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Abstract

Title of Project: “ADAPTIVE VECTOR GREEDY
SPLITTING ALGORITHM?”

Evgeny Klavir, Master of Engineering, 2007

Department of Electrical and Computer Engineering,
School of Graduate Studies, Ryerson University

Project directed by: Dr. Sebastian Ferrando
Chair, Department of Mathematics

We introduce a new transform through a construction that we have called the Adap-
tive Vector Greedy Splitting algorithm. The main idea behind this algorithm is an
optimization step based on the simple Bathtub Principle. We use the Vector Greedy
Splitting algorithm to build orthonormal bases for a given vector of random variables
(also called signals). A particular basis constructed in this way may be used for signal
compression, audio pattern recognition and other applications of signal processing.
We compare performance of the Vector Greedy Splitting algorithm with the Haar
wavelet transform applied to the same vector of input signals.

The implementation of the algorithms and statistics accumulation are made using
the ANSI C computer language and Matlab. The work uses advanced methods of
Computer Engineering and Digital Signal Processing.
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Chapter 1

Introduction

The general area related to the subject of this project is adaptive approximations.
Some general references are given by: [9], [6], [14]. More especialized references are
given by: [4], [5], [7], [8]. The thesis does not use any particular result from this
area hence we will only describe, briefly, the main goals and ideas behind an adaptive
approximation.

The idea of adaptive vector greedy splitting algorithm is described in [3] and the the
project complements work [3] with:

e Formal proof of main theorems.
e Studying properties of vector greedy splitting algorithm.
e Efficient software implementation of the algorithm.

e Plotting results and comparison of vector greedy splitting algorithm vs. Haar
wavelets.

Given a collection of analyzing signals, which we collect in a set called a dictionary
D, we try to obtain efficient representations of empirical signals. Namely, given a
collection of data signals, which we will call X', we look for an approximation to a
given X € X by using elements from D. Some results from the theory indicate that
having an efficient representation will provide optimal results in applications such as
compression and denoising. Moreover, if the dictionary D is properly designed the
approximations may also be interpreted in physical terms. Below we explain some of
the ideas in mathematical notation, most of the mathematical symbols and notions
will be introduced formally later in this document.

Consider a probability space (£2,.A, P) and the associated Hilbert space L?(f2, A, P).
An orthonormal system of functions {uy}r>0 defined on Q is called an H-system if
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and only if for any X € L*(Q, A, P)

Xa, = E(X|ug,u1,--.,Up) = Z(X, up)ug, foralln >0. (1.1)

n
k=0

This thesis studies some aspects of these type of orthonormal systems and their
potential to perform lossy compression. From a theoretical point of view they are
interesting as the sequence of approximations is a martingale. Moreover, for a given
collection of random variables X = {X,..., X4}, we can construct the system {u}
adaptively to obtain efficient approximations. Notice that the word adapted is used
with two meanings. Firstly, the system {u;} will be constructed, in an optimal way,
using the set X (and hence adapted to X) and, secondly, the functions u, are simple
functions which are adapted (according to measure theory) to the sigma algebras
o(up, - . ., Un) which form a natural filtration in the sense that they generate o(X).

The main contribution of the thesis is in the construction, via the greedy splitting
algorithm, of adapted H-systems and in showing their usefulness in a concrete setting.
The main step in our construction is explained next. Consider the dictionary of
(generalized) Haar functions,

D={p=alsa+blp, abeR, ANB=0,A,B¢c A}

we also require that each ¢ € D satisfies

/Q ¥(w) dPw) = 0, /Q V2 (w) dP(w) = 1.

Under appropriate conditions on a random variable X we show how to construct
Yo =a 1a,,+b 1y, €D such that

(X, o) = %g(X, ¥). (1.2)

The above result represents the main step to set up a greedy algorithm (see [19]), also
called a pursuit algorithm (see [14]), on an overcomplete dictionary like D. Equation
(1.2) can be iterated by replacing X above by the residual RX = X — (X, o).
More generally, we set R**1X = R"X — (R"X, 1)1, where 1, is the Haar function
chosen at iteration n and, of course, R0X = X.

If the resulting approximation is to be used to perform a (lossy) compression on the
information contained in X, a main problem to address is the cost to encode the
Haar functions 9. The cost of this encoding can be greatly reduced by performing
a restricted nonlinear approximation ([5], [4]) which in our case will imply to impose
a tree structure on the supports of the Haar functions v,. For example, in the first
iteration, this restriction entails to apply (1.2) to (14,,RX), i = 1,2, alternately.
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Even when restricting the approximation to have a tree structure, the cost of storing
a single H-system for each given input X is too high for a compression application.
We approach this problem by extending the main step given by (1.2) to a vector
setting, namely we will deal with vector valued Haar functions ¥ =a 14+0b 1p where
now a,b € R? and X = (Xy,...,Xy) € L*(Q,R?). We will then show how to find 1
so that

X, 0] = / (X(u), o) dPw) = sup(X y] (1.3)

In other words, we introduce a new transform for signal analysis. Our input is a
collection of random variables, also called signals, which we collect in a single vector.
In the special case of a single random variable (scalar signal case) we call our transform
Greedy Splitting (GS) algorithm, while in the vector case, i.e. a given collection of
random variables defined on the same probability space, the transform is called Vector
Greedy Splitting (VGS) algorithm. We use the Vector Greedy Splitting algorithm
to build orthonormal basis for a given input vector. This basis is used for signal
approximation which is performed via an analysis step, then a compression step and
finally a synthesis step. This basis is built iteratively and is constructed by splitting
the domain of the signals and generating a sequence of partitions. To each new split
we associate two vectors in our space and a corresponding basis function, called a
(generalized) Haar function (or generalized Haar function). These Haar functions
take only two non zero vector values. We start with our domain and split it into 2
parts, becoming sub-domains. This split and corresponding Haar function become
the root of a tree and the sub-domains are leaves. In the next step we split one of the
leaves depending which one carries more useful information about the given signals.
Iteratively we continue this process of building a tree, in each iteration we split one
of the sub-domains. The algorithm is called Adaptive Vector Greedy algorithm since
we always choose best leaf to split and the choice depends on the vector of inputs.
We call this tree Partition Tree and we present it in the Figure 1.1:
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Figure 1.1: Partition tree and main steps of VGS algorithm.

We see at Figure 1.1 the partition tree. It is a binary tree that is not balanced and
not complete since adaptive VGS algorithm at each iteration chooses the next leaf
to split based on optimality criterion described in Chapter 2.2. It may happen that
some leaves on the top of the tree will be never split. On the Figure 1.1 we observe
that left child of the root, denoted as A, is not split.

In order to build tartition tree adaptively we define an inner product, and associated
norm, in the vector space. The best Haar function and the best partition means that
the associated Haar function carries the optimal amount of information about the
input signals. The efficiency of the splitting algorithm has been achieved by using
the Bathtub principle. After M iterations we obtain a tree with M + 1 leaves and
M nodes and M Haar functions, corresponding to the nodes. The orthonormal set of
basis functions so constructed is called an H-system. The next stage, multiresolution
analysis, is the calculation of the inner products of the signals and all basis elements
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(i.e. the Haar functions). The physical meaning of the inner product is the amount of
signal energy represented by each Haar function. There are recursive formulae for the
tree construction allowing fast calculation of these values, starting from the leaves
and going up to the root, as shown in the Figure 1.1. The next optional stage is
compression of the tree, by compression we mean setting to zero a certain percentage
of the smallest inner products calculated in the analysis stage. The final stage is
synthesis, or reconstruction of the signal. Also, there are recursive formulae starting
from the root and going down to the leaves of the tree (see Figure 1.1), making
this process fast and efficient. This concludes the VGS algorithm. The performance
of the algorithm is compared to the classical Haar wavelet transform. The relative
errors of both methods, applied to the same sets of input vector signals, have been
compared and plotted. The implementation of the algorithms is done in ANSI C
programming language and uses advanced methods of digital signal processing making
the core algorithm easily portable to embedded systems. Matlab is used for statistical
representation of the results.

1.1 Organization of the Document

The main notation used and mathematical formulae are presented in Section 1.2.

Chapter 2 explains in simple terms the procedure to construct adaptive sequence
of partitions for the space (resulting in a binary tree), how this sequence defines an
orthonormal basis and the special basis functions called Haar functions. Chapter 3
describes the major steps for an efficient implementation of Adaptive Vector Greedy
Splitting Algorithm, in particular the recursive formulae needed to implement the
Multiresolution Analysis Algorithm for a given vector of input signals, transform
compression and synthesis. Chapter 4 presents testing results and comparison with
the classical Haar wavelet transform. Chapter 5 summarizes the results of the thesis
and indicates potential applications. The detailed proofs of all theoretical results -
are presented in Appendixes. Appendix A defines Haar functions and their proper-
ties. Appendix B describes how to build the VGS partition tree, provides proofs of
formulae and presents a proof of the main theorem, that is, the bathtub principle.
Appendix C describes how to cover multi-dimensional unit sphere with uniformly
distributed points, that is an important step in the implementation of the Vector GS
algorithm.



1.2 Notation

Consider a probability space (£,.4, P) and the associated Hilbert space L%(Q,RR?).
In the case when Q) has a finite number of elements, the collection .4 will then be
the collection of all subsets of 2. Elements from L?(£2, R¢) are vector valued random
variables X : Q — R, X(w) = {X;(w), ..., X4(w)}, the components X; will be the
given input signals. The inner product in L?($2,R?), for two vector valued random
variables X and Y, is given by

X,Y] = /Q (X(),Y () dP(w), (1.4)

where ( , ) is the Euclidean inner product in R¢, namely,
(X(w),Y (w)) ZX (W) Y; (1.5)
For d = 1 we are getting scalar case and the inner product in L2(Q2,R) is

X,Y] = /Q X(w) - Y(w) dP(w).

The reader should distinguish from the context whenever symbols have to be inter-
preted as being scalars or vectors, for example, 0 as belonging to R or to R¢. Also,
by abusing the notation a bit, we will use || ||* for the square of the norm for the two
different inner products, namely || X||? = [X, X] and ||a||* = (a, a).

Also we will use the following notation for the characteristic functions:

lA(w)={ 1 ifweAd

0 otherwise.
This definition leads immediately to two main properties of characteristic functions:
14-14 =14,
1,-15=0, if AnB=0.

The d-dimensional unit sphere is denoted by S¢ and defined by

d
S = {x=(m1,...,xd)eRd : ||a:||2=Za:?=1}.

i=1

For d = 2 we obtain S?, that is the unit circle on the plane of radius one with center
at the origin.



Chapter 2

Haar systems and Vector Greedy
Splitting Algorithm

This chapter describes how to build the adaptive tree of partitions, we define an
associated H-system and how the orthonormal system of vector Haar functions is
created. This process may be considered as the analysis of the input vector of signal.

