

DEVELOPMENT OF A QUASI-EXACT DYNAMIC

FINITE ELEMENT (QDFE) METHOD FOR THE FREE

VIBRATION ANALYSIS OF THIN RECTANGULAR

MULTILAYERED PLATES

by:

Heenkenda Jayasinghe

Bachelor of Engineering, City University London (2011)

Master of Applied Science, Ryerson University (2013)

A dissertation

presented to Ryerson University

 in partial fulfillment of the

 requirements for the degree of

 Doctor of Philosophy

 in the program of

Aerospace Engineering

Toronto, Ontario, Canada, 2019

©Heenkenda Jayasinghe 2019

i

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A DISSERTATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the dissertation,

including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this dissertation to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this dissertation by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I understand that my dissertation may be made electronically available to the public.

ii

DEVELOPMENT OF A QUASI-EXACT DYNAMIC FINITE ELEMENT

(QDFE) METHOD FOR THE FREE VIBRATION ANALYSIS OF THIN

RECTANGULAR MULTILAYERED PLATES

Heenkenda Jayasinghe

Doctor of Philosophy, Aerospace Engineering, Ryerson University, Toronto (2019)

ABSTRACT

The Dynamic Finite Element (DFE) method is a well-established superconvergent semi-

analytical method that has been used in the past to investigate the vibration behaviour of various

beam-structures. Considered as a viable alternative to conventional FEM for preliminary stage

modal analysis, the DFE method has consistently proven that it is capable of producing highly

accurate results with a very coarse mesh; a feature that is attributed to the fact that the DFE

method uses trigonometric, frequency-dependant shape functions that are based on the exact

solution to the governing differential equation as opposed to the polynomial shape functions used

in conventional FEM. In the past many researchers have contributed towards building a

comprehensive library of DFE models for various line structural elements and configurations,

which would serve as the building blocks that would help the DFE method evolve into a full-

fledged, versatile tool like conventional FEM in the future. However, thus far a DFE

formulation has not been developed for plate problems. Therefore, in this thesis an effort has

been made for the first time to develop a DFE formulation for the realm of two-dimensional

structural problems by formulating a Quasi-Exact Dynamic Finite Element (QDFE) solution to

investigate the free vibration behaviour of thin single- and multi-layered, rectangular plates. As a

starting point for this work, Hamiltonian mechanics and the Classical Plate Theory (CPT) are

used to develop the governing differential equation for thin plates. Subsequently, a unique quasi-

exact solution to the governing equation is sought by following a distinct procedure that, to the

best of the author‘s knowledge, has never been presented before. Through this procedure, the

characteristic equation is re-arranged as the sum of two beam-like expressions and then solved

for by applying the quadratic formula. The resulting quasi-exact roots are then exploited to form

the trigonometric basis functions, which in turn are used to derive the frequency-dependant shape

iii

functions; the characteristic feature of the QDFE method. Once developed, the new QDFE

technique is applied to determine the vibration behaviour of thin, isotropic, linearly elastic,

rectangular, homogenous plates. Subsequently, it is also employed to formulate a Simplified

Layerwise Quasi-Exact Dynamic Finite Element solution for the free vibration of thin,

rectangular multilayered plates. In addition, the quasi-exact solution to the plate equation is also

utilised to develop a Dynamic Coefficient Matrix (DCM) method to investigate the vibrational

characteristics of thin, rectangular, homogeneous plates and thin, rectangular, multilayered

plates. The Method of Homogenization is used as an alternative procedure to validate the results

from the Simplified Layerwise Quasi-Exact Dynamic Finite Element method and the Simplified

Layerwise Dynamic Coefficient Matrix method. The results from both the QDFE and DCM

methods are, in general, verified for accuracy against the exact results existing in the open

literature and those produced by two in-house developed conventional FEM codes and/or

ANSYS
®
 software.

iv

ACKNOWLEDGEMENT

This thesis would not have been possible without the continuous support, guidance and

encouragement of Prof. Seyed M. Hashemi, whose extensive knowledge and experience in the

areas of Conventional and Dynamic Finite Elements, and Vibration was instrumental.

I would also like to thank Ryerson University for the numerous scholarships and awards

bestowed upon me such as the Ryerson Graduate Scholarship (RGS), Ryerson Graduate Award

(RGA), Aerospace Engineering Graduate Students Research Excellence Award (AGSREA) and

Aerospace Engineering Graduate Students Research Support (AGSRS). My sincere thanks also

go to the Government of Ontario for providing me with the Ontario Graduate Scholarship twice

consecutively.

I would also like to thank my parents Gamini and Samadara for the tremendous love and support

they have provided throughout this journey.

Special thanks go to my loving spouse Thilini, whose unwavering love, caring, understanding

and patience has made this thesis a reality.

Last but not the least, my thanks also go to my siblings Amanda and Kusal for their constant

encouragement.

v

Dedicated to my parents Gamini and Samadara and my loving spouse Thilini

vi

TABLE OF CONTENTS

LIST OF TABLES .. viii

LIST OF FIGURES .. x

LIST OF APPENDICES ... xiii

NOMENCLATURE ... xiv

1. INTRODUCTION... 1

1.1 Overview ... 1

1.2 Governing Theories ... 2

1.3 Methods of Vibration Analysis ... 4

1.4 Research Motivations .. 14

1.5 Key Objectives and Methodology ... 14

1.6 Analysis Approach and Limitations .. 16

1.7 Thesis Organization .. 21

2. THEORETICAL BACKGROUND ... 23

2.1 Development of Governing Differential Equation .. 23

2.2 A Quasi-Exact Solution for the Thin Plate Equation .. 30

2.3 New Trigonometric, Frequency-Dependant Basis and Shape Functions.......................... 37

3. FREE VIBRATION OF A RECTANGULAR HOMOGENEOUS PLATE .. 44

3.1 Conventional Finite Element Method (FEM) ... 44

3.1.1 Finite Element Analysis with 12–DOF Rectangular Element .. 45

3.1.2 Finite Element Analysis with 16 – DOF Rectangular Element .. 54

3.2 Quasi-Exact Dynamic Finite Element Method (QDFE) ... 59

3.3 Dynamic Coefficient Matrix Method (DCM) ... 66

3.4 Numerical Results and Discussion .. 69

vii

4. FREE VIBRATION OF A RECTANGULAR MULTILAYER PLATE .. 83

4.1 Method of Homogenization .. 83

4.2 Simplistic Layerwise Conventional Finite Element Method .. 84

4.3 Simplistic Layerwise Quasi-Exact Dynamic Finite Element Method 88

4.4 Simplistic Layerwise Quasi-Exact Dynamic Coefficient Matrix Method 94

4.5 Numerical Results and Discussion .. 96

5. VIBRATION BEHAVIOUR OF AN AIRCRAFT CABIN WINDOW BAY 102

5.1 Quasi-Exact Dynamic Finite Element Analysis of Cabin Window Bay Sections 102

5.2 Time Verification for the Quasi-Exact Dynamic Finite Element Method 116

6. CONCLUDING REMARKS ... 119

6.1 Synopsis .. 119

6.2 Key Contributions ... 121

6.3 Impact of Research .. 122

6.4 Recommendations for Future Work .. 123

6.5 List of Publications ... 124

APPENDICES ... 127

Appendix A: Trigonometric, Frequency Dependant DFE Shape Functions 127

Appendix B: QDFE Solution for a Simply Supported (S-S-S-S) Plate 136

Appendix C: DCM Solution for a Simply Supported (S-S-S-S) Plate 175

REFERENCES .. 181

viii

LIST OF TABLES

Table 1: Trigonometric basis functions for thin plate ... 37

Table 2: Comparison of 12-DOF FEM and 16-DOF FEM results with ANSYS
®

 simulation 72

Table 3: Natural frequencies for a homogeneous Steel plate with C-F-F-F B.C. 77

Table 4: Natural frequencies for a homogeneous Steel plate with C-C-F-F B.C. 77

Table 5: Natural frequencies for a homogeneous Steel plate with C-F-C-F B.C. 77

Table 6: Natural frequencies for a homogeneous Steel plate with C-C-C-F B.C. 78

Table 7: Natural frequencies for a homogeneous Steel plate with C-C-C-C B.C. 78

Table 8: Natural frequencies for a homogeneous Steel plate with C-C-C-S B.C. 78

Table 9: Natural frequencies for a homogeneous Steel plate with C-C-S-S B.C. 79

Table 10: Natural frequencies for a homogeneous Steel plate with S-C-S-C B.C. 79

Table 11: Natural frequencies for a homogeneous Steel plate with S-F-S-F B.C. 79

Table 12: Natural frequencies for a homogeneous Steel plate with S-S-S-F B.C. 80

Table 13: Natural frequencies for a homogeneous Steel plate with S-S-S-SB.C. 80

Table 14: Comparison of 16-DOF layerwise FEM results with ANSYS
®
 simulation 96

Table 15: Natural frequencies for a multilayered Al-St plate with C-F-F-FB.C. 97

Table 16: Natural frequencies for a multilayered Al-St plate with C-C-F-F B.C. 97

Table 17: Natural frequencies for a multilayered Al-St plate with C-F-C-F B.C. 97

Table 18: Natural frequencies for a multilayered Al-St plate with C-C-C-F B.C. 98

Table 19: Natural frequencies for a multilayered Al-St plate with C-C-C-CB.C. 98

Table 20: Natural frequencies for a multilayered Al-St plate with C-C-C-S B.C. 98

Table 21: Natural frequencies for a multilayered Al-St plate with C-C-S-S B.C. 99

Table 22: Natural frequencies for a multilayered Al-St plate with S-C-S-CB.C. 99

Table 23: Natural frequencies for a multilayered Al-St plate with S-F-S-F B.C. 99

Table 24: Natural frequencies for a multilayered Al-St plate with S-S-S-F B.C. 100

Table 25: Natural frequencies for a multilayered Al-St plate with S-S-S-S B.C. 100

Table 26: Natural frequency results for aircraft cabin window bay section – configuration 1 .. 105

Table 27: Natural frequency results for aircraft cabin window bay section – configuration 2 .. 106

Table 28: Natural frequency results for aircraft cabin window bay section – configuration 3 .. 108

Table 29: Natural frequency results for aircraft cabin window bay section – configuration 4 .. 109

ix

Table 30: Natural frequency results for aircraft cabin window bay section – configuration 5 .. 111

Table 31: Natural frequency results for aircraft cabin window bay section – configuration 6 .. 114

Table 32: MATLAB
®
 program flow chart and sample results for S-S-S-S plate using QDFE.. 136

Table 33: MATLAB
®
 program flow chart and sample results for S-S-S-S plate using DCM ... 175

x

LIST OF FIGURES

Figure 1: (a) A thin plate of thickness, h, with infinite width and length. (b) An infinitesimal

element of the thin plate subjected to bending and twisting moments, shear forces and distributed

load per unit length [116] .. 23

Figure 2: (a) An infinitesimal differential element with a lamina shown by the shaded region

marked as a-b-c-d. (b) A cross section view of the differential element and lamina in bending.

(c). A top view of the lamina subjected to shear loading. [116] ... 26

Figure 3: Thin plate used for vibration analysis ... 44

Figure 4: 4-Node, 3–DOF per node rectangular plate element ... 45

Figure 5: Conforming four node rectangular element with 16 – DOF ensuring C
1
 continuity 54

Figure 6: Convergence analysis for the 5
th

 natural frequency of a C-C-C-F plate 69

Figure 7: (a) ANSYS
®
 SHELL 181 element used for meshing (b) Plate meshed in ANSYS

®
 70

Figure 8: Notation for the classical boundary conditions investigated ... 71

Figure 9: QDFE (left) and FEM (right) shape function for w1 at node 1 73

Figure 10: QDFE (left) and FEM (right) shape function for θx1 at node 1 73

Figure 11: QDFE (left) and FEM (right) shape function for θy1 at node 1 74

Figure 12: QDFE (left) and FEM (right) shape function for θxy1 at node 1 74

Figure 13: Shape function N1f at ω1 (left) and ω5 (right) .. 75

Figure 14: Shape function N2f at ω1 (left) and ω5 (right) .. 75

Figure 15: Shape function N3f at ω1 (left) and ω5 (right) .. 76

Figure 16: Shape function N4f at ω1 (left) and ω5 (right) .. 76

Figure 17: Two-layer Aluminium-Steel plate ... 83

Figure 18: (a) 16-DOF FEM mesh- 400 elems., (b) QDFE mesh- 8 elems. and (c) ANSYS
®

benchmark mesh-2877 elems. for cabin window bay Configuration 1 103

Figure 19: Convergence analyses for the benchmark data produced on ANSYS
®

 104

Figure 20: Convergence analyses for the in-house 16-DOF FEM method 104

Figure 21: (a) 16-DOF FEM mesh- 512 elems., (b) QDFE mesh- 8 elems. for Configuration

2…………………………………………………………………………………………………106

Figure 22: (a) 16-DOF FEM mesh- 864 elems., (b) QDFE mesh- 8 elems., for Configuration 3...

... 107

xi

Figure 23: (a) 16-DOF FEM mesh- 320 elems., (b) QDFE mesh- 8 elems., for Configuration 4…

... 109

Figure 24: (a) 16-DOF FEM mesh- 448 elems., (b) QDFE mesh- 8 elems., for Configuration 5…

... 110

Figure 25: (a) 16-DOF FEM mesh- 608 elems., (b) QDFE mesh- 24 elems., for Configuration

6…... 113

Figure 26: Element connectivity between thick and thin elements surrounding the cut out for

configuration 6 of the cabin window bay section ... 114

Figure 27: CPU time to determine the first natural frequency (a) CPU time to determine the first

five natural frequencies (b) ... 117

Figure 28: DFE (left) and FEM (right) shape function for w2 at node 2 127

Figure 29: DFE (left) and FEM (right) shape function for θx2 at node 2 127

Figure 30: DFE (left) and FEM (right) shape function for θy2 at node 2 128

Figure 31: DFE (left) and FEM (right) shape function for θxy2 at node 2................................... 128

Figure 32: DFE (left) and FEM (right) shape function for w3 at node 3 128

Figure 33: DFE (left) and FEM (right) shape function for θx3 at node 3 129

Figure 34: DFE (left) and FEM (right) shape function for θy3 at node 3 129

Figure 35: DFE (left) and FEM (right) shape function for θxy3 at node 3................................... 129

Figure 36: DFE (left) and FEM (right) shape function for w4 at node 4 130

Figure 37: DFE (left) and FEM (right) shape function for θx4 at node 4 130

Figure 38: DFE (left) and FEM (right) shape function for θy4 at node 4 130

Figure 39: DFE (left) and FEM (right) shape function for θxy4 at node 4................................... 131

Figure 40: Shape function N5f at ω1 (left) and ω5 (right) .. 132

Figure 41: Shape function N6f at ω1 (left) and ω5 (right) .. 132

Figure 42: Shape function N7f at ω1 (left) and ω5 (right) .. 132

Figure 43: Shape function N8f at ω1 (left) and ω5 (right) .. 133

Figure 44: Shape function N9f at ω1 (left) and ω5 (right) .. 133

Figure 45: Shape function N10f at ω1 (left) and ω5 (right) ... 133

Figure 46: Shape function N11f at ω1 (left) and ω5 (right) ... 134

Figure 47: Shape function N12f at ω1 (left) and ω5 (right) ... 134

xii

Figure 48: Shape function N13f at ω1 (left) and ω5 (right) ... 134

Figure 49: Shape function N14f at ω1 (left) and ω5 (right) ... 135

Figure 50: Shape function N15f at ω1 (left) and ω5 (right) ... 135

Figure 51: Shape function N16f at ω1 (left) and ω5 (right) ... 135

xiii

LIST OF APPENDICES

 Appendix A: Trigonometric, Frequency Dependant QDFE Shape Functions……….………....127

Appendix B: QDFE Solution…..………………………………………………….....…...……..136

Appendix C: DCM Solution..……………………………………………………………….......175

xiv

NOMENCLATURE

AR Aspect ratio

b Basis functions

D Flexural rigidity of plate

E Young's modulus

{Eij} Vector of unknown coefficients

G Shear modulus

h Thickness of plate

[K]
 Global stiffness matrix

[KDS] Dynamic global stiffness matrix

[K]M Global stiffness matrx for multilayered plate

[k] Element stiffness matrix

[kDS] Dynamic element stiffness matrix

k1, k2 Mass distributions constants

L Length of the plate

Mx Bending moment in x directions

My Bending moment in y directions

Mxy , Myx Twisting moment in xy plane

[M]
 Global mass matrix

[M]M Global mass matrix for multilayered plate

xv

[MDS] Dynamic global mass matrix

[m] Element mass matrix

[mDS] Dynamic element mass matrix

{N} Shape functions

N1, N2, N3 Neutral axes

Qx Shear force in x direction

Qy Shear force in y direction

q Distributed load

rx Radius of curvature in xz plane

ry Radius of curvature in yz plane

t Time

U Displacement component of a particle in x direction

V Displacement component of a particle in y direction

VAL Volume fraction of Aluminium

VST Volume fraction of Steel

W Amplitude of vibration

EXTW External virtual work

fW Virtual work due to bending

INTW Internal virtual work

Wn Vector of the degrees of freedom

xvi

W’ Width of the plate

w Bending displacement

x Spatial coordinate in x direction

y Spatial coordinate in y direction

yxyx  ,,, Quasi-exact roots of the characteristic equation

δe Element displacement

δW Vector of the virtual degrees of freedom

 Natural coordinates in x direction

yx  ,
 Normal strains

 Natural coordinates in y direction

θx Rotation along the x-axis

θy Rotation along the y-axis

θxy Curvature of the xy plane

ρ Mass density

ɸx Rotation of lamina in x-direction

ɸy Rotation of lamina in y-direction

yx  ,
 Normal stresses

yzxzyxxy  ,,,
 Shear stresses

ν Poisson‘s ratio

 Frequency of vibration 

xvii

xy
 Shear strain

1

1. INTRODUCTION

1.1 Overview

A plate can be considered as the two-dimensional extension of a beam in simple bending.

Both beams and plates support transverse loads, perpendicular to their plane and through bending

action. A plate is flat and while a beam has a single bending moment resistance, a plate resists

bending about two axes and has a twisting moment.

Plates are versatile structural elements with diverse applications in thin-walled structures and

many components of an aircraft such as the low curvature wing and fuselage skins, for example,

are modeled as plates during the preliminary design stages. As the fuselage or wing skin

envelopes the structural skeleton of the aircraft giving its streamlined shape, it is subjected to

various loading conditions such as tension, compression and torsion since these skins aid in

transmitting internal loads. Each of these loading conditions, individually or combined, affect the

vibrational characteristics of the skins and as such structural elements are exposed to a large

range of vibrational frequencies during the airframe‘s operational lifetime. Furthermore, aircraft

skins are frequently in close proximity to, and get excited by, vibrating components such as

engines. Therefore, it is of utmost importance to devise and develop solution techniques to study

the vibrational characteristics, such as the natural frequencies and mode shapes of wing and

fuselage skins, both swiftly and to an acceptable degree of accuracy during the preliminary

design stages, before progressing to advanced stages of design. Using these results, the engineers

and designers are able to alter and optimize the geometry of the system or the materials used, to

gain a favourable outcome. They will also be able to determine the most suitable locations to add

supports and areas that require additional reinforcements. Modal analysis will ensure that the

natural frequencies of the structure are maintained within an accepted range.

Aerospace structural components modeled as plates can assume various shapes. They can also be

classified as either thick or thin plates and as homogeneous, multilayered or composite by

configuration. Unlike their thick counterparts, thin plates are characterized by thicknesses

significantly smaller than the other dimensionsand special theories have been developed over the

past decades to study each of these cases separately. Solution methods have been developed,

2

whereby the researchers possess the liberty to study only the membrane, transverse/lateral,

flexural or torsional vibrations individually or in combination. Furthermore, the effects of shear

and warping could be included or neglected if needed. However, the reliability and accuracy of

such modal analysis results depends on the method implemented. There are several exact, semi-

analytical and numerical methods, developed and presented in the open literature that could be

used to carry out the modal analysis of plate-type structures during various design stages.

All approaches mentioned above have their inherent advantages and disadvantages. Therefore,

selecting the suitable method that yields fast but accurate solutions is crucial, especially during

the early stages of design. In what follows, a brief general review of different plate theories

developed over the past decades is presented. The next step will be to classify the studies based

on their approach as exact/analytical, semi-analytical or numerical. A significant effort will be

made to review studies encompassing as wide an array of plate shapes, sizes and configurations

(homogeneous, multilayer, sandwiched, composite) as possible such that it would provide the

reader an opportunity to appreciate the variation in the investigation methods used in relation to

the geometry, configuration and boundary conditions of the problem. A preliminary discussion

on the advantages and disadvantages of each exact, semi-analytical, and numerical method will

also be made. Comments will be drawn and recommendations will be made as to which methods

are more contemporarily relevant, effective and useful for the vibrational analyses of thin

airframe components modeled as plates during the early stages of design, where the speed at

which designers arrive at a reasonably accurate ballpark for natural frequencies and mode shapes

of a system is as important, if not more important, than the accuracy of the results itself.

1.2 Governing Theories

Plate vibrational analysis dates back to the early 19
th

 century when the free vibration of

square plates subjected to free edge boundary conditions was investigated by Chladni [1]. Since

this study, many researchers have investigated the vibration and stability characteristics, such as

the natural frequencies, mode shapes and buckling loads for plates of various sizes, shapes,

materials, boundary conditions and loading configurations.

3

Numerous investigations carried out by a large number of researchers from across the globe have

led to various theories to study plate vibrations. Each theory developed is uniquely different

from the others due to the utilization of various assumptions and as such each theory is only

applicable to a certain type or a family of plate configurations. Although a detailed assessment

of the advantages and disadvantages of each and all the existing plate theories is beyond the

scope of this review, the discussion of the various exact/analytical, semi-analytical and numerical

models and their applications would be incomplete without a suitable review of the host of

governing theories available. Therefore, in what follows a brief description of different theories

related to the dynamic analysis of flexible plates developed and presented to date, is presented.

Amongst the many types of plate theories, the thin plate (Kirchhoff-Love) theory, also known as

classical plate theory (CPT), has been extensively investigated, where the effects of shear

deformation and rotary inertia are neglected to simplify the formulation process (see, e.g., the

series of reviews carried out by Leissa [2-7], Bert [8-13] and others [14-15]). It is important to

mention here that Bert‘s [8-13] reviews were on thin composite and sandwiched plates.

Timoshenko and Woinowsky-Kreiger [16] and Lekhnitskii [17] also used the Classical Plate

Theory to study thin anisotropic plates. Furthermore, Vinson and Sierakowski [18] and Ashton

and Whitney [19] exploited the Kirchhoff-Love theory to study laminated thin plates.

However, as the plate thickness increases, the effects of shear deformation and rotary inertia

increases to the point that they cannot be ignored anymore. If Classical Plate Theory is used on

thick plates, thereby, neglecting the rotary inertia and shear effects, it will overestimate the

natural frequencies and buckling loads and as such the solutions will be unconservatively high.

Therefore, for thicker plates Classical Plate Theory has been replaced with the Improved Plate

Theory (IPT), commonly referred to as the Mindlin–Reissner, or thick plate theory.The latter was

a product of the combined efforts of Reissner [20], who incorporated effects of transverse shear,

and Mindlin [21], who included the effects of thickness dependent rotary inertia. The

applicability of this theory to isotropic plates was investigated by Reissman [22]. Subsequently,

Mindlin type plate theories were developed by researchers such as Bergan and Wang [23],

Whitney and Pagano [24], as well as Yang et al. [25], where Yang et al. [25] developed a first

order shear deformation theory (FSDT) upon extending the IPT. The First Order Shear

4

Deformation Theory was used by Yang et al. [25] to study laminates that are constructed using

an arbitrary number of anisotropic layers. Since, the First Order Shear Deformation Theory does

not satisfy the stress-free boundary conditions on the surface of a plate, in order to replace FSDT,

Reddy [26] developed a higher order shear deformation theory (HSDT). Many other researchers

such as Krishnamurthy [27], Nelson and Lorch [28], Lo et al. [29], Levinson [30], Murthy [31],

and Doong et al. [32] have also introduced various higher order theories to study the vibrational

characteristics of plates.

Therefore, starting from CPT, many theories such as FSDT and HSDT have been developed over

the past decades by different researchers, in a quest to constantly improve on the drawbacks of

the preceding theories. In the case of this research, however, CPT also known as Thin Plate

Theory will be employed as most two dimensional airframe components such as aircraft wing

and fuselage skins could be modelled as thin plates due to their extremely small thickness

compared to the length and width.

1.3 Methods of Vibration Analysis

In combination with one or several of the above-mentioned theories, researchers have

used many solution techniques to study the vibrational characteristics of thin and thick plates of

various shapes. In general, these techniques fall into three main categories, namely, exact, or

analytical, semi-analytical, and numerical methods.

The so-called analytical or ‗exact‘ methods (within the limits of the theory) have been widely

used by researchers over time and they involve determining the closed form solution of the

governing differential equations. The Navier method [33] is one such analytical method, which

has been used in the past to study plate vibrations of simply supported rectangular plates. The

method utilises a double Fourier series and researchers such as Reddy and Phan [33],

Senthilnathan et al. [34] and Burt and Chen [35] used the Navier method to study the vibration

and buckling of isotropic, orthotropic, as well as laminated plates with simply supported

boundary conditions. Kaplevastsky and Shestopal [36] also studied the flexure and buckling of

multilayered plates simply supported along all four edges. Doong et al. [37] used the Navier

method to investigate vibration and stability characteristics of pre-stressed laminated plates.

Similar studies were also carried out by Bert [38] and Adali [39]. The Navier method can also be

5

extended to study plates simultaneously subjected to simply supported and slip shear boundary

conditions. One main disadvantage of the Navier method, limiting its applicability severely, is

that it can only be used for plates with simply supported boundary conditions. This means that

the vibration behaviour of a fully fixed plate, cantilevered plate or a fully free plate cannot be

studied using the Navier method. In most real configurations, e.g., thin aircraft structural

components, many different boundary conditions occur, thus, rendering the Navier method

unsuitable.

The Levy method [40] is another analytical solution technique that uses a single Fourier series,

which can be applied to study the vibration of both thin and thick rectangular plates with two

sides subjected to simply supported boundary conditions. Rectangular plates that are pinned on

two opposing edges are, thus, termed Levy-type plates. The Levy method yields exact solutions

for static deflections, free vibration and buckling loads, however, it is important to note that it

does not take into account any bending-twisting coupling of the plates. Certain structural

components such as, for example aircraft wing skins, simultaneously undergo substantial

bending and torsional moments during flight which induces bending-twisting coupling of the

skins. During the preliminary design stages, when the skins are modelled as simple plates, it is

important to evaluate the effects of such bending-torsion coupling on the vibrational

characteristics of the plate such as the natural frequencies and mode shapes. Another problem

with the Levy method is that it is inapplicable to non-rectangular plate shapes, further limiting its

application. Furthermore, most plate structures or thin sheets used in wing skins or fuselages are

riveted along all four edges, commonly modeled as fully or partially clamped boundary

conditions. Therefore, the requirement that two opposing edges should be simply supported is

also another limiting factor, as it prevents its application to other boundary configurations such

as fully free or clamped edges.

The Levy method can also be extended to plates which have one pair of opposite boundaries

subjected to a combination of simply supported and slip-shear conditions, as a result of the

similarities between the mathematical conditions of these two types of boundaries. Nevertheless,

the fact that the Levy method allows the application of arbitrary boundary conditions along the

remaining two edges has attracted some researchers such as Timoshenko and Gere [41] and

6

Bulson [42] who utilised the Levy method to investigate the vibration and buckling of thin

isotropic plates and many others [43-45]. A generalized Levy type solution method was adopted

by Khdeir [46] to examine the free vibration of antisymmetric angle-ply laminated rectangular

plates with various edge conditions. The stability and vibration of unsymmetric cross-ply

laminated plates were also investigated by the same author [47]. In a different study, the

generalised Levy type procedure was again used to study the free vibration and buckling of

antisymmetric, cross ply, rectangular laminates by Reddy and Khdeir [48]. The plates, in this

study, were subjected to various boundary conditions as well.

The superposition technique, also called the Gorman method [49], is also a very powerful

analytical method that has been used extensively by many researchers in the past to obtain highly

accurate results for problems involving plate vibrations. It was developed and used by Gorman

[49] to analyse the vibration behaviour of thin isotropic rectangular plates. In this method, the

plate is divided into a number of subsystems, termed building blocks, which are under different

boundary conditions compared to the global system, and are also subjected to a distributed force,

moment, rotation or translation [49]. The steady state response of each subsystem is then

superimposed. Unlike the other solution methods discussed earlier, this method is applicable to a

variety of plates, including orthotropic, hybrid and laminated plates. The superposition technique

also allows for the application of various classical and non-classical boundary conditions, as well

as loading configurations, and it is readily applicable to thin plates, thick Mindlin plates,

transverse shear deformable laminated plates, as well as open cylindrical shells. Gorman [50]

also applied the method of superposition to study the free vibrational characteristics of a

multitude of non-rectangular plates. Saliba [51-52] also used the superposition technique to study

the free vibration of non-rectangular plates. Gorman [53], as well as Yu and Cleghorn [54-55],

exploited the above method to investigate the free vibration of thin orthotropic plates. The

stability and vibration of in-plane stressed orthotropic plates was also investigated by Yu and

Cleghorn [56-57] using the same method. A buckling analysis of thin isotropic plates was

carried out by Cleghorn and Yu [58] using the method of superposition. Yu and his coworkers

also applied the superposition principle to deduce the natural frequencies and mode shapes of

thick isotropic plates [59-63] and symmetrically laminated plates [64], where the latter study

took also the effects of shear deformation into consideration.

7

Although it is confirmed by many researchers that the superposition method has an excellent

convergence rate [65], the results available does not contain sufficient details on the boundedness

of the method. According to the predictions of Illanko [66], whether this method yields the upper

or lower bounds for the eigenvalues of a particular plate vibration problem depends on the type

of boundary conditions applied on the system as well as the boundary conditions applied on the

so called building blocks of the system. Illanko [66] states that if the boundary conditions of the

building blocks are more flexible than the actual boundary conditions applied on the plate, lower

bound results of the eigenvalues are yielded. Such a case can arise if the building blocks are

under simply supported edge conditions and are subjected to driving forces or translations while

at the same time the global system consists of clamped edges. However, a problem with the

method of superposition is that for mixed boundary types, it has not been verified yet if the

results yielded are an upper bound or a lower bound. Thus, this uncertainty may well be a

problem when trying to estimate the error of the results.

The Dynamic Stiffness Method (DSM) is also another exact method that has been heavily

exploited by researchers to study the vibration of a variety of plate configurations. Boscolo and

Banerjee [67] used DSM to determine the vibration of plates using both classical plate theory

and first order shear deformation theory. Later, they exploited the Dynamic Stiffness Method to

perform exact in-plane free vibration analysis of plates and plate assemblies [68]. A Dynamic

Stiffness formulation was also subsequently formed for exact Mindlin plates by Boscolo and

Banerjee [69, 70]. Fazzolari and Banerjee [71] used the Dynamic Stiffness Method and higher

order shear deformation theory to conduct a buckling analysis of plate assemblies, as well asfree

vibration analysis of composite plate assemblies [72]. In order to study the free vibration of

laminated composite plates, a layerwise dynamic stiffness solution was formed by Boscolo and

Banerjee [73]. Using higher-order elements, a free vibration analysis of composite plates was

also carried out by Pagani et al. [74]. Later, the Dynamic Stiffness Matrix of a rectangular plate

was formed by Banerjee and Papkov [75] for the general case, followed by the development of

an exact spectral-dynamic stiffness method for free flexural vibration analysis of orthotropic

composite plate assemblies by Liu and Banerjee [76, 77]. Using the novel spectral-dynamic

stiffness method, the same authors [78] subsequently conducted an investigation into the free

vibration of plates subjected to arbitrary boundary conditions.

8

However, all the above-mentioned exact methods have very limited applicability as they are

based on some form of a simplifying assumption intended at making the derivation of the

solutions to the plate governing equation less cumbersome and more tractable. Thus, they have

lost their generality and are only useful to model very simple geometries, special cases of plates

of certain geometries, and/or subjected to certain boundary conditions, etc. In addition, with

every change made to the system configuration, the equations should be reformulated and it is

difficult to use such analytical methods to model real life problems with variations in geometry

and material properties. Thus, recourse will be frequently made to numerical methods when the

closed form solution of a certain set of governing differential equations is intractable.

The Finite Element Method (FEM) is a highly powerful, popular and one of the most widely

used numerical techniques that is endowed with the ability to divide any complex geometry to a

number of smaller and much simpler geometries called elements, thus, representing the larger

complex geometry as a collection of these elements. Therefore, rather than having to develop

complicated (displacement) approximation functions for the entire domain, the Finite Element

Method (FEM) allows the user to systematically derive and develop simpler approximate

functions over each element This often allows the approximate (field variable) functions to be a

linear combination of algebraic polynomials. In order to determine the unknown polynomial

coefficients, the governing differential equations are then satisfied over each element and

element assembly is performed based on continuity of the solution and balance of internal fluxes.

However, the bottom line is that the FEM is essentially a Rayleigh-Ritz or Galerkin method, the

only difference being that it only requires locally admissible functions as opposed to the globally

admissible functions needed for classical variational methods [79]. Once the approximation

functions are derived and the element mass and stiffness matrices are found, the assembly of the

element matrices followed by the application of the system boundary conditions, leads to a linear

eigenvalue problem. The resulting eigenvalues and Eigenvectors represent the natural

frequencies and mode shapes of the system, respectively. Included below, are some of many

researchers who utilised the conventional FEM methods for the purpose of examining the

vibration behaviour of plates.

9

Cawley and Adams [80] carried out a vibrational analysis of free laminated composites using

FEM. Their study included square aluminum and Carbon Fibre Reinforced Polymer plates of

varying ply angles. Reddy [81] also studied the free vibration of antisymmetric angle ply

laminated plates using the FEM. Bert et al. [82] used the same method to examine the vibration

characteristics of thick rectangular plates made of bi-modulus composite material. The FEM was

also exploited by Reddy [83] to investigate the large amplitude bending vibration of rectangular

plates consisting of cut-outs. Reddy and Kuppusamy [84] conducted a vibration analysis on

rectangular laminated anisotropic plates. Corner supported thick composite plates were also

examined using the FEM by Rao and Singh [85]. Using an eight-noded quadratic element, Chang

and Chiang [86] studied the vibration of Mindlin plates of rectangular shape consisting of an

interior cut-out. Shiau and Chang [87] also carried out a FEM modal analysis of a laminated

plate, where the effects of transverse shear deformation was taken in to account. Similarly, the

non-linear bending vibration of isotropic, orthotropic and cross-ply laminated square plates were

studied by Ganapathi et al. [88]. The vibration characteristics of clamped thick circular plates

were also examined by Cheung and Kwok [89] using a Finite Element method. Finally, for bi-

modulus annular Mindlin plates, Chen and Chen [90] investigated the asymmetric vibration and

dynamic stability using the Finite Element method.

Therefore, unlike analytical/exact solution methods, numerical methods such as the conventional

Finite Element Method (FEM), are more advanced and are widely used for structural modal

analysis. The FEM is very popular among researchers since it is convenient and adaptable to

many complex systems including those consisting of material and geometric variations.

Geometric variations are easily modelled as stepped, piecewise–uniform configurations, as

opposed to analytical methods which, if not impossible, are very cumbersome to use for complex

problems. However, the main shortcoming of the conventional FEM is that a very large number

of elements are required to achieve an acceptable degree of accuracy especially for higher modes

of vibration, thus, having to solve a large eigenvalue problem. Although the generality,

distinguished strengths, and proven track record of the conventional Finite Elements Method

(FEM) make it a perfect modeling means and numerical modal analysis tool for the advanced

stages and detail design purposes, during the preliminary design stages it is important to arrive at

an accurate ballpark of both lower and higher natural frequencies fast as the goal during the early

10

stages is to minimize the time spent on analysis and maximize the design phase. This disputes

the need for an elaborate model and extremely fine mesh.

The boundary element method (BEM) is another numerical computational method that has been

long used for the study of plate vibration behaviour. It is known to be less complex in terms of

geometric data preparation compared to FEM, since only the boundaries of the problem is

discretized in BEM before processing as opposed to conventional FEM where the entire domain

is discretized in to finite elements to obtain the solution. In the Boundary Element Method, once

the unknowns along the boundaries are determined the solution within the domain is computed

as a post processing step. Thus, using the Boundary Element Method, a 3D problem could be

modelled with a surface mesh and a 2D problem could be analysed using a line mesh, which

greatly reduces time and resources spent during the pre-processing stages.

Early developments of the Boundary Element Method were limited to using the frequency sweep

method or the determinant search method such as the studies presented by, Vivoli [91] and

Vivoli and Fillipi [92], where an indirect formulation was used to develop the first boundary

integral equation for the investigation of a plate vibration problem. In these studies, the solutions

were given in terms of Hankel functions and the natural frequencies were determined by

searching for frequencies that resulted in a zero determinant for the matrix eigenvalue problem.

Using a direct formulation, Niwa et al. [93], and Wong and Hutchinson [94] also used the

Boundary Element Method to analyze plate vibration behaviour. A mixed boundary integral-

finite element approach to plate vibration problems was presented later by Bezine [95] later on.

However, the first boundary-only algebraic eigenvalue problem was developed by Nardini and

Brebbia [96]. Kanarachos and Provatidis [97] also later developed a boundary element solution

using the indirect method to model acoustic problems. A new method called the Particular

Integral Method (PIM) was presented by Ahmad and Banerjee [98] by following a different

approach in formulating the generalized eigenvalue problem using the Boundary Element

Method. Later Davies and Moslehy [99] used the Boundary Element Method to derive the

vibrational frequencies and mode shapes of thin elastic plates.

Despite such continuous advancements, one major drawback of the Boundary Element Method

(BEM) is its lack of versatility. More specifically, the Boundary Element Method is incapable of

11

efficiently handling problems with inhomogeneities and nonlinearities, common in aerospace

environments. Conventional FEM, on the other hand, is very versatile and is more widely

applicable.

Another class of methods, named semi-analytical, have also been in use for the purpose of

studying plate vibrations. The Finite Strip, the Finite Layer, the Spline Strip and the Finite Prism

methods are some of the well-known semi-analytical methods popular among users [89, 100-

106]. The Finite Layer method was used by Cheung and Chakrabarti [100] to perform a free

vibration analysis of thick, layered rectangular plates. In order to understand the vibration of

thick laminated plates with curved boundaries, a circular sector element was developed by

Cheung and Kwok [89, 101]. Square Mindlin plates subjected to various boundary conditions

were investigated by Dawe [102] using the Finite Strip method. The Finite Strip method was

once again used by Dawe and Roufaeil [103] to study rectangular Mindlin plates. Thick square

plates subjected to simply supported and clamped end conditions were examined by Cheung and

Chan [104] using the Finite Strip method. Furthermore, the same authors also studied thin and

thick sectorial plate vibrations. Finally, Mizusawa [105] utilised the Finite Strip and Finite Prism

methods to examine the vibration characteristics of thick annular sector plates. Mizusawa also

utilised the Spline Strip method to examine plates with tapered thickness [106]. The above-

mentioned semi-analytical methods, however, are not as powerful or versatile as the

conventional FEM described previously and as such, are not very suitable for aerospace

structural modal analysis applications.

Finally, the main goal of this review is to introduce the Dynamic Finite Element (DFE)

technique, which is a relatively new semi-analytical method first introduced by Hashemi in

1990‘s[107]. Since its inception, the DFE method has been used in beam, beam-like, and blade

dynamic, stability and vibration modelling and analysis. Hashemi and his co-workers have

extensively studied the free vibration of isotropic, sandwich, composite and thin-walled beams

subjected to various loading configurations, using the DFE method (see, for example, [107-113].

Although, reviewing studies on beam vibrations is not within the scope of this review, a quick

reference to some of the many studies exploiting the DFE method for beam related problems is

included here for the sake of completeness. Hashemi and Richard [108] presented a DFE

12

formulation to analyse the free vibration of bending– torsion coupled beams. The flexural axis of

the beam studied by Hashemi et al. is not coincident with the inertial axis. Hashemi and Roach

[109] also created a DFE formulation for the free vibration of an extension– torsion coupled

composite beam. A Quasi–Exact Dynamic Finite Element formulation, for the free vibration

analysis of a three–layered sandwich beam consisting of a thick, soft, low strength and density

core as well as two face layers made of high strength material, was developed by Hashemi and

Adique [110]. Borneman and Hashemi [111] developed a DFE for the free vibration analysis of

a bending– torsion coupled laminated composite wing beam. The effects of shear deformation

and rotary inertia were neglected in this study but were accounted for in another study by

Hashemi and Pereira [112]. Furthermore, Hashemi and Richard [113] also conducted a vibration

analysis on an axially loaded bending– torsion geometrically coupled beam using the

DFEmethod.

Apart from the above, for additional clarity, a brief description of the DFEformulation process

for beam problems is also included below to enhance the reader‘s understanding on how this

method will be developed for plate problems. To begin with, the Galerkin method of weighted

residuals is also used in the DFE method to arrive at the weak integral form of the governing

differential equations, as done in the conventional Finite Element Method. The weak integral

form of the governing differential equations is then discretized to form the element integral

equations, where the DFE formulation process deviates from the classical Finite Element

Method. For the beam problems studied in the past, instead of using cubic polynomial and linear

shape functions to approximate the flexural and axial/torsional displacements, respectively, the

DFE method utilizes frequency-dependent trigonometric basis/shape functions presented in [107]

through [113] to interpolate the elemental field variables. The trigonometric shape/interpolation

functions have been obtained by taking the closed form solutions to the differential equations of

motion governing the uncoupled vibrations of a uniform beam (exact within the limits of the

theory), as the basis functions of approximation space. The nodal approximations of

displacement are then stated in terms of the resulting frequency-dependent shape functions. This

process leads to the element frequency-dependent dynamic stiffness matrices (unlike the

frequency-independent element stiffness/mass matrices resulting from the conventional FEM).

When these element matrices are assembled, and the system boundary conditions are enforced,

13

the frequency-dependent global dynamic stiffness matrix is obtained, giving rise to a non-linear

eigenvalue problem, different from the linear eigenvalue problem of the conventional Finite

Element Method. In order to find the natural frequencies of the system, the frequency domain

should then be swept to search for particular frequencies that will make the determinant of the

dynamic global stiffness matrix go to zero. The corresponding eigenvectors provide the mode

shapes of the system.

From the existing beam vibration results [107-113], it is evident that the Dynamic Finite Element

(DFE) formulation is a highly-convergent, hybrid, frequency-dependent, semi-analytical solution

method which is more accurate than the conventional Finite Element Method and, unlike the

analytical methods discussed above, is adaptable to many complex configurations. Some

advantages of the DFE method, as evident from its previous applications, are highlighted below.

Based on the results of many vibration analyses on various beam problems carried out by

Hashemi and his coworkers [108-11, 114,115], it is clear that the DFE formulation is capable of

converging to much more accurate results than the conventional FEM, using the same mesh size.

In several cases, to achieve results similar (if not higher) in accuracy to those obtained from the

conventional FEM, the DFE method needs eight times less elements than the conventional Finite

Element Method. Thus, the user can reduce the modelling and computational overhead by

implementing a much coarser mesh and obtain a solution faster without compromising solution

accuracy. During the preliminary design stages of aerospace applications, speed at which results

are achieved trumps the degree of accuracy of the results. Thus, the fact that the DFE method is a

hybrid method, which combines the accuracy of exact methods and the versatility of numerical

conventional FEM, while at the same time producing much faster, highly accurate results makes

it a powerful and reliable tool whose advantages can be exploited during the preliminary design

stages by designers. The fact that most of its formulation is quite similar to the conventional

Finite Element Method is another advantage for researchers new to the DFE method.

Given the magnitude of aerospace structural components that can be modelled as plates,

engineers and designers would be able to arrive at an acceptable ballpark for the vibrational

characteristics, especially for multiple and/or higher modes, with much less effort and using an

14

extremely coarser mesh in comparison to conventional Finite Element Method, should a plate

Dynamic Finite Element become available.

1.4 Research Motivations

Upon reviewing the advancement of methods used in the area of plate vibration analysis, it

could be concluded that the existing solution methods all have certain advantages and

disadvantages over each other. Although general in nature, the most well-established and widely

used conventional FEM formulations need a large number of elements to capture the structures‘

higher natural frequencies and mode shapes with acceptable precision. On the other hand, the so-

called analytical methods, although exact within the limits of the theory, are limited to special

cases and simple configurations, and their derivations are often mathematically intensive and

cumbersome. The present research was motivated by the lack of an intermediate method,

combining the advantages of both FEM and other analytical methods. The hybrid Dynamic

Finite Element (DFE) formulation, proven to be a super-convergent method in the vibration

analysis of beams and beam-structures, may be the best solution to the current problem of plate

vibration. A plate DFE model, once developed, can introduce the accuracy of exact methods to

the ease of formulation provided by numerical methods, while yielding results much faster and to

the best of the author‘s knowledge, such a frequency-dependent DFE formulation has never been

developed for the vibration analysis of plates. Therefore, an effort is made in this thesis to fill

this gap by applying the DFE concept to thin plate vibration analysis.

1.5 Key Objectives and Methodology

The primary objective of the present research was to develop a Quasi-Exact Dynamic Finite

Element (QDFE) formulation for the free vibration analysis of thin plates using Classical Plate

Theory (CPT) and 16-DOF thin rectangular elements. To achieve this goal, a systematic step-by-

step approach, with the following key tasks, was followed:

- Task 1: A novel, quasi-exact solution to the differential equation of motion governing the

free vibration of a rectangular plate should be derived, which would necessitate the

governing differential equation to be re-written in a new, but equivalent form.

15

- Task 2: To formulate a special set of innovative dynamic (frequency-dependent) basis

functions, unique to the QDFE method, using the quasi-exact solution. These basis functions

are formed in such a way that they approach the conventional FEM basis functions (i.e.,

polynomials), when the natural frequency tends to zero; i.e., representing the state of non-

vibration, or static configuration.

- Task 3: Derivation of a set of novel frequency-dependent, trigonometric shape functions for

the thin rectangular plate element, using the above-mentioned basis functions, and following

the standard procedure used in conventional FEM formulation.

o The elemental weak integral form of the governing differential equation of motion was

then achieved by applying the Galerkin-type Weighted Residual Formulation and a set

of necessary integrations by parts, followed by discretization of the structure (i.e., weak

integral form of the governing differential equation of motion) using the thin plate

elements.

- Task 4: To develop the element dynamic (frequency-dependent) mass and stiffness matrices,

by introducing the field variables expressed in terms of the new dynamic interpolation

functions back into the elemental weak integral form of the governing differential equation of

motion.

- Task 5: To form the overall DFE model, by assembling, where applicable, the element

matrices to formulate the eigenvalue problem of the system, whose solutions are the natural

frequencies and corresponding modes of the structure. Applying various boundary conditions

and obtaining the eigensolutions was also achieved through a script written in MATLAB
®

and this will yielded the vibrational characteristics of the plate structure under investigation.

- Task 6: To validate the developed QDFE through different numerical tests for single and

multiple element meshes, and various boundary conditions, and to verify its convergence

superiority, in comparison with conventional FEM-based models.

16

It is worth noting that prior to developing the QDFE solution for thin plates, conventional FEM

solutions were formulated for the same plate problem using two different rectangular plate

elements (12-DOF and 16-DOF). This helped in getting familiarized with the FEM formulation,

and to use the FEM-based codes as a benchmark for the development of the QDFE formulation.

Furthermore, after the QDFE method for thin plates was formed, the results for the natural

frequencies were validated for accuracy by comparing them with the conventional FEM results,

as well as the exact results available in the open literature. Various classical boundary conditions

(B.C.) and geometries are considered. The correctness and accuracy of the conventional FEM

results were first verified by comparing them to an ANSYS
®
 simulation.

- Task 7: Once the QDFE method is developed for a homogeneous thin rectangular plate, it

was extended to model the vibration behaviour of thin, rectangular, multilayered plates

subjected to all types of boundary conditions. The results produced for multilayered plates

are then compared with those available in the literature. They were also compared with

results from conventional FEM and the Method of Homogenization.

- Task 8: Finally, to further demonstrate the capabilities of the QDFE method, it was applied to

investigate the vibration behaviour of six aircraft cabin window bay sections. The QDFE

results are then compared against the conventional 16-DOF FEM and ANSYS
®
 results.

The secondary objective of this research was to use the unique quasi-exact solution derived for

the plate governing equation to formulate a new Dynamic Coefficient Matrix (DCM) method

based on a frequency dependant coefficient matrix, for both thin homogeneous and multilayered

rectangular plates. This new DCM method differs from the Classical Method (CM) due to its

dynamic nature. Furthermore, it will serve as an alternative analytical method that can be used to

investigate the vibration behaviour of a general thin rectangular plate subjected to all types of

boundary conditions. The results produced by the DCM solutions are then compared with QDFE

and FEM results as well as exact results found in the open literature.

