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ABSTRACT

The Dynamic Finite Element (DFE) method is a well-established superconvergent semi-
analytical method that has been used in the past to investigate the vibration behaviour of various
beam-structures. Considered as a viable alternative to conventional FEM for preliminary stage
modal analysis, the DFE method has consistently proven that it is capable of producing highly
accurate results with a very coarse mesh; a feature that is attributed to the fact that the DFE
method uses trigonometric, frequency-dependant shape functions that are based on the exact
solution to the governing differential equation as opposed to the polynomial shape functions used
in conventional FEM. In the past many researchers have contributed towards building a
comprehensive library of DFE models for various line structural elements and configurations,
which would serve as the building blocks that would help the DFE method evolve into a full-
fledged, versatile tool like conventional FEM in the future. However, thus far a DFE
formulation has not been developed for plate problems. Therefore, in this thesis an effort has
been made for the first time to develop a DFE formulation for the realm of two-dimensional
structural problems by formulating a Quasi-Exact Dynamic Finite Element (QDFE) solution to
investigate the free vibration behaviour of thin single- and multi-layered, rectangular plates. As a
starting point for this work, Hamiltonian mechanics and the Classical Plate Theory (CPT) are
used to develop the governing differential equation for thin plates. Subsequently, a unique quasi-
exact solution to the governing equation is sought by following a distinct procedure that, to the
best of the author’s knowledge, has never been presented before. Through this procedure, the
characteristic equation is re-arranged as the sum of two beam-like expressions and then solved
for by applying the quadratic formula. The resulting quasi-exact roots are then exploited to form

the trigonometric basis functions, which in turn are used to derive the frequency-dependant shape



functions; the characteristic feature of the QDFE method. Once developed, the new QDFE
technique is applied to determine the vibration behaviour of thin, isotropic, linearly elastic,
rectangular, homogenous plates. Subsequently, it is also employed to formulate a Simplified
Layerwise Quasi-Exact Dynamic Finite Element solution for the free vibration of thin,
rectangular multilayered plates. In addition, the quasi-exact solution to the plate equation is also
utilised to develop a Dynamic Coefficient Matrix (DCM) method to investigate the vibrational
characteristics of thin, rectangular, homogeneous plates and thin, rectangular, multilayered
plates. The Method of Homogenization is used as an alternative procedure to validate the results
from the Simplified Layerwise Quasi-Exact Dynamic Finite Element method and the Simplified
Layerwise Dynamic Coefficient Matrix method. The results from both the QDFE and DCM
methods are, in general, verified for accuracy against the exact results existing in the open
literature and those produced by two in-house developed conventional FEM codes and/or
ANSYS® software.



ACKNOWLEDGEMENT

This thesis would not have been possible without the continuous support, guidance and
encouragement of Prof. Seyed M. Hashemi, whose extensive knowledge and experience in the

areas of Conventional and Dynamic Finite Elements, and Vibration was instrumental.

I would also like to thank Ryerson University for the numerous scholarships and awards
bestowed upon me such as the Ryerson Graduate Scholarship (RGS), Ryerson Graduate Award
(RGA), Aerospace Engineering Graduate Students Research Excellence Award (AGSREA) and
Aerospace Engineering Graduate Students Research Support (AGSRS). My sincere thanks also
go to the Government of Ontario for providing me with the Ontario Graduate Scholarship twice

consecutively.

| would also like to thank my parents Gamini and Samadara for the tremendous love and support

they have provided throughout this journey.

Special thanks go to my loving spouse Thilini, whose unwavering love, caring, understanding

and patience has made this thesis a reality.

Last but not the least, my thanks also go to my siblings Amanda and Kusal for their constant

encouragement.



Dedicated to my parents Gamini and Samadara and my loving spouse Thilini



TABLE OF CONTENTS

LIST OF TABLES ... cuttitteitteit ettt etttk b et b b e e b e bttt e b e e nneenne s viii
LIST OF FIGURES ...ttt et r e sre e e sne e X
LIST OF APPENDICES ....ccutiuteteteteseste sttt sttt b bbbt b bbbttt b bt b e b n e an e Xiii
INOMENCLATURE ...tttk bbbtk h et bbb bt e bt bttt b ettt n e b Xiv
1. INTRODUCTION. ...ttt tese sttt bbbkttt bbbttt 1
L1 OVEBIVIBW ..ttt bbbt bbbt bt r et b e bt r e 1
1.2 GOVEINING THEOFIES. ....eciiiie ettt sttt e e et e e re e s beebeeneesreesneenee e 2
1.3 Methods of Vibration ANAlYSIS ........c.coveiiiiiiice e 4
1.4 ReSEarch MOLIVALIONS. ........ciiiiiiiiieici e 14
1.5  Key Objectives and Methodology .........ccccoieiiiiiiiiiieiee e 14
1.6 Analysis Approach and LImItationS..........cccooiiiiiiiiiiiiie e 16
1.7 THeSIS OFQaniZALION .........cciiiiieieieiee sttt bbbttt b bbb 21
2. THEORETICAL BACKGROUND......c.utiiiiieieiiriesiee et nnes 23
2.1  Development of Governing Differential EQUAtiON...........ccooiiiiiiiiinieicee e 23
2.2 A Quasi-Exact Solution for the Thin Plate EQUatioN ............ccoceiiiiiiniieiieee e 30
2.3 New Trigonometric, Frequency-Dependant Basis and Shape Functions...............c.......... 37
3. FREE VIBRATION OF A RECTANGULAR HOMOGENEOUS PLATE ......ocviiiiiiiiiciiicecseesieen 44
3.1  Conventional Finite Element Method (FEM) ........c.coo i 44
3.1.1 Finite Element Analysis with 12-DOF Rectangular Element ...............cccccooiiiiviininenne. 45
3.1.2 Finite Element Analysis with 16 — DOF Rectangular Element ............c.cccccovveiiieiiiiinnnns 54
3.2 Quasi-Exact Dynamic Finite Element Method (QDFE) .......ccccoviiiiiiiiiciec e 59
3.3 Dynamic Coefficient Matrix Method (DCM) .......cccccuiiiieiiiiiie e 66
3.4 Numerical ReSults and DISCUSSION...........cciiiiiiiiiiieieie ettt 69

Vi



4, FREE VIBRATION OF A RECTANGULAR MULTILAYER PLATE ......cviiiiiiiiiie et 83

4.1  Method of HOMOQENIZALION ......c.veivieiecc e 83
4.2 Simplistic Layerwise Conventional Finite Element Method ...........ccccccoviveiiiiiiicciecee, 84
4.3  Simplistic Layerwise Quasi-Exact Dynamic Finite Element Method .............ccccccoveneee. 88
4.4  Simplistic Layerwise Quasi-Exact Dynamic Coefficient Matrix Method......................... 94
4.5  Numerical Results and DISCUSSION........ccuerueriiriiriiiinieeieiee et 96
o. VIBRATION BEHAVIOUR OF AN AIRCRAFT CABIN WINDOW BAY .......cccovviiiiiiiiiiiiee 102
5.1  Quasi-Exact Dynamic Finite Element Analysis of Cabin Window Bay Sections.......... 102
5.2  Time Verification for the Quasi-Exact Dynamic Finite Element Method...................... 116
6. CONCLUDING REMARKS. .....cettiitiitieiti ettt b et abe b nneen e 119
TN A Y/ [0 1] TSSOSO 119
6.2 KeY CONIDULIONS .....cviiiiiic ittt e re e re e e 121
6.3  IMPACt Of RESEAICN.......cciiiiiii e re e 122
6.4  Recommendations for FUtUre WOrK...........ccooiiiiiiiiiicee e 123
6.5  LiSt OF PUDIICALIONS ....c.viviiiiiieiiee e 124
AAPPENDICES ...ttt sttt h bbb et R et b b 127
Appendix A: Trigonometric, Frequency Dependant DFE Shape Functions .............cccccceevvenee 127
Appendix B: QDFE Solution for a Simply Supported (S-S-S-S) Plate ..o 136
Appendix C: DCM Solution for a Simply Supported (S-S-S-S) Plate ..........ccooeveiiiiieniiinns 175
REFERENCES ......eeeteeitee ettt ettt ekt me e e e m e et e nm e s e e m e e e e e nmeeanneenneennneens 181

vii



LIST OF TABLES

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24:
Table 25:
Table 26:
Table 27:
Table 28:
Table 29:

Trigonometric basis functions for thin plate............ccooveiiiiiiii s 37
Comparison of 12-DOF FEM and 16-DOF FEM results with ANSYS® simulation..... 72
Natural frequencies for a homogeneous Steel plate with C-F-F-F B.C.............cccccuvene. 77
Natural frequencies for a homogeneous Steel plate with C-C-F-F B.C. ............ccccvvene. 77
Natural frequencies for a homogeneous Steel plate with C-F-C-F B.C. ........c.cccceevenene 77
Natural frequencies for a homogeneous Steel plate with C-C-C-F B.C.........ccccceveenne 78
Natural frequencies for a homogeneous Steel plate with C-C-C-C B.C. ........ccccevvenene 78
Natural frequencies for a homogeneous Steel plate with C-C-C-SB.C..........cccceeuvnee 78
Natural frequencies for a homogeneous Steel plate with C-C-S-SB.C. ........ccccccevvvenene 79
Natural frequencies for a homogeneous Steel plate with S-C-S-C B.C. .........c.cc....... 79
Natural frequencies for a homogeneous Steel plate with S-F-S-F B.C. ..........cccce....... 79
Natural frequencies for a homogeneous Steel plate with S-S-S-F B.C. .............c......... 80
Natural frequencies for a homogeneous Steel plate with S-S-S-SB.C. ...........ccccueveee. 80
Comparison of 16-DOF layerwise FEM results with ANSYS® simulation.................. 96
Natural frequencies for a multilayered Al-St plate with C-F-F-FB.C.........c..ccccvvnee. 97
Natural frequencies for a multilayered Al-St plate with C-C-F-F B.C............c.cc......... 97
Natural frequencies for a multilayered Al-St plate with C-F-C-F B.C............c.cc.c....... 97
Natural frequencies for a multilayered Al-St plate with C-C-C-F B.C. ..........cccce....... 98
Natural frequencies for a multilayered Al-St plate with C-C-C-CB.C............cccuvneee. 98
Natural frequencies for a multilayered Al-St plate with C-C-C-S B.C. ..........cccoc...... 98
Natural frequencies for a multilayered Al-St plate with C-C-S-SB.C...........ccccuen.. 99
Natural frequencies for a multilayered Al-St plate with S-C-S-CB.C.........c...ccceuvneee. 99
Natural frequencies for a multilayered Al-St plate with S-F-S-F B.C. ..........cccouvnne.e. 99
Natural frequencies for a multilayered Al-St plate with S-S-S-FB.C. .......c..ccceoe. 100
Natural frequencies for a multilayered Al-St plate with S-S-S-SB.C. .......cc.cceen. 100
Natural frequency results for aircraft cabin window bay section — configuration 1 .. 105
Natural frequency results for aircraft cabin window bay section — configuration 2 .. 106
Natural frequency results for aircraft cabin window bay section — configuration 3 .. 108
Natural frequency results for aircraft cabin window bay section — configuration 4 .. 109

viii



Table 30: Natural frequency results for aircraft cabin window bay section — configuration 5 .. 111
Table 31: Natural frequency results for aircraft cabin window bay section — configuration 6 .. 114
Table 32: MATLAB® program flow chart and sample results for S-S-S-S plate using QDFE.. 136
Table 33: MATLAB® program flow chart and sample results for S-S-S-S plate using DCM ... 175



LIST OF FIGURES

Figure 1: (a) A thin plate of thickness, h, with infinite width and length. (b) An infinitesimal
element of the thin plate subjected to bending and twisting moments, shear forces and distributed
load per UNit IENGEN [L16].....ceeiieieeieciiece et e e sre e e e eneesneeee s 23
Figure 2: (a) An infinitesimal differential element with a lamina shown by the shaded region
marked as a-b-c-d. (b) A cross section view of the differential element and lamina in bending.

(c). A top view of the lamina subjected to shear loading. [116]......c.cccccovviieiiieiiiiieiiiere e 26
Figure 3: Thin plate used for vibration analysis ...........cccccviiieiiiie i 44
Figure 4: 4-Node, 3-DOF per node rectangular plate element..........ccccoovriiiiiiieninc 45
Figure 5: Conforming four node rectangular element with 16 — DOF ensuring C* continuity ... 54
Figure 6: Convergence analysis for the 5™ natural frequency of a C-C-C-F plate ..........c..oo........ 69
Figure 7: (a) ANSYS® SHELL 181 element used for meshing (b) Plate meshed in ANSYS®.... 70
Figure 8: Notation for the classical boundary conditions investigated.............ccocerereniiinnnnnne. 71
Figure 9: QDFE (left) and FEM (right) shape function for wy at node 1 .........cccoovieiiiiicniennnne 73
Figure 10: QDFE (left) and FEM (right) shape function for 6x; at node 1...........cccoovevviieinennnns 73
Figure 11: QDFE (left) and FEM (right) shape function for Oy; at node 1...........cccoevviirinnnnn. 74
Figure 12: QDFE (left) and FEM (right) shape function for Oy, atnode 1..........cccccovveiinnnne 74
Figure 13: Shape function Nis at ®1 (left) and @s (MGNt) .....oooveiiiii e 75
Figure 14: Shape function Nar at 1 (left) and @s (MGNt) .....oooveieiii 75
Figure 15: Shape function Nsr at @1 (left) and @s (FGNt) ..o 76
Figure 16: Shape function Ngs at 1 (left) and @s (FGNt) ....ooveieiii 76
Figure 17: Two-layer Aluminium-Steel plate............coooiiiiiiiiie e 83
Figure 18: (a) 16-DOF FEM mesh- 400 elems., (b) QDFE mesh- 8 elems. and (c) ANSYS®
benchmark mesh-2877 elems. for cabin window bay Configuration 1..........c.ccccccevvvevieieennenn, 103
Figure 19: Convergence analyses for the benchmark data produced on ANSYS® .........cc.co...... 104
Figure 20: Convergence analyses for the in-house 16-DOF FEM method ............cccoceviiinnenee. 104
Figure 21: (a) 16-DOF FEM mesh- 512 elems., (b) QDFE mesh- 8 elems. for Configuration
2 e 106
Figure 22: (a) 16-DOF FEM mesh- 864 elems., (b) QDFE mesh- 8 elems., for Configuration 3...
..................................................................................................................................................... 107



Figure 23: (a) 16-DOF FEM mesh- 320 elems., (b) QDFE mesh- 8 elems., for Configuration 4...

Figure 26: Element connectivity between thick and thin elements surrounding the cut out for
configuration 6 of the cabin window bay SECHION ..........ccoviiiiiiiiii 114

Figure 27: CPU time to determine the first natural frequency (a) CPU time to determine the first

five natural freqUENCIES () ....cviieecie et e e esre e 117
Figure 28: DFE (left) and FEM (right) shape function for wp at node 2 ..., 127
Figure 29: DFE (left) and FEM (right) shape function for Oy, at node 2..........ccccoeviieniiinnnne. 127
Figure 30: DFE (left) and FEM (right) shape function for Oy at N0de 2...........ccceevvvivienninns 128
Figure 31: DFE (left) and FEM (right) shape function for 6,y, at node 2...........cccoceevvviiiniennn. 128
Figure 32: DFE (left) and FEM (right) shape function for wz at node 3..........ccccoeiiienciennnn. 128
Figure 33: DFE (left) and FEM (right) shape function for Oxz at node 3..........ccccoeoviiiiiinnnnnne 129
Figure 34: DFE (left) and FEM (right) shape function for Oyz at node 3...........cccccoovviviiinnnns 129
Figure 35: DFE (left) and FEM (right) shape function for Oyyz at node 3............ccccoovviiiiinnns 129
Figure 36: DFE (left) and FEM (right) shape function for wsatnode 4 ..........ccccoeviieiiienenn. 130
Figure 37: DFE (left) and FEM (right) shape function for Oxs at N0de 4.........cceoveviiiiiininnnnns 130
Figure 38: DFE (left) and FEM (right) shape function for Oys at node 4...........cccccovvviviinnnnnns 130
Figure 39: DFE (left) and FEM (right) shape function for Oyys at node 4............ccccoovviviinninn. 131
Figure 40: Shape function Ns¢ at 1 (left) and @s (MGNt) .....ooveiiiii, 132
Figure 41: Shape function Nes at 1 (left) and @s (Mght) .....ocoeieiiiii, 132
Figure 42: Shape function N7 at ©1 (left) and @s (FGNt) ....ooveeiiiei e, 132
Figure 43: Shape function Ngf at 1 (left) and s (Fght) .....coooiiieiii e, 133
Figure 44: Shape function Ngr at @1 (left) and @s (FGNt) ....oooveeiiii e, 133
Figure 45: Shape function Niof at 1 (left) and @s (FIGN).....coooeiiiiiiii 133
Figure 46: Shape function N1 at @3 (left) and ®s (FGNL)...c.ooviiieiiiii e, 134
Figure 47: Shape function N1z at @3 (left) and ®s (FGNL)...c.ooeiiieiiii e, 134

Xi



Figure 48: Shape function N1z at @3 (left) and ®s (FIGNL)...cc.ocoveiveiiiee e, 134

Figure 49: Shape function Nyss at o7 (left) and s (FIGNL)....c.ocoeiveiiie e, 135
Figure 50: Shape function Nis at @3 (left) and ®s (FIGNL).....ooeiieiiiee e, 135
Figure 51: Shape function Nigr at @3 (left) and ®s (FGNL)...cc.ooveiieiiiii e, 135

xii



LIST OF APPENDICES

Appendix A: Trigonometric,
Appendix B: QDFE Solution

Appendix C: DCM Solution..

