coefficients provided better classification in speech [46], EMG [4 7], and vibroarthro­

gram (VAG) [93] signal analysis. In this we are interested in the parametric representation 

of the unipolar virtual electrogram that provides an accurate yet efficient representation of 

the signal to better differentiate the originate of electrical activation. LDA was again used 

to examine the classification performance of the cepstral coefficients. The result is shown in 

Table 4.5. It has also been reported that cepstral coefficients may show better separability 
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compared to the AR coefficient. However, as the result shown in Table 4.5 the cepstral 

coefficients did not improve the accuracy by a significant amount. 

Table 4.5: Cross-validated: Linear discriminant analysis with leave-one-out method for cepstral 
coefficients, % - Percentage of classification. 

Method Groups Endocardial Epicardial Total 
Original Endocardial 42 3 45 

Epicardial 15 45 60 

% Endocardial 93.3 6.7 100 
Epicardial 25 75 100 

Cross-Validated Endocardial 42 3 45 
Epicardial 15 45 60 

% Endocardial 93.3 6.7 100 
Epicardial 25 75 100 

For each pacing sites, the average vector of 20 virtual electrogram for each feature set 

was computed and used as input to the classifier. Tables 4.4 and 4.5 summarize the highest 

diagnostic yield to be AR modeling to be 90%, followed by cepstral coefficients to be 82%. 

Classification result for cepstral coefficient was identical for both the original group and 

cross validated group to be 82.9%. In this thesis, we have shown that AR spectral measure, 

AR coefficients as well as cepstral coefficients can be fed into a decision support system in or­

der to improve the classification performance of each feature. It should be kept in mind that 

selecting the best classifier and best feature set is not necessarily the ideal choice because 

potentially valuable information contained in the less successful feature sets or classifier may 

be lost. Therefore, the combination of the results of the different features and the different 

classifiers increases the probability that the errors of the individual features or classifier may 

be compensated by the results of the rest [94]. 
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4.3.3 Power Spectral Density(PSD) 

The power spectral analysis was also applied to a typical ventricular depolarization. Power 

spectral density (PSD) is the average of Fourier transform magnitude squared over a large 

interval. PSD tells us where the average power is distributed as a function of frequency with 

the following Equation 4.4 [95]. Analysis of PSD (especially on electrocardiogram) has been 

subject of many investigators over the past few decades. The present study was designed 

to provide preliminary information regarding the spectral content of both endocardially and 

epicardially paced electrograms. 

svu) = 1~ E { 2~ IL: v(t)e-i2"i'dtn ( 4.4) 

Four classification techniques utilizing spectral analysis were examined. The first clas-

sification technique was examining the peak frequency component (PFC) with the highest 

power as one feature to distinguish endocardial versus epicardial electrical activation. The 

second classification technique compared the frequency limit (cutoff frequency) below which 

95% of total power is contained. Third and fourth classification is followed below. 

Figure 4.9 represents PSD of both endocardially and epicardially paced electrogram in 

one plot. Looking at the graph what is immediately and clearly points is that endocardially 

paced electrograms reaches the maximum PSD value in the second ascent in frequencies 

between 50 to 70 Hz. However, the epicardially paced electrograms reach the maximum 

value for PSD in first ascent in frequencies between 30 to 50Hz. And also the rate of change 

of power spectral density for epicardially paced electrogram is faster than the endocardially 

paced electrogram. 

One more important result from Figure 4.9 is area under the PSD curve. The area under 

the PSD-frequency graph is equal to the mean square value of the signal or more precisely 

signal average power. Integrating the area under the PSD curve in Figure 4.9 shows that 

the average signal power of endocardially paced electrogram is greater than the epicardially 

paced electrogram. 
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Figure 4.9: PSD of endocardially and epicardially paced electrogram of a segmented virtual 
electrogram. 

4.4 Spectral Estimation 

To date, spectral strain estimators introduced in the literature have been based on the 

DFT and are referred to as nonparametric methods because they make no assumptions 

about the underlying data (except stationarity). The rationale for investigating the use of 

parametric spectral estimation techniques stems from the fact that the Fourier transform 

operates on windowed data segments. Hence, this approach makes the implicit assumption 

that data outside the window are zero , which is an unrealistic assumption. The inherent 

consequence of this data windowing is smeared spectral estimates. In contrast, the use of a 

priori information may permit selection of a model that is an accurate approximation to that 

of the actual underlying (data-generating) process. Using this parametric based technique, 

it is hypothetically possible to obtain more accurate spectral estimates by incorporating 

this model-based approach and subsequently estimating the model parameters from the 

measured data [96). 