1.6 Analysis Approach and Limitations

In this section the analysis approach taken in this research is outlined along with a brief

review of the limitations of the work. As a starting point to the analysis the derivation of the

17

plate governing equations will be briefly revisited. Once, the theoretical foundation is established

the next step of the analytical process would be to derive the quasi-exact solution to the

governing differential equation. This is achieved by re-arranging the characteristic equation as

the sum of two beam-like expressions and then solving each expression by applying the

quadratic formula. Once, the quasi-exact solution is constructed the terms of that solution will be

used subsequently, to create the frequency-dependant basis functions unique to the QDFE

method based on a 4-node 4-DOF per node rectangular plate element. Using these frequency-

dependant basis functions, sixteen trigonometric shape functions will then be developed and

subsequently the QDFE solution will be derived for the thin, rectangular, homogeneous and

multilayered plates. The above mentioned quasi-exact solution will also be used to develop DCM

models for thin, rectangular, homogeneous and multilayered plates. In parallel to this,two

conventional FEM models, with 12-DOF and 16-DOF elements, will also be developed for thin,

rectangular, homogeneous and multilayered plates for validation of the QDFE and DCM results.

The results of these conventional FEM models will be first verified for accuracy using ANSYS
®

simulations. Apart from comparing with the conventional FEM results, the QDFE and DCM

results will also be compared with exact data available in the open literature. As a last step, the

QDFE method will be extended and applied to model the vibration behaviour of six aircraft

cabin window bay sections; the results of which will be verified against in-house developed

conventional FEM and ANSYS
®
 results.

One of the main limitations of this study is that it disregards the effects of shear and rotary inertia

as the quasi-exact solution that is sought is based on Classical Plate Theory. Therefore, the

QDFE model presented cannot be used to model the vibration behaviour of thick plates and as

such for thick plate vibration analysis, a separate QDFE solution needs to be developed.

However, as this method was developed with aerospace applications in mind, this limitation does

not largely affect the generality of the method as most, if not all, two dimensional structures

encountered in the aerospace environment could be modelled as thin plates as their thickness is

much smaller than the other two dimensions.

As the present study is purely a new solution method for an existing plate theory (i.e., CPT) and

the corresponding governing differential equation, therefore, no experimental analyses will be

18

carried out for validation purposes. It is also worth noting that, to the author‘s best knowledge,

there is a lack of experimental data to use for direct comparison/validation of the QDFE/DCM

results for the homogeneous and multilayered plate studies as well as the QDFE results for the

aircraft cabin window bay sections. However, in order to compensate for this lack of

experimental data, the QDFE/DCM results for the homogeneous and multilayered plate studies

are verified thoroughly for accuracy using an in-house developed, polynomial based, 16-DOF

FEM code, whose accuracy has been validated using ANSYS
®

 simulations and other existing

data. Similarly, a comprehensive finite element analysis is done on ANSYS
®

 for all cabin bay

configurations using an extremely fine mesh that yields results, which have converged to the

second decimal place, in order to substantiate their QDFE results. This compensates adequately

for the lack of experimental data for comparison.

As also mentioned before, experimental validation would be required if the QDFE/DCM

methods were used to study a brand new problem/theory governed by new governing differential

equation(s) that has not been investigated before, to capture new behaviours, or characterize new

parameters, etc. In such a case, experimental data are of utmost importance to determine if what

is observed by applying the QDFE/DCM methods are in synchronization with what actually

occurs in reality. However, the plate configurations investigated in this research are very

common ones, which have been studied for decades and as such the existing analytical results are

good enough for validation of the proposed element/solution methods. Since, the objective of

this work is to introduce new, superconvergent methods to study the same vibration problems

studied in the past, verifying the QDFE/DCM results against the exact data available in the open

literature would suffice. Where exact data is unavailable, as in the case for the cabin window bay

configurations, finite simulations based on ANSYS
®
 and in-house codes are used for the

comparison and validation purposes. Thus, although at first glance it may seem to be a limitation

of this research, measures have been taken to ensure that the effect of not incorporating

experimental validation is, if at all, marginal.

At the present stage the QDFE method is only applicable to rectangular plates. This is another

limitation of this research and it arises due to the form of the governing equation that has been

used for this study. The Kirchhoff-Love equation used to derive the quasi-exact solution here is

19

based on the general x-y coordinate system. To obtain the solutions for a circular plate for

example, one should commence at the thin plate equation based on the cylindrical coordinate

system, however pursuing a QDFE solution based on a circular element is not a priority and as

such is not necessary for this thesis at this stage, because the main aim of this work at present is

to apply the concept of Dynamic Finite Elements within the domain of plate vibration for the

first time, with the goal of establishing the QDFE method as a viable alternative to conventional

FEM for plate modal analysis. Therefore, a choice was made at the beginning to use the

governing equation based on the x-y coordinate system, in order to facilitate the development of

a four-noded, 4-DOF per node rectangular element later on. Nevertheless, developing a

rectangular element meant that the study would be strictly limited to the vibration analysis of

rectangular shaped 2D structures as it is not possible to accurately fit rectangular elements to

study plates of other shapes, such as triangular/circular ones. Several factors contributed to this

decision. Firstly, rectangular elements are of higher order compared to triangular elements for

example and as such are more accurate, which is one reason why the rectangular shape was

favoured. Secondly, most two-dimensional structures found in aerospace environments are

rectangular in shape, therefore having a QDFE model based on a rectangular element would

increase the scope of analysis as many different rectangular plate assemblies could be then

modeled. Furthermore, although, two triangular elements would make up one rectangular

element, building a QDFE model based on a triangular element means that more than double the

number of elements (due to their lower accuracy) will be needed for an accurate analysis. This

defies the whole purpose of building a QDFE model to study plate problems in the first place, as

the key objective is to maximize solver efficiency by making the mesh coarser. Lastly, and most

importantly, the approach taken to solve the thin plate governing equation also contributed

greatly towards this decision. The distinctive procedure applied to obtain the quasi-exact solution

required the thin plate equation to be decomposed to two beam-like expressions; one

representing the x-direction and the other characterizing the y-direction of the plate. Thus, little

choice is left but to use the thin plate equation based on the x-y coordinate system.

Another constraint of the QDFE method at its present stage of development is the restriction on

the complexity of plate configurations that it could be applied to. As an example, the aircraft

cabin window bay configurations included in this thesis have been greatly simplified. The small

20

curvature of the window bay section had to be ignored, since a QDFE model has not been

developed for shell elements yet. The filleted radius at the edges of the window cut out was also

omitted from the analysis, due to the unavailability of a QDFE solution based on a triangular

element. The effect of having frames and stringers riveted laterally and longitudinally along the

boundaries of the cut out was replaced with a fixed boundary condition due to the absence of a

compatible beam element to create a beam-plate assembly. The added structural reinforcement

around the cut out due to the presence of doublers were simulated by introducing QDFE

elements with a higher thickness at the cut out perimeter, once again as a result of the

unavailability of a QDFE beam model having compatible degrees of freedom (4 DOF per node)

at the two nodes on each side. Thus far, the QDFE beam models developed in the past by other

researchers have only 2 or at most 3 DOF‘s per node. Therefore, modelling a full and complete

aircraft cabin bay window with all its complexities is out of scope of this study as it requires the

development of other QDFE models for shell and beam elements as mentioned above.

The ultimate goal of developing the QDFE solution for a plate model is that, in the future, it can

be used as a powerful alternative tool to quickly investigate the vibration characteristics of

numerous aerospace applications that are modelled as thin plates to a very high degree of

accuracy, during the preliminary design stages. However, in order to do this comprehensively,

the Dynamic Finite Element method needs to be developed to a full-fledged, versatile tool like

conventional FEM. This could only be achieved if a complete library of generic DFE models

covering all types of structural elements and configurations are first developed as it was done in

the case of conventional FEM during its early stages, many years back. Nevertheless, since the

advent of this new method in the late nineties a number of researchers have contributed towards

achieving that, by developing DFE models for various one-dimensional (line) structural elements

(rods, beams, etc.) configurations. But, the DFE concept of pursuing an exact solution to the

governing equation of the structure, using the terms of this general solution to form frequency-

dependant basis functions that approach their polynomial counterparts when the frequency tends

to zero and then exploiting these basis functions to derive the unique trigonometric basis

functions was not applied to the case of plates until now. Therefore, the DFE concept described

above, which originated two decades back, is developed for the vibration analysis of two-

dimensional plate structural elements in this thesis. As such the primary objective of this

21

research is to extend the DFE method to 2D elements by developing, for the first time, a Quasi-

Exact Dynamic Finite Element Model for thin homogeneous and multilayered plates, thereby

adding to the library of generic DFE structural element models that have been created over the

years by many a researcher.

1.7 Thesis Organization

In Chapter 2, the derivation of the thin plate governing differential equation will be briefly

revisited using Hamiltonian mechanics and the Classical Plate Theory (CPT), for the sake of

completeness. After the equations are reviewed, the novel and unique quasi-exact solution to the

governing differential equation, sought using a distinctive procedure that has never been

presented, will be introduced. Once the quasi-exact solution for the plate equation is derived, a

set of new trigonometric, frequency-dependant basis functions characterizing the QDFE method

will be presented. Subsequently, the QDFE shape functions formed using the terms of the quasi-

exact solution to the governing differential equation, will be developed using the newly found

basis functions.

In Chapter 3, the vibration behaviour of a thin, homogeneous, rectangular plate subjected to

various boundary conditions will be investigated. Initially, the conventional FEM method will be

developed wherein two separate elements will be used. The first formulation will be based on a

12-DOF thin rectangular plate element while the second FEM formulation will use a 16-DOF

element. Next, in Chapter 4 the QDFE method will be applied to investigate the modal

characteristics of the thin, homogeneous, rectangular plate using the trigonometric, frequency-

dependant shape functions presented in Chapter 3. Subsequently, the DCM method, which is

also based on the quasi-exact solution to the plate governing equation, will be presented in

Chapter 4 to examine the same thin, homogeneous, rectangular plate problem. Later in Chapter

4, the surface plots for the new QDFE shape functions will be illustrated and compared with

surface plots of the polynomial FEM shape functions. The numerical results of the 12-DOF

FEM, 16-DOF FEM, QDFE and DCM methods will also be presented. A convergence study will

be carried out on ANSYS
®
 and the results of the ANSYS

®
 simulation will be used to verify the

accuracy of the 12-DOF FEM and 16-DOF FEM results. The QDFE and DCM results will in

turn be compared with the verified FEM results as well as exact results found in the open

22

literature. To conclude, comments will be drawn in regards to the accuracy of the results from

each method and an evaluation will be made with reference their convergent behaviour.

In Chapter 5, the vibration behaviour of a multi-layered, thin, rectangular plate will be

investigated. Firstly, the Method of Homogenization (M of H) will be used to perform a modal

analysis. Then the conventional FEM formulation presented in Chapter 4 will be extended to

examine the multi-layered, thin, rectangular plate. Subsequently, the QDFE method for thin

plates presented in Chapter 4 will also be extended to study the vibrational characteristics of the

multilayered plate. The roots of the governing differential equation presented in Chapter 3,

which were modified to suit a multilayered plate, will also be presented here. Later in Chapter 5,

the DCM method introduced in Chapter 4 will be extended to investigate the multilayered plate

problem. The numerical results for the Homogenization, FEM, QDFE and DCM methods will be

presented prior to concluding this chapter. Once again, the FEM results will be compared with

the results of an ANSYS
®

 simulation and the QDFE and DCM results will be compared with the

validated FEM results. Finally, as in Chapter 4, a discussion will be carried out and an

assessment will be made on both the accuracy of the results and the rate of convergence of each

method.

In Chapter 6 the QDFE method will be applied to study the natural frequencies of six aircraft

cabin window bay sections in order to show case the advantage of utilizing an intermediate,

superconvergent method during the early stages of design. The results produced by the QDFE

method are also compared with the 16-DOF FEM and ANSYS
®
 results here to further highlight

this fact.Finally, a comparison will also be made between the CPU time elapsed for the QDFE

method and the 16-DOF FEM method when solving for the systems natural frequencies, at the

end of this Chapter.

Chapter 7 will be the final Chapter of this thesis. Here, concluding remarks will be drawn upon

the objectives accomplished and contributions made to the scientific knowledge base, the

limitations of the methods presented will be discussed, and comments will be made on the future

direction of research progress.

23

2. THEORETICAL BACKGROUND

2.1 Development of Governing Differential Equation

This Chapter consists of a brief review of the thin plate governing equation formulation using

Hamiltonian mechanics and the Classical Plate Theory (CPT) as shown in [116]for the sake of

completeness and the formation of the quasi-exact solution to this equation leading to the

trigonometric basis functions and the new frequency dependant shape functions.

Figure 1: (a) A thin plate of thickness, h, with infinite width and length. (b) An infinitesimal

element of the thin plate subjected to bending and twisting moments, shear forces and distributed

load per unit length [116]

A plate is a two dimensional extension of a beam and like in a beam there are bending moments

and transverse shear forces acting in this two dimensional elastic system as well. The kinematics

of CPT is similar to that of Euler – Bernoulli beam theory. Consider a thin plate with a thickness

h and infinite length and width as shown in Figure 1a. It is important to note the infinitesimal

differential element h∙dx∙dy on Figure 1a which has been enlarged and depicted as shown in

Figure 1b. In Figure 1b, it is possible to see the various shear forces, bending moments, twisting

moments and external loads that typically act on such a differential element. Here, Mx and My

are the bending moments per unit length that occur as a result of the normal stresses σx and σy,

respectively. Furthermore, the twisting moments per unit length Mxy and Myxthat arise as a result

of the respective shearing stresses,Τxy and Τyx , as well as the shear forces per unit length Qxand

24

Qythat are formed due to the actions of the respective shearing stresses,Τxz and Τyz, are also

illustrated in Figure 1b.

The next step is to balance the forces and moments about the differential plate element

equilibrium. By balancing the forces in the x, y and z directions it can be seen that only the force

equation of motion in the z-direction is non-trivial. Similarly, considering moments about each

co-ordinate axis reveals that the moment equation of motion about the z-axis essentially goes to

zero. Thus, we are left with the following three equations of motion:

2

2

t

w
hdxdyqdxdydxdy

y

Q
QdxQdydx

x

Q
QdyQ

y

yy

x

xx































  (1)

0




























 dxdyQdydx

x

M
MdyMdxMdxdy

y

M
M y

xy

xyxyy

y

y (2)

0


























 dydxQdxMdxdy

y

M
MdyMdydx

x

M
M xyx

yx

yxx

x

x (3)

In Eq. (1)w represents the lateral deflection of the mid plane of the thin plate along z-axis. It is

also known as the flexural displacement of the plate and it is a function of the x and y spatial

coordinates as well as time, i.e., w(x,y,t). Also, ρ in Eq. (1) is the material density. It is also

important to note here that in keeping with the assumptions of the Classical Plate Theory (CPT)

used for thin plates the contributions due to rotary inertia are neglected in Eqs. (2) and (3).

Furthermore, all higher order terms that arise as a result of the distributed load q are also not

taken in to consideration when writing out the moment equations of motion. Thus, simplifying

the terms in Eqs. (1), (2) and (3) results in the following expressions.

2

2

t

w
hq

x

Q

x

Q yx














 (4)

0








y

xyy
Q

x

M

y

M
 (5)

x

M

y

M
Q

xyy

y








 (5-a)

25

0








x

yxx Q
y

M

x

M
 (6)

y

M

x

M
Q

yxx
x









 (6-a)

Solving Eqs. (5) and (6) to obtain the definitions for the shear forces Qyand Qx gives Eqs. (5-a)

and (6-a), respectively. Substituting Eqs. (5-a) and (6-a) in Eq. (4) will yield a single partial

differential equation. This equation shown below, which is written in terms of the various

moments, governs the lateral (bending) motion of the thin plate.

2

2

2

222

2

2

t

w
hq

y

M

yx

M

yx

M

x

M yxyyxx
























 (7)

In order for free vibration to occur, there should be no distributed load q acting on the plate.

Thus, this term is set to zero and Eq. (7) is re-written as follows.

2

2

2

222

2

2

t

w
h

y

M

yx

M

yx

M

x

M yxyyxx
























 (8)

The next step is to determine the relationship between the moments in Eq. (7) and the flexural

displacement w. To this end, the kinematics of thin plate deformation is presented below.

26

Figure 2: (a) An infinitesimal differential element with a lamina shown by the shaded region

marked as a-b-c-d. (b) A cross section view of the differential element and lamina in bending.

(c). A top view of the lamina subjected to shear loading. [116]

A cross sectional view of the deformation of the lamina marked as a-b-c-d in Figure 2a is

illustrated in Figure 2b when the infinitesimal beam element is in pure bending. As in Euler –

Bernoulli beam theory, all plane sections are assumed to remain plain and perpendicular to the

mid-plane even in Classical Plate Theory. A similar behaviour to that explained above is also

seen in the y-z plane. Thus, the normal strains in the lamina a-b-c-d can be written as:

x

x
r

z
 (9)

y

y
r

z
 (10)

In Eqs. (9) and (10)rx and ry are the radii of curvature in the x-z and y-z planes, respectively, and

z is the distance between the midplane and the lamina a-b-c-d. Assuming small deflections and

27

slopes, the curvatures rxand ry in eqs. (9) and (10) can be defined as -∂
2
x/∂x

2
and -∂

2
y/∂y

2
,

respectively. Thus, Eqs. (9) and (10) can be re-written as follows.

2

2

x

x
zx



 (11)

2

2

y

y
zy



 (12)

The next step is to define the shear strain. From Figure 2c it can be seen that the rotations of the

sides are ∂u/∂y = φx and ∂v/∂x = φy. Here, U and V are the displacement components of a

particle in the x and y directions. Thus, the shear strain γxy can be defined as:

yxxy
x

V

y

U
 









 (13)

However, from observing Figure 2b it is clear that the displacements U and V can be defined as -

z∙∂w/∂x and -z∙∂w/∂y, respectively. Substituting these expressions in Eq. (13) and re-writing the

definition of shear strain gives:

yx

w
zxy






2

2 (14)

Having derived all the definitions for the strains, the general Hooke‘s Law can be exploited now

to arrive at the expressions for the stresses.

  























2

2

2

2

22 11 y

w

x

wEzE
yxx 





 (15)

  























2

2

2

2

22 11 x

w

y

wEzE
xyy 





 (16)

yx

w
GzG xyxy






2

2 (17)

The bending and twisting moments on the element face defined as h∙dy in Figure 2a can now be

determined as follows.

28






2/

2/

h

h

xx dydzzdyM  (18)

Eq. (18) can be re-arranged as:






2/

2/

h

h

xx dzzM  (19)

Substituting Eq. (15) in Eq. (19) and integrating across the thickness yields the definition for the

bending moment about the x-axis Mx acting on the element face.




















2

2

2

2

y

w

x

w
DM x  (20)

In Eq. (20) D represents the plate modulus and it is defined as:

 2

3

112 


Eh
D (21)

The definition for the bending moment about the y-axis My acting on the face of the differential

element can also be derived using the same procedure outlined above.




















2

2

2

2

x

w

y

w
DM y  (22)

Performing integration across the thickness of the element on the following expression yields the

definition for the twisting moment Mxy.






2/

2/

h

h

xyxy dzzM  (23)

It should be noted here that a negative sign has been added in front of the integral in Eq. (23).

The purpose of this is to ensure that the twisting moment caused by positive shear stress

confirms with the sign convention used in Figure 2b. Thus, substituting the definition of shear

stress given in Eq. (17) in to Eq. (23) and integrating gives the following expression.

29

 
yx

w
DM xy






2

1  (24)

In order to re-write the governing partial differential equation for thin plates in terms of the

flexural displacement w, Eqs. (20), (22) and (24) as well as the expression Mxy = - Myx should be

substituted in to Eq. (8). Thus, we obtain,

02
2

2

4

4

22

4

4

4





























t

w
h

y

w

yx

w

x

w
D  (25)

The expression within parenthesis can also be re-arranged follows.

w
y

w

x

w

yx

22

2

2

2

2

2

2

2

2



































 (26)

Finally, writing Eq. (25) in terms of the Laplacian of the Laplacian, also known as the

biharmonic operator:

 
 

0
,,

,,
2

2
4 






t

tyxw
htyxwD  (27)

As the governing differential equation for a thin plate has now been derived using Hamiltonian

mechanics, the next step will be to pursue the development of a quasi-exact solution and the next

section of this thesis will be dedicated to achieving this. With such a solution in hand, it becomes

possible to study the free vibration behaviour of airframe components that can be modelled as

thin rectangular plates. Before pursuing a quasi-exact solution to the governing equation, it is

important to note here that it will not provide information regarding the effects of shear, rotary

inertia and damping on the modal characteristics of the structure as the linear undamped free

vibration equation is employed per Classical Plate Theory as the basis of the solution. However,

this choice of theory can be reasonably justified, firstly, as most aircraft surfaces and skins can

be classified as Kirchhoff plates which have extremely small thickness compared to their other

dimensions and, secondly, because it is a relatively less complex starting point to develop a new

Dynamic Finite Element formulation for plates for the first time. Upon developing a robust plate

DFE model, the effects of shear, rotary inertia and damping can be later incorporated to the

30

solution as deemed fit. Thus, in the subsequent section the distinct quasi-exact solution to the

thin plate governing equation will be developed and presented as a pre-requisite to develop the

QDFE method.

2.2 A Quasi-Exact Solution for the Thin Plate Equation

In order to develop the Quasi-Exact Dynamic Finite Element (QDFE) and Dynamic

Coefficient Matrix (DCM) methods, it is important to find the quasi-exact solutions for the plate

governing partial differential equation given in Eq. (25). To this end, a new approach is taken

here, which to the best of author‘s knowledge has not been done before. That is to decompose

the plate equation into two separate beam-like expressions representing each spatial coordinate

direction of the plate. For clarity, the main steps of this procedure are outlined below.

If the solution is assumed to take the following form, obtained through the separation of

variables:

ByAxti eeyxWeyxWtyxw ),(where;),(),,(
 (28)

Then, introducing expression (28) back into the governing differential equation (25), the

corresponding characteristic equation can be written as:

02
2

4224 
D

h
BBAA


 (29)

and then rearranged as:

0
2

2

224
2

1

224 


















D

h
kBAB

D

h
kBAA


 (30)

where, k1 and k2represent the mass distribution constants along the x– and y – directions,

respectively. These constants were introduced to decompose the plate governing equation into

the two beam-like expressions in Eq. (30) and such an approach has not been pursued before.

Through careful observation, it can be seen that simply plugging numerical values in place of

these constants will allow one to re-construct and re-write the plate governing equation into its

** *

31

original form. The numerical values of k1 and k2 can be anything between 0 and 1 (i.e., 0 <k1 and

k2 < 1), however, the sum of the two mass distribution constants should be unity (i.e., k1 + k2 =

1). For example,k1 and k2 will both be equal to 0.5 for a square plate. They will assume other

values for other rectangular plate shapes. The term (*) represents the x–direction and the term

(**) is for the y–direction of the plate. In both expressions,A is the coordinate in the x – direction

and B is the coordinate in the y–direction. The terms (*) and (**) are treated as two different

(beam) equations for the purpose of determining roots. Furthermore, in expression (*), Acan

vary and B is held constant and for the term (**), A is held constant and B is allowed to vary. The

quadratic formula was then applied on the expressions (*) and (**) separately as shown below.

The mathematical manipulations are shown for one beam-like expression for brevity. The roots

of the other beam-like term are obtained using an identical process.

Applying the quadratic formula on the expressions (*), treating B
2
, as constant and isolating for

B
2
:

 2

4
2

142

2














D

hk
BB

A



 (30-a)













D

hk
BBA

 2

1422 42

  











D

hk
BBA

 2

14222 42













D

hk
BBBAA

 2

144224 444

2

2

1

22

A

D

hk

BA















Therefore, for term (*) the following expression results:

32

2

4
2

1

2

2

2

1

2

A

A
D

hk

A
A

D

hk

B




























(30-b)

Similarly, applying the quadratic formula for expression (**) while treating A
2
 as a constant this

time and simplifying using an identical process to isolate A
2
:

2

4
2

2

2

2

2

2

2

B

B
D

hk

B
B

D

hk

A




























(30-c)

On their own, Eq. (30-b) will be the solution to expression (*) and Eq. (30-c) will be the exact

solution to expression (**). Together they will form the exact solutions for the entire plate

governing partial differential equation. Eq. (30-b) and Eq. (30-c) can then be solved

simultaneously to determine the roots A1, A2, A3 and A4 for expression (*) and the roots B1, B2,

B3, B4 for expression (**). The solution process for expression (*) is elaborated below.

By substituting Eq. (30-b) in Eq. (30-c), Eq. (30-d) is resulted.













































































2

4
2

1

2

4
2

1

2

2

2

A

A
D

hk

A

A
D

hk

D

hk

A







(30-d)

Re-arranging and simplifying Eq. (30-d) as follows yields Eq. (30-e).

































































2

4
2

1

4
2

1

2

22

2

A

A
D

hk

A
D

hk

D

hk
A

A







33



























































4
2

12

2

4
2

1

2

24

2

A
D

hk
A

A
D

hk

D

hk
A

A




2

4
2

1

2

244
2

14





















































A

D

hk

D

hk
AA

D

hk
A




































































 4
2

14

2
2

1

2

244
2

14 2 A
D

hk
A

D

hk

D

hk
AA

D

hk
A



8
2

14

2
2

1

2

248
2

14 2 A
D

hk
A

D

hk

D

hk
AA

D

hk
A 









































 

02
2

14
2

14

2
2

1

2

24 









































D

hk
A

D

hk
A

D

hk

D

hk
A



0
2

14

2
2

1

2

24 
































D

hk
A

D

hk

D

hk
A



  0

2
2

1
21

2
4 




















D

hk
kk

D

h
A



(30-e)

Since, the sum of k1 and k2 equals unity, Eq. (30-e) can be re-written and simplified as outlined

below to derive the roots for expression (*) of the characteristic equation, presented as Eq. (30-f).

































D

h

D

hk

D

h

D

hk

A








2

2

2242

1

2

2
2

1

4

D

hk
A

 22

14 

D

hk
A

 22

12 

34

D

h
kA


1

2 

D

h
kA


1 (30-f)

Similarly, substituting Eq. (30-c) in Eq. (30-b) gives the following roots for expression (**):

D

h
kB


2 (30-g)

Thus, from Eq. (30-f) it can be seen that there will be four roots Ai (i = 1, 2, 3, 4), for the

expression (*) as defined in Eqs. (31) and (32) of which two are real and two are imaginary.

x
D

h
kAA 


  131 (31)

x
D

h
kiAA 


  142 (32)

Similarly, from Eq. (30-g) it can be seen that there are four roots Bi (i = 1, 2, 3, 4), for the

expression (**) as defined in Eqs. (33) and (34) of which two are real and two are imaginary.

y
D

h
kBB 


  231 (33)

y
D

h
kiBB 


  242 (34)

It is important to note here that the roots shown in Eqs. (31) through (34) not only satisfy their

individual expressions separately but together any real-real or imaginary-imaginary combination

(Ai and Bi) of these roots also satisfy Eq. (30) as a whole. Thus, each real-real and imaginary-

imaginary pair of roots (Aiand Bi) is an exact solution to the plate governing equation. There are

8 such pairs of exact solutions and they are A1and B1, A1 and B3, A3 and B1, A3and B3, A2and B2,

A2and B4, A4 and B2, A4 and B4. However, if a real-imaginary combination of roots (Aiand Bi) is

35

substituted in to the characteristic equation, it can be seen that such a pair does not fully satisfy

the entire characteristics equation in general, although on their own each of these roots satisfy

their respective beam-like expressions (*) and (**). There are 8 such real-imaginary

combinations that can be made from the solutions presented in Eqs. (31) through (34) and these

pairs (Aiand Bi) are not exact solution to the plate governing equation. These roots are A1 and B2,

A1 and B4, A3and B2, A3 and B4, A2 and B1, A2and B3, A4 and B1 and A4 and B3. Thus, out of the

16 combinations of roots that can be developed, 8 satisfy the governing equation fully, but the

other 8 fails to do so and as such the solution becomes a quasi-exact solution to the plate

governing equation.

As the solution to the plate equation was assumed to take the form shown in Eq. (28) the

following expressions were constructed using the roots shown in Eqs. (31) to (34).

xxxx eCeCeCeCe
iiAx 

4321 


 (35)

yyyy eDeDeDeDe
iiBy 

4321 


 (36)

Combining the expressions in Eqs. (35) and (36) with the trigonometric identities for, sin(x) =

(e
ix

- e
-ix

)/2i, cos(x) = (e
ix

+ e
-ix

)/2, sinh(x) = (e
x
- e

-x
)/2 and cosh(x) = (e

x
+ e

-x
)/2 yields Eqs. (37)

and (38).

)cosh()sinh()cos()sin(4321 xCxCxCxCe xxxx

Ax   (37)

)cosh()sinh()cos()sin(4321 yDyDyDyDe yyyy

By   (38)

where, C1 to C4 and D1 to D4 are unknown coefficients. Since, the solution is assumed to take the

form defined by Eq. (28) the final 16-term quasi-exact solution for a thin plate can be derived by

multiplying Eqs. (37) and Eq. (38) as follows.

36

)cosh()cosh(

)sinh()cosh()cos()cosh()sin()cosh(

)cosh()sinh()sinh()sinh()cos()sinh(

)sin()sinh()cosh()cos()sinh()cos(

)cos()cos()sin()cos()cosh()sin(

)sinh()sin()cos()sin()sin()sin(),(

44

434241

343332

312423

222114

131211

yxE

yxEyxEyxE

yxEyxEyxE

yxEyxEyxE

yxEyxEyxE

yxEyxEyxEyxW

yx

yxyxyx

yxyxyx

yxyxyx

yxyxyx

yxyxyx

























 (39)

where, Eij in Eq. (39) are the new unknown coefficients defined as follows.

jiij DCE  (40)

37

2.3 New Trigonometric, Frequency-Dependant Basis and Shape Functions

The new trigonometric, frequency dependant basis functions of the approximation space are

shown in Table 1. These basis functions are designed as linear combinations of the solutions to

the plate governing equation. Furthermore, they have been developed such that when the natural

frequency ω and subsequently the roots, αx, αy, βxand βy of the characteristic equation tends to

zero, they change to the basis functions of a standard thin plate element in classical FEM which

arebased on an incomplete quintic polynomial.

Table 1: Trigonometric basis functions for thin plate

Sym

-bol

FEM

Trigonometric

b1 1)cos()cos( yx

b2 x  
xxy  /)sin()cos(

b3 y  
yyx  /)sin()cos(

b4 x
2
 22

)cos()cos()cos()cosh(

xx

yxyx









b5 xy   yxyx  /)sin()sin(

b6 y
2
 22

)cos()cos()cos()cosh(

yy

xyxy









b7 x
3
 33

)cos()sin()cos()sinh(

xx

yxyx









b8 x
2
y 22

)sin()cos()sin()cosh(

xyxy

yxyx









38

Table 1 continued: Trigonometric basis functions for thin plate

Sym

-bol

FEM

Trigonometric

b9 xy
2
 22

)sin()cos()sin()cosh(

yxyx

xyxy









b10 y
3
 33

)cos()sin()cos()sinh(

yy

xyxy









b11 x
3
y 33

)sin()sin()sin()sinh(

xyxy

yxyx









b12 x
2
y

2
 22222222

)cos()cos()cosh()cos()cos()cosh()cosh()cosh(

yxyxyxyx

yxyxyxyx









b13 xy
3
 33

)sin()sin()sin()sinh(

yxyx

xyxy









b14 x
3
y

2
 23232323

)cos()sin()cosh()sin()cos()sinh()cosh()sinh(

yxyxyxyx

yxyxyxyx









b15 x
2
y

3
 32323232

)sin()cos()sinh()cos()sin()cosh()sinh()cosh(

yxyxyxyx

yxyxyxyx









b16 x
3
y

3
 33333333

)sin()sin()sinh()sin()sin()sinh()sinh()sinh(

yxyxyxyx

yxyxyxyx









The roots βx, αx, βy and αywere defined previously and marked as Eqs. (33), (34), (35) and (36),

respectively. Theexpansion terms in Table 1 can be more concisely written as follows.

  16151413121110987654321 bbbbbbbbbbbbbbbbP
f
 (41)

Thus, the non–nodal approximation of the solution function Wand the test function δW written in

terms of generalised parameters will take the following form.

39

       aPWaPW
ff

  ,, (42)

Replacing the generalized parameters, 〈 〉 and 〈 〉 in Eq. (42) with the nodal variables,

〈 〉 and 〈 〉 re-

writing Eq. (42) will result in Eq. (43).

            n n n nf f
W P a W P a   (43)

The matrix,[] is defined as,

               

               

               

               

               

               

               

               





































1,01,01,01,01,01,01,01,0

1,01,01,01,0____1,01,01,01,0

1,01,01,01,0____1,01,01,01,0

1,01,01,01,01,01,01,01,0

||||

||||

0,00,00,00,00,00,00,00,0

0,00,00,00,0____0,00,00,00,0

0,00,00,00,0____0,00,00,00,0

0,00,00,00,00,00,00,00,0

161514134321

161514134321

161514134321

161514134321

161514134321

161514134321

161514134321

161514134321

xyxyxyxyxyxyxyxy

yyyyyyyy

xxxxxxxx

xyxyxyxyxyxyxyxy

yyyyyyyy

xxxxxxxx

bbbbbbbb

bbbbbbbb

bbbbbbbb

bbbbbbbb

bbbbbbbb

bbbbbbbb

bbbbbbbb

bbbbbbbb

 (44)

Thus, Eq. (43) and the [Pn]fmatrix can be combined in the following manner to construct nodal

approximations for flexural displacement, W(.

           nfnfnf
wNwPPW  ,,,

1


 (45)

In Eq. (45), 〈 〉 is the frequency dependent trigonometric shape functions for flexure

which can also be re-written as,

      nwNW  ,,  (46)

where,

 
T

xyyxxyyxn www 44441111 ,,,.,,.........,,,  (47)

and,

40

  ffffffffffffffff NNNNNNNNNNNNNNNNN 16151413121110987654321 ,,,,,,,,,,,,,,,,  (48)

The definitions of the new frequency-dependent trigonometric shape functions for flexure, N1

through N16, are explicitly presented in expression (49) through (64).


   

 

     
  ]2)())(sinh()sin()cosh()cos(2][2)(

))(sinh()sin()cosh()cos(2[]))1(sin()sinh(

))1(sinh()sin())1(cos()cosh())1(cosh()cos(

)cosh()][cos())1(sin()sinh())1(sinh()sin(

))1(cos()cosh())1(cosh()cos()cosh()[cos(

22

22

1











yyyyyyyyxx

xxxxxxxxxx

xxxxxxxx

xxyyyyyyyy

yyyyyyfN











 (49)

 

 

 

     
  ]2)())(sinh()sin()cosh()cos(2][2)(

))(sinh()sin()cosh()cos(2[]))1(sin()sinh(

))1(sinh()sin())1(cos()cosh())1(cosh()cos(

)cosh()][cos())1(cos()sinh()sinh())1(sinh()cos(

))1(cosh()sin()sin())1(sin()cosh([

22

22

2











yyyyyyyyxx

xxxxxxxxyyyy

yyyyyyyy

yyxxxxxx

xxxxxxfN











(50)

 
 

 

     
  ]2)())(sinh()sin()cosh()cos(2][2)(

))(sinh()sin()cosh()cos(2[]))1(sin()sinh(

))1(sinh()sin())1(cos()cosh())1(cosh()cos(

)cosh()][cos())1(cos()sinh()sinh())1(sinh()cos(

))1(cosh()sin()sin())1(sin()cosh([

22

22

3











yyyyyyyyxx

xxxxxxyyxxxx

xxxxxxxx

xxyyyyyy

yyyyyyfN











(51)

 
  

 

    
  ]2)())(sinh()sin()cosh()cos(2][2)(

))(sinh()sin()cosh()cos(2[]))1(cos(

)sinh()sinh())1(sinh()cos())1(cosh()sin()sin(

))1(sin()cosh(][))1(cos()sinh()sinh())1(sinh()cos(

))1(cosh()sin()sin())1(sin()cosh([

22

22

4











yyyyyyyyxx

xxxxxxyxyxx

xxxxxxxx

xxxyyyyyy

yyyyyyfN











(52)


   

 

     
  ]2)())(sinh()sin()cosh()cos(2][2)(

))(sinh()sin()cosh()cos(2[])sinh()sin(

)sin()sinh()cos()cosh()cosh()cos())1(cosh(

))1(][cos())1(sin()sinh())1(sinh()sin(

))1(cos()cosh())1(cosh()cos()cosh()[cos(

22

22

5











yyyyyyyyxx

xxxxxxxxxx

xxxxxxxxx

xyyyyyyyy

yyyyyyfN











(53)

41

  



    

  
  ]2)())(sinh()sin(

)cosh()cos(2][2)())(sinh()sin()cosh()cos(2[

]))1(sin()sinh())1(sinh()sin())1(cos()cosh(

))1(cosh()cos()cosh()][cos()cos()sinh()sinh()cos(

))1(sinh()cosh()sin()sin()cosh())1(sin([

22

22

6











yyyyyy

yyxxxxxxxxxx

yyyyyyyyyy

yyyyxxxx

xxxxxxxxfN











(54)

 
 

 

     
  ]2)())(sinh()sin()cosh()cos(2][2)(

))(sinh()sin()cosh()cos(2[])sinh()sin(

)sin()sinh()cos()cosh()cosh()cos())1(cosh(

))1(][cos())1(cos()sinh()sinh())1(sinh()cos(

))1(cosh()sin()sin())1(sin()cosh([

22

22

7











yyyyyyyyxx

xxxxxxyyxxxx

xxxxxxxxx

xyyyyyy

yyyyyyfN











(55)

 
  

 

    
  ]2)())(sinh()sin()cosh()cos(2][2)(

))(sinh()sin()cosh()cos(2[])cos(

)sinh()sinh()cos())1(sinh()cosh()sin()sin()cosh(

))1(sin(][))1(cos()sinh()sinh())1(sinh()cos(

))1(cosh()sin()sin())1(sin()cosh([

22

22

8











yyyyyyyyxx

xxxxxxyxyxx

xxxxxxxxx

xxyyyyyy

yyyyyyfN











(56)


   

 

     
  ]2)())(sinh()sin()cosh()cos(2][2)(

))(sinh()sin()cosh()cos(2[])sinh()sin(

)sin()sinh()cos()cosh()cosh()cos())1(cosh(

))1(][cos()sinh()sin()sin()sinh(

)cos()cosh()cosh()cos())1(cosh())1([cos(

22

22

9











yyyyyyyyxx

xxxxxxxxxx

xxxxxxxxx

xyyyyyyyy

yyyyyyfN











(57)

  



    

  
  ]2)())(sinh()sin(

)cosh()cos(2][2)())(sinh()sin()cosh()cos(2[

])sinh()sin()sin()sinh()cos()cosh(

)cosh()cos())1(cosh())1(][cos()cos()sinh()sinh()cos(

))1(sinh()cosh()sin()sin()cosh())1(sin([

22

22

10











yyyyyy

yyxxxxxxxxxx

yyyyyyyyyy

yyyyxxxx

xxxxxxxxfN











(58)

 
 

 

     
  ]2)())(sinh()sin()cosh()cos(2][2)(

))(sinh()sin()cosh()cos(2[])sinh()sin(

)sin()sinh()cos()cosh()cosh()cos())1(cosh(

))1(][cos()cos()sinh()sinh()cos())1(sinh(

)cosh()sin()sin()cosh())1(sin([

22

22

11











yyyyyyyyxx

xxxxxxyyxxxx

xxxxxxxxx

xyyyyyy

yyyyyyfN











(59)

42

 
  

 

    
  ]2)())(sinh()sin()cosh()cos(2][2)(

))(sinh()sin()cosh()cos(2[])cos(

)sinh()sinh()cos())1(sinh()cosh()sin()sin()cosh(

))1(sin(][)cos()sinh()sinh()cos())1(sinh(

)cosh()sin()sin()cosh())1(sin([

22

22

12











yyyyyyyyxx

xxxxxxyxyxx

xxxxxxxxx

xxyyyyyy

yyyyyyfN











(60)



   

 

     
  ]2)())(sinh()sin()cosh()cos(2][2)(

))(sinh()sin()cosh()cos(2[])sinh()sin(

)sin()sinh()cos()cosh()cosh()cos(

))1(cosh())1(][cos())1(sin()sinh())1(sinh()sin(

))1(cos()cosh())1(cosh()cos()cosh()[cos(

22

22

13











yyyyyyyyxx

xxxxxxyyyy

yyyyyyyy

yyxxxxxxxx

xxxxxxfN











(61)

 

 

 

     
  ]2)())(sinh()sin()cosh()cos(2][2)(

))(sinh()sin()cosh()cos(2[])sinh()sin(

)sin()sinh()cos()cosh()cosh()cos(

))1(cosh())1(][cos())1(cos()sinh()sinh())1(sinh()cos(

))1(cosh()sin()sin())1(sin()cosh([

22

22

14











yyyyyyyyxx

xxxxxxxxyyyy

yyyyyyyy

yyxxxxxx

xxxxxxfN











(62)

 
 

 

     
  ]2)())(sinh()sin()cosh()cos(2][2)(

))(sinh()sin()cosh()cos(2[]))1(sin()sinh(

))1(sinh()sin())1(cos()cosh())1(cosh()cos(

)cosh()][cos()cos()sinh()sinh()cos())1(sinh(

)cosh()sin()sin()cosh())1(sin([

22

22

15











yyyyyyyyxx

xxxxxxyyxxxx

xxxxxxxx

xxyyyyyy

yyyyyyfN











(63)

 

  
 

    
  ]2)())(sinh()sin()cosh()cos(2][2)(

))(sinh()sin()cosh()cos(2[])cos(

)sinh()sinh()cos())1(sinh()cosh()sin()sin()cosh(

))1(sin(][))1(cos()sinh()sinh())1(sinh()cos(

))1(cosh()sin()sin())1(sin()cosh([

22

22

16











yyyyyyyyxx

xxxxxxyxyxy

yyyyyyyyy

yyxxxxxx

xxxxxxfN











(64)

The aforementioned new trigonometric DFE shape functions are plotted against the polynomial

FEM shape functions for comparison, and will be presented and further discussed in the next

Chapter (Figures 8 through 15), and in Figures 20 through31in Appendix A. Although dependent

on the frequency ω elsewhere (see Figures32 to 43 in Appendix A), the trigonometric shape

functions for bending are independent of the frequency at the element boundaries and as such

they take the following values at each node. At node 1, N1f = 1 and N2f= N3f = N4f = 0. At the

43

second node, N5f = 1 and N6f = N7f = N8f = 0. Similarly at node 3, N9f = 1 and N10f = N11f= N12f

= 0. Finally, at node 4, N13f = 1 and N14f = N15f = N16f = 0.

Another important feature to note regarding the dependency of these shape function on the

natural frequency through the roots αx, αy,βxand βy, is that they canalso be applied to study the

static behaviour of thin rectangular plates when the natural frequency is set to zero as these

trigonometric shape functions then become identical to the polynomial shape functions used in

conventional FEM as mentioned in the beginning of this section.

Thusfar in this thesis the plate governing differential equation was derived starting from

Hamiltonian mechanics and the Classical Plate Theory (CPT) and a quasi-exact solution to the

plate governing equation was sorted. Building up on this quasi-exact solution, new trigonometric

basis functions and frequency dependant shape functions were also presented for a 4 node, 4-

DOF per node rectangular plate element. In the next Chapter this new solution will be used to

develop a Quasi-Exact Dynamic Finite Element Method (QDFE) for a thin rectangular plate. But

before forming the QDFE solution two conventional FEM formulations using 12-DOF and 16-

DOF elements will be developed to validate the QDFE results. Furthermore, a Dynamic

Coefficient Matrix Method (DCM) will also be presented followed by the graphical illustrations

of the QDFE shape functions and the numerical results for the 12-DOF FEM, 16-DOF FEM,

QDFE and DCM methods.

44

3. FREE VIBRATION OF A RECTANGULAR HOMOGENEOUS PLATE

The formulation of the QDFE method, which is essentially a finite element method in

itself, starts at the discretized weak integral form of the governing equation after the boundary

terms have vanished. In the conventional FEM method, this is where element discretization

begins and the polynomial shape functions are applied to form the element stiffness and mass

matrices. Thus, for this reason and for the purpose of validating the results produced by the

QDFE method, two conventional FEM formulations will be developed using 12-DOF and 16-

DOF rectangular plate elements in this chapter. Then starting from the discretized weak integral

form of the conventional 16-DOF FEM method, a QDFE solution will be developed using the

trigonometric shape functions presented in the previous chapter. Using the same solution to the

governing differential equation presented in Section 3.2, a DCM method will also be presented

for a 4 node, 4 DOF per node rectangular plate element. The surface plots for the QDFE shape

functions will be plotted against the surface plots for the polynomial based shape functions used

in conventional FEM in order to give the reader an opportunity to compare their identical nature

and finally, the numerical results for all the methods outline above will also be discussed.

3.1 Conventional Finite Element Method (FEM)

Consider a linearly elastic, homogeneous, isotropic, thin plate as shown in Figure 3 having

length, L, width, W’, and thickness, h. The thickness h is assumed to be much smaller compared

to the other characteristic dimensions as well as the wavelength. Furthermore, during vibration

the rotary inertia and shear effects are neglected and only small deflections are assumed; i.e.

linear vibration.

Figure 3: Thin plate used for vibration analysis

45

In what follows, the conventional Finite Element solution is formulated using two different thin

rectangular plate elements. The first element is a 12–DOF element and the second element is a

16–DOF element. The 12–DOF element has 3–DOF per node, where the first DOF is the flexural

(lateral) displacement w, along z-axis. The other two DOF‘s, in this case, are the rotations

around x-axis, φx , andy-axis, φy , respectively. The 16–DOF element has 4–DOF per node,

where again the first three DOF‘s of each node are the same asthose of the 12–DOF element,

with an additional degree of freedom per node, that is the curvature of the x-y plane, φxy. Both

FEM formulations are included below as references, and to pave the road for the QDFE

formulation. Both 12- and 16-DOF FEM elements were implemented in MATLAB
®
 codes,

where the elements are then assembled and the applicable boundary conditions are enforced to

generate the linear Eigenproblem of the system. These codes are used to generate benchmark

natural frequency/mode data for comparison and validation purposes, where such data are not

available in the open literature.

3.1.1 Finite Element Analysis with 12–DOF Rectangular Element

Figure 4: 4-Node, 3–DOF per node rectangular plate element

46

Figure 4 is an illustration of the 12–DOF rectangular element used in the development of

the first plate element. In order to eliminate time dependency in Eq. (25), free, linear, harmonic

vibration is considered and the following transformation is used.

tiWew  (65)

where, W is the transverse displacement amplitude. Substituting (65) into Eq. (25), the latter can

then be re-written in the following form, i.e., in terms of frequency, without the time

dependency.

02 2

4

4

22

4

4

4























hW

y

W

yx

W

x

W
D  (66)

where, ω is the natural frequency. The definitions of the bending moments given in Eqs. (20),

(22) and (24) can be written in the matrix form as follows.











































































yx

W

y

W
x

W

D

M

M

M

xy

y

x

2

2

2

2

2

)1(00

01

01







 (67)

As will be further discussed later, the FEM formulation heavily depends on the application of the

weighted residual method. At that point, it will be easier to spot the boundary terms and obtain

the weak integral form when the governing partial differential equation is written in terms of

bending and twisting moments. Therefore, the moment definitions in Eq. (67) are back-

substituted into Eq. (66) to obtain the following form:

02 2

2

22

2

2





























hW

y

M

yx

M

x

M yxyx  (68)

The Galerkin method of weighted residuals [(118)108] is then used to develop the integral form

of Eq. (68). This is done by multiplying Eq. (68) by the weighting function, δW, and integrating

over the area of the plate, which gives:

47

02

2

222

2

2



































 

A

yxyxyx

f WhW
y

M

yx

M

yx

M

x

M
W  (69)

Using Green‘s theorem [117], once on each of the derivative terms, results in the following

expression:














































  dA

y

W

y

M

y

W

x

M

x

W

y

M

x

W

x

M

A

yxyxyx)()()()(

   








































A S S

y

xyy

x

xyx WdSn
x

M

y

M
WdSn

y

M

x

M
dAWhW )(2

 (70)

where, nx and ny are the components of the outward unit normal vector. Noting that the terms in

parentheses in the boundary integrals are the definitions of the shear forces and replacing these

with Qx and Qy gives:














































  dA

y

W

y

M

y

W

x

M

x

W

y

M

x

W

x

M

A

yxyxyx)()()()(

  
A S S

yyxx WdSnQWdSnQdAWhW )(2

 (71)

The application of the Green‘s theorem once more results in the weak integral form [117]of Eq.

(69), written as:

 






















AA

yxyx dAWhWdA
y

W
M

yx

W
M

x

W
M)(

)()(
2

)(2

2

22

2

2




      0
)()(










  dS

y

W
nMnMdS

x

W
nMnMWdSnQnQ

S

yyxxy

S

yxyxx

S

yyxx




 (72)

In Eq. (72), which is fully equivalent to Eq. (69), the boundary integral terms vanishand thus the

following terms will remain.

 






















AA

yxyx dAWhWdA
y

W
M

yx

W
M

x

W
M 0)(

)()(
2

)(2

2

22

2

2




 (73)

48

Back substituting the moment definitions shown in Eq. (67) in Eq. (73) in order to write the

equation in terms of the flexural displacement,w,then results in:

 

0
)()(

)(
12

)()(

2

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

































































































dAWhW
y

W

y

W
D

y

W

x

W
D

yx

W

yx

W
D

x

W

y

W
D

x

W

x

W
D

A














 (74)

The expression in Eq. (74) also satisfies the principle of virtual work, written as:

0INT EXTW W W   (75)

where,

0EXTW  (76)

for free vibrations and thus,

INT fW W (77)

The total virtual work, internal virtual work and external virtual work components are denoted

by ̅, ̅ and ̅ ,respectively.