Frequency Dependant QDFE Shape Functions.......................

Xiii



NOMENCLATURE

AR Aspect ratio

b Basis functions

D Flexural rigidity of plate

E Young's modulus

{Eij} Vector of unknown coefficients

G Shear modulus

h Thickness of plate

K] Global stiffness matrix

[Kops] Dynamic global stiffness matrix

[K]m Global stiffness matrx for multilayered plate
[k] Element stiffness matrix

[Kps] Dynamic element stiffness matrix

ki, kz Mass distributions constants

L Length of the plate

My Bending moment in x directions

My Bending moment in y directions

Myy , Myx Twisting moment in xy plane

[M] Global mass matrix

[M]m Global mass matrix for multilayered plate

Xiv



[Mos]

[m]

[Mos]

N}

N1, N2, N3
Qx

Qy

Ix

VaL

Vst

=

EXT

=

=

INT

Dynamic global mass matrix

Element mass matrix

Dynamic element mass matrix

Shape functions

Neutral axes

Shear force in x direction

Shear force in y direction

Distributed load

Radius of curvature in xz plane

Radius of curvature in yz plane

Time

Displacement component of a particle in x direction
Displacement component of a particle in y direction
Volume fraction of Aluminium

Volume fraction of Steel

Amplitude of vibration
External virtual work

Virtual work due to bending

Internal virtual work

Vector of the degrees of freedom

XV



ax’ay’ﬂx’ﬁy
Je

oW

X!'™y

Ox

9 Xy

Px
Py

Towr1Tys T

Xy 1T yx? v

xz1byz

Width of the plate

Bending displacement

Spatial coordinate in x direction
Spatial coordinate in y direction

Quasi-exact roots of the characteristic equation

Element displacement
Vector of the virtual degrees of freedom

Natural coordinates in x direction

Normal strains

Natural coordinates in y direction

Rotation along the x-axis
Rotation along the y-axis
Curvature of the xy plane

Mass density

Rotation of lamina in x-direction

Rotation of lamina in y-direction

Normal stresses

Shear stresses
Poisson’s ratio

Frequency of vibration
XVi



7xy

Shear strain

XVii



1. INTRODUCTION

1.1 Overview

A plate can be considered as the two-dimensional extension of a beam in simple bending.
Both beams and plates support transverse loads, perpendicular to their plane and through bending
action. A plate is flat and while a beam has a single bending moment resistance, a plate resists

bending about two axes and has a twisting moment.

Plates are versatile structural elements with diverse applications in thin-walled structures and
many components of an aircraft such as the low curvature wing and fuselage skins, for example,
are modeled as plates during the preliminary design stages. As the fuselage or wing skin
envelopes the structural skeleton of the aircraft giving its streamlined shape, it is subjected to
various loading conditions such as tension, compression and torsion since these skins aid in
transmitting internal loads. Each of these loading conditions, individually or combined, affect the
vibrational characteristics of the skins and as such structural elements are exposed to a large
range of vibrational frequencies during the airframe’s operational lifetime. Furthermore, aircraft
skins are frequently in close proximity to, and get excited by, vibrating components such as
engines. Therefore, it is of utmost importance to devise and develop solution techniques to study
the vibrational characteristics, such as the natural frequencies and mode shapes of wing and
fuselage skins, both swiftly and to an acceptable degree of accuracy during the preliminary
design stages, before progressing to advanced stages of design. Using these results, the engineers
and designers are able to alter and optimize the geometry of the system or the materials used, to
gain a favourable outcome. They will also be able to determine the most suitable locations to add
supports and areas that require additional reinforcements. Modal analysis will ensure that the

natural frequencies of the structure are maintained within an accepted range.

Aerospace structural components modeled as plates can assume various shapes. They can also be
classified as either thick or thin plates and as homogeneous, multilayered or composite by
configuration. Unlike their thick counterparts, thin plates are characterized by thicknesses
significantly smaller than the other dimensionsand special theories have been developed over the

past decades to study each of these cases separately. Solution methods have been developed,



whereby the researchers possess the liberty to study only the membrane, transverse/lateral,
flexural or torsional vibrations individually or in combination. Furthermore, the effects of shear
and warping could be included or neglected if needed. However, the reliability and accuracy of
such modal analysis results depends on the method implemented. There are several exact, semi-
analytical and numerical methods, developed and presented in the open literature that could be

used to carry out the modal analysis of plate-type structures during various design stages.

All approaches mentioned above have their inherent advantages and disadvantages. Therefore,
selecting the suitable method that yields fast but accurate solutions is crucial, especially during
the early stages of design. In what follows, a brief general review of different plate theories
developed over the past decades is presented. The next step will be to classify the studies based
on their approach as exact/analytical, semi-analytical or numerical. A significant effort will be
made to review studies encompassing as wide an array of plate shapes, sizes and configurations
(homogeneous, multilayer, sandwiched, composite) as possible such that it would provide the
reader an opportunity to appreciate the variation in the investigation methods used in relation to
the geometry, configuration and boundary conditions of the problem. A preliminary discussion
on the advantages and disadvantages of each exact, semi-analytical, and numerical method will
also be made. Comments will be drawn and recommendations will be made as to which methods
are more contemporarily relevant, effective and useful for the vibrational analyses of thin
airframe components modeled as plates during the early stages of design, where the speed at
which designers arrive at a reasonably accurate ballpark for natural frequencies and mode shapes
of a system is as important, if not more important, than the accuracy of the results itself.

1.2 Governing Theories

Plate vibrational analysis dates back to the early 19™ century when the free vibration of
square plates subjected to free edge boundary conditions was investigated by Chladni [1]. Since
this study, many researchers have investigated the vibration and stability characteristics, such as
the natural frequencies, mode shapes and buckling loads for plates of various sizes, shapes,

materials, boundary conditions and loading configurations.



Numerous investigations carried out by a large number of researchers from across the globe have
led to various theories to study plate vibrations. Each theory developed is uniquely different
from the others due to the utilization of various assumptions and as such each theory is only
applicable to a certain type or a family of plate configurations. Although a detailed assessment
of the advantages and disadvantages of each and all the existing plate theories is beyond the
scope of this review, the discussion of the various exact/analytical, semi-analytical and numerical
models and their applications would be incomplete without a suitable review of the host of
governing theories available. Therefore, in what follows a brief description of different theories

related to the dynamic analysis of flexible plates developed and presented to date, is presented.

Amongst the many types of plate theories, the thin plate (Kirchhoff-Love) theory, also known as
classical plate theory (CPT), has been extensively investigated, where the effects of shear
deformation and rotary inertia are neglected to simplify the formulation process (see, e.g., the
series of reviews carried out by Leissa [2-7], Bert [8-13] and others [14-15]). It is important to
mention here that Bert’s [8-13] reviews were on thin composite and sandwiched plates.
Timoshenko and Woinowsky-Kreiger [16] and Lekhnitskii [17] also used the Classical Plate
Theory to study thin anisotropic plates. Furthermore, Vinson and Sierakowski [18] and Ashton
and Whitney [19] exploited the Kirchhoff-Love theory to study laminated thin plates.

However, as the plate thickness increases, the effects of shear deformation and rotary inertia
increases to the point that they cannot be ignored anymore. If Classical Plate Theory is used on
thick plates, thereby, neglecting the rotary inertia and shear effects, it will overestimate the
natural frequencies and buckling loads and as such the solutions will be unconservatively high.
Therefore, for thicker plates Classical Plate Theory has been replaced with the Improved Plate
Theory (IPT), commonly referred to as the Mindlin—Reissner, or thick plate theory.The latter was
a product of the combined efforts of Reissner [20], who incorporated effects of transverse shear,
and Mindlin [21], who included the effects of thickness dependent rotary inertia. The
applicability of this theory to isotropic plates was investigated by Reissman [22]. Subsequently,
Mindlin type plate theories were developed by researchers such as Bergan and Wang [23],
Whitney and Pagano [24], as well as Yang et al. [25], where Yang et al. [25] developed a first
order shear deformation theory (FSDT) upon extending the IPT. The First Order Shear



Deformation Theory was used by Yang et al. [25] to study laminates that are constructed using
an arbitrary number of anisotropic layers. Since, the First Order Shear Deformation Theory does
not satisfy the stress-free boundary conditions on the surface of a plate, in order to replace FSDT,
Reddy [26] developed a higher order shear deformation theory (HSDT). Many other researchers
such as Krishnamurthy [27], Nelson and Lorch [28], Lo et al. [29], Levinson [30], Murthy [31],
and Doong et al. [32] have also introduced various higher order theories to study the vibrational

characteristics of plates.

Therefore, starting from CPT, many theories such as FSDT and HSDT have been developed over
the past decades by different researchers, in a quest to constantly improve on the drawbacks of
the preceding theories. In the case of this research, however, CPT also known as Thin Plate
Theory will be employed as most two dimensional airframe components such as aircraft wing
and fuselage skins could be modelled as thin plates due to their extremely small thickness
compared to the length and width.

1.3 Methods of Vibration Analysis

In combination with one or several of the above-mentioned theories, researchers have
used many solution techniques to study the vibrational characteristics of thin and thick plates of
various shapes. In general, these techniques fall into three main categories, namely, exact, or
analytical, semi-analytical, and numerical methods.

The so-called analytical or ‘exact’ methods (within the limits of the theory) have been widely
used by researchers over time and they involve determining the closed form solution of the
governing differential equations. The Navier method [33] is one such analytical method, which
has been used in the past to study plate vibrations of simply supported rectangular plates. The
method utilises a double Fourier series and researchers such as Reddy and Phan [33],
Senthilnathan et al. [34] and Burt and Chen [35] used the Navier method to study the vibration
and buckling of isotropic, orthotropic, as well as laminated plates with simply supported
boundary conditions. Kaplevastsky and Shestopal [36] also studied the flexure and buckling of
multilayered plates simply supported along all four edges. Doong et al. [37] used the Navier
method to investigate vibration and stability characteristics of pre-stressed laminated plates.

Similar studies were also carried out by Bert [38] and Adali [39]. The Navier method can also be
4



extended to study plates simultaneously subjected to simply supported and slip shear boundary
conditions. One main disadvantage of the Navier method, limiting its applicability severely, is
that it can only be used for plates with simply supported boundary conditions. This means that
the vibration behaviour of a fully fixed plate, cantilevered plate or a fully free plate cannot be
studied using the Navier method. In most real configurations, e.g., thin aircraft structural
components, many different boundary conditions occur, thus, rendering the Navier method

unsuitable.

The Levy method [40] is another analytical solution technique that uses a single Fourier series,
which can be applied to study the vibration of both thin and thick rectangular plates with two
sides subjected to simply supported boundary conditions. Rectangular plates that are pinned on
two opposing edges are, thus, termed Levy-type plates. The Levy method yields exact solutions
for static deflections, free vibration and buckling loads, however, it is important to note that it
does not take into account any bending-twisting coupling of the plates. Certain structural
components such as, for example aircraft wing skins, simultaneously undergo substantial
bending and torsional moments during flight which induces bending-twisting coupling of the
skins. During the preliminary design stages, when the skins are modelled as simple plates, it is
important to evaluate the effects of such bending-torsion coupling on the vibrational
characteristics of the plate such as the natural frequencies and mode shapes. Another problem
with the Levy method is that it is inapplicable to non-rectangular plate shapes, further limiting its
application. Furthermore, most plate structures or thin sheets used in wing skins or fuselages are
riveted along all four edges, commonly modeled as fully or partially clamped boundary
conditions. Therefore, the requirement that two opposing edges should be simply supported is
also another limiting factor, as it prevents its application to other boundary configurations such

as fully free or clamped edges.

The Levy method can also be extended to plates which have one pair of opposite boundaries
subjected to a combination of simply supported and slip-shear conditions, as a result of the
similarities between the mathematical conditions of these two types of boundaries. Nevertheless,
the fact that the Levy method allows the application of arbitrary boundary conditions along the

remaining two edges has attracted some researchers such as Timoshenko and Gere [41] and



Bulson [42] who utilised the Levy method to investigate the vibration and buckling of thin
isotropic plates and many others [43-45]. A generalized Levy type solution method was adopted
by Khdeir [46] to examine the free vibration of antisymmetric angle-ply laminated rectangular
plates with various edge conditions. The stability and vibration of unsymmetric cross-ply
laminated plates were also investigated by the same author [47]. In a different study, the
generalised Levy type procedure was again used to study the free vibration and buckling of
antisymmetric, cross ply, rectangular laminates by Reddy and Khdeir [48]. The plates, in this
study, were subjected to various boundary conditions as well.

The superposition technique, also called the Gorman method [49], is also a very powerful
analytical method that has been used extensively by many researchers in the past to obtain highly
accurate results for problems involving plate vibrations. It was developed and used by Gorman
[49] to analyse the vibration behaviour of thin isotropic rectangular plates. In this method, the
plate is divided into a number of subsystems, termed building blocks, which are under different
boundary conditions compared to the global system, and are also subjected to a distributed force,
moment, rotation or translation [49]. The steady state response of each subsystem is then
superimposed. Unlike the other solution methods discussed earlier, this method is applicable to a
variety of plates, including orthotropic, hybrid and laminated plates. The superposition technique
also allows for the application of various classical and non-classical boundary conditions, as well
as loading configurations, and it is readily applicable to thin plates, thick Mindlin plates,
transverse shear deformable laminated plates, as well as open cylindrical shells. Gorman [50]
also applied the method of superposition to study the free vibrational characteristics of a
multitude of non-rectangular plates. Saliba [51-52] also used the superposition technique to study
the free vibration of non-rectangular plates. Gorman [53], as well as Yu and Cleghorn [54-55],
exploited the above method to investigate the free vibration of thin orthotropic plates. The
stability and vibration of in-plane stressed orthotropic plates was also investigated by Yu and
Cleghorn [56-57] using the same method. A buckling analysis of thin isotropic plates was
carried out by Cleghorn and Yu [58] using the method of superposition. Yu and his coworkers
also applied the superposition principle to deduce the natural frequencies and mode shapes of
thick isotropic plates [59-63] and symmetrically laminated plates [64], where the latter study
took also the effects of shear deformation into consideration.
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Although it is confirmed by many researchers that the superposition method has an excellent
convergence rate [65], the results available does not contain sufficient details on the boundedness
of the method. According to the predictions of Illanko [66], whether this method yields the upper
or lower bounds for the eigenvalues of a particular plate vibration problem depends on the type
of boundary conditions applied on the system as well as the boundary conditions applied on the
so called building blocks of the system. Illanko [66] states that if the boundary conditions of the
building blocks are more flexible than the actual boundary conditions applied on the plate, lower
bound results of the eigenvalues are yielded. Such a case can arise if the building blocks are
under simply supported edge conditions and are subjected to driving forces or translations while
at the same time the global system consists of clamped edges. However, a problem with the
method of superposition is that for mixed boundary types, it has not been verified yet if the
results yielded are an upper bound or a lower bound. Thus, this uncertainty may well be a

problem when trying to estimate the error of the results.

The Dynamic Stiffness Method (DSM) is also another exact method that has been heavily
exploited by researchers to study the vibration of a variety of plate configurations. Boscolo and
Banerjee [67] used DSM to determine the vibration of plates using both classical plate theory
and first order shear deformation theory. Later, they exploited the Dynamic Stiffness Method to
perform exact in-plane free vibration analysis of plates and plate assemblies [68]. A Dynamic
Stiffness formulation was also subsequently formed for exact Mindlin plates by Boscolo and
Banerjee [69, 70]. Fazzolari and Banerjee [71] used the Dynamic Stiffness Method and higher
order shear deformation theory to conduct a buckling analysis of plate assemblies, as well asfree
vibration analysis of composite plate assemblies [72]. In order to study the free vibration of
laminated composite plates, a layerwise dynamic stiffness solution was formed by Boscolo and
Banerjee [73]. Using higher-order elements, a free vibration analysis of composite plates was
also carried out by Pagani et al. [74]. Later, the Dynamic Stiffness Matrix of a rectangular plate
was formed by Banerjee and Papkov [75] for the general case, followed by the development of
an exact spectral-dynamic stiffness method for free flexural vibration analysis of orthotropic
composite plate assemblies by Liu and Banerjee [76, 77]. Using the novel spectral-dynamic
stiffness method, the same authors [78] subsequently conducted an investigation into the free
vibration of plates subjected to arbitrary boundary conditions.

7



However, all the above-mentioned exact methods have very limited applicability as they are
based on some form of a simplifying assumption intended at making the derivation of the
solutions to the plate governing equation less cumbersome and more tractable. Thus, they have
lost their generality and are only useful to model very simple geometries, special cases of plates
of certain geometries, and/or subjected to certain boundary conditions, etc. In addition, with
every change made to the system configuration, the equations should be reformulated and it is
difficult to use such analytical methods to model real life problems with variations in geometry
and material properties. Thus, recourse will be frequently made to numerical methods when the

closed form solution of a certain set of governing differential equations is intractable.

