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Abstract 

 

There is a growing demand for companies to report and demonstrate their environmental 

credentials and corporate responsibility, which presents an opportunity for them to differentiate 

and gain a competitive advantage in the marketplace. They are now recognizing the limited 

capacity of the environment to endure the current level of development and economic growth, 

depletion of natural resources, increasing problem of waste, worrying carbon dioxide emissions, 

and other environmental impacts. In fact, for asset and project managers, financial criteria are no 

longer the sole considerations to achieve success and shareholder value. Therefore, environment 

is being considered as a future source of risk or opportunity. The present research proposes 

methodology and mathematical models for a sustainable asset and project management, with the 

focus on the environmental aspect of sustainable development and more specifically the issue of 

greenhouse gas (GHG) emissions. 

The following models have been presented in this dissertation. First, a mathematical fleet 

optimization model is developed, which incorporates the environmental impacts of a fleet of assets 

over a finite horizon, in addition to its total cost of ownership. As a unique feature of the model, it 

allows the assets to be kept in storage over any time period, in which such assets do not deteriorate 

as in-use assets do. The mathematical model optimizes the number of new, in-use, in-storage, and 

salvaged assets in each time period, so that the total economic costs and environmental impacts 

are minimized. The application of this work is illustrated in a fleet of excavators.  
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Second, a hybrid Bayesian network (BN) is proposed for fleet availability analysis, focusing 

on the uncertainty of assets failure and repair rates. We model the common causes to individual 

rates, as well as the common causes that affect both failure and repair rates at the same time. The 

proposed model explicitly quantifies uncertainty in repair and failure rates of a fleet of assets and 

provides an appropriate method for modeling complex dependencies and factors affecting 

reliability, maintainability, or both, by considering influencing factors, either technical (such as 

working temperature, environment, quality, stress, etc.) or organizational (such as staff quality, 

management policies, etc.). We will then extend the model to consider extremely rare and/or 

previously unobserved risks (e.g. heavy storms, droughts, floods, etc.) that can significantly 

weaken reliability or maintainability levels. 

Third, a deterministic model for equipment repair-replacement (R/R) decision with both 

economic and environmental considerations is formulated. We converted the model into an 

algorithm and an automatic R/R Calculator. A probabilistic version of this model is then developed 

to factor in the quality of preventive maintenance, repair perfection, and risk events. We also model 

the causal relationship between equipment reliability and its GHG emissions during the operation 

phase. A plastic shredder case study was used to present the models’ results.  

Fourth, we aim to capture the uncertainty of carbon price in the Western Climate Initiative 

(WCI) market, by determining the causality between carbon price and its driving forces. A 

probabilistic model is developed using BNs to infer the possible ranges of each driving force that 

could have an escalation/depreciation effect on price as well as the magnitude of this effect. The 

model is developed and run based on a database of historical and projection on the selected driving 

factors in all the jurisdictions of the WCI market, providing the most probable price(s) over the 

next ten years.  

Finally, we developed two models to estimate and control project GHG emissions. The first 

model is developed based the earned value management (EVM) technique, a common practice in 

project cost and schedule performance measurement. The proposed model provides project 

managers with metrics to measure project GHG performance at any point in time over the life of 

a project and forecast the final emissions. In addition, we proposed a probabilistic model to 

quantify the uncertainty of project GHG emissions using Monte Carlo Simulation and BN 

techniques. The model provides a quantitative risk analysis mechanism to estimate the total 
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emissions of the project as well as prediction of final emissions during the implementation process. 

The proposed models are applied to a work package of a real construction project.  
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1. Introduction 

In recent decades, sustainable development, with three interdependent pillars, has been the basis for 

emerging numerous systems and standards in various fields. The pillars are economy, society, and 

environment, also known as “the triple bottom line” (TBL), which are mutually reinforcing [1]1. 

Following this view, governments and organizations are increasingly seeking not just economic 

accomplishments but environmental and social success as well [2–4].  

According to Searcy (2018) [5] to be truly sustainable, companies must perform within their 

specific TBL thresholds. To act sustainably, they even need to go beyond and consider their indirect 

influence on a broader sustainable environment [6]. In this journey, there is a growing demand for 

asset and project managers to report and demonstrate their environmental credentials and corporate 

responsibility, which presents an opportunity for them to differentiate and gain a competitive 

advantage in the marketplace. They are now recognizing the limited capacity of the environment to 

endure the current level of development and economic growth, depletion of natural resources, 

increasing problem of waste, worrying carbon dioxide emissions, and other environmental impacts. 

In fact, financial criteria are no longer the sole considerations to achieve success and shareholder 

value. One of the critical environmental impact categories is climate change and its most problematic 

effect, global warming, which is highly attributed to the greenhouse gas (GHG) emissions released 

from human activities [7], such as assets operation and development of mega infrastructure projects.  

According to the Asset Management Council of Australia, asset management is defined as “The 

life cycle management of physical assets to achieve the stated outputs of the enterprise” [8]. 

Regardless of how sustainable assets have been designed at the very early stages of their lifecycle, 

they should be maintained effectively to address the triple bottom line of sustainability. However, 

there is a lack of methodology on sustainable asset management [9]. In view of environmental 

dimension of sustainability, the impact of industrial activities on environment needs to be 

incorporated into traditional economic based asset management practices. This impact includes 

                                                 
1
 John Elkington coined the term “The triple bottom line” (TBL) in 1994. He was the founder of SustainAbility, a British consultancy 

[232]. He argued that companies should think of three particular bottom lines. The first one is the “profit and loss account” bottom line, 

which existed traditionally as a basis to measure a corporate’s profit. Company's “people account” is the second bottom line, which 

judges how socially responsible the company’s operations are. Lastly, “planet account” is the third bottom line, and it measure the 

company’s performance in terms of its environmental responsibility. The three Ps of TBL are therefore: profit, people and planet, which 

base an approach to control the financial, environmental and social performances integratively.  
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several categories, such as global warming and climate change, ozone depletion, human toxicity, 

fossil fuel depletion, etc. [10]. Due to the regulatory schemes or carbon pricing policies in place (or 

scheduled to be implemented), organizations are currently under strict pressure to comply with 

environmental regulations. They should manage their engineering assets sustainably to ensure the 

reduction of energy use and GHG emissions. 

Over the last decades, many models have been introduced for planning a fleet of assets. The 

objective of traditional fleet models has been to find the economic life of the fleet, neglecting its 

environmental impact. A comprehensive study on such models can be found in [11] and [12]. 

However, it is essential for fleet managers to incorporate environmental impacts into their asset 

management systems. To integrate and incorporate environmental burdens into fleet management, 

and to address national and international concerns on climate change, GHG emissions can be 

considered as a cost item for fleet decisions. A motivation behind this is carbon-pricing using a 

carbon-tax or cap-and-trade programs that encourage organizations to model their fleet’s 

environmental impacts in their strategic planning. Moreover, most countries have set emission 

mitigation targets for the future decades, which implies that the issue of GHG control will be of much 

more importance to various industries and sectors. According to the Greenhouse Gas Emissions 

Reference Case [13], Canada’s annual emission target is 523 megatons of carbon dioxide equivalent 

in 2030, which is 239 megatons less than the historical emissions recorded for year 2014. Motivated 

by this target, regulations including carbon pricing scheme are already in place or under 

implementation in some Canadian provinces.   

Likewise, sustainable organizations need to have a control on the carbon footprint of their projects 

and any business change they intend to create in the form of a project. We believe that the project 

management community as a whole has the responsibility for supporting sustainable strategies, 

specifically for energy hungry construction and infrastructure projects. As such we need to 

incorporate GHG emissions monitoring and control as part of the project planning process.  

Incorporating a GHG module like the one we aim to present in this research could be a step in the 

right direction. In their book, Maltzman and Shirley (2010) [14] coin their own word to define and 

possibly measure how environmentally efficient project managers are; greenality, and define it as 

“the degree to which an organization has considered environmental (green) factors that affect its 

projects during the entire project life cycle and beyond.” This is associated with two project 

management processes: (1) developing a plan for the project in order to minimize its product’s 

environmental impacts (which involves efforts that make the project implementation more efficient 
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and effective); and (2) the tracking and controlling these impacts during the execution phase. A 

project with greater greenality score has a positive impact on the bottom line, as it will be an efficient 

and effective project which saves resources [14].  

 Therefore, there is a need for today’s organizations to move forward on a sustainable project 

management discipline. Projects, with a significant role in global economy as much as one third [15], 

have a serious contribution to global climate change and GHGs. This is the case specifically in 

construction projects which are the primary contributor of global GHG emissions [16]. Moreover, 

because of the growing competitive pressure and tendency to apply modern management techniques, 

organizations are being more and more projectized or project oriented [17]. Despite this fact, common 

practices in project performance measurement use project conventional triple constraints (i.e. quality, 

time and cost), neglecting its investment effectiveness and organizational benefits [18]. To integrate 

and incorporate the impact of GHG emissions in project execution and control, and to address national 

and international concern on the climate change, sustainability and reducing environmental impacts, 

GHG emissions can be considered as a cost for almost any types of project.  

Following the Paris accord [19] and to fight climate change, governments have already 

implemented (or plan to implement) carbon pricing schemes such as a carbon tax and emission trading 

scheme (ETS), also known as cap-and-trade. The former puts a price on carbon emissions, with the 

objective of reducing emissions. In this approach, the outcome of emission reduction is uncertain. In 

contrast, an ETS provides an emission trading market with a pre-defined emission cap for the whole 

market, where the price of carbon is decided by the market [20]. According to Scholtens & Van Der 

Goot (2014), an ETS can influence the participating firms’ value due to two circumstances. First, 

there is a direct complying cost which requires the firms to adjust their business processes towards 

low carbon technologies and/or purchase more emission allowances, thereby impacting their cash 

flows. Second, unlike carbon tax, ETS’s price of carbon is uncertain in that it is changing and volatile. 

Affected organizations in this market, therefore, need to be able to predict carbon price so that 

they can vigilantly adjust their business plans. Many studies have been conducted to forecast and 

analyse the price of carbon in, for example, European Union ETS (EUETS) [21–30], China’s ETSs 

[31,32], and Korea ETS [33]. However, similarly exhaustive forecasting studies have been seldom (if 

not never) performed in the Western Climate Initiative (WCI)’ market. Sousa and Aguiar-Conraria 

[34] evaluated the dynamics of this market and the connection between energy and carbon prices. 

They reported contrasting market dynamics in WCI compared to EUETS. Hence, the results of 

research on other markets may not be applicable to forecast the carbon price in this market. Of course, 
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regardless of the market, there is a continuous challenge about modelling the causality between 

driving forces (including energy prices, economic growth, weather, etc.) and carbon price. 

Forecasting and monitoring availability is a key aspect of asset management. In fact, availability 

assessment provides a direct measure for production capacity, as well as a criterion to decide on 

required corrective actions [35]. However, assessment and optimization of a fleet’s unavailability 

accounting for real world uncertainties is a challenging task and without a rigorous risk analysis on 

failure and repair rates (as the two main indicators of availability), the decisions on acceptability of 

availability may not be reliable [36]. For decades, researchers have been developing methods for 

assessment of failure and repair times, including fault trees (FTs) and dynamic fault trees (DFTs) 

[37], artificial neural networks (ANNs) [38], Bayesian networks (BNs) [39], Monte-Carlo simulation 

(MCS) [40], fuzzy MCS [41], renewal processes [42], Markov chains  [43], and geometric processes 

[44].  

A debate, however, continues over the estimation of actual failure and repair rates and therefore 

the assets availability. In addition to internal characteristics of a tangible asset, there are external, 

sometimes intangible common causes, such as quality of operating staff, which can affect failure rate. 