The next step is to formulate the finite element solution. The discretization is performed using

the 4-node, 3-DOF freedom per node element, as shown in Figure 4, such that,

#

1 1

elements elements
k k

INT f

k k

W W W W
 

    (78)

The shape functions used to develop the classical Finite Element formulation are developed

based on the following 12-term polynomial non-nodal displacement function,

Term 1 Term 2 Term 3

Term 4 Term 5 Term 6

49

yxxyxyxyxyxw 2

8

3

7

2

65

2

4321),( 

3

12

3

11

3

10

2

9 xyyxyxy  
 (79)

Thus, the above polynomial representing the deflection field over the finite element depicted in

Figure 4 (designated by subscript e) can be written as:

 [L]ew  (80)

where,

],,3,,,,,,,,,1[][3322322 xyyxyxyyxxyxyxyxL  (81)

and,

   T

121110321 ,,.,,.........,,   (82)

Introducing the element displacement matrix,

   1 2 3 4, , ,
T

e     (83)

where, δi (i = 1, 2, 3, 4) are the nodal displacements such that the nodal displacement of the first

node can be written as,

        Tyx

T
wywxww 1111111 ,,/,/,   (84)

and the nodal displacements of the remaining nodes take an identical form. If the unknown

coefficients αm (m = 1, 2, 3,…, 12) are expressed via the nodal displacements above, then the

following relationship can be written.

   []e C  (85)

where, the matrix [C] is a 12 x 12 matrix whose constituent elements depend on the x- and y-

coordinates of the nodes of the finite element illustrated in Figure 4. The above relation can be

then rearranged to determine the unknown coefficients, { }, as follows:

50

   1[] eC  (86)

Substituting Eq. (86) in Eq. (80) results in the nodal displacement function, written as:

 1[L][C]e ew  (87)

where,

1[] [][]N L C  (88)

are the cubic shape functions used to develop the finite element formulation. Given below are the

12 shape functions that result from the above mathematical manipulations (see also [117]).

For node 1:





























































3232

1 231231
b

y

b

y

a

x

a

x
N (88-a)




















































322

2 2311
b

y

b

y

a

x
xN

 (88-b)




















































232

3 1231
b

y
y

a

x

a

x
N

 (88-c)

For node 2:





























































3232

4 23123
b

y

b

y

a

x

a

x
N (88-d)






























































3222

5 231
b

y

b

y

a

x

a

x
xN

 (88-e)




















































232

6 123
b

y
y

a

x

a

x
N

 (88-f)

51

For node 3:




























































3232

7 2323
b

y

b

y

a

x

a

x
N (88-g)





























































3222

8 23
b

y

b

y

a

x

a

x
xN

(88-h)































































b

y

b

y
y

a

x

a

x
N

2232

9 23

(88-i)

For node 4:




























































3232

10 23231
b

y

b

y

a

x

a

x
N (88-j)



















































322

11 231
b

y

b

y

a

x
xN

(88-k)































































b

y

b

y
y

a

x

a

x
N

2232

12 231

(88-l)

Introducing the element displacements expressed (interpolated) using the above shape functions

(88-a through 88-l) and the nodal displacements (see Eq. (87)), into expression (74), leads to the

element stiffness and mass matrices. The element matrices, when assembled within the FEM

code written in MATLAB
®
, will result in the system‘s linear Eigenvalue problem shown in Eq.

(89).

   012

2

12  nn WMKW 

  0det 12

2

12  MK 

 (89)

Here, the subscript 12 indicates that all ensuing matrices are unique to the 12–DOF FEM

formulation. [K]12 is the global stiffness matrix and [M]12 is the global mass matrix. Boundary

conditions are also enforced within the MATLAB
®
 code. The five matrices (90) to (94) shown

below ([kie]12, i=1-5), are all sub–matrices that, when summed up, result in the final element

52

stiffness matrix, [ke]12, marked as (95). The right-hand side subscript e denotes that they are

element stiffness matrices. The subscript on the left-hand side refers to the term in Eq. (35)

which gives rise to each matrix. For example, matrix, [k1e], is an element stiffness matrix that

results from the first term of Eq. (35).

 






















xxxxxxxx

xxxxxxxx

e

NNNN

NNNN

Dk

1212112

12111

121

__

||

__

 (90)

 






















yyxxyyxx

yyxxyyxx

e

NNNN

NNNN

Dk

1212112

12111

122

__

||

__



 (91)

   






















xyxyxyxy

xyxyxyxy

e

NNNN

NNNN

Dk

1212112

12111

123

__

||

__

12 

 (92)

 






















xxyyxxyy

xxyyxxyy

e

NNNN

NNNN

Dk

1212112

12111

124

__

||

__



 (93)

 






















yyyyyyyy

yyyyyyyy

e

NNNN

NNNN

Dk

1212112

12111

125

__

||

__

 (94)

Thus, the final element stiffness matrix is:

           
12512412312212112 eeeeee kkkkkk  (95)

Matrix (96) is the element mass matrix.

53

 






















1212112

12111

2

12

__

||

__

NNNN

NNNN

hm  (96)

A 4-node, 3–DOF per node rectangular element satisfies C
0
 continuity [117], and it is quite

suitable for problems that require only continuity of the field variable w at the element

boundaries. For problems requiring C
0
 continuity, it is customary to use the nodal values of w to

be the DOF of the element. Since w varies along an element edge, inter-element continuity is

achieved when there are sufficient nodes and hence nodal values of w along the edges of the

element that will allow for the determination of the variation. For example, if w displays a

quadratic variation across a certain element boundary, then inter-element continuity of the field

variable can only be achieved if there are three nodal values of w along that edge. To this end,

there should be three nodes along the boundary [117]. Thus, by continuing to add nodes along

element edges and through introducing extra DOF‘s to an element it is possible to easily satisfy

the C
0
 continuity requirement in an infinite number of ways. Generally, using such higher–order

elements rapidly increases the accuracy of convergence as opposed to using lower–order

elements [117]. While, this does not imply that one should always make higher–order elements a

first choice in FEM analysis, one main drawback of the 4-node, 3–DOF per node (12 DOF in

total) C
0
-continuous element, developed and presented in this section is that it only provides

continuity of the dependant field variable and not its first derivatives.

C
1
 continuity is an extremely important requirement for plate bending analysis. What

C
1
continuity means is that inter-element continuity is achieved not only for the field variable w,

but also for its normal derivative ∂w/∂n. To preserve C
1
 continuity one must ensure that w and

∂w /∂n are uniquely specified along the element boundaries by the degree of freedom assigned to

the nodes along a particular boundary. In physical terms, the inability of the 12–DOF element

to satisfy C
1
 continuity means that the normal slope is discontinuous between any two adjacent

elements because the normal slope has not been uniquely specified by the common nodal DOF‘s

shared by the elements. Thus, such an element becomes a non-confirming or incompatible

element [117].

54

For plate bending problems exploiting the Classical Plate Theory (CPT), the field variable is the

flexural displacement of the midplane and it is essential that the displacement and its derivative

are continuous across the element boundaries. Since, the functional for plate bending consists of

second order derivatives, this is not only a physical requirement but also a mathematical

requirement that will ensure convergence as element size is reduced. Thus, the failure of the 12–

DOF element to provide C
1
 continuity calls for the need for a higher–order element and to this

end a 4-node, 4–DOF per node element is used to re-formulate the conventional Finite Element

solution.

3.1.2 Finite Element Analysis with 16 – DOF Rectangular Element

Figure 5: Conforming four node rectangular element with 16 – DOF ensuring C
1
 continuity

Figure 5 depicts the 16 – DOF element studied. For this FEM formulation an incomplete

quintic polynomial was assumed excluding the x
4
, x

4
y, xy

4
 and y

4
 terms but incorporating the x

3
y

3

term[117]. The resulting 16 unknown coefficients were found using the same procedure outlined

in the previous section. With an additional fourth DOF, ∂
2
w/∂x∙∂y, at each node, this element is

fully compatible and satisfies C
1
 continuity. That is, it ensures continuity of the normal

derivatives across adjacent element boundaries.

The formulation of the conventional FEM solution using the 16–DOF element starts from the

point where the polynomial approximation function is defined. All mathematical manipulations

55

before and after this stage are exactly the same as for 12–DOF formulation and as such those

steps are not repeated here for brevity. All that changes after this step are the definitions of the

polynomial vector, [L], the unknown coefficient vector, {α}, and the nodal displacement vector,

{δi}. The 16-term function used to develop the classical Finite Element formulation is shown in

Eq. (97)[117].

yxxyxyxyxyxw 2

8

3

7

2

65

2

4321),( 

33

16

32

15

23

14

3

13

22

12

3

11

3

10

2

9 yxyxyxxyyxyxyxy  
 (97)

The polynomial vector, [L], becomes:

 ],,,,,,,,,,,,,,,1[3332233223322322 yxyxyxxyyxyxyxyyxxyxyxyxL  (98)

The unknown coefficient vector will now be:

 ],,.,,.........,,[161514321 L (99)

The nodal displacement vector will now have four DOF‘s per node instead of three as in the

previous case. For example, the nodal displacements for the first node will be:

          Txyyx

T
wyxwywxww 11111

2

1111 ,,,/,/,/,   (100)

The [C] matrix for this FEM formulation will have dimensions of 16 x 16. Performing the exact

same mathematical manipulations as shown in Eq. (41) and Eqs. (46 – 49) will yield the 16

shape functions shown in Eqs. (101-a) to (101-p).

  16151413121110987654321 ,,,,,,,,,,,,,,,, NNNNNNNNNNNNNNNNyxN  (101)

where, N1 to N16 are expressed as follows.

56

For node 1:

   233233

331 3232
1

byybaxxa
ba

N  (101-a)

    2332

332 32
1

byybaxax
ba

N  (101-b)

    2233

333 32
1

byyaxxab
ba

N  (101-c)

    22

334

1
byaxabxy

ba
N  (101-d)

For node 2:

   23332

335 3223
1

byybxax
ba

N  (101-e)

   23323

336 32
1

byybaxxa
ba

N  (101-f)

    232

337 23
1

byyxaxb
ba

N  (101-g)

   22

338

1
byaxxabxy

ba
N  (101-h)

For node 3:

   3232

339 2323
1

ybyxax
ba

N  (101-i)

   3223

3310 23
1

ybyaxxa
ba

N  (101-j)

57

   2332

3311 23
1

byyxaxb
ba

N  (101-k)

   byyaxxabxy
ba

N  22

3312

1
 (101-l)

 For node 4:

   32233

3313 2332
1

ybyaxxa
ba

N  (101-m)

    322

3314 23
1

ybyaxax
ba

N  (101-n)

   23233

3315 32
1

byyaxxab
ba

N  (101-o)

    byyaxabxy
ba

N  22

3316

1
 (101-p)

Once again, discretization leads to element and mass stiffness matrices, however, the element

matrices for the 16 – DOF formulation are 16 x 16 in dimension. The final element stiffness

matrix, [ke]16, marked as (102), is comprised of five sub–matrices, [kie]16, which are numbered

(103) to (107). The notations used for these matrices are similar to those used before.

16516416316216116][][][][][][eeeeee kkkkkk  (102)

where,

 






















xxxxxxxx

xxxxxxxx

e

NNNN

NNNN

Dk

1616116

16111

161

__

||

__

 (103)

58

 






















yyxxyyxx

yyxxyyxx

e

NNNN

NNNN

Dk

1616116

16111

162

__

||

__



 (104)

   






















xyxyxyxy

xyxyxyxy

e

NNNN

NNNN

Dk

1616116

16111

163

__

||

__

12 

 (105)

 






















xxyyxxyy

xxyyxxyy

e

NNNN

NNNN

Dk

1616116

16111

164

__

||

__



 (106)

 






















yyyyyyyy

yyyyyyyy

e

NNNN

NNNN

Dk

1616116

16111

165

__

||

__

 (107)

Matrix (108) is the element mass matrix.

 






















1616116

16111

2

16

__

||

__

NNNN

NNNN

hm 

 (108)

As with the 12 – DOF formulation, another MATLAB
®
 code was written to assemble the

element stiffness and mass matrices which gave rise to the global element, [K]16 and global mass,

[M]16 matrices, respectively. Applying various boundary conditions, an Eigenvalue problem

similar to that described in Eq. (89) was formed and solved to obtain the Eigensolutions for the

plate system.

59

3.2 Quasi-Exact Dynamic Finite Element Method (QDFE)

In this section a Quasi-Exact Dynamic Finite Element (QDFE) formulation is developed for

the homogeneous, isotropic, linearly elastic, thin, rectangular Steel plate depicted in Figure 3.

The new trigonometric, frequency dependant shape functions (Section 3.3)based on the quasi-

exact solutions to the plate governing equation (Section 3.2)will be used to develop the QDFE

method. As mentioned previously, the QDFE method is a hybrid and intermediate method that

combines the accuracy of the exact methods as well as the adaptability of the conventional FEM

method to obtain a better finite element model. Therefore, the starting point of the QDFE

formulation will be the discretized weak form of the equation from the conventional FEM shown

in Eq. (109), after the boundary terms vanished.

   

dxdyWhW
y

W

y

W
D

y

W

x

W
D

yx

W

yx

W
D

x

W

y

W
D

x

W

x

W
DyxW

j

j

j

j

y

y

x

x

k

f































































































  

 














2

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

)()(

)(
12

)()(
,

1 1

(109)

The green‘s theorem is applied, and integration by parts are carried out on each term in Eq.

(109), except the mass Term 6. Terms 1 and 4 are integrated twice with respect to x, while Terms

2 and 5 are integrated twice with respect to y. Before integrating Term 3, it is re-written as

follows and a special set of integration by part will be performed.

dA
yx

w

yx

w
DdA

yx

w

yx

w
D

AA
















 

)(
)1(

)(
)1(

2222 



 (109-a)

Two sets of integration by parts will be applied to Term (a) of Eq. (109-a), firstly with respect to

x and secondly with respect to y. Similarly, for Term (b) of Eq. (109-a) another two sets of

(b) (a)

Term 1 Term 2 Term 3

Term 4 Term 5 Term 6

60

integration by parts will be carried out, however, this time it will first be with respect to y and

then with respect to x. Completing all the above-mentioned integration by parts leads to the

following equation.

dAwhwdA
y

w
DwdA

yx

w
wD

dA
yx

w
wDdA

yx

w
wDdA

x

w
Dw

dSn
yx

w
DwdSn

y

w
DwdSn

yx

w
DwdSn

x

w
Dw

dSn
yx

w

y

w
DdSn

y

w

y

w
DdSn

x

w

y

w
D

dSn
yx

w

x

w
DdSn

y

w

x

w
DdSn

x

w

x

w
D

AAA

AAA

y

S

y

S

x

S

x

S

S

xy

S

y

S

S

yx

S

x

S














































































































































































2

4

4

22

4

22

4

22

4

4

4

2

3

3

3

2

3

3

3

2

2

2

2

2

2

2

2

2

2

)()(

)()(
)1(2

)(

)()()()(

)(
)1(

)()(

)(
)1(

)()(

 (110)

The terms underlined in color are the boundary terms which are described as a product of the

virtual loads and the real displacements. Underlined in red, blue and purple are the expressions

for the moments Mx, My and Mxy, respectively. Furthermore, the term underlined in green

represents the shear force Qx and the expression underlined in yellow represents the shear force

Qy. Lastly, underlined in orange is the governing partial differential equation written in terms of

virtual displacements. Eq. (110) can also be re-written as follows using the shear force

definitions given in Eqs. (5-a) and (6-a) and the expressions for bending moment outlined in Eqs.

(20), (22) and (24). The same color scheme above was used to illustrate how each expression

was condensed.

     

wdAwhdA
y

w
DdA

yx

w
DdA

x

w
D

wdSnQnQdS
y

w
nMnMdS

x

w
nMnM

AAAA

S

yyxx

S

xxyyy

S

yxyxx










































 2

4

4

22

4

4

4)()(
2

)(
 (111)

61

As mentioned previously, the expression underlined in orange above is the governing partial

differential equation written in terms of virtual lateral displacement δw. Introducing ξ=x/a and

η=y/b into expression (110) leads to its non–dimensionalized form, written as:

 

   























































































































































































































































































































































1

0

1

0

2

1

0

1

0

4

4

3

1

0

1

0

22

41

0

1

0

4

4

3

1

0

1

0
2

31

0

1

0
3

3

3

1

0

1

0
2

31

0

1

0
3

3

3

1

0

1

0

21

0

1

0
2

2

3

1

0

1

0
2

2

1

0

1

0

21

0

1

0
2

21

0

1

0
2

2

3

)()(2)(

)()(

)()(

)()1()()(

)()1()()(








































































































































































































dwdhwab

dd
w

w
b

Da
dd

w
w

ab

D
dd

w
w

a

Db

d
w

w
ab

D
d

w
w

b

Da

d
w

w
ab

D
d

w
w

a

Db

d
ww

ab

D
d

ww

b

Da
d

ww

ab

D

d
ww

ab

D
d

ww

ab

D
d

ww

a

Db

(112)

Thus, exploiting Eq. (112) and the trigonometric shape functions defined in Eqs. (49) to (64)

results in the dynamic element stiffness matrix [kDS], which consists of ten sub-matrices. The

two sub- matrices resulting from the bending moment Mx are as follows.

  











d

NNNN

NNNN

a

Db
kMx 







































































1

0

1

2

16

2

16

2

1

2

16

2

16

2

1

2

1

2

1

31

0

__

||

__

 (113)

  














d

NNNN

NNNN

ab

D
kMx 







































































1

0

1

2

16

2

16

2

1

2

16

2

16

2

1

2

1

2

1

2

0

__

||

__

 (114)

where,

62

     21 MxMxMx kkk 

 (115)

The bending moment My also contributes two sub – matrices towards the element dynamic

stiffness matrix [kDS], written as:

  














d

NNNN

NNNN

ab

D
kMy

1

0

1

0

2

16

2

16

2

1

2

16

2

16

2

1

2

1

2

1

1

__

||

__









































































 (116)

  













d

NNNN

NNNN

b

Da
kMy

1

0

1

0

2

16

2

16

2

1

2

16

2

16

2

1

2

1

2

1

32

__

||

__









































































 (117)

where,

][][][21 MyMyMy kkk 

 (118)

The following matrices also appear due to actions of the twisting moment, Mxy.

  














d

NNNN

NNNN

ab

D
kMxy 




































































 


1

0

1

16

2

161

2

16

16

2

11

2

1

1

0

__

||

__

)1(

 (119)

  














d

NNNN

NNNN

ab

D
kMxy

1

0

1

0
16

2

161

2

16

16

2

11

2

1

2

__

||

__

)1(






































































 


 (120)

where,

63

][][][21 MxyMxyMxy kkk 

 (121)

Numbered (122) and (123) are the two sub – matrices that is resulted due to the shear force, Qx.

  













d

N
N

N
N

N
N

N
N

a

Db
kQx

1

0

1

0

3

16

3

163

1

3

16

3

16

3

13

1

3

1

31

__

||

__

























































 (122)

  













d

N
N

N
N

N
N

N
N

ab

D
kQx

1

0

1

0

2

16

3

162

1

3

16

2

16

3

12

1

3

1

2

__

||

__

























































 (123)

where,

][][][21 QxQxQx kkk 

 (124)

The shear force Qy contributes the following sub – matrices towards the element stiffness matrix,

[kDS].

  













d

N
N

N
N

N
N

N
N

b

Da
kQy

1

0

1

0

3

16

3

163

1

3

16

3

16

3

13

1

3

1

31

__

||

__

























































 (125)

  













d

N
N

N
N

N
N

N
N

ab

D
kQy

1

0

1

0

2

16

3

162

1

3

16

2

16

3

12

1

3

1

2

__

||

__

























































 (126)

where,

64

][][][21 QyQyQy kkk 

 (127)

The element stiffness matrices arising from the expression underlined in orange in Eq. (112) are

marked as (128), (129) and (130).

   






















































1

0

1

0

4

16

4

164

1

4

16

4

16

4

14

1

4

1

31

__

||

__













dd

N
N

N
N

N
N

N
N

a

Db
kG

 (128)

  











dd

N
N

N
N

N
N

N
N

ab

D
kG  























































1

0

1

0

22

16

4

1622

1

4

16

22

16

4

122

1

4

1

2

__

||

__

2

 (129)

   






















































1

0

1

0

4

16

4

164

1

4

16

4

16

4

14

1

4

1

33

__

||

__













dd

N
N

N
N

N
N

N
N

b

Da
kG

 (130)

The element mass matrix arising from the governing differential equation written in terms of

virtual work is shown in Eq. (131).

   






 

















1

0

1

0

1616116

16111

2

__

||

__








 dd

NNNN

NNNN

habmDS

 (131)

The final element dynamic stiffness matrix [kDS] is determined by assembling these ten sub –

matrices, leading to the discretized (elemental) expression of the virtual work, as shown in Eq.

(132).

                  
321 GGGQyQxMxyMyMxDS kkkkkkkkk  (132)

65

Where necessary and applicable, the global dynamic stiffness matrix, [KDS], and the global mass

matrix, [KM], are then obtained by assembling all the element stiffness and mass matrices and

enforcing the system boundary conditions. This process is performed using a program written in

MATLAB
®
 software as shown in Appendix B, which results in the Eigenvalue problem

expressed as Eq. (133).

   02  nDSDSn WMKW 

  0det 2  DSDS MK 

 (133)

Various classical boundary conditions were investigated. The natural frequencies of the system

are the values of ω that yield a zero determinant for the Eigenvalue problem in Eq. (133),

evaluated using a determinant search. This is done by sweeping the frequency domain to find

particular values of ω that produce a zero determinant. The Eigenvectors corresponding to these

natural frequencies provide the mode shapes of the system.

66

3.3 Dynamic Coefficient Matrix Method (DCM)

In this section, a new Dynamic Coefficient Matrix Method (DCM) based on the quasi-exact

solutions to the plate governing equation will be formed. This analytical method, previously

used by some researchers to model the free vibration behaviour of various structural elements,

can be considered as a special case of Dynamic Stiffness Method (DSM), developed by Banerjee

and his co-workers [67-78]. However, to the best of authors knowledge, this method has never

been attempted before for the free vibration of thin plates, and using the novel semi-exact

solution to the governing equation, introduced earlier in this report.

The starting point of the DCM method is the quasi-exact general solution to the differential

equation, governing the free vibration of thin rectangular plates, developed and presented for the

first time as Eq. (39), in Section 3.2. Thus, using this quasi-exact general solution the non-nodal

flexural displacement, W(x ,y), anywhere in the plate can be written in the matrix form as:

  116161

44

43

12

11

161521),(or ;),(xx ETyxW

E

E

E

E

TTTTyxW 


































 (134)

where, the row vector 〈 〉is the solution vector which contains the roots to the plate governing

differential equation and the column vector {E} is the vector of unknown coefficients. The slope

along the x direction can then be written as follows.

    116161116161521),(xxixxxxxxx ETETTTTyx  (135)

In Eq. (135) the row vector 〈 〉 is determined by differentiating the solution vector 〈 〉 with

respect to x. Similarly, the slope along the y direction can be expressed as:

    116161116161521),(xxiyxyyyyy ETETTTTyx  (136)

67

where, the row vector 〈 〉is obtained by taking the derivatives of the roots T1 to T16 contained

within the with solution vector, with respect to y. The curvature of the plate, θxy(x, y), can also be

represented as follows.

    116161116161521),(xxixyxxyxyxyxyxy ETETTTTyx  (137)

where, the row vector,〈 〉, is determined by obtaining the derivatives of the solution vector

with respect x and y both.

The end conditions for the displacements, at the element extremities, are:

4444

3333

2222

1111

;;;,,0

;;;,,

;;;,0,

;;;,0,0

xyxyyyxx

xyxyyyxx

xyxyyyxx

xyxyyyxx

WWbyx

WWbyax

WWyax

WWyx

















 (138)

By applying the boundary conditions for displacements, i.e. substituting Eq. (138) in to Eqs.

(134) to (137) the following matrix relationship is obtained.

68

























































































































































































































44

43

42

41

34

33

32

31

24

23

22

21

14

13

12

11

,0

,0

,0

,0

,

,

,

,

0,

0,

0,

0,

0,0

0,0

0,0

0,0

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

W

W

W

W

byxixy

byxiy

byxix

byxi

byaxixy

byaxiy

byaxix

byaxi

yaxixy

yaxiy

yaxix

yaxi

yxixy

yxiy

yxix

yxi

xy

y

x

xy

y

x

xy

y

x

xy

y

x

























 (139)

The expression in Eq. (139) can be simplified and re-written as:

       1161616 xxDn EKW  (140)

where, [KD(ω)]is the 16x16 Dynamic Coefficient Matrix of the system. The Dynamic Coefficient

Matrix in Eq. (140) consists of the essential requirements to compute the natural frequencies for

a thin rectangular plate subjected to any boundary condition. In order to obtain the system‘s

natural frequencies using the DCM method, boundary conditions are applied on the Dynamic

Coefficient Matrix and a determinant sweep was conducted by sweeping the frequency domain

in search of frequencies at which the determinant of the Dynamic Coefficient Matrix will be

zero; i.e., .0|)(| DK

69

3.4 Numerical Results and Discussion

Consider a thin, homogeneous, isotropic, linearly elastic, rectangular plate made of Steel (E =

200 x 10
9
 MPa and ρ = 7800 kg/m

3
) having length L = 0.6m, width W = 0.4 m and thickness h =

0.004m. In order to validate the results from the 12-DOF and 16-DOF conventional FEM codes,

a modal analysis was carried out on the commercial software ANSYS
®
 using the same number

of elements used in the conventional FEM formulations. The number of elements required was

decided after carrying out a convergence analysis using the 12-DOF FEM-based MATLAB
®

code, to determine the number of elements required to drive down the error of the 5
th

 natural

frequency of the Cantilevered (C-C-C-F) plate to less than 10 percent when compared with the

exact results taken from Reference [118]. The same number of elements was then used for the

16-DOF FEM formulation and the ANSYS
®
 simulation for comparison.

The 12-DOF FEM formulation was used as the basis of the convergence analysis as its results

displayed a higher percentage of error compared to the ANSYS
®
 and 16-DOF FEM results.

Similarly, the 5
th

 natural frequency and the C-C-C-F boundary condition was used for the

convergence study as the percent error was comparatively higher for those cases too. The results

of the convergence analysis are shown in Figure 6. The convergence graphs for the ANSYS
®

model as well as the 16-DOF FEM solution are also included in Figure 6 for comparison.

Figure 6: Convergence analysis for the 5
th

 natural frequency of a C-C-C-F plate

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250

P
er

ce
n

t
E

rr
o
r

No. of Elements

12 DOF FEM
ANSYS
16 DOF FEM

70

A percent error of 10 percent is taken as the baseline. Therefore, Figure 6 shows that at least 196

elements are required for the 12-DOF FEM formulation, which is the weakest of the three

models in terms of convergence rate, to produce results with a percent error less than 10 percent.

Thus, 196 elements were used for the 12-DOF FEM model. Despite having higher rates of

convergence, 196 elements were also used for the 16-DOF FEM formulation as well as the

ANSYS
®
 simulation for ease of comparison. The 3D, 4 node, SHELL 181 element was used for

meshing in ANSYS
®
. This element has 6 DOFs per node and these are the three translations and

three rotations in the x-, y- and z-axes. Figure 7a is a sketch of the ANSYS
®
 SHELL 181 element

and Figure 7b is an illustration of the plate structure mesh created in ANSYS
®
.

Figure 7: (a) ANSYS
®

 SHELL 181 element used for meshing (b) Plate meshed in ANSYS
®

Before beginning, some descriptive comments regarding the notation for the boundary

conditions, which apply to the entire thesis, should be made here. The symbolism C-F-F-F for

example, will identify in clockwise motion, a rectangular plate with its left boundary clamped

and the bottom, right and top boundaries free. Figure 8 below shows the notation used for all the

classical boundary conditions investigated in this study.

(a) (b)

71

Figure 8: Notation for the classical boundary conditions investigated

Prior to capturing any results using the FEM codes, they were validated against ANSYS
®
 results.

Table 2 shows the 12-DOF FEM, 16-DOF FEM and ANSYS
®
 results for a cantilevered plate

with one edge clamped and the other three edges free (C-F-F-F).

72

Table 2: Comparison of 12-DOF FEM and 16-DOF FEM results with ANSYS
®

 simulation

Natural Frequencies (Hz) for C-F-F-F plate

Exact

Natural

Freqs.

[118]

16-DOF

FEM

% Error

16-DOF

FEM vs.

Exact

ANSYS % Error

ANSYS vs.

Exact

12-DOF

FEM

% Error

12-DOF

FEM vs.

Exact # Elem: 196 # Elem: 196 # Elem: 196

9.36 9.36 0.00 9.36 0.00 9.37 0.11

31.51 31.59 0.25 31.60 0.29 31.61 0.32

58.15 58.71 0.96 58.89 1.27 59.01 1.48

106.29 107.20 0.86 107.43 1.07 107.58 1.21

144.92 146.04 0.77 146.35 0.99 146.56 1.13

As can be seen from Table 2, the ANSYS
®

 frequency results match well with the exact results

and the results from the 12-DOF and 16-DOF FEM formulations. As far as the ANSYS
®

simulation is concerned, the highest error of 1.27 percent is found for the third natural frequency.

The highest error also occurs at the third natural frequency for both the 16-DOF FEM and 12-

DOF FEM formulations, and the errors are 0.96 percent and 1.48 percent, respectively. Thus, in

terms of accuracy, the ANSYS
®
 results falls in between the 16-DOF FEM and 12-DOF FEM

formulations. In other words, although the same number of elements are used the results

produced by the 16-DOF FEM formulation is more accurate than the ANSYS
®

 simulation while

those obtained from the 12-DOF FEM formulation are less accurate. The higher accuracy of the

16-DOF FEM formulation compared to the ANSYS
®
 simulation could be associated with the

fact that the 3D, 4-node, SHELL 181 element used in ANSYS
®
 takes into consideration shear

and warping effects that are not accounted for in the 16-DOF FEM code. The lower accuracy of

the 12-DOF FEM formulation compared to the ANSYS
®
 simulation and the 16-DOF FEM

formulation could be attributed to the lesser degrees of freedom associated with that element.

However, what is important to note here is that both the 12-DOF FEM and 16-DOF FEM

formulations are accurate and their respective FEM codes produce acceptable results that can be

used, in turn, for the verification of the results from the QDFE and DCM formulations.

Before presenting the numerical results for the QDFE method and comparing those with the

FEM results, the new trigonometric, frequency-dependant shape functions unique to the QDFE

method are plotted for an extremely low, almost zero frequency and compared against the FEM

73

shape functions to give the reader an opportunity to compare their similarity graphically. Thus,

the sixteen new QDFE shape functions for node 1 of the 16-DOF thin plate element are

presented adjacent to their corresponding FEM (incomplete quintic) polynomial shape functions

[119] in Figures 9 to 12. The QDFE shape functions for nodes 2, 3 and 4 are compared with the

FEM shape functions in Figures 26 through 37 in Appendix A.

Figure 9: QDFE (left) and FEM (right) shape function for w1 at node 1

Figure 10: QDFE (left) and FEM (right) shape function for θx1 at node 1

0

0.25

0.5

0.75

1

0

0.2

0.4

0.6

0.8

1

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
1f

 (
ξ

, η
)

ξ 0

0.25

0.5

0.75

1

0

0.2

0.4

0.6

0.8

1

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N

1
H

 (
ξ

, η
)

ξ

0

0.25

0.5

0.75

1

0

0.05

0.1

0.15

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
2

f
 (
ξ

, η
)

ξ
0

0.25

0.5

0.75

1

0

0.05

0.1

0.15

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
2

H

 (
ξ

, η
)

ξ

74

Figure 11: QDFE (left) and FEM (right) shape function for θy1 at node 1

Figure 12: QDFE (left) and FEM (right) shape function for θxy1 at node 1

As expected, for both the QDFE and FEM shape functions the flexural displacement w1 is 1 at

node 1, where the natural coordinates ξ and η are zero. The slope, θx1(∂w/∂ξ) is also 1 at node 1

for both shape functions N2f and N2H. Similarly, gradients of the shape functions N3f and N3H

which approximate the slope, θy1 (∂w/∂η) assumes a value of 1 at node 1, too. Furthermore, the

slope θxy1 which can also be expressed as ∂
2
w/∂ξ∂η becomes 1 at node 1 for both shape function

types. Thus, it is evident from Figures 9 through 12and Figures 26 through 37 in Appendix A

that the new QDFE shape functions are identical to the conventional FEM polynomial shape

functions [144] in how the displacements and slopes are approximated.

0

0.25

0.5

0.75

1

0

0.05

0.1

0.15
0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
3f

 (
ξ

, η
)

ξ
0

0.25

0.5

0.75

1

0

0.05

0.1

0.15

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
3

H

 (
ξ

, η
)

ξ

0

0.25

0.5

0.75

1

0

0.005

0.01

0.015

0.02

0.025

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
4

f
 (
ξ

, η
)

ξ 0

0.25

0.5

0.75

1

0

0.005

0.01

0.015

0.02

0.025

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
4

H

 (
ξ

, η
)

ξ

75

As mentioned in the Section 3.3, the new QDFE shape functions are also frequency-dependent.

That is, they oscillate and change with varying frequency ω. In order to illustrate their

dependency on frequency, in Figures 13 to 16 the QDFE shape functions, N1f, N2f, N3fand N4f are

plotted at two different frequencies ω1(82.06 Hz)and ω5(206.67 Hz)for a thin, homogeneous,

square plate of E = 200 x 10
9
 MPa, ρ = 7800 kg/m

3
, L = 0.5m, W = 0.5m and h = 0.004m. The

two frequencies ω1 and ω5are the second and fifth natural frequencies of the square plate. The

frequency dependant nature of the other 12 shape functions for nodes 2, 3 and 4 of the

rectangular element is illustrated in Figures 38 through 49 in Appendix A.

Figure 13: Shape function N1f at ω1 (left) and ω5 (right)

Figure 14: Shape function N2f at ω1 (left) and ω5 (right)

0

0.25

0.5

0.75

1

0

0.5

1

1.5

2

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
1

f
 (
ξ

, η
)

ξ

0

0.25

0.5

0.75

1

-1

-0.5

0

0.5

1

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
1

f
 (
ξ

, η
)

ξ

0

0.25

0.5

0.75

1

0

0.1

0.2

0.3

0.4

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
2f

 (
ξ

, η
)

ξ

0

0.25

0.5

0.75

1

-0.2

-0.1

0

0.1

0.2

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
2

f

(ξ
 ,
η

)

ξ

76

Figure 15: Shape function N3f at ω1 (left) and ω5 (right)

Figure 16: Shape function N4f at ω1 (left) and ω5 (right)

The natural frequencies produced by the QDFE and DCM methods for eleven different boundary

condition types are shown in Tables 3 through 13, and are compared with the results from the 12-

DOF FEM and 16-DOF FEM formulations, as well exact results found in the open literature

[118].

0

0.25

0.5

0.75

1

0

0.1

0.2

0.3

0.4
0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
3f

 (
ξ

, η
)

ξ

0

0.25

0.5

0.75

1

-0.2

-0.1

0

0.1

0.2

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
3f

 (
ξ

, η
)

ξ

0

0.25

0.5

0.75

1

0

0.02

0.04

0.06

0.08

0.1

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
4

f
 (
ξ

, η
)

ξ

0

0.25

0.5

0.75

1

-0.01

0

0.01

0.02

0.03

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
4

f

(ξ
 ,
η

)

ξ

77

Table 3: Natural frequencies for a homogeneous Steel plate with C-F-F-F B.C.

Mode

Number

Natural Frequencies (Hz) for C-F-F-F plate

Exact[118] DCM

QDFE
16-DOF

FEM

% Diff.

QDFE vs.

16-DOF

FEM

12-DOF

FEM

% Diff.

QDFE vs.

12-DOF

FEM
Elem: 1

Elem:

196

Elem:

196

1 9.36 9.36 9.36 9.36 0.00 9.37 0.11

2 31.51 31.51 31.51 31.59 0.25 31.61 0.32

3 58.15 58.15 58.15 58.71 0.96 59.01 1.48

4 106.29 106.29 106.29 107.20 0.86 107.58 1.21

5 144.92 144.92 144.92 146.04 0.77 146.56 1.13

Table 4: Natural frequencies for a homogeneous Steel plate with C-C-F-F B.C.

Mode

Number

Natural Frequencies (Hz) for C-C-F-F Plate

Exact[118] DCM

QDFE
16-DOF

FEM

% Diff.

QDFE vs.

16-DOF

FEM

12-DOF

FEM

% Diff.

QDFE vs.

12-DOF

FEM # Elem: 1
Elem:

196

Elem:

196

1 30.25 30.25 30.25 30.30 0.17 30.31 0.20

2 80.57 80.57 80.57 81.17 0.74 81.44 1.08

3 141.76 141.76 141.76 143.07 0.92 143.72 1.38

4 183.35 183.35 183.35 187.64 2.34 189.83 3.53

5 207.65 207.65 207.65 209.72 1.00 210.72 1.48

Table 5: Natural frequencies for a homogeneous Steel plate with C-F-C-F B.C.

Mode

Number

Natural Frequencies (Hz) for C-F-C-F Plate

Exact[118] DCM

QDFE
16-DOF

FEM

% Diff.

QDFE vs.

16-DOF

FEM

12-DOF

FEM

% Diff.

QDFE vs.

12-DOF

FEM # Elem: 1
Elem:

196

Elem:

196

1 59.83 59.83 59.83 60.59 1.27 60.98 1.92

2 83.23 83.23 83.23 83.89 0.79 84.18 1.14

3 165.07 165.07 165.07 170.69 3.40 173.73 5.25

4 191.58 191.58 191.58 192.79 0.63 193.29 0.89

5 199.80 199.80 199.80 204.96 2.58 207.66 3.93

78

Table 6: Natural frequencies for a homogeneous Steel plate with C-C-C-F B.C.

Mode

Number

Natural Frequencies (Hz) for C-C-C-F Plate

Exact[118] DCM

QDFE
16-DOF

FEM

% Diff.

QDFE vs.

16-DOF

FEM

12-DOF

FEM

% Diff.

QDFE vs.

12-DOF

FEM # Elem: 1
Elem:

196

Elem:

196

1 72.07 72.07 72.07 72.72 0.90 73.05 1.36

2 178.17 178.17 178.17 179.93 0.99 180.28 1.18

3 178.42 178.42 178.42 183.76 2.99 186.63 4.60

4 288.34 288.34 288.34 293.24 1.70 295.73 2.56

5 337.80 337.80 337.80 358.76 6.20 370.59 9.71

Table 7: Natural frequencies for a homogeneous Steel plate with C-C-C-C B.C.

Mode

Number

Natural Frequencies (Hz) for C-C-C-C Plate

Exact[118] DCM

QDFE
16-DOF

FEM

% Diff.

QDFE vs.

16-DOF

FEM

12-DOF

FEM

% Diff.

QDFE vs.

12-DOF

FEM # Elem: 1
Elem:

196

Elem:

196

1 164.52 164.52 164.52 166.02 0.91 166.81 1.39

2 254.00 254.00 254.00 258.58 1.80 261.06 2.78

3 402.53 402.53 402.53 414.12 2.88 420.43 4.45

4 405.06 405.06 405.06 423.75 4.61 434.35 7.23

5 485.62 485.62 485.62 497.29 2.40 503.57 3.70

Table 8: Natural frequencies for a homogeneous Steel plate with C-C-C-S B.C.

Mode

Number

Natural Frequencies (Hz) for C-C-C-S Plate

Exact[118] DCM

QDFE
16-DOF

FEM

% Diff.

QDFE vs.

16-DOF

FEM

12-DOF

FEM

% Diff.

QDFE vs.

12-DOF

FEM # Elem: 1
Elem:

196

Elem:

196

1 130.34 130.34 130.34 131.27 0.71 131.73 1.07

2 231.30 231.30 231.30 236.06 2.06 238.58 3.15

3 335.40 335.40 335.40 342.73 2.19 346.63 3.35

4 389.44 389.44 389.44 408.88 4.99 419.83 7.80

5 427.90 427.90 427.90 436.58 2.03 441.10 3.08

79

Table 9: Natural frequencies for a homogeneous Steel plate with C-C-S-S B.C.

Mode

Number

Natural Frequencies (Hz) for C-C-S-S Plate

Exact[118] DCM

QDFE
16-DOF

FEM

% Diff.

QDFE vs.

16-DOF

FEM

12-DOF

FEM

% Diff.

QDFE vs.

12-DOF

FEM # Elem: 1
Elem:

196

Elem:

196

1 121.45 121.45 121.45 122.28 0.68 122.66 1.00

2 207.00 207.00 207.00 210.22 1.56 211.84 2.34

3 330.95 330.95 330.95 338.36 2.24 342.28 3.42

4 349.98 349.98 349.98 364.02 4.01 371.70 6.21

5 412.25 412.25 412.25 420.33 1.96 424.43 2.95

Table 10: Natural frequencies for a homogeneous Steel plate with S-C-S-C B.C.

Mode

Number

Natural Frequencies (Hz) for S-C-S-C Plate

Exact[118] DCM

QDFE
16-DOF

FEM

% Diff.

QDFE vs.

16-DOF

FEM

12-DOF

FEM

% Diff.

QDFE vs.

12-DOF

FEM # Elem: 1
Elem:

196

Elem:

196

1 152.52 152.52 152.52 153.97 0.95 154.71 1.44

2 213.68 213.68 213.68 215.97 1.07 217.11 1.61

3 333.22 333.22 333.22 342.67 2.84 347.74 4.36

4 395.68 395.68 395.68 407.47 2.98 413.85 4.59

5 459.86 459.86 459.86 470.89 2.40 476.71 3.66

Table 11: Natural frequencies for a homogeneous Steel plate with S-F-S-F B.C.

Mode

Number

Natural Frequencies (Hz) for S-F-S-F Plate

Exact[118] DCM

QDFE
16-DOF

FEM

% Diff.

QDFE vs.

16-DOF

FEM

12-DOF

FEM

% Diff.

QDFE vs.

12-DOF

FEM # Elem: 1
Elem:

196

Elem:

196

1 25.89 25.89 25.89 26.02 0.50 26.09 0.77

2 58.30 58.30 58.30 58.66 0.62 58.74 0.75

3 104.88 104.88 104.88 106.96 1.98 108.06 3.03

4 148.13 148.13 148.13 150.41 1.54 151.44 2.23

5 177.72 177.72 177.72 178.94 0.69 179.38 0.93

80

Table 12: Natural frequencies for a homogeneous Steel plate with S-S-S-F B.C.

Mode

Number

Natural Frequencies (Hz) for S-S-S-F Plate

Exact[118] DCM

QDFE
16-DOF

FEM

% Diff.

QDFE vs.

16-DOF

FEM

12-DOF

FEM

% Diff.

QDFE vs.

12-DOF

FEM # Elem: 1
Elem:

196

Elem:

196

1 37.04 37.04 37.04 37.25 0.57 37.32 0.76

2 117.89 117.89 117.89 120.00 1.79 121.06 2.69

3 129.29 129.29 129.29 130.12 0.64 130.42 0.87

4 219.89 219.89 219.89 222.66 1.26 223.81 1.78

5 250.88 250.88 250.88 261.48 4.23 267.20 6.51

Table 13: Natural frequencies for a homogeneous Steel plate with S-S-S-SB.C.

Mode

Number

Natural Frequencies (Hz) for S-S-S-S Plate

Exact[118] DCM

QDFE
16-DOF

FEM

% Diff.

QDFE vs.

16-DOF

FEM

12-DOF

FEM

% Diff.

QDFE vs.

12-DOF

FEM # Elem: 1
Elem:

196

Elem:

196

1 86.68 86.68 86.68 87.17 0.57 87.33 0.75

2 166.63 166.63 166.63 168.92 1.37 169.94 1.99

3 266.99 266.99 266.99 271.56 1.71 273.87 2.58

4 300.14 300.14 300.14 310.54 3.47 315.99 5.28

5 346.49 346.49 346.49 352.12 1.62 354.74 2.38

As can be seen from Tables 3 through 13, not only that the results obtained for the natural

frequencies using both the DCM and QDFE methods converged to within two decimal places of

the exact data reported in Reference [118], but also a single-element model, in this case,

produces exact results for all the first five natural frequencies and all boundary conditions. They

also agree very well with the results produced by both conventional FEM formulations, which

deviate slightly from the exact data. In contrast, both conventional FEM formulations require

196 elements to produce results with a percent difference less than 10 percent. The percent

difference of the conventional FEM results increase as the mode number increases and even with

196 elements the results for the 3
rd

, 4
th

 and 5
th

 natural frequencies at times consist of percent

differences between 5 and 10 percent. Thus, in order to produce near-exact results for just the

first five natural frequencies, the conventional FEM method will require hundreds more or if not

thousands of elements. The number of elements required to produce results to an acceptable

81

degree of precision will increase even more for modes above the 5
th

 natural frequency. The

higher the number of elements needed, the finer the mesh will be and that is directly proportional

to the convergence time and computational resources consumed.

On the contrary, the QDFE method consumes lesser time and computational resources compared

to the conventional FEM method as it uses an extremely coarse mesh; only a single element, in

the presented case. Its ability to converge to the exact results with a very low number of elements

is attributed to its usage of shape functions derived from the enriched dynamic basis functions of

approximation space, formed based on the semi-exact solution to the plate governing equation. It

is important to note here that even with such a coarse (one-element) mesh the QDFE method

produces exact results for all natural frequencies and if a similar mesh density is used for the

conventional FEM method, the errors will be significant. For example, the convergence analysis

in Figure 6 shows that with even as many as 36 elements, the 12-DOF FEM formulation results

for the 5
th

 natural frequency of the C-C-C-F plate contains errors as high as 46 percent! Thus, the

data presented here further highlight the difference in convergence rates between the QDFE

method and the conventional FEM methods for higher modes, thus, casting light on the super-

convergence of the QDFE method.

It is known that the operating frequencies of real-life aircraft wing and fuselage skins, and those

commonly used for an acoustic modelling and analysis, are usually very high. Thus, the

conventional FEM method would be extremely inefficient for conducting a preliminary modal

analysis of these upper range natural frequencies as it will require thousands of elements to

arrive at an accurate ballpark of the exact result. During the preliminary design stages the speed

at which one arrives at the results is as important as the accuracy, since, the main goal during this

design phase is to reduce the time spent on analysis. Thus, designers can increase the efficiency

of their analysis by exploiting the capabilities of the QDFE method for the preliminary modal

and structural dynamics modelling and analysis purposes and then employing the conventional

FEM during the advanced design stages where a more detailed and elaborated and detailed

analysis of the structures are carried out.

As mentioned earlier, the DCM results in Tables 3 through 13 matches with the exact data to two

decimal places, and they are also in excellent agreement with the 16-DOF and 12-DOF FEM

82

results. Furthermore, it can be observed that the DCM, which is an analytical method, is as

capable as the QDFE in producing exact results for all boundary conditions. Unlike most exact

methods available, which are limited to simple structural configurations and special boundary

conditions as a result of simplifying assumptions being made, the DCM method presented here is

a powerful tool that can be used to study the vibration behaviour of square or rectangular plates

of any dimension subjected to any type of boundary condition as its solution does not incorporate

any simplifying assumptions. However, when compared with the QDFE, the DCM method is

less flexible, as the corresponding formulations must be redone, starting from scratch, when the

system properties, or boundary conditions change. In addition, The DCM method is only

applicable to simple square or rectangular plate geometries, whereas the QDFE elements can be

assembled to model complex geometries, and the application of the boundary conditions is done

in a way similar to conventional FEM.

So far in this Chapter the trigonometric shape functions have been compared with the polynomial

shape functions graphically and the QDFE, DCM, 12-DOF FEM and 16-DOF FEM formulations

have been developed for the thin rectangular plate problem. Having compared the accuracy and

the rates of convergence for the various methods developed and having established the fact that

the DFE method requires very much less elements compared to the conventional FEM method,

the next step will be to extend the QDFE method to model the vibration behaviour of thin

rectangular multilayered plates. Thus, in the next Chapter a Simplified Layerwise Quasi-Exact

Dynamic Finite Element method and a Simplified Layerwise Dynamic Coefficient Matrix

method will be presented. In order to validate and compare the layerwise QDFE and layerwise

DCM results the same plate problem will be modelled using the Method of Homogenization and

the Simplified Layerwise Conventional Finite Element method.

83

4. FREE VIBRATION OF A RECTANGULAR MULTILAYER PLATE

Many aircraft components can be modelled as thin, rectangular multilayered plates and as

such the QDFE and DCM methods presented previously will be extended to investigate the

natural frequencies of a thin, rectangular two layer plate in this Chapter. But prior to developing

the layerwise QDFE and DCM solutions the Method of Homogenization and the layerwise

Conventional Finite Element method will be presented for comparison purposes.

4.1 Method of Homogenization

In this section, a two-layered, homogeneous, linearly elastic, isotropic thin Aluminium-Steel

plate shown in Figure 17 is considered. The multilayer plate has edge lengths, L = 0.6m and W =

0.4m, resulting in an aspect ratio of 1.5. The total thickness h of the plate is 0.004m. The

Aluminium layer of the plate has a thickness of 0.001m and the Steel layer has a thickness of

0.003m. Each layer has its own neautral axis. The neutral axis of the Aluminium layer is N1 and

the neutral axis of the Steel layer is N2. The neutral axis for the entire multilayered plate, N3, is

determined by employing the Parallel Axis Theorem.