The Finite Element Method (FEM) is a highly powerful, popular and one of the most widely
used numerical techniques that is endowed with the ability to divide any complex geometry to a
number of smaller and much simpler geometries called elements, thus, representing the larger
complex geometry as a collection of these elements. Therefore, rather than having to develop
complicated (displacement) approximation functions for the entire domain, the Finite Element
Method (FEM) allows the user to systematically derive and develop simpler approximate
functions over each element This often allows the approximate (field variable) functions to be a
linear combination of algebraic polynomials. In order to determine the unknown polynomial
coefficients, the governing differential equations are then satisfied over each element and
element assembly is performed based on continuity of the solution and balance of internal fluxes.
However, the bottom line is that the FEM is essentially a Rayleigh-Ritz or Galerkin method, the
only difference being that it only requires locally admissible functions as opposed to the globally
admissible functions needed for classical variational methods [79]. Once the approximation
functions are derived and the element mass and stiffness matrices are found, the assembly of the
element matrices followed by the application of the system boundary conditions, leads to a linear
eigenvalue problem. The resulting eigenvalues and Eigenvectors represent the natural
frequencies and mode shapes of the system, respectively. Included below, are some of many
researchers who utilised the conventional FEM methods for the purpose of examining the

vibration behaviour of plates.



Cawley and Adams [80] carried out a vibrational analysis of free laminated composites using
FEM. Their study included square aluminum and Carbon Fibre Reinforced Polymer plates of
varying ply angles. Reddy [81] also studied the free vibration of antisymmetric angle ply
laminated plates using the FEM. Bert et al. [82] used the same method to examine the vibration
characteristics of thick rectangular plates made of bi-modulus composite material. The FEM was
also exploited by Reddy [83] to investigate the large amplitude bending vibration of rectangular
plates consisting of cut-outs. Reddy and Kuppusamy [84] conducted a vibration analysis on
rectangular laminated anisotropic plates. Corner supported thick composite plates were also
examined using the FEM by Rao and Singh [85]. Using an eight-noded quadratic element, Chang
and Chiang [86] studied the vibration of Mindlin plates of rectangular shape consisting of an
interior cut-out. Shiau and Chang [87] also carried out a FEM modal analysis of a laminated
plate, where the effects of transverse shear deformation was taken in to account. Similarly, the
non-linear bending vibration of isotropic, orthotropic and cross-ply laminated square plates were
studied by Ganapathi et al. [88]. The vibration characteristics of clamped thick circular plates
were also examined by Cheung and Kwok [89] using a Finite Element method. Finally, for bi-
modulus annular Mindlin plates, Chen and Chen [90] investigated the asymmetric vibration and

dynamic stability using the Finite Element method.

Therefore, unlike analytical/exact solution methods, numerical methods such as the conventional
Finite Element Method (FEM), are more advanced and are widely used for structural modal
analysis. The FEM is very popular among researchers since it is convenient and adaptable to
many complex systems including those consisting of material and geometric variations.
Geometric variations are easily modelled as stepped, piecewise—uniform configurations, as
opposed to analytical methods which, if not impossible, are very cumbersome to use for complex
problems. However, the main shortcoming of the conventional FEM is that a very large number
of elements are required to achieve an acceptable degree of accuracy especially for higher modes
of vibration, thus, having to solve a large eigenvalue problem. Although the generality,
distinguished strengths, and proven track record of the conventional Finite Elements Method
(FEM) make it a perfect modeling means and numerical modal analysis tool for the advanced
stages and detail design purposes, during the preliminary design stages it is important to arrive at
an accurate ballpark of both lower and higher natural frequencies fast as the goal during the early
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stages is to minimize the time spent on analysis and maximize the design phase. This disputes

the need for an elaborate model and extremely fine mesh.

The boundary element method (BEM) is another numerical computational method that has been
long used for the study of plate vibration behaviour. It is known to be less complex in terms of
geometric data preparation compared to FEM, since only the boundaries of the problem is
discretized in BEM before processing as opposed to conventional FEM where the entire domain
is discretized in to finite elements to obtain the solution. In the Boundary Element Method, once
the unknowns along the boundaries are determined the solution within the domain is computed
as a post processing step. Thus, using the Boundary Element Method, a 3D problem could be
modelled with a surface mesh and a 2D problem could be analysed using a line mesh, which

greatly reduces time and resources spent during the pre-processing stages.

Early developments of the Boundary Element Method were limited to using the frequency sweep
method or the determinant search method such as the studies presented by, Vivoli [91] and
Vivoli and Fillipi [92], where an indirect formulation was used to develop the first boundary
integral equation for the investigation of a plate vibration problem. In these studies, the solutions
were given in terms of Hankel functions and the natural frequencies were determined by
searching for frequencies that resulted in a zero determinant for the matrix eigenvalue problem.
Using a direct formulation, Niwa et al. [93], and Wong and Hutchinson [94] also used the
Boundary Element Method to analyze plate vibration behaviour. A mixed boundary integral-
finite element approach to plate vibration problems was presented later by Bezine [95] later on.
However, the first boundary-only algebraic eigenvalue problem was developed by Nardini and
Brebbia [96]. Kanarachos and Provatidis [97] also later developed a boundary element solution
using the indirect method to model acoustic problems. A new method called the Particular
Integral Method (PIM) was presented by Ahmad and Banerjee [98] by following a different
approach in formulating the generalized eigenvalue problem using the Boundary Element
Method. Later Davies and Moslehy [99] used the Boundary Element Method to derive the
vibrational frequencies and mode shapes of thin elastic plates.

Despite such continuous advancements, one major drawback of the Boundary Element Method

(BEM) is its lack of versatility. More specifically, the Boundary Element Method is incapable of
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efficiently handling problems with inhomogeneities and nonlinearities, common in aerospace
environments. Conventional FEM, on the other hand, is very versatile and is more widely

applicable.

Another class of methods, named semi-analytical, have also been in use for the purpose of
studying plate vibrations. The Finite Strip, the Finite Layer, the Spline Strip and the Finite Prism
methods are some of the well-known semi-analytical methods popular among users [89, 100-
106]. The Finite Layer method was used by Cheung and Chakrabarti [100] to perform a free
vibration analysis of thick, layered rectangular plates. In order to understand the vibration of
thick laminated plates with curved boundaries, a circular sector element was developed by
Cheung and Kwok [89, 101]. Square Mindlin plates subjected to various boundary conditions
were investigated by Dawe [102] using the Finite Strip method. The Finite Strip method was
once again used by Dawe and Roufaeil [103] to study rectangular Mindlin plates. Thick square
plates subjected to simply supported and clamped end conditions were examined by Cheung and
Chan [104] using the Finite Strip method. Furthermore, the same authors also studied thin and
thick sectorial plate vibrations. Finally, Mizusawa [105] utilised the Finite Strip and Finite Prism
methods to examine the vibration characteristics of thick annular sector plates. Mizusawa also
utilised the Spline Strip method to examine plates with tapered thickness [106]. The above-
mentioned semi-analytical methods, however, are not as powerful or versatile as the
conventional FEM described previously and as such, are not very suitable for aerospace

structural modal analysis applications.

Finally, the main goal of this review is to introduce the Dynamic Finite Element (DFE)
technique, which is a relatively new semi-analytical method first introduced by Hashemi in
1990’s[107]. Since its inception, the DFE method has been used in beam, beam-like, and blade
dynamic, stability and vibration modelling and analysis. Hashemi and his co-workers have
extensively studied the free vibration of isotropic, sandwich, composite and thin-walled beams
subjected to various loading configurations, using the DFE method (see, for example, [107-113].
Although, reviewing studies on beam vibrations is not within the scope of this review, a quick
reference to some of the many studies exploiting the DFE method for beam related problems is

included here for the sake of completeness. Hashemi and Richard [108] presented a DFE
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formulation to analyse the free vibration of bending— torsion coupled beams. The flexural axis of
the beam studied by Hashemi et al. is not coincident with the inertial axis. Hashemi and Roach
[109] also created a DFE formulation for the free vibration of an extension— torsion coupled
composite beam. A Quasi—Exact Dynamic Finite Element formulation, for the free vibration
analysis of a three—layered sandwich beam consisting of a thick, soft, low strength and density
core as well as two face layers made of high strength material, was developed by Hashemi and
Adique [110]. Borneman and Hashemi [111] developed a DFE for the free vibration analysis of
a bending— torsion coupled laminated composite wing beam. The effects of shear deformation
and rotary inertia were neglected in this study but were accounted for in another study by
Hashemi and Pereira [112]. Furthermore, Hashemi and Richard [113] also conducted a vibration
analysis on an axially loaded bending— torsion geometrically coupled beam using the
DFEmethod.

Apart from the above, for additional clarity, a brief description of the DFEformulation process
for beam problems is also included below to enhance the reader’s understanding on how this
method will be developed for plate problems. To begin with, the Galerkin method of weighted
residuals is also used in the DFE method to arrive at the weak integral form of the governing
differential equations, as done in the conventional Finite Element Method. The weak integral
form of the governing differential equations is then discretized to form the element integral
equations, where the DFE formulation process deviates from the classical Finite Element
Method. For the beam problems studied in the past, instead of using cubic polynomial and linear
shape functions to approximate the flexural and axial/torsional displacements, respectively, the
DFE method utilizes frequency-dependent trigonometric basis/shape functions presented in [107]
through [113] to interpolate the elemental field variables. The trigonometric shape/interpolation
functions have been obtained by taking the closed form solutions to the differential equations of
motion governing the uncoupled vibrations of a uniform beam (exact within the limits of the
theory), as the basis functions of approximation space. The nodal approximations of
displacement are then stated in terms of the resulting frequency-dependent shape functions. This
process leads to the element frequency-dependent dynamic stiffness matrices (unlike the
frequency-independent element stiffness/mass matrices resulting from the conventional FEM).

When these element matrices are assembled, and the system boundary conditions are enforced,
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the frequency-dependent global dynamic stiffness matrix is obtained, giving rise to a non-linear
eigenvalue problem, different from the linear eigenvalue problem of the conventional Finite
Element Method. In order to find the natural frequencies of the system, the frequency domain
should then be swept to search for particular frequencies that will make the determinant of the
dynamic global stiffness matrix go to zero. The corresponding eigenvectors provide the mode

shapes of the system.

From the existing beam vibration results [107-113], it is evident that the Dynamic Finite Element
(DFE) formulation is a highly-convergent, hybrid, frequency-dependent, semi-analytical solution
method which is more accurate than the conventional Finite Element Method and, unlike the
analytical methods discussed above, is adaptable to many complex configurations. Some
advantages of the DFE method, as evident from its previous applications, are highlighted below.
Based on the results of many vibration analyses on various beam problems carried out by
Hashemi and his coworkers [108-11, 114,115], it is clear that the DFE formulation is capable of
converging to much more accurate results than the conventional FEM, using the same mesh size.
In several cases, to achieve results similar (if not higher) in accuracy to those obtained from the
conventional FEM, the DFE method needs eight times less elements than the conventional Finite
Element Method. Thus, the user can reduce the modelling and computational overhead by
implementing a much coarser mesh and obtain a solution faster without compromising solution
accuracy. During the preliminary design stages of aerospace applications, speed at which results
are achieved trumps the degree of accuracy of the results. Thus, the fact that the DFE method is a
hybrid method, which combines the accuracy of exact methods and the versatility of numerical
conventional FEM, while at the same time producing much faster, highly accurate results makes
it a powerful and reliable tool whose advantages can be exploited during the preliminary design
stages by designers. The fact that most of its formulation is quite similar to the conventional

Finite Element Method is another advantage for researchers new to the DFE method.

Given the magnitude of aerospace structural components that can be modelled as plates,
engineers and designers would be able to arrive at an acceptable ballpark for the vibrational

characteristics, especially for multiple and/or higher modes, with much less effort and using an
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extremely coarser mesh in comparison to conventional Finite Element Method, should a plate

Dynamic Finite Element become available.

1.4 Research Motivations

Upon reviewing the advancement of methods used in the area of plate vibration analysis, it
could be concluded that the existing solution methods all have certain advantages and
disadvantages over each other. Although general in nature, the most well-established and widely
used conventional FEM formulations need a large number of elements to capture the structures’
higher natural frequencies and mode shapes with acceptable precision. On the other hand, the so-
called analytical methods, although exact within the limits of the theory, are limited to special
cases and simple configurations, and their derivations are often mathematically intensive and
cumbersome. The present research was motivated by the lack of an intermediate method,
combining the advantages of both FEM and other analytical methods. The hybrid Dynamic
Finite Element (DFE) formulation, proven to be a super-convergent method in the vibration
analysis of beams and beam-structures, may be the best solution to the current problem of plate
vibration. A plate DFE model, once developed, can introduce the accuracy of exact methods to
the ease of formulation provided by numerical methods, while yielding results much faster and to
the best of the author’s knowledge, such a frequency-dependent DFE formulation has never been
developed for the vibration analysis of plates. Therefore, an effort is made in this thesis to fill

this gap by applying the DFE concept to thin plate vibration analysis.

1.5 Key Objectives and Methodology

The primary objective of the present research was to develop a Quasi-Exact Dynamic Finite
Element (QDFE) formulation for the free vibration analysis of thin plates using Classical Plate
Theory (CPT) and 16-DOF thin rectangular elements. To achieve this goal, a systematic step-by-

step approach, with the following key tasks, was followed:

- Task 1: A novel, quasi-exact solution to the differential equation of motion governing the
free vibration of a rectangular plate should be derived, which would necessitate the

governing differential equation to be re-written in a new, but equivalent form.
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Task 2: To formulate a special set of innovative dynamic (frequency-dependent) basis
functions, unique to the QDFE method, using the quasi-exact solution. These basis functions
are formed in such a way that they approach the conventional FEM basis functions (i.e.,
polynomials), when the natural frequency tends to zero; i.e., representing the state of non-

vibration, or static configuration.

Task 3: Derivation of a set of novel frequency-dependent, trigonometric shape functions for
the thin rectangular plate element, using the above-mentioned basis functions, and following

the standard procedure used in conventional FEM formulation.

o The elemental weak integral form of the governing differential equation of motion was
then achieved by applying the Galerkin-type Weighted Residual Formulation and a set
of necessary integrations by parts, followed by discretization of the structure (i.e., weak
integral form of the governing differential equation of motion) using the thin plate

elements.

Task 4: To develop the element dynamic (frequency-dependent) mass and stiffness matrices,
by introducing the field variables expressed in terms of the new dynamic interpolation
functions back into the elemental weak integral form of the governing differential equation of

motion.

Task 5: To form the overall DFE model, by assembling, where applicable, the element
matrices to formulate the eigenvalue problem of the system, whose solutions are the natural
frequencies and corresponding modes of the structure. Applying various boundary conditions
and obtaining the eigensolutions was also achieved through a script written in MATLAB®

and this will yielded the vibrational characteristics of the plate structure under investigation.

Task 6: To validate the developed QDFE through different numerical tests for single and
multiple element meshes, and various boundary conditions, and to verify its convergence

superiority, in comparison with conventional FEM-based models.
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It is worth noting that prior to developing the QDFE solution for thin plates, conventional FEM
solutions were formulated for the same plate problem using two different rectangular plate
elements (12-DOF and 16-DOF). This helped in getting familiarized with the FEM formulation,
and to use the FEM-based codes as a benchmark for the development of the QDFE formulation.
Furthermore, after the QDFE method for thin plates was formed, the results for the natural
frequencies were validated for accuracy by comparing them with the conventional FEM results,
as well as the exact results available in the open literature. Various classical boundary conditions
(B.C.) and geometries are considered. The correctness and accuracy of the conventional FEM

results were first verified by comparing them to an ANSYS® simulation.

- Task 7: Once the QDFE method is developed for a homogeneous thin rectangular plate, it
was extended to model the vibration behaviour of thin, rectangular, multilayered plates
subjected to all types of boundary conditions. The results produced for multilayered plates
are then compared with those available in the literature. They were also compared with

results from conventional FEM and the Method of Homogenization.

- Task 8: Finally, to further demonstrate the capabilities of the QDFE method, it was applied to
investigate the vibration behaviour of six aircraft cabin window bay sections. The QDFE
results are then compared against the conventional 16-DOF FEM and ANSYS® results.

The secondary objective of this research was to use the unique quasi-exact solution derived for
the plate governing equation to formulate a new Dynamic Coefficient Matrix (DCM) method
based on a frequency dependant coefficient matrix, for both thin homogeneous and multilayered
rectangular plates. This new DCM method differs from the Classical Method (CM) due to its
dynamic nature. Furthermore, it will serve as an alternative analytical method that can be used to
investigate the vibration behaviour of a general thin rectangular plate subjected to all types of
boundary conditions. The results produced by the DCM solutions are then compared with QDFE

and FEM results as well as exact results found in the open literature.

1.6 Analysis Approach and Limitations

In this section the analysis approach taken in this research is outlined along with a brief
review of the limitations of the work. As a starting point to the analysis the derivation of the
16



plate governing equations will be briefly revisited. Once, the theoretical foundation is established
the next step of the analytical process would be to derive the quasi-exact solution to the
governing differential equation. This is achieved by re-arranging the characteristic equation as
the sum of two beam-like expressions and then solving each expression by applying the
quadratic formula. Once, the quasi-exact solution is constructed the terms of that solution will be
used subsequently, to create the frequency-dependant basis functions unique to the QDFE
method based on a 4-node 4-DOF per node rectangular plate element. Using these frequency-
dependant basis functions, sixteen trigonometric shape functions will then be developed and
subsequently the QDFE solution will be derived for the thin, rectangular, homogeneous and
multilayered plates. The above mentioned quasi-exact solution will also be used to develop DCM
models for thin, rectangular, homogeneous and multilayered plates. In parallel to this,two
conventional FEM models, with 12-DOF and 16-DOF elements, will also be developed for thin,
rectangular, homogeneous and multilayered plates for validation of the QDFE and DCM results.
The results of these conventional FEM models will be first verified for accuracy using ANSYS®
simulations. Apart from comparing with the conventional FEM results, the QDFE and DCM
results will also be compared with exact data available in the open literature. As a last step, the
QDFE method will be extended and applied to model the vibration behaviour of six aircraft
cabin window bay sections; the results of which will be verified against in-house developed
conventional FEM and ANSYS® results.