2.1 H-Systems and Tree of Partitions

An H-system is an orthonormal basis (Haar-like) {tx}x>o constructed from a binary
tree of partitions for our space 2. Define Agg = 2, let the first partition be the
trivial one Qp = {Aoo}, its physical meaning is that it provides the mean values, or
DC levels of the signals. Now we split our space Qp (or trivial partition Q) into two
disjoint sets Q; = {A1,0, 41,1} such that A;o(JA; 1 = Agp. At this stage our tree
consists of one node (root Agp) and its two children (leaves) A;o and A;;. At the
next step, we choose one of two atoms of Q; to split. If we choose to split A; o, then
it will become father (node) and its 2 children will be Ay and A, ; and this partition
will be @ = {A1,1, A2, A2,1}, however, if we choose to split A; ;, then it will become
a node and its two leaves will be Ay2 and Az 3 and then the new partition will be
Q1 = {A1,0, A2, A2 3}. This last case is showed in the picture:
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Figure 2.1: First two partitions

In general, the next partition Q, is constructed from Q, by splitting one of the
atoms in @, in two pieces and leaving the other ones intact. This kind of sequence
of partitions will be called binary sequence of partitions. According to our notation
if an atom A € Q,, then A = A;, the parameter j indicates the depth or level in the
tree, it is analogous to the scale parameter of the classical wavelets (in this case the
scale is related to the size of the support of the wavelet). Assume that A = A;; € Q,
is the atom chosen to be split to create Qny1, we then have two new atoms A;i1 9k
and Ajii2x+1 (of course Ajr = Ajpron U Ajrrorsr and O = Ajpyor N Ajyroke)-
Obviously Qi1 = Qu\{A;jx} U {A4j+1,2k, Aj+1,2k+1}- Now the question is how do we
choose the next leaf to split? The H-system of basis functions provides us with the
arithmetical tool to make this decision. Every time we perform a split we construct
the basis Haar function 1;; corresponding to the leaves of A;;. The inner product
Aij = [X, ¥s ;] gives us the information about how much of the signal energy is carried
by [X,v:;] - ¥:;. At every step we choose to split the leaf with highest value of inner
product allowing for the most effective analysis of the input signal. This makes our
algorithm adaptive so we call it the Adaptive VGS Algorithm. Chapter 3 will explain
mathematical properties of the basis Haar functions. In the remaining of the present
chapter we continue with the general description of the next stages of the algorithm,
Multiresolution Analysis (MRA), compression and synthesis.
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2.2 Multiresolution Analysis

Suppose we have built a tree of M atoms belonging to a binary partition. Therefore
we have a set of M nodes with corresponding basis Haar functions ; and inner
products ;. In the next step we go through all M + 1 leaves of our tree (atoms
of Qu) and calculate mean values of each scalar component (i.e. of each input
signal). Let’s denote, for simplicity, the M + 1 atoms of our dyadic partition as
Oum = {Ao, A1, ..., An}. In more explicit terms, the computations referred to above
entail to compute the d - (M + 1) quantities (d is the dimension of the input vector)

yA,.:-—l—-/ Xi(w)dP(w), where i€ {0,1,...,M}, ke{1,2,....d}. (2.1)
P(A;) Ja,

Using these y4, values and probabilities P(A;) we have recursive formulae allowing
us to perform a bottom up recursion (i.e. staring from the leaves) calculating scalar
inner products (denoted dg;) for each input component signal at each node of the
partition tree. This process completes MRA. The following Figure 2.2 illustrates the
algorithm of recursive multiresolution analysis:



P(A,F) Synthesis

Vealides
V| |9

x . —x x

Compression

P(A,) P(Ap)
MRA Synthesis MRA Synthesis

X

Compression Compression

Figure 2.2: Recursive Multiresolution Analysis.

We see in the Figure 2.2 one node and its two children, the left one and the right
one. We use the subscripts F, L and R for the parent (father) node, its left and right
children correspondingly. The data structure for MRA consists of probability P(A;)
and d-dimensional vector of y,4, values of the node A;. The recursion starts from
leaves, and in our case the left child is assosiated with set Ay, its probability P(A;)
and d-dimensional vector {yr1,...,yr4}. On the same way the data structure for
the right leaf contains probability P(Ar) and d-dimensional vector {yg,,...,Yra}-

10



The formula for the recursive MRA is

( Pr =DPL + DR

1
yr = —(pL YL + Pr YR)
PF .

dF — PL PR (y]_’, _ yR)
L V pr

Using this formula we calculate vectors {yr1,...,yra} and {dg1,...,yrq} for the
parent node of our two children. The arrows on the lines connecting leaves and father
node in the Figure 2.2 emphasize the fact that MRA recursion is implemented from
the bottom to the top of the partition tree, starting from the leaves and ending in the
root. The values {ya4,1,-..,Ya,qa} needed for MRA implementation, while the values
{da,1,-.-,da,a} are necessary for the compression and the synthesis as described in
the Chapters 2.3 and 2.4.

The mathematical justification for MRA are provided in Section 3.3 and the formal
proof of recursive MRA formulae presented in Appendix B.3.

2.3 Compression

Once the multiresolution analysis algorithm terminates, we have available d - M
scalar inner products one for for each node of the partition tree. The compression
stage consists of setting to zero (in according to required compression ratio) the
smallest scalar inner products. Suppose that compression ratio is 75%, in this case
only a quarter of the inner products (corresponding to the largest values) will remain
for each input signal, the smallest ones will be set to zero. These sets of inner products
will, of course, be signal dependant. More specifically, for the same node A;, there are
d scalar inner products, and some of them may be set to zero and some not during
compression. In practical terms, this means that for each input signal the remaining
inner products carry most of the energy of the signal. We illustrate the compression
on the following picture:

11



P(A,)

Synthesis

de dFd ] :
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Figure 2.3: Compression stage of VGS algorithm.

We can see on the picture above father node and its two children, similarly to the
Figure 2.2. However we observe that some of the inner products values d, ; are set
to zero as a result of compression. For example, the values da, 2 of the father node,
da,2and da, 3 of the left child and also d4,,; of the right child were all compressed.

It is interesting to note that the sum of squares of all inner products dj, 4,, for the
same node A;, equals A2, which is calculated during construction of the partition tree.
This result is one of the contributions of the thesis and it is proved in Appendix B.2.1.
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2.4 Synthesis

The last step, after analysis and compression, is called synthesis and consists of
computing the final approximation to the input vector of random variables. Similarly
to the MRA there are recursive formulae, which provide the approximation to the
input signals. This recursion starts at the root of the tree and goes top-down through
all the leaves. This process is shown in Figure 2.4:

13



Compresskm

& R’d
Compression

Figure 2.4: Recursive Multiresolution Synthesis.

We see in the Figure 2.4 parent node and its two children that are nodes as well.
We use the same notation as in Figure 2.4 and its description in the Chapter 2.2.
We use d-dimensional vector {yg1,...,yrq} and compressed vector of inner prod-
ucts {dr1,...,drq} to implement recursive synthesis in according to the following

14



eI L aeem = -

recursive formula:

yL=yF+‘/_£R_dF7
PFDL
PF
yR=yL_‘/ dr .
PLPR

It is important to note that the vector {yry1, . ..,yrq} used in the synthesis is not the
same as the one received during MRA and shown in Figure 2.2. The actual values
yr; used in the formula above are received as an output of the recursive synthesis and
they are stored in the synthesis part of the node data structure as has been illustrated
in the Figure 2.4. The recursive synthesis calculates the vectors {yr,1,. .- ,Yrq4} and
{yr1,..-,Yra} for the left and right children of the father node. The initialization
of the synthesis is actually copying of the vector {YRoot15 - - - » YRoot,a} from the MRA
data structure into synthesis data structure of the root of partition tree.

The section 3.3 contains additional description of the synthesis and formal proof of
recursive formula is done in Appendix B.4.
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Chapter 3

VGS implementation: Analysis,
Compression and Synthesis

While the previous Chapter was an overview of all the steps performed by the Adap-
tive Vector Greedy Algorithm, this chapter contains formal definitions and mathe-
matical formulae needed for the implementation of the VGS algorithm.

3.1 H-functions

Consider a probability space (Q, A, P) and the associated Hilbert space L?(2,R%), in
the case when ) is finite, the collection A will then be the collection of all subsets of 2.

Definition 1. Given A € A, P(A) > 0, a function 14 is called a (vector valued)

Haar function on A if there exist
Ai E.A, i=0,1, A,QA, AgﬂAl =®, A=A()UA1, and
Pa=aly +b1la, abeR? satisfying the following two conditions:

/Q Palw) dPw) =0, (3.1)
[0al? = Waval = [ IBa@I? dPw) =1, (3.2)
Q

where 14 is norm in Hilbert L2(2, R?) space and ||1)4(w)|| is the Euclidean norm in R¢.
The above equations can be used to relate a and b and also to set a constraint
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on b (its norm is fixed), actually (3.1) gives

_ = b P(4)

3.3
P(A,) (33)
Using this last equation in (3.2) gives
P(Ao)
b2 = ————~2 ., 3.4
7 = 55 o (3.4

Also, if ¥ = b/||b|| we get point & on unit sphere S¢ defined by direction of vector b.
Finally, we can relate b’ € S¢ to b which is used to define the actual Haar function:

_ / P(AO)
b—imeP—(A)-. (3.5)

The results presented above are equivalent to the following general form of vector
valued Haar function:

+ ’Q,bA,b/ = (”% 14, — ”ﬁ%&—l) ]'Al) b’, where b/ € Sé (36)

In particular, for d = 1 we obtain the one-dimensional case with ¥’ = =+1 and,
therefore, the scalar Haar function can be written as follows

_ P(A,) P(A)
94 = 1\ PPy M T\ PP 4 (3.7)

From equation (3.6) it is clear that for any disjoint sets A; and A; the corresponding
Haar functions 14, and 1,4, are orthogonal, i.e. [¥4;,%4;] = 0, moreover, they are
orthonormal.

3.2 Construction of tree of partitions for VGS

Having as input the probability space (€2, .4, P), vector random variable X = {X3,..., Xg4},

belonging to the Hilbert space L?(Q2, R?) and number of iterations M we approximate
X using an adaptive set of functions consisting of the initial function v, and M basis
vector Haar functions {¢o,%1,...,%¥um}. Let us denote with X the resulting approxi-
mation to X. Therefore

M
X =) Nah, where A\ = [X,9]. (3.8)
k=0
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The goal is to build this basis of Haar functions adaptively, in such way, that the
error norm ||X — X|| is minimal after M iterations. We approach this optimization
via a greedy algorithm where we minimize this error norm at each iteration. Here,
with the word iteration, we mean each splitting of an atom used to generate the tree
of partitions.

This greedy optimization problem is equivalent to maximizing absolute value (mod-
ulus) of [X,]. This follows from the fact that

X =9l Hl" = [X - 9[X, 9], X - y[X, 9]
= IXIP — [X, %X, 9] - [w1X, 9, X] + |[w1x, )] |
= NIXI? = (X, ¢ = [X, 9] - [, X] + | [ X, 9] (3.9)
= [IXIP = X, 92 — (X, 90 + [P - [X, 9
= |IXIP - (X, 9.