Figure 17: Two-layer Aluminium-Steel plate

84

Classical Lamination Theory (CLT) [117] is exploited to homogenize the material properties and

determine the equivalent of a single layer plate. After finding the equivalent properties it is

possible to treat the problem as a uniform plate. The equivalent properties are determined using

Eqs. (141) to (144).

ALST VV 1 (141)

ALALSTSTEQ VV  
 (142)

ALALSTSTEQ VEVEE 
 (143)

ALALSTSTEQ VV  
 (144)

where, V is the volume fraction and indices AL and ST represent properties of the Aluminium

and Steel layers, respectively.

4.2 Simplistic Layerwise Conventional Finite Element Method

A simplistic layerwise conventional FEM formulation will be presented in this section for the

plate example shown in Figure 7. As for the single-layer homogeneous plate studied in Section

4.0, Classical Plate Theory, also known as Kirchhoff Plate Theory will be used to develop the

layerwise FEM solution for the Aluminum-Steel multilayer plate. The layerwise Conventional

FEM process, briefly explained here, also starts at the governing partial differential equation.

However, as we now have two layers of materials in the plate there will be two equations for

each layer as shown in Eqs. (145) and (146).

02 11

2

2

1

2

1

2

2

1

2





























Wh

y

M

yx

M

x

M yxyx  (145)

02 22

2

2

2

2

2

2

2

2

2





























Wh

y

M

yx

M

x

M yxyx  (146)

85

where, indices 1 and 2 represent the properties of layer 1 and layer 2, respectively. Upon

enforcing interlayer linear continuity for lateral displacement and slope through the thickness of

the plate, the summation of the two governing Eqs. (145) and (146) describes the dynamics of

the entire plate resulting in the following equation.

     
  02 2211

2

2

21

2

21

2

2

21

2





























Whh

y

MM

yx

MM

x

MM yyxyxyxx  (147)

In order to develop the integral form of Eq. (147) it is multiplied with a weighting function, δW,

and integrated over the area of the plate, which yields Eq. (148).

       
  02211

2

2

21

2

21

2

21

2

2

21

2



































 

A

yyxyxyxyxyxx

f WWhh
y

MM

yx

MM

yx

MM

x

MM
W 

 (148)

Next, the Green‘s theorem is applied once on each term of Eq. (148)except the mass term. This

will result in the following equation. By observing Eq. (149) it can be seen that the line integral

terms within the parenthesis are the definitions of the x and y direction shear forces.

       














































  dA

y

W

y

MM

y

W

x

MM

x

W

y

MM

x

W

x

MM

A

yyxyxyxyxyxx)()()()(21212121 

 
   

  




















A S

x

xyxyxx WdSn
y

MM

x

MM
dAWWhh 

2121

2211

2)(

   
 




















S

y

xyxyyy
WdSn

x

MM

y

MM


2121

 (149)

Eq. (149) can be re-written as shown below upon substituting the respective symbols Qx and Qy

in place of the x and y direction shear force definitions.

       














































  dA

y

W

y

MM

y

W

x

MM

x

W

y

MM

x

W

x

MM

A

yyxyxyxyxyxx)()()()(21212121 

   
A S S

yyxx WdSnQWdSnQdAWWhh )(2211

2
 (150)

Applying the Green‘s theorem once more on each term of Eq. (150) except the mass term and the

line integral terms, will result in the weak integral form in Eq. (151).

86

      





















 dA

y

W
MM

yx

W
MM

x

W
MM

A

yyxyxyxx 2

2

21

2

212

2

21

)()(
2

)(

         



  dS

x

W
nMMnMMWdSnQnQdAWWhh

S

yxyxyxxx

S

yyxx

A

)(
)(21212211

2 


     0
)(

2121 



 dS

y

W
nMMnMM

S

yyyxxyxy



 (151)

Once the boundary terms (line integrals) in Eq. (151)vanish, the following terms will remain.

      





















 dA

y

W
MM

yx

W
MM

x

W
MM

A

yyxyxyxx 2

2

21

2

212

2

21

)()(
2

)(

  
A

dAWWhh 0)(2211

2 

 (152)

Rewriting Eq. (152) upon substituting the moment definitions shown in Eqs. (4) and (5) will

yield Eq. (153) which is the discretized weak form of the governing equation.

 
































































A
x

W

y

W
D

y

W
D

x

W

x

W
D

x

W
D

2

2

2

2

222

2

112

2

2

2

22

2

1

)()(




    






























yx

W

yx

W
D

yx

W
D

)(
112

22

22

2

11




  0
)()(

2211

2

2

2

2

2

22

2

12

2

2

2

222

2

11 





































































dAWWhh

y

W

y

W
D

y

W
D

y

W

x

W
D

x

W
D 




 (153)

Eq. (153) also satisfies the principal of virtual work shown in Eqs. (36) to (38). In order to form

the layerwise FEM solution, the system now has to be discretized. This will be done as described

in Eq. (39) using the 4-node, 4-DOF freedom per node element shown in Figure 5. Exploiting

Eq. (153) and the polynomial shape functions defined in Eqs. (101-a) through (101-p), the

element matrices for the layerwise conventional FEM formulation is developed. The final 16x16

element stiffness matrix shown in Eq. (154) comprises of the 5 sub matrices defined in Eqs.

(154-a) through (154-e). The 16x16 element mass matrix is shown in Eq. (155). In Eqs. (154)

through (155), the subscript M denotes that the respective matrix is for the multilayer

Aluminium-Steel plate.

87

MeMeMeMeMeMe kkkkkk][][][][][][54321  (154)

where,

   






















xxxxxxxx

xxxxxxxx

Me

NNNN

NNNN

DDk

1616116

16111

211

__

||

__

 (154-a)

   






















yyxxyyxx

yyxxyyxx

Me

NNNN

NNNN

DDk

1616116

16111

22112

__

||

__



 (154-b)

   






















xyxyxyxy

xyxyxyxy

Me

NNNN

NNNN

DDk

1616116

16111

22113

__

||

__

)1()1(2 

 (154-c)

   






















xxyyxxyy

xxyyxxyy

Me

NNNN

NNNN

DDk

1616116

16111

22114

__

||

__



 (154-d)

   






















yyyyyyyy

yyyyyyyy

Me

NNNN

NNNN

DDk

1616116

16111

215

__

||

__

 (154-e)

 






















1616116

16111

2

__

||

__

NNNN

NNNN

hm M 

 (155)

The element stiffness and mass matrices are assembled using a special layerwise FEM program

written on MATLAB
®
 and the assembly process yields the global stiffness, [K]M , and global

88

mass, [M]M, matrices. The eigenvalue problem shown in Eq. (156)will be then formed and solved

within the layerwise FEM program, the solutions of which will be the natural frequencies and

mode shapes of the multilayer Aluminium-Steel plate. Various boundary conditions will also be

enforced prior to solving.

      02  nMMn WMKW 

     0det 2  MM MK 

 (156)

4.3 Simplistic Layerwise Quasi-Exact Dynamic Finite Element Method

The Dynamic Finite Element method presented previously for the thin homogeneous plate

will be extended to the two-layer Aluminium-Steel plate here. In order to form the QDFE

solution for the two-layer Aluminium-Steel plate the roots of the governing differential equation

should be modified to incorporate the effect of having two layers of material with contrasting

properties. Thus, the modified roots, defined as Eqs. (157) to (160) are included below.

x
DD

hh
kAA 


 






21

2211

131
 (157)

x
DD

hh
kiAA 


 






21

2211
142

 (158)

y
DD

hh
kBB 


 






21

2211
231

 (159)

y
DD

hh
kiBB 


 






21

2211
242

 (160)

The starting point of the QDFE formulation is Eq. (153) from Section 5.2, which is the

discretized weak form of the governing equation, after the boundary terms vanished.

       

      dxdyWWhh
y

W

y

W
DD

y

W

x

W
DD

yx

W

yx

W
DD

x

W

y

W
DD

x

W

x

W
DDyxW

j

j

j

j

y

y

x

x

k

f
































































































  

 














2211

2

2

2

2

2

212

2

2

2

2211

22

22112

2

2

2

22112

2

2

2

21

)()(

)(
)1()1(2

)()(
,

1 1

(161)

89

Integration by parts is carried out on each term in Eq. (161), except the mass term. Terms 1 and 4

are integrated twice with respect to x, while terms 2 and 5 are integrated twice with respect to y.

Before integrating term 3, it is re-written as follows and a special set of integration by part is

performed.

    dA
yx

w

yx

w
DDdA

yx

w

yx

w
DD

AA
















 

)(
)1()1(

)(
)1()1(

22

2211

22

2211





 (161-a)

Two sets of integration by parts were applied to the LHS Term of Eq. (161-a), firstly with

respect to x and secondly with respect to y. Similarly, for the RHS Term of Eq. (161-a), another

two sets of integration by parts were carried out, however, this time it was performed first with

respect to y and then with respect to x. Completing all the above-mentioned integration by parts

leads to Eq. (162) shown below.

     

     

       

     

      dAwwhhdA
y

w
wDDdA

yx

w
wDD

dA
yx

w
wDDdA

yx

w
wDDdA

x

w
wDD

dSn
yx

w
wDDdSn

y

w
wDDdSn

yx

w
wDDdSn

x

w
wDD

dSn
yx

w

y

w
DDdSn

y

w

y

w
DDdSn

x

w

y

w
DD

dSn
yx

w

x

w
DDdSn

y

w

x

w
DDdSn

x

w

x

w
DD

AAA

AAA

y

S

y

S

x

S

x

S

S

xy

S

y

S

S

yx

S

x

S















































































































































































2211

2

4

4

2122

4

2211

22

4

221122

4

22114

4

21

2

3

213

3

212

3

213

3

21

2

22112

2

212

2

2211

2

22112

2

22112

2

21

)()(

)()(
)1()1(2

)(

)()()()(

)(
)1()1(

)()(

)(
)1()1(

)()(

(162)

In Eq. (162) the bending moments Mx and My are underlined in red and blue, respectively, and

the twisting moment and Mxy is underlined in purple colour. Similarly, the shear force Qx is

underlined in green and the shear force Qy is underline in yellow. The area integral expression

underlined in orange is the thin plate governing equation expressed in terms virtual

displacements. Using the bending moment definitions in Eqs. (20), (22) and (24) and the shear

force definitions in Eqs. (5-a) and (6-a), Eq. (158) is condensed and re-written as follows. The

same color scheme was used to illustrate how each expression was reduced.

     

        wdAwhhdA
y

w
DDdA

yx

w
DDdA

x

w
DD

wdSnQnQdS
y

w
nMnMdS

x

w
nMnM

AAAA

S

yyxx

S

xxyyy

S

yxyxx












































2211

2

4

4

2122

4

214

4

21

)()(
2

)(

 (163)

90

Non-dimensionalizing Eq. (163) by substituting ξ=x/a and η=y/b results in Eq. (164).

     

     

   

   

     

  

   























































































































































































































































































































































1

0

1

0

2211

2

1

0

1

0

4

4

3

21

1

0

1

0

22

4

21

1

0

1

0

4

4

3

21

1

0

1

0
2

3

21

1

0

1

0
3

3

3

21

1

0

1

0
2

3

21

1

0

1

0
3

3

3

21

1

0

1

0

2

2211

1

0

1

0
2

2

3

21

1

0

1

0
2

2

2211

1

0

1

0

2

2211

1

0

1

0
2

2

2211

1

0

1

0
2

2

3

21

)()(2)(

)()(

)()(

)()1()1()()(

)()1()1()()(








































































































































































































dwdwhhab

dd
w

w
b

aDD
dd

w
w

ab

DD
dd

w
w

a

bDD

d
w

w
ab

DD
d

w
w

b

aDD

d
w

w
ab

DD
d

w
w

a

bDD

d
ww

ab

DD
d

ww

b

aDD
d

ww

ab

DD

d
ww

ab

DD
d

ww

ab

DD
d

ww

a

bDD

 (164)

Using Eq. (164) and the new trigonometric shape functions in Eqs. (49) to (64), the element

stiffness matrix [kDS]M for the Aluminium-Steel two-layer plate is obtained. This element

stiffness matrix is comprised of thirteen sub matrices resulting due to the bending moments Mx

and My, twisting moment Mxy, shear forces Qx and Qy as well as the area integral terms

underlined in orange except for the mass term. The bending moment Mx contributes the two sub

matrices (165) and (166) shown below. The subscript M denotes that the matrices are for the

two-layer Aluminium-Steel plate.

 
 













d

NNNN

NNNN

a

bDD
k

MMx 



































































 


1

0

1

2

16

2

16

2

1

2

16

2

16

2

1

2

1

2

1

3

21

1

0

__

||

__

 (165)

 
 
















d

NNNN

NNNN

ab

DD
k

MMx 



































































 


1

0

1

2

16

2

16

2

1

2

16

2

16

2

1

2

1

2

1

2211
2

0

__

||

__

 (166)

where,

     
MMxMMxMMx kkk 21 

 (167)

91

Similarly, two sub matrices are contributed towards the final element stiffness matrix due to the

actions of the bending moment My and these can be written as:

   















d

NNNN

NNNN

ab

DD
k

MMy

1

0

1

0

2

16

2

16

2

1

2

16

2

16

2

1

2

1

2

1

2211
1

__

||

__






































































 


 (168)

   














d

NNNN

NNNN

b

aDD
k

MMy

1

0

1

0

2

16

2

16

2

1

2

16

2

16

2

1

2

1

2

1

3

21
2

__

||

__






































































 


 (169)

where,

MMyMMyMMy kkk][][][21 

 (170)

Two sub matrices also arise as a result of the twisting moment Mxy.

   













d

NNNN

NNNN

ab

DD
k

MMxy 



































































 


1

0

1

16

2

161

2

16

16

2

11

2

1

2211
1

0

__

||

__

)1()1(

 (171)

   














d

NNNN

NNNN

ab

DD
k

MMxy

1

0

1

0
16

2

161

2

16

16

2

11

2

1

2211

2

__

||

__

)1()1(






































































 


 (172)

where,

MMxyMMxyMMxy kkk][][][21 

 (173)

The x direction shear force Qx also contributes two sub matrices (174) and (175)shown below.

92

   














d

N
N

N
N

N
N

N
N

a

bDD
k

MQx

1

0

1

0

3

16

3

163

1

3

16

3

16

3

13

1

3

1

3

21

1

__

||

__






















































 


(174)

   














d

N
N

N
N

N
N

N
N

ab

DD
k

MQx

1

0

1

0

2

16

3

162

1

3

16

2

16

3

12

1

3

1

21
2

__

||

__






















































 


(175)

where,

MQxMQxMQx kkk][][][21 

(176)

Similarly, two more sub matrices result due to the actions of the y direction shear force Qy.

   














d

N
N

N
N

N
N

N
N

b

aDD
k

MQy

1

0

1

0

3

16

3

163

1

3

16

3

16

3

13

1

3

1

3

21
1

__

||

__






















































 


(177)

   














d

N
N

N
N

N
N

N
N

ab

DD
k

MQy

1

0

1

0

2

16

3

162

1

3

16

2

16

3

12

1

3

1

21
2

__

||

__






















































 


(178)

where,

MQyMQyMQy kkk][][][21 

(179)

The first three integral terms underlined in orange in Eq. (164) contribute the following matrices

towards the final elements stiffness matrix.

93

 
 

 



















































 


1

0

1

0

4

16

4

164

1

4

16

4

16

4

14

1

4

1

3

21
1

__

||

__













dd

N
N

N
N

N
N

N
N

a

bDD
k

MG

 (180)

 
 













dd

N
N

N
N

N
N

N
N

ab

DD
k

MG  



















































 


1

0

1

0

22

16

4

1622

1

4

16

22

16

4

122

1

4

1

21
2

__

||

__

2

 (181)

 
 

 



















































 


1

0

1

0

4

16

4

164

1

4

16

4

16

4

14

1

4

1

3

21
3

__

||

__













dd

N
N

N
N

N
N

N
N

b

aDD
k

MG

 (182)

The fourth area integral term underlined in orange in Eq. (164) results in the element mass

matrix (183) below.

   






 

















1

0

1

0

1616116

16111

2

__

||

__








 dd

NNNN

NNNN

habm
MDS

 (183)

Adding Eqs. (167), (170), (173), (176), (179), (180), (181) and (182) together yields the final

element dynamic stiffness matrix [kDS]M. Thus, the discretized (elemental) expression of the

virtual work can be written as follows.

                  
MGMGMGMQyMQxMMxyMMyMMxMDS kkkkkkkkk 321  (184)

Assembling the element stiffness matrices within a layerwise QDFE program written in

MATLAB
®
 results in the non-linear eigenvalue problem shown in Eq. (185) of which,

[KDS(ω)]M, is the global dynamic stiffness matrix. The boundary conditions are also enforced

using the MATLAB
®
 code.

94

   02  nDSDSn WMKW 

  0det 2  DSDS MK 

 (185)

Solving this Eigenvalue problem will give the eigenvalues and eigenvectors of the system, which

correspond to the natural frequencies and mode shapes of the two-layer Aluminium-Steel plate.

4.4 Simplistic Layerwise Quasi-Exact Dynamic Coefficient Matrix Method

The simplistic layerwise Dynamic Coefficient Matrix method is an extension of the DCM

Method shown in Section 4.3 to the two-layer Aluminium-Steel plate. It is formed by

incorporating the modified roots for the multilayer plate shown in Eqs. (157) to (160) in to the

general solution shown in Eq. (39).

The general solution shown in Eq. (39) can be expressed in the matrix form as follows in order to

describe the displacement, W(x, y)M, at any point within the plate. The subscript M denotes the

‗multilayer plate‘.

 MMM

M

MM ETyxW

E

E

E

E

TTTTyxW 


































),(or ;),(

44

43

12

11

161521 (186)

Differentiating Eq. (186) once in terms of x results in the matrix expression for the slope along

the x direction, θx(x, y)M, shown in Eq. (187).

   MMixMMxxxxMx ETETTTTyx  161521),( (187)

where, i = 1,…,16. Similarly, taking the first derivative of Eq. (186) in terms of y results in the

slope along the y direction, θy(x, y)M, which can be expressed as:

   MMiyMMyyyyMy ETETTTTyx  161521),( (188)

95

where, i = 1,…,16. Finally, the curvature of the plate, θxy(x, y)M, shown in Eq. (189) can be

determined by differentiating Eq. (186) first with respect to x and then with respect to y.

   MMixyMMxyxyxyxyMxy ETETTTTyx  161521),( (189)

where, i = 1,…,16. The boundary conditions for the displacements are shown in Eq. (138) in

Section 4.3. The next step is to substitute these boundary conditions in Eqs. (186) to (189) and

this process will yield the matrix relationship shown in Eq. (190).

M

Mbyxixy

byxiy

byxix

byxi

byaxixy

byaxiy

byaxix

byaxi

yaxixy

yaxiy

yaxix

yaxi

yxixy

yxiy

yxix

yxi

Mxy

y

x

xy

y

x

xy

y

x

xy

y

x

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

W

W

W

W

























































































































































































































44

43

42

41

34

33

32

31

24

23

22

21

14

13

12

11

,0

,0

,0

,0

,

,

,

,

0,

0,

0,

0,

0,0

0,0

0,0

0,0

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

























(190)

Simplifying the matrix relationship shown in Eq. (190) and re-writing it in a condensed form

gives the following expression.

      MMDn EKW  (191)

where, [KD(ω)]M, is the 16 x 16 Dynamic Coefficient Matrix (DCM) of the system. Boundary

conditions are applied on the Dynamic Coefficient Matrix in Eq. (191) within a special DCM

96

program written using the MATLAB
®
 software. The quasi-exact natural frequencies for a thin,

rectangular, two-layer plate of any size, subjected to all boundary condition types can now be

determined by conducting a determinant sweep, whereby the frequency domain is swept until an

array of frequencies corresponding to a zero determinant of the Dynamic Coefficient Matrix is

returned.

4.5 Numerical Results and Discussion

This section includes the modal analysis results for the multilayered Aluminium-Steel plate

introduced in Section 5. As shown in Table 14, an ANSYS
®
 simulation was used once again to

validate the results produced by the 16-DOF layerwise FEM code written in MATLAB
®
. The

results generated through the layerwise DCM, layerwise QDFE and Homogenization methods

were then verified for accuracy using the 16-DOF layerwise FEM results. Based on the findings

of the convergence analysis shown in Figure 6 of Section 4.4, 196 elements were used for both

the ANSYS
®
 simulation and the 16-DOF layerwise FEM analysis.

Table 14: Comparison of 16-DOF layerwise FEM results with ANSYS
®

 simulation

Mode

Number

Natural Frequencies (Hz) of C-F-F-F plate

Exact[118]

16-DOF

FEM

% Error

16-DOF

FEM vs.

Exact

ANSYS
®

% Error

ANSYS

vs.

Exact
Elem: 196 # Elem: 196

1 9.36 9.37 0.11 9.37 0.11

2 31.45 31.55 0.32 31.56 0.35

3 58.17 58.74 0.98 58.92 1.29

4 106.16 107.11 0.89 107.33 1.10

5 144.92 146.07 0.79 146.39 1.01

Results from the conventional FEM formulation in Table 14 is in excellent agreement with the

exact [143] and ANSYS
®
 results. Thus, it shows that the conventional FEM code produces

accurate results, which can be used to validate the modal analysis results obtained from the

DCM, QDFE and Homogenization formulations. Therefore, in Tables 15 through 25the

conventional FEM, DCM, QDFE and Method of Homogenization (M. of H.) results are

presented and compared with each other.

97

Table 15: Natural frequencies for a multilayered Al-St plate with C-F-F-FB.C.

Mode

Number

Natural Frequencies (Hz) for C-F-F-F plates

Exact[118] DCM

QDFE

16-DOF

FEM

% Diff.

QDFE vs.

16-DOF

FEM

M. of H. % Diff.

QDFE vs.

M. of H.

Elem: 1
Elem:

196

Elem:

196

1 9.36 9.36 9.36 9.37 0.11 9.37 0.11

2 31.45 31.45 31.45 31.55 0.32 31.55 0.32

3 58.17 58.17 58.17 58.74 0.98 58.82 1.12

4 106.16 106.16 106.16 107.11 0.89 107.21 0.99

5 144.92 144.92 144.92 146.07 0.79 146.21 0.89

Table 16: Natural frequencies for a multilayered Al-St plate with C-C-F-F B.C.

Mode

Number

Natural Frequencies (Hz) for C-C-F-F Plate

Exact[118] DCM

QDFE
16-DOF

FEM

% Diff.

QDFE vs.

16-DOF

FEM

M. of H. % Diff.

QDFE vs.

M. of H.
Elem: 1

Elem:

196

Elem:

196

1 30.25 30.25 30.25 30.30 0.17 30.30 0.17

2 80.53 80.53 80.53 81.15 0.77 81.23 0.87

3 141.84 141.84 141.84 143.18 0.94 143.36 1.07

4 183.38 183.38 183.38 187.74 2.38 188.32 2.69

5 207.68 207.68 207.68 209.82 1.03 210.08 1.16

Table 17: Natural frequencies for a multilayered Al-St plate with C-F-C-F B.C.

Mode

Number

Natural Frequencies (Hz) for C-F-C-F Plate

Exact[118] DCM

QDFE
16-DOF

FEM

% Diff.

QDFE vs.

16-DOF

FEM

M. of H. % Diff.

QDFE vs.

M. of H.
Elem: 1

Elem:

196

Elem:

196

1 59.89 59.89 59.89 60.65 1.27 60.76 1.45

2 83.19 83.19 83.19 83.87 0.82 83.94 0.90

3 165.18 165.18 165.18 170.87 3.44 171.68 3.94

4 191.65 191.65 191.65 192.90 0.65 193.04 0.73

5 199.86 199.86 199.86 205.01 2.58 205.72 2.93

98

Table 18: Natural frequencies for a multilayered Al-St plate with C-C-C-F B.C.

Mode

Number

Natural Frequencies (Hz) for C-C-C-F Plate

Exact[118] DCM

QDFE
16-DOF

FEM

% Diff.

QDFE vs.

16-DOF

FEM

M. of H. % Diff.

QDFE vs.

M. of H.
Elem: 1

Elem:

196

Elem:

196

1 72.09 72.09 72.09 72.76 0.93 72.84 1.04

2 178.30 178.30 178.30 179.77 0.82 179.95 0.93

3 178.50 178.50 178.50 183.91 3.03 184.67 3.46

4 288.49 288.49 288.49 293.46 1.72 294.12 1.95

5 337.94 337.94 337.94 359.13 6.27 362.23 7.19

Table 19: Natural frequencies for a multilayered Al-St plate with C-C-C-CB.C.

Mode

Number

Natural Frequencies (Hz) for C-C-C-C Plate

Exact[118] DCM

QDFE
16-DOF

FEM

% Diff.

QDFE vs.

16-DOF

FEM

M. of H. % Diff.

QDFE vs.

M. of H.
Elem: 1

Elem:

196

Elem:

196

1 164.75 164.75 164.75 166.26 0.92 166.47 1.04

2 254.34 254.34 254.34 258.96 1.82 259.62 2.08

3 403.03 403.03 403.03 414.73 2.90 416.40 3.32

4 405.51 405.51 405.51 424.37 4.65 427.15 5.34

5 486.24 486.24 486.24 498.02 2.42 499.69 2.77

Table 20: Natural frequencies for a multilayered Al-St plate with C-C-C-S B.C.

Mode

Number

Natural Frequencies (Hz) for C-C-C-S Plate

Exact[118] DCM

QDFE
16-DOF

FEM

% Diff.

QDFE vs.

16-DOF

FEM

M. of H. % Diff.

QDFE vs.

M. of H.
Elem: 1

Elem:

196

Elem:

196

1 130.52 130.52 130.52 131.47 0.73 131.59 0.82

2 231.58 231.58 231.58 236.41 2.09 237.08 2.37

3 335.83 335.83 335.83 343.24 2.21 344.28 2.52

4 389.83 389.83 389.83 409.49 5.04 412.35 5.78

5 428.42 428.42 428.42 437.23 2.06 438.43 2.34

99

Table 21: Natural frequencies for a multilayered Al-St plate with C-C-S-S B.C.

Mode

Number

Natural Frequencies (Hz) for C-C-S-S Plate

Exact[118] DCM

QDFE
16-DOF

FEM

% Diff.

QDFE vs.

16-DOF

FEM

M. of H. % Diff.

QDFE vs.

M. of H.
Elem: 1

Elem:

196

Elem:

196

1 121.60 121.60 121.60 122.46 0.71 122.56 0.79

2 207.24 207.24 207.24 210.54 1.59 210.97 1.80

3 331.36 331.36 331.36 338.86 2.26 339.90 2.58

4 350.33 350.33 350.33 364.56 4.06 366.58 4.64

5 412.72 412.72 412.72 420.95 1.99 422.04 2.26

Table 22: Natural frequencies for a multilayered Al-St plate with S-C-S-CB.C.

Mode

Number

Natural Frequencies (Hz) for S-C-S-C Plate

Exact[118] DCM

QDFE
16-DOF

FEM

% Diff.

QDFE vs.

16-DOF

FEM

M. of H. % Diff.

QDFE vs.

M. of H.
Elem: 1

Elem:

196

Elem:

196

1 152.72 152.72 152.72 154.20 0.97 154.39 1.09

2 213.94 213.94 213.94 216.29 1.10 216.60 1.24

3 333.59 333.59 333.59 343.18 2.87 344.52 3.28

4 396.15 396.15 396.15 408.07 3.01 409.76 3.44

5 460.39 460.39 460.39 471.58 2.43 473.13 2.77

Table 23: Natural frequencies for a multilayered Al-St plate with S-F-S-F B.C.

Mode

Number

Natural Frequencies (Hz) for S-F-S-F Plate

Exact[118] DCM

QDFE
16-DOF

FEM

% Diff.

QDFE vs.

16-DOF

FEM

M. of H. % Diff.

QDFE vs.

M. of H.
Elem: 1

Elem:

196

Elem:

196

1 25.90 25.90 25.90 26.03 0.50 26.05 0.58

2 58.17 58.17 58.17 58.58 0.70 58.60 0.74

3 104.93 104.93 104.93 107.04 2.01 107.34 2.30

4 147.97 147.97 147.97 150.35 1.61 150.63 1.80

5 177.74 177.74 177.74 179.04 0.73 179.16 0.80

100

Table 24: Natural frequencies for a multilayered Al-St plate with S-S-S-F B.C.

Mode

Number

Natural Frequencies (Hz) for S-S-S-F Plate

Exact[118] DCM

QDFE
16-DOF

FEM

% Diff.

QDFE vs.

16-DOF

FEM

M. of H. % Diff.

QDFE vs.

M. of H.
Elem: 1

Elem:

196

Elem:

196

1 37.00 37.00 37.00 37.24 0.65 37.25 0.68

2 117.90 117.90 117.90 120.07 1.84 120.35 2.08

3 129.33 129.33 129.33 130.23 0.70 130.31 0.76

4 219.92 219.92 219.92 222.80 1.31 223.11 1.45

5 250.97 250.97 250.97 261.71 4.28 263.22 4.88

Table 25: Natural frequencies for a multilayered Al-St plate with S-S-S-S B.C.

Mode

Number

Natural Frequencies (Hz) for S-S-S-S Plate

Exact[118] DCM

QDFE
16-DOF

FEM

% Diff.

QDFE vs.

16-DOF

FEM

M. of H. % Diff.

QDFE vs.

M. of H.
Elem: 1

Elem:

196

Elem:

196

1 86.77 86.77 86.77 87.30 0.61 87.34 0.66

2 166.79 166.79 166.79 169.17 1.43 169.44 1.59

3 267.31 267.31 267.31 271.96 1.74 272.58 1.97

4 300.42 300.42 300.42 311.00 3.52 312.44 4.00

5 346.83 346.83 346.83 352.64 1.68 353.34 1.88

Once again, the numerical results in Tables 15 through 25 show that the layerwise QDFE results

match well with the layerwise conventional FEM results. The QDFE results are also in good

agreement with the results generated using the Method of Homogenization. However, the

conventional FEM results are more accurate than the results produced by the Method of

Homogenization. This is because the latter method uses the rule of mixtures to treat the two-layer

Aluminium-Steel plate as a single layer plate homogenized with equivalent properties as opposed

to the former method, which uses exact properties to form a layerwise solution procedure.

Similar to the homogeneous plate problem and as shown in Tables 5 through 25, the QDFE

method produces exact results to two decimal places with just one element, for all 5 natural

frequencies and all boundary conditions of the multilayered Aluminium-Steel plate. However, it

101

can be seen that the percent difference for the conventional FEM method and the Method of

Homogenization increases for the higher modeseven though 196 elements are used. So, for very

high natural frequencies the layerwise FEM method will require thousands of elements to

produce results within an accurate ballpark of the exact result. This proves that the QDFE

method is a highly accurate super-convergent solution procedure. Thus, the layerwise QDFE

method can be used as a strong alternative to replace the layerwise conventional FEM method

for preliminary modal analysis of aircraft structures made of low curvature, layered sheets that

are modelled as thin rectangular multilayered plates.

On the other hand, the layerwise DCM method also produces exact results to two decimal places

for all 5 modes of the multilayered Aluminium-Steel plate, when any kind of boundary condition

is imposed. The layerwise DCM results also match very well with the layerwise conventional

FEM and Method of Homogenization results. As mentioned before, most analytical methods

currently available are based on simplifying assumptions which limit their applicability to simple

geometries and special boundary conditions. In contrast, the DCM solution does not benefit from

any such simplification as it is built upon a very general quasi-exact solution to the plate

governing equation derived using a distinctive procedure that has not been presented before.

Thus, the availability of a layerwise DCM plate model means that researchers are now able to

derive the quasi-exact results of 2D layered structures of low curvature and any edge dimension

subjected to all types of boundary conditions.

Thus far in this thesis the QDFE and DCM methods have been applied to model the vibration

behaviour of thin, rectangular homogeneous and multilayered plates and the numerical tests have

consistently shown that the QDFE method is capable of producing exact results for the natural

frequencies with one element due to the very rich nature of the quasi-exact solution as opposed

to the conventional FEM method. Therefore, to further extend the QDFE method it will be

applied to study the vibration characteristics of two aircraft cabin window bay sections in the

next Chapter and the results produced will be compared with FEM and ANSYS
®
 results.

102

5. VIBRATION BEHAVIOUR OF AN AIRCRAFT CABIN WINDOW BAY

5.1 Quasi-Exact Dynamic Finite Element Analysis of Cabin Window Bay Sections

In the previous Chapters the Quasi-Exact Dynamic Finite Element (QDFE) method was used

to model simple, thin rectangular plates. The results stands proof to the super-convergent nature

of the method, thus, to further highlight its suitability to effectively replace conventional FEM

during preliminary design analysis, the QDFE method is applied to investigate the vibration

behaviour of a cabin window bay section of an aircraft fuselage. Six different structural

configurations made of Aluminium (E = 69 x 10
9
 Pa, ρ = 2700 kg/m

3
, ν = 0.32) will be

considered. Due to the unavailability of exact results, the ANSYS
®

software was used to generate

a benchmark set of data for the first five natural frequencies of each configuration, using

extremely fine meshing. The number of elements for each mesh was based on a convergence

analysis aimed at deriving results that are exact to the second decimal place. The QDFE results

generated for each configuration are compared with the benchmark data from ANSYS
®
 as well

as the results from the in-house developed 16-DOF FEM method. The number of elements used

for the 16-DOF FEM method was also decided by carrying out a convergence analysis to reduce

the percent difference below two percent, when compared with the benchmark data. The

reinforcements around the window cut out are not accounted for in the first five configurations,

however, in Configuration 6 the effect of having doublers to reinforce around the central cut out

is studied. The two frames riveted along the vertical edges and the two stringers riveted along the

horizontal edges of the window bay are modelled using a fully clamped boundary condition.

Included below are the results for the first five natural frequencies of each cabin window bay

configuration.

For Configuration 1 a rectangular window of length L = 1.8m, width W = 0.9m and thickness t =

0.001m, having a rectangular central cut out of 0.3m x 0.6m (hatched area) is considered. Since,

the mass distribution constants k1 = 0.333 and k2 = 0.667, the aspect ratio, AR, of the plate is 2

(k2/k1). The same AR is applied to the elements of the QDFE mesh. Shown below in Figure 18

are the in-house 16-DOF FEM mesh with 400 elements (a), QDFE mesh with 8 equal sized

rectangular elements (b), and the ANSYS
®

benchmark mesh with 2877 elements (c), for the

103

aircraft cabin window bay Configuration 1. The ANSYS
®
 meshes were created using the same

SHELL 181 element used previously.

 (a) (b)

(c)

Figure 18: (a) 16-DOF FEM mesh- 400 elems., (b) QDFE mesh- 8 elems. and (c) ANSYS
®

benchmark mesh-2877 elems. for cabin window bay Configuration 1

104

Similar ANSYS
®
 meshes were also created for the other five configurations but they are not

presented for briefness. The results of the convergence analyses carried out to determine the

minimum number of elements required for the benchmark data produced on ANSYS
®
 and the

results produced by the in-house 16-DOF FEM method for Configuration 1 are graphically

illustrated in Figures19and 20below, respectively. For both cases the 5
th

 natural frequency of the

cabin window bay section was used as it is the most unstable frequency. Similar convergence

analyses were carried out to determine the minimum number of elements required for the other

five configurations as well, however, their respective results are not included here for brevity.

Figure 19: Convergence analyses for the benchmark data produced on ANSYS
®

Figure 20: Convergence analyses for the in-house 16-DOF FEM method

Included in Table 26 below are the results for the first five natural frequencies of window bay

configurations 1.

0

0.5

1

1.5

2

2.5

3

0 1000 2000 3000 4000

P
er

ce
n

t
E

rr
o

r

No. of Elements

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500 600

P
er

ce
n

t
E

rr
o

r

No. of Elements

105

Table 26: Natural frequency results for aircraft cabin window bay section – configuration 1

Mode

Number

Natural Frequencies (Hz)

Benchmark

(ANSYS
®
: 2877 elems)

QDFE

(8 elems)

16-DOF FEM

(400 elems)

Percent Difference (%)

16-DOF FEM vs. QDFE

1 8.67 8.67 8.72 0.58

2 9.62 9.62 9.67 0.52

3 14.04 14.04 14.17 0.92

4 15.14 15.14 15.21 0.46

5 19.67 19.67 19.99 1.61

As can be seen from the results in Tables 26 above, the QDFE method is capable of

converging to the benchmark solution produced on ANSYS
®
 with just 8 elements. That the

QDFE method is capable of yielding the same result for the first five natural frequencies that

required the ANSYS
®
 simulation 2877 elements (approximately 360 times more elements than

QDFE) is attributed to the fact that the new trigonometric shape functions are based on the quasi-

exact solution to the governing differential equation. The above finding stands proof to the

richness of the quasi-exact solution. Furthermore, compared to the QDFE method, the in-house

developed 16-DOF FEM method requires 400 elements to produce results that are within a 2

percent difference. Despite employing 400 elements the 16-DOF FEM method still does not

produce the benchmark results and the percent difference increases with the mode number. In

order to arrive even at this level of accuracy the 16-DOF FEM method requires 50 times more

elements than the QDFE method and that is still only for the first five natural frequencies. As a

solution is sought for higher natural frequencies, which become ever more unstable and chaotic,

the conventional FEM method will need hundreds if not thousands more elements to retain the

same degree of precision. Therefore, it is clear that the QDFE method could be advantageously

used to capture the higher natural frequencies that are more commonly present in aerospace

environments. Therefore, in summary the above results show that the QDFE method is a

superconvergent method, which is capable of producing near-exact results with a very small

number of elements whose advantage becomes more pronounced as the mode number increases.

For aircraft cabin window bay configuration 2, consider a square section with length L = 1.5m,

width W = 1.5m and thickness t = 0.001m having a square shaped central cut out of 0.5m x

0.5m. Since, the mass distribution constants k1 = 0.5 and k2 = 0.5, the aspect ratio, AR, of the

106

plate is 1 (k2/k1). The same AR is applied to the elements of the QDFE mesh. The 16-DOF FEM

mesh uses 512 elements and the QDFE mesh is made of 8 equal sized square elements. Figure 21

below shows the two meshes for cabin window bay configuration 2.

(a) (b)

Figure 21: (a) 16-DOF FEM mesh- 512 elems., (b) QDFE mesh- 8 elems. for Configuration 2

Table 27 below shows the results for the first five natural frequencies of cabin window bay

configuration 2.

Table 27: Natural frequency results for aircraft cabin window bay section – configuration 2

Mode

Number

Natural Frequencies (Hz)

Benchmark

(ANSYS
®
: 3926 elems)

QDFE

(8 elems)

16-DOF FEM

(512 elems)

Percent Difference (%)

16-DOF FEM vs. QDFE

1 4.67 4.67 4.67 0.00

2 7.03 7.03 7.07 0.57

3 7.03 7.03 7.07 0.57

4 10.85 10.85 10.91 0.55

5 12.48 12.48 12.68 1.59

As seen before the results in Table 27 show that the QDFE method is capable of reproducing the

benchmark results, based on a 3926 element ANSYS
®
 model, with just 8 elements. On the

contrary, the in-house developed 16-DOF FEM method requires at least 512 elements to generate

107

results that are within a 2 percent difference. Thus, it‘s evident that the 16-DOF FEM method

requires 64 times more elements than the QDFE method and the latter also uses approximately

490 times less elements than the benchmark ANSYS
®
 solution. Also once again, by observing

how the percent difference increases with the mode number, it could be deduced that many more

elements would be required for the 16-DOF FEM method, if it is to retain the same level of

accuracy when results for higher natural frequencies are pursued.

For aircraft cabin window bay configuration 3 a rectangular section having length L = 2.0m,

width W = 1.75m and thickness t = 0.001m is considered. The plate has a rectangular cut out of

length 0.5m and width 0.25m at the centre. The mass distribution constants k1 = 0.467 and k2 =

0.533 for the plate, therefore, its aspect ratio, AR, is 1.143 (k2/k1). Illustrated in Figure 22 below

are the meshes generated by the in-house developed 16-DOF FEM method (a) and QDFE

method (b). The 16-DOF FEM mesh and QDFE mesh has 864 and 8 elements, respectively.

What is important to note here is that there are 3 different types of elements used for the QDFE

mesh. The QDFE mesh is made up of four 0.75m x 0.75m square elements, two 0.75m x 0.5m

rectangular elements and two 0.75m x 0.25m rectangular elements.

(a) (b)

Figure 22: (a) 16-DOF FEM mesh- 864 elems., (b) QDFE mesh- 8 elems., for Configuration 3

108

Table 28 below contains the results for the first five natural frequencies of cabin bay window

configuration 3.

Table 28: Natural frequency results for aircraft cabin window bay section – configuration 3

Mode

Number

Natural Frequencies (Hz)

Benchmark

(ANSYS
®
: 6618 elems)

QDFE

(8 elems)

16-DOF FEM

(864 elems)

Percent Difference (%)

16-DOF FEM vs. QDFE

1 2.55 2.55 2.55 0.00

2 4.67 4.67 4.68 0.21

3 5.14 5.14 5.16 0.39

4 7.41 7.41 7.45 0.54

5 8.36 8.36 8.43 0.83

Once again, it can be seen that with just 8 elements the QDFE method produces the same results

as the benchmark data derived from the 6618 element ANSYS
®
 model. In comparison to this the

16-DOF FEM method requires 864 elements to produce results that are within a 2 percent

difference compared to the QDFE method. Therefore, the QDFE method requires 108 times less

elements than the 16-DOF FEM method and over 827 times less elements compared to the

benchmark ANSYS
®
 simulation. This proves that the QDFE method is a super-convergent

procedure that requires a very coarse mesh. This greatly reduces the number of element matrices

to be computed, thus, resulting in a much smaller eigenvalue problem to be solved which

drastically reduces the computational time. A more detailed discussion on the time savings

associated with the QDFE method will be included later in this section.

Configuration 4 of the aircraft cabin window bay section has a rectangular shape. It‘s length L =

1.5m, width W = 1m and thickness t = 0.001m. It consists of a square shaped central cut out

having dimensions 0.5m x 0.5m. For configuration 4, the mass distribution constants k1 = 0.4 and

k2 = 0.6, thus, the aspect ratio, AR, is 1.5 (k2/k1). The 16-DOF FEM (a) and QDFE (b) meshes for

configuration 4 can be seen in Figure 23 below. The QDFE mesh for configuration 4 also

consists of two different types of elements. Two of the elements are 0.5m x 0.5m square shaped

elements and the other six elements are 0.5m x 0.25m rectangular shaped elements.

109

 (a) (b)

Figure 23: (a) 16-DOF FEM mesh- 320 elems., (b) QDFE mesh- 8 elems., for Configuration 4

The results for the first five natural frequencies of cabin window bay configuration 4 are shown

in Table 29 below.

Table 29: Natural frequency results for aircraft cabin window bay section – configuration 4

Mode

Number

Natural Frequencies (Hz)

Benchmark

(ANSYS
®
: 2518 elems)

QDFE

(8 elems)

16-DOF FEM

(320 elems)

Percent Difference (%)

16-DOF FEM vs. QDFE

1 8.69 8.69 8.72 0.34

2 9.20 9.20 9.23 0.33

3 16.17 16.17 16.29 0.74

4 18.50 18.50 18.68 0.97

5 20.30 20.30 20.51 1.03

The results are consistent for every configuration that has been investigated thus far and the data

found in Table 29 above further confirms the super-convergent behaviour of the QDFE method.

It shows that the 16-DOF FEM method requires 320 elements to yield results that are within a

two percent difference compared to the QDFE method, which only requires 8 elements once

again. This is 40 fold reduction in the number of elements used compared to the 16-DOF FEM

method. As mentioned before the benchmark ANSYS
®
 formulation is based on a SHELL 181,

four-noded, rectangular element with six degrees of freedom per node, where the degrees of

110

freedom are the three translations and three rotations in the x, y and z spatial directions. The

QDFE method is based on a four-noded, four DOF per node element and generally, the higher

the degrees of freedom per node of the elements the more accurately it is capable of predicting

the behaviour of the structure. Despite this, the QDFE method is capable of reproducing the

benchmark data, which is based on 2518 SHELL 181 element model, with just 8 elements. This

is over 314 times less elements than what was required by the ANSYS
®
 simulation.

Window bay configuration 5 has length L = 1.5m, width W = 1.25m and thickness t = 0.001m. It

also has a central window cut out of length 0.5m and width 0.25m. The mass distribution

constants for configuration 5 are, k1 = 0.455 and k2 = 0.545. Thus, the aspect ratio, AR, of the

window bay section is 1.2 (k2/k1). Figure 24 below shows the 16-DOF FEM (a) and QDFE (b)

meshes for window bay configuration 5. As can be seen, two different types of elements are used

for the QDFE mesh. Among the eight elements used, two are 0.5m x 0.25m rectangular elements

and six are0.5m x 0.5m square shaped elements.

(a) (b)

Figure 24: (a) 16-DOF FEM mesh- 448 elems., (b) QDFE mesh- 8 elems., for Configuration 5

The modal analysis results for cabin window bay configuration 5 are included in Table 30 below.

111

Table 30: Natural frequency results for aircraft cabin window bay section – configuration 5

Mode

Number

Natural Frequencies (Hz)

Benchmark

(ANSYS
®
: 3364 elems)

QDFE

(8 elems)

16-DOF FEM

(448 elems)

Percent Difference (%)

16-DOF FEM vs. QDFE

1 5.06 5.06 5.06 0.00

2 8.42 8.42 8.45 0.36

3 8.77 8.77 8.85 0.91

4 13.52 13.52 13.64 0.88

5 14.92 14.92 15.13 1.40

The vibration analysis results for configuration 5 also shows that the QDFE method is capable of

converging to near-exact results with a very coarse mesh as it only required 8 elements to

reproduce the benchmark data. This is 56 times less elements than the 16-DOF FEM method and

over 420 times less elements than the ANSYS
®
 simulation.

Both the ANSYS
®
 simulation and the 16-DOF FEM results are based on the conventional Finite

Element Method, which is known to require a very fine mesh even for the lower natural

frequencies shown here. Therefore, for much higher natural frequencies tens of thousands of

elements would be required by conventional FEM. Although, widely used due to its versatile

nature, the average run time for a conventional FEM based modal analysis of a fairly common

industrial scale aerospace application with all its intricacies, such as a full fuselage or entire wing

box, is no less than a few days. So it is very common to see designers run an FEM analysis and

wait for a number of days for the solution to converge, thus, wasting precious time and resources

that could be utilized elsewhere during the early design stages. This is because there are

hundreds of thousands of elements in such large real life Finite Element models and more often

than not the engineers are interested in determining the higher natural frequencies that could be

encountered during real-life operation.

In addition to solver time, there is also a lot of time involved in generating such complicated

meshes in the first place, thus, further contributing to the time lost. The higher the number of

elements used the more mathematical complexity and computation that is involved and there is a

direct correlation between the complexity of the mesh and the total run time for the solution.

This inefficiency is largely due to the strictly numerical nature of conventional FEM. On the

other hand, the QDFE method is a semi-analytical method, which combines the accuracy of the

112

exact methods to the versatility of conventional FEM. As the shape functions used in the QDFE

method are formed using the terms of the quasi-exact solution to the governing equation, it is

inherently more accurate than a strictly numerical tool and as such it is capable of precisely

predicting the natural frequencies of the structure to an extremely accurate ballpark of the exact

value, with a limited number of elements (i.e. coarser mesh). This advantage provided by the

QDFE method grows exponentially as one seeks a solution for higher mode numbers. As

conventional FEM continuously requires more and more elements to determine the higher modes

to a reasonably acceptable degree of precision the QDFE method would require only a few more

elements to yield much more accurate (near-exact) results, thus, not only improving the

reliability of the data by improving its accuracy, but also saving a lot of run time and time spent

building the mesh as the QDFE mesh is comparatively several magnitudes simpler. Therefore,

one could only imagine the potential of such a powerful tool, once it is developed to a full-

fledged, versatile method such as conventional FEM. In order to achieve that, firstly a

comprehensive library of the QDFE models for the basic structural elements should be

developed, as it was done for conventional FEM during its inception a few decades back, and

this research is a step in that direction.

In Configuration6, a rectangular aircraft cabin window bay section with length L = 2.5m, width

W = 1m and thickness t = 0.001m is considered. It also has a 0.5m x 0.25m rectangular cut out at

the centre. However, unlike other configurations, the effect of having doublers around the

perimeter of the cut out for additional structural reinforcement is also incorporated in to

Configuration 6. This is achieved by increasing the thickness of the plate around the cut out to

0.005m. Figure 25 below illustrates the 16-DOF FEM mesh (a) and QDFE mesh (b) for cabin

window bay Configuration 6. The area in yellow colour, around the cut out (hatched region) is

the area where the thickness has been increased in order to simulate the effect of having doublers

attached for structural reinforcement. The mass distribution constants for cabin window bay

Configuration 6 are, k1 = 0.286 and k2 = 0.714. Therefore, the aspect ratio, AR, of this window

bay section is 2.5(k2/k1). For Configuration 6, the 16-DOF FEM mesh used 608 elements and the

QDFE mesh required 24 elements, out of which 20 elements are rectangular shaped. They are

comprised of six 0.875m x 0.25m elements, four 0.875m x 0.125m elements, four 0.25m x 0.125

m elements and two 0.5m x 0.125m elements. The other four elements are 0.125m x

113

0.125msquare shaped elements. The eight elements shaded in yellow colour have a higher

thickness (0.005m) compared to the other elements (0.001m). This introduces an extra degree of

rigidity and stiffness to the structure in the perimetric region of the cut out as would have been in

the case where doublers were present for added reinforcement.