One of the main limitations of this study is that it disregards the effects of shear and rotary inertia
as the quasi-exact solution that is sought is based on Classical Plate Theory. Therefore, the
QDFE model presented cannot be used to model the vibration behaviour of thick plates and as
such for thick plate vibration analysis, a separate QDFE solution needs to be developed.
However, as this method was developed with aerospace applications in mind, this limitation does
not largely affect the generality of the method as most, if not all, two dimensional structures
encountered in the aerospace environment could be modelled as thin plates as their thickness is

much smaller than the other two dimensions.

As the present study is purely a new solution method for an existing plate theory (i.e., CPT) and

the corresponding governing differential equation, therefore, no experimental analyses will be

17



carried out for validation purposes. It is also worth noting that, to the author’s best knowledge,
there is a lack of experimental data to use for direct comparison/validation of the QDFE/DCM
results for the homogeneous and multilayered plate studies as well as the QDFE results for the
aircraft cabin window bay sections. However, in order to compensate for this lack of
experimental data, the QDFE/DCM results for the homogeneous and multilayered plate studies
are verified thoroughly for accuracy using an in-house developed, polynomial based, 16-DOF
FEM code, whose accuracy has been validated using ANSYS® simulations and other existing
data. Similarly, a comprehensive finite element analysis is done on ANSYS® for all cabin bay
configurations using an extremely fine mesh that yields results, which have converged to the
second decimal place, in order to substantiate their QDFE results. This compensates adequately

for the lack of experimental data for comparison.

As also mentioned before, experimental validation would be required if the QDFE/DCM
methods were used to study a brand new problem/theory governed by new governing differential
equation(s) that has not been investigated before, to capture new behaviours, or characterize new
parameters, etc. In such a case, experimental data are of utmost importance to determine if what
is observed by applying the QDFE/DCM methods are in synchronization with what actually
occurs in reality. However, the plate configurations investigated in this research are very
common ones, which have been studied for decades and as such the existing analytical results are
good enough for validation of the proposed element/solution methods. Since, the objective of
this work is to introduce new, superconvergent methods to study the same vibration problems
studied in the past, verifying the QDFE/DCM results against the exact data available in the open
literature would suffice. Where exact data is unavailable, as in the case for the cabin window bay
configurations, finite simulations based on ANSYS® and in-house codes are used for the
comparison and validation purposes. Thus, although at first glance it may seem to be a limitation
of this research, measures have been taken to ensure that the effect of not incorporating

experimental validation is, if at all, marginal.

At the present stage the QDFE method is only applicable to rectangular plates. This is another
limitation of this research and it arises due to the form of the governing equation that has been

used for this study. The Kirchhoff-Love equation used to derive the quasi-exact solution here is
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based on the general x-y coordinate system. To obtain the solutions for a circular plate for
example, one should commence at the thin plate equation based on the cylindrical coordinate
system, however pursuing a QDFE solution based on a circular element is not a priority and as
such is not necessary for this thesis at this stage, because the main aim of this work at present is
to apply the concept of Dynamic Finite Elements within the domain of plate vibration for the
first time, with the goal of establishing the QDFE method as a viable alternative to conventional
FEM for plate modal analysis. Therefore, a choice was made at the beginning to use the
governing equation based on the x-y coordinate system, in order to facilitate the development of
a four-noded, 4-DOF per node rectangular element later on. Nevertheless, developing a
rectangular element meant that the study would be strictly limited to the vibration analysis of
rectangular shaped 2D structures as it is not possible to accurately fit rectangular elements to
study plates of other shapes, such as triangular/circular ones. Several factors contributed to this
decision. Firstly, rectangular elements are of higher order compared to triangular elements for
example and as such are more accurate, which is one reason why the rectangular shape was
favoured. Secondly, most two-dimensional structures found in aerospace environments are
rectangular in shape, therefore having a QDFE model based on a rectangular element would
increase the scope of analysis as many different rectangular plate assemblies could be then
modeled. Furthermore, although, two triangular elements would make up one rectangular
element, building a QDFE model based on a triangular element means that more than double the
number of elements (due to their lower accuracy) will be needed for an accurate analysis. This
defies the whole purpose of building a QDFE model to study plate problems in the first place, as
the key objective is to maximize solver efficiency by making the mesh coarser. Lastly, and most
importantly, the approach taken to solve the thin plate governing equation also contributed
greatly towards this decision. The distinctive procedure applied to obtain the quasi-exact solution
required the thin plate equation to be decomposed to two beam-like expressions; one
representing the x-direction and the other characterizing the y-direction of the plate. Thus, little

choice is left but to use the thin plate equation based on the x-y coordinate system.

Another constraint of the QDFE method at its present stage of development is the restriction on

the complexity of plate configurations that it could be applied to. As an example, the aircraft

cabin window bay configurations included in this thesis have been greatly simplified. The small
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curvature of the window bay section had to be ignored, since a QDFE model has not been
developed for shell elements yet. The filleted radius at the edges of the window cut out was also
omitted from the analysis, due to the unavailability of a QDFE solution based on a triangular
element. The effect of having frames and stringers riveted laterally and longitudinally along the
boundaries of the cut out was replaced with a fixed boundary condition due to the absence of a
compatible beam element to create a beam-plate assembly. The added structural reinforcement
around the cut out due to the presence of doublers were simulated by introducing QDFE
elements with a higher thickness at the cut out perimeter, once again as a result of the
unavailability of a QDFE beam model having compatible degrees of freedom (4 DOF per node)
at the two nodes on each side. Thus far, the QDFE beam models developed in the past by other
researchers have only 2 or at most 3 DOF’s per node. Therefore, modelling a full and complete
aircraft cabin bay window with all its complexities is out of scope of this study as it requires the

development of other QDFE models for shell and beam elements as mentioned above.

The ultimate goal of developing the QDFE solution for a plate model is that, in the future, it can
be used as a powerful alternative tool to quickly investigate the vibration characteristics of
numerous aerospace applications that are modelled as thin plates to a very high degree of
accuracy, during the preliminary design stages. However, in order to do this comprehensively,
the Dynamic Finite Element method needs to be developed to a full-fledged, versatile tool like
conventional FEM. This could only be achieved if a complete library of generic DFE models
covering all types of structural elements and configurations are first developed as it was done in
the case of conventional FEM during its early stages, many years back. Nevertheless, since the
advent of this new method in the late nineties a number of researchers have contributed towards
achieving that, by developing DFE models for various one-dimensional (line) structural elements
(rods, beams, etc.) configurations. But, the DFE concept of pursuing an exact solution to the
governing equation of the structure, using the terms of this general solution to form frequency-
dependant basis functions that approach their polynomial counterparts when the frequency tends
to zero and then exploiting these basis functions to derive the unique trigonometric basis
functions was not applied to the case of plates until now. Therefore, the DFE concept described
above, which originated two decades back, is developed for the vibration analysis of two-
dimensional plate structural elements in this thesis. As such the primary objective of this
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research is to extend the DFE method to 2D elements by developing, for the first time, a Quasi-
Exact Dynamic Finite Element Model for thin homogeneous and multilayered plates, thereby
adding to the library of generic DFE structural element models that have been created over the

years by many a researcher.

1.7 Thesis Organization

In Chapter 2, the derivation of the thin plate governing differential equation will be briefly
revisited using Hamiltonian mechanics and the Classical Plate Theory (CPT), for the sake of
completeness. After the equations are reviewed, the novel and unique quasi-exact solution to the
governing differential equation, sought using a distinctive procedure that has never been
presented, will be introduced. Once the quasi-exact solution for the plate equation is derived, a
set of new trigonometric, frequency-dependant basis functions characterizing the QDFE method
will be presented. Subsequently, the QDFE shape functions formed using the terms of the quasi-
exact solution to the governing differential equation, will be developed using the newly found

basis functions.

In Chapter 3, the vibration behaviour of a thin, homogeneous, rectangular plate subjected to
various boundary conditions will be investigated. Initially, the conventional FEM method will be
developed wherein two separate elements will be used. The first formulation will be based on a
12-DOF thin rectangular plate element while the second FEM formulation will use a 16-DOF
element. Next, in Chapter 4 the QDFE method will be applied to investigate the modal
characteristics of the thin, homogeneous, rectangular plate using the trigonometric, frequency-
dependant shape functions presented in Chapter 3. Subsequently, the DCM method, which is
also based on the quasi-exact solution to the plate governing equation, will be presented in
Chapter 4 to examine the same thin, homogeneous, rectangular plate problem. Later in Chapter
4, the surface plots for the new QDFE shape functions will be illustrated and compared with
surface plots of the polynomial FEM shape functions. The numerical results of the 12-DOF
FEM, 16-DOF FEM, QDFE and DCM methods will also be presented. A convergence study will
be carried out on ANSYS® and the results of the ANSYS® simulation will be used to verify the
accuracy of the 12-DOF FEM and 16-DOF FEM results. The QDFE and DCM results will in

turn be compared with the verified FEM results as well as exact results found in the open
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literature. To conclude, comments will be drawn in regards to the accuracy of the results from

each method and an evaluation will be made with reference their convergent behaviour.

In Chapter 5, the vibration behaviour of a multi-layered, thin, rectangular plate will be
investigated. Firstly, the Method of Homogenization (M of H) will be used to perform a modal
analysis. Then the conventional FEM formulation presented in Chapter 4 will be extended to
examine the multi-layered, thin, rectangular plate. Subsequently, the QDFE method for thin
plates presented in Chapter 4 will also be extended to study the vibrational characteristics of the
multilayered plate. The roots of the governing differential equation presented in Chapter 3,
which were modified to suit a multilayered plate, will also be presented here. Later in Chapter 5,
the DCM method introduced in Chapter 4 will be extended to investigate the multilayered plate
problem. The numerical results for the Homogenization, FEM, QDFE and DCM methods will be
presented prior to concluding this chapter. Once again, the FEM results will be compared with
the results of an ANSYS® simulation and the QDFE and DCM results will be compared with the
validated FEM results. Finally, as in Chapter 4, a discussion will be carried out and an
assessment will be made on both the accuracy of the results and the rate of convergence of each

method.

In Chapter 6 the QDFE method will be applied to study the natural frequencies of six aircraft
cabin window bay sections in order to show case the advantage of utilizing an intermediate,
superconvergent method during the early stages of design. The results produced by the QDFE
method are also compared with the 16-DOF FEM and ANSYS® results here to further highlight
this fact.Finally, a comparison will also be made between the CPU time elapsed for the QDFE
method and the 16-DOF FEM method when solving for the systems natural frequencies, at the

end of this Chapter.

Chapter 7 will be the final Chapter of this thesis. Here, concluding remarks will be drawn upon
the objectives accomplished and contributions made to the scientific knowledge base, the
limitations of the methods presented will be discussed, and comments will be made on the future

direction of research progress.
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2. THEORETICAL BACKGROUND

2.1 Development of Governing Differential Equation

This Chapter consists of a brief review of the thin plate governing equation formulation using
Hamiltonian mechanics and the Classical Plate Theory (CPT) as shown in [116]for the sake of
completeness and the formation of the quasi-exact solution to this equation leading to the

trigonometric basis functions and the new frequency dependant shape functions.

Figure 1: (a) A thin plate of thickness, h, with infinite width and length. (b) An infinitesimal

element of the thin plate subjected to bending and twisting moments, shear forces and distributed
load per unit length [116]

A plate is a two dimensional extension of a beam and like in a beam there are bending moments
and transverse shear forces acting in this two dimensional elastic system as well. The kinematics
of CPT is similar to that of Euler — Bernoulli beam theory. Consider a thin plate with a thickness
h and infinite length and width as shown in Figure la. It is important to note the infinitesimal
differential element /4-dx-dy on Figure 1a which has been enlarged and depicted as shown in
Figure 1b. In Figure 1b, it is possible to see the various shear forces, bending moments, twisting
moments and external loads that typically act on such a differential element. Here, My and M,
are the bending moments per unit length that occur as a result of the normal stresses oy and oy,
respectively. Furthermore, the twisting moments per unit length M,y and My,that arise as a result

of the respective shearing stresses, 7y, and 7yx , as well as the shear forces per unit length Q,and
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Q,that are formed due to the actions of the respective shearing stresses,7y, and 7y, are also

illustrated in Figure 1b.

The next step is to balance the forces and moments about the differential plate element
equilibrium. By balancing the forces in the x, y and z directions it can be seen that only the force
equation of motion in the z-direction is non-trivial. Similarly, considering moments about each
co-ordinate axis reveals that the moment equation of motion about the z-axis essentially goes to

zero. Thus, we are left with the following three equations of motion:

a 2
-Q,dy+| Q, +aQX dx [dy—Q,dx+| Q, + R dy (dx + qudy:phdxdya ZV (1)
OX oy ot
M, oM
M, + & dy [dx—M dx+M dy—-| M + 8x dx |dy - Q,dxdy =0 (2)
oM oM
M, + 5 “dx [dy-M,dy+| M + ayyx dy [dx—M ,dx—Q,dydx=0 (3)
X

In Eq. (1)w represents the lateral deflection of the mid plane of the thin plate along z-axis. It is
also known as the flexural displacement of the plate and it is a function of the x and y spatial
coordinates as well as time, i.e., w(x,y,t). Also, p in Eqg. (1) is the material density. It is also
important to note here that in keeping with the assumptions of the Classical Plate Theory (CPT)
used for thin plates the contributions due to rotary inertia are neglected in Egs. (2) and (3).
Furthermore, all higher order terms that arise as a result of the distributed load q are also not
taken in to consideration when writing out the moment equations of motion. Thus, simplifying

the terms in Egs. (1), (2) and (3) results in the following expressions.

oQ, dQ, 0w
X  ox 9 phat2 )
oM oM
5yy_ 8xxy_ » =0 ®)
oM oM
Q, = ayy—a—xxy (5-2)
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M oM
M, P _q, =0 (6)
OX oy
oM. oM
Qx = - + X (6'3.)

Solving Eqgs. (5) and (6) to obtain the definitions for the shear forces Qyand Qy gives Egs. (5-a)
and (6-a), respectively. Substituting Egs. (5-a) and (6-a) in Eq. (4) will yield a single partial
differential equation. This equation shown below, which is written in terms of the various
moments, governs the lateral (bending) motion of the thin plate.
M, 9°M, O°’M, 0°M 02w

Xy y _
e Xy OXoy " oy? vaq=pn

(1)

In order for free vibration to occur, there should be no distributed load q acting on the plate.
Thus, this term is set to zero and Eq. (7) is re-written as follows.
*M, 0°M, 0°M, &°M o*w

+ yX xy+ y:
X2 oxdy  oxdy  oy? o

(8)

The next step is to determine the relationship between the moments in Eq. (7) and the flexural

displacement w. To this end, the kinematics of thin plate deformation is presented below.
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Figure 2: (a) An infinitesimal differential element with a lamina shown by the shaded region
marked as a-b-c-d. (b) A cross section view of the differential element and lamina in bending.

(c). A top view of the lamina subjected to shear loading. [116]

A cross sectional view of the deformation of the lamina marked as a-b-c-d in Figure 2a is
illustrated in Figure 2b when the infinitesimal beam element is in pure bending. As in Euler —
Bernoulli beam theory, all plane sections are assumed to remain plain and perpendicular to the
mid-plane even in Classical Plate Theory. A similar behaviour to that explained above is also

seen in the y-z plane. Thus, the normal strains in the lamina a-b-c-d can be written as:

e = ©)
&y =— (10)

In Egs. (9) and (10)ry and ry are the radii of curvature in the x-z and y-z planes, respectively, and

z is the distance between the midplane and the lamina a-b-c-d. Assuming small deflections and
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slopes, the curvatures riand ry in egs. (9) and (10) can be defined as -0*/ax’and -0%y/6)%,

respectively. Thus, Egs. (9) and (10) can be re-written as follows.

%X
-7 = 11
o=13 (1)
82
o =] (12

The next step is to define the shear strain. From Figure 2c it can be seen that the rotations of the
sides are ou/0y = ¢x and ov/Ox = ¢y. Here, U and V are the displacement components of a
particle in the x and y directions. Thus, the shear strain yy, can be defined as:

oy oV
]/xy:E+a:¢x+¢y (13)

However, from observing Figure 2b it is clear that the displacements U and V can be defined as -
z-0w/Ox and -z-0w/0y, respectively. Substituting these expressions in Eq. (13) and re-writing the
definition of shear strain gives:

0w

OXoy

Yy =21 (14)

Having derived all the definitions for the strains, the general Hooke’s Law can be exploited now

to arrive at the expressions for the stresses.