Here we used the fact that ||¢]]? = 1.

The VGS algorithm constructs a binary tree by splitting subsets of € resulting on new
partition after each of the M iterations. As a result of the algorithm we get a final
partition Qus, a corresponding binary tree structure an orthonormal basis {1 }F=M
and a collection of inner products {[X, 1] }¥=M.

The first step of the VGS algorithm calculates 1)y, the constant function over Q. Each
one of the next M steps will perform a split of one chosen leaf of our binary tree.
The procedure that performs this split will be called bestSplit. After M iterations
we get the final partition and tree.

The following are the steps performed by the VGS algorithm to build an adaptive
tree of partitions:

e First, a simple step to construct the basis function .
e Procedure to obtain the next partition (bestSplit).

e How to choose next leaf to split.
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The partition tree is shown in the picture:

A, A,

Figure 3.1: General layout of partition tree.

On the Figure 3.1 above we see partition tree that has three nodes (Ag, A2 and Ay)
and three leaves A;, A7 and Ag). The VGS alogorithm is performing split of the forth
leaf (Aj3), and in the end of its splitting it will become node and its two children will
be leaves (Ag and Aypp).

3.2.1 First Basis Function 1)

In order to construct the first basis function ¢y we define the trivial partition Q,
as Qp = {Q,0}. We look for a Haar function as in Definition 1. We are getting
immediately that 99 = ¢ 1g +d 19 = ¢ 1q, i.e. g is defined by one constant
vector in R? space. This basis function v defines first approximation of X in the
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form Xg, = [X, ¥o]to. The best approximation corresponds to the minimum of the
remainder ||.X — [X 1o]to||. But the problem of minimizing || X — Xgo,|| is equivalent
to maximizing the inner product I[X ,%0]|- This is shown in formula (3.9). So we are
interested in finding such 1 that maximizes the inner product '[X , 'l[)o]l.

We may use the method of Lagrange multipliers in order to solve this extremum
problem. In Section B.1 of Appendix B there is a detailed description of the approach
that results in the following equations for the first basis v, corresponding inner
product [X, o] and approximation [X, 1. These results take the following form:

/Q X,(w)dP(w)

JZ ( /Q X ()dPW))’

1

Yo(w) =c={c1,...,ca} where ¢;=

- : (3.10)
Yo = [X, o] = JZ (] xwiap))’.
{1X, o}, = {Xauk = | Xlw)aP(w).
For the scalar case (d = 1) the equations (3.10) have been simplified to
Po(w) =1,
o= X, o] = [ X(@)dP(). a11)

Xo, = [X,%o]tho = /Q X (w)dP(w) .

As we see from equation (3.11), inner product [X, ] is the average, or DC level of
the input scalar signal over the given domain.

3.2.2 Best Split Algorithm

Here we describe the procedure bestSplit that finds the best partition of a set A
into two disjoint sets Ag and A;. Proofs of all formulae are presented in Appendix
B.2.
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The Best Split algorithm finds a vector Haar function 44 from the formula (3.6),
that maximizes absolute value of the inner product

/\A— X'(ﬁbl / <X(w ’l,[)b/A(w >dP

From the above formula and using expression (3.6), we obtain the following general
form of the inner product:

X a] = 42 (ﬁzp (4o (P( 5 / (X, by dP — (LO) (X,b’)a’P). (3.12)

There are two parameters in the equation above, partition { Ag, A;} and d-dimensional
vector b’ € S¢. If we fix one parameter, either partition or unit vector, we may solve
the optimization problem, namely the maximization of A 4.

The first approach is to fix the partition { Ay, A;}. In this case, as shown in Appendix
B.2, the optimization problem may be solved using the method of Lagrange multipliers
and the d-dimensional parameter is expressed by the following formula:

1 1
—— | XidP- =~ [ X.dP
P(4) / P(Ao) J 4,

\J > (p f, %~ oy [, 907)

The second approach is to fix the unit vector ¥’ on d-dimensional sphere S¢ and
to find best partition for parameter b’. It may be done easily through the use of
the Bathtub principle, its discrete version is proved in Appendix section B.2.2. The
Bathtub principle provides us with an effective tool to solve the optimization problem
for finding the extremum of inner product for a scalar random variable. Suppose, we
fix b’ € S¢, we then define the following scalar signal

b, =

1

(3.13)

Xp)(w) = (X(w),b) -

In this case the formula (3.14) for inner product may be presented as:

+ [X, Yy a] = 1/P (ﬁzif)fl" ( / X[¥)dP — Py Ao) X[b’]dP). (3.14)

Denote the set of range of values of X [V](w) (for w € A) by R4(X[V']) and sort them
in increasing order, namely

Ra(X[]) ={vo,---,yx} with yr < yr41, k=0,...,K —1,
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and for each yy there exists w € A such that y, = (X(w),?). In short, Ra(X[V'])
consists of the values (X (w), ), w € A, sorted in increasing order. Let’s denote

Ri={vo,...,w}, k=0,1,...., K —1.

The bathtub principle is used to provide a solution for the extremum of the inner
product [X, ¥y 4], providing a solution given by partition {Ag, A;}, where Ay =
X~b')(Rx). Since, there are K sets Ry, we need K iterations to find best split
for set A. This best split will be the one giving maximum absolute value of inner
product [X, 3y a]. After a best partition, corresponding to a given b', is found, we
may calculate the inner product Asy. Iterating this step, we can choose another
unit vector b’ € S? and repeat the procedure. The parameter b’ corresponding to the
largest value of I/\ A,b:| will be the solution of the optimization problem. The found
partition {Ay, A;} will be the best split for set A and will form two new leaves of the
partition tree. We have chosen the second approach, namely, finding maximum for
[X, ¥ 4] through sampling points in the unit sphere S and then using the bathtub
principle to find the best split. In order to realize this approach for the VGS algorithm
we have to be able to sample points, uniformly distributed, on the d-dimensional
sphere. This algorithm is described thoroughly in Appendix C. Having obtained an
algorithm for bestSplit step, the natural question is: what leaf should be chosen to
split next?

3.2.3 Next Leaf to Split

Suppose that we have performed M bestSplit iterations on a given space . The
first iteration just splits the root of the tree Q. For each one of the following M — 1
steps we have to make a decision about which leaf of the tree to split next. Suppose
that we have completed K bestSplit iterations. In particular, this means that there
are K nodes and K + 1 leaves of the tree, each node is defined by a subset A; € A of
our input probability space (£2,.A4, P). Also, for each node A;, we have a vector Haar
function 9; and corresponding inner product A; = [X,¢;]. The criteria used, in order
to select the next node to split, is to choose the node with largest absolute value
of its inner product. From a physical point of view it means that this leaf carries
most of the energy of the signal and it is optimal to choose it for the next iteration.
Notice that the algorithm is greedy as it optimizes choices based only on information
available at each stage. Moreover, the algorithm is adaptive as the optimality criteria
used is dependent on the input vector (of signals).
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3.3 Implementation of Multiresolution Analysis,
Compression and Synthesis

After completing the construction of the tree of partitions, the next stage is to cal-
culate the scalar inner products for each node of the tree. At each node, we have as
many inner products as the number of input signals, namely d. As we see in formula
(3.7), scalar inner products depend in partition only. There is an important relation-
ship between the inner product A4, corresponding to the input vector, and the inner
products \; corresponding to each component of the vector X:

d . 2 d 2
=YX e ’ X, wy] ’ -y ‘ [X;, ¥a] ’ : (3.15)
i=1

i=1

From formula (3.15), it follows that the decay of the sequence of values {| A1, [z, - - -, [Adal},
created by the VGS algorithm applied to the input vector X = {Xj, ..., Xa}, causes

a corresponding decay of the sequence of values {| A1, |Ai2l,- .., |Xial}, obtained by
computing the inner products of each signal X;. We emphasize that these last com-
putations use the same partition tree. There are recursive formulae for the MRA, this
algorithm starts from the leaves (down-top recursion). We perform the same task for
each component signal X; of the input vector X = {Xu,...,Xg}. Suppose we are
dealing with signal X; and for each node A of the partition tree we use the following
notation:

( PnodeA = P(A)

) YnodeA = p_(lA'j fA Xz(w)dp(w)

dnodeA = Ai,m)deA = (Xia ")bi,nodeA)

\

For each leaf of the tree we know quantities ppogea and ynogea. The MRA performs
the calculation of all inner products dpeges for all nodes of the tree per each signal
component X;. We will use subscripts F', L and R for father node and its left and right
children: Suppose that we know pr, pr, yr and yg of children, then, the recursive
formulae to calculate pr, yr and dr are given by:

( PrF =pPL+ PR
= L (pr v+ Pr )
dr = PLPr (yr — Yr)
\ DF

23



We prove these formulae in APPENDIX B.3. The Figure 2.2 in Chapter 2.2 illustrate
the algorithm of MRA.

The compression stage consists on setting to zero (in accordance to required com-
pression ratio) the smallest scalar inner products dyeges. We perform compression
independently for each component of vector input of signals. We shown the process
in Figure 2.3 in Chapter 2.3.

The last step, after analysis and compression, is called synthesis and consists of
computing the final approximation to the input vector of random variables. Similarly
to the MRA there are recursive formulae, allowing for the approximation to the input
signals. This recursion starts at the root of the tree and goes top-down through all
the leaves. Here are recursive formulae for synthesis, using the same notation as in
formula (3.16):

YL =yr + E_dp
PF DL
(3.17)
Yr =YL — br d
DL Pr

The initial conditions for this recursion are yr values for the root of the tree, corre-
sponding to the space 2, namely yq ; fQ ;(w) d P(w), where X; are components
of the input vector of signals. We prove recursive formulae (3.17) in APPENDIX B.4
and the algorithm is illustrated in Figure 2.4 in Chapter 2.4.
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Chapter 4

Performance Comparison of Vector
Greedy Splitting Algorithm vs
Haar Transform

We present some results and illustrations for the adaptive VGS algorithm. The im-
plementation was done using software written in ANSI C programming language and
MATLAB as a presentation tool (to gather the statistics and plotting). The software
implements the following main tasks:

e Implementation of the adaptive VGS algorithm.
e Implementation of the classical Haar algorithm.
e Benchmark analysis and comparison of the VGS vs Haar wavelets.

e Accumulating of the statistics and plotting results.

During implementation of the VGS algorithm the emphasis was done on the efficiency
of the calculations. For example, the 16-bit integers were used to store input samples
and all corresponding buffers. The multiplication of the integers was done in fractional
mode allowing storage of the result in 16-bit field as well. This technique is widely
used in the commercial hi-tech DSP projects.