 (a) (b)

Figure 25: (a) 16-DOF FEM mesh- 608 elems., (b) QDFE mesh- 24 elems., for Configuration 6

114

Figure 26 below depicts how the thick elements are connected to the thin elements along their

centrelines in configuration 6 of the cabin window bay section where there is additional

reinforcement to model the presence of doublers around the perimeter of the cutout.

Figure 26: Element connectivity between thick and thin elements surrounding the cut out for

configuration 6 of the cabin window bay section

Table 31 below includes the modal analysis results for the first five natural frequencies of

aircraft cabin window bay Configuration 6.

Table 31: Natural frequency results for aircraft cabin window bay section – configuration 6

Mode

Number

Natural Frequencies (Hz)

Benchmark

(ANSYS
®

: 4565

elems)

QDFE

(24 elems)

16-DOF FEM

(608 elems)

Percent Difference (%)

16-DOF FEM vs.

QDFE

1 6.91 6.91 6.91 0.00

2 7.58 7.58 7.60 0.26

3 10.47 10.47 10.56 0.86

4 12.04 12.04 12.17 1.07

5 15.26 15.26 15.49 1.50

115

For Configuration 6 with the reinforcement around the perimeter of the cut out similar results are

seen. The benchmark data were generated using a 4565 element ANSYS
®
 model and used for

comparing the QDFE and 16-DOF FEM results. In this case the QDFE method required 24

elements to produce the exact same result as the ANSYS
®
 simulation. Comparatively, the 16-

DOF FEM method required 608 elements to arrive at a solution within a two percent difference.

Therefore, once again it can be seen that the QDFE method requires over 25 times less elements

than the 16-DOF FEM method and over 190 times less elements compared to the benchmark

solution from ANSYS
®
.

Lastly, it is important to briefly address the absence of experimental data to further verify the

QDFE results. The long term goal of this entire research is to contribute towards the

development of a new, versatile, semi-analytical tool for the modal analysis of airframe

components that would be a more computationally efficient alternative to conventional FEM

dsuitable for the preliminary design stages. However, in order to achieve that objective in the

distant future one needs to develop the Dynamic Finite Element models for the most basic

structural elements such as beams, plates and shells for all the different boundary condition

types. Not only that, these basic element models should then also be extended to incorporate the

effects of some common situations, including but not limited to, having multiple layers of

different materials, being made of advanced composites and consisting of delamination. Many

researchers in the past have contributed their share to achieve this monumental task and in doing

so have covered various beam related structural configurations, thereby by gradually furnishing a

comprehensive library of Dynamic Finite Element models. However, this work is the first time

that the Dynamic Finite Element concept has been extended to the two dimensional elements

such as thin plates. Therefore, what is crucial for the reader to understand here is that the purpose

of this work is to revolutionize the solution process. The sole objective is to create a more

efficient semi-analytical tool that, eventually can, replace conventional FEM computationally.

But the problem has not changed. More specifically, the problem is not a brand new one that has

not been studied before. What is captured through the application of the QDFE method is not

something that was not caught in the past. The problems that are under investigation here have

been studied for decades with the use of conventional FEM as well as many other exact, semi-

analytical and numerical techniques and the results have been well published in the open

116

literature. What is new here is the solution technique, which is capable of producing much more

reliable results with considerably reduced mesh complexity and solver time. Therefore, a

validation of the QDFE method through experimental investigation would add very little. For the

purpose of authenticating the results, a comparison with exact data found in the open literature or

in the absence of such analytical data, the results from a Finite Element simulation on a

commonly used software such ANSYS
®
 should be sufficient.

5.2 Time Verification for the Quasi-Exact Dynamic Finite Element Method

In this section the CPU (Central Processing Unit) time taken to solve the eigenvalue problem

for the 16-DOF FEM and QDFE methods are compared with each other. As an example,

Configuration 6 of the aircraft cabin window bay section presented above is considered for time

verification purposes. On an ASUS TP550L computer station in this case, two series of analyses

was performed. Firstly, the CPU time elapsed to solve the eigenvalue problem for the first

natural frequency of aircraft cabin window bay configuration 6 was recorded for both the 16-

DOF FEM method and the QDFE method. Subsequently, the time taken to determine the first

five natural frequencies was also monitored for both methods. These results are illustrated in

Figure 27 below. In each case the tests were repeated five times and an average CPU time was

calculated. For the QDFE method the frequency domain was swept for frequencies that render

the determinant of the system to be zero (i.e. natural frequencies), using a MATLAB
®
 code with

an embedded root finding algorithm [120].

As mentioned before, the mesh for the 16-DOF FEM method has 608 elements and the QDFE

mesh consists of 24 elements. Also, it is important to note here that the 16-DOF FEM method,

even with 608 elements, only yields results to within a two percent difference of the benchmark

data.

117

 (a) (b)

Figure 27: CPU time to determine the first natural frequency (a) CPU time to determine the first

five natural frequencies (b)

The first analysis shows that to arrive at the first natural frequency the 16-DOF FEM method

requires 2.591s and the QDFE method takes 2.265s. Although, the difference looks insignificant

here, it is still a 14.4% percent reduction in the time elapsed, and even more impressively that is

to produce results that are similar to the benchmark data to two decimal places. To arrive at this

result, the benchmark solution, based on a 4565 element ANSYS
®
 model took 10.460s.

The second test showed that the 16-DOF FEM method required 11.952s to arrive at the solution

for the first five natural frequencies, with an overall percent difference less than two percent. In

contrast the QDFE method took 9.668s to converge to the benchmark solution for the first five

natural frequencies to two decimal places. This is a 2.284s advantage and in this case the QDFE

method is 23.6% faster than the 16-DOF FEM method. The ANSYS
®
 solution with 4565

elements took 51.403s to produce the benchmark results for the first five natural frequencies.

Therefore, the reduction in solver time is clearly evident as the mode number increases.

The solver time saving would increase exponentially when the problem is extrapolated to a much

larger and more intricate structure such as an aircraft fuselage or a wing box and the higher

natural frequencies are pursued. Thus, conclusively this confirms once more, that when higher

natural frequencies and improved reliability of the results are of interest, the QDFE method can

be advantageously used.

2.1

2.2

2.3

2.4

2.5

2.6

2.591

2.265

C
P

U
 T

im
e

(s
)

FEM

QDFE

0

2

4

6

8

10

12

11.952

9.668

C
P

U
 T

im
e

(s
)

FEM

QDFE

118

This proves that the QDFE method is a superconvergent procedure which is more suitable for

preliminary stage modal analysis where time and resources are as important as the accuracy of

the result itself. Thus, the availability of a generic QDFE model for thin plates now leaves

engineers with a powerful tool with which to determine the vibration behaviour of simplified

structures such as the aircraft cabin window configurations investigated above. However, in

order to apply the Dynamic Finite Element concept to much more complex structures and to

perform a rather detailed analysis on them as can be done using conventional FEM requires

further development. More specifically, it requires the generic DFE models for structural

elements such as shells and stiffened shell configurations to be complete.

119

6. CONCLUDING REMARKS

6.1 Synopsis

In this study, a Quasi Exact Dynamic Finite Element (QDFE) method and a Dynamic

Coefficient Matrix (DCM) method was developed for thin rectangular plates. Prior to forming

the QDFE and DCM solutions, a quasi-exact solution to the governing partial differential

equation was sought using an unique approach never presented before, whereby the

characteristic equation was re-arranged as the sum of two beam-like expressions representing

each spatial direction of the plate and each beam-like expression was separately solved by

applying the quadratic formula to obtain sixteen roots. Out of the sixteen roots, eight satisfied the

characteristic equation fully and the other eight did not, thus, giving rise to a quasi-exact

solution. Based on a 4 node, 4-DOF per node rectangular element and using the terms of the

general expression for the quasi-exact solution, sixteen frequency-dependant basis functions

characteristic to the Dynamic Finite Element procedure were formed. These new basis functions

were subsequently exploited to create sixteen new trigonometric shape functions. Using these

shape functions the QDFE thin plate model was later developed and numerous tests were carried

out using the new QDFE method. At the beginning the QDFE method was applied to investigate

the vibration behaviour of two different rectangular plates subjected to eleven classical boundary

conditions. One of the two plates was an intact, homogeneous, plate while the other one was a

hybrid, two layered plate. The results from these modal analyses showed that the QDFE method

is a superconvergent, semi-analytical method that has the potential to fill the void between the

numerical and analytical methods that are already available for use. The capabilities of the

QDFE method can be best exploited during the preliminary design stages of plate-type structures

and structural components, where the goal is to reduce the time spent by creating a coarse model

for modal analyses and minimize computational overhead without compromising the accuracy of

results. The new trigonometric, frequency-dependant shape functions, unique to the QDFE

method, were capable of producing exact results to two decimal places using just one element for

the first five natural frequencies. In comparison, for both homogeneous and multilayered plates

the 12-DOFFEM and 16-DOF FEM methods, which use polynomial based shape functions,

required at least 196 elements to arrive at results that are within a 10 percent difference,

suggesting that for much higher mode numbers the conventional FEM methods would require

120

tens of thousands of elements. This very high efficiency of the QDFE shape functions is

attributed to the fact that they are developed using expressions from the quasi- exact solution to

the governing differential equation. However, the QDFE shape functions, exhibit behaviour

identical to the polynomial shape functions at each node and they are designed in such a way that

they approach their FEM counterparts as the natural frequency tends to zero (static case).

Furthermore, despite their differences, the formulation process for the QDFE method is very

similar to that of the FEM method and this is an extra advantage as most researchers are very

familiar with the conventional FEM formulation.

The findings from the cabin window analyses were also consistent with the homogeneous and

multilayered plate studies described above. Six different cabin window bay configurations were

investigated and the results produced by the QDFE method were compared with the 16-DOF

FEM data and an ANSYS
®
 simulation based on a very fine mesh. For the first five

configurations the QDFE method produced results that are identical to the benchmark data to two

decimal places with just 8 elements. On the contrary the 16-DOF FEM method required between

312 and 864 elements, depending on the cabin window bay configuration. Thus, the number of

elements required by the QDFE method for different configurations varied between 39 to 108

times less than what was used by the 16-DOF FEM method. For the sixth configuration, a cabin

window bay with thicker elements surrounding the cut out region was studied to simulate the

presence of doublers for further structural reinforcement and even for this case the QDFE

method required over 25 times less elements. Therefore, all the studies conducted consistently

proved that the QDFE method is capable of yielding very accurate results with a much coarser

mesh for the first five natural frequencies compared to the conventional FEM method.

A time verification was also carried out to quantify the savings made on computational time as a

result of the coarser mesh that the QDFE method uses. It was found here that, even for just one

natural frequency the QDFE method is capable of consuming 14.4% less computational time

than the 16-DOF FEM method in addition to the higher accuracy that it provides. The same

analysis also showed that a time saving of 23.6% is achieved if the first five natural frequencies

are sought using the QDFE method as opposed to using the 16-DOF FEM method. This means

that the time savings made when the QDFE method is used increases exponentially as the higher

121

natural frequencies are sought and this further proves that when higher mode numbers and more

accuracy is of interest the QDFE method has an advantage over conventional FEM.

In parallel to the QDFE solution, a Dynamic Coefficient Matrix (DCM) method was also

developed to study the vibration behaviour of the homogeneous and multilayered plate problems

subjected to eleven different boundary conditions, using the distinct quasi-exact solution that is

not based on any simplifying assumption. The results showed that the DCM method yields exact

results to two decimal places for all the plate problems analysed, just like the QDFE method.

Although, somewhat limited in its application due to its strictly analytical nature, the main

advantage of the DCM method is that it is a very general method, which can be readily applied to

determine the exact modal characteristics of a wide range of thin, rectangular, homogeneous and

multilayered plates of any dimension or aspect ratio, subjected to all types of boundary

conditions, in contrast to the other exact methods that have been tried in the past, which are only

applicable to simple and special cases such as square plates or plates with two opposing edges

simply supported.

6.2 Key Contributions

The key contributions of this thesis have been summarized and enumerated below.

1. Development of a unique quasi-exact solution to the thin plates‘ governing partial

differential equation based on Classical Plate Theory (CPT) using a distinctive procedure

that has not been followed before, whereby the plate governing equation is treated as the

sum of two beam-like expressions.

2. Formation of frequency-dependant, trigonometric basis functions for a 4-node, 4-DOF

per node, thin rectangular plate element using the newly found quasi-exact solutions such

that the trigonometric basis functions approach the polynomial basis functions used in

conventional FEM when the natural frequency tends to zero.

3. Derivation of 16 trigonometric, frequency-dependant shape functions for a 4-node, 4-

DOF per node, thin rectangular plate element that approximates the flexural

displacements, slopes and curvatures identically to the polynomial shape functions of

conventional FEM.

122

4. Formulation of a Quasi-Exact Dynamic Finite Element (QDFE) method as a highly

accurate, superconvergent, semi-analytical procedure that can be confidently and

accurately used to perform vibration analysis of two-dimensional (2D) airframe

components that are modelled as thin, rectangular, homogeneous plates during the

preliminary design stages using a very coarse mesh. The objective here is to develop a

powerful alternative method of analysis that is ideal for use during the early stages of

design where accuracy and speed is both important.

5. Development of a new Dynamic Coefficient Matrix (DCM) method as an alternative,

more general, quasi-exact procedure, that does not incorporate any simplifying

assumptions, and in so doing is not limited to simple and special cases. This will leave

researchers with a flexible quasi-exact tool that can be exploited to determine the natural

frequencies of thin, rectangular, homogeneous plates of any size, subjected to any type of

boundary condition.

6. Extension of the Quasi-Exact Dynamic Finite Element (QDFE) solution to investigate the

vibration behaviour of thin, two-layer, rectangular plates of any size, subjected to any

type of boundary condition.

7. Extension of the Dynamic Coefficient Matrix (DCM) method to study the modal

characteristics of thin, two-layer, rectangular plates having varying edge lengths and edge

conditions.

6.3 Impact of Research

The new plate QDFE model can be advantageously used for dynamic analysis and vibration

analysis of plates, plate assemblages and plate-type structures with low curvature. Furthermore,

the plate and beam DFE models can be combined in the future to model complex aerospace

structures, such as stiffened plates. The DCM plate model leaves engineers with a powerful

quasi-exact method that can be exploited to investigate the vibration characteristics of structural

components that are modelled as thin, rectangular, homogeneous or layered plates. Most

importantly, engineers are now made available a quasi-exact solution procedure that is not based

on any simplifying assumptions and that has its generality intact. Therefore, the contributions of

this research are expected to make a major impact across structural vibration communities. As a

result of the increased reliability in free vibration analysis results, the accuracy of response

123

analysis, aeroelastic research work, and structural health monitoring will increase. Increased

accuracy will also improve structural optimization, resulting in more efficient structural designs

with improved vibration, response, and aeroelastic features.

6.4 Recommendations for Future Work

The future research will first focus on the extension of the QDFE model to investigate the

vibration behaviour of thick plates using first order and higher order shear deformation theories.

In addition to this, research is also underway to use non-rectangular, arbitrary shaped four-noded

elements to develop a novel Dynamic Finite Element solution for thin plates. The next step

would be to utilize the capabilities of the QDFE method to determine the vibration behaviour of

composite structures, which are both intact and delaminated. Combining the DFE beam models

formulated in the past with the QDFE plate model presented here the modal behaviour of

stiffened plates or plate assemblies can also be studied. Furthermore, exploiting the high

accuracy of the QDFE method, laminates embedded with piezoelectric layers acting as sensors

could also be modeled upon further development.

124

6.5 List of Publications

Journal Paper Publications

1. Supun Jayasinghe, and Seyed M. Hashemi ―A Symbolic Dynamic Finite Element

Formulation for Multilayered Thin Rectangular Plates,‖ For submission to Computers &

Structures (Special Issue).

2. Supun Jayasinghe and Seyed M. Hashemi ―A Quasi-Exact Dynamic Finite Element

Method for the Free Vibration Analysis of Thin Rectangular Plates,‖ Journal of Sound

and Vibrations (JSV) (Under Review; Submitted; February 11, 2018, Ref #: JSV-S-18-

00483).

3. Supun Jayasinghe and Seyed M. Hashemi, ―New Frequency-Dependent Trigonometric

Interpolation Functions for the Dynamic Finite Element Analysis of Thin Rectangular

Plates‖, Shock & Vibration Journal, vol. 2018, Article ID 6980536, 16 pages,

2018. https://doi.org/10.1155/2018/6980536.

4. Supun Jayasinghe and Seyed M. Hashemi, ―A Dynamic Coefficient Matrix Method for

the Free Vibration of Thin Rectangular Plates‖, Shock & Vibration Journal, vol. 2018,

Article ID 1071830, 8 pages, 2018. https://doi.org/10.1155/2018/1071830/.

5. M.T.T Kashani, S. Jayasinghe, and S.M. Hashemi " Dynamic Finite Element Analysis of

Bending-Torsion Coupled Beams Subjected to Axial Load and End Moment,‖ Shock &

Vibration, vol. 2015, Article ID 471270, 12 pages, 2015. doi:10.1155/2015/471270.

https://www.hindawi.com/journals/sv/2015/471270/(Masters’ research but related to

DFE).

6. M.T.T. Kashani, S. Jayasinghe, and S.M. Hashemi "On the Flexural–Torsional Vibration

and Stability of Beams Subjected to Axial Load and End Moment," Journal of Shock &

Vibration,Vol. 2014 (2014), Article ID 153532, 11 pages.

http://dx.doi.org/10.1155/2014/153532 (Masters’ research but related to DFE).

https://doi.org/10.1155/2018/6980536
https://doi.org/10.1155/2018/1071830
https://www.hindawi.com/journals/sv/2015/471270/
http://dx.doi.org/10.1155/2014/153532

125

Conference Papers

1. Supun Jayasinghe and Seyed M. Hashemi, ―A Symbolic Dynamic Finite Element

Formulation for Multilayered Thin Rectangular Plates‖, Presented at the

10
th

 International Conference on Engineering Computational Technology (ECT 2018),

September 4-6, 2018, Sitges, Barcelona, Spain.

2. Supun Jayasinghe and Seyed M. Hashemi, ―Dynamic Coefficient Matrix Method for

Multilayered Thin Plate Vibration – A Symbolic Formulation‖, Presented at the

24
th

 International Congress on Sound and Vibration (ICSV 25), July 8-12, 2018,

Hiroshima, Japan.

3. Seyed M. Hashemi and Supun Jayasinghe, ―A Quasi-Exact Dynamic Finite Element

Model for the Vibration of a Fully Clamped Thin Plate‖, Presented at MechAero 2017,

May 11, 2017, Tehran, Iran.

4. Supun Jayasinghe and Seyed M. Hashemi, ―An Exact Dynamic Coefficient Matrix

(DCM) Method for the Free Vibration Analysis of Thin Rectangular Plates‖, Presented at

the 6
th

 International Conference on Acoustics & Vibration (ISAV-2016), Tehran, Iran,

December 7-8, 2016 (Poster Presentation)

5. Supun Jayasinghe and Seyed M. Hashemi, ―A Dynamic Exact Coefficient Method for

the Free Vibration Analysis of Thin Rectangular Plates‖, Presented at the 6
th

 International

Conference of Acoustics and Vibration, Tehran, Iran, December 7-8, 2016.

6. Supun Jayasinghe and Seyed M. Hashemi, ―A Symbolic Dynamic Finite Element

Formulation for Free Vibration Analysis of Thin Rectangular Plates‖, Presented at the 6
th

International Conference of Acoustics and Vibration, Tehran, Iran, December 7-8, 2016.

7. Supun Jayasinghe and Seyed M. Hashemi, ―Frequency Dependant Trigonometric Shape

Functions for Thin Rectangular Plate Elements‖, Presented at the 23
rd

 International

Congress on Sound and Vibration, ICSV 23, Athens, Greece, July 10-14, 2016.

8. S. Jayasinghe, M.T. Kashani, and S.M. Hashemi, ―Coupled Flexural–Torsional Free

Vibration Analysis of Pre-Loaded Beams – A Dynamic Finite Element Method‖,

Presented at the 3
rd

 International Conference of Acoustics and Vibration, ISAV 2013,

Tehran, Iran, December 25 – 26, 2013. (Master’s research but related to DFE)

126

9. M.T.T. Kashani, S. Jayasinghe, S.M. Hashemi, ―Stability Analysis of Beams Subjected

to Axial Load and End Moment- A Dynamic Finite Element‖, Presented at the 3
rd

International Conference of Acoustics and Vibration, ISAV 2013, Tehran, Iran,

December 25 – 26, 2013. (Master’s research but related to DFE)

10. M.T.T. Kashani, S. Jayasinghe and S.M. Hashemi, ―On the Flexural – Torsional

Vibration and Stability of Layered Beams Subjected to Axial Load and End Moment‖,

Presented at the 20
th

 International Congress of Sound and Vibration, ICSV 20, Bangkok,

Thailand, July 7 – 11, 2013. (Master’s research but related to DFE)

11. S. Jayasinghe, M.T.T. Kashani, S.M. Hashemi, ―The Effects of Axial Load and End

Moment on the Flexural – Torsional Vibration and Stability Characteristics of Beams‖,

Presented at the Canadian Aeronautics and Space Institute (CASI) AERO 13 Conference,

Toronto, Canada, April 30 – May 2, 2013. (Master’s research but related to DFE)

__

127

APPENDICES

Appendix A: Trigonometric, Frequency Dependant DFE Shape Functions

Comparison of DFE and FEM Shape Functions

Figure 28: DFE (left) and FEM (right) shape function for w2 at node 2

Figure 29: DFE (left) and FEM (right) shape function for θx2 at node 2

0

0.25

0.5

0.75

1

0

0.5

1

1.5

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
5f

 (
ξ

, η
)

ξ
0

0.25

0.5

0.75

1

0

0.5

1

1.5

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N

5
H

(ξ
 ,
η

)
ξ

0

0.25

0.5

0.75
1

-0.15

-0.1

-0.05

0

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
6

f
 (
ξ

, η
)

ξ

0

0.25

0.5

0.75
1

-0.15

-0.1

-0.05

0

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
6

H
 (
ξ

, η
)

ξ

128

Figure 30: DFE (left) and FEM (right) shape function for θy2 at node 2

Figure 31: DFE (left) and FEM (right) shape function for θxy2 at node 2

Figure 32: DFE (left) and FEM (right) shape function for w3 at node 3

0

0.25

0.5

0.75

1

0

0.05

0.1

0.15
0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
7

f
 (
ξ

, η
)

ξ 0

0.25

0.5

0.75

1

0

0.05

0.1

0.15

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
7

H

(ξ
 ,
η

)

ξ

0

0.25

0.5

0.75
1

-0.025

-0.02

-0.015

-0.01

-0.005

0

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
8

f
 (
ξ

, η
)

ξ

0

0.25

0.5

0.75
1

-0.025

-0.02

-0.015

-0.01

-0.005

0

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
8

H

(ξ
 ,
η

)

ξ

0

0.25

0.5

0.75

1

0

0.2

0.4

0.6

0.8

1

1.2

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
9f

 (
ξ

, η
)

ξ 0

0.25

0.5

0.75

1

0

0.2

0.4

0.6

0.8

1

1.2

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
9

H

 (
ξ

, η
)

ξ

129

Figure 33: DFE (left) and FEM (right) shape function for θx3 at node 3

Figure 34: DFE (left) and FEM (right) shape function for θy3 at node 3

Figure 35: DFE (left) and FEM (right) shape function for θxy3 at node 3

0

0.25

0.5

0.75
1

-0.15

-0.1

-0.05

0
0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
10

f

(ξ
 ,
η

)

ξ

0

0.25

0.5

0.75
1

-0.15

-0.1

-0.05

0

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
1

0
H

(ξ
 ,
η

)

ξ

0

0.25

0.5

0.75
1

-0.15

-0.1

-0.05

0

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
1

1
f

(ξ
 ,
η

)

ξ

0

0.25

0.5

0.75
1

-0.15

-0.1

-0.05

0

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
1

1
H

 (
ξ

, η
)

ξ

0

0.25

0.5

0.75

1

0

0.005

0.01

0.015

0.02

0.025

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
1

2f

 (
ξ

, η
)

ξ 0

0.25

0.5

0.75

1

0

0.005

0.01

0.015

0.02

0.025

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
1

2
H

 (
ξ

, η
)

ξ

130

Figure 36: DFE (left) and FEM (right) shape function for w4 at node 4

Figure 37: DFE (left) and FEM (right) shape function for θx4 at node 4

Figure 38: DFE (left) and FEM (right) shape function for θy4 at node 4

0

0.25

0.5

0.75

1

0

0.5

1

1.5
0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
13

f

(ξ
 ,
η

)

ξ
0

0.25

0.5

0.75

1

0

0.5

1

1.5

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
1

3
H
 (
ξ

, η
)

ξ

0

0.25

0.5

0.75

1

0

0.05

0.1

0.15

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
1

4
f

(ξ
 ,
η

)

ξ 0

0.25

0.5

0.75

1

0

0.05

0.1

0.15

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
1

4
H

 (
ξ

, η
)

ξ

0

0.25

0.5

0.75
1

-0.15

-0.1

-0.05

0

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
15

f

(ξ
 ,
η

)

ξ

0

0.25

0.5

0.75
1

-0.15

-0.1

-0.05

0

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
1

5H

 (
ξ

, η
)

ξ

131

Figure 39: DFE (left) and FEM (right) shape function for θxy4 at node 4

0

0.25

0.5

0.75
1

-0.025

-0.02

-0.015

-0.01

-0.005

0
0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
16

f

(ξ
 ,
η

)

ξ

0

0.25

0.5

0.75
1

-0.025

-0.02

-0.015

-0.01

-0.005

0

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
1

6
H
 (
ξ

, η
)

ξ

132

Frequency dependency of the DFE shape functions

Figure 40: Shape function N5f at ω1 (left) and ω5 (right)

Figure 41: Shape function N6f at ω1 (left) and ω5 (right)

Figure 42: Shape function N7f at ω1 (left) and ω5 (right)

0

0.25

0.5

0.75

1

0

0.5

1

1.5

2

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
5f

 (
ξ

, η
)

ξ

0

0.25

0.5

0.75

1

-1

-0.5

0

0.5

1

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
5

f
(ξ

 ,
η

)

ξ

0

0.3

0.6

0.9

-0.4

-0.3

-0.2

-0.1

0

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
6

f

(ξ
 ,
η

)

ξ

0

0.3

0.6

0.9

-0.2

-0.1

0

0.1

0.2

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
6

f

(ξ
 ,
η

)

ξ

0

0.25

0.5

0.75

1

0

0.1

0.2

0.3

0.4

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
7f

 (
ξ

, η
)

ξ

0

0.3

0.6

0.9

-0.2

-0.1

0

0.1

0.2

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
7

f
 (
ξ

, η
)

ξ

133

Figure 43: Shape function N8f at ω1 (left) and ω5 (right)

Figure 44: Shape function N9f at ω1 (left) and ω5 (right)

Figure 45: Shape function N10f at ω1 (left) and ω5 (right)

0

0.25

0.5

0.75

1

-0.1

-0.08

-0.06

-0.04

-0.02

0
0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
8f

 (
ξ

, η
)

ξ

0

0.25

0.5

0.75

1

-0.03

-0.02

-0.01

0

0.01

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
8

f
(ξ

 ,
η

)

ξ

0

0.25

0.5

0.75

1

0

0.5

1

1.5

2

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
9

f

(ξ
 ,
η

)

ξ

0

0.25

0.5

0.75

1

-1

-0.5

0

0.5

1

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
9

f
 (
ξ

, η
)

ξ

0

0.25

0.5

0.75

1

-0.4

-0.3

-0.2

-0.1

0

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
10

f

(ξ
 ,
η

)

ξ

0

0.25

0.5

0.75

1

-0.2

-0.1

0

0.1

0.2

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
10

f
 (
ξ

, η
)

ξ

134

Figure 46: Shape function N11f at ω1 (left) and ω5 (right)

Figure 47: Shape function N12f at ω1 (left) and ω5 (right)

Figure 48: Shape function N13f at ω1 (left) and ω5 (right)

0

0.25

0.5

0.75
1

-0.4

-0.3

-0.2

-0.1

0
0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
1

1
f

 (
ξ

, η
)

ξ

0

0.25

0.5

0.75

1

-0.2

-0.1

0

0.1

0.2

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
1

1
f

 (
ξ

, η
)

ξ

0

0.25

0.5

0.75

1

0

0.02

0.04

0.06

0.08

0.1

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
1

2
f

(ξ

 ,
η

)

ξ

0

0.25

0.5

0.75

1

-0.01

0

0.01

0.02

0.03

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
1

2
f

 (
ξ

, η
)

ξ

0

0.25

0.5

0.75

1

0

0.5

1

1.5

2

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
1

3
f

 (
ξ

, η
)

ξ

0

0.25

0.5

0.75

1

-1

-0.5

0

0.5

1

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
1

3
f

 (
ξ

, η
)

ξ

135

Figure 49: Shape function N14f at ω1 (left) and ω5 (right)

Figure 50: Shape function N15f at ω1 (left) and ω5 (right)

Figure 51: Shape function N16f at ω1 (left) and ω5 (right)

0

0.25

0.5

0.75

1

0

0.1

0.2

0.3

0.4
0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
14

f

(ξ
 ,
η

)

ξ

0

0.25

0.5

0.75

1

-0.2

-0.1

0

0.1

0.2

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
1

4
f

 (
ξ

, η
)

ξ

0

0.25

0.5

0.75

1

-0.4

-0.3

-0.2

-0.1

0

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
1

5
f

(ξ

 ,
η

)

ξ

0

0.25

0.5

0.75

1

-0.2

-0.1

0

0.1

0.2

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
1

5
f

 (
ξ

, η
)

ξ

0

0.25

0.5

0.75
1

-0.1

-0.08

-0.06

-0.04

-0.02

0

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
16

f

(ξ
 ,
η

)

ξ

0

0.25

0.5

0.75

1

-0.03

-0.02

-0.01

0

0.01

0

0
.1

5

0
.3

0
.4

5

0
.6

0
.7

5

0
.9

η

N
16

f
 (
ξ

, η
)

ξ

136

Appendix B: QDFE Solution for a Simply Supported (S-S-S-S) Plate

MATLAB
®

 program flowchart and sample results for the QDFE solution

Table 32: MATLAB
®

 program flow chart and sample results for S-S-S-S plate using QDFE

Flow Chart Excerpts from MATLAB
®

Code Equation

Eqs. 31 to 34

Eqs. 113 to 132

Eq. 78

N/A

Eq. 133

N/A

INPUT

ELEMENT

STIFFNESS AND

MASS MATRICES

GLOBAL STIFFNESS

AND MASS

MATRICES

BOUNDARY

CONDITIONS

EIGENVALUE

PROBLEM

DETERMINATION

OF ROOTS

137

Table 32 continued: MATLAB
®

 program flow chart and sample results for S-S-S-S plate using

QDFE

Flow Chart Excerpts from MATLAB
®
 Code Equation

N/A

N/A

CONVERSION

FROM RADIANS

TO HZ

RESULTS

138

MATLAB
®

 code for a simply supported, thin, homogeneous, rectangular plate analysed

using a single element QDFE model

% Free vibration of a thin, homogeneous, rectangular plate under S-S-S-S

boundary condition
% Toronto, Ontario, Canada, 2019
% Copyright Heenkenda Jayasinghe 2019

syms ax ay bx by ke omega

Rho = 7800;
F = 200e9;
h = 0.004;
v = 0.3;
D = (F*(h^3))/(12*(1-(v^2)));
c1 = 0.6;
c2 = 0.4;
ax = abs(sqrt(-1)*(sqrt(c1*omega*sqrt(Rho*h/D))));
ay = abs(sqrt(-1)*(sqrt(c2*omega*sqrt(Rho*h/D))));
bx = (sqrt(c1*omega*sqrt(Rho*h/D)));
by = (sqrt(c2*omega*sqrt(Rho*h/D)));

% Shape Functions: Node 1

N1 = ((cos(ay*e) + cosh(by*e) - cos(ay)*cosh(by*(e - 1)) - cosh(by)*cos(ay*(e

- 1)) + (ay*sin(ay)*sinh(by*(e - 1)))/by - (by*sinh(by)*sin(ay*(e -

1)))/ay)*(cos(ax*k) + cosh(bx*k) - cos(ax)*cosh(bx*(k - 1)) -

cosh(bx)*cos(ax*(k - 1)) + (ax*sin(ax)*sinh(bx*(k - 1)))/bx -

(bx*sinh(bx)*sin(ax*(k - 1)))/ax))/((2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N2 = -((bx*(cosh(bx)*sin(ax*(k - 1)) - sin(ax*k) + sin(ax)*cosh(bx*(k - 1)))

+ ax*(cos(ax)*sinh(bx*(k - 1)) - sinh(bx*k) + sinh(bx)*cos(ax*(k -

1))))*(cos(ay*e) + cosh(by*e) - cos(ay)*cosh(by*(e - 1)) - cosh(by)*cos(ay*(e

- 1)) + (ay*sin(ay)*sinh(by*(e - 1)))/by - (by*sinh(by)*sin(ay*(e -

1)))/ay))/(ax*bx*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N3 = -((by*(cosh(by)*sin(ay*(e - 1)) - sin(ay*e) + sin(ay)*cosh(by*(e - 1)))

+ ay*(cos(ay)*sinh(by*(e - 1)) - sinh(by*e) + sinh(by)*cos(ay*(e -

1))))*(cos(ax*k) + cosh(bx*k) - cos(ax)*cosh(bx*(k - 1)) - cosh(bx)*cos(ax*(k

- 1)) + (ax*sin(ax)*sinh(bx*(k - 1)))/bx - (bx*sinh(bx)*sin(ax*(k -

1)))/ax))/(ay*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N4 = ((by*(cosh(by)*sin(ay*(e - 1)) - sin(ay*e) + sin(ay)*cosh(by*(e - 1))) +

ay*(cos(ay)*sinh(by*(e - 1)) - sinh(by*e) + sinh(by)*cos(ay*(e -

1))))*(bx*(cosh(bx)*sin(ax*(k - 1)) - sin(ax*k) + sin(ax)*cosh(bx*(k - 1))) +

ax*(cos(ax)*sinh(bx*(k - 1)) - sinh(bx*k) + sinh(bx)*cos(ax*(k -

1)))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

139

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

% Shape Functions: Node 2

N5 = ((cos(ay*e) + cosh(by*e) - cos(ay)*cosh(by*(e - 1)) - cosh(by)*cos(ay*(e

- 1)) + (ay*sin(ay)*sinh(by*(e - 1)))/by - (by*sinh(by)*sin(ay*(e -

1)))/ay)*(cos(ax*(k - 1)) + cosh(bx*(k - 1)) - cos(ax*k)*cosh(bx) -

cosh(bx*k)*cos(ax) - (ax*sinh(bx*k)*sin(ax))/bx +

(bx*sin(ax*k)*sinh(bx))/ax))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N6 = ((bx*(sin(ax*(k - 1)) + cosh(bx*k)*sin(ax) - sin(ax*k)*cosh(bx)) +

ax*(sinh(bx*(k - 1)) + cos(ax*k)*sinh(bx) - sinh(bx*k)*cos(ax)))*(cos(ay*e) +

cosh(by*e) - cos(ay)*cosh(by*(e - 1)) - cosh(by)*cos(ay*(e - 1)) +

(ay*sin(ay)*sinh(by*(e - 1)))/by - (by*sinh(by)*sin(ay*(e -

1)))/ay))/(ax*bx*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N7 = -((by*(cosh(by)*sin(ay*(e - 1)) - sin(ay*e) + sin(ay)*cosh(by*(e - 1)))

+ ay*(cos(ay)*sinh(by*(e - 1)) - sinh(by*e) + sinh(by)*cos(ay*(e -

1))))*(cos(ax*(k - 1)) + cosh(bx*(k - 1)) - cos(ax*k)*cosh(bx) -

cosh(bx*k)*cos(ax) - (ax*sinh(bx*k)*sin(ax))/bx +

(bx*sin(ax*k)*sinh(bx))/ax))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N8 = -((by*(cosh(by)*sin(ay*(e - 1)) - sin(ay*e) + sin(ay)*cosh(by*(e - 1)))

+ ay*(cos(ay)*sinh(by*(e - 1)) - sinh(by*e) + sinh(by)*cos(ay*(e -

1))))*(bx*(sin(ax*(k - 1)) + cosh(bx*k)*sin(ax) - sin(ax*k)*cosh(bx)) +

ax*(sinh(bx*(k - 1)) + cos(ax*k)*sinh(bx) -

sinh(bx*k)*cos(ax))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

% Shape Functions: Node 3

N9 = ((cos(ay*(e - 1)) + cosh(by*(e - 1)) - cos(ay*e)*cosh(by) -

cosh(by*e)*cos(ay) - (ay*sinh(by*e)*sin(ay))/by +

(by*sin(ay*e)*sinh(by))/ay)*(cos(ax*(k - 1)) + cosh(bx*(k - 1)) -

cos(ax*k)*cosh(bx) - cosh(bx*k)*cos(ax) - (ax*sinh(bx*k)*sin(ax))/bx +

(bx*sin(ax*k)*sinh(bx))/ax))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N10 = ((bx*(sin(ax*(k - 1)) + cosh(bx*k)*sin(ax) - sin(ax*k)*cosh(bx)) +

ax*(sinh(bx*(k - 1)) + cos(ax*k)*sinh(bx) - sinh(bx*k)*cos(ax)))*(cos(ay*(e -

1)) + cosh(by*(e - 1)) - cos(ay*e)*cosh(by) - cosh(by*e)*cos(ay) -

(ay*sinh(by*e)*sin(ay))/by +

(by*sin(ay*e)*sinh(by))/ay))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

140

N11 = ((by*(sin(ay*(e - 1)) + cosh(by*e)*sin(ay) - sin(ay*e)*cosh(by)) +

ay*(sinh(by*(e - 1)) + cos(ay*e)*sinh(by) - sinh(by*e)*cos(ay)))*(cos(ax*(k -

1)) + cosh(bx*(k - 1)) - cos(ax*k)*cosh(bx) - cosh(bx*k)*cos(ax) -

(ax*sinh(bx*k)*sin(ax))/bx +

(bx*sin(ax*k)*sinh(bx))/ax))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N12 = ((by*(sin(ay*(e - 1)) + cosh(by*e)*sin(ay) - sin(ay*e)*cosh(by)) +

ay*(sinh(by*(e - 1)) + cos(ay*e)*sinh(by) -

sinh(by*e)*cos(ay)))*(bx*(sin(ax*(k - 1)) + cosh(bx*k)*sin(ax) -

sin(ax*k)*cosh(bx)) + ax*(sinh(bx*(k - 1)) + cos(ax*k)*sinh(bx) -

sinh(bx*k)*cos(ax))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

% Shape Functions: Node 4

N13 = ((cos(ax*k) + cosh(bx*k) - cos(ax)*cosh(bx*(k - 1)) -

cosh(bx)*cos(ax*(k - 1)) + (ax*sin(ax)*sinh(bx*(k - 1)))/bx -

(bx*sinh(bx)*sin(ax*(k - 1)))/ax)*(cos(ay*(e - 1)) + cosh(by*(e - 1)) -

cos(ay*e)*cosh(by) - cosh(by*e)*cos(ay) - (ay*sinh(by*e)*sin(ay))/by +

(by*sin(ay*e)*sinh(by))/ay))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N14 = -((bx*(cosh(bx)*sin(ax*(k - 1)) - sin(ax*k) + sin(ax)*cosh(bx*(k - 1)))

+ ax*(cos(ax)*sinh(bx*(k - 1)) - sinh(bx*k) + sinh(bx)*cos(ax*(k -

1))))*(cos(ay*(e - 1)) + cosh(by*(e - 1)) - cos(ay*e)*cosh(by) -

cosh(by*e)*cos(ay) - (ay*sinh(by*e)*sin(ay))/by +

(by*sin(ay*e)*sinh(by))/ay))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N15 = ((by*(sin(ay*(e - 1)) + cosh(by*e)*sin(ay) - sin(ay*e)*cosh(by)) +

ay*(sinh(by*(e - 1)) + cos(ay*e)*sinh(by) - sinh(by*e)*cos(ay)))*(cos(ax*k) +

cosh(bx*k) - cos(ax)*cosh(bx*(k - 1)) - cosh(bx)*cos(ax*(k - 1)) +

(ax*sin(ax)*sinh(bx*(k - 1)))/bx - (bx*sinh(bx)*sin(ax*(k -

1)))/ax))/(ay*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N16 = -((bx*(cosh(bx)*sin(ax*(k - 1)) - sin(ax*k) + sin(ax)*cosh(bx*(k - 1)))

+ ax*(cos(ax)*sinh(bx*(k - 1)) - sinh(bx*k) + sinh(bx)*cos(ax*(k -

1))))*(by*(sin(ay*(e - 1)) + cosh(by*e)*sin(ay) - sin(ay*e)*cosh(by)) +

ay*(sinh(by*(e - 1)) + cos(ay*e)*sinh(by) -

sinh(by*e)*cos(ay))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

141

% Shape Function Derivatives

% Node 1

N1k = -((cos(ay*e) + cosh(by*e) - cos(ay)*cosh(by*(e - 1)) -

cosh(by)*cos(ay*(e - 1)) + (ay*sin(ay)*sinh(by*(e - 1)))/by -

(by*sinh(by)*sin(ay*(e - 1)))/ay)*(ax*sin(ax*k) - bx*sinh(bx*k) -

ax*cosh(bx)*sin(ax*(k - 1)) - ax*sin(ax)*cosh(bx*(k - 1)) +

bx*cos(ax)*sinh(bx*(k - 1)) + bx*sinh(bx)*cos(ax*(k -

1))))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N1kk = ((cos(ay*e) + cosh(by*e) - cos(ay)*cosh(by*(e - 1)) -

cosh(by)*cos(ay*(e - 1)) + (ay*sin(ay)*sinh(by*(e - 1)))/by -

(by*sinh(by)*sin(ay*(e - 1)))/ay)*(bx^2*cosh(bx*k) - ax^2*cos(ax*k) +

ax^2*cosh(bx)*cos(ax*(k - 1)) - bx^2*cos(ax)*cosh(bx*(k - 1)) +

ax*bx*sin(ax)*sinh(bx*(k - 1)) + ax*bx*sinh(bx)*sin(ax*(k -

1))))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N1e = -((ay*sin(ay*e) - by*sinh(by*e) - ay*cosh(by)*sin(ay*(e - 1)) -

ay*sin(ay)*cosh(by*(e - 1)) + by*cos(ay)*sinh(by*(e - 1)) +

by*sinh(by)*cos(ay*(e - 1)))*(cos(ax*k) + cosh(bx*k) - cos(ax)*cosh(bx*(k -

1)) - cosh(bx)*cos(ax*(k - 1)) + (ax*sin(ax)*sinh(bx*(k - 1)))/bx -

(bx*sinh(bx)*sin(ax*(k - 1)))/ax))/((2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N1ee = ((by^2*cosh(by*e) - ay^2*cos(ay*e) + ay^2*cosh(by)*cos(ay*(e - 1)) -

by^2*cos(ay)*cosh(by*(e - 1)) + ay*by*sin(ay)*sinh(by*(e - 1)) +

ay*by*sinh(by)*sin(ay*(e - 1)))*(cos(ax*k) + cosh(bx*k) - cos(ax)*cosh(bx*(k

- 1)) - cosh(bx)*cos(ax*(k - 1)) + (ax*sin(ax)*sinh(bx*(k - 1)))/bx -

(bx*sinh(bx)*sin(ax*(k - 1)))/ax))/((2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N1ke = ((ay*sin(ay*e) - by*sinh(by*e) - ay*cosh(by)*sin(ay*(e - 1)) -

ay*sin(ay)*cosh(by*(e - 1)) + by*cos(ay)*sinh(by*(e - 1)) +

by*sinh(by)*cos(ay*(e - 1)))*(ax*sin(ax*k) - bx*sinh(bx*k) -

ax*cosh(bx)*sin(ax*(k - 1)) - ax*sin(ax)*cosh(bx*(k - 1)) +

bx*cos(ax)*sinh(bx*(k - 1)) + bx*sinh(bx)*cos(ax*(k -

1))))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N1k2e = -((ay*sin(ay*e) - by*sinh(by*e) - ay*cosh(by)*sin(ay*(e - 1)) -

ay*sin(ay)*cosh(by*(e - 1)) + by*cos(ay)*sinh(by*(e - 1)) +

by*sinh(by)*cos(ay*(e - 1)))*(bx^2*cosh(bx*k) - ax^2*cos(ax*k) +

ax^2*cosh(bx)*cos(ax*(k - 1)) - bx^2*cos(ax)*cosh(bx*(k - 1)) +

ax*bx*sin(ax)*sinh(bx*(k - 1)) + ax*bx*sinh(bx)*sin(ax*(k -

1))))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N1ke2 = -((by^2*cosh(by*e) - ay^2*cos(ay*e) + ay^2*cosh(by)*cos(ay*(e - 1)) -

by^2*cos(ay)*cosh(by*(e - 1)) + ay*by*sin(ay)*sinh(by*(e - 1)) +

ay*by*sinh(by)*sin(ay*(e - 1)))*(ax*sin(ax*k) - bx*sinh(bx*k) -

142

ax*cosh(bx)*sin(ax*(k - 1)) - ax*sin(ax)*cosh(bx*(k - 1)) +

bx*cos(ax)*sinh(bx*(k - 1)) + bx*sinh(bx)*cos(ax*(k -

1))))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N1k2e2 = ((by^2*cosh(by*e) - ay^2*cos(ay*e) + ay^2*cosh(by)*cos(ay*(e - 1)) -

by^2*cos(ay)*cosh(by*(e - 1)) + ay*by*sin(ay)*sinh(by*(e - 1)) +

ay*by*sinh(by)*sin(ay*(e - 1)))*(bx^2*cosh(bx*k) - ax^2*cos(ax*k) +

ax^2*cosh(bx)*cos(ax*(k - 1)) - bx^2*cos(ax)*cosh(bx*(k - 1)) +

ax*bx*sin(ax)*sinh(bx*(k - 1)) + ax*bx*sinh(bx)*sin(ax*(k -

1))))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N1k3 = ((cos(ay*e) + cosh(by*e) - cos(ay)*cosh(by*(e - 1)) -

cosh(by)*cos(ay*(e - 1)) + (ay*sin(ay)*sinh(by*(e - 1)))/by -

(by*sinh(by)*sin(ay*(e - 1)))/ay)*(ax^3*sin(ax*k) + bx^3*sinh(bx*k) -

ax^3*cosh(bx)*sin(ax*(k - 1)) - bx^3*cos(ax)*sinh(bx*(k - 1)) +

ax*bx^2*sin(ax)*cosh(bx*(k - 1)) + ax^2*bx*sinh(bx)*cos(ax*(k -

1))))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N1e3 = ((ay^3*sin(ay*e) + by^3*sinh(by*e) - ay^3*cosh(by)*sin(ay*(e - 1)) -

by^3*cos(ay)*sinh(by*(e - 1)) + ay*by^2*sin(ay)*cosh(by*(e - 1)) +

ay^2*by*sinh(by)*cos(ay*(e - 1)))*(cos(ax*k) + cosh(bx*k) -

cos(ax)*cosh(bx*(k - 1)) - cosh(bx)*cos(ax*(k - 1)) + (ax*sin(ax)*sinh(bx*(k

- 1)))/bx - (bx*sinh(bx)*sin(ax*(k - 1)))/ax))/((2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N1k4 = ((ax^4*cos(ax*k) + bx^4*cosh(bx*k) - ax^4*cosh(bx)*cos(ax*(k - 1)) -

bx^4*cos(ax)*cosh(bx*(k - 1)) + ax*bx^3*sin(ax)*sinh(bx*(k - 1)) -

ax^3*bx*sinh(bx)*sin(ax*(k - 1)))*(cos(ay*e) + cosh(by*e) -

cos(ay)*cosh(by*(e - 1)) - cosh(by)*cos(ay*(e - 1)) + (ay*sin(ay)*sinh(by*(e

- 1)))/by - (by*sinh(by)*sin(ay*(e - 1)))/ay))/((2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N1e4 = ((cos(ax*k) + cosh(bx*k) - cos(ax)*cosh(bx*(k - 1)) -

cosh(bx)*cos(ax*(k - 1)) + (ax*sin(ax)*sinh(bx*(k - 1)))/bx -

(bx*sinh(bx)*sin(ax*(k - 1)))/ax)*(ay^4*cos(ay*e) + by^4*cosh(by*e) -

ay^4*cosh(by)*cos(ay*(e - 1)) - by^4*cos(ay)*cosh(by*(e - 1)) +

ay*by^3*sin(ay)*sinh(by*(e - 1)) - ay^3*by*sinh(by)*sin(ay*(e -

1))))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

% Node 2

N2k = -((bx*(ax*cosh(bx)*cos(ax*(k - 1)) - ax*cos(ax*k) +

bx*sin(ax)*sinh(bx*(k - 1))) - ax*(bx*cosh(bx*k) - bx*cos(ax)*cosh(bx*(k -

1)) + ax*sinh(bx)*sin(ax*(k - 1))))*(cos(ay*e) + cosh(by*e) -

cos(ay)*cosh(by*(e - 1)) - cosh(by)*cos(ay*(e - 1)) + (ay*sin(ay)*sinh(by*(e

- 1)))/by - (by*sinh(by)*sin(ay*(e - 1)))/ay))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