Further, the duration of repair tasks (such as diagnosis, procurement, remove and install, etc.) may 

not be independent, meaning the high duration of one task may affect the time of another because of 

the existence of a common cause, such as shared staff or technology. Such dependency, if it exists, 

must be modelled, or the uncertainty of repair time will not be precisely represented in the final 

distribution [45]. Modelling these dependencies- which without conditioning arrangements would be 

much more problematic for human subjects [46] has not been considered in analysing a system/fleet 

availability, especially with regard to complex organizational factors. Likewise, failure and repair 

distributions may be correlated due to complex common causal factors, such as shared physical 

environment, personnel qualifications, and management policy and attitudes. These factors can affect 

both reliability and maintainability of assets. This type of dependency has not been modelled in 

previous work on the availability analysis of a fleet of assets.  

The decision to repair or replace a physical asset is another practical aspect of asset management. 

It involves many contradictory, conflicting, and uncertain factors related to the old and new assets, 

known as the defender and the challenger, respectively. Many models have been introduced for asset 

repair/replacement (R/R) decision-making. Traditionally, R/R models rely on life cycle costing 

(LCC) concepts [47]. Recently, more advanced techniques have been also proposed in this domain to 

account for technological improvements [48], uncertainty of demand and market parameters [49], 
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technical failure characteristics of assets [50], the effect of unknown parameters on time-to-failure 

distribution [51], and so forth.  

Despite all these attempts, however, there are complexities associated with this problem that have 

not been modelled yet. To make an R/R decision, we need to know whether the ongoing preventive 

or corrective maintenance is truly making a positive difference, and hence, it is better to keep the 

defender. A major factor is the quality of preventive maintenance (PM) and its impact on the 

defender’s failure rate and health. In other words, whether or not a PM program, with certain costs, 

would be actually effective in delaying equipment degradation, remains uncertain. Likewise, the 

perfection of repairs can inform R/R decision making. Theoretically, the so called minimal and perfect 

repairs recover a failed system to as bad as what it was just before failure and as good as new, 

respectively. Practically, however, the real outcome of these repairs, except in some special cases, 

may not be deterministic and therefore, every repair work could be regarded as an imperfect repair 

with the effectiveness between minimal (worst-case) and perfect (best-case) repairs. Although 

complex, these factors, i.e. quality and perfection of preventive and corrective maintenance, have not 

been examined in the previous works. They can be broken down to the quality/ perfection of smaller 

activities including lubrication, storage, cleaning, parts selection and installation, so forth. Other 

complex causal factors, such as organizational factors (e.g. repair staff experience), the risk of 

unanticipated loads, and variations in material quality are also missing in the asset replacement 

literature. If the uncertainty of such factors is not modelled, the results of LCC may not also be 

accurate.  

On the other side, to control the increasing, worrying greenhouse gas (GHG) emissions, an 

environmental dimension is being added to asset replacement decisions (e.g. Afrinaldi, Taufik, 

Tasman, Zhang, & Hasan, 2017; Ahani, Arantes, & Melo, 2016; Ansaripoor, Oliveira, & Liret, 2014). 

However, the combined replacement models (with both economic and environmental objectives) fail 

to model the impact of maintenance and equipment health on the amount of released GHG emissions. 

According to [55], equipment reliability can significantly improve energy efficiency and thus the 

amount of direct and indirect emissions.   

Based on the above-stated problems, the focus of the present research can be defined in five major 

lines: 

1. Asset planning with both economic and environmental considerations 

A fleet optimization mathematical model will be developed, which incorporates the environmental 
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impacts of assets over a finite horizon, in addition to the total cost of ownership. More specifically, 

we consider a fleet of systems over T operating periods. The model allows the assets to be kept in 

storage over any time period, in which such assets do not deteriorate as in-use assets do. The 

mathematical model optimizes the number of new, in-use, in-storage, and salvaged assets in each time 

period, so that the total economic costs and environmental impacts are minimized. To make a more 

realistic difference between assets, we consider asset capacity as well as its environmental impact. 

Therefore, the assets, which are purchased in the future, are considered more technologically 

improved, so they have a higher capacity and are more energy-efficient. It is to be noted that by 

“asset” in this thesis refers to physical assets such as construction and military equipment, aircrafts, 

industrial machineries, computers and electronic devises, turbines, etc.  

This work is covered by chapter 2 which is based on the paper entitled “An optimization model 

for fleet management with economic and environmental considerations, under a cap-and-trade 

market”, published in the Journal of Cleaner Production, as well as the paper entitled “Optimal 

Replacement of a Fleet of Assets with Economic and Environmental Considerations”, presented at 

the Annual Reliability and Maintainability Symposium (RAMS) 2018 and published in the 

Proceedings of the Annual Reliability and Maintainability Symposium 2018. 

2. Improving fleet availability analysis by modelling causal factors and risk 

We develop a hybrid Bayesian network (BN) (with both discrete and continuous variables) to 

formulate a fully probabilistic availability analysis, focusing on the uncertainty of failure and repair 

rates. We model the common causes to individual rates, as well as the common causes that affect both 

failure and repair rates at the same time. The proposed model explicitly quantifies uncertainty in repair 

and failure rates of a fleet of assets and provides an appropriate method for modelling complex 

dependencies and factors affecting reliability, maintainability, or both, by considering influencing 

factors, either technical (such as working temperature, environment, quality, stress, etc.) or 

organizational (such as staff quality, management policies, etc.). Starting with incomplete or 

subjective information, the model can be updated in the light of new evidences. To further improve 

availability risk analysis, we will then extend the model to take into account extremely rare and/or 

previously unobserved risks (e.g. heavy storms, droughts, floods, etc.) that can significantly weaken 

reliability or maintainability levels.  
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This work is covered by chapter 3 which is based on the paper entitled “A Bayesian network 

approach to fleet availability analysis”, submitted to the journal of International Journal of 

Operations & Production Management. 

3. Improving repair-replacement decision analysis by incorporating GHG emissions, quality of 

maintenance, and risk 

Firstly, we formulate a model for equipment repair-replace decision with both economic and 

environmental considerations, so that the quality of preventive maintenance (PM) and the level of 

repair perfection are taken into account in the equipment life cycle cost. A probabilistic reasoning 

mechanism is designed to formulate the effect of PM quality (and/or any other driving force) on 

equipment health and infer the effectiveness of maintenance. How perfect or imperfect the repair 

work is, is also modelled to more accurately predict the failure rate of the existing equipment during 

its remaining useful life. Secondly, we will model the causal relationship between maintenance, 

equipment reliability and equipment GHG emissions. To achieve the above objectives, we will 

develop a probabilistic R/R model using BNs, which also allows us to account for the uncertainty of 

effectual parameters. Equipped with expert knowledge and data-driven inference, the proposed model 

provides asset managers with a smart, explanatory mechanism that not only makes more accurate R/R 

decisions, through capturing more effectual uncertainties and causal factors, but also identifies risk 

and opportunities that should be focused on to further reduce lifecycle economic and environmental 

costs.  

This work is covered by chapter 4 which is based on the paper entitled “Incorporating maintenance 

quality, carbon emissions, and risk into asset repair-replacement decision”, submitted to the journal 

of Computers & Industrial Engineering. 

4. Forecasting carbon price in a cap-and-trade market 

We aim to capture the uncertainty of carbon price in the WCI market, by determining the causality 

between carbon price and its driving forces. A probabilistic model is developed using BNs to infer 

the possible ranges of each driving force that could have an escalation/depreciation effect on price as 

well as the magnitude of the impact. The model is developed based on retrospective and prospective 

information on the selected driving factors in all the jurisdictions of the WCI market, providing the 

most probable price(s) over the next ten years.  
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This work is covered by chapter 5 which is based on the paper entitled “Forecasting carbon price 

in the Western Climate Initiative market using Bayesian networks”, submitted to the journal of 

Carbon Management. 

5. Incorporating GHG emissions into project management practices  

We develop a model for estimation and control of a project GHGs during its implementation process. 

A set of metrics are designed to measure GHG performance at any point in time over the life of a 

project. The performance indices and forecasting formula are developed based upon the logic behind 

(earned value management) EVM methodology. In addition, we propose a probabilistic model to 

quantify the uncertainty of project GHG emissions using Monte Carlo Simulation and BNs 

techniques. The model provides a quantitative risk analysis mechanism to estimate the total emissions 

of a project as well as prediction of final emissions associated with the implementation process. The 

proposed models are applied to a work package of a real construction project.  

This work is covered by chapter 6 which is based on the paper entitled “A model to control 

environmental performance of project execution process based on greenhouse gas emissions using 

earned value management”, published in the International Journal of Project Management, as well 

as the paper entitled “Uncertainty Analysis of Project Emissions: A Bayesian Network Model to 

Estimate and Monitor Greenhous Gas Emissions”, presented at the 18th annual IEEE Canada 

Electrical Power and Energy Conference (EPEC 2018).  

Chapter 7 provides a summary of major conclusions and a direction for future research. 

References section compiles a list of bibliographical references used throughout this dissertation. 

Appendices contain supplementary materials and data that were not included in the main body of the 

present dissertation. 

1.1. Statement of Authorship 

This dissertation is developed with a manuscript-based format. Most of the chapters presented in 

this dissertation are the extensions of the following journal and conference papers, which are 

published, accepted or submitted for publication: 

Peer-Reviewed Journal Articles 

1. Abdi, A., & Taghipour, S. (2018). An optimization model for fleet management with economic 
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Published online at: https://doi.org/10.1016/j.jclepro.2018.08.345  
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running the numerical examples, discussion of the results, and drafting the paper. 
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proofreading the draft paper. 
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Principal author’s contribution: developing the proposed technique, constructing the computer 

model, running the numerical examples, discussion of the results, and drafting the paper. 

Second author’s contribution: verification of the results and proofreading the draft paper. 

5. Abdi, A., Taghipour, S. (2018). Forecasting carbon price in the Western Climate Initiative 

market using Bayesian networks. Carbon Management. In Revision [Used in Chapter 5].  
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model, running the numerical examples, discussion of the results, and drafting the paper. 

Second author’s contribution: verification of the results and proofreading the draft paper. 
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Published online at: https://doi-org.ezproxy.lib.ryerson.ca/10.1109/RAM.2018.8462994 

Principal author’s contribution: developing the mathematical model, programming the model, 
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proofreading the draft paper. 
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2. Fleet Optimization with Economic and Environmental 

Considerations 

 

The present chapter is based on the following papers: 

Abdi, A., Taghipour, S. (2018). Optimal Replacement of a Fleet of Assets with Economic and 

Environmental Considerations. Proceedings of the Annual Reliability and Maintainability 

Symposium 2018 [56]. Published online at: 

https://doi-org.ezproxy.lib.ryerson.ca/10.1109/RAM.2018.8462994 

Abdi, A., & Taghipour, S. (2018). An optimization model for fleet management with economic and 

environmental considerations, under a cap-and-trade market. Journal of Cleaner Production, 204, 

130-143 [57]. Published online at: https://doi.org/10.1016/j.jclepro.2018.08.345  

 

The objective of traditional fleet optimization models has been to find the economic life of the assets, 

neglecting their environmental impacts. However, due to the effect of carbon pricing schemes, in 

addition to the international concerns about global warming and carbon emissions, it is essential for 

affected fleet owners to incorporate environmental burdens into their asset management systems. The 

contribution of this research is a fleet optimization model which factors in the environmental impacts 

of a fleet of assets over a finite horizon, in addition to its total cost of ownership. As an indicator of 

environmental impacts, the greenhouse gas (GHG) emissions associated with the fleet ownership are 

considered. GHG emissions are converted into a monetary value, using the expected price of carbon 

in the Western Climate Initiative (WCI) market. To support implementing this model, a GHG 

calculator tool is built to calculate total carbon emissions associated with any segment of an asset life 

cycle, i.e. manufacturing, shipping to the fleet location, operation, maintenance, holding, and 

decommissioning. It has been built using a database of emissions factors associated with various fuels, 

energies, materials, and transportation activities. The optimization model is then applied to a fleet of 

excavators located in Ontario, Canada.  