Modern noncontact mapping technique allows for identifying arrhythmia focus without 
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the laborious sequential contact mapping techniques currently in practice. The endocardial 

and epicardial paced virtual electrograms from the juxtaposing sites allows for an estimate 

of the transfer function of the myocardium in different positions of the right ventricles of a 

canine heart. The transfer function estimation will aid in better mathematical modeling of 

myocardium and could be sensitive measure of myocardial homogeneity and arrhythmic foci 

localization. 

The spectrum of the model was calculated using the Equation 4.5 

1 
PAR(z) = 2 

1

1 + t akejkzl 
k=l 

(4.5) 

The model spectrum was calculated for both endocardially and epicardially paced data. 

1 
PAn(z) = ------------­

ao + a1z- 1 + a2z- 2 + ... + ap- Iz - P+I 

4.4.1 Transfer Function Estimation 

(4.6) 

Koiwa et al. [97], studied the output signal from the contralateral portion of the left ventricle 

(LV), when a sinusoidal vibration was applied directly to the anterior epicardium in isolated 

canine LV, they showed an amplitude modulation with the cardiac contraction. Analyzing 

these signals, if we could draw an instantaneous LV transfer function curve then it will 

correlated to ventricular physical properties and its myocardial heterogeneity such as regional 

myocardial ischemia. If we could describe TFC of human LV, we might be able to estimate 

the physical properties of the LV. However, no reports have demonstrated the response of 

human LV or RV myocardium to vibration both from endo and epicardium. The aim of this 

study was to clarify whether we could vibrate the LV /RV noninvasively and to clarify the 

mode of vibration in human LV /RV myocardium. 

If a model can be successfully fitted to a data stream, it can be transformed into the 

frequency domain instead of the data upon which it is based, producing a continuous and 
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smooth spectrum. After AR modeling was done on each segment the spectral estimation was 

calculated for both endocardially and epicardially paced electrograms, which was then used 

to derive the transfer function. Measured LV /RV transfer function is defined as the ratio 

of induced vibration in the LV /RV to input vibration, by applying an external mechanical 

vibration to the LV /RV epicardium. This transfer function has a resonance curve in relation 

to applied frequency. Its resonance frequency and the magnitude of the resonant peak are 

significantly influenced by ventricular pressure, which indicates that the resonance curve 

reflects the state of the ventricular cardiac muscle. 

The transfer function was then calculated by dividing the spectrum of the epicardially 

paced data (PAR_Epi(z)) (the magnitude of Fourier transform of epicardially paced electro­

grams or input of our system) with the spectrurn of endocardially paced data PAR_Endo(z) 

(the magnitude of the Fourier transform of endocardially paced electrograms or output of 

our system) as shown in the Equation 4.7: 

. p AR_EPI(z) 
Transfer Funct10n = p ( ) 

AR_ENDO Z 
(4.7) 

Using Equation 4.6 we would have the following: 

H(z) = f3o + {31z-
1 + {32z-

2 + ... + f3p - lz - P+l 
a 0 + a 1z - 1 + a 2z - 2 + ... + ap_ 1z - P+1 (4.8) 

The important feature is that in the frequency domain, the input and output of a linear 

system are multiplicatively related via the transfer function. A full description of the transfer 

function includes both its magnitude and phase; in this thesis, however, we restrict our 

attention only to the magnitude. Transfer function completely characterizes the system and 

it may include the viscoelastic properties of the myocardium of the RV. 

The transfer function of some of the paced points is illustrated in the following figures. 

The transfer function is a plot of the ratio of the amplitude spectrum for the epicardially 

paced electrogram to endocardially paced electrograms versus frequency. The shape of the 

curves in the figures has common characteristics which we interpret as low-pass like filter of 

the RV myocardium. By picking up different points and times within the cardiac recordings 
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Figure 4.10: Transfer function plot of the myocardium from P3. X-axis is frequency and y-axis 
shows the magnitude response of the myocardium on P3. 

we draw the transfer function and the results were analogous. This is shown in Figures 4.10 

and 4.11. 