143

N2kk = -((bx*(ax^2*sin(ax*k) - ax^2*cosh(bx)*sin(ax*(k - 1)) +

bx^2*sin(ax)*cosh(bx*(k - 1))) - ax*(bx^2*sinh(bx*k) +

ax^2*sinh(bx)*cos(ax*(k - 1)) - bx^2*cos(ax)*sinh(bx*(k - 1))))*(cos(ay*e) +

cosh(by*e) - cos(ay)*cosh(by*(e - 1)) - cosh(by)*cos(ay*(e - 1)) +

(ay*sin(ay)*sinh(by*(e - 1)))/by - (by*sinh(by)*sin(ay*(e -

1)))/ay))/(ax*bx*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N2e = ((bx*(cosh(bx)*sin(ax*(k - 1)) - sin(ax*k) + sin(ax)*cosh(bx*(k - 1)))

+ ax*(cos(ax)*sinh(bx*(k - 1)) - sinh(bx*k) + sinh(bx)*cos(ax*(k -

1))))*(ay*sin(ay*e) - by*sinh(by*e) - ay*cosh(by)*sin(ay*(e - 1)) -

ay*sin(ay)*cosh(by*(e - 1)) + by*cos(ay)*sinh(by*(e - 1)) +

by*sinh(by)*cos(ay*(e - 1))))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N2ee = -((bx*(cosh(bx)*sin(ax*(k - 1)) - sin(ax*k) + sin(ax)*cosh(bx*(k -

1))) + ax*(cos(ax)*sinh(bx*(k - 1)) - sinh(bx*k) + sinh(bx)*cos(ax*(k -

1))))*(by^2*cosh(by*e) - ay^2*cos(ay*e) + ay^2*cosh(by)*cos(ay*(e - 1)) -

by^2*cos(ay)*cosh(by*(e - 1)) + ay*by*sin(ay)*sinh(by*(e - 1)) +

ay*by*sinh(by)*sin(ay*(e - 1))))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N2ke = ((bx*(ax*cosh(bx)*cos(ax*(k - 1)) - ax*cos(ax*k) +

bx*sin(ax)*sinh(bx*(k - 1))) - ax*(bx*cosh(bx*k) - bx*cos(ax)*cosh(bx*(k -

1)) + ax*sinh(bx)*sin(ax*(k - 1))))*(ay*sin(ay*e) - by*sinh(by*e) -

ay*cosh(by)*sin(ay*(e - 1)) - ay*sin(ay)*cosh(by*(e - 1)) +

by*cos(ay)*sinh(by*(e - 1)) + by*sinh(by)*cos(ay*(e -

1))))/(ax*bx*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N2k2e = ((bx*(ax^2*sin(ax*k) - ax^2*cosh(bx)*sin(ax*(k - 1)) +

bx^2*sin(ax)*cosh(bx*(k - 1))) - ax*(bx^2*sinh(bx*k) +

ax^2*sinh(bx)*cos(ax*(k - 1)) - bx^2*cos(ax)*sinh(bx*(k - 1))))*(ay*sin(ay*e)

- by*sinh(by*e) - ay*cosh(by)*sin(ay*(e - 1)) - ay*sin(ay)*cosh(by*(e - 1)) +

by*cos(ay)*sinh(by*(e - 1)) + by*sinh(by)*cos(ay*(e -

1))))/(ax*bx*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N2ke2 = -((bx*(ax*cosh(bx)*cos(ax*(k - 1)) - ax*cos(ax*k) +

bx*sin(ax)*sinh(bx*(k - 1))) - ax*(bx*cosh(bx*k) - bx*cos(ax)*cosh(bx*(k -

1)) + ax*sinh(bx)*sin(ax*(k - 1))))*(by^2*cosh(by*e) - ay^2*cos(ay*e) +

ay^2*cosh(by)*cos(ay*(e - 1)) - by^2*cos(ay)*cosh(by*(e - 1)) +

ay*by*sin(ay)*sinh(by*(e - 1)) + ay*by*sinh(by)*sin(ay*(e -

1))))/(ax*bx*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N2k2e2 = -((bx*(ax^2*sin(ax*k) - ax^2*cosh(bx)*sin(ax*(k - 1)) +

bx^2*sin(ax)*cosh(bx*(k - 1))) - ax*(bx^2*sinh(bx*k) +

ax^2*sinh(bx)*cos(ax*(k - 1)) - bx^2*cos(ax)*sinh(bx*(k -

1))))*(by^2*cosh(by*e) - ay^2*cos(ay*e) + ay^2*cosh(by)*cos(ay*(e - 1)) -

by^2*cos(ay)*cosh(by*(e - 1)) + ay*by*sin(ay)*sinh(by*(e - 1)) +

ay*by*sinh(by)*sin(ay*(e - 1))))/(ax*bx*(2*cos(ax)*cosh(bx) +

144

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N2k3 = -((bx*(ax^3*cos(ax*k) - ax^3*cosh(bx)*cos(ax*(k - 1)) +

bx^3*sin(ax)*sinh(bx*(k - 1))) + ax*(bx^3*cos(ax)*cosh(bx*(k - 1)) -

bx^3*cosh(bx*k) + ax^3*sinh(bx)*sin(ax*(k - 1))))*(cos(ay*e) + cosh(by*e) -

cos(ay)*cosh(by*(e - 1)) - cosh(by)*cos(ay*(e - 1)) + (ay*sin(ay)*sinh(by*(e

- 1)))/by - (by*sinh(by)*sin(ay*(e - 1)))/ay))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N2e3 = -((bx*(cosh(bx)*sin(ax*(k - 1)) - sin(ax*k) + sin(ax)*cosh(bx*(k -

1))) + ax*(cos(ax)*sinh(bx*(k - 1)) - sinh(bx*k) + sinh(bx)*cos(ax*(k -

1))))*(ay^3*sin(ay*e) + by^3*sinh(by*e) - ay^3*cosh(by)*sin(ay*(e - 1)) -

by^3*cos(ay)*sinh(by*(e - 1)) + ay*by^2*sin(ay)*cosh(by*(e - 1)) +

ay^2*by*sinh(by)*cos(ay*(e - 1))))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N2k4 = -((bx*(ax^4*cosh(bx)*sin(ax*(k - 1)) - ax^4*sin(ax*k) +

bx^4*sin(ax)*cosh(bx*(k - 1))) + ax*(ax^4*sinh(bx)*cos(ax*(k - 1)) -

bx^4*sinh(bx*k) + bx^4*cos(ax)*sinh(bx*(k - 1))))*(cos(ay*e) + cosh(by*e) -

cos(ay)*cosh(by*(e - 1)) - cosh(by)*cos(ay*(e - 1)) + (ay*sin(ay)*sinh(by*(e

- 1)))/by - (by*sinh(by)*sin(ay*(e - 1)))/ay))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N2e4 = -((bx*(cosh(bx)*sin(ax*(k - 1)) - sin(ax*k) + sin(ax)*cosh(bx*(k -

1))) + ax*(cos(ax)*sinh(bx*(k - 1)) - sinh(bx*k) + sinh(bx)*cos(ax*(k -

1))))*(ay^4*cos(ay*e) + by^4*cosh(by*e) - ay^4*cosh(by)*cos(ay*(e - 1)) -

by^4*cos(ay)*cosh(by*(e - 1)) + ay*by^3*sin(ay)*sinh(by*(e - 1)) -

ay^3*by*sinh(by)*sin(ay*(e - 1))))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

% Node 3

N3k = ((by*(cosh(by)*sin(ay*(e - 1)) - sin(ay*e) + sin(ay)*cosh(by*(e - 1)))

+ ay*(cos(ay)*sinh(by*(e - 1)) - sinh(by*e) + sinh(by)*cos(ay*(e -

1))))*(ax*sin(ax*k) - bx*sinh(bx*k) - ax*cosh(bx)*sin(ax*(k - 1)) -

ax*sin(ax)*cosh(bx*(k - 1)) + bx*cos(ax)*sinh(bx*(k - 1)) +

bx*sinh(bx)*cos(ax*(k - 1))))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N3kk = -((by*(cosh(by)*sin(ay*(e - 1)) - sin(ay*e) + sin(ay)*cosh(by*(e -

1))) + ay*(cos(ay)*sinh(by*(e - 1)) - sinh(by*e) + sinh(by)*cos(ay*(e -

1))))*(bx^2*cosh(bx*k) - ax^2*cos(ax*k) + ax^2*cosh(bx)*cos(ax*(k - 1)) -

bx^2*cos(ax)*cosh(bx*(k - 1)) + ax*bx*sin(ax)*sinh(bx*(k - 1)) +

ax*bx*sinh(bx)*sin(ax*(k - 1))))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N3e = -((by*(ay*cosh(by)*cos(ay*(e - 1)) - ay*cos(ay*e) +

by*sin(ay)*sinh(by*(e - 1))) - ay*(by*cosh(by*e) - by*cos(ay)*cosh(by*(e -

145

1)) + ay*sinh(by)*sin(ay*(e - 1))))*(cos(ax*k) + cosh(bx*k) -

cos(ax)*cosh(bx*(k - 1)) - cosh(bx)*cos(ax*(k - 1)) + (ax*sin(ax)*sinh(bx*(k

- 1)))/bx - (bx*sinh(bx)*sin(ax*(k - 1)))/ax))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N3ee = -((by*(ay^2*sin(ay*e) - ay^2*cosh(by)*sin(ay*(e - 1)) +

by^2*sin(ay)*cosh(by*(e - 1))) - ay*(by^2*sinh(by*e) +

ay^2*sinh(by)*cos(ay*(e - 1)) - by^2*cos(ay)*sinh(by*(e - 1))))*(cos(ax*k) +

cosh(bx*k) - cos(ax)*cosh(bx*(k - 1)) - cosh(bx)*cos(ax*(k - 1)) +

(ax*sin(ax)*sinh(bx*(k - 1)))/bx - (bx*sinh(bx)*sin(ax*(k -

1)))/ax))/(ay*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N3ke = ((by*(ay*cosh(by)*cos(ay*(e - 1)) - ay*cos(ay*e) +

by*sin(ay)*sinh(by*(e - 1))) - ay*(by*cosh(by*e) - by*cos(ay)*cosh(by*(e -

1)) + ay*sinh(by)*sin(ay*(e - 1))))*(ax*sin(ax*k) - bx*sinh(bx*k) -

ax*cosh(bx)*sin(ax*(k - 1)) - ax*sin(ax)*cosh(bx*(k - 1)) +

bx*cos(ax)*sinh(bx*(k - 1)) + bx*sinh(bx)*cos(ax*(k -

1))))/(ay*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N3k2e = -((by*(ay*cosh(by)*cos(ay*(e - 1)) - ay*cos(ay*e) +

by*sin(ay)*sinh(by*(e - 1))) - ay*(by*cosh(by*e) - by*cos(ay)*cosh(by*(e -

1)) + ay*sinh(by)*sin(ay*(e - 1))))*(bx^2*cosh(bx*k) - ax^2*cos(ax*k) +

ax^2*cosh(bx)*cos(ax*(k - 1)) - bx^2*cos(ax)*cosh(bx*(k - 1)) +

ax*bx*sin(ax)*sinh(bx*(k - 1)) + ax*bx*sinh(bx)*sin(ax*(k -

1))))/(ay*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N3ke2 = ((by*(ay^2*sin(ay*e) - ay^2*cosh(by)*sin(ay*(e - 1)) +

by^2*sin(ay)*cosh(by*(e - 1))) - ay*(by^2*sinh(by*e) +

ay^2*sinh(by)*cos(ay*(e - 1)) - by^2*cos(ay)*sinh(by*(e - 1))))*(ax*sin(ax*k)

- bx*sinh(bx*k) - ax*cosh(bx)*sin(ax*(k - 1)) - ax*sin(ax)*cosh(bx*(k - 1)) +

bx*cos(ax)*sinh(bx*(k - 1)) + bx*sinh(bx)*cos(ax*(k -

1))))/(ay*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N3k2e2 = -((by*(ay^2*sin(ay*e) - ay^2*cosh(by)*sin(ay*(e - 1)) +

by^2*sin(ay)*cosh(by*(e - 1))) - ay*(by^2*sinh(by*e) +

ay^2*sinh(by)*cos(ay*(e - 1)) - by^2*cos(ay)*sinh(by*(e -

1))))*(bx^2*cosh(bx*k) - ax^2*cos(ax*k) + ax^2*cosh(bx)*cos(ax*(k - 1)) -

bx^2*cos(ax)*cosh(bx*(k - 1)) + ax*bx*sin(ax)*sinh(bx*(k - 1)) +

ax*bx*sinh(bx)*sin(ax*(k - 1))))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N3k3 = -((by*(cosh(by)*sin(ay*(e - 1)) - sin(ay*e) + sin(ay)*cosh(by*(e -

1))) + ay*(cos(ay)*sinh(by*(e - 1)) - sinh(by*e) + sinh(by)*cos(ay*(e -

1))))*(ax^3*sin(ax*k) + bx^3*sinh(bx*k) - ax^3*cosh(bx)*sin(ax*(k - 1)) -

bx^3*cos(ax)*sinh(bx*(k - 1)) + ax*bx^2*sin(ax)*cosh(bx*(k - 1)) +

ax^2*bx*sinh(bx)*cos(ax*(k - 1))))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

146

N3e3 = -((by*(ay^3*cos(ay*e) - ay^3*cosh(by)*cos(ay*(e - 1)) +

by^3*sin(ay)*sinh(by*(e - 1))) + ay*(by^3*cos(ay)*cosh(by*(e - 1)) -

by^3*cosh(by*e) + ay^3*sinh(by)*sin(ay*(e - 1))))*(cos(ax*k) + cosh(bx*k) -

cos(ax)*cosh(bx*(k - 1)) - cosh(bx)*cos(ax*(k - 1)) + (ax*sin(ax)*sinh(bx*(k

- 1)))/bx - (bx*sinh(bx)*sin(ax*(k - 1)))/ax))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N3k4 = -((by*(cosh(by)*sin(ay*(e - 1)) - sin(ay*e) + sin(ay)*cosh(by*(e -

1))) + ay*(cos(ay)*sinh(by*(e - 1)) - sinh(by*e) + sinh(by)*cos(ay*(e -

1))))*(ax^4*cos(ax*k) + bx^4*cosh(bx*k) - ax^4*cosh(bx)*cos(ax*(k - 1)) -

bx^4*cos(ax)*cosh(bx*(k - 1)) + ax*bx^3*sin(ax)*sinh(bx*(k - 1)) -

ax^3*bx*sinh(bx)*sin(ax*(k - 1))))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N3e4 = -((by*(ay^4*cosh(by)*sin(ay*(e - 1)) - ay^4*sin(ay*e) +

by^4*sin(ay)*cosh(by*(e - 1))) + ay*(ay^4*sinh(by)*cos(ay*(e - 1)) -

by^4*sinh(by*e) + by^4*cos(ay)*sinh(by*(e - 1))))*(cos(ax*k) + cosh(bx*k) -

cos(ax)*cosh(bx*(k - 1)) - cosh(bx)*cos(ax*(k - 1)) + (ax*sin(ax)*sinh(bx*(k

- 1)))/bx - (bx*sinh(bx)*sin(ax*(k - 1)))/ax))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

% Node 4

N4k = ((by*(cosh(by)*sin(ay*(e - 1)) - sin(ay*e) + sin(ay)*cosh(by*(e - 1)))

+ ay*(cos(ay)*sinh(by*(e - 1)) - sinh(by*e) + sinh(by)*cos(ay*(e -

1))))*(bx*(ax*cosh(bx)*cos(ax*(k - 1)) - ax*cos(ax*k) + bx*sin(ax)*sinh(bx*(k

- 1))) - ax*(bx*cosh(bx*k) - bx*cos(ax)*cosh(bx*(k - 1)) +

ax*sinh(bx)*sin(ax*(k - 1)))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N4kk = ((by*(cosh(by)*sin(ay*(e - 1)) - sin(ay*e) + sin(ay)*cosh(by*(e - 1)))

+ ay*(cos(ay)*sinh(by*(e - 1)) - sinh(by*e) + sinh(by)*cos(ay*(e -

1))))*(bx*(ax^2*sin(ax*k) - ax^2*cosh(bx)*sin(ax*(k - 1)) +

bx^2*sin(ax)*cosh(bx*(k - 1))) - ax*(bx^2*sinh(bx*k) +

ax^2*sinh(bx)*cos(ax*(k - 1)) - bx^2*cos(ax)*sinh(bx*(k -

1)))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N4e = ((bx*(cosh(bx)*sin(ax*(k - 1)) - sin(ax*k) + sin(ax)*cosh(bx*(k - 1)))

+ ax*(cos(ax)*sinh(bx*(k - 1)) - sinh(bx*k) + sinh(bx)*cos(ax*(k -

1))))*(by*(ay*cosh(by)*cos(ay*(e - 1)) - ay*cos(ay*e) + by*sin(ay)*sinh(by*(e

- 1))) - ay*(by*cosh(by*e) - by*cos(ay)*cosh(by*(e - 1)) +

ay*sinh(by)*sin(ay*(e - 1)))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N4ee = ((bx*(cosh(bx)*sin(ax*(k - 1)) - sin(ax*k) + sin(ax)*cosh(bx*(k - 1)))

+ ax*(cos(ax)*sinh(bx*(k - 1)) - sinh(bx*k) + sinh(bx)*cos(ax*(k -

1))))*(by*(ay^2*sin(ay*e) - ay^2*cosh(by)*sin(ay*(e - 1)) +

147

by^2*sin(ay)*cosh(by*(e - 1))) - ay*(by^2*sinh(by*e) +

ay^2*sinh(by)*cos(ay*(e - 1)) - by^2*cos(ay)*sinh(by*(e -

1)))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N4ke = ((by*(ay*cosh(by)*cos(ay*(e - 1)) - ay*cos(ay*e) +

by*sin(ay)*sinh(by*(e - 1))) - ay*(by*cosh(by*e) - by*cos(ay)*cosh(by*(e -

1)) + ay*sinh(by)*sin(ay*(e - 1))))*(bx*(ax*cosh(bx)*cos(ax*(k - 1)) -

ax*cos(ax*k) + bx*sin(ax)*sinh(bx*(k - 1))) - ax*(bx*cosh(bx*k) -

bx*cos(ax)*cosh(bx*(k - 1)) + ax*sinh(bx)*sin(ax*(k -

1)))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N4k2e = ((by*(ay*cosh(by)*cos(ay*(e - 1)) - ay*cos(ay*e) +

by*sin(ay)*sinh(by*(e - 1))) - ay*(by*cosh(by*e) - by*cos(ay)*cosh(by*(e -

1)) + ay*sinh(by)*sin(ay*(e - 1))))*(bx*(ax^2*sin(ax*k) -

ax^2*cosh(bx)*sin(ax*(k - 1)) + bx^2*sin(ax)*cosh(bx*(k - 1))) -

ax*(bx^2*sinh(bx*k) + ax^2*sinh(bx)*cos(ax*(k - 1)) - bx^2*cos(ax)*sinh(bx*(k

- 1)))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N4ke2 = ((bx*(ax*cosh(bx)*cos(ax*(k - 1)) - ax*cos(ax*k) +

bx*sin(ax)*sinh(bx*(k - 1))) - ax*(bx*cosh(bx*k) - bx*cos(ax)*cosh(bx*(k -

1)) + ax*sinh(bx)*sin(ax*(k - 1))))*(by*(ay^2*sin(ay*e) -

ay^2*cosh(by)*sin(ay*(e - 1)) + by^2*sin(ay)*cosh(by*(e - 1))) -

ay*(by^2*sinh(by*e) + ay^2*sinh(by)*cos(ay*(e - 1)) - by^2*cos(ay)*sinh(by*(e

- 1)))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N4k2e2 = ((by*(ay^2*sin(ay*e) - ay^2*cosh(by)*sin(ay*(e - 1)) +

by^2*sin(ay)*cosh(by*(e - 1))) - ay*(by^2*sinh(by*e) +

ay^2*sinh(by)*cos(ay*(e - 1)) - by^2*cos(ay)*sinh(by*(e -

1))))*(bx*(ax^2*sin(ax*k) - ax^2*cosh(bx)*sin(ax*(k - 1)) +

bx^2*sin(ax)*cosh(bx*(k - 1))) - ax*(bx^2*sinh(bx*k) +

ax^2*sinh(bx)*cos(ax*(k - 1)) - bx^2*cos(ax)*sinh(bx*(k -

1)))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N4k3 = ((by*(cosh(by)*sin(ay*(e - 1)) - sin(ay*e) + sin(ay)*cosh(by*(e - 1)))

+ ay*(cos(ay)*sinh(by*(e - 1)) - sinh(by*e) + sinh(by)*cos(ay*(e -

1))))*(bx*(ax^3*cos(ax*k) - ax^3*cosh(bx)*cos(ax*(k - 1)) +

bx^3*sin(ax)*sinh(bx*(k - 1))) + ax*(bx^3*cos(ax)*cosh(bx*(k - 1)) -

bx^3*cosh(bx*k) + ax^3*sinh(bx)*sin(ax*(k -

1)))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N4e3 = ((bx*(cosh(bx)*sin(ax*(k - 1)) - sin(ax*k) + sin(ax)*cosh(bx*(k - 1)))

+ ax*(cos(ax)*sinh(bx*(k - 1)) - sinh(bx*k) + sinh(bx)*cos(ax*(k -

1))))*(by*(ay^3*cos(ay*e) - ay^3*cosh(by)*cos(ay*(e - 1)) +

148

by^3*sin(ay)*sinh(by*(e - 1))) + ay*(by^3*cos(ay)*cosh(by*(e - 1)) -

by^3*cosh(by*e) + ay^3*sinh(by)*sin(ay*(e -

1)))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N4k4 = ((by*(cosh(by)*sin(ay*(e - 1)) - sin(ay*e) + sin(ay)*cosh(by*(e - 1)))

+ ay*(cos(ay)*sinh(by*(e - 1)) - sinh(by*e) + sinh(by)*cos(ay*(e -

1))))*(bx*(ax^4*cosh(bx)*sin(ax*(k - 1)) - ax^4*sin(ax*k) +

bx^4*sin(ax)*cosh(bx*(k - 1))) + ax*(ax^4*sinh(bx)*cos(ax*(k - 1)) -

bx^4*sinh(bx*k) + bx^4*cos(ax)*sinh(bx*(k -

1)))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N4e4 = ((bx*(cosh(bx)*sin(ax*(k - 1)) - sin(ax*k) + sin(ax)*cosh(bx*(k - 1)))

+ ax*(cos(ax)*sinh(bx*(k - 1)) - sinh(bx*k) + sinh(bx)*cos(ax*(k -

1))))*(by*(ay^4*cosh(by)*sin(ay*(e - 1)) - ay^4*sin(ay*e) +

by^4*sin(ay)*cosh(by*(e - 1))) + ay*(ay^4*sinh(by)*cos(ay*(e - 1)) -

by^4*sinh(by*e) + by^4*cos(ay)*sinh(by*(e -

1)))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

% Node 5

N5k = -((cos(ay*e) + cosh(by*e) - cos(ay)*cosh(by*(e - 1)) -

cosh(by)*cos(ay*(e - 1)) + (ay*sin(ay)*sinh(by*(e - 1)))/by -

(by*sinh(by)*sin(ay*(e - 1)))/ay)*(ax*sin(ax*(k - 1)) - bx*sinh(bx*(k - 1)) +

ax*cosh(bx*k)*sin(ax) - ax*sin(ax*k)*cosh(bx) - bx*cos(ax*k)*sinh(bx) +

bx*sinh(bx*k)*cos(ax)))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N5kk = -((cos(ay*e) + cosh(by*e) - cos(ay)*cosh(by*(e - 1)) -

cosh(by)*cos(ay*(e - 1)) + (ay*sin(ay)*sinh(by*(e - 1)))/by -

(by*sinh(by)*sin(ay*(e - 1)))/ay)*(ax^2*cos(ax*(k - 1)) - bx^2*cosh(bx*(k -

1)) - ax^2*cos(ax*k)*cosh(bx) + bx^2*cosh(bx*k)*cos(ax) +

ax*bx*sin(ax*k)*sinh(bx) + ax*bx*sinh(bx*k)*sin(ax)))/((2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N5e = -((ay*sin(ay*e) - by*sinh(by*e) - ay*cosh(by)*sin(ay*(e - 1)) -

ay*sin(ay)*cosh(by*(e - 1)) + by*cos(ay)*sinh(by*(e - 1)) +

by*sinh(by)*cos(ay*(e - 1)))*(cos(ax*(k - 1)) + cosh(bx*(k - 1)) -

cos(ax*k)*cosh(bx) - cosh(bx*k)*cos(ax) - (ax*sinh(bx*k)*sin(ax))/bx +

(bx*sin(ax*k)*sinh(bx))/ax))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N5ee = ((by^2*cosh(by*e) - ay^2*cos(ay*e) + ay^2*cosh(by)*cos(ay*(e - 1)) -

by^2*cos(ay)*cosh(by*(e - 1)) + ay*by*sin(ay)*sinh(by*(e - 1)) +

ay*by*sinh(by)*sin(ay*(e - 1)))*(cos(ax*(k - 1)) + cosh(bx*(k - 1)) -

cos(ax*k)*cosh(bx) - cosh(bx*k)*cos(ax) - (ax*sinh(bx*k)*sin(ax))/bx +

(bx*sin(ax*k)*sinh(bx))/ax))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

149

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N5ke = ((ay*sin(ay*e) - by*sinh(by*e) - ay*cosh(by)*sin(ay*(e - 1)) -

ay*sin(ay)*cosh(by*(e - 1)) + by*cos(ay)*sinh(by*(e - 1)) +

by*sinh(by)*cos(ay*(e - 1)))*(ax*sin(ax*(k - 1)) - bx*sinh(bx*(k - 1)) +

ax*cosh(bx*k)*sin(ax) - ax*sin(ax*k)*cosh(bx) - bx*cos(ax*k)*sinh(bx) +

bx*sinh(bx*k)*cos(ax)))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N5k2e = ((ay*sin(ay*e) - by*sinh(by*e) - ay*cosh(by)*sin(ay*(e - 1)) -

ay*sin(ay)*cosh(by*(e - 1)) + by*cos(ay)*sinh(by*(e - 1)) +

by*sinh(by)*cos(ay*(e - 1)))*(ax^2*cos(ax*(k - 1)) - bx^2*cosh(bx*(k - 1)) -

ax^2*cos(ax*k)*cosh(bx) + bx^2*cosh(bx*k)*cos(ax) + ax*bx*sin(ax*k)*sinh(bx)

+ ax*bx*sinh(bx*k)*sin(ax)))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N5ke2 = -((by^2*cosh(by*e) - ay^2*cos(ay*e) + ay^2*cosh(by)*cos(ay*(e - 1)) -

by^2*cos(ay)*cosh(by*(e - 1)) + ay*by*sin(ay)*sinh(by*(e - 1)) +

ay*by*sinh(by)*sin(ay*(e - 1)))*(ax*sin(ax*(k - 1)) - bx*sinh(bx*(k - 1)) +

ax*cosh(bx*k)*sin(ax) - ax*sin(ax*k)*cosh(bx) - bx*cos(ax*k)*sinh(bx) +

bx*sinh(bx*k)*cos(ax)))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N5k2e2 = -((by^2*cosh(by*e) - ay^2*cos(ay*e) + ay^2*cosh(by)*cos(ay*(e - 1))

- by^2*cos(ay)*cosh(by*(e - 1)) + ay*by*sin(ay)*sinh(by*(e - 1)) +

ay*by*sinh(by)*sin(ay*(e - 1)))*(ax^2*cos(ax*(k - 1)) - bx^2*cosh(bx*(k - 1))

- ax^2*cos(ax*k)*cosh(bx) + bx^2*cosh(bx*k)*cos(ax) +

ax*bx*sin(ax*k)*sinh(bx) + ax*bx*sinh(bx*k)*sin(ax)))/((2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N5k3 = -((cos(ay*e) + cosh(by*e) - cos(ay)*cosh(by*(e - 1)) -

cosh(by)*cos(ay*(e - 1)) + (ay*sin(ay)*sinh(by*(e - 1)))/by -

(by*sinh(by)*sin(ay*(e - 1)))/ay)*(ax^3*sin(ax*k)*cosh(bx) - bx^3*sinh(bx*(k

- 1)) - ax^3*sin(ax*(k - 1)) + bx^3*sinh(bx*k)*cos(ax) +

ax*bx^2*cosh(bx*k)*sin(ax) +

ax^2*bx*cos(ax*k)*sinh(bx)))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N5e3 = ((ay^3*sin(ay*e) + by^3*sinh(by*e) - ay^3*cosh(by)*sin(ay*(e - 1)) -

by^3*cos(ay)*sinh(by*(e - 1)) + ay*by^2*sin(ay)*cosh(by*(e - 1)) +

ay^2*by*sinh(by)*cos(ay*(e - 1)))*(cos(ax*(k - 1)) + cosh(bx*(k - 1)) -

cos(ax*k)*cosh(bx) - cosh(bx*k)*cos(ax) - (ax*sinh(bx*k)*sin(ax))/bx +

(bx*sin(ax*k)*sinh(bx))/ax))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N5k4 = ((cos(ay*e) + cosh(by*e) - cos(ay)*cosh(by*(e - 1)) -

cosh(by)*cos(ay*(e - 1)) + (ay*sin(ay)*sinh(by*(e - 1)))/by -

(by*sinh(by)*sin(ay*(e - 1)))/ay)*(ax^4*cos(ax*(k - 1)) + bx^4*cosh(bx*(k -

150

1)) - ax^4*cos(ax*k)*cosh(bx) - bx^4*cosh(bx*k)*cos(ax) -

ax*bx^3*sinh(bx*k)*sin(ax) +

ax^3*bx*sin(ax*k)*sinh(bx)))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N5e4 = ((cos(ax*(k - 1)) + cosh(bx*(k - 1)) - cos(ax*k)*cosh(bx) -

cosh(bx*k)*cos(ax) - (ax*sinh(bx*k)*sin(ax))/bx +

(bx*sin(ax*k)*sinh(bx))/ax)*(ay^4*cos(ay*e) + by^4*cosh(by*e) -

ay^4*cosh(by)*cos(ay*(e - 1)) - by^4*cos(ay)*cosh(by*(e - 1)) +

ay*by^3*sin(ay)*sinh(by*(e - 1)) - ay^3*by*sinh(by)*sin(ay*(e -

1))))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

% Node 6

N6k = ((bx*(ax*cos(ax*(k - 1)) - ax*cos(ax*k)*cosh(bx) +

bx*sinh(bx*k)*sin(ax)) - ax*(bx*cosh(bx*k)*cos(ax) - bx*cosh(bx*(k - 1)) +

ax*sin(ax*k)*sinh(bx)))*(cos(ay*e) + cosh(by*e) - cos(ay)*cosh(by*(e - 1)) -

cosh(by)*cos(ay*(e - 1)) + (ay*sin(ay)*sinh(by*(e - 1)))/by -

(by*sinh(by)*sin(ay*(e - 1)))/ay))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N6kk = ((bx*(ax^2*sin(ax*k)*cosh(bx) - ax^2*sin(ax*(k - 1)) +

bx^2*cosh(bx*k)*sin(ax)) - ax*(ax^2*cos(ax*k)*sinh(bx) - bx^2*sinh(bx*(k -

1)) + bx^2*sinh(bx*k)*cos(ax)))*(cos(ay*e) + cosh(by*e) - cos(ay)*cosh(by*(e

- 1)) - cosh(by)*cos(ay*(e - 1)) + (ay*sin(ay)*sinh(by*(e - 1)))/by -

(by*sinh(by)*sin(ay*(e - 1)))/ay))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N6e = -((bx*(sin(ax*(k - 1)) + cosh(bx*k)*sin(ax) - sin(ax*k)*cosh(bx)) +

ax*(sinh(bx*(k - 1)) + cos(ax*k)*sinh(bx) -

sinh(bx*k)*cos(ax)))*(ay*sin(ay*e) - by*sinh(by*e) - ay*cosh(by)*sin(ay*(e -

1)) - ay*sin(ay)*cosh(by*(e - 1)) + by*cos(ay)*sinh(by*(e - 1)) +

by*sinh(by)*cos(ay*(e - 1))))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N6ee = ((bx*(sin(ax*(k - 1)) + cosh(bx*k)*sin(ax) - sin(ax*k)*cosh(bx)) +

ax*(sinh(bx*(k - 1)) + cos(ax*k)*sinh(bx) -

sinh(bx*k)*cos(ax)))*(by^2*cosh(by*e) - ay^2*cos(ay*e) +

ay^2*cosh(by)*cos(ay*(e - 1)) - by^2*cos(ay)*cosh(by*(e - 1)) +

ay*by*sin(ay)*sinh(by*(e - 1)) + ay*by*sinh(by)*sin(ay*(e -

1))))/(ax*bx*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N6ke = -((bx*(ax*cos(ax*(k - 1)) - ax*cos(ax*k)*cosh(bx) +

bx*sinh(bx*k)*sin(ax)) - ax*(bx*cosh(bx*k)*cos(ax) - bx*cosh(bx*(k - 1)) +

ax*sin(ax*k)*sinh(bx)))*(ay*sin(ay*e) - by*sinh(by*e) - ay*cosh(by)*sin(ay*(e

- 1)) - ay*sin(ay)*cosh(by*(e - 1)) + by*cos(ay)*sinh(by*(e - 1)) +

by*sinh(by)*cos(ay*(e - 1))))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

151

N6k2e = -((bx*(ax^2*sin(ax*k)*cosh(bx) - ax^2*sin(ax*(k - 1)) +

bx^2*cosh(bx*k)*sin(ax)) - ax*(ax^2*cos(ax*k)*sinh(bx) - bx^2*sinh(bx*(k -

1)) + bx^2*sinh(bx*k)*cos(ax)))*(ay*sin(ay*e) - by*sinh(by*e) -

ay*cosh(by)*sin(ay*(e - 1)) - ay*sin(ay)*cosh(by*(e - 1)) +

by*cos(ay)*sinh(by*(e - 1)) + by*sinh(by)*cos(ay*(e -

1))))/(ax*bx*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N6ke2 = ((bx*(ax*cos(ax*(k - 1)) - ax*cos(ax*k)*cosh(bx) +

bx*sinh(bx*k)*sin(ax)) - ax*(bx*cosh(bx*k)*cos(ax) - bx*cosh(bx*(k - 1)) +

ax*sin(ax*k)*sinh(bx)))*(by^2*cosh(by*e) - ay^2*cos(ay*e) +

ay^2*cosh(by)*cos(ay*(e - 1)) - by^2*cos(ay)*cosh(by*(e - 1)) +

ay*by*sin(ay)*sinh(by*(e - 1)) + ay*by*sinh(by)*sin(ay*(e -

1))))/(ax*bx*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N6k2e2 = ((bx*(ax^2*sin(ax*k)*cosh(bx) - ax^2*sin(ax*(k - 1)) +

bx^2*cosh(bx*k)*sin(ax)) - ax*(ax^2*cos(ax*k)*sinh(bx) - bx^2*sinh(bx*(k -

1)) + bx^2*sinh(bx*k)*cos(ax)))*(by^2*cosh(by*e) - ay^2*cos(ay*e) +

ay^2*cosh(by)*cos(ay*(e - 1)) - by^2*cos(ay)*cosh(by*(e - 1)) +

ay*by*sin(ay)*sinh(by*(e - 1)) + ay*by*sinh(by)*sin(ay*(e -

1))))/(ax*bx*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N6k3 = ((bx*(ax^3*cos(ax*k)*cosh(bx) - ax^3*cos(ax*(k - 1)) +

bx^3*sinh(bx*k)*sin(ax)) + ax*(bx^3*cosh(bx*(k - 1)) -

bx^3*cosh(bx*k)*cos(ax) + ax^3*sin(ax*k)*sinh(bx)))*(cos(ay*e) + cosh(by*e) -

cos(ay)*cosh(by*(e - 1)) - cosh(by)*cos(ay*(e - 1)) + (ay*sin(ay)*sinh(by*(e

- 1)))/by - (by*sinh(by)*sin(ay*(e - 1)))/ay))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N6e3 = ((bx*(sin(ax*(k - 1)) + cosh(bx*k)*sin(ax) - sin(ax*k)*cosh(bx)) +

ax*(sinh(bx*(k - 1)) + cos(ax*k)*sinh(bx) -

sinh(bx*k)*cos(ax)))*(ay^3*sin(ay*e) + by^3*sinh(by*e) -

ay^3*cosh(by)*sin(ay*(e - 1)) - by^3*cos(ay)*sinh(by*(e - 1)) +

ay*by^2*sin(ay)*cosh(by*(e - 1)) + ay^2*by*sinh(by)*cos(ay*(e -

1))))/(ax*bx*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N6k4 = ((bx*(ax^4*sin(ax*(k - 1)) - ax^4*sin(ax*k)*cosh(bx) +

bx^4*cosh(bx*k)*sin(ax)) + ax*(bx^4*sinh(bx*(k - 1)) +

ax^4*cos(ax*k)*sinh(bx) - bx^4*sinh(bx*k)*cos(ax)))*(cos(ay*e) + cosh(by*e) -

cos(ay)*cosh(by*(e - 1)) - cosh(by)*cos(ay*(e - 1)) + (ay*sin(ay)*sinh(by*(e

- 1)))/by - (by*sinh(by)*sin(ay*(e - 1)))/ay))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N6e4 = ((bx*(sin(ax*(k - 1)) + cosh(bx*k)*sin(ax) - sin(ax*k)*cosh(bx)) +

ax*(sinh(bx*(k - 1)) + cos(ax*k)*sinh(bx) -

sinh(bx*k)*cos(ax)))*(ay^4*cos(ay*e) + by^4*cosh(by*e) -

ay^4*cosh(by)*cos(ay*(e - 1)) - by^4*cos(ay)*cosh(by*(e - 1)) +

ay*by^3*sin(ay)*sinh(by*(e - 1)) - ay^3*by*sinh(by)*sin(ay*(e -

1))))/(ax*bx*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

152

% Node 7

N7k = ((by*(cosh(by)*sin(ay*(e - 1)) - sin(ay*e) + sin(ay)*cosh(by*(e - 1)))

+ ay*(cos(ay)*sinh(by*(e - 1)) - sinh(by*e) + sinh(by)*cos(ay*(e -

1))))*(ax*sin(ax*(k - 1)) - bx*sinh(bx*(k - 1)) + ax*cosh(bx*k)*sin(ax) -

ax*sin(ax*k)*cosh(bx) - bx*cos(ax*k)*sinh(bx) +

bx*sinh(bx*k)*cos(ax)))/(ay*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2

- bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N7kk = ((by*(cosh(by)*sin(ay*(e - 1)) - sin(ay*e) + sin(ay)*cosh(by*(e - 1)))

+ ay*(cos(ay)*sinh(by*(e - 1)) - sinh(by*e) + sinh(by)*cos(ay*(e -

1))))*(ax^2*cos(ax*(k - 1)) - bx^2*cosh(bx*(k - 1)) - ax^2*cos(ax*k)*cosh(bx)

+ bx^2*cosh(bx*k)*cos(ax) + ax*bx*sin(ax*k)*sinh(bx) +

ax*bx*sinh(bx*k)*sin(ax)))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N7e = -((by*(ay*cosh(by)*cos(ay*(e - 1)) - ay*cos(ay*e) +

by*sin(ay)*sinh(by*(e - 1))) - ay*(by*cosh(by*e) - by*cos(ay)*cosh(by*(e -

1)) + ay*sinh(by)*sin(ay*(e - 1))))*(cos(ax*(k - 1)) + cosh(bx*(k - 1)) -

cos(ax*k)*cosh(bx) - cosh(bx*k)*cos(ax) - (ax*sinh(bx*k)*sin(ax))/bx +

(bx*sin(ax*k)*sinh(bx))/ax))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N7ee = -((by*(ay^2*sin(ay*e) - ay^2*cosh(by)*sin(ay*(e - 1)) +

by^2*sin(ay)*cosh(by*(e - 1))) - ay*(by^2*sinh(by*e) +

ay^2*sinh(by)*cos(ay*(e - 1)) - by^2*cos(ay)*sinh(by*(e - 1))))*(cos(ax*(k -

1)) + cosh(bx*(k - 1)) - cos(ax*k)*cosh(bx) - cosh(bx*k)*cos(ax) -

(ax*sinh(bx*k)*sin(ax))/bx +

(bx*sin(ax*k)*sinh(bx))/ax))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N7ke = ((by*(ay*cosh(by)*cos(ay*(e - 1)) - ay*cos(ay*e) +

by*sin(ay)*sinh(by*(e - 1))) - ay*(by*cosh(by*e) - by*cos(ay)*cosh(by*(e -

1)) + ay*sinh(by)*sin(ay*(e - 1))))*(ax*sin(ax*(k - 1)) - bx*sinh(bx*(k - 1))

+ ax*cosh(bx*k)*sin(ax) - ax*sin(ax*k)*cosh(bx) - bx*cos(ax*k)*sinh(bx) +

bx*sinh(bx*k)*cos(ax)))/(ay*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2

- bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N7k2e = ((by*(ay*cosh(by)*cos(ay*(e - 1)) - ay*cos(ay*e) +

by*sin(ay)*sinh(by*(e - 1))) - ay*(by*cosh(by*e) - by*cos(ay)*cosh(by*(e -

1)) + ay*sinh(by)*sin(ay*(e - 1))))*(ax^2*cos(ax*(k - 1)) - bx^2*cosh(bx*(k -

1)) - ax^2*cos(ax*k)*cosh(bx) + bx^2*cosh(bx*k)*cos(ax) +

ax*bx*sin(ax*k)*sinh(bx) +

ax*bx*sinh(bx*k)*sin(ax)))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N7ke2 = ((by*(ay^2*sin(ay*e) - ay^2*cosh(by)*sin(ay*(e - 1)) +

by^2*sin(ay)*cosh(by*(e - 1))) - ay*(by^2*sinh(by*e) +

ay^2*sinh(by)*cos(ay*(e - 1)) - by^2*cos(ay)*sinh(by*(e - 1))))*(ax*sin(ax*(k

153

- 1)) - bx*sinh(bx*(k - 1)) + ax*cosh(bx*k)*sin(ax) - ax*sin(ax*k)*cosh(bx) -

bx*cos(ax*k)*sinh(bx) + bx*sinh(bx*k)*cos(ax)))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N7k2e2 = ((by*(ay^2*sin(ay*e) - ay^2*cosh(by)*sin(ay*(e - 1)) +

by^2*sin(ay)*cosh(by*(e - 1))) - ay*(by^2*sinh(by*e) +

ay^2*sinh(by)*cos(ay*(e - 1)) - by^2*cos(ay)*sinh(by*(e -

1))))*(ax^2*cos(ax*(k - 1)) - bx^2*cosh(bx*(k - 1)) - ax^2*cos(ax*k)*cosh(bx)

+ bx^2*cosh(bx*k)*cos(ax) + ax*bx*sin(ax*k)*sinh(bx) +

ax*bx*sinh(bx*k)*sin(ax)))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N7k3 = ((by*(cosh(by)*sin(ay*(e - 1)) - sin(ay*e) + sin(ay)*cosh(by*(e - 1)))

+ ay*(cos(ay)*sinh(by*(e - 1)) - sinh(by*e) + sinh(by)*cos(ay*(e -

1))))*(ax^3*sin(ax*k)*cosh(bx) - bx^3*sinh(bx*(k - 1)) - ax^3*sin(ax*(k - 1))

+ bx^3*sinh(bx*k)*cos(ax) + ax*bx^2*cosh(bx*k)*sin(ax) +

ax^2*bx*cos(ax*k)*sinh(bx)))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N7e3 = -((by*(ay^3*cos(ay*e) - ay^3*cosh(by)*cos(ay*(e - 1)) +

by^3*sin(ay)*sinh(by*(e - 1))) + ay*(by^3*cos(ay)*cosh(by*(e - 1)) -

by^3*cosh(by*e) + ay^3*sinh(by)*sin(ay*(e - 1))))*(cos(ax*(k - 1)) +

cosh(bx*(k - 1)) - cos(ax*k)*cosh(bx) - cosh(bx*k)*cos(ax) -

(ax*sinh(bx*k)*sin(ax))/bx +

(bx*sin(ax*k)*sinh(bx))/ax))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N7k4 = -((by*(cosh(by)*sin(ay*(e - 1)) - sin(ay*e) + sin(ay)*cosh(by*(e -

1))) + ay*(cos(ay)*sinh(by*(e - 1)) - sinh(by*e) + sinh(by)*cos(ay*(e -

1))))*(ax^4*cos(ax*(k - 1)) + bx^4*cosh(bx*(k - 1)) - ax^4*cos(ax*k)*cosh(bx)

- bx^4*cosh(bx*k)*cos(ax) - ax*bx^3*sinh(bx*k)*sin(ax) +

ax^3*bx*sin(ax*k)*sinh(bx)))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N7e4 = -((by*(ay^4*cosh(by)*sin(ay*(e - 1)) - ay^4*sin(ay*e) +

by^4*sin(ay)*cosh(by*(e - 1))) + ay*(ay^4*sinh(by)*cos(ay*(e - 1)) -

by^4*sinh(by*e) + by^4*cos(ay)*sinh(by*(e - 1))))*(cos(ax*(k - 1)) +

cosh(bx*(k - 1)) - cos(ax*k)*cosh(bx) - cosh(bx*k)*cos(ax) -

(ax*sinh(bx*k)*sin(ax))/bx +

(bx*sin(ax*k)*sinh(bx))/ax))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

% Node 8

N8k = -((by*(cosh(by)*sin(ay*(e - 1)) - sin(ay*e) + sin(ay)*cosh(by*(e - 1)))

+ ay*(cos(ay)*sinh(by*(e - 1)) - sinh(by*e) + sinh(by)*cos(ay*(e -

1))))*(bx*(ax*cos(ax*(k - 1)) - ax*cos(ax*k)*cosh(bx) +

bx*sinh(bx*k)*sin(ax)) - ax*(bx*cosh(bx*k)*cos(ax) - bx*cosh(bx*(k - 1)) +

ax*sin(ax*k)*sinh(bx))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

154

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N8kk = -((by*(cosh(by)*sin(ay*(e - 1)) - sin(ay*e) + sin(ay)*cosh(by*(e -

1))) + ay*(cos(ay)*sinh(by*(e - 1)) - sinh(by*e) + sinh(by)*cos(ay*(e -

1))))*(bx*(ax^2*sin(ax*k)*cosh(bx) - ax^2*sin(ax*(k - 1)) +

bx^2*cosh(bx*k)*sin(ax)) - ax*(ax^2*cos(ax*k)*sinh(bx) - bx^2*sinh(bx*(k -

1)) + bx^2*sinh(bx*k)*cos(ax))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N8e = -((by*(ay*cosh(by)*cos(ay*(e - 1)) - ay*cos(ay*e) +

by*sin(ay)*sinh(by*(e - 1))) - ay*(by*cosh(by*e) - by*cos(ay)*cosh(by*(e -

1)) + ay*sinh(by)*sin(ay*(e - 1))))*(bx*(sin(ax*(k - 1)) + cosh(bx*k)*sin(ax)

- sin(ax*k)*cosh(bx)) + ax*(sinh(bx*(k - 1)) + cos(ax*k)*sinh(bx) -

sinh(bx*k)*cos(ax))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N8ee = -((by*(ay^2*sin(ay*e) - ay^2*cosh(by)*sin(ay*(e - 1)) +

by^2*sin(ay)*cosh(by*(e - 1))) - ay*(by^2*sinh(by*e) +

ay^2*sinh(by)*cos(ay*(e - 1)) - by^2*cos(ay)*sinh(by*(e -

1))))*(bx*(sin(ax*(k - 1)) + cosh(bx*k)*sin(ax) - sin(ax*k)*cosh(bx)) +

ax*(sinh(bx*(k - 1)) + cos(ax*k)*sinh(bx) -

sinh(bx*k)*cos(ax))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N8ke = -((by*(ay*cosh(by)*cos(ay*(e - 1)) - ay*cos(ay*e) +

by*sin(ay)*sinh(by*(e - 1))) - ay*(by*cosh(by*e) - by*cos(ay)*cosh(by*(e -

1)) + ay*sinh(by)*sin(ay*(e - 1))))*(bx*(ax*cos(ax*(k - 1)) -

ax*cos(ax*k)*cosh(bx) + bx*sinh(bx*k)*sin(ax)) - ax*(bx*cosh(bx*k)*cos(ax) -

bx*cosh(bx*(k - 1)) +

ax*sin(ax*k)*sinh(bx))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N8k2e = -((by*(ay*cosh(by)*cos(ay*(e - 1)) - ay*cos(ay*e) +

by*sin(ay)*sinh(by*(e - 1))) - ay*(by*cosh(by*e) - by*cos(ay)*cosh(by*(e -

1)) + ay*sinh(by)*sin(ay*(e - 1))))*(bx*(ax^2*sin(ax*k)*cosh(bx) -

ax^2*sin(ax*(k - 1)) + bx^2*cosh(bx*k)*sin(ax)) - ax*(ax^2*cos(ax*k)*sinh(bx)