Keywords: Fleet, Asset replacement, Optimization, Greenhouse gas (GHG) emissions, Carbon 

price 

https://doi-org.ezproxy.lib.ryerson.ca/10.1109/RAM.2018.8462994
https://doi.org/10.1016/j.jclepro.2018.08.345
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2.1. Introduction and Background 

In this section, we review the published literature in two areas: economic replacement models, and 

models with both economic and environmental factors.  

2.1.1. Classical, economic models  

The classic decision of when to replace an operating asset was first modelled in 1949, when this 

problem was studied by Terborgh (1949). Later, increasing maintenance costs, the main reason for 

replacing old assets, were taken into account [59,60]. More considerations were modelled in 

published works thereafter. For instance, Vander Veen and Jordan (1989) [61] considered 

interdependencies between investment and machine utilization in a parallel machine replacement 

problem. Many studies aimed to model the technological changes of new equipment (e.g. [62–64]). 

Ouda et al. (2010) [65] integrated Fault Tree Analysis (FTA) and a set of technical, financial, and 

safety factors to model the replacement decision of medical equipment. These factors were hazard 

and alerts, cost, useful life, and vendor performance. Ben Abdallah and Lasserre (2016) [66] studied 

the tree harvesting decision as a version of the asset replacement problem. They modelled the 

replacement decision of two species with stochastic values (as a timber) and deterministic growth 

functions.  

With regard to fleet replacement models, Büyüktahtakın and Hartman (2015) [67] developed a 

mixed-integer programming (MIP) formulation to optimize the replacement policy of a fleet of assets 

that operate in parallel. They model the technological change by considering capacity gains such that 

newer, technologically improved assets have higher capacity than assets purchased earlier. A key 

contribution of their model is that the assets that can be in inventory in each period are formulated. 

An issue with this model, however, is that in-storage assets are allowed to age as those in-use do. A 

real option model was proposed by Zheng and Chen (2018) [49] to decide on the replacement timing 

of a fleet of ships, when the owner deals with uncertain demand on different routes and uncertain 

prices of the fuel Marine gas oil (MGO) and liquefied natural gas (LNG). They compared the results, 

taking into account two affecting government policies, i.e. vessel subsidy and fuel subsidy2. In order 

to find the replacement probabilities in future periods and the expected net present values (NPVs) of 

                                                 
2 Fossil fuel subsidies are government regulations that reduce the cost of fossil fuel energy generation, increase the price 

received by energy producers, or reduce the price paid by the consumers. Generally, these subsidies rig the energy markets 

in support of fossil fuel production against other sources such as renewable and cleaner energies. 



13 

 

after replacement cost savings, they used a multi-option least squares Monte Carlo simulation 

algorithm, using the data from a chemical tanker shipping company. 

More recently, He et al. (2017) [68] developed a decision model for replacement of fuel-powered 

vehicles with hybrid electric vehicles (HEVs), considering trade-in and subsidy for vehicle owners 

and fuel uncertainty. Wang and Nguyen (2017) [69] developed a stochastic dynamic programming 

model for technology replacement, so that the expected net present profit is maximized over a finite 

time horizon. They employed a pattern search-genetic algorithm to solve the modelled problem.  

Using real data from railroad tracks and Markov chain Monte Carlo methods, Merrick and Soyer 

(2017) [50] proposed a Bayesian decision support system for optimal replacement. By specifying a 

nonparametric form with a gamma process prior for modelling wear and considering the effect of 

covariates using a parametric function, they conducted a semiparametric analysis to model the failure 

characteristics of rail tracks. Nguyen et al. (2017) [70] developed a new decision support system for 

the optimal maintenance, replacement, and new technology adoption timing of a repairable asset. 

They considered the information acquisition option on the profitability of a new technology, which is 

not yet available on the market. 

2.1.2. Combined, sustainable models  

Researchers are adding another dimension to the replacement problem, by accounting for the 

environmental burden of equipment as well as its financial costs. This view implies that a replacement 

decision must be made based on all pillars of sustainability, i.e. economic, environmental and social 

[71]. There are various studies in the published literature, which have attempted to address aspects of 

this issue. Sloan (2011) [72] developed a combined economic-environmental replacement model 

based on the method presented by NAIR (1995) [73], which allowed uncertain introduction time of 

improved technologies. Afrinaldi et al. (2017) [54] developed a mathematical model to calculate the 

optimal schedule of preventive replacement of a single asset, aiming to minimize the economic and 

environmental impacts of the asset. The economic side of this model is formulated regarding 

operation, failure and replacement cost items. The environmental part consists of GHG emissions 

associated with the operation and replacement processes. A genetic algorithm (GA) was used in this 

study to find the optimal solutions for tire replacement of a bus fleet. To find the most sustainable 

asset management strategy, Matthews et al. (2016) [74] examined three pipe management strategies, 

namely: a reactive run-to-failure and then replace; a pre-emptive replacement prior to failure based 

on assumed condition; and a balanced approach of active condition assessment and taking actions 
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relevant to the known conditions. They compared the strategies considering 144 criteria in five 

categories: quality of life; leadership; resource allocation; natural world; and climate and risk. Their 

results showed that the most sustainable strategy is the balanced approach.  

An approximate dynamic programming model was proposed by Stasko and Oliver Gao (2012) 

[75] to make decisions on salvages, upgrades, and new purchases in a fleet of vehicles, taking into 

account stochastic breakdowns and impact of emissions regulations on the value of the fleet vehicles. 

Feng and Figliozzi (2013) [76] proposed a replacement model for a fleet of electric commercial 

vehicles (ECVs), with an objective function that minimizes both financial costs and GHG costs. This 

work, however, does not allow a vehicle to be kept in inventory when it is not needed. In addition, 

some of the relevant GHG accounts are missing; such as those associated with manufacturing new 

assets and salvaging old ones. Based on this study, Ahani et al. (2016) [53] presented an optimization 

method to find the best combination of electric vehicles (EVs) vs. internal combustion engine vehicles 

(ICEVs). In particular, they addressed the risk associated with energy costs and EVs purchase costs 

in their model. In one of the very few attempts to model the risk of environmental factors (such as 

carbon price), Ansaripoor et al. (2014) [52] developed a general-purpose fleet replacement model 

using stochastic programming and conditional value at risk (CVaR). To take into account the 

uncertainty of such factors, they used discrete scenarios or states. For example, they modelled the 

carbon price uncertainty by a 3-point Likert scale (low price, medium price, and high price), which 

may not be a reliable risk quantification. 

The review of the literature makes it evident that modelling the full environmental impacts of the 

assets, including the impacts associated with the production of a brand-new asset, operation and 

maintenance (O&M), holding, and salvage is restricted in published research aiming to determine the 

optimal fleet replacement decisions. There are also some unrealistic assumptions in the existing 

relevant mathematical models. The most noticeable is that they allow the assets in inventory to age, 

while these assets are not used in the related periods.  

2.1.3. Carbon footprinting  

According to the IPCC's (2014) [7] latest report, the growth of carbon emissions has surged over the 

last decade, despite the many mitigation programs that have been introduced so far. This might be in 

connection with rapidly rising consumption of fossil fuels, which is the largest contributor to carbon 

emissions [77]. The main GHGs included in the Kyoto Protocol [78] are carbon dioxide (CO2), 

methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and 
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sulphur hexafluoride (SF6). These GHGs can be translated into a carbon equivalent measure 

(CO2_eq) by use of a global warming potentials (GWP) factor (an updated list of GWPs is provided 

in Appendix A). In global warming terms, CO2, CH4, and N2O are considered as the main GHGs, with 

GWPs equal to 1, 28, and 265, respectively.  

The GHG Protocol Corporate Standard [79] categorizes an organization’s carbon emissions into 

three ‘scopes’. Scope 1 GHGs are emitted directly from the sources which are owned or controlled 

by the reporting organization. Scope 2 refers to indirect emissions released from the production 

process of purchased energies. Scope 3 emissions are not controlled or owned by the reporting agency 

and are associated with its value chain. The carbon footprint of fleets’ ownership, therefore, consists 

of the CO2_eq of stationary and/or mobile combustions for operating and decommissioning of the 

fleet’s assets (Scope 1), CO2_eq from electricity/heat/steam consumption in operation period (Scope 

2), as well as tons of CO2_eq associated with all materials that directly contribute to the manufacturing 

of an asset. 

The total carbon dioxide equivalent (CO2_eq) footprint of an activity can be calculated as the 

product of the activity data (AD) and its emission factor (EF) [80]: 

CO2_eq =  AD ∗ EF        (1) 

Activity data is the value of the significance of a human activity that releases GHG emissions 

over a period of time [81]. An activity data may include information about more than one type of 

greenhouse gas. In such cases, the equivalent carbon emission of each type of gas will be accounted 

for, using a relevant EF. We conducted a study to collect the latest EFs, including Scope 1, Scope 2, 

and manufactured material, reported by well-known environmental organizations, such as 

Environmental Protection Agency (EPA), International Energy Agency (IEA), World Bank, Canada 

Environment, and different governments’ energy related departments. Scope 1 emission factors 

includes EFs related to stationary and mobile combustion sources. Scope 2 EFs are mostly associated 

with electricity usage, and hence, vary by the location of the fleet because countries and jurisdictions 

have their specific mix of energy generation [82]. Therefore, for different countries and regions, 

Scope 2 EFs are collected separately (if reported). In addition, emission factors of important 

manufactured materials are extracted (EFs database is provided in Appendix A). 

Using our EFs database, we developed a GHG calculator to calculate the carbon footprint of an 

activity with the modules: Scope 1, Scope 2, and Manufactured Materials, using Visual Basic for 

Applications (VBA) of Microsoft Excel. This calculator allows the users to enter detailed evidences 
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about the activity data (such as location, type of vehicle, distance travelled, fuel, material, amount of 

electricity/heat/fuel, etc.), and provides the total carbon emissions and its cost in the corresponding 

carbon market, if in place. The interface of the GHG calculator is shown in Appendix B.  

2.2. Optimization model 

This section provides a description of our methodology. As presented in Figure 1, the core of this 

chapter is a mixed-integer programming (MIP) optimization model for the fleet replacement problem, 

with both environmental and economic parameters. Other stages that are fed into the optimization 

model include the GHG calculator tool and the carbon price forecast (which is presented in chapter 

5). Using information from an excavator fleet case study, the model is run, outputs of which allow 

fleet managers to decide on new equipment purchases as well as the existing equipment that should 

be in-use, in-storage, and salvaged in each period of planning horizon.  

 
 

 

Figure 1: The inputs and outputs of the fleet optimization model. 
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The objective is to develop a mathematical model for a fleet planning, which simultaneously 

minimizes the total ownership cost and the total greenhouse gas (GHG) emissions caused by the fleet. 

The model allows the assets to be kept in storage in any period, over which such assets do not age. 

We have modelled previous utilization3 to make a more realistic difference between assets. It is 

assumed that an asset in a given period is either in service with full capacity or it is in storage. Thus, 

there is no intermediate capacity considered for the asset. To take into account the economic and 

environmental factors, we include purchasing new assets, operation and maintenance (O&M) of in-

use assets, holding in-storage assets, and salvaging assets. GHG cap and budget limit of the fleet 

owner is also formulated. The outputs of the model include the optimal decision on the mix of assets 

that should be in-use, in-storage, and salvaged in each period. Additionally, the model determines 

how many new assets should be purchased and added to the fleet in each period. We optimize the 

replacement decisions over a planning horizon with T periods. Each equipment is specified by its age 

j = 0, … , M, and the number of periods that it has been previously in service k = 0, … , N, where M 

and N represents the maximum age and utilization periods of an asset, respectively, and N ≤ M. As 

the number of previous utilization periods cannot exceed the age of equipment, k ≤ j. Purchase and 

salvation actions are taken at the beginning of each period i = 1, … , T. At the end of the last period, 

all the assets will be salvaged. Depreciation is assumed to be already reflected in salvage value, as a 

component of the depreciation calculation. Decision variables and parameters of the model are as 

follows: 

• Decision variables: 

− X𝑖𝑗𝑘 number of j-period-old and previously in operation for k period assets, used in period i 

− S𝑖𝑗𝑘 number of j-period-old and previously in operation for k period assets, salvaged at the 

beginning of period i 

− Y𝑖𝑗𝑘 number of j-period-old and previously in operation for k period assets, in inventory in period 

i 

− Ai number of new assets purchased at the beginning of period i 

− Zi 1, if there is a purchase in period i, else Zi = 0. 