E Ez (0°w  0°w
o, = 2(5X+vgy):— 5 StV —— (15)
1-v 1-v*{ Ox oy
E ( ) Ez (0w  0°w
o, :l—v2 &, +ve, :_1—1/2 Y +V6X2 (16)
o°w

0, =Gy, =262 (17)

The bending and twisting moments on the element face defined as 4-dy in Figure 2a can now be

determined as follows.
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h/2

M, -dy= j 20 dydz (18)
-h/2
Eq. (18) can be re-arranged as:
h/2
M, = J.ZGXdZ (19)
-h/2

Substituting Eq. (15) in Eq. (19) and integrating across the thickness yields the definition for the

bending moment about the x-axis My acting on the element face.

2 2
M, =_D[Zx‘iv+vgy—‘iq (20)

In Eq. (20) D represents the plate modulus and it is defined as:

Eh?®

D= ) (1)

The definition for the bending moment about the y-axis My acting on the face of the differential

element can also be derived using the same procedure outlined above.

+v

ayZ 6X2

Performing integration across the thickness of the element on the following expression yields the

o*w azw] 22)

My:—D[

definition for the twisting moment M,,.

h/2
M, =- [zz,dz (23)
-h/2
It should be noted here that a negative sign has been added in front of the integral in Eq. (23).
The purpose of this is to ensure that the twisting moment caused by positive shear stress
confirms with the sign convention used in Figure 2b. Thus, substituting the definition of shear

stress given in Eq. (17) in to Eq. (23) and integrating gives the following expression.
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2
M, =D{-v) oYW

Y OXoy 24)

In order to re-write the governing partial differential equation for thin plates in terms of the
flexural displacement w, Egs. (20), (22) and (24) as well as the expression M,y = - My should be
substituted in to Eq. (8). Thus, we obtain,

o*w

j+phat2 0 25)

84W+ o'w +a4w
ax4 6X28y2 ay4

The expression within parenthesis can also be re-arranged follows.

2 2 2 2
[56)(2 + (jyz ](aﬁx\gv+gy\;vj:v2vzw (26)

Finally, writing Eq. (25) in terms of the Laplacian of the Laplacian, also known as the

biharmonic operator:

DV*w(x, y,t)+ ph% =0 (27)

As the governing differential equation for a thin plate has now been derived using Hamiltonian
mechanics, the next step will be to pursue the development of a quasi-exact solution and the next
section of this thesis will be dedicated to achieving this. With such a solution in hand, it becomes
possible to study the free vibration behaviour of airframe components that can be modelled as
thin rectangular plates. Before pursuing a quasi-exact solution to the governing equation, it is
important to note here that it will not provide information regarding the effects of shear, rotary
inertia and damping on the modal characteristics of the structure as the linear undamped free
vibration equation is employed per Classical Plate Theory as the basis of the solution. However,
this choice of theory can be reasonably justified, firstly, as most aircraft surfaces and skins can
be classified as Kirchhoff plates which have extremely small thickness compared to their other
dimensions and, secondly, because it is a relatively less complex starting point to develop a new
Dynamic Finite Element formulation for plates for the first time. Upon developing a robust plate

DFE model, the effects of shear, rotary inertia and damping can be later incorporated to the
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solution as deemed fit. Thus, in the subsequent section the distinct quasi-exact solution to the
thin plate governing equation will be developed and presented as a pre-requisite to develop the
QDFE method.

2.2 A Quasi-Exact Solution for the Thin Plate Equation

In order to develop the Quasi-Exact Dynamic Finite Element (QDFE) and Dynamic
Coefficient Matrix (DCM) methods, it is important to find the quasi-exact solutions for the plate
governing partial differential equation given in Eq. (25). To this end, a new approach is taken
here, which to the best of author’s knowledge has not been done before. That is to decompose
the plate equation into two separate beam-like expressions representing each spatial coordinate

direction of the plate. For clarity, the main steps of this procedure are outlined below.

If the solution is assumed to take the following form, obtained through the separation of

variables:
w(x, y,t) =W (x, y)e'*; where W (x, y) =e™e® (28)

Then, introducing expression (28) back into the governing differential equation (25), the

corresponding characteristic equation can be written as:

®°ph 3

A* +2A?B? +B* - 0 (29)

and then rearranged as:

2 ph 2 ph
[A4+A282—kla); J+LB4+AZBZ— 2%}:0 (30)

* * ¥

where, k; and kprepresent the mass distribution constants along the x— and y — directions,
respectively. These constants were introduced to decompose the plate governing equation into
the two beam-like expressions in Eqg. (30) and such an approach has not been pursued before.
Through careful observation, it can be seen that simply plugging numerical values in place of

these constants will allow one to re-construct and re-write the plate governing equation into its
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original form. The numerical values of k; and k, can be anything between 0 and 1 (i.e., 0 <k; and
ko < 1), however, the sum of the two mass distribution constants should be unity (i.e., ky + ko =
1). For example,k; and k, will both be equal to 0.5 for a square plate. They will assume other
values for other rectangular plate shapes. The term (*) represents the x—direction and the term
(**) is for the y—direction of the plate. In both expressions,A is the coordinate in the x — direction
and B is the coordinate in the y—direction. The terms (*) and (**) are treated as two different
(beam) equations for the purpose of determining roots. Furthermore, in expression (*), Acan
vary and B is held constant and for the term (**), A is held constant and B is allowed to vary. The
quadratic formula was then applied on the expressions (*) and (**) separately as shown below.
The mathematical manipulations are shown for one beam-like expression for brevity. The roots

of the other beam-like term are obtained using an identical process.

Applying the quadratic formula on the expressions (*), treating B, as constant and isolating for
B%:

k,@” ph
Y 4 1
2 B J_r\/B +4{ 5 J (30-2)
A =
2
2A2+BZ:\/B4+4(k1w2ph]
D

2
AA* +4A%B? + B =B* +4(k1“’—Dph]

D
A2

(kla)zphJ
A’ +B? =

Therefore, for term (*) the following expression results:
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k,@®ph k,@*ph At
52 :L_AZ _ D (30-b)

A’ A’

Similarly, applying the quadratic formula for expression (**) while treating A? as a constant this

time and simplifying using an identical process to isolate A%:

ko’ ph k,w” ph g
a2 D B D (30-c)

B? B®

On their own, Eq. (30-b) will be the solution to expression (*) and Eq. (30-c) will be the exact
solution to expression (**). Together they will form the exact solutions for the entire plate
governing partial differential equation. Eqg. (30-b) and Eg. (30-c) can then be solved
simultaneously to determine the roots A;, Az, Az and A4 for expression (*) and the roots B;, By,

Bs, B4 for expression (**). The solution process for expression (*) is elaborated below.

By substituting Eq. (30-b) in Eq. (30-c), Eq. (30-d) is resulted.

k,w’ ph k,@” ph _pl
A2 D D

2
(kla)zphj_A4 A
D

A2

(30-d)

Re-arranging and simplifying Eq. (30-d) as follows yields Eq. (30-e).
A2 k, @’ ph k@’ ph _A4_
A7 D D

EIRIN
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(30-e)

D

2 2 2
A4(—w§hj(kl+k2)—(—kla) ”hj -0

Since, the sum of k; and k, equals unity, Eq. (30-e) can be re-written and simplified as outlined

below to derive the roots for expression (*) of the characteristic equation, presented as Eq. (30-f).

2
(klaéphj k>0’ ph?
2
A = =D

GEG

— k@’ ph
D

A4

k,”@® ph
D

A% =
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(30-f)

Similarly, substituting Eq. (30-c) in Eq. (30-b) gives the following roots for expression (**):

B:

-+
N?\_
S

(30-9)

o

Thus, from Eqg. (30-f) it can be seen that there will be four roots A; (i = 1, 2, 3, 4), for the

expression (*) as defined in Egs. (31) and (32) of which two are real and two are imaginary.

A=A = ko B < p, (31)
A=A, =i ko %h:ax (32)

Similarly, from Eq. (30-g) it can be seen that there are four roots B; (i = 1, 2, 3, 4), for the

expression (**) as defined in Egs. (33) and (34) of which two are real and two are imaginary.

h
B, =B, =./k,» %: B, (33)
B, =—B, =ik, ph_ (34)
2 == 4—| w D —OCy

It is important to note here that the roots shown in Egs. (31) through (34) not only satisfy their
individual expressions separately but together any real-real or imaginary-imaginary combination
(A and B;) of these roots also satisfy Eq. (30) as a whole. Thus, each real-real and imaginary-
imaginary pair of roots (Ajand B;) is an exact solution to the plate governing equation. There are
8 such pairs of exact solutions and they are Ajand B;, A; and Bs, Azand B, Azand B3, Azand By,

Acand By, Asand B, Aqand B4. However, if a real-imaginary combination of roots (Ajand B;) is
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substituted in to the characteristic equation, it can be seen that such a pair does not fully satisfy
the entire characteristics equation in general, although on their own each of these roots satisfy
their respective beam-like expressions (*) and (**). There are 8 such real-imaginary
combinations that can be made from the solutions presented in Egs. (31) through (34) and these
pairs (Ajand B;) are not exact solution to the plate governing equation. These roots are A; and B,
A; and By, Azand B,, Az and By, A; and By, Azand Bs, A4 and B; and A4 and B3. Thus, out of the
16 combinations of roots that can be developed, 8 satisfy the governing equation fully, but the
other 8 fails to do so and as such the solution becomes a quasi-exact solution to the plate

governing equation.

As the solution to the plate equation was assumed to take the form shown in Eq. (28) the

following expressions were constructed using the roots shown in Egs. (31) to (34).
e™ =Ce '™ +C,e' +C,e +C,e* (35)
e®” =D +D,e'™ +D,e ™ +D,e” (36)

Combining the expressions in Egs. (35) and (36) with the trigonometric identities for, sin(x) =

(- e™)/2i, cos(x) = (e™ + e™)/2, sinh(x) = (¢*- e)/2 and cosh(x) = (e*+ €™)/2 yields Egs. (37)
and (38).

e™ =C,sin(a, x) +C, cos(a, X) + C, sinh(3,X) + C, cosh(3, X) (37)

e = D;sin(a, y) + D, cos(a, y) + D, sinh(8, y) + D, cosh(8, y) (38)

where, C; to C4 and D to D4 are unknown coefficients. Since, the solution is assumed to take the

form defined by Eqg. (28) the final 16-term quasi-exact solution for a thin plate can be derived by

multiplying Egs. (37) and Eq. (38) as follows.
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W (X, y) = E;; sin(a,X) sin(a, y) + E;, sin(a,X) cos(a, Y) + Ey, sin(a,X) sinh(3,y)

+E,, sin(a,x) cosh(B, y) + E,, cos(a,X) sin(a, y) + E,, cos(a,X) cos(a, Y)

+ E,; cos(a,x) sinh(B,y) + E,, cos(a,x) cosh(B,y) + E,; sinh(B,x) sin(a, Y) (39)
+ E,, sinh(B,x) cos(a, ) + Eg, sinh(B,x) sinh(B,y) + E,, sinh(3,x) cosh(B, y)

+E,; cosh(B,x) sin(a, y) + E,, cosh(B,X) cos(a, y) + E,; cosh(B,x) sinh(5,y)

+E,, cosh(B,x) cosh(s,y)

where, Ejj in Eq. (39) are the new unknown coefficients defined as follows.

E;=Ci-D, (40)
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2.3 New Trigonometric, Frequency-Dependant Basis and Shape Functions

The new trigonometric, frequency dependant basis functions of the approximation space are
shown in Table 1. These basis functions are designed as linear combinations of the solutions to
the plate governing equation. Furthermore, they have been developed such that when the natural
frequency w and subsequently the roots, ay, ay, fxand gy of the characteristic equation tends to
zero, they change to the basis functions of a standard thin plate element in classical FEM which
arebased on an incomplete quintic polynomial.

Table 1: Trigonometric basis functions for thin plate

Sym . .
FEM Trigonometric
-bol
by 1 cos(e,&)cos(a,n)
b, X (COS(ayn)Sin(axf))/ a,
bs | (cos(e,&)sin(e,n))/ a,
b ¥ cosh(B,&)cos(a,77) — cos(a, &) cos(a,77)
‘ a’+p;
bs | xy (sin(a,&)sin(a,n))/ 2,a,
X ) cosh(B,n)cos(a,&) —cos(a,n) cos(a, &)
6 y ayz +,By2
o i sinh(B,&)cos(a,n) —sin(a, &) cos(a, )
7 a’+p;
X ) cosh(B,&)sin(a,n) - cos(a,&)sin(a,n)
’ Xy ayaxz +05yﬂx2
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Table 1 continued: Trigonometric basis functions for thin plate

=ym FEM Trigonometric
-bol
cosh(B,n)sin(a,&) —cos(a,n)sin(a, &)
b Xyz axayz +axﬂy2
5 sinh(p,n)cos(a, &) —sin(a,n7)cos(a, &)
bio y e y 3
. sinh(p,&)sin(a,n7) —sin(a, &) sin(a,7)
bus Xy ao’+a p :
, cosh(B,&)cosh(B,n) —cosh(B &) cos(a, i) —cos(a, &) cosh(B,n) + cos(a, &) cos(a, 1)
D12 X y2 axzayz +ax2ﬁy2 +,Bx2ay2 +ﬂx2ﬂy2
sinh(B,n)sin(a,&) —sin(a,n)sin(a,$)
bus xy3 a.a’+a p 3
s sinh(B,&)cosh(B,17) —sinh(B, &) cos(a,n7) —sin(a, &) cosh(B,n7) +sin(a, &) cos(a, 77)
D14 X y2 axsayz +axsﬂy2 +ﬂx3ay2 +ﬁx3ﬂy2
, cosh(B,&)sinh(B,n) —cosh(B, &) sin(a, i) — cos(, &) sinh(B, ) + cos(a, &) sin(a,n7)
D15 X y3 (szay3 +ax2ﬂy3 +ﬁx2ay3 +ﬂx2ﬂy3
s sinh(,&)sinh(B,17) —sinh(B,&)sin(a,n7) —sin(a, &) sinh(B,77) +sin(a, &) sin(a, 77)
bis | X y3 axsaye. +ax3ﬂy3 +,Bx305y3 +ﬁx3,5y3

The roots py, ay, fy and aywere defined previously and marked as Egs. (33), (34), (35) and (36),

respectively. Theexpansion terms in Table 1 can be more concisely written as follows.
(P(@), =(by b, b, b, by b b, b by by by b, by b, b by) (41

Thus, the non—nodal approximation of the solution function Wand the test function 6 written in

terms of generalised parameters will take the following form.

38




W=(PEn), *fa}  W=(P(&n)), =i} (42)

Replacing the generalized parameters, (a) and (Sa)in Eq. (42) with the nodal variables,
<W16x19y19xy1 ......... W46x49y46xy4,) and (6W169x160y169xy1 ......... 6W469x460y469xy4> re-
writing Eq. (42) will result in Eq. (43).

Wp=[R] ta} (oW j=[R], {58} (43)

The matrix,[P,]f is defined as,

[ 5,00) b,(00) b0 b,(00) b;(00) b,(00) b;(00) b,(00)]
b, (00) b, (00) b,(00) b,(00) _ _ b5(00) b, (00) by (00) by, (00)
b, (0.0) b,,(00) b, (00) b, (00  _ — b(00) by, (00) by, (00) by, (0.0)
b,y (0.0) b, (00) bs,(00) b,,(00) bia, (0.0) sy (00) b5,y (0.0) bygyy (0.0)

- -

b,(01)  b,(01) b;(01)  b,(01) b;(01)  b,(01) b;(01) by, (02)
b, (01) b,(01) b,01) b,01) _ _ by(01) b, (01) by (01) by, (01)
bly (071) b2y (0’1) b3y (0’1) b4y (0 ,1) — — b13y (071) b14y (0’1) b15y (0 ’1) ble (0’1)

| by (0) b, (02) by, (01) by, (01) bisy (01) by (01) by, (01) by, (0)

Thus, Eq. (43) and the [P,]matrix can be combined in the following manner to construct nodal

approximations for flexural displacement, W(&, 7).
W(&m)=(PEn), [P ], Hw, J=(N(& 7)), w, } (45)

In Eq. (45), (N(&,7m)),, is the frequency dependent trigonometric shape functions for flexure

which can also be re-written as,
W(gn)i=(N(En)iw, | (46)

where,

T
W4’04x’04y'04xy> (47)

w, )

I
T

w,,0,,,6,,,0

1x? ]_y; le ............

and,
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<N(§,77)> = <N1f ) sz , N3f ) N4f 1 N5f ) N6f ) N7f ) N8f ) N9f ) NlOf ) Nllf ) N12f ) lef ) N14f ) N15f ) N16f > (48)

The definitions of the new frequency-dependent trigonometric shape functions for flexure, N;
through Ny, are explicitly presented in expression (49) through (64).