- bx^2*sinh(bx*(k - 1)) +

bx^2*sinh(bx*k)*cos(ax))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N8ke2 = -((by*(ay^2*sin(ay*e) - ay^2*cosh(by)*sin(ay*(e - 1)) +

by^2*sin(ay)*cosh(by*(e - 1))) - ay*(by^2*sinh(by*e) +

ay^2*sinh(by)*cos(ay*(e - 1)) - by^2*cos(ay)*sinh(by*(e -

1))))*(bx*(ax*cos(ax*(k - 1)) - ax*cos(ax*k)*cosh(bx) +

bx*sinh(bx*k)*sin(ax)) - ax*(bx*cosh(bx*k)*cos(ax) - bx*cosh(bx*(k - 1)) +

ax*sin(ax*k)*sinh(bx))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

155

N8k2e2 = -((by*(ay^2*sin(ay*e) - ay^2*cosh(by)*sin(ay*(e - 1)) +

by^2*sin(ay)*cosh(by*(e - 1))) - ay*(by^2*sinh(by*e) +

ay^2*sinh(by)*cos(ay*(e - 1)) - by^2*cos(ay)*sinh(by*(e -

1))))*(bx*(ax^2*sin(ax*k)*cosh(bx) - ax^2*sin(ax*(k - 1)) +

bx^2*cosh(bx*k)*sin(ax)) - ax*(ax^2*cos(ax*k)*sinh(bx) - bx^2*sinh(bx*(k -

1)) + bx^2*sinh(bx*k)*cos(ax))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N8k3 = -((by*(cosh(by)*sin(ay*(e - 1)) - sin(ay*e) + sin(ay)*cosh(by*(e -

1))) + ay*(cos(ay)*sinh(by*(e - 1)) - sinh(by*e) + sinh(by)*cos(ay*(e -

1))))*(bx*(ax^3*cos(ax*k)*cosh(bx) - ax^3*cos(ax*(k - 1)) +

bx^3*sinh(bx*k)*sin(ax)) + ax*(bx^3*cosh(bx*(k - 1)) -

bx^3*cosh(bx*k)*cos(ax) +

ax^3*sin(ax*k)*sinh(bx))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N8e3 = -((by*(ay^3*cos(ay*e) - ay^3*cosh(by)*cos(ay*(e - 1)) +

by^3*sin(ay)*sinh(by*(e - 1))) + ay*(by^3*cos(ay)*cosh(by*(e - 1)) -

by^3*cosh(by*e) + ay^3*sinh(by)*sin(ay*(e - 1))))*(bx*(sin(ax*(k - 1)) +

cosh(bx*k)*sin(ax) - sin(ax*k)*cosh(bx)) + ax*(sinh(bx*(k - 1)) +

cos(ax*k)*sinh(bx) - sinh(bx*k)*cos(ax))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N8k4 = -((by*(cosh(by)*sin(ay*(e - 1)) - sin(ay*e) + sin(ay)*cosh(by*(e -

1))) + ay*(cos(ay)*sinh(by*(e - 1)) - sinh(by*e) + sinh(by)*cos(ay*(e -

1))))*(bx*(ax^4*sin(ax*(k - 1)) - ax^4*sin(ax*k)*cosh(bx) +

bx^4*cosh(bx*k)*sin(ax)) + ax*(bx^4*sinh(bx*(k - 1)) +

ax^4*cos(ax*k)*sinh(bx) -

bx^4*sinh(bx*k)*cos(ax))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N8e4 = -((by*(ay^4*cosh(by)*sin(ay*(e - 1)) - ay^4*sin(ay*e) +

by^4*sin(ay)*cosh(by*(e - 1))) + ay*(ay^4*sinh(by)*cos(ay*(e - 1)) -

by^4*sinh(by*e) + by^4*cos(ay)*sinh(by*(e - 1))))*(bx*(sin(ax*(k - 1)) +

cosh(bx*k)*sin(ax) - sin(ax*k)*cosh(bx)) + ax*(sinh(bx*(k - 1)) +

cos(ax*k)*sinh(bx) - sinh(bx*k)*cos(ax))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

% Node 9

N9k = -((cos(ay*(e - 1)) + cosh(by*(e - 1)) - cos(ay*e)*cosh(by) -

cosh(by*e)*cos(ay) - (ay*sinh(by*e)*sin(ay))/by +

(by*sin(ay*e)*sinh(by))/ay)*(ax*sin(ax*(k - 1)) - bx*sinh(bx*(k - 1)) +

ax*cosh(bx*k)*sin(ax) - ax*sin(ax*k)*cosh(bx) - bx*cos(ax*k)*sinh(bx) +

bx*sinh(bx*k)*cos(ax)))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N9kk = -((cos(ay*(e - 1)) + cosh(by*(e - 1)) - cos(ay*e)*cosh(by) -

cosh(by*e)*cos(ay) - (ay*sinh(by*e)*sin(ay))/by +

156

(by*sin(ay*e)*sinh(by))/ay)*(ax^2*cos(ax*(k - 1)) - bx^2*cosh(bx*(k - 1)) -

ax^2*cos(ax*k)*cosh(bx) + bx^2*cosh(bx*k)*cos(ax) + ax*bx*sin(ax*k)*sinh(bx)

+ ax*bx*sinh(bx*k)*sin(ax)))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N9e = -((ay*sin(ay*(e - 1)) - by*sinh(by*(e - 1)) + ay*cosh(by*e)*sin(ay) -

ay*sin(ay*e)*cosh(by) - by*cos(ay*e)*sinh(by) +

by*sinh(by*e)*cos(ay))*(cos(ax*(k - 1)) + cosh(bx*(k - 1)) -

cos(ax*k)*cosh(bx) - cosh(bx*k)*cos(ax) - (ax*sinh(bx*k)*sin(ax))/bx +

(bx*sin(ax*k)*sinh(bx))/ax))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N9ee = -((ay^2*cos(ay*(e - 1)) - by^2*cosh(by*(e - 1)) -

ay^2*cos(ay*e)*cosh(by) + by^2*cosh(by*e)*cos(ay) + ay*by*sin(ay*e)*sinh(by)

+ ay*by*sinh(by*e)*sin(ay))*(cos(ax*(k - 1)) + cosh(bx*(k - 1)) -

cos(ax*k)*cosh(bx) - cosh(bx*k)*cos(ax) - (ax*sinh(bx*k)*sin(ax))/bx +

(bx*sin(ax*k)*sinh(bx))/ax))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N9ke = ((ay*sin(ay*(e - 1)) - by*sinh(by*(e - 1)) + ay*cosh(by*e)*sin(ay) -

ay*sin(ay*e)*cosh(by) - by*cos(ay*e)*sinh(by) +

by*sinh(by*e)*cos(ay))*(ax*sin(ax*(k - 1)) - bx*sinh(bx*(k - 1)) +

ax*cosh(bx*k)*sin(ax) - ax*sin(ax*k)*cosh(bx) - bx*cos(ax*k)*sinh(bx) +

bx*sinh(bx*k)*cos(ax)))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N9k2e = ((ay*sin(ay*(e - 1)) - by*sinh(by*(e - 1)) + ay*cosh(by*e)*sin(ay) -

ay*sin(ay*e)*cosh(by) - by*cos(ay*e)*sinh(by) +

by*sinh(by*e)*cos(ay))*(ax^2*cos(ax*(k - 1)) - bx^2*cosh(bx*(k - 1)) -

ax^2*cos(ax*k)*cosh(bx) + bx^2*cosh(bx*k)*cos(ax) + ax*bx*sin(ax*k)*sinh(bx)

+ ax*bx*sinh(bx*k)*sin(ax)))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N9ke2 = ((ay^2*cos(ay*(e - 1)) - by^2*cosh(by*(e - 1)) -

ay^2*cos(ay*e)*cosh(by) + by^2*cosh(by*e)*cos(ay) + ay*by*sin(ay*e)*sinh(by)

+ ay*by*sinh(by*e)*sin(ay))*(ax*sin(ax*(k - 1)) - bx*sinh(bx*(k - 1)) +

ax*cosh(bx*k)*sin(ax) - ax*sin(ax*k)*cosh(bx) - bx*cos(ax*k)*sinh(bx) +

bx*sinh(bx*k)*cos(ax)))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N9k2e2 = ((ay^2*cos(ay*(e - 1)) - by^2*cosh(by*(e - 1)) -

ay^2*cos(ay*e)*cosh(by) + by^2*cosh(by*e)*cos(ay) + ay*by*sin(ay*e)*sinh(by)

+ ay*by*sinh(by*e)*sin(ay))*(ax^2*cos(ax*(k - 1)) - bx^2*cosh(bx*(k - 1)) -

ax^2*cos(ax*k)*cosh(bx) + bx^2*cosh(bx*k)*cos(ax) + ax*bx*sin(ax*k)*sinh(bx)

+ ax*bx*sinh(bx*k)*sin(ax)))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

157

N9k3 = -((cos(ay*(e - 1)) + cosh(by*(e - 1)) - cos(ay*e)*cosh(by) -

cosh(by*e)*cos(ay) - (ay*sinh(by*e)*sin(ay))/by +

(by*sin(ay*e)*sinh(by))/ay)*(ax^3*sin(ax*k)*cosh(bx) - bx^3*sinh(bx*(k - 1))

- ax^3*sin(ax*(k - 1)) + bx^3*sinh(bx*k)*cos(ax) + ax*bx^2*cosh(bx*k)*sin(ax)

+ ax^2*bx*cos(ax*k)*sinh(bx)))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2

- bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N9e3 = -((ay^3*sin(ay*e)*cosh(by) - by^3*sinh(by*(e - 1)) - ay^3*sin(ay*(e -

1)) + by^3*sinh(by*e)*cos(ay) + ay*by^2*cosh(by*e)*sin(ay) +

ay^2*by*cos(ay*e)*sinh(by))*(cos(ax*(k - 1)) + cosh(bx*(k - 1)) -

cos(ax*k)*cosh(bx) - cosh(bx*k)*cos(ax) - (ax*sinh(bx*k)*sin(ax))/bx +

(bx*sin(ax*k)*sinh(bx))/ax))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N9k4 = ((ax^4*cos(ax*(k - 1)) + bx^4*cosh(bx*(k - 1)) -

ax^4*cos(ax*k)*cosh(bx) - bx^4*cosh(bx*k)*cos(ax) -

ax*bx^3*sinh(bx*k)*sin(ax) + ax^3*bx*sin(ax*k)*sinh(bx))*(cos(ay*(e - 1)) +

cosh(by*(e - 1)) - cos(ay*e)*cosh(by) - cosh(by*e)*cos(ay) -

(ay*sinh(by*e)*sin(ay))/by +

(by*sin(ay*e)*sinh(by))/ay))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N9e4 = ((ay^4*cos(ay*(e - 1)) + by^4*cosh(by*(e - 1)) -

ay^4*cos(ay*e)*cosh(by) - by^4*cosh(by*e)*cos(ay) -

ay*by^3*sinh(by*e)*sin(ay) + ay^3*by*sin(ay*e)*sinh(by))*(cos(ax*(k - 1)) +

cosh(bx*(k - 1)) - cos(ax*k)*cosh(bx) - cosh(bx*k)*cos(ax) -

(ax*sinh(bx*k)*sin(ax))/bx +

(bx*sin(ax*k)*sinh(bx))/ax))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

% Node 10

N10k = ((bx*(ax*cos(ax*(k - 1)) - ax*cos(ax*k)*cosh(bx) +

bx*sinh(bx*k)*sin(ax)) - ax*(bx*cosh(bx*k)*cos(ax) - bx*cosh(bx*(k - 1)) +

ax*sin(ax*k)*sinh(bx)))*(cos(ay*(e - 1)) + cosh(by*(e - 1)) -

cos(ay*e)*cosh(by) - cosh(by*e)*cos(ay) - (ay*sinh(by*e)*sin(ay))/by +

(by*sin(ay*e)*sinh(by))/ay))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N10kk = ((bx*(ax^2*sin(ax*k)*cosh(bx) - ax^2*sin(ax*(k - 1)) +

bx^2*cosh(bx*k)*sin(ax)) - ax*(ax^2*cos(ax*k)*sinh(bx) - bx^2*sinh(bx*(k -

1)) + bx^2*sinh(bx*k)*cos(ax)))*(cos(ay*(e - 1)) + cosh(by*(e - 1)) -

cos(ay*e)*cosh(by) - cosh(by*e)*cos(ay) - (ay*sinh(by*e)*sin(ay))/by +

(by*sin(ay*e)*sinh(by))/ay))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N10e = -((bx*(sin(ax*(k - 1)) + cosh(bx*k)*sin(ax) - sin(ax*k)*cosh(bx)) +

ax*(sinh(bx*(k - 1)) + cos(ax*k)*sinh(bx) -

sinh(bx*k)*cos(ax)))*(ay*sin(ay*(e - 1)) - by*sinh(by*(e - 1)) +

158

ay*cosh(by*e)*sin(ay) - ay*sin(ay*e)*cosh(by) - by*cos(ay*e)*sinh(by) +

by*sinh(by*e)*cos(ay)))/(ax*bx*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2

- bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N10ee = -((bx*(sin(ax*(k - 1)) + cosh(bx*k)*sin(ax) - sin(ax*k)*cosh(bx)) +

ax*(sinh(bx*(k - 1)) + cos(ax*k)*sinh(bx) -

sinh(bx*k)*cos(ax)))*(ay^2*cos(ay*(e - 1)) - by^2*cosh(by*(e - 1)) -

ay^2*cos(ay*e)*cosh(by) + by^2*cosh(by*e)*cos(ay) + ay*by*sin(ay*e)*sinh(by)

+ ay*by*sinh(by*e)*sin(ay)))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N10ke = -((bx*(ax*cos(ax*(k - 1)) - ax*cos(ax*k)*cosh(bx) +

bx*sinh(bx*k)*sin(ax)) - ax*(bx*cosh(bx*k)*cos(ax) - bx*cosh(bx*(k - 1)) +

ax*sin(ax*k)*sinh(bx)))*(ay*sin(ay*(e - 1)) - by*sinh(by*(e - 1)) +

ay*cosh(by*e)*sin(ay) - ay*sin(ay*e)*cosh(by) - by*cos(ay*e)*sinh(by) +

by*sinh(by*e)*cos(ay)))/(ax*bx*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2

- bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N10k2e = -((bx*(ax^2*sin(ax*k)*cosh(bx) - ax^2*sin(ax*(k - 1)) +

bx^2*cosh(bx*k)*sin(ax)) - ax*(ax^2*cos(ax*k)*sinh(bx) - bx^2*sinh(bx*(k -

1)) + bx^2*sinh(bx*k)*cos(ax)))*(ay*sin(ay*(e - 1)) - by*sinh(by*(e - 1)) +

ay*cosh(by*e)*sin(ay) - ay*sin(ay*e)*cosh(by) - by*cos(ay*e)*sinh(by) +

by*sinh(by*e)*cos(ay)))/(ax*bx*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2

- bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N10ke2 = -((bx*(ax*cos(ax*(k - 1)) - ax*cos(ax*k)*cosh(bx) +

bx*sinh(bx*k)*sin(ax)) - ax*(bx*cosh(bx*k)*cos(ax) - bx*cosh(bx*(k - 1)) +

ax*sin(ax*k)*sinh(bx)))*(ay^2*cos(ay*(e - 1)) - by^2*cosh(by*(e - 1)) -

ay^2*cos(ay*e)*cosh(by) + by^2*cosh(by*e)*cos(ay) + ay*by*sin(ay*e)*sinh(by)

+ ay*by*sinh(by*e)*sin(ay)))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N10k2e2 = -((bx*(ax^2*sin(ax*k)*cosh(bx) - ax^2*sin(ax*(k - 1)) +

bx^2*cosh(bx*k)*sin(ax)) - ax*(ax^2*cos(ax*k)*sinh(bx) - bx^2*sinh(bx*(k -

1)) + bx^2*sinh(bx*k)*cos(ax)))*(ay^2*cos(ay*(e - 1)) - by^2*cosh(by*(e - 1))

- ay^2*cos(ay*e)*cosh(by) + by^2*cosh(by*e)*cos(ay) +

ay*by*sin(ay*e)*sinh(by) +

ay*by*sinh(by*e)*sin(ay)))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N10k3 = ((bx*(ax^3*cos(ax*k)*cosh(bx) - ax^3*cos(ax*(k - 1)) +

bx^3*sinh(bx*k)*sin(ax)) + ax*(bx^3*cosh(bx*(k - 1)) -

bx^3*cosh(bx*k)*cos(ax) + ax^3*sin(ax*k)*sinh(bx)))*(cos(ay*(e - 1)) +

cosh(by*(e - 1)) - cos(ay*e)*cosh(by) - cosh(by*e)*cos(ay) -

(ay*sinh(by*e)*sin(ay))/by +

(by*sin(ay*e)*sinh(by))/ay))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

159

N10e3 = -((bx*(sin(ax*(k - 1)) + cosh(bx*k)*sin(ax) - sin(ax*k)*cosh(bx)) +

ax*(sinh(bx*(k - 1)) + cos(ax*k)*sinh(bx) -

sinh(bx*k)*cos(ax)))*(ay^3*sin(ay*e)*cosh(by) - by^3*sinh(by*(e - 1)) -

ay^3*sin(ay*(e - 1)) + by^3*sinh(by*e)*cos(ay) + ay*by^2*cosh(by*e)*sin(ay) +

ay^2*by*cos(ay*e)*sinh(by)))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N10k4 = ((bx*(ax^4*sin(ax*(k - 1)) - ax^4*sin(ax*k)*cosh(bx) +

bx^4*cosh(bx*k)*sin(ax)) + ax*(bx^4*sinh(bx*(k - 1)) +

ax^4*cos(ax*k)*sinh(bx) - bx^4*sinh(bx*k)*cos(ax)))*(cos(ay*(e - 1)) +

cosh(by*(e - 1)) - cos(ay*e)*cosh(by) - cosh(by*e)*cos(ay) -

(ay*sinh(by*e)*sin(ay))/by +

(by*sin(ay*e)*sinh(by))/ay))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N10e4 = ((bx*(sin(ax*(k - 1)) + cosh(bx*k)*sin(ax) - sin(ax*k)*cosh(bx)) +

ax*(sinh(bx*(k - 1)) + cos(ax*k)*sinh(bx) -

sinh(bx*k)*cos(ax)))*(ay^4*cos(ay*(e - 1)) + by^4*cosh(by*(e - 1)) -

ay^4*cos(ay*e)*cosh(by) - by^4*cosh(by*e)*cos(ay) -

ay*by^3*sinh(by*e)*sin(ay) +

ay^3*by*sin(ay*e)*sinh(by)))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

% Node 11

N11k = -((by*(sin(ay*(e - 1)) + cosh(by*e)*sin(ay) - sin(ay*e)*cosh(by)) +

ay*(sinh(by*(e - 1)) + cos(ay*e)*sinh(by) -

sinh(by*e)*cos(ay)))*(ax*sin(ax*(k - 1)) - bx*sinh(bx*(k - 1)) +

ax*cosh(bx*k)*sin(ax) - ax*sin(ax*k)*cosh(bx) - bx*cos(ax*k)*sinh(bx) +

bx*sinh(bx*k)*cos(ax)))/(ay*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2

- bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N11kk = -((by*(sin(ay*(e - 1)) + cosh(by*e)*sin(ay) - sin(ay*e)*cosh(by)) +

ay*(sinh(by*(e - 1)) + cos(ay*e)*sinh(by) -

sinh(by*e)*cos(ay)))*(ax^2*cos(ax*(k - 1)) - bx^2*cosh(bx*(k - 1)) -

ax^2*cos(ax*k)*cosh(bx) + bx^2*cosh(bx*k)*cos(ax) + ax*bx*sin(ax*k)*sinh(bx)

+ ax*bx*sinh(bx*k)*sin(ax)))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N11e = ((by*(ay*cos(ay*(e - 1)) - ay*cos(ay*e)*cosh(by) +

by*sinh(by*e)*sin(ay)) - ay*(by*cosh(by*e)*cos(ay) - by*cosh(by*(e - 1)) +

ay*sin(ay*e)*sinh(by)))*(cos(ax*(k - 1)) + cosh(bx*(k - 1)) -

cos(ax*k)*cosh(bx) - cosh(bx*k)*cos(ax) - (ax*sinh(bx*k)*sin(ax))/bx +

(bx*sin(ax*k)*sinh(bx))/ax))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N11ee = ((by*(ay^2*sin(ay*e)*cosh(by) - ay^2*sin(ay*(e - 1)) +

by^2*cosh(by*e)*sin(ay)) - ay*(ay^2*cos(ay*e)*sinh(by) - by^2*sinh(by*(e -

1)) + by^2*sinh(by*e)*cos(ay)))*(cos(ax*(k - 1)) + cosh(bx*(k - 1)) -

160

cos(ax*k)*cosh(bx) - cosh(bx*k)*cos(ax) - (ax*sinh(bx*k)*sin(ax))/bx +

(bx*sin(ax*k)*sinh(bx))/ax))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N11ke = -((by*(ay*cos(ay*(e - 1)) - ay*cos(ay*e)*cosh(by) +

by*sinh(by*e)*sin(ay)) - ay*(by*cosh(by*e)*cos(ay) - by*cosh(by*(e - 1)) +

ay*sin(ay*e)*sinh(by)))*(ax*sin(ax*(k - 1)) - bx*sinh(bx*(k - 1)) +

ax*cosh(bx*k)*sin(ax) - ax*sin(ax*k)*cosh(bx) - bx*cos(ax*k)*sinh(bx) +

bx*sinh(bx*k)*cos(ax)))/(ay*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2

- bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N11k2e = -((by*(ay*cos(ay*(e - 1)) - ay*cos(ay*e)*cosh(by) +

by*sinh(by*e)*sin(ay)) - ay*(by*cosh(by*e)*cos(ay) - by*cosh(by*(e - 1)) +

ay*sin(ay*e)*sinh(by)))*(ax^2*cos(ax*(k - 1)) - bx^2*cosh(bx*(k - 1)) -

ax^2*cos(ax*k)*cosh(bx) + bx^2*cosh(bx*k)*cos(ax) + ax*bx*sin(ax*k)*sinh(bx)

+ ax*bx*sinh(bx*k)*sin(ax)))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N11ke2 = -((by*(ay^2*sin(ay*e)*cosh(by) - ay^2*sin(ay*(e - 1)) +

by^2*cosh(by*e)*sin(ay)) - ay*(ay^2*cos(ay*e)*sinh(by) - by^2*sinh(by*(e -

1)) + by^2*sinh(by*e)*cos(ay)))*(ax*sin(ax*(k - 1)) - bx*sinh(bx*(k - 1)) +

ax*cosh(bx*k)*sin(ax) - ax*sin(ax*k)*cosh(bx) - bx*cos(ax*k)*sinh(bx) +

bx*sinh(bx*k)*cos(ax)))/(ay*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2

- bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N11k2e2 = -((by*(ay^2*sin(ay*e)*cosh(by) - ay^2*sin(ay*(e - 1)) +

by^2*cosh(by*e)*sin(ay)) - ay*(ay^2*cos(ay*e)*sinh(by) - by^2*sinh(by*(e -

1)) + by^2*sinh(by*e)*cos(ay)))*(ax^2*cos(ax*(k - 1)) - bx^2*cosh(bx*(k - 1))

- ax^2*cos(ax*k)*cosh(bx) + bx^2*cosh(bx*k)*cos(ax) +

ax*bx*sin(ax*k)*sinh(bx) +

ax*bx*sinh(bx*k)*sin(ax)))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N11k3 = -((by*(sin(ay*(e - 1)) + cosh(by*e)*sin(ay) - sin(ay*e)*cosh(by)) +

ay*(sinh(by*(e - 1)) + cos(ay*e)*sinh(by) -

sinh(by*e)*cos(ay)))*(ax^3*sin(ax*k)*cosh(bx) - bx^3*sinh(bx*(k - 1)) -

ax^3*sin(ax*(k - 1)) + bx^3*sinh(bx*k)*cos(ax) + ax*bx^2*cosh(bx*k)*sin(ax) +

ax^2*bx*cos(ax*k)*sinh(bx)))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N11e3 = ((by*(ay^3*cos(ay*e)*cosh(by) - ay^3*cos(ay*(e - 1)) +

by^3*sinh(by*e)*sin(ay)) + ay*(by^3*cosh(by*(e - 1)) -

by^3*cosh(by*e)*cos(ay) + ay^3*sin(ay*e)*sinh(by)))*(cos(ax*(k - 1)) +

cosh(bx*(k - 1)) - cos(ax*k)*cosh(bx) - cosh(bx*k)*cos(ax) -

(ax*sinh(bx*k)*sin(ax))/bx +

(bx*sin(ax*k)*sinh(bx))/ax))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

161

N11k4 = ((by*(sin(ay*(e - 1)) + cosh(by*e)*sin(ay) - sin(ay*e)*cosh(by)) +

ay*(sinh(by*(e - 1)) + cos(ay*e)*sinh(by) -

sinh(by*e)*cos(ay)))*(ax^4*cos(ax*(k - 1)) + bx^4*cosh(bx*(k - 1)) -

ax^4*cos(ax*k)*cosh(bx) - bx^4*cosh(bx*k)*cos(ax) -

ax*bx^3*sinh(bx*k)*sin(ax) +

ax^3*bx*sin(ax*k)*sinh(bx)))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N11e4 = ((by*(ay^4*sin(ay*(e - 1)) - ay^4*sin(ay*e)*cosh(by) +

by^4*cosh(by*e)*sin(ay)) + ay*(by^4*sinh(by*(e - 1)) +

ay^4*cos(ay*e)*sinh(by) - by^4*sinh(by*e)*cos(ay)))*(cos(ax*(k - 1)) +

cosh(bx*(k - 1)) - cos(ax*k)*cosh(bx) - cosh(bx*k)*cos(ax) -

(ax*sinh(bx*k)*sin(ax))/bx +

(bx*sin(ax*k)*sinh(bx))/ax))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

% Node 12

N12k = ((by*(sin(ay*(e - 1)) + cosh(by*e)*sin(ay) - sin(ay*e)*cosh(by)) +

ay*(sinh(by*(e - 1)) + cos(ay*e)*sinh(by) -

sinh(by*e)*cos(ay)))*(bx*(ax*cos(ax*(k - 1)) - ax*cos(ax*k)*cosh(bx) +

bx*sinh(bx*k)*sin(ax)) - ax*(bx*cosh(bx*k)*cos(ax) - bx*cosh(bx*(k - 1)) +

ax*sin(ax*k)*sinh(bx))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N12kk = ((by*(sin(ay*(e - 1)) + cosh(by*e)*sin(ay) - sin(ay*e)*cosh(by)) +

ay*(sinh(by*(e - 1)) + cos(ay*e)*sinh(by) -

sinh(by*e)*cos(ay)))*(bx*(ax^2*sin(ax*k)*cosh(bx) - ax^2*sin(ax*(k - 1)) +

bx^2*cosh(bx*k)*sin(ax)) - ax*(ax^2*cos(ax*k)*sinh(bx) - bx^2*sinh(bx*(k -

1)) + bx^2*sinh(bx*k)*cos(ax))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N12e = ((by*(ay*cos(ay*(e - 1)) - ay*cos(ay*e)*cosh(by) +

by*sinh(by*e)*sin(ay)) - ay*(by*cosh(by*e)*cos(ay) - by*cosh(by*(e - 1)) +

ay*sin(ay*e)*sinh(by)))*(bx*(sin(ax*(k - 1)) + cosh(bx*k)*sin(ax) -

sin(ax*k)*cosh(bx)) + ax*(sinh(bx*(k - 1)) + cos(ax*k)*sinh(bx) -

sinh(bx*k)*cos(ax))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N12ee = ((bx*(sin(ax*(k - 1)) + cosh(bx*k)*sin(ax) - sin(ax*k)*cosh(bx)) +

ax*(sinh(bx*(k - 1)) + cos(ax*k)*sinh(bx) -

sinh(bx*k)*cos(ax)))*(by*(ay^2*sin(ay*e)*cosh(by) - ay^2*sin(ay*(e - 1)) +

by^2*cosh(by*e)*sin(ay)) - ay*(ay^2*cos(ay*e)*sinh(by) - by^2*sinh(by*(e -

1)) + by^2*sinh(by*e)*cos(ay))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N12ke = ((by*(ay*cos(ay*(e - 1)) - ay*cos(ay*e)*cosh(by) +

by*sinh(by*e)*sin(ay)) - ay*(by*cosh(by*e)*cos(ay) - by*cosh(by*(e - 1)) +

ay*sin(ay*e)*sinh(by)))*(bx*(ax*cos(ax*(k - 1)) - ax*cos(ax*k)*cosh(bx) +

162

bx*sinh(bx*k)*sin(ax)) - ax*(bx*cosh(bx*k)*cos(ax) - bx*cosh(bx*(k - 1)) +

ax*sin(ax*k)*sinh(bx))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N12k2e = ((by*(ay*cos(ay*(e - 1)) - ay*cos(ay*e)*cosh(by) +

by*sinh(by*e)*sin(ay)) - ay*(by*cosh(by*e)*cos(ay) - by*cosh(by*(e - 1)) +

ay*sin(ay*e)*sinh(by)))*(bx*(ax^2*sin(ax*k)*cosh(bx) - ax^2*sin(ax*(k - 1)) +

bx^2*cosh(bx*k)*sin(ax)) - ax*(ax^2*cos(ax*k)*sinh(bx) - bx^2*sinh(bx*(k -

1)) + bx^2*sinh(bx*k)*cos(ax))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N12ke2 = ((bx*(ax*cos(ax*(k - 1)) - ax*cos(ax*k)*cosh(bx) +

bx*sinh(bx*k)*sin(ax)) - ax*(bx*cosh(bx*k)*cos(ax) - bx*cosh(bx*(k - 1)) +

ax*sin(ax*k)*sinh(bx)))*(by*(ay^2*sin(ay*e)*cosh(by) - ay^2*sin(ay*(e - 1)) +

by^2*cosh(by*e)*sin(ay)) - ay*(ay^2*cos(ay*e)*sinh(by) - by^2*sinh(by*(e -

1)) + by^2*sinh(by*e)*cos(ay))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N12k2e2 = ((by*(ay^2*sin(ay*e)*cosh(by) - ay^2*sin(ay*(e - 1)) +

by^2*cosh(by*e)*sin(ay)) - ay*(ay^2*cos(ay*e)*sinh(by) - by^2*sinh(by*(e -

1)) + by^2*sinh(by*e)*cos(ay)))*(bx*(ax^2*sin(ax*k)*cosh(bx) - ax^2*sin(ax*(k

- 1)) + bx^2*cosh(bx*k)*sin(ax)) - ax*(ax^2*cos(ax*k)*sinh(bx) -

bx^2*sinh(bx*(k - 1)) +

bx^2*sinh(bx*k)*cos(ax))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N12k3 = ((by*(sin(ay*(e - 1)) + cosh(by*e)*sin(ay) - sin(ay*e)*cosh(by)) +

ay*(sinh(by*(e - 1)) + cos(ay*e)*sinh(by) -

sinh(by*e)*cos(ay)))*(bx*(ax^3*cos(ax*k)*cosh(bx) - ax^3*cos(ax*(k - 1)) +

bx^3*sinh(bx*k)*sin(ax)) + ax*(bx^3*cosh(bx*(k - 1)) -

bx^3*cosh(bx*k)*cos(ax) +

ax^3*sin(ax*k)*sinh(bx))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N12e3 = ((bx*(sin(ax*(k - 1)) + cosh(bx*k)*sin(ax) - sin(ax*k)*cosh(bx)) +

ax*(sinh(bx*(k - 1)) + cos(ax*k)*sinh(bx) -

sinh(bx*k)*cos(ax)))*(by*(ay^3*cos(ay*e)*cosh(by) - ay^3*cos(ay*(e - 1)) +

by^3*sinh(by*e)*sin(ay)) + ay*(by^3*cosh(by*(e - 1)) -

by^3*cosh(by*e)*cos(ay) +

ay^3*sin(ay*e)*sinh(by))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N12k4 = ((by*(sin(ay*(e - 1)) + cosh(by*e)*sin(ay) - sin(ay*e)*cosh(by)) +

ay*(sinh(by*(e - 1)) + cos(ay*e)*sinh(by) -

sinh(by*e)*cos(ay)))*(bx*(ax^4*sin(ax*(k - 1)) - ax^4*sin(ax*k)*cosh(bx) +

bx^4*cosh(bx*k)*sin(ax)) + ax*(bx^4*sinh(bx*(k - 1)) +

ax^4*cos(ax*k)*sinh(bx) -

bx^4*sinh(bx*k)*cos(ax))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

163

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N12e4 = ((bx*(sin(ax*(k - 1)) + cosh(bx*k)*sin(ax) - sin(ax*k)*cosh(bx)) +

ax*(sinh(bx*(k - 1)) + cos(ax*k)*sinh(bx) -

sinh(bx*k)*cos(ax)))*(by*(ay^4*sin(ay*(e - 1)) - ay^4*sin(ay*e)*cosh(by) +

by^4*cosh(by*e)*sin(ay)) + ay*(by^4*sinh(by*(e - 1)) +

ay^4*cos(ay*e)*sinh(by) -

by^4*sinh(by*e)*cos(ay))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

% Node 13

N13k = -((ax*sin(ax*k) - bx*sinh(bx*k) - ax*cosh(bx)*sin(ax*(k - 1)) -

ax*sin(ax)*cosh(bx*(k - 1)) + bx*cos(ax)*sinh(bx*(k - 1)) +

bx*sinh(bx)*cos(ax*(k - 1)))*(cos(ay*(e - 1)) + cosh(by*(e - 1)) -

cos(ay*e)*cosh(by) - cosh(by*e)*cos(ay) - (ay*sinh(by*e)*sin(ay))/by +

(by*sin(ay*e)*sinh(by))/ay))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N13kk = ((bx^2*cosh(bx*k) - ax^2*cos(ax*k) + ax^2*cosh(bx)*cos(ax*(k - 1)) -

bx^2*cos(ax)*cosh(bx*(k - 1)) + ax*bx*sin(ax)*sinh(bx*(k - 1)) +

ax*bx*sinh(bx)*sin(ax*(k - 1)))*(cos(ay*(e - 1)) + cosh(by*(e - 1)) -

cos(ay*e)*cosh(by) - cosh(by*e)*cos(ay) - (ay*sinh(by*e)*sin(ay))/by +

(by*sin(ay*e)*sinh(by))/ay))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N13e = -((cos(ax*k) + cosh(bx*k) - cos(ax)*cosh(bx*(k - 1)) -

cosh(bx)*cos(ax*(k - 1)) + (ax*sin(ax)*sinh(bx*(k - 1)))/bx -

(bx*sinh(bx)*sin(ax*(k - 1)))/ax)*(ay*sin(ay*(e - 1)) - by*sinh(by*(e - 1)) +

ay*cosh(by*e)*sin(ay) - ay*sin(ay*e)*cosh(by) - by*cos(ay*e)*sinh(by) +

by*sinh(by*e)*cos(ay)))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N13ee = -((cos(ax*k) + cosh(bx*k) - cos(ax)*cosh(bx*(k - 1)) -

cosh(bx)*cos(ax*(k - 1)) + (ax*sin(ax)*sinh(bx*(k - 1)))/bx -

(bx*sinh(bx)*sin(ax*(k - 1)))/ax)*(ay^2*cos(ay*(e - 1)) - by^2*cosh(by*(e -

1)) - ay^2*cos(ay*e)*cosh(by) + by^2*cosh(by*e)*cos(ay) +

ay*by*sin(ay*e)*sinh(by) + ay*by*sinh(by*e)*sin(ay)))/((2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N13ke = ((ax*sin(ax*k) - bx*sinh(bx*k) - ax*cosh(bx)*sin(ax*(k - 1)) -

ax*sin(ax)*cosh(bx*(k - 1)) + bx*cos(ax)*sinh(bx*(k - 1)) +

bx*sinh(bx)*cos(ax*(k - 1)))*(ay*sin(ay*(e - 1)) - by*sinh(by*(e - 1)) +

ay*cosh(by*e)*sin(ay) - ay*sin(ay*e)*cosh(by) - by*cos(ay*e)*sinh(by) +

by*sinh(by*e)*cos(ay)))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

164

N13k2e = -((ay*sin(ay*(e - 1)) - by*sinh(by*(e - 1)) + ay*cosh(by*e)*sin(ay)

- ay*sin(ay*e)*cosh(by) - by*cos(ay*e)*sinh(by) +

by*sinh(by*e)*cos(ay))*(bx^2*cosh(bx*k) - ax^2*cos(ax*k) +

ax^2*cosh(bx)*cos(ax*(k - 1)) - bx^2*cos(ax)*cosh(bx*(k - 1)) +

ax*bx*sin(ax)*sinh(bx*(k - 1)) + ax*bx*sinh(bx)*sin(ax*(k -

1))))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N13ke2 = ((ax*sin(ax*k) - bx*sinh(bx*k) - ax*cosh(bx)*sin(ax*(k - 1)) -

ax*sin(ax)*cosh(bx*(k - 1)) + bx*cos(ax)*sinh(bx*(k - 1)) +

bx*sinh(bx)*cos(ax*(k - 1)))*(ay^2*cos(ay*(e - 1)) - by^2*cosh(by*(e - 1)) -

ay^2*cos(ay*e)*cosh(by) + by^2*cosh(by*e)*cos(ay) + ay*by*sin(ay*e)*sinh(by)

+ ay*by*sinh(by*e)*sin(ay)))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N13k2e2 = -((bx^2*cosh(bx*k) - ax^2*cos(ax*k) + ax^2*cosh(bx)*cos(ax*(k - 1))

- bx^2*cos(ax)*cosh(bx*(k - 1)) + ax*bx*sin(ax)*sinh(bx*(k - 1)) +

ax*bx*sinh(bx)*sin(ax*(k - 1)))*(ay^2*cos(ay*(e - 1)) - by^2*cosh(by*(e - 1))

- ay^2*cos(ay*e)*cosh(by) + by^2*cosh(by*e)*cos(ay) +

ay*by*sin(ay*e)*sinh(by) + ay*by*sinh(by*e)*sin(ay)))/((2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N13k3 = ((ax^3*sin(ax*k) + bx^3*sinh(bx*k) - ax^3*cosh(bx)*sin(ax*(k - 1)) -

bx^3*cos(ax)*sinh(bx*(k - 1)) + ax*bx^2*sin(ax)*cosh(bx*(k - 1)) +

ax^2*bx*sinh(bx)*cos(ax*(k - 1)))*(cos(ay*(e - 1)) + cosh(by*(e - 1)) -

cos(ay*e)*cosh(by) - cosh(by*e)*cos(ay) - (ay*sinh(by*e)*sin(ay))/by +

(by*sin(ay*e)*sinh(by))/ay))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N13e3 = -((cos(ax*k) + cosh(bx*k) - cos(ax)*cosh(bx*(k - 1)) -

cosh(bx)*cos(ax*(k - 1)) + (ax*sin(ax)*sinh(bx*(k - 1)))/bx -

(bx*sinh(bx)*sin(ax*(k - 1)))/ax)*(ay^3*sin(ay*e)*cosh(by) - by^3*sinh(by*(e

- 1)) - ay^3*sin(ay*(e - 1)) + by^3*sinh(by*e)*cos(ay) +

ay*by^2*cosh(by*e)*sin(ay) +

ay^2*by*cos(ay*e)*sinh(by)))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N13k4 = ((ax^4*cos(ax*k) + bx^4*cosh(bx*k) - ax^4*cosh(bx)*cos(ax*(k - 1)) -

bx^4*cos(ax)*cosh(bx*(k - 1)) + ax*bx^3*sin(ax)*sinh(bx*(k - 1)) -

ax^3*bx*sinh(bx)*sin(ax*(k - 1)))*(cos(ay*(e - 1)) + cosh(by*(e - 1)) -

cos(ay*e)*cosh(by) - cosh(by*e)*cos(ay) - (ay*sinh(by*e)*sin(ay))/by +

(by*sin(ay*e)*sinh(by))/ay))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N13e4 = ((ay^4*cos(ay*(e - 1)) + by^4*cosh(by*(e - 1)) -

ay^4*cos(ay*e)*cosh(by) - by^4*cosh(by*e)*cos(ay) -

ay*by^3*sinh(by*e)*sin(ay) + ay^3*by*sin(ay*e)*sinh(by))*(cos(ax*k) +

cosh(bx*k) - cos(ax)*cosh(bx*(k - 1)) - cosh(bx)*cos(ax*(k - 1)) +

(ax*sin(ax)*sinh(bx*(k - 1)))/bx - (bx*sinh(bx)*sin(ax*(k -

165

1)))/ax))/((2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

% Node 14

N14k = -((bx*(ax*cosh(bx)*cos(ax*(k - 1)) - ax*cos(ax*k) +

bx*sin(ax)*sinh(bx*(k - 1))) - ax*(bx*cosh(bx*k) - bx*cos(ax)*cosh(bx*(k -

1)) + ax*sinh(bx)*sin(ax*(k - 1))))*(cos(ay*(e - 1)) + cosh(by*(e - 1)) -

cos(ay*e)*cosh(by) - cosh(by*e)*cos(ay) - (ay*sinh(by*e)*sin(ay))/by +

(by*sin(ay*e)*sinh(by))/ay))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N14kk = -((bx*(ax^2*sin(ax*k) - ax^2*cosh(bx)*sin(ax*(k - 1)) +

bx^2*sin(ax)*cosh(bx*(k - 1))) - ax*(bx^2*sinh(bx*k) +

ax^2*sinh(bx)*cos(ax*(k - 1)) - bx^2*cos(ax)*sinh(bx*(k - 1))))*(cos(ay*(e -

1)) + cosh(by*(e - 1)) - cos(ay*e)*cosh(by) - cosh(by*e)*cos(ay) -

(ay*sinh(by*e)*sin(ay))/by +

(by*sin(ay*e)*sinh(by))/ay))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N14e = ((bx*(cosh(bx)*sin(ax*(k - 1)) - sin(ax*k) + sin(ax)*cosh(bx*(k - 1)))

+ ax*(cos(ax)*sinh(bx*(k - 1)) - sinh(bx*k) + sinh(bx)*cos(ax*(k -

1))))*(ay*sin(ay*(e - 1)) - by*sinh(by*(e - 1)) + ay*cosh(by*e)*sin(ay) -

ay*sin(ay*e)*cosh(by) - by*cos(ay*e)*sinh(by) +

by*sinh(by*e)*cos(ay)))/(ax*bx*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2

- bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N14ee = ((bx*(cosh(bx)*sin(ax*(k - 1)) - sin(ax*k) + sin(ax)*cosh(bx*(k -

1))) + ax*(cos(ax)*sinh(bx*(k - 1)) - sinh(bx*k) + sinh(bx)*cos(ax*(k -

1))))*(ay^2*cos(ay*(e - 1)) - by^2*cosh(by*(e - 1)) - ay^2*cos(ay*e)*cosh(by)

+ by^2*cosh(by*e)*cos(ay) + ay*by*sin(ay*e)*sinh(by) +

ay*by*sinh(by*e)*sin(ay)))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N14ke = ((bx*(ax*cosh(bx)*cos(ax*(k - 1)) - ax*cos(ax*k) +

bx*sin(ax)*sinh(bx*(k - 1))) - ax*(bx*cosh(bx*k) - bx*cos(ax)*cosh(bx*(k -

1)) + ax*sinh(bx)*sin(ax*(k - 1))))*(ay*sin(ay*(e - 1)) - by*sinh(by*(e - 1))

+ ay*cosh(by*e)*sin(ay) - ay*sin(ay*e)*cosh(by) - by*cos(ay*e)*sinh(by) +

by*sinh(by*e)*cos(ay)))/(ax*bx*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2

- bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N14k2e = ((bx*(ax^2*sin(ax*k) - ax^2*cosh(bx)*sin(ax*(k - 1)) +

bx^2*sin(ax)*cosh(bx*(k - 1))) - ax*(bx^2*sinh(bx*k) +

ax^2*sinh(bx)*cos(ax*(k - 1)) - bx^2*cos(ax)*sinh(bx*(k - 1))))*(ay*sin(ay*(e

- 1)) - by*sinh(by*(e - 1)) + ay*cosh(by*e)*sin(ay) - ay*sin(ay*e)*cosh(by) -

by*cos(ay*e)*sinh(by) + by*sinh(by*e)*cos(ay)))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

166

N14ke2 = ((bx*(ax*cosh(bx)*cos(ax*(k - 1)) - ax*cos(ax*k) +

bx*sin(ax)*sinh(bx*(k - 1))) - ax*(bx*cosh(bx*k) - bx*cos(ax)*cosh(bx*(k -

1)) + ax*sinh(bx)*sin(ax*(k - 1))))*(ay^2*cos(ay*(e - 1)) - by^2*cosh(by*(e -

1)) - ay^2*cos(ay*e)*cosh(by) + by^2*cosh(by*e)*cos(ay) +

ay*by*sin(ay*e)*sinh(by) +

ay*by*sinh(by*e)*sin(ay)))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N14k2e2 = ((bx*(ax^2*sin(ax*k) - ax^2*cosh(bx)*sin(ax*(k - 1)) +

bx^2*sin(ax)*cosh(bx*(k - 1))) - ax*(bx^2*sinh(bx*k) +

ax^2*sinh(bx)*cos(ax*(k - 1)) - bx^2*cos(ax)*sinh(bx*(k -

1))))*(ay^2*cos(ay*(e - 1)) - by^2*cosh(by*(e - 1)) - ay^2*cos(ay*e)*cosh(by)

+ by^2*cosh(by*e)*cos(ay) + ay*by*sin(ay*e)*sinh(by) +

ay*by*sinh(by*e)*sin(ay)))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N14k3 = -((bx*(ax^3*cos(ax*k) - ax^3*cosh(bx)*cos(ax*(k - 1)) +

bx^3*sin(ax)*sinh(bx*(k - 1))) + ax*(bx^3*cos(ax)*cosh(bx*(k - 1)) -

bx^3*cosh(bx*k) + ax^3*sinh(bx)*sin(ax*(k - 1))))*(cos(ay*(e - 1)) +

cosh(by*(e - 1)) - cos(ay*e)*cosh(by) - cosh(by*e)*cos(ay) -

(ay*sinh(by*e)*sin(ay))/by +

(by*sin(ay*e)*sinh(by))/ay))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N14e3 = ((bx*(cosh(bx)*sin(ax*(k - 1)) - sin(ax*k) + sin(ax)*cosh(bx*(k -

1))) + ax*(cos(ax)*sinh(bx*(k - 1)) - sinh(bx*k) + sinh(bx)*cos(ax*(k -

1))))*(ay^3*sin(ay*e)*cosh(by) - by^3*sinh(by*(e - 1)) - ay^3*sin(ay*(e - 1))

+ by^3*sinh(by*e)*cos(ay) + ay*by^2*cosh(by*e)*sin(ay) +

ay^2*by*cos(ay*e)*sinh(by)))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N14k4 = -((bx*(ax^4*cosh(bx)*sin(ax*(k - 1)) - ax^4*sin(ax*k) +

bx^4*sin(ax)*cosh(bx*(k - 1))) + ax*(ax^4*sinh(bx)*cos(ax*(k - 1)) -

bx^4*sinh(bx*k) + bx^4*cos(ax)*sinh(bx*(k - 1))))*(cos(ay*(e - 1)) +

cosh(by*(e - 1)) - cos(ay*e)*cosh(by) - cosh(by*e)*cos(ay) -

(ay*sinh(by*e)*sin(ay))/by +

(by*sin(ay*e)*sinh(by))/ay))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N14e4 = -((bx*(cosh(bx)*sin(ax*(k - 1)) - sin(ax*k) + sin(ax)*cosh(bx*(k -

1))) + ax*(cos(ax)*sinh(bx*(k - 1)) - sinh(bx*k) + sinh(bx)*cos(ax*(k -

1))))*(ay^4*cos(ay*(e - 1)) + by^4*cosh(by*(e - 1)) - ay^4*cos(ay*e)*cosh(by)

- by^4*cosh(by*e)*cos(ay) - ay*by^3*sinh(by*e)*sin(ay) +

ay^3*by*sin(ay*e)*sinh(by)))/(ax*bx*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