The basic feature of these curves is that they are characterized by a single peak. The 

figures are consistent with results reported by Hashiguchi et al. [55). They showed that 

the single peak configuration is seen in the physiological state of homogeneous myocardial 

perfusion. The result suggests the possibility of future use in modeling the human heart ( es­

pecially the reentry circuit modeling of heart). Whole-ventricle models of electrical activity 

require the three-dimensional geometry of the ventricles, together with a description of the 

orientation of fibers. Because of inherent simplification of these models, they cannot provide 

any insight into the behavior and influence of specific ion channels and other intracellular 

processes on propagation because they are not included. 

Hashiguchi et al. [55) computed the transfer function of the left ventricle and concluded 

two common characteristics. First, at low frequencies there is a gradually falling shape 

which was interpreted as a response of cardiac mass against local stiffness presented at the 

myocardium. Second, they also concluded that, at moderate frequencies a single smooth 
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Studying the basic characteristics of right ventricle instantaneous transfer function sug­

gest the possibility of future use of this technique in the clinical setting, such as real-time 

monitoring of expansion of an ischemic region during open chest surgery. Real-time eval­

uation of the extent of regional damage is therefore important to assess for future use in 

diagnosis and treatment of functional loss. 

4.4.2 Conclusion on Transfer Function Studies 

We have presented time and frequency analysis as an efficient tool to estimate the transfer 

function of RV, in a canine model. This allows for a non contact technique of identifying epi­

cardial electrical activity. Further validation in humans may allow for a powerful technique 

to identify epicardial foci in patients using a simultaneous noncontact endocardial mapping 

tool. 
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Further studies was done on real electrograms which was recorded from the The Toby Hull 

Cardiac Fibrillation Management Laboratory, TG H. Again as was described before, the 

ability to automatically identify arrhythmias from ECG recordings is important for clinical 

diagnosis and treatment, as well as, for understanding the electrophysiological mechanisms 

of the arrhythmias. Therefore in this study the initial requirement of signal processing was 

first to look at the data and its spectrum and then, the frequency characteristics of the signal 

(e.g. stationary and nonstationary). 

After looking at the characteristics the aim is to determine and quantify the ECG features 

which describe each arrhythmia in either frequency of time domain, and also to come up 

with quantifying features of heart abnormalities and arrhythmias. Below is the preparation 

for the data gathering, the analysis followed by the results and conclusions. 

4.5.1 Langendorff Setup 

Immediately after heart transplantation, heart was placed in cold tyerode's solution and 

transferred to the laboratory. Heart was perfused either through the aorta or selective can­

nulation of coronary arteries (retrograde perfusion). Tyrode's solution was used to perfuse 

the heart ( 95%02 
- 5%C02 

). The tyrode's solution was passed through a roller pump 

that will propel it through an oxygenator and a thermostat to the heart. The flow rate was 

maintained between 0.5 - 0.75 L/min. The perfusion pressure was maintained between 60 

- 65 mmH g by adjusting the height of the reservoir. The temperature is maintained at 

37°C and monitored continuously. Figure 4.12 is the langendorff setup in TGH. 

4.5.2 Methodology 

After a heart is brought to the TGH Lab, it is be placed in a sock with 112 electrodes, 

surrounding the heart as shown in Figure 4.13. 
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Figure 4.12: Langendorff Setup taken at the TGH Lab. 

Figure 4.13: Prepared Langendorff Setup for One of the Human Heart Studies in TGH 
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All of these 112 electrodes have x-axis and y-axis coordinate information which can 

be scattered on a 2-D surface as shown in Figure 4.14. Each electrode will pick up a 

different measurement of heart activity from the surface of myocardium. These electrodes 

pick up all the electrical activities underneath of it during the whole experiment. In this 

project however, only 3 seconds of signal was chosen, which had 3000 samples (giving a 1 

kHz sampling rate). 112 electrodes are numbered, row zero which has x-axis position of 

zero andy-axis of positive values will be positioned on the septum of myocardium for the 

reference that it is known which value is for which part of heart. Each row has 8 electrodes 

and there are 14 rows. 
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Figure 4.14: Position of the Sock Electrodes Mapped on a 2-D Surface 

Figure 4.15 is an example of 11th row's third electrode which for simplicity of the rest of 

the project, the first 1000 samples of the signal is drawn as well. 

For simplicity purposes, a GUI version of the 112 electrode was made which will have two 

inputs: the row number and the electrode number. After inputting the required electrode, 

the signal and its filter is drawn. As an example, the 83rd electrode is redrawn here in the 
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The signal is noisy and needs to be filtered for further analysis. A low-pass Chebychev 

filter with order 9 was used. The FFT spectrum of the signal and filtered was drawn for 

comparative purposes in order to visualize the two spectra. 