This chapter indicates how the VGS algorithm works for the scalar case (input vector
is a single signal) and the vector case (up to 4 input signals). Also, we run the
algorithm for five different input vectors, namely input vectors 1, 2, 3, 4 and 5. We
compare adaptive VGS algorithm with classical Haar wavelet applied to the same
input vectors. The following section presents these inputs.
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4.1 Inputs for the VGS and Haar wavelet algo-
rithm implementation

This section provides with illustration of the input vectors for the VGS implementa-
tion. The same inputs are used for both, adaptive VGS and Haar algorithms. We
have built five different input vectors, enumerated from 1 to 5. Each of the input
vectors may contain up to 4 signal components, namely signals 1 to 4. In the case
when the dimension of the input vector is less than 4 it means that not all signals are
used. For example if the dimension is 3, it means that first 3 signal components of
the input vectors illustrated in the Figures 4.1 - 4.5 were input to the software. We
present all input vectors in the following five figures, the first one illustrates input
vector 1:
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Input vector 1, all input signals in one graph
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Figure 4.1: Input vector 1.

The picture above presents input vector 1. We see five subplots, the upper one
presents all input signals of vector 1 in one graph, the 4 bottom subplots illustrate
each of the input signals separately.

The components of the input vector 1 are signals described by the formula X;(t) =
sin(27 f;t). In another words input vector 1 contains tones of the different frequencies
with the same amplitude. All signals have 512 samples and their values are normalized
to be in the segment [—1,1]. The next figure shows input vector 2:
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Input vector 2 alI input signals in one graph
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Figure 4.2: Input vector 2.

Input vector 2 is shown in the picture above. As in Figure 4.1 there are five
subplots, the upper one presents all input signals in one graph, the 4 bottom subplots
illustrate each of the input signals separately, all inputs are normalized and have
512 samples. The inputs are described by the formula X;(t) = A; sin(2nft) +
B; cos(2wfot). As we see all signals of the input vector 2 are in-phase, i.e. they
oscillate with the same phase characteristic. The next figure shows input vector 3:

28



Imput vector 3, all input signals in one graph
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Figure 4.3: Input vector 3.
Input vector 3 has the most complicated form and contains signals with amplitude

modulated tones, while the signal 4 is a simple tone. The same way as vectors 1 and
2, the input vector 3 has 512 samples. The next figure shows input vector 4:
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Input vector 4, aII input signals in one graph
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Figure 4.4: Input vector 4.

Presented above input vector 4 has 4 signals that are the same tone but with
different initial phase, spaced by /2. All these signals have 512 samples with values
in segment [0, 1]. The next figure shows the last input vector 5:
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Input vector 5, alI mput signals in one graph
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Figure 4.5: Input vector 5.
The input vector 5 has frequency-modulated signals, and each one has 512 samples
the true for all input vectors. All signals of input vector 5 are normalized so that
their values lie in the segment [—1,1]. This is the last input vector used in the VGS

algorithm implementation.
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4.2 Implementation of the Adaptive Vector Greedy
Algorithm

We compare the adaptive VGS algorithm with the classical Haar Wavelet transform.
We present plots for the relative errors generated by the signal approximations for
both algorithms. In all figures the approximations to the inputs provided by the
VGS algorithm are plotted in solid lines, while the Haar wavelet approximations are
plotted in dotted lines. Also, the plotted VGS and Haar wavelets approximations of
the signals can be easily distinguished given that they look like step functions and,
therefore, they are easily differentiated from smooth original input signals.

The first picture presents approximation of the scalar input vector 2 by VGS algorithm
after one split only:
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Input vector 2, all input signals in one graph
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Figure 4.6: Scalar GS approximation of first signal of vector 2 using only one compo-
nent and one split to build partition tree.

On the picture above and on the next two Figures 4.7 and 4.8 we illustrate VGS algo-
rithm. On the Figure 4.6 we use input vector 2 with signal 1 only. We implemented
only one iteration of VGS algorithm. It means that only root of the tree was split and
the whole partition tree consists of the node, that is root and its two children that are
leaves of the tree. In this case we have only one Haar function to approximate input
signal. As we see from the graph, all oscillations of the input signals are reflected by

VGS approximation.
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Next we apply the algorithm to a 4-dimensional input vector 2 and perform 2 itera-
tions of the adaptive VGS algorithm:

Input vector 2, all input signals in one graph
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Figure 4.7: Adaptive VGS approximation of input vector 2 using two components

after two splits.

As we see from the picture above the all oscillations of the input signals are reflected
by the VGS algorithm and its approximation for each input component is presented
by step-function of 3 values, corresponding to the fact that only two Haar functions
were used. It is one step further than case presented in Figure 4.6, since now we have
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partition tree of two nodes and 3 leaves. These two nodes are root of the tree and one
of its children. We see the signals approximation consists of the 3 values reflecting
the fact that partition tree has 3 leaves.
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The next picture presents the approximation of a 3-dimensional input vector 2 by the

VGS algorithm after 5 splits:

Input vector 2, all input signals in one graph
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Figure 4.8: Adaptive VGS approximation of 3-dimensional input vector 2 using five

components after five splits.

On the picture above we use all 5 Haar functions to represent input vector 2 after
5 iterations of VGS algorithm. The partition tree in this case has 5 nodes and 6

leaves.

Correspondingly, each input signal is approximated through step-function

taking 6 values. When we compare plots of this figure with previous Figure 4.7 we
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note that the input signals are represented better as larger number of iterations and
Haar functions is used.

In the next section we present VGS and Haar wavelet approximations for the same
input vectors on the same plots.
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4.3 Illustration of Adaptive VGS Algorithm vs Haar
Transform

The next picture presents the approximation of a 3-dimensional input vector 2 by the
VGS algorithm after 5 splits. We also show Haar Wavelets approximation using at
least 5 best components.

Input vector 2, all input signals in one graph
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Figure 4.9: Approximation of input vector 2 using five components of Adaptive VGS
after 5 splits and 5 best components of Haar Wavelets.

In the case presented above we used input vector 2 presented in the Figure 4.2.
We implemented 5 iterations of the adaptive VGS algorithm. Also we implemented
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classical Haar wavelet transform. All 5 components of VGS partition tree were used to
represent input, in another words, compression was not involved. Also, at least 5 best
components of the Haar wavelets were used to approximate the same input vector.
Plots for the input signals and their approximations by VGS and Haar wavelets are
plotted. We may see that VGS algorithm reflects all the oscilations of the signal and
also, its approximation is closer to the input than in case of the Haar wavelet, that
follows from the fact that each Haar wavelet has only 2 values.
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The next picture presents the approximation of a 3-dimensional phase-shifted input
vector 4 by the VGS algorithm after 5-splits. We also show the Haar transform
approximation with at least 5 best components.

Input vector 4, all input signals in one graph
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Figure 4.10: Approximation of input vector 4 using five components of Adaptive VGS
after 5 splits and 5 best components of Haar Wavelets.

On the figure above we perform the same processing as in the Figure 4.9, but for the
input vector 4. This input is presented in the Figure 4.4. Also, in this case we took
more Haar wavelets. We required to use all Haar wavelets having 5 largest values.
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For the input vector 4 it happen to be 8 Haar wavelets, all carying the same energy.
As we see both algorithms, VGS and haar wavelets reflect all oscillations of the input
harmonics.
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The next picture presents the approximation of 3-dimensional input vector 3 by the
VGS algorithm after 5-splits without compression. We also show 5 best components
of the Haar wavelet transform.
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Figure 4.11: Approximation of input vector 3 using five components of Adaptive VGS
after 5 splits and 5 best components of Haar Wavelets.

On he picture above we see that VGS algorithm does not reflects all high frequency os-
cillations. In order to provide better approximation the deeper partition tree must be
used. However, VGS output approximates these high oscillations by averaging them,
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while Haar wavelets reflects only 5 chosen harmonic periods. For such complicated
input both algorithm require more components for proper approximation.

43




Next, we introduce a compression ratio of 50% for VGS algorithm.

Input vector 2, all input signals in one graph
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Figure 4.12: Approximation of input vector 2 using 5 best components of Adaptive
VGS after 10 splits and 5 best components of Haar Wavelets.

In the figure above we present results of the case, where the input is 4-dimensional
vector 2, approximated by 5 largest components after compressing half of the 10
components of the partition tree. We apply and compare results with 5 best splits
of the Haar wavelet transform. As we see even after compression the VGS algorithm
provides better representation of the input.
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4.4 Statistical Comparison of VGS Algorithm vs
Haar Transform

In this section we present statistical results for VGS vs Haar wavelets performance.
We apply both algorithms to the all input vectors 1 to 5, each one having 4 signal
components. The inputs are presented in Figures 4.1 - 4.5.

In order to provide statistics to compare the performance of our adaptive VGS Al-
gorithm vs Haar Wavelets transform we define the error E for either of the two
algorithms to be the difference between input vector of signals X = {Xji,..., X4}
and its approximation X = {X Iy--- ,Xd}. Using this notation we get error energy to
be equal:

d

B = [B.2) = [ 1B@)dPw) = [ (30 Bw?)aPw)

(4.1)

d
= Y IEW)*.

We then calculate the relative errors by calculating the ratio of the energy of the error
and energy of the input signal, i.e.

E 2
RelativeError = |||| Xl|l| 5 - for total vector of signals,
RelativeError; = U2 s - for each component i € {1 d}
=X p ooy d} .

Here we show statistical comparison of performance for Adaptive VGS algorithm vs
Haar Wavelets for all 5 different types of 4-dimensional inputs vectors. We plot the
relative errors as a function of the compression rate (which goes in the z-axis). We
have run 100 splits of the adaptive VGS algorithm and have performed 19 steps of
compression, starting from 5% and going up to 95%. We plot the graphs for best,
worst and average errors of VGS (solid lines) and Haar Wavelets (dashed lines) for
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all compression ratios in according to the formulae:

112

mini{ llllﬁ?llllz} i=1,...,d - best error,
112

maxi{%} 1=1,...,d - worst error,

d
> IE
;__
> Il
1

- average error.
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For input vector 1 the results are:

Input vector 1: Relative error of VGS and Haar wavelet algorithms

25

—— VGS best relative error
- \/GS average relative error
— VGS worst relative error
-+ Haar best relative error
+ Haar average relative error
-- Haar worst relative error

20

—_
(8]
1

—_
o
T

Relative Error of Synthesis, %

0 .. ‘
100 90 80 70 60 50 40 30 20 10 0
Compression rate, %

Figure 4.13: Relative error ratio of VGS vs Haar for input tones

On the graph above we see plots of best, average and worst relative error for VGS and
Haar wavelets applied to the same input vector 1, as in Figure 4.1. As we know the
input signals have 512 samples with possibility of taking up to 512 different values.
We run 100 iterations for adaptive VS algorithm. That means that our partition
tree has 100 nodes and 101 leaves. When we do not compress the tree, we use 101
values to represent input signals. These 101 values may represent without any error
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only signal with maximum 101 values. However our signal takes up to 512 values,
so even in the case of 0% compression, i.e. no compression at all, the error can not
be eliminated completely. The same arguments are applied to the Haar wavelets,
since we use maximum only 100 best of the Haar wavelets. When compression is
applied we use only percentage of the best Haar wavelet components. For example,
for compression rate 25% we use 75 best haar wavelets while compressing 25 worst
ones. As we see from the plots in the Figure 4.13 the VGS algorithm gives lower
relative errors when compression rate 90% and less. When compression rate 95%, i.e.
only 5 best of the components are used the Haar wavelets give better results.
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For input vector 2 the results are: On the graph above we see plots of best, average