N, = {[cos(ayn) +cosh(B,n7) —cos(a, ) cosh(B, (7 —1)) — cosh(B,) cos(e, (7 —1)) +

(o, sin(a,)sinh(B, (7 -1))/ B8, - (B, sinh(B, )sin(a, (7~ 1))/, J[cos(a, &) + cosh(B,£)
—cos(a, ) cosh(B, (£ —1)) - cosh(B, ) cos(a, (& —1)) + (e, sin(e, )sinh(B, (& -1)))/ B, —
(B, sinh(,)sin(a, (& —1)))/ax, 1}/{[2cos(e, ) cosh(B, ) + [sin(e, ) sinh(B,) (@, - £,2))/
(o, B,) - 2[2¢0s(ax, ) cosh(B, ) + sin(a, )sinh(B, )(a,” - B,%)) (@, B,)— 21

N,, = —{[ﬁX (cosh(ﬂx)sin(ax (& -1)-sin(e, &) +sin(e, ) cosh(p, (& —1)))+

a, (cos(a, ) sinh(B, (& —1)) —sinh(B,&) +sinh(B, ) cos(a, (& —1)))][cos(ay77) +cosh(B,n)
—cos(a, ) cosh(B, (7 —1)) - cosh(B, ) cos(a, (7 - 1)) + (&, sin(a, ) sinh(B, (7 - 1))/ B, -

(B, sinh(B,)sin(a, (7 -1)))/a, 1}/ {e, B, [2¢0s(e, ) cosh(B, ) + sin(a,)sinh(B,)(@,? - B,2))/
(o, B,) - 2][2c0s(a, ) cosh(B, ) + [sin(e, )sinh(B, )(a,* - B,2) (e, B,)- 21}

Ny, =-{8, (cosh(B,)sin(a, (7 —1) - sin(a,n) +sin(e, ) cosh(B, (7 — 1))+

a, (cos(ay)sinh(ﬂy (7-1))—sinh(B,n) +sinh(B, ) cos(a, (7 —1)))][cos(axf) +cosh(,¢)
—cos(a, ) cosh(, (& —1)) - cosh(B, ) cos(a, (& —1)) + (e, sin(e, ) sinh(B, (& —1)))/ B, —

(B, sinh(B,)sin(a, (£ —1))/er, }/Aer, B, [2c0s(er, ) cosh(B,) + (sin(ar, )sinh(B, ) (@, - B,2))/
(e, B,) - 2][2¢0s(a, ) cosh(B, ) + [sin(at, )sinh(B, )@, - B,) )/, B,)- 2]}

N, =1, (cosh(B, )sin(a, (7 —1)) - sin(, 1) + sin(a, ) cosh(B, (7 — 1))+

a, (cos(ay)sinh(,b’y (7 —1)) —sinh(B,n) +sinh(B, ) cos(a, (7 —1)))][ﬂX (cosh(,b’x)sin(ocX (&-1)
—sin(a, &) +sin(a, ) cosh(p, (& —1)))+ a, (cos(ozX )sinh(5, (£ —1)) —sinh(5, &) +sinh(A,) -
cos(er, (£ ~ D))}/, B, B, [2c0s(e, ) cosh(B, ) + (sin(e, ) sinh(B, )@, - B,2))/

(o, 8,) - 2[2c0s(, ) cosh(B, ) + [sin(ax, ) sinh(, )z, - B, %))/, B,)- 21}

N, = {[cos(ayn) +cosh(B,n) —cos(a, ) cosh(B, (7 —1)) — cosh(B, ) cos(a, (7 —1)) +
(e, sin(a, ) sinh(B, (7 ~1)))/ B, - (B, sinh(B, )sin(e, (7 - 1))/, [cos(a, (£ ~ 1)) +
cosh(p, (¢ —1)) —cos(a, &) cosh(B, ) — cosh(p, &) cos(ex, ) — (ocX sinh(ﬂxf)sin(ozx))//i'X +
(B, sin(a,&)sinh(B,))/a, 1}/{[2cos(a, ) cosh(B,) + (Sin(f%x)Silﬂh(,b’x)(wx2 - ﬂxz))/

(o, B,) — 2][2c0s(e, ) cosh(B, ) + (sin(a, )sinh(B, ), - 8,2) )/, B,) 21}

(49)

(50)

(51)

(52)

(53)
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Ny, = {8, (sin(e, (& —1)) + cosh(B,&)sin(a, ) —sin(a, &) cosh(B,) ) + a, (sinh(B, (£ —1)) +
cos(a,&)sinh(B,) —sinh(5,&) cos(ax))][cos(ayry) +cosh(B,17) —cos(a, ) cosh(B, (7 -1)) -
cosh(8,) cos(a, (7 -1) + (@, sin(a, )sinh(B, (7 -1))/ B, - (8, sinh(B,)sin(a, (7 -1))/a, 1}/
la, B,[2c0s(a, ) cosh(B,) + sin(e, )sinh(8,) (@, - £,7)) (e, B,) — 2][2¢0s(a, ) cosh(B, ) +
(sin(a, )sinh(B,)(@,” - 8,%))/(@, 8,)- 21}

N, =-{8, (cosh(s,)sin(a, (7 - 1)) - sin(e,n) +sin(e, ) cosh(B, (1 —1)))+

a, (cos(a,)sinh(8, (7 —1)) - sinh(3,7) +sinh(B, ) cos(a, (17 — 1)) lllcos(ar, (£ — 1)) +
cosh(B, (£ —1)) — cos(a, &) cosh(B, ) — cosh(B, &) cos(a, ) — (e, sinh(B,&)sin(a,))/ B, +
(8, sin(e, &)sinh(B,))/a, 1}/ ler, B, [2¢0s(e, ) cosh(B,) + (sin(a, ) sinh(B, ) (@, - B,2))/
(o, B,) - 2][2¢o0s(ax, ) cosh(B,) + (sin(at, )sinh(B, ) (@, - B,%) ) (e, B,)- 21}

Ng; =—1{8, (cosh(B, )sin(e, (1 —1)) - sin(a,n) + sin(a,) cosh(B, (7 — 1))+

a, (Cos(ozy)sinh(ﬂy (7 —1) —sinh(B,n7) +sinh(B, ) cos(a, (17 —1)))][ﬂX (sin(ozX (&E-1)

+cosh(B,&)sin(a, ) —sin(e, &) cosh(B,)) + e, (sinh(B, (& —1)) + cos(a, &) sinh(B, ) — sinh(B, &) -

cos(ax))]}/{axayﬂx B, [2cos(a, ) cosh(B,) +(sin(ax)sinh(ﬂx)(axz —ﬂxz))/

(o, 8,) - 2][2cos(a, ) cosh(B, ) + sin(a, )sinh(B, ) (@, - B,%)) (e, B,)- 21}

Ng; = {[cos(ay (7 -1)) +cosh(B, (7 —1)) — cos(a,n7) cosh(B,) — cosh(B,n) cos(x, ) —

(o, sinh(B,m)sin(a,))/ B, + (B, sin(a,n)sinh(B,))/a, Tlcos(e, (£ - 1)) +

cosh(B, (£ 1)) - cos(a, &) cosh(B,) — cosh(B, &) cos(a, ) — (a, sinh(B,&)sin(e,))/ B, +
(B, sin(at,&)sinh(5,))/at, 1}/ {2 cos(a, ) cosh(B, ) + (sin(a, ) sinh(B, ) (@, - B,2))/

(o, B,) - 2][2c0s(a, ) cosh(B, ) + (sin(a, sinh(B, ), - 8,2) )/, B,)— 21}

Nyo, = {8, (sin(a, (£ —1)) + cosh(B,&)sin(a, ) —sin(a, &) cosh(B,)) + a, (sinh(B, (& —1)) +
cos(a,&)sinh(pB,) —sinh(B,<) cos(ax))][cos(ay (7 -1))+cosh(B, (7 -1)) — cos(a,n)cosh(B,) —
cosh(B,n)cos(a,) - (, sinh(8,n)sin(a, ) )/ B, +(8, sin(a,n)sinh(B,))/a, 1}/

{a, B,[2cos(e, ) cosh(B,) + (sin(ax)sinh(ﬂx)(axz - ﬂxz))/(ax B,)—2l[2cos(a,)cosh(B,) +
(sin(a, )sinn(8, )(@,” - 8,))/(@, ,)- 21}

Ny = {8, (sin(a, (7 —1) + cosh(B,n)sin(a, ) - sin(a, ) cosh(B, ) )+

a, (sinh(B, (17 —1)) + cos(a,n)sinh(A, ) - sinh(B,7) cos(a, ) IIcos(a, (£ ~1) +

cosh(p, (¢ —1)) —cos(e, &) cosh(B, ) — cosh(B, &) cos(e, ) — (ocX sinh(ﬂxf)sin(ax))/ﬂx +
(B, sin(axﬁ)sinh(ﬂx))/ax]}/{ay B,[2cos(a, ) cosh(B,) +(sin(ax)sinh(ﬂx)(axz - ﬁj))/
(o, B,) - 2][2c0s(e, ) cosh(B, ) + [sin(a, )sinh(B, ) (@, - B,) /@, B,)- 21}
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Ny,¢ = L8, sin(er, (7 — 1)) + cosh(B, 1) sin(a, ) - sin(er,17) cosh(B, ) )+
a, (sinh(B, (7 —1)) + cos(a, ) sinh(B, ) — sinh(B,7) cos(a, ) IL B, (sin(a, (£ ~1))

+cosh(p, &) sin(ea, ) —sin(a, &) cosh(ﬂx))+ a, (sinh(,BX (& -1)) +cos(a, &) sinh(B,) —sinh(B,&) -

cos(e, )}/l @, B, B, [2c0s(a, ) cosh(B, ) + [sin(e, ) sinh(5, ), - B,2))/

(o, B,) - 2][2c0s(, ) cosh(B, ) + (sin(ax, ) sinh(B, ), - B,%))/(@, B, )~ 21}

Ny = {[cos(axg) +cosh(g, &) —cos(a, ) cosh(B, (& —1)) — cosh(B, ) cos(e, (&£ —1)) +

(e, sin(er, ) sinh(B, (£ -1))/ B, — (B, sinh(B,)sin(a, (£ -1)))/a, ][cos(a, (7 —1)) + cosh(B, (7 —1))
—cos(a,mn)cosh(B,) —cosh(B,n)cos(a, ) - (ay sinh(B,77)sin(a, ))/,By +

(8, sin(a, m)sinh(3,))/a, 1}/ [2cos(a,) cosh(B,) + (sin(a, )sinh(8, )@, - 8.2))/

(o, B,) - 2][2c0s(, ) cosh(B, ) + (sin(, )sinh(B, ), - B,))/(a, B,) - 21}

N, = —{[3, (cosh(B,)sin(a, (£ 1)) - sin(a,&) + sin(a, ) cosh(B, (& —1))) +

a,(cos(a,)sinh(B, (& —1)) —sinh(B &) +sinh(B,) cos(a, (& —1)))l[cos(a, (7 —1)) + cosh(B, (7 1))
—cos(a,n)cosh(B, ) —cosh(B,n)cos(a, ) - (ay sinh(B,7)sin(a, ))/,By +

(8, sina, n)sinh(B,))/a, 1}/ e, B.[2c0s(@,)cosh(B,) + (sin(a, )sinh(B, ) (e, - B,2))/

(o, B,) — 2I[2cos(ax, ) cosh(B, ) + (sin(a, )sinh(B, ) (e, - 8,2))/(@, B,)~ 21}

Nys¢ = {8, (sin(a, (7 —1) + cosh(B, 1) sin(er, ) - sin(er,77) cosh(B, ) )+

a, (sinh(B, (7 —1)) + cos(a, ) sinh(8,) - sinh(B, 1) cos(a, ) I[cos(x, &) + cosh(B, &)
—cos(a, ) cosh(B, (& —1)) —cosh(B, ) cos(a, (& —1)) + (e, sin(e, ) sinh(B, (& -1)))/ B, —

(B, sinh(B,)sin(a, (£ - 1))/, 1}/ {er, B, [2¢0s(e, ) cosh(B, ) + (sin(ar, )sinh(B,)(@, - 8.2))/
(a,B,) — 2l[2cos(a, ) cosh(B, ) + sin(e, sinh(B, ), - B,%)) (e, B,)- 21}

Ny, =—{{8, (cosh(B, )sin(a, (& —1)) —sin(a, &) +sin(a, ) cosh(B, (£ —1)))+

a, (cos(oex)sinh(ﬁX (& -1))—sinh(B,&) +sinh(B,) cos(a, (& —1)))][,8y (sin(ay (n-2)

+ cosh(8, n)sin(a,) —sin(a, ) cosh(B, ) )+ , (sinh(3, (7 — 1)) + cos(a,7) sinh(B, ) — sinh(, 1) -

cos@, )}/, @, B, B, [2¢0s(, ) cosh(B,) + (sin(a, ) sinh(8,) (@, - B,))/
(o, B,) - 2l[2c0s(a, ) cosh(B, ) + [sin(ar, ) sinh(B, ) (@, * - B,%))/(e, B,)- 21}

(60)

(61)

(62)

(63)

(64)

The aforementioned new trigonometric DFE shape functions are plotted against the polynomial

FEM shape functions for comparison, and will be presented and further discussed in the next

Chapter (Figures 8 through 15), and in Figures 20 through31in Appendix A. Although dependent

on the frequency w elsewhere (see Figures32 to 43 in Appendix A), the trigonometric shape

functions for bending are independent of the frequency at the element boundaries and as such

they take the following values at each node. At node 1, Nis = 1 and Na= Nzt = Ng = 0. At the
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second node, Nss =1 and Ngr = N7+ = Ngs = 0. Similarly at node 3, Ngs =1 and Nigr = Nigi= Ny
= 0. Finally, at node 4, N13s =1 and Nysr = Nysr= Nygr = 0.

Another important feature to note regarding the dependency of these shape function on the
natural frequency through the roots ay, ay,fxand pfy, is that they canalso be applied to study the
static behaviour of thin rectangular plates when the natural frequency is set to zero as these
trigonometric shape functions then become identical to the polynomial shape functions used in

conventional FEM as mentioned in the beginning of this section.

Thusfar in this thesis the plate governing differential equation was derived starting from
Hamiltonian mechanics and the Classical Plate Theory (CPT) and a quasi-exact solution to the
plate governing equation was sorted. Building up on this quasi-exact solution, new trigonometric
basis functions and frequency dependant shape functions were also presented for a 4 node, 4-
DOF per node rectangular plate element. In the next Chapter this new solution will be used to
develop a Quasi-Exact Dynamic Finite Element Method (QDFE) for a thin rectangular plate. But
before forming the QDFE solution two conventional FEM formulations using 12-DOF and 16-
DOF elements will be developed to validate the QDFE results. Furthermore, a Dynamic
Coefficient Matrix Method (DCM) will also be presented followed by the graphical illustrations
of the QDFE shape functions and the numerical results for the 12-DOF FEM, 16-DOF FEM,
QDFE and DCM methods.
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3. FREE VIBRATION OF A RECTANGULAR HOMOGENEOUS PLATE

The formulation of the QDFE method, which is essentially a finite element method in
itself, starts at the discretized weak integral form of the governing equation after the boundary
terms have vanished. In the conventional FEM method, this is where element discretization
begins and the polynomial shape functions are applied to form the element stiffness and mass
matrices. Thus, for this reason and for the purpose of validating the results produced by the
QDFE method, two conventional FEM formulations will be developed using 12-DOF and 16-
DOF rectangular plate elements in this chapter. Then starting from the discretized weak integral
form of the conventional 16-DOF FEM method, a QDFE solution will be developed using the
trigonometric shape functions presented in the previous chapter. Using the same solution to the
governing differential equation presented in Section 3.2, a DCM method will also be presented
for a 4 node, 4 DOF per node rectangular plate element. The surface plots for the QDFE shape
functions will be plotted against the surface plots for the polynomial based shape functions used
in conventional FEM in order to give the reader an opportunity to compare their identical nature

and finally, the numerical results for all the methods outline above will also be discussed.

3.1 Conventional Finite Element Method (FEM)

Consider a linearly elastic, homogeneous, isotropic, thin plate as shown in Figure 3 having
length, L, width, W’, and thickness, h. The thickness h is assumed to be much smaller compared
to the other characteristic dimensions as well as the wavelength. Furthermore, during vibration
the rotary inertia and shear effects are neglected and only small deflections are assumed; i.e.

linear vibration.

Figure 3: Thin plate used for vibration analysis
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In what follows, the conventional Finite Element solution is formulated using two different thin
rectangular plate elements. The first element is a 12-DOF element and the second element is a
16-DOF element. The 12-DOF element has 3-DOF per node, where the first DOF is the flexural
(lateral) displacement w, along z-axis. The other two DOEF’s, in this case, are the rotations
around x-axis, ¢y, andy-axis, ¢y, respectively. The 16-DOF element has 4-DOF per node,
where again the first three DOF’s of each node are the same asthose of the 12-DOF element,
with an additional degree of freedom per node, that is the curvature of the x-y plane, ¢x. Both
FEM formulations are included below as references, and to pave the road for the QDFE
formulation. Both 12- and 16-DOF FEM elements were implemented in MATLAB® codes,
where the elements are then assembled and the applicable boundary conditions are enforced to
generate the linear Eigenproblem of the system. These codes are used to generate benchmark
natural frequency/mode data for comparison and validation purposes, where such data are not
available in the open literature.