• Economic and technical parameters: 

− 𝑐𝑖𝑗𝑘 capacity (technological change) parameter for a j-period-old and previously in operation for 

k period asset in period i 

− 𝑝𝑖 purchase cost of a new asset at the beginning of period i 

                                                 
3 The term utilization was chosen to express the exact number of previous periods in which an asset has been used and 

hence it is not meant to refer to the conventional definition of capacity utilization, which is the proportion of time that a 

piece of equipment is operating.  
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− 𝑢𝑖 fixed cost for purchasing an asset at the beginning of period i 

− 𝑚𝑖𝑗𝑘 O&M costs for operating a j-period-old and previously in operation for k period asset in period 

i 

− ℎ𝑖𝑗𝑘 holding cost for keeping in inventory a j-period-old and previously in operation for k period 

asset, in period i 

− 𝑟𝑖𝑗𝑘 revenue from salvaging a j-period-old and previously in operation for k period asset at the 

beginning of period i 

− 𝑛𝑗𝑘 number of j-period-old and previously in operation for k period assets available at the 

beginning of the time horizon 

− 𝑑𝑖 demand (with the same unit of capacity) in period i 

− 𝑏𝑖 budget available for new investment in period i 

• Environmental parameters: 

− 𝑞𝑖 environmental impact of manufacturing a new asset at the beginning of period i 

− 𝑙𝑖 fixed environmental impact for purchasing an asset at the beginning of period i 

− 𝑔𝑖𝑗𝑘 environmental impact for operating a j-period-old and previously in operation for k period 

asset in period i 

− 𝑤𝑖𝑗𝑘 environmental impact of keeping a j-period-old and previously in operation for k period asset 

in inventory in period i 

− 𝑣𝑖𝑗𝑘 environmental impact of salvaging a j-period-old and previously in operation for k period 

asset at the beginning of period i 

− 𝑓𝑖 environmental impact limit (or cap) in period i 

The objective function is the minimization of the discounted sum of the economic and 

environmental costs associated with purchasing new assets, O&M of in-use assets, holding in-storage 

assets, and salvaging the assets over the period of analysis, i.e. from year one (present) to the end of 

year T: 

Minimize: 

 

∑[(pi + qi)Ai + (li + ui)Zi

T

i=1

] + ∑ ∑ ∑ [(mijk + gijk)Xijk + (hijk + wijk)Yijk

min(j,N−1)

k=0

M−1

j=0

]

T

i=1

− ∑ ∑ ∑ [(rijk − vijk)Sijk]

min(j,N−1)

k=1

M−1

j=1

T

i=1

 

(2) 

This objective function is subject to the following constraints: 

Aipi + Ziui ≤ bi ,   ∀ i = 1, … , T                             (3) 

∑ ∑ cijkXijk
min(j,N−1)
k=0 ≥ di ,    ∀ i = 1, … , TT

j=1                    (4) 

A1 + n00 = X100 + Y100                                     (5) 
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Ai = Xi00 + Yi00,    ∀ i = 2, … , T                          (6) 

njk = X1jk + Y1jk + S1jk,    ∀ j = 1, … , M; ∀ k = 1, … , min (j, N)                (7) 

  X(i−1)(j−1)(k−1) + Y(i−1)(j−1)k = Xijk + Yijk + Sijk,  ∀ i = 2, … , T;  ∀ j = 2, … , M;   ∀ k = 1, … , j − 1    

               (8) 

Y(i−1)(j−1)(0) = Xij0 + Yij0 + Sij0,  ∀ i = 2, … , T;  ∀ j = 1, … , M              (9) 

X(i−1)(j−1)(k−1) = Xijk + Yijk + Sijk,  ∀ i = 2, … , T;  ∀ j = 1, … , M;   ∀ k = j  (10) 

XiMk = 0,    ∀ i = 1, … , T; ∀ k = 1, … , N           (11) 

YiMk = 0,    ∀ i = 1, … , T; ∀ k = 1, … , N            (12) 

XijN = 0,    ∀ i = 1, … , T; ∀ j = 1, … , M         (13) 

YijN = 0,    ∀ i = 1, … , T; ∀ j = 1, … , M              (14) 

Si00 = 0,    ∀ i = 1, … , T                (15) 

∑ ∑ (gijkXijk + qiAi + liZi + wijkYijk + vijkSijk)
min(j,N)
k=0 ≤ fi 

M
j=0 ,   ∀ i = 1, … , T    (16) 

Zi = ⌈Ai/(Ai + 1)⌉,   ∀ i = 1, … , T         (17) 

Xijk, Yijk, Ai, Sijk ∈ {0,1,2, … }          (18) 

Purchase costs cannot exceed the annual budget available for new investments (Eq.3). This item 

includes variable costs affected by the number of new equipment and its price, and a fixed cost which 

happens whenever there is at least one new equipment to order. We have assumed that financing 

sources provide cash ready for purchasing the assets.The annual demand should be met by the total 

capacity gained by in-service assets (Eq.4). That is to say, the total capacity met by operational assets 

should be equal or greater than the required capacity in the corresponding period. It should be noted 

that deterioration in capacity occurs by utilization and new technology in the market, therefore; 

cij(k+1) ≤ cijk and c(i+1)jk ≤ cijk. Because of the harsh conditions of the holding environment, there 

might be some cases in which the capacity of in-storage assets deteriorates on a smaller scale, 

comparing with the deterioration caused by utilization. For such cases, we consider ci(j+1)(k+1) ≤

ci(j+1)k ≤ cijk. Example of this case includes machines that face “forced deterioration” during the 

operation times, due to defects and abnormalities, exposure of machine to abnormal stresses, 

abnormal wear and tear as a result of mal operation or improper maintenance. The same machine kept 
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in inventory, however, would only deteriorate as a result of “natural deterioration”, mainly because 

of proper environmental conditions.  

As mentioned earlier, the purchases occur at the beginning of each period including the first 

period. Therefore, at the beginning of the first year, i.e.  period 1, the number of initial age-0 (new) 

assets plus the number of purchased age-0 assets should be equal to the number of in-use, in-storage 

assets within year 1 (Eq.5). The purchased new assets in all the other periods should be either used or 

kept in storage in each of those periods (Eq.6). This makes sure again that new assets are not salvaged. 

At the beginning of the planning horizon, initial assets with any ages and utilization (other than age 

0) should be either used, stored or salvaged (Eq.7). The used or in-storage assets in one period should 

be either used, kept in storage or salvaged in the next period (Eq.8-10). These equations can be further 

explained by the graph shown in Figure 2, where the flow of the problem network is illustrated. It is 

assumed that any asset that reaches its maximum age M will not be used anymore (Eq.11 and Eq.12). 

Moreover, any asset that reaches its maximum utilization N will be salvaged (Eq.13 and Eq.14). New 

assets cannot be sold immediately (Eq.15). The sum of all environmental costs should not exceed a 

specific environmental limit or cap (Eq.16). The left-hand side of this equation captures every carbon 

emission item of the fleet. In each period, decision variable Z is restricted to be binary, so that it must 

be zero, if there is no new purchase (A = 0), and be one, if there is at least one new purchase (A ≥ 1) 

(Eq.17). All decision variables must be non-negative integers (Eq.18).  

Fig.2 is a graphical representation of the constraints (4) to (14) for an example in which planning 

horizon, maximum age, and maximum utilization are equal to 4, 3, and 2, respectively. Take, for 

example, the assets with age 2 and utilization 1 in period 2. These assets are either salvaged at the 

beginning of this period (S221), used (X221) and/or stored (Y221) during the period. They are coming 

from two inputs: 1) the 1-year old assets, which have not been used before, and have been in service 

over the first year (X110), and 2) the 1-year old assets, which have been previously used for one year 

and stored over the first year (Y111). At the beginning of the next year (i.e. period 3), all these in-use 

and in-storage assets will be salvaged, as they reach their maximum age (S331 and S332). However, 

in-service, in-storage, and salvaged assets that are older than a brand new and have not been utilized 

previously (zero-utilization) must come only from in-storage assets in the previous period (Eq.8). 

Similarly, those that have been always in service (full-utilization), must come from the assets that 

have been in-service in the previous period (Eq.9). 
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Figure 2: Depiction of the decision variables’ network for a problem with T=4, M=3, and N=2. 

2.3. Numerical Examples 

This section contains a numerical example for the model previously discussed. The proposed model 

of this study is designed to be generic, and hence applicable to any type of industry and assets. We 

applied the proposed model to a fleet of excavators using hypothetical data. We chose this example 

because we had access to relatively realistic data on the parameters, including the price of excavators, 

operation costs, emissions of manufacturing and operating the vehicle, etc. The planning horizon is 

10 years (T = 10). We use this as the useful life and the maximum age of the excavators as well (M =

9). The maximum utilization period is considered to be the economic lifetime of an excavator, which 

is 5 years (N = 4) [83]. Currently, the fleet owner has 21 excavators. Table 1 shows the number of 

excavators with different ages and utilization history. As mentioned earlier, the case study of this 

chapter is designed using hypothetical data and it does not mach an existing real-world company. 
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However, the parameters were estimated by the author’s experience and exploring several websites 

and equipment catalogs to provide reasonable values. After the estimation of relevant activity data 

(such as the type and amount of fuel consumption, materal usage to manufacture the excavators, etc.), 

we applied our GHG Calculator to obtain the carbon footprint associated with them.  

Table 1: Number of excavators with age j and past utilization k in the beginning of the planning horizon: 

𝑛ik. 

j     k 0 1 2 3 4 

0 3     

1 1 2    

2 0 3 3   

3 0 0 1 1  

4 2 0 2 1 0 

5 0 0 0 0 0 

6 0 1 0 1 0 

7 0 0 0 0 0 

8 0 0 0 0 0 

9 0 0 0 0 0 

 

Let us assume that using historical records of the company, economic and technical parameters 

are estimated for the upcoming year and the escalation of parameters are elicited from the company’s 

experts. The GHG calculator was used to estimate the carbon emissions associated with the 

environmental parameters. We used the results of the carbon price modelling (covered by chapter 5) 

to convert the emissions into a dollar value over the planning horizon. The input environmental and 

economic parameters are presented in Table 2, as functions of the asset age and utilization, as well as 

the related period in the planning horizon. As it can be seen, a function contains a constant 

representing the estimation of the related parameter for the next year and a changing value that is 

dependent on one or more of age, utilization, and period indices and their corresponding coefficient. 

It has been assumed that emission cap is decremental for five years and after that there will be a fixed 

cap.  

We used CPLEX  [84] to solve the model, on a PC running Windows 10 with a 2.5 GHz CPU and 

12 GB memory. Objective value is C$24,010,000, representing the sum of the economic and 

environmental costs. The number of new equipment that should be purchased in each period is 

provided by Figure 3. The decision variables in different periods are obtained as Table 3. As shown, 

the model decides to salvage six from 21 excavators that were available at the beginning. Looking 
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more closely at the other periods, it can be seen that the model mostly chooses rather new excavators 

with low utilization history and hence salvages those that have been utilized for four or more years 

(note that a k = 3 means four years of utilization). Based on the input parameters, the model tends 

not to put excavators in inventory, except in the first, seventh, eighth, and ninth period. 