Input vector 2: Relative error of VGS and Haar wavelet algorithms
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Figure 4.14: Relative error ratio of VGS vs Haar for input FM-modulated signals

and worst relative error for VGS and Haar wavelets applied to the same input vector
2, as in Figure 4.2. We can see, that for this input the VGS algorithm provides
very fast decay of relative error. Also even the VGS approximation to the signal
giving worst relative error is better than the best Haar wavelet approximation. With
compressions approaching 0% the Haar wavelets relative error does not goes below
10%, while relative error of VGS algorithm is below 10% when compression is below
90%.
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For input vector 3 the results are:

Input vector 3: Relative error of VGS and Haar wavelet algorithms
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Figure 4.15: Relative error ratio of VGS vs Haar for arbitrary inputs

On the graph above we see plots of best, average and worst relative error for VGS and
Haar wavelets applied to the same input vector 3, as in Figure 4.3. This is the most
complicated input and the results show slow decay of the relative error for both, VGS
and Haar wavelets. However relative error of best VGS approximation is lower than
relative error of the best Haar wavelet, average relative error of VGS approximation
is lower than average relative error of the Haar wavelet and relative error of the worst

50



VGS approximation is lower than relative error of the worst Haar wavelet.
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For input vector 4 the results are:

Input vector 4: Relative error of VGS and Haar wavelet algorithms
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Figure 4.16: Relative error ratio of VGS vs Haar for input phase-shifted signals

On the graph above we see plots of best, average and worst relative error for VGS
and Haar wavelets applied to the same input vector 3, as in Figure 4.4. In this case
VGS algorithm is by far superior to the Haar wavelets. Also relative errors for the
best and worst signal approximation almost coincide for the VGS algorithm. They
decay very fast.
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For input vector 5 the results are:

Input vector 5: Relative error of VGS and Haar wavelet algorithms
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Figure 4.17: Relative error ratio of VGS vs Haar for input signals type 4

On the graph above we see plots of best, average and worst relative error for VGS
and Haar wavelets applied to the same input vector 5, as in Figure 4.5. In this case
VGS algorithm is also better than Haar wavelets. Even relative errors for the worst
signal approximation by the VGS algorithm is lower than best result for the Haar
wavelets.
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Chapter 5

Conclusions

The Adaptive Vector Greedy Splitting Algorithm is a new tool available for signal
analysis. It is applicable to different types of signals, especially multi-dimensional,
like images. In the present work we have studied some of the basic aspects of the
technique as well as performed a software implementation which gives an indication
of the advantages offered by this new tool.

There are several interesting open questions related to the approach, for example: Is
there a quantitative relationship between the input vector and the speed of conver-
gence of the approximation? An answer to this question could indicate, a-priori, if a
given collection can, or can not, be efficiently approximated by the technique.

Another question is whether we may estimate how large the dimension d of the input
vector has to be so the cost (in a compression application) of storing the VGS basis
is small relative to the total cost (in terms of bits)? Suppose, the length of each
signal component for a d-dimensional input vector is N samples, and each sample is
R bits. Let us say that we want to achieve compression rate k; (0 < k; < 1), where ¢
stands for a target compression rate. Using this notation we want to have the size of
the output not larger than N -d- R- k; bits. Suppose, we run M iterations of the
adaptive VGS algorithm. We will denote our compression rate ky g, and we assume
that we need ¢ words (each one R bits) to contain data structure for each node of the
partition tree. In this case ¢ ~ 5, since we need two words to contain pointers to the
children, 2 words to be pointers to associated set A; etc. So all together we need:

N-R+(2M +1)-c- R bits to store 2M + 1 nodes and leaves.

In the formula above N - R is a size of the input probability space 2, and (2M +1)cR
are pointers to chunks of partition subsets A;. We only store non zero inner products
d;, for the whole partition tree this requires (2M + 1)dR - 2K bits, where 2 means
that we store only non-zero d; and corresponding indexes i, i.e. 2 words per each non
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zero component. All together we obtain the following equation:
NR+(2M +1)-cR+(2M +1)dtR-2kygs < NdRk; .
From here
d(N -k — 2kves(2M +1)) > N+ (2M +1) - c,

or, equivalently,
N+(@2M+1)-c

"N k—2-kvgs @M +1)
If N is big, i.e. M = o(N), and ¢ = o(N) we obtain a simpler expression for evaluating
dimension d: N

Nk —dkygs - M

d

d

If we simplify further by assuming kygsM = o(N) we obtain the final simple formula

1
—. 1
d>kt (5.1)

As we see from the formula above for long signals (i.e. large N) there is a relation-
ship between dimension of the signal and target compression rate. We may approach
formula (5.1) from both sides. When dimension is fixed we have limit for the compres-
sion rate, while for the fixed compression rate we have requirement for the minimum
dimension of the input vector.

There is a variety of potential applications for this method. The most straightforward
application is signal compression. Another application is audio pattern recognition,
which may be used, for example, in biometrics. In this case, we record a number of
times the same short phrase (password) recorded by the same person. After apply-
ing some Digital Signal Processing techniques (activity detection, Automatic Gain
Control), we may perform adaptive VGS for this set of input signals. We then build
an H-system and associated tree. Next time we receive a new sample of the spoken
phrase we may analyze it to see if it was spelled by the same person. This can be
achieved by a comparison of the relative errors.
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Appendix A

Vector H-Systems and their
properties

A.1 Properties of H-functions

We will prove that formula (3.6), presenting the general form of the vector Haar func-
tion, follows from Definition 1.

Lemma 1. Suppose, set A C Q) and may be presented as union of two disjoint subsets
Ap and Ay, s.t. P(Ap) # 0 and P(A;) # 0. Then any point in the unit sphere b’ € S¢
defines Vector Haar function ¥4y of the following form:

— P(Al) P(AO) /
i”“"f—( PA)P(Ag) o~ m“l)’“ (A1)

Here V) € S% and A = AgU Ay, Ag N A; = 0.

Proof. We show that 14, meets the requirements of Definition 1, i.e.

[ #aste) dP@) =0, and [asl = | War@I? aPe) =1.
Q Q

For the first integral we obtain
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_ [y [P P(4)
E gt = /g”< PA)P(&) )\ Paypa ¢ ’) )

, PA; P(Aq
= b (,/ﬁﬁ—(%)/ﬂhodp— P(A(P(Ll /1A,dp>
([ P@) P(4)
- (V AP ) ™\ PP (A1>

_ \/ (41)P(Ao) \/P(Ao)P(Al) 0
P(4) P(4)

We use the following trivial identities:

1A1.o : 1A1,1 =0, (1A1,1)2 = 1A1,1a (1A1,0)2 = 1A1,oa ”b,”2 =1.

Then for the second condition we obtain:

VP(A)P(A) ]-Ao( ) VP(A)P(A 1A1(w)

2 P(A P(Ay)
= ||l /(m 1ao(w )+W lAl(w)> dP(w)

P(Ap)
PP / 14, (w)dP(w)

dP(w

[easl? = [ W12

_ _ PA)
= P(A)P(AO) Qle(w)dP(w)+

P4 y
= A4 |, T+

P(Ao)

PIAPAY J,, T

P4y
= PPy T

P(Ao)
P(A)P(A1)

- P(A)

_ P(A) | P(Ay) _ P(A) + P(Ay) _ P(4)

PA) T P(A) ~ P@A) P@A)

O

From equation (A.1) follows that for the scalar case, (d = 1 = b’ = 1), the partition
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{Ap, A1} of set A defines a scalar Haar function

P(A) P(A)
PAP(Ay) " ™\ PP

P(A)P(A;) ™ (4.2)

tPy =
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Appendix B

Vector Greedy Splitting Algorithm
justification

B.1 Basis Function v for Trivial Partition Q,

This section uses the method of Lagrange multipliers to obtain the expression for the
first best basis function 1, and also to evaluate the approximation Xg, associated to
partition Q.

Set Qp to be the trivial partition Qp = {€, 0} it will be useful to set Agp = 2. We
need to introduce the vector valued constant function to be used for the first term in
our approximations, so let’s set

Yow) =clg(w) where ¢ €S8? and 1lg(w) =1 forall weq.

As shown in formula (3.9) in order to construct the best basis function ¢, we are
interested in finding such ¢ = {¢y,...,cq} that maximizes the inner product |/\0| =
|[X, %o]|- Then:
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X, ol / (X (), Yo(w)) dP(w)

= /Q(X(w),c 1g(w)) dP(w)

Since we are building an orthonormal basis we require that |[1,||> = 1, therefore:

1= |[oll? = o] = / (o), %o()) dP(w)

= /Q<c lg(w),cln(w»dp(w)

(zd:c )dP(w

k=1

Il
S~

d
= Z cs - /dP
k=1

Now we use the method of Lagrange multipliers to find maximum of a scalar function
of d variables

d
fleyy . oyeq) = Z Cr - / Xk(w)dP(w)), subject to the constraint

k_

glcry ... cq) = ch =1.

The Lagrange Method consists of solving d equations of partial derivatives in the form
0

Vf(e,...,cq) = p-Vg(cr,...,ca), in other words 55— =u 6091, where the parameter

u is called the Lagrange multiplier. So for the i —th coordinate we obtain the partial
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derivative
o = [ Xiw)P(w = gt = 2uc;.

fQ X;(w)dP(w)

From here we see that ¢; = . Now we use our constraint to derive pu:

2p
; 5 ([ Xtwirw)’
Z _ k=1 Y8
P (2p)? ’

d
ie 2u==+ \l Z / Xi(w)dP( w)) Using the equation for 2;1 we obtain for c;:
k=1

/Q Xi(w)dP(w)

Ji ( /Q X (@)dP(w))’

From here our inner product and single term approximation are given by

C,'::f:

X, %0 = [X,d= /Q (e, X())dP(w)

( zd: cka(w)) dP(w)

k=1

I
S~

k=1

/N

o /Q Xk(w)dP(w)>

( / Xk(w)dP(w))
= +-k=

JZ / Xi()dPw))

Q'D—‘

1

:I:sz; / X ()dPW)) .



The first approximation of input vector X

&

Xoo(w) = [X, 9] -t = [X,d - c= £ c- JZ / Xu(w)dP))

k=1

and its 7 — th component:

{Xo, (W)} = {[X,1/’0]°¢o}i=ici\lz /Xk(w)dP w))

Y

X;(w)dP(w) 9
- /ﬂ : kzzj ( /Q Xi(w)AP(w) )

Ji( /Q X()dPw))

_ /Q Xi(w)dP(w) .