3.1.1 Finite Element Analysis with 12-DOF Rectangular Element

Figure 4: 4-Node, 3-DOF per node rectangular plate element
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Figure 4 is an illustration of the 12-DOF rectangular element used in the development of
the first plate element. In order to eliminate time dependency in Eq. (25), free, linear, harmonic

vibration is considered and the following transformation is used.
W :Weiwt (65)

where, W is the transverse displacement amplitude. Substituting (65) into Eq. (25), the latter can
then be re-written in the following form, i.e., in terms of frequency, without the time

dependency.

o'W o'W o'W
D 4 + 2 2 + 4
OX ox“oy oy

j—a)z phW =0 (66)

where, w is the natural frequency. The definitions of the bending moments given in Egs. (20),

(22) and (24) can be written in the matrix form as follows.

o'W
M, 1 v 0 g;vi/
M,:=-Djv 1 0 v (67)
M, 0 0 (@-0)]| 5y

oxoy

As will be further discussed later, the FEM formulation heavily depends on the application of the
weighted residual method. At that point, it will be easier to spot the boundary terms and obtain
the weak integral form when the governing partial differential equation is written in terms of
bending and twisting moments. Therefore, the moment definitions in Eq. (67) are back-

substituted into Eq. (66) to obtain the following form:

2 o’M,,  O*M
0 MZX+2 Y+ 2y —w?phW =0 (68)
OX oxoy oy
The Galerkin method of weighted residuals [(118)108] is then used to develop the integral form
of Eq. (68). This is done by multiplying Eq. (68) by the weighting function, 6/, and integrating

over the area of the plate, which gives:
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_=”(az|\/| ’M,, aM 62M

e 8X6y axay Y ' —w phWJéW =0 (69)

A

Using Green’s theorem [117], once on each of the derivative terms, results in the following

expression:

_” oM a(avv) LMy (W) | M, J(aW) M, (W) ),
oy  Ox ox oy oy oy

(70)

oM oM, oM,
Ha)zphW(é\N)dA+_[[m—x+—nynxé\NdS+I( Y ]n SWdS
- s OX oy Loy OX

where, nyand ny are the components of the outward unit normal vector. Noting that the terms in
parentheses in the boundary integrals are the definitions of the shear forces and replacing these

with Qy and Qy gives:

_” oM 5(6W) M.y (W) , M,y a(aW) M, o)),
oy  oX ox oy oy oy

jja)zphvv(aw)dijanést +jQynyévvds
A S S

(71)

The application of the Green’s theorem once more results in the weak integral form [117]of Eqg.

(69), written as:

+2M

02 (W 02 (W )
ﬂ[ o aiay)ﬂvly 6(y2 )]dA—.[.\[a) PhW (SW)dA+
(72)

.I(anx +Qyny)§WdS—£(MxnX + Mxyny)a(gzv) dS—.!.(MXynX + Myny)a(g\;v) dS=0

In Eq. (72), which is fully equivalent to Eq. (69), the boundary integral terms vanishand thus the

following terms will remain.
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Back substituting the moment definitions shown in Eq. (67) in Eq. (73) in order to write the

equation in terms of the flexural displacement,w,then results in:

o5

Term 1 Term 2 Term 3

|

A A
(éW) OW (07 (W) +2D(1—v)—aZW GG
8y2 ox? oxoy | oxdy

(74)
2
il (@ <éW>j ALl [8 <(>W>j+w phww}dA 0
L a o ) % oy )\ J
Y Y Y
Term 4 Term 5 Term 6
The expression in Eq. (74) also satisfies the principle of virtual work, written as:
w :V\_/INT _V\_/EXT =0 (75)
where,
W, =0 (76)
for free vibrations and thus,
V\_/INT :V\_/f (77)

The total virtual work, internal virtual work and external virtual work components are denoted

by W , W, yrandW 1 respectively.

The next step is to formulate the finite element solution. The discretization is performed using

the 4-node, 3-DOF freedom per node element, as shown in Figure 4, such that,

_ _ #elements #elements
W=W,,= > W= > Wy (78)

k=1 k=1

The shape functions used to develop the classical Finite Element formulation are developed

based on the following 12-term polynomial non-nodal displacement function,
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W(X, Y) = oy + X+ Y + a X2+ ag Xy + oy + o, X + o Xy
(79)
+agXy? +ay, Y + o, Xy +a,xy?

Thus, the above polynomial representing the deflection field over the finite element depicted in

Figure 4 (designated by subscript e) can be written as:

w, =[Ll{e} (80)
where,
[L1=[L %y, X%, xy, y2, %%, X2y, xy?, y3, X7y, xy°] (81)
and,
{a}: la,a, ... 0Oy Oy, Oy }T (82)

Introducing the element displacement matrix,
{59}:[5‘1,52,53,54]T (83)

where, d; (i = 1, 2, 3, 4) are the nodal displacements such that the nodal displacement of the first

node can be written as,
6.} = [w,.(ow/ ax),, (ow/ oy ). T = [w;,6,0.6,, (84)

and the nodal displacements of the remaining nodes take an identical form. If the unknown
coefficients am (m = 1, 2, 3,..., 12) are expressed via the nodal displacements above, then the

following relationship can be written.
{6.}=[Cl{a} (85)

where, the matrix [C] is a 12 x 12 matrix whose constituent elements depend on the x- and y-
coordinates of the nodes of the finite element illustrated in Figure 4. The above relation can be
then rearranged to determine the unknown coefficients, {1}, as follows:
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taj=ICI" {4, (86)
Substituting Eqg. (86) in Eq. (80) results in the nodal displacement function, written as:
w, =[L][C] {3, } (87)
where,
[N]=[L]ICT" (88)

are the cubic shape functions used to develop the finite element formulation. Given below are the

12 shape functions that result from the above mathematical manipulations (see also [117]).

A A ) A
s [ A
TR

AT A4
SLERY SHEH
AT

50



-]
AT A
QIERSILERG

oo A [ A
w5 T 4
w4 [ 1)

Introducing the element displacements expressed (interpolated) using the above shape functions

For node 4:

(88-a through 88-1) and the nodal displacements (see Eq. (87)), into expression (74), leads to the
element stiffness and mass matrices. The element matrices, when assembled within the FEM
code written in MATLAB®, will result in the system’s linear Eigenvalue problem shown in Eq.
(89).

<&Nn>(K12—a)2M12 n}:O
(89)
det(K,, - @M, )=0

Here, the subscript 12 indicates that all ensuing matrices are unique to the 12-DOF FEM
formulation. [K]y. is the global stiffness matrix and [M]i2 is the global mass matrix. Boundary
conditions are also enforced within the MATLAB® code. The five matrices (90) to (94) shown

below ([kie]12, i=1-5), are all sub—matrices that, when summed up, result in the final element
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stiffness matrix, [ke]i2, marked as (95). The right-hand side subscript e denotes that they are

element stiffness matrices. The subscript on the left-hand side refers to the term in Eq. (35)

which gives rise to each matrix. For example, matrix, [Kie], IS an element stiffness matrix that

results from the first term of Eq. (35).

N1>0< ' lex
[kle]lz = D |
N12xx ' lex
lex ’ ley
[k28]12 =Dv |
Nlex : ley
ley . ley
[kse ]12 :2D(1_V |
N12xy : ley
ley ' lex
[k4e]12 =Dv |
NlZyy : lex
Ny, Ny,
[kSe]lz =D |
N12yy ’ ley

Thus, the final element stiffness matrix is:

_ 12y

N1 'lexx

XX

Nlex ' N12xx

N, -N

XX 12yy

Nlex -N

12yy

N, -N

Xy 12y

- 12xy ~ "Ni12xy

ley ’ Nlex

' N12xx

—_— 12yy

N, - N

W 12yy

12yy

[ke ]12 = [kle ]12 + [kZe o T [k3e ]12 + [k4e ]12 + [kSe ]12

Matrix (96) is the element mass matrix.
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(92)
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(94)
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N1 ’ N12

[m], =—pho®| | | (96)
N12 ’ le

A 4-node, 3-DOF per node rectangular element satisfies C° continuity [117], and it is quite
suitable for problems that require only continuity of the field variable w at the element
boundaries. For problems requiring C° continuity, it is customary to use the nodal values of w to
be the DOF of the element. Since w varies along an element edge, inter-element continuity is
achieved when there are sufficient nodes and hence nodal values of w along the edges of the
element that will allow for the determination of the variation. For example, if w displays a
quadratic variation across a certain element boundary, then inter-element continuity of the field
variable can only be achieved if there are three nodal values of w along that edge. To this end,
there should be three nodes along the boundary [117]. Thus, by continuing to add nodes along
element edges and through introducing extra DOF’s to an element it is possible to easily satisfy
the C° continuity requirement in an infinite number of ways. Generally, using such higher—order
elements rapidly increases the accuracy of convergence as opposed to using lower—order
elements [117]. While, this does not imply that one should always make higher—order elements a
first choice in FEM analysis, one main drawback of the 4-node, 3-DOF per node (12 DOF in
total) C°-continuous element, developed and presented in this section is that it only provides

continuity of the dependant field variable and not its first derivatives.

C! continuity is an extremely important requirement for plate bending analysis. What
C'continuity means is that inter-element continuity is achieved not only for the field variable w,
but also for its normal derivative ow/on. To preserve C* continuity one must ensure that w and
ow /on are uniquely specified along the element boundaries by the degree of freedom assigned to
the nodes along a particular boundary. In physical terms, the inability of the 12-DOF element
to satisfy C! continuity means that the normal slope is discontinuous between any two adjacent
elements because the normal slope has not been uniquely specified by the common nodal DOF’s
shared by the elements. Thus, such an element becomes a non-confirming or incompatible
element [117].
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For plate bending problems exploiting the Classical Plate Theory (CPT), the field variable is the
flexural displacement of the midplane and it is essential that the displacement and its derivative
are continuous across the element boundaries. Since, the functional for plate bending consists of
second order derivatives, this is not only a physical requirement but also a mathematical
requirement that will ensure convergence as element size is reduced. Thus, the failure of the 12—
DOF element to provide C' continuity calls for the need for a higher—order element and to this
end a 4-node, 4-DOF per node element is used to re-formulate the conventional Finite Element

solution.

3.1.2 Finite Element Analysis with 16 — DOF Rectangular Element

Y.-f““\.
- W L
4 3
& w00, 0
specified at the node
b
1 2

Figure 5: Conforming four node rectangular element with 16 — DOF ensuring C' continuity

Figure 5 depicts the 16 — DOF element studied. For this FEM formulation an incomplete
quintic polynomial was assumed excluding the x*, x, xy* and y* terms but incorporating the X%y
term[117]. The resulting 16 unknown coefficients were found using the same procedure outlined
in the previous section. With an additional fourth DOF, 8°w/dx-dy, at each node, this element is
fully compatible and satisfies C' continuity. That is, it ensures continuity of the normal

derivatives across adjacent element boundaries.

The formulation of the conventional FEM solution using the 16-DOF element starts from the
point where the polynomial approximation function is defined. All mathematical manipulations
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before and after this stage are exactly the same as for 12-DOF formulation and as such those
steps are not repeated here for brevity. All that changes after this step are the definitions of the
polynomial vector, [L], the unknown coefficient vector, {a}, and the nodal displacement vector,
{0i}. The 16-term function used to develop the classical Finite Element formulation is shown in
Eq. (97)[117].

WX, Y) = oy + X+ Y + a X +ag Xy + oy’ + o, X + o Xy

+agXy? +ay Y’ +a XY+ a, XY+ a Xy’ +a, Xy +a XY + o XyP 7)
The polynomial vector, [L], becomes:
L=y, xy, 2,7 Xy, xy?, yo Y k3 y 2 xy? )y 2, )Py Xy (98)
The unknown coefficient vector will now be:
[L] =[a,, @y, 04, 0 Qg Qs Qg ] (99)

The nodal displacement vector will now have four DOF’s per node instead of three as in the

previous case. For example, the nodal displacements for the first node will be:

(6.} =wi, (awr &x),, (ow/ ay),, (0wl oxey) | =[w,,0,1,6,,,0,, (100)

The [C] matrix for this FEM formulation will have dimensions of 16 x 16. Performing the exact
same mathematical manipulations as shown in Eq. (41) and Eqgs. (46 — 49) will yield the 16

shape functions shown in Egs. (101-a) to (101-p).
<N(X’ y)> :<N11 sz Nsv N4' N5' Nel N7’ Ngv Ng, NlO’ N111 N12’ N13’ N14' N15’ N16> (101)

where, N; to Ny are expressed as follows.
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For node 1:

N, = a3lb3 [(a3 +2x* - 3ax’ Xba +2y° —3by2)]

1

No = o [axc-a) (o* + 2y ~30y° |

1

NS VRPN

N, = a31b3 [abxy(x N a)2 (y - b)z]

For node 2:

N, =

aslbs [Bax? ~2x° Jb® + 2y° - 30y? )

Ne = aslbs [a(x® —ax® Jb° + 2y° ~30y?

N; = a31b3 [b(3aX2 - 2x3)y(y B b)z]

1

e [abxy(x> - ax)y - b)?]

Ng =

For node 3:

Ng = a3]53 [(3axz _2X3X3by2 _2y3)]

10 —

L el -ax faoy* 2]
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(101-b)

(101-c)

(101-d)

(101-e)

(101-f)

(101-9)

(101-h)

(101-i)

(101-))



Ny, = a31b ~[b(@ax® —2x*y* —by?)| (101-K)
Ny, = a3lb3 [abxy(x* — axly” ~by)] (101-1)
For node 4:
N,, = a3—lb3 [(2* + 2x° — 3ax? J3oy? — 2y*)] (101-m)
Ny, = a31b3 [ax(x — a)? (30y? - 2y°) (101-n)
N, = a31b3 [b(a® +2x* —3ax? )y* —by?)] (101-0)
N, = a31b3 labxy(x — )2 (y? ~ by)) (101-p)

Once again, discretization leads to element and mass stiffness matrices, however, the element
matrices for the 16 — DOF formulation are 16 x 16 in dimension. The final element stiffness
matriX, [Ke]is, marked as (102), is comprised of five sub—matrices, [kie]is, Which are numbered

(103) to (107). The notations used for these matrices are similar to those used before.

[Kelis =[Kielis + Koo Lig +[Kae Lis +[Kae Ji6 + [Kse Jis (102)
where,
lex ’ lex J— lex : Nlexx
kels =D | | (103)
N16xx ’ lex —_ N16xx ’ N16xx

57



lex ’ ley
[kZe]lﬁ =Dv |
Nl6xx : ley
ley . ley
[kse ]16 _ZD(]-_V |
N16xy ' ley
ley : lex
[k4e]16 =Dv |
Nley : lex
Ny Ny,
[k5e]16 =D |
Nleyy ’ ley

Matrix (108) is the element mass matrix.

[m]le =-pho’ |

N, -N

R XX 16yy
|
104
— N16xx ’ N16yy ( )
—_ ley ' Nlny
|
105
— N16xy ’ N16xy (105)
- ley ) N16><x
|
106
_ N16yy . N16xx ( )
S ley : N16yy
| (107)
_ N16yy ’ N16yy
—_ N1 : N16
I
108
_ N16 ’ N16 ( )

As with the 12 — DOF formulation, another MATLAB® code was written to assemble the

element stiffness and mass matrices which gave rise to the global element, [K]:s and global mass,

[M]1s matrices, respectively. Applying various boundary conditions, an Eigenvalue problem
similar to that described in Eq. (89) was formed and solved to obtain the Eigensolutions for the

plate system.
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3.2 Quasi-Exact Dynamic Finite Element Method (QDFE)

In this section a Quasi-Exact Dynamic Finite Element (QDFE) formulation is developed for
the homogeneous, isotropic, linearly elastic, thin, rectangular Steel plate depicted in Figure 3.
The new trigonometric, frequency dependant shape functions (Section 3.3)based on the quasi-
exact solutions to the plate governing equation (Section 3.2)will be used to develop the QDFE
method. As mentioned previously, the QDFE method is a hybrid and intermediate method that
combines the accuracy of the exact methods as well as the adaptability of the conventional FEM
method to obtain a better finite element model. Therefore, the starting point of the QDFE
formulation will be the discretized weak form of the equation from the conventional FEM shown

in Eq. (109), after the boundary terms vanished.

Term 1 Term 2 Term 3
| | |

X | [ \ [ \
W (x,y)= yj JIH{D ow (Mjm oW [52(5"")}20( )2 (52(5"\’)}

ok ox* | ox® oy | ox OXoy | oxoy
2 2 2 2 109
0y W (SO oW (), e T (109
X oy oy oy
\ )L )\ J
Y Y Y
Term4 Term 5 Term 6

The green’s theorem is applied, and integration by parts are carried out on each term in Eq.
(109), except the mass Term 6. Terms 1 and 4 are integrated twice with respect to x, while Terms
2 and 5 are integrated twice with respect to y. Before integrating Term 3, it is re-written as

follows and a special set of integration by part will be performed.

B a w 9% () 62w 0% (Sw)
jAj DE-v) o ox ay dA+ jj D-v)— oy By dA (109-a)
(a) (b)

Two sets of integration by parts will be applied to Term (a) of Eq. (109-a), firstly with respect to

x and secondly with respect to y. Similarly, for Term (b) of Eg. (109-a) another two sets of
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integration by parts will be carried out, however, this time it will first be with respect to y and
then with respect to x. Completing all the above-mentioned integration by parts leads to the

following equation.

jDa‘Na (W) ds + jD a""‘32(5"’)n ds+ jD(l 8""‘92(‘”’)nyds}
oy® Oxoy
+J.D 0" () n,ds + jDawa(&N)n dS+J.D(1 ma(&“’)n ds}
ay ox? oy? oy oxoy
IDwaa(X&N)n ds — IDW(ZX(ay )n ds} { ij a(yaN)n ds — IDW%X(?y)n ds} (110)

SW S
+j;\[Dw 85(4)dA+J‘J2D(1—u) a(ay)dA HD %dA

o' (ow 0" (ow ’
+gDuwaX§—8y2)dA+jJDw 8(y4 )dA—jAja; phwendA

The terms underlined in color are the boundary terms which are described as a product of the
virtual loads and the real displacements. Underlined in red, blue and purple are the expressions
for the moments My, My and M,y, respectively. Furthermore, the term underlined in green
represents the shear force Qy and the expression underlined in yellow represents the shear force
Qy. Lastly, underlined in orange is the governing partial differential equation written in terms of
virtual displacements. Eq. (110) can also be re-written as follows using the shear force
definitions given in Egs. (5-a) and (6-a) and the expressions for bending moment outlined in Egs.
(20), (22) and (24). The same color scheme above was used to illustrate how each expression

was condensed.