167

% Node 15

N15k = -((by*(sin(ay*(e - 1)) + cosh(by*e)*sin(ay) - sin(ay*e)*cosh(by)) +

ay*(sinh(by*(e - 1)) + cos(ay*e)*sinh(by) -

sinh(by*e)*cos(ay)))*(ax*sin(ax*k) - bx*sinh(bx*k) - ax*cosh(bx)*sin(ax*(k -

1)) - ax*sin(ax)*cosh(bx*(k - 1)) + bx*cos(ax)*sinh(bx*(k - 1)) +

bx*sinh(bx)*cos(ax*(k - 1))))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N15kk = ((by*(sin(ay*(e - 1)) + cosh(by*e)*sin(ay) - sin(ay*e)*cosh(by)) +

ay*(sinh(by*(e - 1)) + cos(ay*e)*sinh(by) -

sinh(by*e)*cos(ay)))*(bx^2*cosh(bx*k) - ax^2*cos(ax*k) +

ax^2*cosh(bx)*cos(ax*(k - 1)) - bx^2*cos(ax)*cosh(bx*(k - 1)) +

ax*bx*sin(ax)*sinh(bx*(k - 1)) + ax*bx*sinh(bx)*sin(ax*(k -

1))))/(ay*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N15e = ((by*(ay*cos(ay*(e - 1)) - ay*cos(ay*e)*cosh(by) +

by*sinh(by*e)*sin(ay)) - ay*(by*cosh(by*e)*cos(ay) - by*cosh(by*(e - 1)) +

ay*sin(ay*e)*sinh(by)))*(cos(ax*k) + cosh(bx*k) - cos(ax)*cosh(bx*(k - 1)) -

cosh(bx)*cos(ax*(k - 1)) + (ax*sin(ax)*sinh(bx*(k - 1)))/bx -

(bx*sinh(bx)*sin(ax*(k - 1)))/ax))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N15ee = ((by*(ay^2*sin(ay*e)*cosh(by) - ay^2*sin(ay*(e - 1)) +

by^2*cosh(by*e)*sin(ay)) - ay*(ay^2*cos(ay*e)*sinh(by) - by^2*sinh(by*(e -

1)) + by^2*sinh(by*e)*cos(ay)))*(cos(ax*k) + cosh(bx*k) - cos(ax)*cosh(bx*(k

- 1)) - cosh(bx)*cos(ax*(k - 1)) + (ax*sin(ax)*sinh(bx*(k - 1)))/bx -

(bx*sinh(bx)*sin(ax*(k - 1)))/ax))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N15ke = -((by*(ay*cos(ay*(e - 1)) - ay*cos(ay*e)*cosh(by) +

by*sinh(by*e)*sin(ay)) - ay*(by*cosh(by*e)*cos(ay) - by*cosh(by*(e - 1)) +

ay*sin(ay*e)*sinh(by)))*(ax*sin(ax*k) - bx*sinh(bx*k) - ax*cosh(bx)*sin(ax*(k

- 1)) - ax*sin(ax)*cosh(bx*(k - 1)) + bx*cos(ax)*sinh(bx*(k - 1)) +

bx*sinh(bx)*cos(ax*(k - 1))))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N15k2e = ((by*(ay*cos(ay*(e - 1)) - ay*cos(ay*e)*cosh(by) +

by*sinh(by*e)*sin(ay)) - ay*(by*cosh(by*e)*cos(ay) - by*cosh(by*(e - 1)) +

ay*sin(ay*e)*sinh(by)))*(bx^2*cosh(bx*k) - ax^2*cos(ax*k) +

ax^2*cosh(bx)*cos(ax*(k - 1)) - bx^2*cos(ax)*cosh(bx*(k - 1)) +

ax*bx*sin(ax)*sinh(bx*(k - 1)) + ax*bx*sinh(bx)*sin(ax*(k -

1))))/(ay*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N15ke2 = -((by*(ay^2*sin(ay*e)*cosh(by) - ay^2*sin(ay*(e - 1)) +

by^2*cosh(by*e)*sin(ay)) - ay*(ay^2*cos(ay*e)*sinh(by) - by^2*sinh(by*(e -

1)) + by^2*sinh(by*e)*cos(ay)))*(ax*sin(ax*k) - bx*sinh(bx*k) -

ax*cosh(bx)*sin(ax*(k - 1)) - ax*sin(ax)*cosh(bx*(k - 1)) +

bx*cos(ax)*sinh(bx*(k - 1)) + bx*sinh(bx)*cos(ax*(k -

168

1))))/(ay*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N15k2e2 = ((by*(ay^2*sin(ay*e)*cosh(by) - ay^2*sin(ay*(e - 1)) +

by^2*cosh(by*e)*sin(ay)) - ay*(ay^2*cos(ay*e)*sinh(by) - by^2*sinh(by*(e -

1)) + by^2*sinh(by*e)*cos(ay)))*(bx^2*cosh(bx*k) - ax^2*cos(ax*k) +

ax^2*cosh(bx)*cos(ax*(k - 1)) - bx^2*cos(ax)*cosh(bx*(k - 1)) +

ax*bx*sin(ax)*sinh(bx*(k - 1)) + ax*bx*sinh(bx)*sin(ax*(k -

1))))/(ay*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N15k3 = ((by*(sin(ay*(e - 1)) + cosh(by*e)*sin(ay) - sin(ay*e)*cosh(by)) +

ay*(sinh(by*(e - 1)) + cos(ay*e)*sinh(by) -

sinh(by*e)*cos(ay)))*(ax^3*sin(ax*k) + bx^3*sinh(bx*k) -

ax^3*cosh(bx)*sin(ax*(k - 1)) - bx^3*cos(ax)*sinh(bx*(k - 1)) +

ax*bx^2*sin(ax)*cosh(bx*(k - 1)) + ax^2*bx*sinh(bx)*cos(ax*(k -

1))))/(ay*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N15e3 = ((by*(ay^3*cos(ay*e)*cosh(by) - ay^3*cos(ay*(e - 1)) +

by^3*sinh(by*e)*sin(ay)) + ay*(by^3*cosh(by*(e - 1)) -

by^3*cosh(by*e)*cos(ay) + ay^3*sin(ay*e)*sinh(by)))*(cos(ax*k) + cosh(bx*k) -

cos(ax)*cosh(bx*(k - 1)) - cosh(bx)*cos(ax*(k - 1)) + (ax*sin(ax)*sinh(bx*(k

- 1)))/bx - (bx*sinh(bx)*sin(ax*(k - 1)))/ax))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N15k4 = ((by*(sin(ay*(e - 1)) + cosh(by*e)*sin(ay) - sin(ay*e)*cosh(by)) +

ay*(sinh(by*(e - 1)) + cos(ay*e)*sinh(by) -

sinh(by*e)*cos(ay)))*(ax^4*cos(ax*k) + bx^4*cosh(bx*k) -

ax^4*cosh(bx)*cos(ax*(k - 1)) - bx^4*cos(ax)*cosh(bx*(k - 1)) +

ax*bx^3*sin(ax)*sinh(bx*(k - 1)) - ax^3*bx*sinh(bx)*sin(ax*(k -

1))))/(ay*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) -

2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N15e4 = ((by*(ay^4*sin(ay*(e - 1)) - ay^4*sin(ay*e)*cosh(by) +

by^4*cosh(by*e)*sin(ay)) + ay*(by^4*sinh(by*(e - 1)) +

ay^4*cos(ay*e)*sinh(by) - by^4*sinh(by*e)*cos(ay)))*(cos(ax*k) + cosh(bx*k) -

cos(ax)*cosh(bx*(k - 1)) - cosh(bx)*cos(ax*(k - 1)) + (ax*sin(ax)*sinh(bx*(k

- 1)))/bx - (bx*sinh(bx)*sin(ax*(k - 1)))/ax))/(ay*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

% Node 16

N16k = -((bx*(ax*cosh(bx)*cos(ax*(k - 1)) - ax*cos(ax*k) +

bx*sin(ax)*sinh(bx*(k - 1))) - ax*(bx*cosh(bx*k) - bx*cos(ax)*cosh(bx*(k -

1)) + ax*sinh(bx)*sin(ax*(k - 1))))*(by*(sin(ay*(e - 1)) + cosh(by*e)*sin(ay)

- sin(ay*e)*cosh(by)) + ay*(sinh(by*(e - 1)) + cos(ay*e)*sinh(by) -

sinh(by*e)*cos(ay))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N16kk = -((by*(sin(ay*(e - 1)) + cosh(by*e)*sin(ay) - sin(ay*e)*cosh(by)) +

ay*(sinh(by*(e - 1)) + cos(ay*e)*sinh(by) -

169

sinh(by*e)*cos(ay)))*(bx*(ax^2*sin(ax*k) - ax^2*cosh(bx)*sin(ax*(k - 1)) +

bx^2*sin(ax)*cosh(bx*(k - 1))) - ax*(bx^2*sinh(bx*k) +

ax^2*sinh(bx)*cos(ax*(k - 1)) - bx^2*cos(ax)*sinh(bx*(k -

1)))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N16e = -((bx*(cosh(bx)*sin(ax*(k - 1)) - sin(ax*k) + sin(ax)*cosh(bx*(k -

1))) + ax*(cos(ax)*sinh(bx*(k - 1)) - sinh(bx*k) + sinh(bx)*cos(ax*(k -

1))))*(by*(ay*cos(ay*(e - 1)) - ay*cos(ay*e)*cosh(by) +

by*sinh(by*e)*sin(ay)) - ay*(by*cosh(by*e)*cos(ay) - by*cosh(by*(e - 1)) +

ay*sin(ay*e)*sinh(by))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N16ee = -((bx*(cosh(bx)*sin(ax*(k - 1)) - sin(ax*k) + sin(ax)*cosh(bx*(k -

1))) + ax*(cos(ax)*sinh(bx*(k - 1)) - sinh(bx*k) + sinh(bx)*cos(ax*(k -

1))))*(by*(ay^2*sin(ay*e)*cosh(by) - ay^2*sin(ay*(e - 1)) +

by^2*cosh(by*e)*sin(ay)) - ay*(ay^2*cos(ay*e)*sinh(by) - by^2*sinh(by*(e -

1)) + by^2*sinh(by*e)*cos(ay))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N16ke = -((bx*(ax*cosh(bx)*cos(ax*(k - 1)) - ax*cos(ax*k) +

bx*sin(ax)*sinh(bx*(k - 1))) - ax*(bx*cosh(bx*k) - bx*cos(ax)*cosh(bx*(k -

1)) + ax*sinh(bx)*sin(ax*(k - 1))))*(by*(ay*cos(ay*(e - 1)) -

ay*cos(ay*e)*cosh(by) + by*sinh(by*e)*sin(ay)) - ay*(by*cosh(by*e)*cos(ay) -

by*cosh(by*(e - 1)) +

ay*sin(ay*e)*sinh(by))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N16k2e = -((by*(ay*cos(ay*(e - 1)) - ay*cos(ay*e)*cosh(by) +

by*sinh(by*e)*sin(ay)) - ay*(by*cosh(by*e)*cos(ay) - by*cosh(by*(e - 1)) +

ay*sin(ay*e)*sinh(by)))*(bx*(ax^2*sin(ax*k) - ax^2*cosh(bx)*sin(ax*(k - 1)) +

bx^2*sin(ax)*cosh(bx*(k - 1))) - ax*(bx^2*sinh(bx*k) +

ax^2*sinh(bx)*cos(ax*(k - 1)) - bx^2*cos(ax)*sinh(bx*(k -

1)))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N16ke2 = -((bx*(ax*cosh(bx)*cos(ax*(k - 1)) - ax*cos(ax*k) +

bx*sin(ax)*sinh(bx*(k - 1))) - ax*(bx*cosh(bx*k) - bx*cos(ax)*cosh(bx*(k -

1)) + ax*sinh(bx)*sin(ax*(k - 1))))*(by*(ay^2*sin(ay*e)*cosh(by) -

ay^2*sin(ay*(e - 1)) + by^2*cosh(by*e)*sin(ay)) - ay*(ay^2*cos(ay*e)*sinh(by)

- by^2*sinh(by*(e - 1)) +

by^2*sinh(by*e)*cos(ay))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N16k2e2 = -((bx*(ax^2*sin(ax*k) - ax^2*cosh(bx)*sin(ax*(k - 1)) +

bx^2*sin(ax)*cosh(bx*(k - 1))) - ax*(bx^2*sinh(bx*k) +

ax^2*sinh(bx)*cos(ax*(k - 1)) - bx^2*cos(ax)*sinh(bx*(k -

1))))*(by*(ay^2*sin(ay*e)*cosh(by) - ay^2*sin(ay*(e - 1)) +

by^2*cosh(by*e)*sin(ay)) - ay*(ay^2*cos(ay*e)*sinh(by) - by^2*sinh(by*(e -

170

1)) + by^2*sinh(by*e)*cos(ay))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N16k3 = -((by*(sin(ay*(e - 1)) + cosh(by*e)*sin(ay) - sin(ay*e)*cosh(by)) +

ay*(sinh(by*(e - 1)) + cos(ay*e)*sinh(by) -

sinh(by*e)*cos(ay)))*(bx*(ax^3*cos(ax*k) - ax^3*cosh(bx)*cos(ax*(k - 1)) +

bx^3*sin(ax)*sinh(bx*(k - 1))) + ax*(bx^3*cos(ax)*cosh(bx*(k - 1)) -

bx^3*cosh(bx*k) + ax^3*sinh(bx)*sin(ax*(k -

1)))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N16e3 = -((bx*(cosh(bx)*sin(ax*(k - 1)) - sin(ax*k) + sin(ax)*cosh(bx*(k -

1))) + ax*(cos(ax)*sinh(bx*(k - 1)) - sinh(bx*k) + sinh(bx)*cos(ax*(k -

1))))*(by*(ay^3*cos(ay*e)*cosh(by) - ay^3*cos(ay*(e - 1)) +

by^3*sinh(by*e)*sin(ay)) + ay*(by^3*cosh(by*(e - 1)) -

by^3*cosh(by*e)*cos(ay) +

ay^3*sin(ay*e)*sinh(by))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

N16k4 = -((by*(sin(ay*(e - 1)) + cosh(by*e)*sin(ay) - sin(ay*e)*cosh(by)) +

ay*(sinh(by*(e - 1)) + cos(ay*e)*sinh(by) -

sinh(by*e)*cos(ay)))*(bx*(ax^4*cosh(bx)*sin(ax*(k - 1)) - ax^4*sin(ax*k) +

bx^4*sin(ax)*cosh(bx*(k - 1))) + ax*(ax^4*sinh(bx)*cos(ax*(k - 1)) -

bx^4*sinh(bx*k) + bx^4*cos(ax)*sinh(bx*(k -

1)))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) + (sin(ax)*sinh(bx)*(ax^2 -

bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) + (sin(ay)*sinh(by)*(ay^2 -

by^2))/(ay*by) - 2));

N16e4 = -((bx*(cosh(bx)*sin(ax*(k - 1)) - sin(ax*k) + sin(ax)*cosh(bx*(k -

1))) + ax*(cos(ax)*sinh(bx*(k - 1)) - sinh(bx*k) + sinh(bx)*cos(ax*(k -

1))))*(by*(ay^4*sin(ay*(e - 1)) - ay^4*sin(ay*e)*cosh(by) +

by^4*cosh(by*e)*sin(ay)) + ay*(by^4*sinh(by*(e - 1)) +

ay^4*cos(ay*e)*sinh(by) -

by^4*sinh(by*e)*cos(ay))))/(ax*ay*bx*by*(2*cos(ax)*cosh(bx) +

(sin(ax)*sinh(bx)*(ax^2 - bx^2))/(ax*bx) - 2)*(2*cos(ay)*cosh(by) +

(sin(ay)*sinh(by)*(ay^2 - by^2))/(ay*by) - 2));

% Shape function and derivative vectors

N = [N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16];

Nt = N';

dk = [N1k N2k N3k N4k N5k N6k N7k N8k N9k N10k N11k N12k N13k N14k N15k

N16k];

dkt = dk';

de = [N1e N2e N3e N4e N5e N6e N7e N8e N9e N10e N11e N12e N13e N14e N15e

N16e];

det = de';

d2k = [N1kk N2kk N3kk N4kk N5kk N6kk N7kk N8kk N9kk N10kk N11kk N12kk N13kk

N14kk N15kk N16kk];

d2kt = d2k';

d2e = [N1ee N2ee N3ee N4ee N5ee N6ee N7ee N8ee N9ee N10ee N11ee N12ee N13ee

N14ee N15ee N16ee];

171

d2et = d2e';

dke = [N1ke N2ke N3ke N4ke N5ke N6ke N7ke N8ke N9ke N10ke N11ke N12ke N13ke

N14ke N15ke N16ke];

dket = dke';

dk2e = [N1k2e N2k2e N3k2e N4k2e N5k2e N6k2e N7k2e N8k2e N9k2e N10k2e N11k2e

N12k2e N13k2e N14k2e N15k2e N16k2e];

dk2et = dk2e';

dke2 = [N1ke2 N2ke2 N3ke2 N4ke2 N5ke2 N6ke2 N7ke2 N8ke2 N9ke2 N10ke2 N11ke2

N12ke2 N13ke2 N14ke2 N15ke2 N16ke2];

dke2t = dke2';

dk3 = [N1k3 N2k3 N3k3 N4k3 N5k3 N6k3 N7k3 N8k3 N9k3 N10k3 N11k3 N12k3 N13k3

N14k3 N15k3 N16k3];

dk3t = dk3';

de3 = [N1e3 N2e3 N3e3 N4e3 N5e3 N6e3 N7e3 N8e3 N9e3 N10e3 N11e3 N12e3 N13e3

N14e3 N15e3 N16e3];

de3t = de3';

dk4 = [N1k4 N2k4 N3k4 N4k4 N5k4 N6k4 N7k4 N8k4 N9k4 N10k4 N11k4 N12k4 N13k4

N14k4 N15k4 N16k4];

dk4t = dk4';

de4 = [N1e4 N2e4 N3e4 N4e4 N5e4 N6e4 N7e4 N8e4 N9e4 N10e4 N11e4 N12e4 N13e4

N14e4 N15e4 N16e4];

de4t = de4';

dk2e2 = [N1k2e2 N2k2e2 N3k2e2 N4k2e2 N5k2e2 N6k2e2 N7k2e2 N8k2e2 N9k2e2

N10k2e2 N11k2e2 N12k2e2 N13k2e2 N14k2e2 N15k2e2 N16k2e2];

dk2e2t = dk2e2';

% Element stiffness contribution from bending moment Mx

x001 = zeros(16);

x001 = dkt*d2k;

x01 = subs (x001,k,1) - subs (x001,k,0);

x1 = int (x01,e,0,1);

g1 = (D*b)/(a^3);

mx1 = g1*x1;

x002 = zeros(16);

x002 = dkt*d2e;

x02 = subs (x002,k,1) - subs (x002,k,0);

x2 = int (x02,e,0,1);

g2 = (D*v)/(a*b);

mx2 = g2*x2;

mx = mx1+mx2;

% Element stiffness contribution from bending moment My

y001 = zeros(16);

y001 = det*d2k;

y01 = subs (y001,e,1) - subs (y001,e,0);

y1 = int (y01,k,0,1);

g3 = (D*v)/(a*b);

my1 = g3*y1;

y002 = zeros(16);

y002 = det*d2e;

172

y02 = subs (y002,e,1) - subs (y002,e,0);

y2 = int (y02,k,0,1);

g4 = (D*a)/(b^3);

my2 = g4*y2;

my = my1+my2;

% Element stiffness contribution from twisting moment Mxy

xy001 = zeros(16);

xy001 = dkt*dke;

xy01 = subs (xy001,e,1) - subs (xy001,e,0);

xy1 = int (xy01,k,0,1);

g5 = (D*(1-v))/(a*b);

mxy1 = g5*xy1;

xy002 = zeros(16);

xy002 = det*dke;

xy02 = subs (xy002,k,1) - subs (xy002,k,0);

xy2 = int (xy02,e,0,1);

g6 = (D*(1-v))/(a*b);

mxy2 = g6*xy2;

mxy = mxy1+mxy2;

% Element stiffness contribution from shear force Qx

sfx001 = zeros(16);

sfx001 = Nt*dk3;

sfx01 = subs (sfx001,k,1) - subs (sfx001,k,0);

sfx1 = int (sfx01,e,0,1);

g7 = -(D*b)/(a^3);

qx1 = g7*sfx1;

sfx002 = zeros(16);

sfx002 = Nt*dke2;

sfx02 = subs (sfx002,k,1) - subs (sfx002,k,0);

sfx2 = int (sfx02,e,0,1);

g8 = -(D)/(a*b);

qx2 = g8*sfx2;

qx = qx1+qx2;

% Element stiffness contribution from shear force Qy

sfy001 = zeros(16);

sfy001 = Nt*de3;

sfy01 = subs (sfy001,e,1) - subs (sfy001,e,0);

sfy1 = int (sfy01,k,0,1);

g9 = -(D*a)/(b^3);

qy1 = g9*sfy1;

sfy002 = zeros(16);

sfy002 = Nt*dk2e;

sfy02 = subs (sfy002,e,1) - subs (sfy002,e,0);

173

sfy2 = int (sfy02,k,0,1);

g10 = -(D)/(a*b);

qy2 = g10*sfy2;

qy = qy1+qy2;

% Residual element stiffness matrices

r001 = zeros(16);

r001 = Nt*dk4;

r01 = int(r001,k,0,1);

r1 = int(r01,e,0,1);

g11 = (D*b)/(a^3);

rg1 = g11*r1;

r002 = zeros(16);

r002 = Nt*dk2e2;

r02 = int(r002,k,0,1);

r2 = int(r02,e,0,1);

g12 = (2*D)/(a*b);

rg2 = g12*r2;

r003 = zeros(16);

r003 = Nt*de4;

r03 = int(r003,k,0,1);

r3 = int(r03,e,0,1);

g13 = (D*a)/(b^3);

rg3 = g13*r3;

rg = rg1+rg2+rg3;

ke = mx+my+mxy+qx+qy+rg;

% Element mass matrix mk

mk001 = zeros(16);

mk001 = Nt*N;

mk01 = int(mk001,k,0,1);

mk1 = int (mk01,e,0,1);

g14 = (a*b*Rho*h*(omg^2));

me = g14*mk1;

ke = mx+my+mxy+qx+qy+rg;

% Global stiffness and mass matrix for single element model

Kg = zeros(16);

Mg = zeros(16);

Kg = ke;

Mg = me;

% Application of S-S-S-S boundary conditions

for i = 1:3:10;

174

Kg(:,i) = [];

Kg(i,:) = [];

Mg(:,i) = [];

Mg(i,:) = [];

end

K = Kg;

M = Mg;

% Eigenvalue problem

DTM = det(K-(omega^2)*M);

% Determination of roots

EQN = @(omega) DTM;
d1 = bisection(EQN,471,785);
d2 = bisection(EQN,785,1099);
d3 = bisection(EQN,1099,1727);
d4 = bisection(EQN,1727,2042);
d5 = bisection(EQN,2042,2356);

% Converting from Radians to Hz

freq_rad = zeros(5,1);
freq_rad(1,1) = d1;
freq_rad(2,1) = d2;
freq_rad(3,1) = d3;
freq_rad(4,1) = d4;
freq_rad(5,1) = d5;

freq_hz = 1/(2*pi())* freq_rad;

freq = floor(freq_hz * 100)/100

function p = bisection(f,a,b)

if f(a)*f(b)>0
 disp('Error! There is no solution between these two input values')
else
 p = (a + b)/2;
 err = abs(f(p));
 while err > 1e-7
 if f(a)*f(p)<0
 b = p;
 else
 a = p;
 end
 p = (a + b)/2;
 err = abs(f(p));
 end
end

175

Appendix C: DCM Solution for a Simply Supported (S-S-S-S) Plate

MATLAB
®

 program flowchart and sample results for the DCM solution

Table 33: MATLAB
®

 program flow chart and sample results for S-S-S-S plate using DCM

Flow Chart Excerpts from MATLAB
®
 Code Equation

Eqs. 31 to 34

Eqs. 39 and 134-137

Eq. 138

Eq. 139

INPUT

 DERIVATIVES OF

SOLUTION

VECTOR

EVALUATING

DERIVATIVES AT

EACH NODE

DCM MATRIX

176

Table 33 continued: MATLAB
®

 program flow chart and sample results for S-S-S-S plate using

DCM

Flow Chart Excerpts from MATLAB
®
 Code Equation

N/A

Eqs. 140

N/A

N/A

BOUNDARY

CONDITIONS

SOLVING

CONVERSION

FROM RADIANS TO

HZ

RESULTS

177

MATLAB
®

 code for a simply supported, thin, homogeneous, rectangular plate analysed

using a single element DCM model

% Dynamic Coefficient Matrix method for a thin, homogeneous, rectangular

plate under S-S-S-S boundary condition
% Toronto, Ontario, Canada, 2019
% Copyright Heenkenda Jayasinghe 2019

syms ax ay bx by xy omega

% Constants

Rho = 7800;
F = 200e9;
h = 0.004;
v = 0.3;
D = (F*(h^3))/(12*(1-(v^2)));

c1 = 0.6;
c2 = 0.4;
ax = abs(sqrt(-1)*(sqrt(c1*omega*sqrt(Rho*h/D))));
ay = abs(sqrt(-1)*(sqrt(c2*omega*sqrt(Rho*h/D))));
bx = (sqrt(c1*omega*sqrt(Rho*h/D)));
by = (sqrt(c2*omega*sqrt(Rho*h/D)));

% Solution vector

G = zeros(1,16);
G = [sin(ax*x)*sin(ay*y) sin(ax*x)*cos(ay*y) sin(ax*x)*sinh(by*y)

sin(ax*x)*cosh(by*y) cos(ax*x)*sin(ay*y) cos(ax*x)*cos(ay*y)

cos(ax*x)*sinh(by*y) cos(ax*x)*cosh(by*y) sinh(bx*x)*sin(ay*y)

sinh(bx*x)*cos(ay*y) sinh(bx*x)*sinh(by*y) sinh(bx*x)*cosh(by*y)

cosh(bx*x)*sin(ay*y) cosh(bx*x)*cos(ay*y) cosh(bx*x)*sinh(by*y)

cosh(bx*x)*cosh(by*y)];

% Vector of unknown coefficients

E = zeros(16,1);
E = [E11
 E12
 E13
 E14
 E21
 E22
 E23
 E24
 E31
 E32
 E33
 E34
 E41
 E42
 E43
 E44];

178

% Displacement amplitude

diam = zeros(16,1);
diam = [w1
 tx1
 ty1
 txy1
 w2
 tx2
 ty2
 txy2
 w3
 tx3
 ty3
 txy3
 w4
 tx4
 ty4
 txy4];

% Derivation with respect to x, y and xy

thetax = zeros(1,16);
thetay = zeros(1,16);
thetaxy = zeros(1,16);

thetax = diff(G,x,1);
thetay = diff(G,y,1);
thetaxy = diff(thetax,y,1);
% Evaluation at node 1

Ln11 = subs(G,x,0)
L11 = subs(Ln11,y,0)

Ln12 = subs(thetax,x,0)
L12 = subs(Ln12,y,0)

Ln13 = subs(thetay,x,0)
L13 = subs(Ln13,y,0)

Ln14 = subs(thetaxy,x,0)
L14 = subs(Ln14,y,0)

% Evaluation at node 2

Ln21 = subs(G,x,0.6)
L21 = subs(Ln21,y,0)

Ln22 = subs(thetax,x,0.6)
L22 = subs(Ln22,y,0)

Ln23 = subs(thetay,x,0.6)

179

L23 = subs(Ln23,y,0)

Ln24 = subs(thetaxy,x,0.6)
L24 = subs(Ln24,y,0)

% Evaluation at node 3

Ln31 = subs(G,x,0.6)
L31 = subs(Ln31,y,0.4)

Ln32 = subs(thetax,x,0.6)
L32 = subs(Ln32,y,0.4)

Ln33 = subs(thetay,x,0.6)
L33 = subs(Ln33,y,0.4)

Ln34 = subs(thetaxy,x,0.6)
L34 = subs(Ln34,y,0.4)

% Evaluation at node 4

Ln41 = subs(G,x,0)
L41 = subs(Ln41,y,0.4)

Ln42 = subs(thetax,x,0)
L42 = subs(Ln42,y,0.4)

Ln43 = subs(thetay,x,0)
L43 = subs(Ln43,y,0.4)
Ln44 = subs(thetaxy,x,0)
L44 = subs(Ln44,y,0.4)

% Solution matrix

Tg = zeros(16);

Tg = [L11
 L12
 L13
 L14
 L21
 L22
 L23
 L24
 L31
 L32
 L33
 L34
 L41
 L42
 L43
 L44];

180

% Application of S-S-S-S boundary conditions

for i = 1:3:10;

Tg(:,i) = [];
Tg(i,:) = [];

end

T = Tg;

% Solving for natural frequencies

detT = det(T);
EQN = @(omega) detT;
d1 = bisection(EQN,471,785);
d2 = bisection(EQN,785,1099);
d3 = bisection(EQN,1099,1727);
d4 = bisection(EQN,1727,2042);
d5 = bisection(EQN,2042,2356);

% Converting from Radians to Hz

freq_rad = zeros(5,1);
freq_rad(1,1) = d1;
freq_rad(2,1) = d2;
freq_rad(3,1) = d3;
freq_rad(4,1) = d4;
freq_rad(5,1) = d5;

freq_hz = 1/(2*pi())* freq_rad

freq = floor(freq_hz * 100)/100

function p = bisection(f,a,b)

if f(a)*f(b)>0
 disp('Error! There is no solution between these two input values')
else
 p = (a + b)/2;
 err = abs(f(p));
 while err > 1e-7
 if f(a)*f(p)<0
 b = p;
 else
 a = p;
 end
 p = (a + b)/2;
 err = abs(f(p));
 end
end

181

REFERENCES

1. E. F. F. Chladni. (1802). Die Akustik, Leipzig.

2. A. W. Leissa. (1969). NASA SP-169. Vibration of Plates. Washington, D.C.: Office of

Technology Utilization.

3. W. Leissa. (1977). Recent research in plate vibrations: classical theory. The Shock and

Vibration Digest. 9(10), 13–24.

4. W. Leissa. (1977). Recent research in plate vibrations: complicating effects. The Shock

and Vibration Digest. 9(11), 21–35.

5. W. Leissa. (1981). Plate vibration research, 1976–1980: classical theory. The Shock and

Vibration Digest. 13(9), 11–22.

6. W. Leissa. (1981). Plate vibration research, 1976–1980: complicating effects. The Shock

and Vibration Digest. 13(10), 19–36.

7. W. Leissa. (1987). Recent research in plate vibrations, 1981–1985, Part II: complicating

effects. The Shock and Vibration Digest. 19(3), 10–24.

8. W. Bert. (1976). Dynamics of composite and sandwich panels, Parts I and II. The Shock

and Vibration Digest. 8(11), 15–24.

9. W. Bert. (1979). Recent research in composite and sandwich plate dynamics. The Shock

and Vibration Digest. 11(10), 13–23.

10. W. Bert. (1982). Research on dynamics of composite and sandwich plates. The Shock

and Vibration Digest. 14(10), 17–34.

11. W. Bert. (1985). Research on dynamic behavior of composite and sandwich plates, part

IV. The Shock and Vibration Digest. 17(11), 3–25.

12. W. Bert. (1991). Research on dynamic behavior of composite and sandwich plates, V:

part I. The Shock and Vibration Digest. 23(6), 3–14.

13. W. Bert. (1991). Research on dynamic behavior of composite and sandwich plates, V:

part II. The Shock and Vibration Digest. 23(7), 9–21.

14. J. N. Reddy. (1985). A review of the literature on finite-element modelling of laminated

composite plates and shells. The Shock and Vibration Digest. 17(4), 3–8.

182

15. R. K. Kapania and S. Raciti. (1989). Recent advances in analysis of laminated beams and

plates, part II: vibrations and wave propagation. American Institute of Aeronautics and

Astronautics Journal. 27, 935–946.

16. S. Timoshenko and S. Woinowsky-Krieger. (1959). Theory of Plates and Shells.

McGraw-Hill. New York.

17. S.G. Lekhnitkii. (1968). Anisotropic plates. Gordon and Breach Science Publishers, New

York.

18. J.R. Vinson and R.L. Sierakowski. (1986).The Behavior of Structures Composed of

Composite Materials, Martinus Nijhoff Publishers, Boston, Massachusetts.

19. J.E. Ashton and J.M. Whitney. (1970). Theory of Laminated Plates, Technomic

Publishing Company Inc. Stamford, Connecticut.

20. E. Reissner. (1945). "The Effect of Transverse Shear Deformation on the Bending of

Elastic Plates,‖ Journal of Applied Mechanics, 12, 69-77(1945).

21. R.D. Mindlin. (1951). "Influence of Rotatory Inertia and Shear on Flexural Motions of

Isotropic Elastic Plates," Journal of Applied Mechanics, 18, 31-38.

22. H. Reismann. (1988). Elastic Plates. John Wiley & Sons Inc. New York.

23. G. Bergan and X. Wang. (1984). Quadrilateral plate bending elements with shear

deformations. Computers and Structures. 19, 25–34.

24. J. M. Whitney and N. J. Pagano. (1970). American Society of Mechanical Engineers

Journal of Applied Mechanics. 37, 1031–1036.

25. P. C. Yang, C. H. Norris and Y. Stavsky. (1966). Elastic wave propagation in

heterogeneous plates. International Journal of Solids and Structures. 2, 665–684.

26. J.N. Reddy. (1984). A Simple Higher-Order Theory for Laminated Composite Plates.

Journal of Applied Mechanics, 45, 745-752(1984).

27. A.V. Krishnamurthy. (1987). Flexure of Composite Plates. Composite Structure. 7, 161-

177.

28. R. B. Nelson and D. R. Lorch. (1974). A refined theory for laminated orthotropic

plates. American Society of Mechanical Engineers Journal of Applied Mechanics. 41,

177–183.

183

29. K. H. Lo, R. M. Christensen and E. M. Wu. (1977). A higher-order theory of plate

deformation, part 1: homogeneous plates/part 2: laminated plates. Transactions of the

American Society of Mechanical Engineers, Journal of Applied Mechanics. 44, 663–

676.

30. M. Levinson. (1980). An accurate simple theory of the statics and dynamics of elastic

plates. Mechanics Research Communications. 7, 343–350.

31. M. V. V. Murthy. (1981). An improved transverse shear deformation theory for

laminated anisotropic plate. NASA Technical Paper 1903.

32. J. L. Doong, C. Lee and C. P. Fung. (1991). Vibration and stability of laminated plates

based on a modified plate theory. Journal of Sound and Vibration. 151, 193–201.

33. J.N. Reddy and N.D. Phan. (1985). Stability and Vibration of Isotropic, Orthotropic and

Laminated Plates according to a Higher Order Shear Deformation Theory. Journal of

Sound and Vibration. 98, 157-170.

34. N.R. Senthilnathan, S.P. Lim, K.H. Lee and S.T. Chow. (1988). Vibration of Laminated

Orthotropic Plates Using a Simplified Higher-Order Deformation Theory. Composite

Structures. 10, 211-229.

35. C.W. Bert and T.L. Chen. (1978). Effect of Shear Deformation on Vibration of

Antisymmetric Angle-Ply Laminated Rectangular Plates," Int. Journal of Solids and

Structures. 14, 465-473.

36. I.D. Kaplevatsky and V.O. Shestopal. (1982). "Bending and Buckling of Multilayer Thin

Plates. Acta Mechanica. 43, 169-176.

37. Ji-Liang Doong, Tsyr-Jang Chen and Lien-Wen Chen. (1987). Vibration and Stability of

an Initially Stressed Laminated Plate Based on a Higher Order Deformation Theory.

Composite Structures. 7, 285-310.

38. C.W. Bert. (1977). Optimal Design of a Composite-Material Plate to Maximize Its

Fundamental Frequency. Journal of Sound and Vibration. 50, 229-237.

39. S. Adali. (1984).Design of Shear-Deformable Antisymmetric Angle-Ply Laminates to

Maximize the Fundamental Frequency and Frequency Separation. Composite Structures.

2,349-369.

184

40. M. Levy. (1899). Sur L'equilibre elasticque d'une Plaque Rectangulaire. C.R. Acad.

Science. 129, 535-539.

41. S. Timoshenko and J.M. Gere. (1961). Theory of Elastic Stability, McGraw-Hill

Publishing Company, New York.

42. P.S. Bulson. (1970). The Stability of Flat Plate, Chatto & Windus Limited. London.

43. J.N. Reddy, A.A. Khdeir and L. Librescu. (1987). Levy Type Solutions for

Symmetrically Laminated Rectangular Plates Using the First Order Shear Deformation

Theory. Journal of Applied Mechanics. 54, 741-742.

44. A.A. Khdeir. (1988). Free Vibration and Buckling of Symmetric Cross-Ply Laminated

Plates by an Exact Method. Journal of Sound and Vibration. 126, 447-461.

45. R.F. Palardy and A.N. Palazotto. (1990). Buckling and Vibration of Composite Plates

Using the Levy Method. Composite Structures. 14, 61-86.

46. A.A. Khdeir. (1988). Free Vibration of Antisymmetric Angle-Ply Laminated Plates

Including Various Boundary Conditions. Journal of Sound and Vibration. 122, 377-388.

47. A.A. Khdeir. (1989). Free Vibration and Buckling of Unsymmetric Cross-Ply Laminated

Plates Using a Refined Theory. Journal of Sound and Vibration. 128, 377-395.

48. J.N. Reddy and A.A. Khedir. (1989). Buckling and vibration of laminated composite

plates using various plate theories. American Institute of Aeronautics and Astronautics

Journal. 27, 1808–1817.

49. D.J. Gorman. (1982). Free Vibration Analysis of Rectangular Plates. Elsevier/North-

Holland, New York.

50. D.J. Gorman. (1983). A Highly Accurate Analytical Solution for Free Vibration Analysis

of Simply Supported Right Triangular Plates. Journal of Sound and Vibration. 89, 107-

118.

51. H.T. Saliba. (1986). Free Vibration Analysis of Non-Rectangular Quadrilateral Plates.

Ph.D. Thesis, University of Ottawa.

52. H.T. Saliba. (1988). Transverse Free Vibration of Fully Clamped Symmetrical

Trapezoidal Plates. Journal of Sound and Vibration. 126, 237-247.

53. D.J. Gorman. (1990). Accurate Free Vibration Analysis of Clamped Orthotropic Plates

by the Method of Superposition. Journal of Sound and Vibration. 140(3), 391-411.

185

54. S.D. Yu and W.L. Cleghorn. (1991). Study of Free Vibration of Orthotropic Rectangular

Plates. Proceedings of the 19th CANCAM Conference, Winnipeg, Manitoba. 1, 318-319.

55. S.D. Yu and W.L. Cleghorn. (1993). Generic Free Vibration of Orthotropic Rectangular

Plates with Combinations of Clamped and Simply Supported Edges. Journal of Sound

and Vibration.163 (3), 439-450.

56. S.D. Yu and W.L. Cleghorn. (1991). Free Vibration Analysis of Clamped Orthotropic

Rectangular Plates Subjected to Constant In-Plane Loads. Presented at 4SME Pressure

Vessels and Piping Conference, San Diego, California. Published in Piping Components

Analysis: Piping and Structural Dynamics, PVP-Vol. 218, 113-119.

57. S.D. Yu and W.L. Cleghorn. (1992). Generic Buckling Analysis of Orthotropic Plates

with Clamped and Simply Supported Edges. Proceedings of the Second International

Congress on Recent Developments in Air-& Structure- Bourne Sound and Vibration.

Auburn University, Auburn, AL, 729-736, 1992.

58. W.L. Cleghorn and S.D. Yu. (1992). Analysis of Buckling of Rectangular Plates Using

the Method of Superposition. Transactions of GSME. 16(2), 185-199.

59. W.L. Cleghorn and S.D. Yu. (1991). Effect of Shear Deformation on Free Vibration of

Rectangular Plates. Presented at ASME Biennial Conference on Mechanical Vibration &

Noise, Miami, Florida. Published in Machinery Dynamics and Element Vibrations, Del-

Vol.36. 185-191.

60. S.D. Yu and W.L. Cleghorn. (1992). Accurate Free Vibration Analysis of Clamped

Mindlin Plates Using the Method of Superposition. Proceedings of the11th Symposium

on EAM. 226-230.

61. W.L. Cleghorn and S.D. Yu. (1992). Accurate Analysis of Free Vibration of Rectangular

Mindlin Plates with Clamped and Simply Supported Edges. Presented at HSTAM,

National Technical University of Athens, Greece.

62. S.D. Yu. W.L. Cleghorn, and R.G. Fenton. (1993). Buckling of Clamped Rectangular

Mindlin Plates. Proceedings of CANCAM. 465-466.

63. S.D. Yu and W.L. Cleghorn. (1993). Accurate Free Vibration Analysis of Rectangular

Mindlin Plates Using the Method of Superposition. Transactions of CSME. 17(2), 243-

255.

186

64. S.D. Yu, W.L. Cleghorn, R.G. Fenton. (1994). Accurate Analysis of Free Vibration

and Buckling of Clamped Symmetric Cross-Ply Laminates. AIAA Journal. 32(11), 2300-

2308.

65. Y. Mochida and S. Ilanko. (2008). Bounded natural frequencies of completely free

rectangular plates. Journal of Sound and Vibration. 311, pp. 1–8.

66. S. Ilanko. (2006). On the bounds of Gorman‘s Superposition method of free vibration

analysis. Journal of Sound Vibration. 294, pp. 418–420.

67. M. Boscolo and J. R. Banerjee, ‗Dynamic stiffness formulation for plates using first order

shear deformation theory‘, presented at the 51st AIAA/ASME/ASCE/AHS/ASC

Structures, Structural Dynamics, and Materials Conference, Orlando, Florida, 12 - 15

April 2010.

68. M. Boscolo and J. R. Banerjee. (2011). Dynamic stiffness method for exact inplane free

vibration analysis of plates and plate assemblies. Journal of Sound and Vibration. 330

(12), 2928-2936.

69. M. Boscolo and J. R. Banerjee. (2012). Dynamic stiffness formulation for composite

Mindlin plates for exact modal analysis of structures. Part I: Theory. Computers &

Structures. 96-97, 61-73.

70. M. Boscolo and J. R. Banerjee. (2012). Dynamic stiffness formulation for composite

Mindlin plates for exact modal analysis of structures. Part II: Results and applications.

Computers & Structures. 96-97, 74-83.

71. F.A. Fazzolari, J. R. Banerjee and M. Boscolo. (2013). Buckling of composite plate

assemblies using higher order shear deformation theory—An exact method of solution.

Thin-Walled Structures. 71, 18-34.

72. F.A. Fazzolari, M. Boscolo and J. R. Banerjee. (2013). An exact dynamic stiffness

element using a higher order shear deformation theory for free vibration analysis of

composite plate assemblies. Composite Structures. 96, 262-278.

73. M. Boscolo and J.R. Banerjee. (2014). Layer-wise dynamic stiffness solution for free

vibration analysis of laminated composite plate. Journal of Sound and Vibration. 333(16),

200-227.

187

74. A. Pagani et al. (2014). Free vibration analysis of composite plates by higher-order 1D

dynamic stiffness elements and experiments. Composite Structures. 118, 654-663.

75. J.R. Banerjee et al. (2015). Dynamic stiffness matrix of a rectangular plate for the general

case. Journal of Sound and Vibration. 342, 177-199.

76. X. Liu and J. R. Banerjee. (2015). An exact spectral-dynamic stiffness method for free

flexural vibration analysis of orthotropic composite plate assemblies – Part I: Theory.

Composite Structures. 132, 1274-1287.

77. X. Liu and J. R. Banerjee. (2015). An exact spectral-dynamic stiffness method for free

flexural vibration analysis of orthotropic composite plate assemblies – Part II:

Applications. Composite Structures. 132, 1288-1302.

78. X. Liu and J. R. Banerjee. (2016). Free vibration analysis for plates with arbitrary

boundary conditions using a novel spectral-dynamic stiffness method. Computers &

Structures. 164, 108-126.

79. E. J. Ruggiero. (2005). Modelling and control of SPIDER satellite components. PhD

thesis. Virginia Polytechnic Institute and State University (USA)

80. P. Cawley and R. D. Adams. (1978). The predicted and experimental natural modes of

free–free cfrp plates. Journal of Composite Materials. 12, 336– 347.

81. J. N. Reddy. (1979). Free vibration of antisymmetric, angle-ply laminated plates

including transverse shear deformation by the finite element method. Journal of Sound

and Vibration. 66, 565–576.

82. W. Bert, J. N. Reddy, W. C. Chao and V. S. Reddy. (1981). Vibration of thick rectangular

plates of bimodulus composite materials. Transactions of the American Society of

Mechanical Engineers, Journal of Applied Mechanics. 48, 371–376.

83. J.N. Reddy. (1982). Large amplitude flexural vibration of layered composite plates with

cut-outs. Journal of Sound and Vibration. 83, 1–10.

84. J.N. Reddy and T. Kuppusamy. (1984). Natural vibration of laminated anisotropic

plates. Journal of Sound and Vibration. 94, 63–69.

85. Y.V.K.S. Rao and G. Singh. (1986). Vibration of corner supported thick composite

plates. Journal of Sound and Vibration. 111, 510–514.

188

86. C. N. Chang and F. K. Chiang. (1988). Vibration analysis of a thick plate with an interior

cut-out by a finite element method. Journal of Sound and Vibration. 125, 477–486.

87. L. C. Shiau and J. T. Chang. (1991). Transverse shear effect on vibration of laminated

plate using higher-order plate element. Computers and Structures. 39, 735–740.

88. M. Ganapathi, T. K. Vardan and B. S. Sarma. (1991). Nonlinear flexural vibrations of

laminated orthotropic plates. Computers and Structures. 39, 685–688.

89. Y. K. Cheung and W. L. Kwok. (1975). Dynamic analysis of circular and sector thick,

layered plates. Journal of Sound and Vibration. 42, 147–158.

90. L. W. Chen and C. C. Chen. (1989). Asymmetric vibration and dynamic stability of bi-

modulus thick annular plates. Computers and Structures. 31, 1013–1022.

91. J. Vivoli. (1972). Vibrations de plaques et potentiels de couches. Acustica. 26, 305-314.

92. J. Vivoli and P. Filipi. (1974). Eigenfrequencies of thin plates and layer potentials. The

Journal of Acoustical Society of America. 55, 562.

93. Y. Niwa et al. (1982). Determination of eigenvalues by boundary element methods.

Developments in boundary element methods, Vol. 2. Applied Science Publishers, Chap 7.

94. G. I. K. Wong and J. R. Hutchinson. (1981). An improved boundary element method for

plate vibrations. Proceedings of the 3
rd

 International Seminar on Boundary Element

Method. Irvine, California. Springer – Verlag.

95. G. Bezine. (1980). A mixed boundary integral – finite element approach to plate vibration

problems. Mechanics Research Communications.7, 141-150.

96. D. Nardini and C. A. Brebbia. (1982). A new approach to free vibration analysis using

boundary elements. Proceedings of the 4
th

 International Conference on BEM.

Southampton, England. Springer – Verlag, Berlin. pp. 313-326.

97. A. Kanarachos and Ch. Provatidis. (1987). Performance of mass matrices for the BEM

dynamic analysis of wave propagation problems. Computational Methods of Applied

Mechanical Engineering 63, 155–165.

98. S. Ahmad and P.K. Banerjee. (1986). Free vibration analysis using BEM particular

integrals. Journal of Engineering Mechanical ASCE 112, 682–695.

189

99. T.W. Davies and F.A.Moslehy. (1994). Modal analysis of plates using the dual

reciprocity boundary element method. Engineering of Analysis Boundary Elements. 14,

357–362.

100. Y. K. Cheung and S. Chakrabarti. (1972). Free vibration of thick, layered rectangular

plates by a finite layer method. Journal of Sound and Vibration. 21, 277–284.

101. W. L. Kwok and Y. K. Cheung. (1974). Analyses of circular and annular laminated thick

plates. Proceedings of the International Conference on Finite Element Methods in

Engineering, University of New South Wales, Sydney.

102. J. Dawe. (1978). Finite strip models for vibration of Mindlin plates. Journal of Sound and

Vibration. 59, 441–452.

103. L. Roufaeil and D. J. Dawe. (1980). Vibration analyses of rectangular plates by the finite

strip method. Computers and Structures. 12, 833–842.

104. M. S. Cheung and M. Y. T. Chan. (1981). Static and dynamic analysis of thin and

thick sectorial plates by the finite strip method. Computers and Structures. 14, 79–88.

105. T. Mizusawa. (1991). Vibration of thick annular sector plates using semi-numerical

methods. Journal of Sound and Vibration. 150, 245–259.

106. T. Mizusawa. (1993). Vibration of rectangular Mindlin plates with tapered thickness by

the spline strip method. Computers and Structures. 46, 451–463.

107. S. M. Hashemi. (1998). Free-vibrational analysis of rotating beam-like structures: A

dynamic finite element approach. PhD thesis. Laval University (Canada).

108. S.M. Hashemi and J.M. Richard. (2000). A DFE method for free vibrations of bending –

torsion coupled beams. Aerospace Science and Technology. 4, 41 – 55.

109. S.M. Hashemi and A. Roach. (2010). A Dynamic Finite Element for the Free Vibration

Analysis of Extension-Torsion Coupled Composite Beams. Mathematics in Engineering,

Science and Aerospace (MESA), The Transdisciplinary International Journal. 1(3), 221 –

239.

110. S.M. Hashemi and E.J. Adique. (2010). A Quasi–Exact Dynamic Finite Element for Free

Vibration Analysis of Sandwich Beams. Applied Composite Materials.17, 259 – 269.

190

111. S. Borneman and S.M. Hashemi. (2004). Dynamic Finite Element (DFE) Formulation for

the Free Vibration Analysis of Laminated Composite Wing– Beams. Journal of Sound

and Vibration.

112. S.M. Hashemi and D. Pereira. (2007). A Meshless Dynamic Finite Element for Beam

Vibrations including Rotary Inertia. Proceedings of the 7th International Conference on

Computational Structures Technology. Stirlingshire, UK: Civil – Comp Press. Paper 127.

113. S.M. Hashemi and M.J. Richard. (2000). Free vibrational analysis of axially loaded

bending–torsion coupled beams: a dynamic finite element. Computers and Structures.77,

711 – 24.

114. H. Jayasinghe, T. Kashani, and S.M. Hashemi. Coupled Flexural–Torsional Free

Vibration Analysis of Pre-Loaded Beams- A Dynamic Finite Element Method.

Proceedings of the 3rd International Conference of Acoustics and Vibration, ISAV 2013,

Tehran, Iran.

115. T. Kashani, H. Jayasinghe, S.M. Hashemi. Stability Analysis of Beams Subjected to

Axial Load and End Moment- A Dynamic Finite Element. Proceedings of the 3rd

International Conference of Acoustics and Vibration, ISAV 2013, Tehran, Iran.

116. K. F. Graff. (1991). Wave Motion in Elastic Solids. Dover Publications Inc. New York.

117. K. H. Huebner et al. (2001). The Finite Element Method for Engineers. John Wiley &

Sons Inc. New York.

118. A. W. Leissa. (1973). The Free Vibration of Rectangular Plates. Journal of Sound and

Vibration. 31(3), 257-293.

119. E. Ventsel and T. Krauthammer. (2001). Thin Plates and Shells: Theory, Analysis and

Applications, Marcel Dekker Inc., New York, NY.

120. Irvine, T., Thin Plate Vibration – Rectangular Elements. Retrieved from

www.vibrationdata.com. Last Accessed 20
th

 October 2018.