Summarizing the results we got so far, the first basis 1y function and the corre-
sponding inner product [X, ] and the approximation [X, |y have the following
form:

L&MMM

Ji ( /Q Xi(w)dPw))”

d
do = X¢o=i\|z_: /Xk(w)dP @)

Yo(w)=c={c1,...,ca}, where ¢ ==

)

(B.1)

{IX, ¢0]¢o}z'={XQo}i=LXi(w)dP(w)-
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Remark 1. For the scalar case (d = 1) the formula (B.1) simplifies to:

Po(w) = £1,

Ao = [X,tho] = % /QX(w)dP(w) , (B.2)
Xo, = [X, toltho = /QX(w)dP(w) )

B.2 Best Split and its Properties

We prove here the main results for the best split step. These results are used in the
bestSplit procedure of the VGS algorithm described in Section 3.2.2.

Suppose A C Q may be presented as the union of two disjoint subsets Aq and A; with
positive probabilities, as defined by Lemma 1. Using formula (A.1) we are looking at
the inner product [X, ¥y al:

+ (X, Yya] = /Q ( X(),dw.aw) ) dP(w)
/Q (X, 0 (o a0 — [ 1) ) 0P

_ /Q(1 [ 10— o8 1 ) ( X, V) AP

\/%/QIAO(X, b)dP — \/%/ﬂul (X, b)dP
7t [ viap - \[fag [ o6 v)ap
= /il (ﬁgg;; /A (X, ¥)dP - /A (X, b’)dP)
> ,

= ,/P—(’;{%.%( + s / (X, b)dP - / (X, b’)dP)
= /e ( s /A 0 (X, b)dP — £ /A (X, b’)dP) :
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Therefore, we have obtained the following formula:

X = P(A)P(A0)< 1 1

P(A) \P@A) /A (X,¥)dP = 5 Ao(X,b’)dP). (B.3)

We will show how to solve the maximization problem for | (X, Y 4] [

B.2.1 Best Split for fixed partition

Suppose A C 2 may be presented as union of two disjoint subsets Ay and A; with pos-
itive probabilities, as defined by Lemma 1. We will show how to apply the technique
of Lagrange multipliers to solve the given optimization problem.

Lemma 2. Suppose we are given set A and its partition as defined in Lemma 1. Then
for any given fixed partition the solution to finding the extremum sup [X , ¢A'bl]| is
bese

realized by the parameter & b' = (by,...,bs) € S¢ whose i — th coordinate is

X;dP — X;dP
bl — A) / AO) Ao

| \'Z( o %P = iy [, )

k=1

(B.4)

Proof. Let’s rewrite the last equation by exploring inner products through summa-
tions of vector components:

d d
+[X, 9] = P(ﬁﬁff") ( P(l ) /A ;(X,-b;)dP— ————P(zo) / Z(X,-bé)dp)

Ao =1

%Z[”'( P [, %P~ gy /)]

We are interested in finding such 14 that maximizing absolute value of the inner
product [X,14y]. For the given partition A = Ag U A, the function ¥4, depends
on the vector b’ only. We will use the method of Lagrange multipliers, like we did for
the trivial partition and first basis function 1. So we want to maximize the function

f(¥') defined by

F 0By B) = -P(—ﬁ-)g—)’“i[” (P(IA [, %P~ gy [ Xeap >] ’
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where the restraint function g(¥') is

d
g(bl, by, -, B)) = D (b)) =
i=1
of _ 99
Since —0_17 g 6b’ we get:
of P(A)P(Ao) ( / 1 ) 9g /
ab, P(A) \P(4) /4 P(A) /4, Hooe, — 2 F
Therefore we may express b; as
, 1 [P(A)P(A) ( 1 / 1 / >
' 2[! P(A]) P(A) A P(A()) Ag ( )

From our constraint and the last formula we may extract an equation for (2u)%:

I | P(A)PAO) PR
=20 = G B Z( A)/X‘”’ yZen ADX“’P>'

=1

From here we are getting 2u:

_ . [P@Pa) 1 :
= TAI)JZ(P(A)/ XdP s, 4r) - (B9

Substitution of the expression for 2y from (B.6) into (B.5) gives us that maximizing
of |[X , 1,[),,:] ‘ is achieved with the parameter ¥’ € S¢ defined by:

J

1 / 1
X zdP - X i dP
P(A) A P(AO) Ao

(F(IA_) /A Xde—ﬁ ” )(de>2

= (by,...,ba), where b, =

Eexd
I a
—
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From these results we may express inner product:

+[X,Yap] = P(A P(A" Z[b’ ( BUA) / X,dP — Ao) AoX,-dP)]

PP - (ﬁ |, %P~ 50 /A AP )
P(A;) d

= JZ (ﬁ /A X, dP — P—(I@ A Xde)2

k=1

P(ﬁ%iffﬂ)\]é (ﬁ/AXidP— T}%)_/Ao X,-alP)2 .

It is clear that the problem of finding the maximum for ’ (X, Yaw] , is equivalent to

the problem of maximization of ([X,¥4y])%

(X, Yap])? —P(Azil(A")zZ(P( 7 / X;dP — P(.140) AOXdP) . (B.7)

Using the derived formulae for the vector Haar function 4, and the corresponding
inner product [X,¢y] we obtain the approximation of X over set A:

(X, Yap] Yay =

[P(4)P(Aq) 1 ’
P(Al) \‘;( /XdP P(A) AonP) *
P(Al) P(AO) /
* (V P(A)P(A,) Lao = \/ P(A)P(A,) 1"‘) v

And the same formula after simplification

(B.8)
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From formula (B.8) the i — th component of the vector [X, ¥ay] ¥ay is

([Xa ")bA,b’] '(tbA,b’)i =

d
=

=\21:<P(A)/Xd Ao) AOX,-dP>2-(1AO ng?; 1A1) b, =

"\ (ﬁ/fixidp“ 2 AOX""P>2’ (12023 L)

=1

1 / 1
—— | Xi{dP — —— [ XidP
P(A) J4 P(Ao) Ja,

JE(F@ [ xap s [ xar)

(X, YaplYay);, = (le—% 1Al> ( PUA) / X;dP — 140) AOX,-dP)

(1o B8 0u20) (sl 3 )

- (R 8810 (sl -y [ x)

Summarizing the results, we rewrite the formula for the best Haar function ¢4 and
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related inner product [X, 1, ] when the partition {Ag, A;} of A = AyU A4, is given:

— / P(Al) P(AO) /
:l:wA,b’ - < W).P(‘A_o) 1A0 — P—Mm 1A1> b, where

1 / 1
—— | X;}dP— —— [ X.dP
Y =(by,...,ba), st b — P(A) P(Ao) Ja,

2
J I(P(A /Axkdp—ﬁ AoXde)
i[X’wb/]=‘/P(ﬁ(A1AO)\lg(P(IA /Xdp Ao) AOX,dP)Z.

B.9)

In particular, the last formula has some interest for the scalar case. In order to show
2
it let us denote A = [X,1y]. then A\? = ‘ (X, Y] ’ . From our last formula immediate

value for \? is:

N =X,y = =5 (A)P(A" ( ) / X;dP Ao) AOX,.dP)2. (B.10)

i=

Now suppose that we are building scalar Haar functions for components X; of vector
random variable X = (Xj,...,Xy) for the same partition {4y, A;} of A = Ay U A;.
As we had shown in formula (A.2) the scalar Haar function is defined by partition
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only and we get for the inner product:

[Py P(Ay)
£ [Xi¥a] = /QX,-(w)< P{A)P(4y) 1a = PA)P(A)) 1A1> dP(w)
= Al AO) w w
=\ PP L% - mpiay [, X
P(4y) P(Ad)
- <\/ PA)P(A) © \/ P(A)P(Al)) o AP

P(Ay)
VP(A \P(Ay) /X( JdP(w

_ ( P(A)  ,  PlA)

VP(A)P(A)P(A;)  +/P(A)P(A;)P(Ay)

_ ‘/ P(AO) /X (w)dP(w)
_ A) _ P(Ay)
= BB Ly, P B pay JRCEE

P(A)P(4) [ 1
P(A) (P(Ao) o @)APL) = By [, xer (“’))

(B.11)
From here we obtain equation for A2, the square of inner product for each scalar
component X;:

B 2 P(A)P(A) 1 1 2
=Xl = =57 (P(Ao> Py ], ar ) - (B2

From formulae (B.10) and (B.12) follows the relation between them:

) Xi(w)dP(w)

d \ d \
=2 e ‘[X,%f]‘ => I[Xi,zﬁA]l : (B.13)

Corollary 1. From formula (B.13) it follows that the decay of the sequence of values
{IMls | Al - - -y |Ad|}, created by the VGS algorithm applied to the of vector random
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variable X = {X,..., X4}, causes a corresponding decay of the sequence of values
{IAixls [Aials -« -5 [Aial}, obtained by computing the inner products for each input signal
X; using the same partition tree.

B.2.2 Best Split for fixed ¥ - Bathtub theorem

The bathtub theorem provides us with an effective mechanism for the fast software
implementation of the Greedy Splitting algorithm. We present the bathtub theorem
in a simplified (discrete) form corresponding to the practical usage in our case. The
problem is to find solution for optimization problem

I =optyec(X,p), where C={p:0< ¢ <1, E(p) =u},
where the expectation is defined by E(p) = [, ¢(w)dP(w).

We start with a simple lemma.
Lemma 3. Suppose, ¢ is a function, satisfying E(¢)) =0, E(¢?) = 1.
Then there exist two functions ¢, and s, such that
P =@ — a2, and p; > 0, 2 > 0, and expectations
E(p1) = E(p2) = u, while E(p; - p2) =0.
Proof. Let’s present our space §2 as union of two disjoint sets:
Q=A,UA_, where
Ap ={w e Q:9Y(w) 2 0},
A ={weQ:¢(w) <0}
Let’s define functions ¢; and (, as

A
‘ol(w)={ B/),(W)’ vea

0, weA
Pa(w) = { —(w), we At

From the definitions above immediately follows that
120, 0220, YP=p1—

And for the expectations we get:
0=E{®) = [j¢dP= fA+¢dP+fA_ YdP

= fA+ QOld.P — fA_ QDQdP = fQ (pldP — fQ QOQdP

= E(p1) — E(p2) -
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Therefore, E(p;) = E(p2) = u. And for the multiplication ¢;ps:

E(p12) =/801902dP=/ 901902dP+/ p1p2dP =0.
Q Ay _

And this concludes the proof. O

From Lemma 3 follows

Corollary 2. If E(¢?) = v, then E(2) =1 —v;.

Proof.
1=E@?) = E((¢1—2))
= fA+ ‘pldP—fA_ ‘102dP=fQ (Pldp_fn podP

= E(p1) — E(p2) -

Using the previous lemma we find now expression for each ¢; using the following
theorem, presenting discrete case of the Bathtub principle.