Table 2. Estimated economic and environmental parameters 

Parameter Function Unit 

Economic   

pi 300,000 + 10,000i CAD$ 

li 10,000 + 1,000i CAD$ 

di 700,000 + 60,000i CUM (cubic meter) 

mijk 80,000 + 5000(−0.5i + 0.2j + k) CAD$ 

hijk 7000 + 500(k) CAD$ 

Cijk 63,000 + 5000(0.5i − 0.2j − k) CUM (cubic meter) 

bj 10,000,000 + 1000,000i CAD$ 

rijk 180,000 − 10,000(0.5j + 2k − i) $ 

Environmental   

qi 1100 − 50i tons of CO2_eq 

ui 110 − 5i tons of CO2_eq 

gijk 500 + 100(−i + k + 0.2j) tons of CO2_eq 

wijk 85 + 5(0.2j + k) tons of CO2_eq 

vijk 120 + 5(0.2j + k) tons of CO2_eq 

fi 
350,000 − 50,000i, 𝑖 = 1, … ,5 

150000                               𝑖 = 6, … ,10 
tons of CO2_eq 

  

 

 

Figure 3: Number of brand new excavators purchased in each year 

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10 11

Purchased excavators



24 

 

Table 3. Non-zero values of decision variables in the excavator fleet case 

Period 

 

New purchase 

(A) 

In service excavators 

 (X) 

In storage excavators 

 (Y) 

Salvaged excavators 

 (S) 

1 A1 = 0 

X100 = 2, X110 = 1 

X111 = 1, X121 = 1 

X122 = 3, X132 = 1 

X140 = 2 

 

Total: 11 

Y100 = 1, Y111 = 1 

Y121 = 2 

 

 

 

Total: 4 

S142 = 2, S163 = 1 

S161 = 1, S143 = 1 

S133 = 1 

 

 

Total: 6 

2 A2 = 1 

X200 = 1, X210 = 1 

X211 = 2, X221 = 2 

X222 = 1, X231 = 2 

X232 = 1, X251 = 2 

 

Total: 12 

 

 

 

 

 

Total: 0 

S233 = 3, S243 = 1 

 

 

 

 

Total: 4 

3 A3 = 6 

X300 = 6, X311 = 1 

X321 = 1, X322 = 2 

X332 = 1, X342 = 1 

 

Total: 12 

 

 

 

 

Total: 0 

S362 = 2, S343 = 1 

S342 = 1, S333 = 1 

S332 = 1 

 

Total: 6 

4 A4 = 4 

X400 = 4, X411 = 6 

X422 = 1, X433 = 2 

 

Total: 13 

 

 

 

Total: 0 

S453 = 1, S443 = 1 

S432 = 1 

 

Total: 3 

5 A5 = 3 

X500 = 3, X511 = 4 

X522 = 6, X533 = 1 

 

Total: 14 

 

 

 

Total: 0 

S544 = 2 

 

 

Total: 2 

6 A6 = 6 

X600 = 6, X611 = 3 

X622 = 4, X633 = 1 

 

Total: 14 

 

 

 

Total: 0 

S633 = 5, S644 = 1 

 

 

Total: 6 

7 A7 = 7 

X700 = 7, X711 = 6 

X722 = 1 

 

Total: 14 

Y722 = 1 

 

 

Total: 1 

S733 = 4, S744 = 1 

S722 = 1 

 

Total: 6 

8 A8 = 6 

X800 = 6, X811 = 6 

X822 = 3 

 

Total: 15 

Y811 = 1, Y822 = 3 

Y832 = 1 

 

Total: 5 

S833 = 1 

 

 

Total: 1 

9 A9 = 0 

X911 = 6, X921 = 1 

X922 = 6, X932 = 3 

X942 = 1 

 

Total: 17 

Y933 = 3 

 

 

 

Total: 3 

 

 

 

 

Total: 0 

10 A10 = 0 

X1022 = 6, X1032 = 1 

X1033 = 6, X1043 = 6 

X1053 = 1 

 

Total: 20 

 

 

 

 

Total: 0 

 

 

 

 

Total: 4 
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2.4.  Discussion  

Around 13.6% of the total optimum cost (i.e. C$3,265,360) is the cost of environmental burden of the 

fleet, in terms of a trading carbon price. For this reason, we should not expect that the solutions are 

greatly influenced by the environmental parameters. We run the model with mere economic 

parameters, results of which are shown in Table. 4. The optimum objective value, representing the 

minimum total cost of the fleet, decreases to C$20,744,000. It can be seen that in this scenario, minor 

changes have happened to the decision variables, mainly the mix of in-use, in-storage, and salvaged 

equipment (X, Y, and S). Overall, the number of new purchases over the entire planning horizon has 

slightly increased, despite the general expectation that taking into account environmental impacts 

should suggest purchasing more new assets in comparison to the economic model. This is not 

surprising, because we have formulated GHG items other than O&M emissions, like emissions 

associated with manufacturing a new equipment. Although the operating organization does not 

always pay for the carbon footprint of this stage of the equipment life cycle, when it comes to climate 

change and global warming, it is important to design a sustainable asset management that considers 

emissions from manufacturing and even the supply chain of the materials being converted into the 

final equipment. In fact, extraction and processing materials used for manufacturing many of the so 

called “low carbon” technologies (such as windmills, batteries of electric vehicles, solar panels, and 

biofuels), release a significant amount of carbon emissions.  

Minor changes in the mix of in-use, in-storage, and salvaged equipment (X, Y, and S) variables 

obtained from the economic model is attributed to the fact that in a cap-and-trade market, emissions 

cost of a fleet is dwarf, comparing to its economic costs. Therefore, we expect that bigger carbon 

prices make a more significant adjustment in the decision variables. For example, a carbon price of 

C$27 leads to a total cost of C$27,564,000. Total values of X, Y, and S corresponding to this scenario 

are presented in Table. 5. As indicated, this price requires less salvaged assets (due to bigger 

decommissioning carbon footprints) and instead more in storage assets.  
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Table 4. Non-zero values of decision variables in the economic replacement model 

Period 

 

New purchase 

(A) 

In service excavators 

 (X) 

In storage excavators 

 (Y) 

Salvaged excavators 

 (S) 

1 A1 = 0 

X100 = 2, X110 = 1 

X111 = 1, X121 = 1 

X122 = 3, X132 = 1 

X140 = 2 

Y100 = 1, Y111 = 1 

Y121 = 2 

 

 

S163 = 1, S161 = 1 

S143 = 1, S142 = 2 

S133 = 1 

 

2 A2 = 1 

X200 = 1, X210 = 1 

X211 = 2, X221 = 2 

X222 = 1, X231 = 2 

X232 = 1, X251 = 2 

 

S233 = 3, S243 = 1 

 

 

 

3 A3 = 6 

X300 = 6, X311 = 1 

X321 = 1, X322 = 2 

X332 = 2 

 

 

 

S362 = 2, S343 = 1 

S342 = 2, S333 = 1 

 

4 A4 = 4 

X400 = 4, X411 = 6 

X422 = 1, X432 = 1 

X433 = 1 

 

 

S443 = 2, S433 = 1 

 

 

5 A5 = 3 
X500 = 3, X511 = 4 

X522 = 6, X533 = 1 

 

 
S544 = 1, S543 = 1 

 

6 A6 = 4 
X600 = 4, X611 = 3 

X622 = 4, X633 = 4 

 

 
S633 = 2, S644 = 1 

 

7 A7 = 8 
X700 = 8, X711 = 3 

X722 = 3 

Y711 = 1 

 

S733 = 4, S744 = 4  

 

8 A8 = 6 
X800 = 6, X811 = 8 

X822 = 1 

Y821 = 1, Y822 = 2 

Y833 = 2 

S833 = 1 

 

9 A9 = 0 
X911 = 6, X922 = 8 

X931 = 1, X932 = 2 

Y933 = 1, Y943 = 2 

 

 

 

10 A10 = 0 

X1022 = 6, X1033 = 8 

X1042 = 1, X1043 = 3 

X1053 = 2 

 

 

 

 

 

 

 

Table 5. Total number of in-use, in-storage, and salvaged equipment (X, Y, and S) with the carbon price 

C$27  

Period (A) (X) (Y) (S) 

1 1 12 1 9 

2 4 14 2 1 

3 5 16 1 4 

4 5 16 2 4 

5 5 16 3 4 

6 5 17 2 5 

7 5 18 2 4 

8 3 19 2 1 

9 2 20 2 1 

10 0 21 0 1 
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2.5. Conclusion 

This present chapter proposes a fleet replacement optimization model with both economic and 

environmental considerations. The optimization model, unlike previous asset planning models, allows 

assets to be in storage without deteriorating as in-use assets do. Other decision variables include the 

mix of in-use assets, the assets that should be salvaged, as well as the number of new assets, which 

should be added to the fleet. This model formulates the capacity of assets by which the technological 

improvement of new assets is considered. Both economic and environmental costs of the fleet are 

taken into consideration. Environmental burdens of the fleet are modelled by capturing the GHG 

emissions of manufacturing new assets, shipping them to the fleet location, O&M process of in-

service assets, holding in inventory assets, and decommission assets, under a cap to limit the total 

carbon footprint of the fleet. We also developed an automatic GHG calculator built on a timely 

database of Scope 1 (direct) and Scope 2 (indirect) emission factors. Possessing an integrated 

platform, the calculator allows asset managers to measure the total carbon footprint of their fleets, 

involving various activities such as manufacturing, stationary combustion, transportation, material 

usage, and electricity/heat consumption.  

The optimization model was applied to a fleet of excavators. GHG emissions of the fleet were 

converted into a monetary value by use of carbon price in the Western Climate Initiative (WCI) 

market. To estimate the price of carbon in this market, an uncertainty analysis study was conducted, 

which predicts the most probable prices over the intended planning horizon of the optimization model. 

This prediction study is important in that it provides emitting organizations with a long-term and 

short-term forecast of price in a carbon market (covered by Chapter 5).  

This monetary value of fleet’s emissions, however, may not reflect the exact concern of 

environmental impacts, in a global warming point of view. From the result of the case study, we found 

out that considering the P10 carbon price in the WCI market (i.e. the price associated with 90% 

probability in the cumulative distribution function of carbon price) cannot change the fleet decisions, 

and so mitigate its emissions significantly, comparing to a mere economic decision model. This would 

become even more discouraging if we exclude GHG emissions for which, the fleet owner does not 

yet pay in a carbon market (e.g. emissions from manufacturing new equipment or outsourced 

decommissioning projects). As indicated, much greater prices (with very small probabilities based on 

the WCI market dynamics), would alter the decision variable and hence reduce the total emissions 

more considerably.    
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3. Improving Fleet Availability Analysis by Incorporating Complex 

Causal Factors 

 

The present chapter is based on the following paper: 

Abdi, A., Taghipour, S. (2018). A Bayesian network approach to fleet availability analysis. 

International Journal of Operations & Production Management. Under Review.  

 

As an important aspect of fleet management, availability analysis requires modelling uncertainties 

associated with the two main elements; reliability and maintainability. This paper aims to improve 

prediction and uncertainty analysis of reliability (or failure rate), maintainability (or repair rate), and 

hence the availability of a fleet of assets, by focusing on common causal factors and rare events which 

might impact one or both failure and repair rates. To this aim, we propose a Bayesian network 

approach with learning and analytical features which allows fleet managers to not just predict the 

most likely availability of their fleet but analyse the impact of any observed shift in the influential 

factors, update prior beliefs about the predictions, and discover the root causes of troubling failure 

and repair rates as well. We applied the proposed model to a fleet of excavators.   

Keywords: Fleet, Availability, Failure rate, Repair rate, Common causes, Bayesian networks. 