Each electrode can represent a different maximum magnitude as a specific frequency. In 

order to calculate the maximum magnitude, the frequency between 0.5 to 15 Hz was band­

pass filtered. Then the FFT of the signal was calculated in order to pick up the maximum 

magnitude and its frequency. To give the higher frequencies some differences the graph was 

color coded with higher frequencies to be more reddish and lower frequencies to be bluish. 

Figure 4.20 is called the DF map. In this project, in order to get the interpolated value 

first the circular interpolation was done. This is a very lengthy approach of interpolating 

the map. Circular interpolation will calculate the average of the two points and put the 

values in between the points. Assigning more points between two consecutive points gives 

the smoother color. 
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Figure 4.16: GUI Version of the 112 Electrodes 
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After circular interpolation, interpolation can be done row wise. Figure 10 is the final 

interpolation with first circular and then row wise. 
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Figure 4.20: Final Interpolation of DF map. 

Knowing the signal is non -stationary, there is a need to segment the signal into station­

ary components. The adaptive segmentation used was based on the recursive least square 

(RLS) algorithm. The goal of any adaptive filter such as the RLS algorithm is to find 

and track the optimum filter corresponding to the same signal operating environment with 

complete knowledge of the required statistics. The performance of such adaptive filters are 

evaluated using the concept of stability, speed of adaptation, quality of adaptation, and 

tracking capabilities. Therefore the distinguishing feature of the adaptive filters is that they 

can modify their response to improve their performance during operation without any in­

tervention from the user [98]. The advantages as read from the literature is when using the 

lattice filter the statistical changes in the signal is reflected in the filter parameters, hence 

the segment boundaries can be detected by monitoring any one of the filter parameters such 

as mean squared error or reflection coefficients. According [99], the signal is passed twice to 
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the segmentation filter and at a particular time sample during the second pass if it is lesser 

than the threshold a primary segment boundary is marked. If the difference between a PSB 

and the previous PSB of the same signal is greater than or equal to the minimum desired 

segment length (700), the PSB is marked as a final segment boundary; if not , the PSB is 

deleted and the process continued until all the PSBs are tested. 

After segmenting the signal into stationary components, now AR modeling was used to 

get the AR coefficients using Equation 4.9. The model order for AR modeling was 30 in this 

case. There is no straightforward way to determine the correct model order. As one increases 

the order of the model the root mean square (RMS) error generally decreases quickly up to 

some order and then more slowly. An order just after the point at which the RMS error 

flattens out is usually an appropriate order. 
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G 
H ( z) = __ k_=_p __ _ (4.9) 

1 + 2:: a[k]z- k 
k=l 

After getting the AR coefficients and averaging them because they would be different for 

different segments, using the Equation below the All Pole model of the system was generated. 

Poles of the AR model system could be extracted from the model transfer function by factor­

izing the denominator of Equation 4.9 [100]. In order to reduce the dimensions of the feature 

vector, dominant poles were used as they represent the dominant features of the signal in the 

spectral domain. Equation 4.9 may be factorized into individual pole contributions as follows: 

G 
H(z) = l(z- b1)(z- b2) ... (z- bp)l 

( 4.10) 

where b1 , b2 ... bp correspond to the complex poles of the transfer function H(z). 

Drawing the pole zero map, it is obvious that some of the poles are more dominant than 

others as shown in Figure 4.22. Dominant poles are the ones which have the maximum 

distance from the origin in the z-plane. These dominant poles will represent dominant 

peaks of the signal in the spectral domain, and could be used as parameters for constructing 

feature vectors [101]. 

The envelope of the spectrum of the signal using the AR coefficients was plotted as in 

Figure 4.23. As it is shown from the graph in Figure 4.24 the envelope of the spectrum of 

the signal using the AR coefficients is almost the same as the spectrum of the signal using 

FFT. 

Detailed discussions and conclusions of these results can be found in Chapter 5. 
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Chapter 5 

Conclusions 

5.1 Discussion and Conclusion on Cardiac Studies 

In the study of Chapter 3, in order to evaluate the ability of virtual electrograms to predict 

abnormal bipolar electrograms we tested the hypothesis of max dV I dt, filtering and optimized 

DSM threshold. This would hopefully allow, for better identification of abnormal myocardial 

substrate traditionally defined by contact bipolar mapping in human RVOT. 