Theorem 1. Suppose, we have discrete space Q = {wy,ws,...,wn},

where P(w;) > 0. Then the solution to optimization problem opt (X, p),
C={p:0<p <1, E(p) =u is done by function p, taking all its values,
but one at most, from the set {0,1}.

Proof. We use the following notation:

Qo(wi) =T,
X(wi) = bi y
P(wi) =aq; .

71



Using these equations we obtain the inner product and mean value:

— (X, = / X (w)p(w)dP(w)

= ZX(w, (w;) P(w;)

n

= Z a,-bixi .

Ep)=u = / o(w)dP(w)

= Z(p(wi)P(wi)
= ;a,ﬂ)i .

So we are looking for optf under constraints g = ) ;' a;z; — u, 0 < z; < 1. Assume,
without loss of generality, that b; < by < ... < b,. We'll use method of Lagrange
multipliers, defining Lagrangian as

L(z) = —Ag(z) = Z abx; — A Z a;T; — A .

Using the fact that function h(z) = cos?(t) is 1 : 1 on segment [0, 1] C [0, 7/2], we may
change variables for our Lagrangian by = = cos?(y). Then our Lagrangian becomes

= Xn:aibiyf — /\ia,yf —\u.
i=1 i=1

In according to the method of Lagrangian multipliers we require s7L(y) = 0, or,
expressed in partial derivatives:

0= % = % /\g;: = —2a;b; cosy; siny; + 2Aa; siny; cos y;

= —2a;siny;cosy; - (b;—A), Vi=1,...,n
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Since a; = P(w;) > 0, we must satisfy A = b; or siny; = 0 or cosy; = 0. The last two
conditions on our domain are equivalent to sin® y; = 0 and cos?y; = 0, i.e. z; =0 and
1 — z; = 0. Therefore:

IL’,=0 or .’Ei=1 or /\=bz (B14)
From another side

u= zn:aia:i < iai . (B.15)

Since a; are positive and ) ! a; > u follows that exists k € {1,2,...,n—1}, such that

k+1

k
Zaigu and ZaiZU.
i 1

Let’s define solution to our optimization problem as

( /\=bk+1
T =To=...=Ip=1
< k
_u_21ai
Tp41 =
Ak+1
( Tk42 =Tp43=...=Tp, =0

In order to show that all constraints are satisfied we have to check that 0 < z;., < 1.

Since ax1; > 0 and u — Z'l“ a; > 0 follows that z;,; > 0. Also Z’f“ a; > u, hence

k k+1 k+1
U — a; uU+apy — a; a; —u
Tpy1 = le: 1 =1—;51.
Qr41 Qk41 Qr41

Therefore all constraints and met and we have completed the proof.
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B.2.3 Software implementation of bestSplit iteration

We present here software implementation of bestSplit iteration written in ANSI C
computer language. BestSplit implementation uses Bathtub principle:

//***************************************************************************
/[ **x*

//*xx BESTSPLIT OF LINEAR GREEDY ALGORITHM

[/ *%%

//*x* Description:

/[ ¥%x This function performs split of domain A in 2 domains AO and Al in
/[ ¥%x according to the linear splitting algorithm.

[/ *xx

//*%x Input:1) pBS_tree_node - pointer to the node of BS_tree;

/[ **x 2) sp - pointer to the buffer of P(AO)

/[ **x 3) sh - pointer to the buffer of integrals S_AO(X(W)*dP(w))
/[ %% 4) NF - # of samples in input signals

/[ *xx

//***% Output: return values are written in corresponding struct of BS_treel[]
/[ x*xx
[/ [ F3%k kKoo ok skokok ok ok skl ok skskok sk ok ok skslok ksl ok skslsk ok ok sk sk ok ki sk s ke ke sk sk sk o sk sk sk ok ke ksk sk sk sk ok ok ki sk sk sk sk ok
void best_split(BS_NODE *ppBS_tree_node, unsigned __int32 *sp,
unsigned __int32 *sh, unsigned int NF)

{

unsigned __int32 PA;

unsigned __int32 IA;

unsigned __int32 PAO;

unsigned __int32 IAO;

double TempLambda;

unsigned int k;

ppBS_tree_node->kmax= ppBS_tree_node->v0;

ppBS_tree_node->Lambda_pow2 = 0;

if (ppBS_tree_node->v0 == ppBS_tree_node->v1) {
pPpBS_tree_node->kmax= ppBS_tree_node->v0;
return;

}

else {
PA=sp [ppBS_tree_node->v1 +1] - sp[ppBS_tree_node->v0];//PA=NF*P(A)
IA=sh[ppBS_tree_node->v1 +1] - sh[ppBS_tree_node->v0];//IA=NF*S_A

// (X(w)*dP (w))

for( k = ppBS_tree_node->v0; k <= ppBS_tree_node->v1; k++) {
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PAO
IAO

splk +1] - sp[ppBS_tree_node->v0]; //PAO=NF*P(A0)
sh[k +1] - sh[ppBS_tree_node->v0]; //IAO=NF*S_AO
// (X(w)*dP(w))

if( (PAO !'= 0) && (PA !'= 0) && (PAO !'= PA) ) {

// ===

/- / - - \

//-= / P(AP(AO) | 1 | 1| |

//--lambda=\ / --------- [ --— |1X(w)dP(w) - --—- [X(w)dP(w) |==[X,Psi]

//-= \/ P(A)-P(a0) | P(A)_I P(A0) _| |

//-= \ A A0 /

// -=-

// -

//-= / - - \ 2

//-- 2 1 I I l |

//-- lambda = -- *|P(A0) [X(w)dP(w) - P(A) IX(w)dP(w) |

//-- P(A)P(A0) (P(A)-P(A0)) | | - |

//-- \ A A0 /

//

TempLambda=(float)PA*PAO/ ((PA-PAO)*NF)* (IA/PA-IAO/PAO)*(IA/PA-IAQ/PAO);
}
else {
TempLambda = O;

}
if (TempLambda > ppBS_tree_node->Lambda_pow2) {
ppBS_tree_node->Lambda_pow2 = TempLambda;
ppBS_tree_node->kmax = k; //next partition [vO,kmax] [kmax+1,vi]
}

} // end of for() - bathtub theorem loop

}
}

//**x  end of best_split()
[/ Fxsdsksokoksok sk sk ks skok ok ko koK ok Kok K ok kKoK ok Kok ko sk KoKk kKR KKk Kok ok Aok ko ok ok

B.3 Recursive Multiresolution Analysis

We prove here formulae for the recursive Multiresolution Analysis (MRA) of the
partition tree starting from the leaves (down-top recursion). We perform the same
task for each component signal X; of vector input X = {Xj,...,X4}. Suppose we
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are dealing with signal X; and we denote for each node A of the partition tree:

( DPnodeA = P(A) )
= st [, Xi(w)dP
YnodeA = P(A) fA z('w) (w) )

dnodeA = (Xz ) "nbi,nodeA>°

For each leaf of the tree we know quantities ppoges and Ynogea. The MRA comprises
calculation of all inner products dn.gea for all the nodes of the tree per each signal
component X — i. We'll use subscripts F', L and R for father node and its left and
right children. Suppose that we know py, pr, y;, and yg of children. Here are recursive
formulae to calculate pr, yr and dg:

( Pr=pL+Pr,

1
4 Yr = p_F(pLyL +PRZ/R) ) (B16)

dp = ‘/w (yL—?/R)-
\ PF

We prove these formulae.

Since Ap = A |J Ar, and Ay () Ar = 0, hence pr = p, + pr. For yp:

1 1
Py +prvr = P [ Xi(w)dP(w) + pr— / X, (w)dP(w)
pL AL Pr Ap

= [ x)dP@w)+ [ Xi(w)dP(w) = / Xi(w)dP(w)
AL AR ALUAR

= / Xi(w)dP(w) = yr - pr
Afp
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And, finally, for inner product:

dr = (Xi, Yiap) = /QXi(w)ﬂlfi,Ade(w)

= [ X ([ 214, - [ 21, @)dP(w)
Q PLPF PRDPF

- /AX() ‘ZR dP(w )—/A Xi(w) pZ;FdP(w)

= (o [ Xiwap) =B (- | Xiwar)

/ /p /
_ PLPR LPR YR = prR yz; _ yR

And this concludes proof of MRA recursive formulae.

B.4 Recursive Multiresolution Synthesis

We prove here formulae for the recursive synthesis of the partition tree starting from
the root (top-down recursion). We perform the same task for each component signal
X; of vector input X = {Xi,...,X4}. Suppose we are dealing with signal X; and
we use the same notation as in previous section. The recursive synthesis reconstructs
approximation of the signal components by calculating values Ynodea for each leaf of
the partition tree. Here are recursive formulae to calculate y; and yg for left and
right children Ay and Apg of node Ap:

yL=yF+ Pr dFa
PFPL

Dr dp
DPLDPR

Yr=1YL —



We prove these formulae using formulae (B.16) for recursive MRA. So for the left
child we obtain:

PR 1 PR DL PR
+ dp = — + + . \/ YL —Yr
vr PFPL F Pr (pLyL pRyR) \/;FPL DFr ( L )

1
= — (pLyL + PRYR + PRYL — pRyR)
Pr
1
= — -yr(pL+pr) = UL -
PF

And for the right child we obtain:

pLp
Yo — ) Hdp = yo— \/ Pr_ JPLPR (4 — yr)
PLPR DPLPR PFr

= VYr-
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Appendix C

Uniform distribution on
multi-dimensional sphere

The key parameter for the Vector Greedy Splitting Algorithm is the point in unit
d-dimensional sphere ¥’ € S Suppose, that in order to build basis for VGS we
have to cover unit sphere with N uniformly distributed points. This task is trivial
for d = 2 only. For d = 2 we get unit circle in R?, that may be easy covered using
polar coordinates. In this case we have set of uniformly distributed M points of the
form (zx,yx) = (cos(2wk/M),sin(2rk/M )). For other dimensions the only solution
is to find way to distribute uniformly points using probability methods. There are
two most efficient and popular methods: Box-Muller transformation (see [2]) and
Marsaglia’s ziggurat algorithm ([15]). Both methods transform uniform distribution
into normal deviate. We use the polar form of the Box-Muller transformation. The
whole algorithm consists of the following steps: generation of the two independent
random numbers, transformation of these two random numbers into two uniform dis-
tributions on (0, 1), polar form of Box-Muller transformation for Gaussian generator,
and, finally, projection of vector in R? Euclidian space into unit sphere S¢. Here is
the description of the method.

C.1 Pseudorandom Generator

The first step is the generation of the random numbers. We use 32 bits pseudo random
generator. The generator builds sequence zg, z1, . . ., Z, using iterative algorithm:

Tp =a-Tp_1 (mod m) (C.1)

The main parameters of this equation are multiplier a and modulus m. Modulus m
must be prime number to avoid generation of zero. Modern computers use 32 bits to
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represent integer values. So the value m = 232 —1 is a natural choice for the modulus
value. The multiplier a must satisfy a < m and its choice affects the performance of
the random number generator as shown in [17].