3.1. Introduction 

Forecasting and monitoring availability is a key aspect of maintenance and fleet management. In 

fact, availability assessment provides a direct measure for production capacity, as well as a criterion 

to decide on the required corrective actions [35]. However, assessment and optimization of a fleet 

unavailability accounting for real world uncertainties is a challenging task and without a rigorous risk 

analysis on failure and repair rates (as the two main indicators of availability), the decisions on 

acceptability of availability may not be reliable [36]. For decades, researchers have been developing 

methods for assessment of failure and repair times, including fault trees (FTs) and dynamic fault trees 

(DFTs) [37], artificial neural networks (ANNs) [38], Bayesian networks (BNs) [39], Monte-Carlo 

simulation (MCS) [40], fuzzy MCS [41], renewal processes [42], Markov chains  [43], and geometric 

processes [44].  

A common assumption behind these techniques is the consideration of constant failure and repair 

rate (CFRR) of the fleet assets. In reality, however, CFRR does not apply to industrial systems and 
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assets, with the main failure mode of deterioration (Wilkins, 2002; and Saranga and Kumar, 2006). 

CFRR does not reflect the effect of preventive maintenance and managerial interventions on both the 

failure behaviour and repair time of assets. These interventions are often reflected in a number of 

complex causal factors that dynamically affect fleet’s failure rate, repair rate, or both. We categorize 

these causal factors into three groups. First, there are external, often intangible factors such as 

organizational and human factors that can increase the failure rate of an operating asset/fleet [85]. For 

example, quality of operating staff4 may contribute to system failure. Second, there are such 

organizational factors, such as the quality of repair instruments and materials, that influence repair 

rate. They act as a common cause and impact two or more tasks of the repair process (such as 

diagnosis, procurement, remove and install, etc.), making them correlated. Third, there exist common 

causal factors that affect equipment failure rate and repair rate simultaneously. For instance, a harsh 

environmental condition not only increases the chance of failure in a fleet of assets, it also can delay 

the process of returning a failed asset to the working condition.  

Moreover, fleet availability can be significantly negatively affected by extremely rare or 

previously unobserved risks. Examples of such events include an extreme cyber-attack, a major power 

outage, etc., that if occurred, can escalate failure rates and diminish repair rates. 

Capturing these causal factors is incredibly important as they allow us to dynamically assess the 

reliability and maintainability of fleets by considering time-dependent failure and repair rates. These 

factors have not been examined in reliability, maintainability and availability analysis models. In this 

paper, we develop a hybrid Bayesian network (BN) (with both discrete and continuous variables) to 

formulate a fully probabilistic availability analysis, focusing on the uncertainty of failure and repair 

rates. We model the causal factors that influence failure or repair rate as well as those that affect both 

failure and repair rates at the same time. The proposed model explicitly quantifies uncertainty in repair 

and failure rates of a fleet of assets and provides an appropriate method for modelling complex 

dependencies and factors affecting reliability, maintainability, or both, by considering influencing 

factors, either technical (such as working temperature, environment, quality, stress, etc.) or 

organizational (such as staff quality, management policies, etc.). To improve availability risk analysis, 

we will then extend the model to consider extremely rare and/or previously unobserved events, 

adopting an approach proposed by Constantinou et al. [86]. The aim of this research is to improve the 

analysis of operational availability, which is in fact the actual level of availability that a fleet’s 

                                                 
4 As an evidence example, Walia et al. (2010) reported that users of ophthalmic equipment, for example, cause almost 

one-third of failures. 
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customers experience. It accounts for every downtime items, such as logistical delays, administrative 

downtime, etc.  

Application of the model and its analytical features are evaluated using an excavator fleet 

example. Using this case study, in addition to the fundamental objective of the proposed model, i.e. 

prediction of fleet availability, we have demonstrated other features of the model including learning, 

scenario analysis, and diagnosis. The prediction accuracy of the proposed model is evaluated using a 

measure of prediction error.  

3.1.1. Reliability, maintainability, and availability  

This section presents an overview of three dependability attributes [87], i.e. reliability, 

maintainability, and availability, and discusses the published literature in each of these attributes.  

3.1.1.1. Reliability and failure rate 

As an aspect of availability estimation, reliability is a crucial step in equipment design and is 

defined as the degree to which the equipment is expected to perform its promised task with required 

accuracy [88]. Reliability at time t, R(t), is calculated as the probability that the equipment survives 

until time t: 

R(t) = ∫ f(t)dt =  1 − F(t)
∞

t
 ,       (19) 

where F(t) is the distribution function of the system lifetime. Reliability analysis is closely 

connected with distribution of failure times (or life distribution), f(t), and failure rate (or hazard 

distribution), h(t): 

R(t) =
f(t)

h(t)
.          (20) 

The higher the failure rate, the larger the probability that the system will fail in a short time, 

whereas a low failure rate means that there is a small probability that the system will fail soon [89]. 

Many distributions have been used as life distribution of a system or component. One of the most 

common distributions is exponential distribution, with the density 𝑓(𝑡) = 𝜆𝑒−𝜆𝑡. In this case, failure 

rate is constant: h(t) = λ, and the mean time to failure (MTTF) is 1/ 𝜆. Other lifetime distributions 

that can be used to model reliability, include Weibull, Normal, Lognormal, Mixed Weibull, Gamma, 

Generalized Gamma, Logistic, Loglogistic, and Gumbel. An overview of many applicable lifetime 

distributions can be found in [90].   
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There are several factors that can affect the failure rate and time. These include component quality 

and poor selection of materials, overloading or stress, temperature, environment conditions, design 

deficiencies, inadequate maintenance, etc. [91]. 

3.1.1.2.  Maintainability and Repair rate 

Via a maintenance action such as replacement or part adjustment, a repairable system can be restored 

to operating condition after a failure [92]. There are three types of repair models, depending on the 

performance level to which the system can be restored: 1) perfect repair, under which the system is 

restored to an “as good as new” condition, 2) minimal repair, under which the system is recovered to 

an “as bad as old” condition (the same as it was immediately before its failure), and 3) imperfect 

repair, under which the system is restored to somewhere between as good as new and as bad as old.  

Maintainability can be defined as the chance that a repairable system/component can be repaired 

in a specific environment within a defined schedule through normal maintenance [93]. The time to 

restore a system/component is the sum of the duration of some stages in the renewal chain, such as 

diagnosis, procurement, repair, inspection, and return. This can be affected by administrative delays 

(such as holidays). Often these sub-processes require some time to be completed, which is not zero. 

The existing queuing effects makes these stages dependent and adds to the complexity of 

maintainability estimation. This dependency should be modelled to assess the likelihood distribution 

of repair time or total down time.   

For renewal processes with several parallel and interlinked stages, the total repair duration (TRD) 

can be calculated using techniques of schedule network analysis [94] from the project management 

discipline, notably program evaluation and review technique (PERT) [95] and critical path method 

(CPM) [96]. In fairly simple networks, critical path would be the longest path through the renewal 

process. If there are no parallel activities in the renewal process, TRD can be expressed as follows: 

TRD = ∑ Di  , Di ≥ 0 ,        (21) 

where Di is the duration of the individual activity i in the repair/renewal process. 

3.1.1.3. Availability  

Availability is calculated as the probability of the system being working properly at a given time [97]. 

Availability is a function of reliability and maintainability-that is, the system is unavailable if it is 

failed and waiting for repair (or renewal) or undergoing a repair action. Three different availability 

terms have therefore been defined to calculate availability [98]: Inherent Availability (IA); Achieved 
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Availability (AA); and Operational Availability (OA). IA, used by maintenance personnel, does not 

consider preventive maintenance, and administrative and supply times, and is calculated as follows:  

IA =
MTBF

MTBF + MTTR
 ,        (22) 

where MTBF is the mean time between failures and MTTR represents the mean time to repair. This 

gets simplified for a system as IA = MTTF/(MTTF + MTTR), where MTTF is mean time to failure. 

AA, used by the maintenance department, considers both corrective and preventive maintenance, but 

still excludes supply and administrative delays, and can be calculated as follows: 

AA =
MTBM

MTBM + MMDT
 ,        (23) 

where MTBM is the mean time between corrective and preventive maintenance, and MMDT is the 

mean maintenance downtime. OA, used by the user, is computed as follows: 

OA =
MTBF

MTBF + MTTR+MLDT
 ,       (24) 

 where MLDT is the mean logistical delay time. The quantities MTBF, MTTR, MTBM, and MMDT 

can be defined as follows (the main concepts, theory, and models of availability can be found in [99]): 

MTBF Uptime / number of system failures 

MTBM Uptime / (number of system failures + number of system downing preventive 

maintenance (PM)*) 

MTTR Corrective maintenance (CM) downtime / number of system failures 

MMDT (CM downtime + PM downtime) / (number of system failures + number of system 

downing PMs) 

*System Downing PMs are PMs that cause the system to go down or require a shutdown of the system 

3.1.2.  Previous studies in reliability, maintainability, and availability modeling 

Classic reliability analysis models mostly rely on parametric and non-parametric statistical techniques 

of time to failure data and their related metrics [100]. Such techniques assume lifetime distributions 

follow a coherent and statistical model, which are expected to precisely analyse the behaviour of a 

system over its lifetime. These statistical models, however, may not be rigorous for assessment of 

today’s complex circumstances. Therefore, more flexible methods have been developed for reliability 

modelling over the past decade. Among the most distinguished techniques are fault trees (FTs) and 

dynamic fault trees (DFTs), artificial neural networks (ANNs), Bayesian networks (BNs), Monte-
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Carlo simulation (MCS), fuzzy MCS, renewal processes, Markov chains, and geometric processes. 

Kutyłowska [38] proposed an ANN model to predict failure rates of distribution pipes and house 

connections in Poland. This model is intended to be used by a water utility to determine the frequency 

of failure and therefore schedule the renewal of deteriorated pipe. A BN algorithm was proposed by 

[39] to model lifetime distributions and analyse reliability of complex systems. The algorithm extends 

FTs by considering failure times of the FTs’ constructs, as specific functions of the related failure 

times of input components. Using their method, different configuration of static and dynamic gates 

with general lifetime distributions can be solved. Sriramdas et al. [101] proposed a reliability 

allocation approach using fuzzy numbers. They assigned fuzzy linguistic terms to the allocation 

factors, such as complexity, criticality, and cost. Khalafi et al. [41] proposed a fuzzy MCS method to 

analyse reliability of observability and loss of data expectation in lines of a power system considering 

data uncertainty in failure and repair times. Alam et al. [102] used point estimate method (PEM) to 

capture data uncertainty in modelling failure rate, repair time, and load. In this study, they have 

considered only normal distributions. Brissaud [103] proposed a failure rate estimation model for 

safety systems using field feedback with confidence intervals. They used data from two categories of 

failures: (1) detected failures (or online failures diagnosed by automatic tests); and (2) undetected 

failures (revealed by proof tests).  

Regarding previous research on maintainability analysis, Jian et al. [93] presented a theory and 

connotation for maintainability of a product. Taking into account both internal and external attributes, 

they have developed evaluation indicators for maintainability of the product, based on its life cycle. 

A weight factor was also calculated for each indicator using fuzzy AHP and expert judgment. 

Considering backup mechanism of repairable systems with random repair times, Levitin et al. [104] 

presented an algorithm to model mission reliability of single-component system. They also examined 

the impact of repair efficiency on mission indices of reliability. Kumar and Rath [105] developed a 

maintainability prediction models using functional link artificial neural network, genetic algorithm, 

particle swarm optimization, and clonal selection algorithm. They showed that the combination of 

functional link artificial neural network and genetic algorithm yields the most effective results. 

Barabadi et al. [106] used software (Relex) and statistical models to model renewal time. In this model 

environmental and operational factors have been taken into consideration to improve maintainability 

analysis.  

Different tools and techniques have been employed to assess the availability of a system. Using a 

Markov approach, Angus [107] developed a closed form solution to analyse MTBF and steady state 



35 

 

availability of a k-out-of-n with independent and identically distributed components, assuming a 

constant rate for failure and repair. Monte Carlo Simulation (MCS) was used by Sadaghiani et al. 