!M n +M,n, a—dS jlvl n,+Mn, ade+_£(QXl+Qyny)NdS

(111)

W W 0" (S )
+ [[p a(x dA+&[2D%dA jA[D%dA—jA[a) phdw (wdA

A
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As mentioned previously, the expression underlined in orange above is the governing partial
differential equation written in terms of virtual lateral displacement ow. Introducing =x/a and

n=y/b into expression (110) leads to its non—dimensionalized form, written as:

J:l{Db(aW@ (&N)} —1dﬂ+T{Duﬂaz(&v)}g_ldmréfl{D(l_U)@az(&N)}n_ldg}

a’ o0& o0& oLab 0& on® Jeo o J| ab  0& oson
[ = =1 £=1 2 =1
+J[Du@6 (&ZN)} df*f{D_?@a (az/v)} 0+ J[D(l v) ow d” (éW)T dn]
D ab on 0&° |0 oL b7 On on° i ab on 0&n
SRR
| ”:O_a o0& |&=0 ab 85677
+__T_@Wa3(&/v) 15 I{D 63(&/\1)} dg] (112)
ASEE b 0£20n s
L ¢=0L
" Db a (5w) 2D 9t (Aw) " Da a (aN)
= d
J.oe:'..o ded n'[o J;o abwaégzaﬂz At J‘o.»:J;o b? A
n=l&=1
- j j abw?phwswd &dn
n=0¢&£=0

Thus, exploiting Eqg. (112) and the trigonometric shape functions defined in Eqgs. (49) to (64)
results in the dynamic element stiffness matrix [kps], which consists of ten sub-matrices. The

two sub- matrices resulting from the bending moment My are as follows.

[ oN, &°N, AN, Ny
o ogr T aE o
[kMxl]{:—f’j [ | dz (113)
70| ON,; %N, ON,, 0°N,,
L 8& 08t T 08 o8&t |
2 7t
[ ON, 9°N, N, *Nyg
m| o on* T o o’
[kMXz]{%j | | dn (114)
70| N, 0°N, N, 07Ny,
| 0¢ on®* T 05 on’ Jeo

where,
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[kMx ] = [kMxl]+ [ksz]

(115)

The bending moment My also contributes two sub — matrices towards the element dynamic

stiffness matrix [kps], written as:

o - 5

where,

N, 2N,
Jg_l on 0&*

=0l ON,, 0°N,
| on o&*

N, N,

e1| Om W
[kMyZ]: (%j I |

| on on’

— on o0&

—  on 0" |

n=1

N, I,

| dg
ON,g 0°Ny

Jdp=0

[kMy] = [kMyl] + [kMyZ]

The following matrices also appear due to actions of the twisting moment, M.

Ky |= ( D(; V)]T

£=0

where,

N, N,

0¢ 0gon
|
N, 92N,

| 0c 0%0n
Ny O°N,

on 0&0n
|

“0| N, 0°N,

| On 9&on

N, *Ny, |7
— o¢ agn
I dé
oN,, 07N,
— 0¢ ocom |
oN, 92N, |
— on a&n
| dn
ON,; 0°Ny,
— On 090 |,
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[kMxy] = [kMxyl] + [kMxy2] (121)

Numbered (122) and (123) are the two sub — matrices that is resulted due to the shear force, Q.

[N, Ny, |
N1 F . Nl 3
Db’ s o5
[kox1]= _(Tj f | | dn (122)
& Jio| N, °Ny,
N16 “Ae3 — NlG 3
o¢ o8 |.,
o°N, N, |
1 2 _— Nl 2
D[ o&n o&on
ko |=-{ = [ | | dz (123)
ab 3
70 o°N, °N,,
N16 ANeA 2  — N16 P
| agon o&on* |,
where,
[ka] = [kal] + [kaz] (124)

The shear force Qy contributes the following sub — matrices towards the element stiffness matrix,
[kos]-

LN NNy, Ik
_ 1 P 3 —_ 1 P 3
Da )¢ d U
[ka1]= _(Fj I | | d& (125)
£=0 o°N, °Nyq
NlGF J— NlG P 3
L 77 1n=0
NN N [
D\ ogfen T Taflen
lkoye = _(Ej | | | dé (126)
£=0 o°N, O°Nyq
“eogon — " ogton
§on g on |, ,

where,
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[koy] = [koyul +[Kgy2] (127)

The element stiffness matrices arising from the expression underlined in orange in Eq. (112) are
marked as (128), (129) and (130).

0N, 0*Ny,
iteal L AEY T ot
[ke:]= ( jj [l |- dadn (128)
n=0¢=0 0*N, 0Ny,
5o — Nm?
4
Nl a2N12 _ Nl a 2Nl62
=l é< 0&°0n 0&0n
[ke2]= ( jj [ | | dady (129)
7-05=0 0'N, 0*Nyg
16 aé‘ 8 N2~ 2  — 16%7
4 4
Nla—l\il N, 0 N416
Da )7 < on on
[ke3]:(b_3jj I | | dédn (130)
=0e=0| 9N, 0*Nyq
N16 4 JR— NlG 4
. 07 on

The element mass matrix arising from the governing differential equation written in terms of
virtual work is shown in Eq. (131).

n=1 &=1 NlNl J— N1N16
[Mes]=abalph [ [| | | |d&dn

(131)
=070 NlGNl J— N16N16

The final element dynamic stiffness matrix [kps] is determined by assembling these ten sub —

matrices, leading to the discretized (elemental) expression of the virtual work, as shown in Eq
(132).

[Kos ] = {[kMx ]+ |_kMy J+ |.kMxy J+ |.ka J+ |.ka J"‘ ket ]+ [Kez ]+ [Kes ]}

(132)
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Where necessary and applicable, the global dynamic stiffness matrix, [Kps], and the global mass
matrix, [Ky], are then obtained by assembling all the element stiffness and mass matrices and
enforcing the system boundary conditions. This process is performed using a program written in
MATLAB® software as shown in Appendix B, which results in the Eigenvalue problem

expressed as Eq. (133).

<Mn>(KDS_w2MDS n}:O
133

det(K o — °M g ) =0 (133)
Various classical boundary conditions were investigated. The natural frequencies of the system
are the values of w that yield a zero determinant for the Eigenvalue problem in Eq. (133),
evaluated using a determinant search. This is done by sweeping the frequency domain to find

particular values of w that produce a zero determinant. The Eigenvectors corresponding to these

natural frequencies provide the mode shapes of the system.
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3.3 Dynamic Coefficient Matrix Method (DCM)

In this section, a new Dynamic Coefficient Matrix Method (DCM) based on the quasi-exact
solutions to the plate governing equation will be formed. This analytical method, previously
used by some researchers to model the free vibration behaviour of various structural elements,
can be considered as a special case of Dynamic Stiffness Method (DSM), developed by Banerjee
and his co-workers [67-78]. However, to the best of authors knowledge, this method has never
been attempted before for the free vibration of thin plates, and using the novel semi-exact

solution to the governing equation, introduced earlier in this report.

The starting point of the DCM method is the quasi-exact general solution to the differential
equation, governing the free vibration of thin rectangular plates, developed and presented for the
first time as Eq. (39), in Section 3.2. Thus, using this quasi-exact general solution the non-nodal

flexural displacement, W(x ,y), anywhere in the plate can be written in the matrix form as:

Wy =(h T, - T Tl b5 o WOCY) =T )y e (134)

where, the row vector (T')is the solution vector which contains the roots to the plate governing
differential equation and the column vector {E} is the vector of unknown coefficients. The slope

along the x direction can then be written as follows.

Hx(x’ y)=<T1x T2x e T15x T16x>{E}16x1 =<Tix>1x16{E}16xl (135)

In Eqg. (135) the row vector (T;,) is determined by differentiating the solution vector (T') with

respect to x. Similarly, the slope along the y direction can be expressed as:

ey(x’ y) = <T1y sz e T15y T16y>{E}16x1 =<Tiy>1x16 {E}16x1 (136)
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where, the row vector (T}, )is obtained by taking the derivatives of the roots Ty to Tis contained

within the with solution vector, with respect to y. The curvature of the plate, 8y(X, y), can also be

represented as follows.

Oy (x,y) = <T1xy Ty = Tisy T16xy>{E}16x1 :<T|xy >1x16 {E b6 (137)

where, the row vector (T}, ), is determined by obtaining the derivatives of the solution vector

with respect x and y both.
The end conditions for the displacements, at the element extremities, are:

x=0,y=0,

)
I

X x1 y

w Oy v = O

Xx=a,y=0, W=W,; 6,=60,; 6,=6,, 6, 6=0
2 2 y ~Yy2 w ~ Uxy2 (138)

x=a,y=b, W=W,; 6,=0, 0,=0, 0,6=0,

x=0,y=b, W=W,; 6,=0,, 06=0, 0,=0,

By applying the boundary conditions for displacements, i.e. substituting Eq. (138) in to Eqgs.
(134) to (137) the following matrix relationship is obtained.
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| <Ti>x:0,y:0 |
Wl <Tix > x=0,y=0 Ell
O <'|'_ > E;,
) Y/ x=0,y=0 E
v <T. > 13
2] Wix=0y=0 || E
xyl T 14
\/\/2 < i>x:a,y:0 E
21
2] ) <TiX >x:a,y:0 E
X 22
Hyz <<Tiy >>xa,y0 E23
9xy2 TiXV x=a,y=0 E,,
= ' 139
W3 <Tl >x:a,y:b E31 ( )
9)(3 <Tix >x=a,y=b E32
0y3 <Tiy >x=a,y=b E33
ny3 <TiXy >X=a yob E,
W4 <Tl >x:0,y:b E41
Os4 <'|'_ > E.
X/ x=0,y=b
Oys ) E.s
o Y/ x=0,y=b E
x4 T 44
_< iXy>>(:0,y:b
The expression in Eq. (139) can be simplified and re-written as:
{\Nn } = [K D (a))]16x16 {E}lﬁxl (140)

where, [Kp(w)]is the 16x16 Dynamic Coefficient Matrix of the system. The Dynamic Coefficient
Matrix in Eq. (140) consists of the essential requirements to compute the natural frequencies for
a thin rectangular plate subjected to any boundary condition. In order to obtain the system’s
natural frequencies using the DCM method, boundary conditions are applied on the Dynamic
Coefficient Matrix and a determinant sweep was conducted by sweeping the frequency domain
in search of frequencies at which the determinant of the Dynamic Coefficient Matrix will be

zero; i.e., | K, () |=0.
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3.4 Numerical Results and Discussion

Consider a thin, homogeneous, isotropic, linearly elastic, rectangular plate made of Steel (E =
200 x 10° MPa and p = 7800 kg/m®) having length L = 0.6m, width W = 0.4 m and thickness h =
0.004m. In order to validate the results from the 12-DOF and 16-DOF conventional FEM codes,
a modal analysis was carried out on the commercial software ANSYS® using the same number
of elements used in the conventional FEM formulations. The number of elements required was
decided after carrying out a convergence analysis using the 12-DOF FEM-based MATLAB®
code, to determine the number of elements required to drive down the error of the 5™ natural
frequency of the Cantilevered (C-C-C-F) plate to less than 10 percent when compared with the
exact results taken from Reference [118]. The same number of elements was then used for the
16-DOF FEM formulation and the ANSYS® simulation for comparison.

The 12-DOF FEM formulation was used as the basis of the convergence analysis as its results
displayed a higher percentage of error compared to the ANSYS® and 16-DOF FEM results.
Similarly, the 5™ natural frequency and the C-C-C-F boundary condition was used for the
convergence study as the percent error was comparatively higher for those cases too. The results
of the convergence analysis are shown in Figure 6. The convergence graphs for the ANSYS®

model as well as the 16-DOF FEM solution are also included in Figure 6 for comparison.
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Figure 6: Convergence analysis for the 5™ natural frequency of a C-C-C-F plate
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A percent error of 10 percent is taken as the baseline. Therefore, Figure 6 shows that at least 196
elements are required for the 12-DOF FEM formulation, which is the weakest of the three
models in terms of convergence rate, to produce results with a percent error less than 10 percent.
Thus, 196 elements were used for the 12-DOF FEM model. Despite having higher rates of
convergence, 196 elements were also used for the 16-DOF FEM formulation as well as the
ANSYS® simulation for ease of comparison. The 3D, 4 node, SHELL 181 element was used for
meshing in ANSYS®. This element has 6 DOFs per node and these are the three translations and
three rotations in the x-, y- and z-axes. Figure 7a is a sketch of the ANSYS® SHELL 181 element

and Figure 7b is an illustration of the plate structure mesh created in ANSYS®.
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Figure 7: (a) ANSYS® SHELL 181 element used for meshing (b) Plate meshed in ANSYS®

Before beginning, some descriptive comments regarding the notation for the boundary
conditions, which apply to the entire thesis, should be made here. The symbolism C-F-F-F for
example, will identify in clockwise motion, a rectangular plate with its left boundary clamped
and the bottom, right and top boundaries free. Figure 8 below shows the notation used for all the

classical boundary conditions investigated in this study.
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Figure 8: Notation for the classical boundary conditions investigated

Prior to capturing any results using the FEM codes, they were validated against ANSYS® results.
Table 2 shows the 12-DOF FEM, 16-DOF FEM and ANSYS® results for a cantilevered plate
with one edge clamped and the other three edges free (C-F-F-F).
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Table 2: Comparison of 12-DOF FEM and 16-DOF FEM results with ANSYS® simulation

Natural Frequencies (Hz) for C-F-F-F plate

Exact - % Error - % Error
Natural 16;53 " | l6pOF | ANSYS A?/I\‘I’S'irgor 12FED|3 " | 1200F
Fregs. FEM vs. vs: FEM vs.

[118] # Elem: 196 Exact # Elem: 196 Exact # Elem: 196 Exact

9.36 9.36 0.00 9.36 0.00 9.37 0.11
31.51 31.59 0.25 31.60 0.29 31.61 0.32
58.15 58.71 0.96 58.89 1.27 59.01 1.48
106.29 107.20 0.86 107.43 1.07 107.58 1.21
144.92 146.04 0.77 146.35 0.99 146.56 1.13

As can be seen from Table 2, the ANSYS® frequency results match well with the exact results
and the results from the 12-DOF and 16-DOF FEM formulations. As far as the ANSYS®
simulation is concerned, the highest error of 1.27 percent is found for the third natural frequency.
The highest error also occurs at the third natural frequency for both the 16-DOF FEM and 12-
DOF FEM formulations, and the errors are 0.96 percent and 1.48 percent, respectively. Thus, in
terms of accuracy, the ANSYS® results falls in between the 16-DOF FEM and 12-DOF FEM
formulations. In other words, although the same number of elements are used the results
produced by the 16-DOF FEM formulation is more accurate than the ANSYS® simulation while
those obtained from the 12-DOF FEM formulation are less accurate. The higher accuracy of the
16-DOF FEM formulation compared to the ANSYS® simulation could be associated with the
fact that the 3D, 4-node, SHELL 181 element used in ANSYS® takes into consideration shear
and warping effects that are not accounted for in the 16-DOF FEM code. The lower accuracy of
the 12-DOF FEM formulation compared to the ANSYS® simulation and the 16-DOF FEM
formulation could be attributed to the lesser degrees of freedom associated with that element.
However, what is important to note here is that both the 12-DOF FEM and 16-DOF FEM
formulations are accurate and their respective FEM codes produce acceptable results that can be
used, in turn, for the verification of the results from the QDFE and DCM formulations.

Before presenting the numerical results for the QDFE method and comparing those with the
FEM results, the new trigonometric, frequency-dependant shape functions unique to the QDFE

method are plotted for an extremely low, almost zero frequency and compared against the FEM
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shape functions to give the reader an opportunity to compare their similarity graphically. Thus,
the sixteen new QDFE shape functions for node 1 of the 16-DOF thin plate element are
presented adjacent to their corresponding FEM (incomplete quintic) polynomial shape functions
[119] in Figures 9 to 12. The QDFE shape functions for nodes 2, 3 and 4 are compared with the
FEM shape functions in Figures 26 through 37 in Appendix A.

Ny (€, n)

sz (g ’ I])
Ny, (§,n)

Figure 10: QDFE (left) and FEM (right) shape function for Ox; at node 1
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Figure 12: QDFE (lefi) and FEM (right) shape function for 0y at node 1

As expected, for both the QDFE and FEM shape functions the flexural displacement w; is 1 at
node 1, where the natural coordinates ¢ and 7 are zero. The slope, 6y (0w/0¢) is also 1 at node 1
for both shape functions Ny and Noy. Similarly, gradients of the shape functions Nz and Nsy
which approximate the slope, 6,1 (0w/0n) assumes a value of 1 at node 1, too. Furthermore, the
slope 6xy1 which can also be expressed as &*w/dZon becomes 1 at node 1 for both shape function
types. Thus, it is evident from Figures 9 through 12and Figure