The DSM threshold for accurate substrate identification varies between species, cardiac 

chambers, and underlying pathology. Previous studies have used different DSM thresholds 

such as: threshold of< 30% in the human right atrium (RA). And Fontan used < 50% in 

the ovine left ventricle post infarct and later < 34% was used in the canine LV post infarct 

[60], [65], [102]. Defining DSM thresholds for clinical use in various scenarios will improve 

its utility. This study identifies a DSM threshold for substrate identification of the human 

RVOT which was reproducible across subjects in the study. 

The first derivative of the unipolar electrogram ( dV I dt) represents the velocity of local 

activation. The maximal negative dV I dt is used as a marker of local activation timing. dV I dt 

is dependent on the viability of local tissue and the speed of local conduction. In diseased 

states the slope of the unipolar electrogram is decreased, the duration prolonged and the 

maximal negative value of the derivative reduced. For substrate mapping these features 

provide additional details of tissue viability compared to electrogram voltage. In this study 

a dV I dt threshold of 0.25 mv Is identified bipolar defined substrate, and may have potential 
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role in substrate delineation. 

Electrograms recorded in normally conducting atrial or ventricular myocardium possess 

spectral components in the mid range of 4 to 16 Hz; whereas electrogram in regions of slow 

conduction are composed of lower-frequency spectral components of 1 to 4 Hz. Spectral 

components associated with repolarization waves lie in the low end of the spectrum at 1 to 4 

Hz. Thus, the high-pass filter must be adjusted between 1 and 32Hz, helping to modulate 

the extent to which low-frequency signals are visible on the three-dimensional display. 

However, filtering out large repolarization waves by the high-pass filter may attenuate 

critical information contained in relevant signals of lower frequency and amplitude. For 

DSM construction in the RVOT, filtering unipolar virtual electrogram at 1 Hz produces the 

highest accuracy in comparison to contact bipolar electrograms. 

Identification of true local activation or repolarization waves is essential to successful 

utilization of the EnSite system. This problem may be emphasized with unipolar, noncontact 

mapping because signals detected by the array initially are amplified to derive the endocardial 

map. Thus low-frequency noise, repolarization waves in the measure cavity will be magnified 

into larger signals on the reconstructed chamber. In the unipolar electrograms, signals 

associated with high conduction velocity possess a greater slope ( -dV / dt ), and thus are 

characterized by high-frequency spectral components (> 32 Hz) electrograms recorded. 

The ratiometric design of DSM and the optimal filtering identified in this study overcome 

some of these limitations. 

The major limitation of the noncontact system is the proximity accuracy of unipolar 

virtual electrogram. Beyond 40mm from the equator of the MEA the amplitude, timing, 

and morphology of unipolar virtual electrograms significantly decreased. This is an issue in 

large dilated aneurismal chambers but not of significance when mapping the RVOT as in the 

current study. 

In this human in-vivo study of the right ventricular outflow tract we have demonstrated 

that when noncontact virtual unipolar electrograms are high pass filtered at 1 Hz, subject to 

dV/ dt threshold of 25m V /sand to DSM threshold of 25% it provides substrate localization 
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comparable to contact bipolar electrogram mapping. Thus this strategy may provide an 

alternate rapid substrate mapping tool when used with_ optimal parameters. Therefore, the 

noncontact DSM tool can be used to identify RVOT substrate with a considerable degree 

of accuracy. Accurate noncontact identification of RVOT substrate may lead to improved 

patient ablation outcomes. 

The next Section will cover the Conclusions on Chapter 4. 

5.2 Conclusions on Cardiac Electrical Activity 

5.2.1 Discussion and Conclusion of Time-Domain Analysis 

Findings in this experiment is important if these results obtained in the present study: 

• Are valid during the re-entrant and focal arrhythmias. 

• Can correspond well with clinical findings. 

• May help to determine if different characteristics is applicable to human ventricular 

tachycardia. 

We have presented the electrographic parameters to analyze the difference between the 

endocardially paced and epicardially paced electrograms in this preliminary study. The mor­

phologies of the unipolar electrograms generated by the noncontact mapping system allowed 

the discrimination of endocardial versus epicardial origin of electrical activation. R-wave 

appeared to be the best discriminant feature between endocardially and epicardially paced 

electrograms. From statistical results, it might be possible to identify possible parameters 

to be used to discriminate between epicardial and endocardial activation. We also believe 

the possibility that the combinations of these criteria might improve the perception over any 

single criterion. This may allow the detection of tachycardia that originates epicardially. 