[108] to analyse the availability of a system consisting of identical components, with exponential time 

to failure and repair. Fault trees and a Markov based method were applied in an algorithm to calculate 

steady state availability of the system. To analyse the availability of a repairable system, Neil and 

Marquez [36] presented a BN in which distributions of corrective maintenance, preventive 

maintenance, and logistics delay times have been modelled and integrated with the distribution of 

failure time. In most of the previous studies, however, failure time and repair time are assumed to be 

independent.  

More recently, Penttinen et al. (2019) introduced an open modelling approach for reliability and 

availability analysis. It allows the analyst to integrate several risks assessment methods to provide 

flexibility and relax more simplification assumptions that individual methods make. In their case 

study, the showed the feasibility of this approach by combining the Fault Tree, Markov and Petri Net 

models. Smit et al. (2019) addressed the long-term availability of water treatment plants (WTPs), 

using a two-level approach: a component level using a conditioned-based or failure-based technique; 

and a system level using the block diagram of the system’s components and the results of the 

component level availability assessment.   

3.2. Development of the model 

This section explains a new BN model for fleet reliability, maintainability and availability analysis. 

First, a brief introduction of BN and its application to modelling common causal factors is presented. 

The framework of the proposed model is then described. 

3.2.1.  Bayesian networks (BNs): A brief introduction 

As an inference technique, BNs are models for explicit uncertainty analysis, parameter and structural 

learning, combining different knowledge domains, and quick responses [111]. With a logical and 

mathematical structure, they are applied to the situations with prior experience/information and 

resultant data, and can be developed on small-scale or incomplete datasets [112]. BNs have been 

recently applied to construct promising models in forecasting stock market indices and prices [113–

115], urban rail passenger flows [116], solar radiation [117], electricity demand [118], project cost 

[119], and so forth.  
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BNs contain several nodes, as the uncertain variables, and arrows, indicating the cause-and-effect 

relationship between the variables. The nodes might represent initial variables without an inward 

arrow (called parent nodes), or a dependent variable with arrows directed towards them (called child 

nodes). To quantify a node, a node probability table (NPT) is assigned to it which determines its 

possible states and probabilities. A BN containing the nodes X1, … , Xn must be structured in such a 

way that their connecting arrows create a directed acyclic graph (DAG). A DAG cannot have the path 

𝑋1 → ⋯ → 𝑋𝑛 so that 𝑋1 = 𝑋𝑛. If the node X is dependent on its parent nodes, 𝑌1, … , 𝑌𝑛, its 

conditional NPT would be P(X|Y1, … , Yn). This NPT would be curtailed to the prior probability P(X), 

if the node X has no parents. Equipped with chain rule, BNs can describe the joint 

distribution, P(X1, … , Xn), in a compact configuration as follows [120]: P(X1, … , Xn) =

∏ P(Xi|X1, … , Xn)i . 

Figure 4 is a naïve Bayes model that can be used to describe Bayes rule in a reliability analysis 

context. Variables F1, F2…, Fn are failure times of n components, and variable C represents a 

‘common cause’, such as shared ‘quality’, that affects Fi. Starting with a prior probability for the 

cause, P(C), the likelihood for failure times conditional on the cause, P(P|C), is calculated from a 

cause-to-effect inference or forward propagation: 

P(F|C) =
P(C|F)P(F)

P(C)
 .                                                          (26) 

This rule provides an effect-to-cause or backward propagation, which allows the causation from 

failure times to its cause to be captured. Thus, evidence on reliability can be used to revise our belief 

about the actual level of quality, that is P(C|F), which can be calculated by multiplying the prior 

probability of the cause, P(C), by the likelihood P(F|C), and normalizing the results by dividing by 

the constant P(F): 

P(C
F⁄ ) =

P(F
C⁄ )P(C)

P(F)
 .                                                                (25) 

Thus, this updated prediction for quality can be used to predict the failure times of other 

components, Fj by employing Eq. (26).  
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Figure 4: A Naïve Bayesian network to model correlated lifetime distributions of n components 

(Fi), with a shared common cause (C) 

 

The purpose of modelling common causes is to consider following risks: (1) organizational issues, 

e.g. people quality, which can affect failure and repair time uncertainty. Expert elicitation can be 

employed to come up with prior estimation on these complex or poorly understood factors; and (2) 

Other influential factors like available technology, materials, environmental conditions, etc., which if 

occur in a non-normal situation, can lead to higher failure rates (or lower repair rates). This 

mechanism allows us to model dependencies in system/component reliability and maintainability.  

Several computer tools have been developed to build and run BN models with numerous variables. 

We have used AgenaRisk software [121] to run the designed BN models in this dissertation. A 

comprehensive list and review of BN tools can be found in [122].  

3.2.2. Model structure 

Figure 5 represents the conceptual framework of the proposed model. We develop a probabilistic 

model in which uncertainty sources of failure/repair rate are captured. To begin with, common causes 

to failure rate (Cfi
, i = 1, … , l), repair activities (Crj

, j = 1, … , n), and that of both failure and repair 

rates (Cfk
, k = 1, … , m) are identified. As mentioned earlier, among examples of these common 

causes are temperature, environment, component quality, staff quality, etc., which can be either a 

quantitative variable (e.g. temperature) or a qualitative factor (e.g. staff quality). The common causes 

can be identified from published literature, brainstorming sessions and conducting interviews with 

experts. A “ranked” variable with linguistic terms- such as Low, Medium, and High- is assigned to 

the qualitative causes to represent their uncertainty. In this paper, the systematic approach in 

determining the probabilities of Bayesian network, proposed by Chin et al. [123] is used to generate 

prior probabilities of common causes (see Appendix C). To capture the uncertainty of quantitative 

F1 … F2 Fn 

C 
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causes, a relevant probabilistic distribution can be calculated based on the technical characteristics of 

the related variable.  

 

Figure 5: A schematic of proposed model to analyze reliability, maintainability, and availability of a 
single component 

A prior distribution will be assigned to the node Failure Rate conditional on different states of its 

common causes. A prior can be estimated using data or subjective judgment if there is no historical 

information on failure records of the system. A prior distribution will also be assigned to the duration 

of each repair task (𝐷1, 𝐷2, … , 𝐷𝑝). If data from previous repair projects is available, the first option 

would be fitting a theoretical probability distribution to the data and verify its statistical goodness of 

fit [124]. Contrary to classical frequentist methods which heavily rely on the distribution type and 

specific practice to elicit these distributions, Bayesian networks are agnostic with regard to the input 

data and prior distributions. This allows to handle the situations where there is no historical data but 

a plenty of expert judgment.  
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Triangular, Normal, Lognormal, Uniform, Weibull, Pearson, and Beta, are common distributions 

that are usually assigned to duration and cost items in order to perform a quantitative risk analysis 

[125]. When there is no data to fit to the desired distribution, he common practice is to apply a three-

point estimate [126] and elicit minimum, most likely, and maximum values to calculate time/cost 

distributions. We use a continuous triangle distribution throughout this dissertation to capture the 

uncertainty of the quantitative variables, if we aim to conduct a probabilistic risk analysis. Triangle 

distribution is easy to derive from expert judgment, can model asymmetrical situations and is bounded 

within determined limits [127,128]. The probability density function (PDF) of this distribution is as 

follows: 

f(x, a, b, c) = {

2(x−a)

(b−a)(c−a)
     for a ≤ x ≤ c

2(b−x)

(b−a)(c−a)
     for c ≤ x ≤ b

         a ≤ x ≤ c, a < 𝑏 < 𝑐.           (27) 

Triangle distribution has three parameters: a, b, and c, which represent lower, most-likely, and 

upper values of the variable x, respectively. Thus, the probability of any values outside the lower and 

upper bounds is zero and the density increases linearly from a to b and then falls linearly from b to c. 

The mean and variance of this distribution are formulated as follows [119]: 

μ =
a+b+c

3
 .           (28) 

σ2 =
a2+b2+c2−ab−ac−bc

18
.          (29) 

One could create an “expanded” triangle [129] to eliminate over optimism as well as known 

biases. The procedure is to use the elicited values of a and c to constrain 90 percent of the distribution 

and then calculate the new endpoints based upon the location of most-likely value (see Figure 6). The 

elicited numbers should be set as 0.05, 0.50, and 0.95-quantiles and the following approximate mean 

and variance need to be computed by use of Pearson–Tukey procedure proposed by [130].  

μ̂ = 0.63q0.5 + 0.185(q0.05 + q0.95).        (30) 

σ̂2 = 0.63(q0.5 − μ̂)2 + 0.185[(q0.05 − μ̂)2 + (q0.95 − μ̂)2],     (31) 

where q0.05, q0.5, and q0.95 represent 0.05, 0.50, and 0.95-quantiles, respectively. Now a system 

including Eqs. (28), (29) and any one of the following nonlinear integral equations should be solved: 
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∫ f(x, a, b, c)dx = 0.05.
q0.05

a

∫ f(x, a, b, c)dx = 0.5
q0.50

a
.

∫ f(x, a, b, c)dx = 0.95.
q0.95

a

           (32) 

Due to the lack of a closed form solution, numerical root-finding methods, e.g. the Levenberg–

Marquardt algorithm [131], can be used to solve the system.   

 

Figure 6: Expanded PDF of triangle distribution to handle the uncertainty of repair times; the10 percent 
of the probability in the tails of the distribution is not equally distributed. This skewness will be calculated 

based on the location of the most-likely value with respect to the initial upper and lower endpoints. Adopted 
from [129]. 

We can now simulate repair rate of the equipment by integrating duration distribution of repair 

tasks, using the fact that Repair rate = 1/(total MTTR). Assuming that the repair tasks happen in a 

serial order, this can be simplified as follows: 

Repair Rate =
1

total MTTR
=

1

MTTR1+⋯+MTTRp
.      (33) 

3.2.3.  Rare event 

To predict average failure and repair rates of a fleet more accurately, we incorporate the negative 

impact of extremely rare or previously unobserved risks. Failure and repair rates can be dramatically 

affected by rare events, such as a major power outage. So far in the modelling process, the statistical 

outcomes to capture uncertainty of failure and repair rates are already influenced by the common 

causes. In order to incorporate the effect of highly rare events, a variable associated with this event 

should be added to the model in such a way that the initial distributions of failure/repair rates are 
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preserved, as long as this rare event remains unobserved [86]. In this regard, an expert elicitation 

method has recently been proposed by Constantinou et al. (2016). As depicted in the very simple BN 

model illustrated in Figure 7, we have already assigned a distribution-either from data or expert- to a 

failure rate (F) given a known common cause (C). In this model, the failure rate is expressed as a 

function of various states of C. This is to say P(Cs) = cs is known for each s = 1, … , S and f(F|Cs) is 

a known distribution for each s = 1, … , S. 