Once the modulus m (m = 232 —1) and multiplier a (a < m) are chosen the Schrage’s
factorization algorithm is needed in order to avoid 32 bits signed arithmetics computer
overflow. Schrage’s factorization algorithm is widely used but its proof is not trivial
and textbook do not provide it. So we proved the Schrage’s algorithm in the following
lemma:

Lemma 4. Suppose we may present natural number m as:

m=aq+r, te ¢q=[m/al, r=m (mod a). (C.2)
If r<q, the following equation holds for any 0 < x < m:
| a(x mod q) —r[z/q] if it is > 0,
az (mod m) = { a(z mod q) —r[z/q] + m  otherwise. (C.3)
Proof. Let’s denote s = [z/q] and t = z modgq, i.e.
r=sq+t, where 0<t<q.
From here:
0<at<ag=m-—-r<m,ie at<m.
From inequities £ <m and t <m follows
0<rs<gs=zxz—t<m,ie rs<m.
So 0 < at < m and 0 < rs < m, therefore
-m < at—rs < m.
From another side
at —rs = a(z — sq) — s(m —aq) = ax — ms .
And we obtain
az mod m = (at — rs)mod m
From here and the fact that —m < at —rs < m follows that
(mod m) = at—rs ifitis >0,
ar ~ | at—rs otherwise.
O
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Using Schrage’s factorization we avoid a problem of 32 bits arithmetics overflow and
the iterative formula for a pseudorandom generator will look as:

a(z, mod q) —r[z,/q ifit is > 0,
M (C.4)
a(z, mod q) —r[z,/q] + m otherwise,

where the initial seed 0 < o < m, and the parameters m and a are modulus and
multiplier of the pseudorandom generator correspondingly, and Schrage’s factorization
parameters 7 and q are defined as 7 =m (mod a) and g = [m/a).

C.2 Gaussian Distribution by Box-Muller Algo-
rithm

In order to build a normal deviate we use Box-Muller algorithm from 1958 (see [2]):

Lemma 5. Suppose we have two independent uniform distributions x; and xo on
(0,1). Then the following transformation defines two Gaussian deviates y; and y,:

11 =vV—2Inz, cos2nz,

Y2 = V—2Inz;sin2wz, . (C.5)

Proof. From formula (C.5) we get:

n2+y? =-2hz,

Y2/ = tan 27z, .

And from here the inverse functions are:

_v4w?
T =¢€ 2 )

Ty =5 - arctan 2 .

Changing variables for the integral of the probability density function we get the
following formula relating joint pdfs fx, x, (1, 22) and fy; v, (¥1,%2):

3(?!1, Z/z)
6 (mly $2)

Fx1.x2 (%1, %2) = frive (U1, 92) -
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From independency of the uniform distributions z; and z, we get for a joint pdf:

fX1,X2 (1171,.’1)2) = le (.’1,‘1) . le ((171) =1-1=1.

We obtain for the absolute value of the Jacobian:

o on
l a (yh y2) _ 8371 81:2
9 (z1,22) Oy2  Oye
bz Oz,
1 —2 cos 2T 2mv/—21nz; sin2rx
2v/—2Inz, 1 2 ! 2
. 1 —2 sin27xy  2my/—2Inz, cos2mx
2\/ -2 lna:l T 2 ! 2
2 2
= |—2Z cos? (2722) — == sin? (2712)
I I
_ 2
= o

And from here

le,XQ (331, 372)
0 (yl, yz)
0 (xl,xz)

le,Yz (yl’ y2) =

I

2,

1
2T

Therefore, random variables y; and y. are independent and their probability density
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functions are

e
fvi (1) = Ee 2,
¥2?

fra () = —\/% 2

Hence y; and y, are Gaussian random variables. a

C.3 Polar Coordinates for Box-Muller Method

Looking back to formula (C.5) we may use polar coordinates in order to avoid using
of trigonometric functions in uniform to normal deviates Box-Muller transformation.
Let’s take point (vy, v,) inside unit circle on plane, i.e. v;2+ v, < 1. Let’s define
polar coordinates by:

T =v? 4 v?,

tan (27za) = va/v; . (C.6)
From here v
sin (2723) = ——— ,
v (C.7)

cos (2mxe) =

Defined this way the polar coordinates z; and z are uniform random variables satis-
fying requirements for Box-Muller method of generating normal deviates. Using these
polar coordinates we’ll get free of trigonometric functions expressions for normal ran-
dom variables y; and y»:

—21n (v? + v2)
= /2 (R ) =y, - 17T %)
1 \/ (vy 3) Y 1 v? + 02
(C.8)
—21n (v? + v3)

(]
=/2In(1¥+vd)——— =1, ,
Yo ( 1 2)\/;%_1_—1]25 2 v%_*_v%
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C.4 Sphere Uniform Distribution Algorithm

Summarizing the results above we present fast and efficient algorithm for the uniform
distribution of points on unit sphere S¢.

1.

Initial seeds 3((,0), .. ,sffd—l) for pseudorandom generator with arbitrary values,
s.t.

0< s(()i) <m, and sgi) # s(()j) ,
where m = 23! — 1 is modulus of algorithm. Also set to zeros flags fo, ..., fa-1.

Set ¢ = 0 and run steps (2) to (7) M times where M is a required number of
vectors distributed on the sphere.

. If flag f; == 1 go to the step (6), otherwise go to the step (3).

2i 2i+1) . :
Generate two next random values s&; and s+ using formula (C.4), i.e.:

a(s, mod q) —r[sn/q| if it is > 0,

Sn+1 =
a(s, mod q) —r[s,/q] + m  otherwise.

Save received seeds values for the next iteration and go to the step(4).

Transform received random values from the step (3) into uniform random vari-
ables v; and v, from (-1, 1) using the following formula

v; = (si/m —0.5)-2.

If v2 +v2 < 1 goto the step (5), otherwise reject samples and return to the step

(3)-

Build two independent Gaussian random samples y; and ys:

—21n (v? + v2
y1=v1~\[ 2(122)’
vy + U3

—21n (v? 4+ v2
Yo =g - / 2(122)'
vy + 3

Go to the step (6).
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6. If the flag f; ==1set b; = 1o , reset flag f; = 0 and go to the step (7).
If the flag f; == 0 set b; = y;, save y, set flag f; = 0 and go to the step (7).

7. Increment index i.
If i ==d calculate the random vector ' € S¢ by normalization:

b
\/bg+...+b2_l

If i <d reset i by setting it to zero. Save received vector b’ and goto step

2).

/ / / / /
b =(0,b1,..., 1), where bj =
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This algorithm seems bulky but its implementation in ANSI C programming language
requires only 30 lines of code.

Uniform distribution

[/ xxkkkkokkkkkkkkkkkx  CONSTANT PARAMETERS koK sk ok okok s ok ok ok o ok ok o ok s ok ok ok
#ifndef A_RANDOM

#define A_RANDOM 16807

#endif

#ifndef M_RANDOM

#define M_RANDOM 2147483647

#tendif

#define Q_RANDOM (int) (M_RANDOM / A_RANDOM)

#define R_RANDOM (int) (M_RANDOM % A_RANDOM)

//**************** C 0 D E 3 3k 3 3k 3 3k 3k ke ok 3k ok 3k %k %k Kk 3k 3k 3k 3k 3k 3k X 3k 3k Xk X %k %k %k %k 5k

//*******************************************************************

YVELT:

e RANDOM NUMBER GENERATOR
[/ *%*

//*x* Description:

[/ *x* This function generates random number mod (2°31-1)
/[ *x* using minimal standard generator

[/ xxx

[/ 33k ke ks ok sk o o koo s ks o sk sl o o ok skl o ks o koo o koo o ok sk sk ok o ke ks o ko sk o ki o sk ok ok koK
int random_32bit(int Seed_n)

{
Seed_n = A_RANDOM* (Seed_n%Q_RANDOM)-R_RANDOM* (Seed_n/Q_RANDOM) ;
if(Seed_n <= 0) {
Seed_n += M_RANDOM;
}
return Seed_n;
}

//*%* End of random_32bit skskskokskskskokskkkokoskkkokosk ok ok ok ok ok ok Kok ok ok ok Kok ok ok Kok ok ok kK ok ok

[/ kKoo ok o ok ok sk ok ok sk ok ok o ok 3k Kok ok ok ok sk o o o ok Kok ok ok o ok koo ok ok o ok o e ok koK ok o o o o o o K KoK oK ok oK ok oK

[/ xxx GAUSSIAN DISTRIBUTION
[/ Ak ok ok ok ok ok sk ok sk ok s ok ok sk sk ok Kok ksl sk ok sk ok ok sk ok sk o ks sk sk sk ek ok o ok o Kok o kK ok ok K

float gaussian_distribution(RANDOM_STRUCT* pRandomStruct)
{
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float Valuel;
float Value2;
float Value;
int Seed;

if ((*pRandomStruct).Flag == ON) {
(xpRandomStruct) .Flag = OFF;
return (*pRandomStruct).Gauss;
}
else {
for(;;) {
Seed = random_32bit( (*pRandomStruct).Seedl );
(*pRandomStruct) .Seedl = Seed;
Valuel = ((float)Seed) / M_RANDOM;

Seed = random_32bit( (*pRandomStruct).Seed2 );
(*pRandomStruct) .Seed2 = Seed;
Value2 = ((float)Seed) / M_RANDOM;

Valuel = 2*Valuel - 1;
Value2 = 2%Value2 - 1;
Value = Valuel*Valuel + Value2*Value2;

if ( (Value >= (float)1.0) || (Value == 0) ) {
continue;

}

else {
Value = (float)sqrt((-2 * log(Value) )/ Value);
(*pRandomStruct) .Flag = ON;
(*pRandomStruct) .Gauss = Valuel * Value;
return (Value2 * Value);

}
}

//**x End of gaussian_distribution
[/ F ks sokskstoksskok stk ko okok R okok ok kk Kk ok Rk ok K skok ksl skok sk R sk ok sk ok sk ok sk ook Kok
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Here we present the plotting of he implementation of this algorithm for 2-dimensional
case, when the unit circle is covered by 1024 points:

Uniform distribution of 1024 point on 2-dimensional unit sphere
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Figure C.1: Uniform distribution of 1024 points on unit circle

As we see from the figure above the algorithm performs well for 2-dimensional case
and 1024 points covered the circle. However, for higher dimensions we need more
points for good results. In the VGS algorithm implementation we build uniform
distribution of the points on S¢ only ones, and then use the same points through
whole process of creating partition tree.
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Appendix D

Abbreviations
ANSI American National Standards Institute
DSP  Digital Signal Processing
GS Greedy Splitting Algorithm
MRA Multi-resolution Analysis
PDF Probability Density Function
VGS  Vector Greedy Splitting Algorithm
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