It should be kept in mind that intracavitary maps deserve further studies, especially their 

performance should be evaluated in animal preparations of sustained VTs, as a preliminary 

step toward clinical trials. 
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The result of this experimental study with the intention to find different features to 

determine the origination of activation are in accordance with the findings derived from 

the clinical settings. The presence of initial R-wave had a positive predictive value of 0.8 

for epicardial origin of electrical activation. This findings fit well to the meaning of the 

unipolar electrogram. The unipolar electrogram represents the intrinsic deflection at the 

given location it is recorded [103]. An initial R wave of the unipolar endocardial electrogram 

is resulted if the electrical wavefront from a myocardial and an epicardial focus travels in 

part toward the recording location. In contract to this, in theory an endocardial origin of 

activation results in a pure QS pattern at the location as all electrical forces are heading 

away from that location [104]. Therefore , according to this finding it may be stated that the 

noncontact mapping allows for identification of the origin of focal activation which would be 

useful in choosing the appropriate mode of energy delivery [105]. 

Electrograms obtained during epicardial simulation exhibited a significantly higher max­

imal negative voltage and maximal dV / dt than those reconstructed during endocardial sim­

ulation. Cardiac fiber orientation influences the maximal conduction velocity and maximal 

voltage of the electrical wavefront [106]. 

Latency between the pacing artifact and the beginning of the unipolar electrogram ex­

hibited significant difference when compared according to pacing location in RV. This phe­

nomenon is most probably related to thickness at the different pacing location chosen in this 

present study [107]. 

5.2.2 Discussion and Conclusion of Frequency-Domain Analysis 

The frequency analysis of unipolar electrograms generated by noncontact mapping allows 

the discrimination of endocardially and epicardially paced electrograms. The decomposition 

of the signal using AR model of sufficient order produces residuals, thus allowing synthesis 

of statistically equivalent signals. 

It will be clear that a classification scheme for clinical diagnosis can be evolved based on 

the pole-zero pattern of the signal models. The representation of the original signal by its 
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model, as proposed here, provides an efficient method to the hitherto related data handling 

problems of virtual electrograms for better discrimination of endocardial vs. epicardial ac­

tivation pattern. We also believe that possibility of combination of the time-domain and 

frequency-domain characteristics would improve the perception over any single criterion. 

Finding of this experiment may be discussed if these results obtained in the present study 

are still valid during the reentrant and focal arrhythmia. Further studies would help to de­

termine if differing characteristics is applicable to human ventricular tachycardia. 

5.2.3 Conclusion on Pole-Zero Map 

In this Chapter, using the normal sinus rhythm data the signal and the spectrum of it were 

plotted. Two different ways were used to calculate the maximum frequency from the surface 

contact electrograms. The first way was using the FFT and then finding the maximum 

magnitude and its frequency. The second way, however, was first to segment the signal 

and get the AR coefficients and then calculate the dominant poles and draw the envelope 

spectrum of the signal. The two methods, gave similar values. There are two critical issues 

in AR modeling first is choosing the AR order of coefficients to model the signal. AR 

order should be appropriately chosen to make sure that the signal is approximated with 

high accuracy. Various model orders were tested to obtain the best accuracy in the modeled 

signal. In this thesis the model order was chosen on RMS algorithm as explained before. The 

second critical issue in AR modeling is the segmentation of parameters. This issue may be 

the cause of small error between using FFT or AR modeling to find the dominant frequency 

and its magnitude. 

5.3 Future Work 

Signal characteristics were studied both in the time and frequency domain to determine 

if some of the characteristics of reconstructed unipolar electrograms from the noncontact 

mapping system can be used to detect epicardial electrical activation in a canine heart. These 
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studies can be applied to in human heart. The reliability of these results should be tested 

in patients both during sinus rhythm and ventricular tachycardias. The impact of these 

studies would help electrophysiologists pin point the exact location of the tachyarrhythmias 

in patients. 

And also, the efficacy of antitachycardia devices for the treatment of ventricular tachy­

cardia medication depends upon the reliable identification of ventricular tachycardia. These 

criterium can be used in the VT detection algorithms used in automated external defibrilla­

tor (AED), which therefore implies algorithms that are accurate and easy to implement in 

hardware. High detection accuracy is suitable for real-time implementations in AEDs. 
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