 

Figure 7: Adding a rare event variable (R) into BN model in modelling of failure rate (F) 

Let the expected value E(F|Cs) = φs for each s = 1, … , S. Before adding the rare event variable 

(R), the expected value of F is: 

E(F) = ∑ E(F|Cs)P(Cs)S
s=1 = ∑ φscs

n
s=1 .     (34) 

Now, consider the new variable, R, with Q states R1, … , RQ. We assume the expert provides the 

prior probabilities for R, i.e. P(Rq|Cs) = psq for each s = 1, … , S and for each q = 1, … , Q. If C and 

R are not linked, then instead of S×Q priors, only Q priors is needed: P(Rq) = pq for each q =

1, … , Q. The expert’ challenge is to complete the node probability table for F, so that all conditional 

expected values of F given C in the original model as well as the marginal expectation remain 

unchanged. More precisely, we desire:   

Ê(F|Cs) = E(F|Cs) = φs for each s = 1, … , S,    (35) 

where Ê(𝐹|𝐶𝑠) shows expected value of 𝑓(𝐹|𝐶𝑠) in the BN model with a rare event node. That is 

to say, this new variable, when it is at its prior state (i.e. as long as it is unobserved), should not affect 

the predicted outcome of F. This is because this outcome has already been influenced by the rare 

event; that is, just because our dataset or expert elicitation does not capture this rare event, it does not 

imply that the outcome of F should not be dependent on it. Of course, when you observe a state for 

the rare event, it should change F depending on how we have defined the conditional probabilities. If 

one can formulate Eq. (35), it can be concluded from Eq. (34) that: 

C 
Common cause  

 

R 
Rare event 

F 
Failure rate 
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Ê(F) = E(F).         (36) 

Eq. (35) is ample to prove that the unconditional expected value of F is remained unchanged in 

the BN model containing the rare event. In this model, the general form of the NPT for F can be 

written as a function (fsq), with expected value φsq, s = 1, … , S; q = 1, … , Q, as expressed in the 

following equation, and also shown in Table 6: 

E(fsq) = Ê(F|Cs, Rq) = φsq, s = 1, … , S; q = 1, … , Q .   (37) 

Table 6. The NPT for F in the BN model with rare event R 

C C1 … Cs … CS 

R R1 … Rq … XQ … R1 …Rq … RQ … R1 …Rq … RQ 

𝐅 f11 … f1q … f1Q … fs1 … fsq … fsQ … fS1 … fSq … fSQ 

 

Because Rq is dependent on Cs, marginalization can be used to calculate: 

Ê(F|Cs) = ∑ E(F|Cs,Q
q=1 Rq)P(Rq|Cs) = ∑ φsqpsq

Q
q=1 .    (38) 

Thus, from equations (35) and (38) we desire: 

∑ φsqpsq
Q
q=1 = φs, s = 1, … , S.       (39) 

Therefore, Eq. (39) includes the required constraints related to the expert judgments for φsq. 

There would be a specific solution, if the user can only provide Q − 1 of the required Q values 

φ11, φ12, … , φ1Q−1, φ1Q. Applying Eq. (39), we can find the missing values. Assuming φsQ is the 

missing value, it can be seen from Eq. (39) that φs = ∑ φsqpsq
Q
q=1 , therefore, φs = (∑ φsqpsq

Q−1
q=1 ) +

φsQpsQ. As a result: 

𝜑sQ =
φs−(∑ φsqpsq

Q−1
q=1 )

psQ
, s = 1, … , S.       (40) 

Thus, Eq. (40) can be employed to calculate the missing NPT values needed to keep the expected 

values of F conditional on C in the initial model [86].  

3.2.4.  Learning  

This section covers the learning feature of our Bayesian model. This specific feature is important in 

cases where sufficient historical information on the desired failure and repair rates is not available, or 

where we would like to continuously update the estimations whenever a new evidence on 
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failure/repair time is available. For instance, consider the failure rate (F) of a component/asset which 

has been newly designed and manufactured, and hence historical data is not captured. However, it is 

known that failure times follow an exponential distribution with rate F (and mean F−1). The objective 

is to use inter-failure times to estimate the posterior distribution of failure rate. Thus, if Ζ independent 

failures were observed with an underlying exponential distribution (see Figure 8):  

{Evidence ζ}ζ=1
Ζ  ~ exp (F)       (41) 

Using backward propagation (or effect to cause inference) in this structure, the model infers F and 

updates the prior estimation of failure rate (and therefore lifetime distribution) upon the observance 

of a failure: 

f(F|Evidence ζ) =
P(F).P(Evidence ζ|F)

∫ P(F).P(Evidence ζ|F)dF
  , ζ = 1, … , Ζ .    (42) 

 

Figure 8: Parameter learning structure for failure rate based on Z real evidences 

Having modelled the failure and repair rates, we can now formulate any of availability types (IA, 

AA, and OA), presented in Section 3.1.1.3, in the “Fleet Availability” variable of Figure 5, as a result 

node. This node will also represent the uncertainty of the fleet availability.  

3.3. Application 

In this section, we illustrate the applicability of the proposed model for availability analysis of a fleet 

of excavators. We use hypothetical data to illustrate the model features and demonstrate how the 

prediction performance of the model can be measured. We specifically develop the model to assess 

the availability of a proportion of the fleet that are less than two years old, which includes 7 

excavators. This would remove the effect of age variable on the availability analysis. However, the 

same methodology can be applied to estimate the availability of assets with other range of age, and 

therefore, the fleet manager could have an estimation of the availability of the whole fleet in average.  

The graphical representation of the model and its nodes is provided by Figure 9. To begin with, 

‘Environmental Harshness’ is a causal factor affecting the failure rate of assets. Comparing with the 

medium levels of physical environment, high or low level of environmental conditions, including 

Evidence 1 

Evidence Ζ 
…

 F 
Failure rate 
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temperature, humidity and moisture, dust, etc., would obviously impact assets’ reliability and their 

failure times [132]. ‘Staff Quality’ is the other cause attributed to failure times, as inappropriate use 

of asset, and operators’ performance/characteristics are effectual in systems reliability. It has been 

now decades since researchers started modelling such complex factors [133,134], and yet, it is an 

imperative criterion to model reliability and maintainability [135]. On the other hand, ‘Experience’ is 

considered as a common cause to repair activities. We assign a Likert scale with three states ‘Low’, 

‘Medium’, and ‘High’ to these common causes. We decide ‘Asset Management Maturity’ is the 

common cause that affects both failure and repair rates. This factor refers to the extent to which the 

company has well defined, documented, and used availability management procedures as standards 

of operations and maintenance. This reflects the maturity of the company in management practices 

related to service availability, including risk management. We define three levels for asset 

management maturity which signify the following characteristics:  

• Level 1; Ad-hoc: this level reflects a reactive company that has operations with almost chaotic 

manners. In the case of crisis, it is hard to anticipate how the management would react, as 

there is limited control on the processes.  

• Level 2; Managed: well-defined operation and maintenance procedures are documented, 

implemented, and understood and assisted by management. Maintenance actions are mostly 

preventive and there is little reactive maintenance.  

• Level 3; Optimized: Asset management strategies are aligned with risk-informed operation 

and maintenance. The focus of management is on continuous improvement. Comprehensive 

training exists at all layers of the company. The company is acting proactively, rather than 

reactively.  

Table 7 represents discrete probabilities of identified common causes. 
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Figure 9: Graphical representation of the case model (dashed lines are created because there are 
intermediate nodes in the model to facilitate NPT assignments and to lower the calculation volume) 

Five tasks are assigned to the repair job: notification and diagnosis, fix time, wait time, reassembly 

alignment and calibration, and test time. As noted earlier, the common cause ‘Experience’ impacts 

the duration of most of the above tasks. A triangular distribution is fit to the duration of a task, 

conditional on the state of their common cause, i.e. Experience (Table. 8). Because the tasks are 

sequencing in series, total repair duration (TRD) is formulated as the summation of all the above task 

durations. The prior distribution for repair rate can be now generated using TRD distribution and a 

coefficient associated with each state of the common cause ‘Asset Management Maturity’ (see last 

column of Table 10). This coefficient also eases conditional probabilities elicitation in generating 

prior failure rate, where we first elicited failure times by conditioning them on the two causes Staff 

Quality and Environmental Harshness, i.e. Failure Time|SE (FTSE) as shown in Table 9, and then we 

formulated the failure rate and amended it using the aforementioned coefficients, as presented by 

Table 10.  As there was not a historical record for failure times, we set a non-informative uniform 

prior, known as Bayes-Laplace prior to estimate failure times, which is a satisfactory method to begin 

uncertainty modelling when there is no significant past data [136]. However, when there is past 

information, either from the same assets or from similar assets, these uniform distributions should be 
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regarded as pre-priors which will be then updated to informative priors using historical information 

[137].  

Table 7. Elicited probabilities for ranked nodes assigned to common causes 

Node Probabilities, Parameters and Coefficients  

Environmental Harshness (low, medium, high) = (0.132, 0.477, 0.391) 

Staff Quality (low, medium, high) = (0.263, 0.582, 0.155) 

Asset Management 

Maturity 
(ad-hoc, managed, optimized) = (0.254, 0.629, 0.117) 

Experience (low, medium, high) = (0.375, 0.404, 0.221) 

 

Table 8. Elicited distributions for repair activity durations 

 Repair tasks duration (hours) 

Notification and 

diagnosis 
Fix time Wait time 

Reassembly alignment 

and calibration 
Test time 

E
x
p

erien
ce 

Low 
Triangular 

(4.2,7,9.8) 

Triangular 

(7.7,10.5,14.3) 

Triangular 

(1.1,1.5,3.8) 

Triangular 

(3.8,6,8.8) 

Triangular 

(1,1.5,3.2) 

Medium 
Triangular 

(3.1,5,8.7) 

Triangular 

(6.2,9,12.8) 

Triangular 

(2.7,4,6.4) 

Triangular 

(0.58,1,1.9) 

High 
Triangular 

(2.4,3,4.6) 

Triangular 

(5.1,7,9.6) 

Triangular 

(1.5,3,5.7) 

Triangular 

(0.2,0.8,1.5) 

 

Table 9. Prior failure times based on Staff Quality (S) and Environmental Harshness (E) 

 Environmental Harshness Failure Time|SE (FTSE) 

S
taff Q

u
ality

 

Low 

Low U (35,55) 

Medium U (30,50) 

High U (25,45) 

Medium 

Low U (45,65) 

Medium U (40,60) 

High U (35,55) 

High 

Low U (55,75) 

Medium U (50,70) 

High U (45,65) 
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Table 10. Final failure and repair rates adjusted by a coefficient corresponding to Asset Management 
Maturity levels 

Asset Management 

Maturity 
Failure Rate Repair Rate 

Ad-hoc FTSE−1 ∗ 1.25 TRD−1 ∗ 0.7 

Managed FTSE−1 ∗ 1 TRD−1 ∗ 1 

Optimized FTSE−1 ∗ 0.8 TRD−1 ∗ 1.2 

Assuming that failure and repair times follow an exponential distribution, we simulate the node 

‘Fleet Availability’ using the following formula: 

Fleet Availability =
Repair Rate

Repair Rate+Failure Rate
. 

Having entered the above information and formulation into the BN model, we obtained the 

preliminary result of availability prediction and modelling its uncertainty, as illustrated in Figure 10. 

The results show that the average availability of the under-study fleet is 66 percent and with a 75% 

of confidence the fleet will be available in at least 58 percent of the time. Moreover, the nodes Failure 

Rate and Repair Rate represent the uncertainty about MTBF and MTTR, with mean values equal to 

0.0229 and 0.0478, respectively.  

 

Figure 10: Primary results of fleet availability prediction 
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To raise accuracy, we can update the availability distribution, as well as the distribution of Failure 

and Repair rates, in response to new observations from the fleet. The following failure and repair 

times (in hours) were gathered from the excavators after 35 operational weeks: 

Failure Time 34 41 55 18 48 39 

Repair Time 53 15 33 28 36 21 

We created exponential distribution nodes with parameter ‘Failure Rate’ and ‘Repair Rate’ and 

entered the above observations as data into these nodes. Figure 11 shows the posterior distributions 

of Failure Rate, Repair Rate, and their common cause Asset Management Maturity. Rate distributions 

have been revised through evidence propagation in multiple rounds. When a failure/repair time is 

introduced, a backward propagation develops which will first updates the failure/repair rate 

probability distribution, based on which the level of Asset Management Maturity is then inferred. 

This revised information will again update repair/failure rate on the other side. Therefore, any new 

information on actual reliability (or maintainability) will modify our belief about management policy 

and from there maintainability (or reliability) will be revised through a forward propagation.  

 

Figure 11: Update of Failure and Repair rates in light of new observations  

Accordingly, the updated distribution of fleet availability is calculated, as depicted by Figure 12. 

The new distribution is skewed toward left which means we had been optimistic about the real level 

of fleet availability. The updated average availability is now 62%. Outputs of Figures 11 and 12 show 
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that new evidence and the mechanism of backward propagation has reduced the uncertainty of 

estimations in failure/repair rates, and therefore, in availability, as the variance of these distributions 

has declined.  

 

          Prior Availability  
Mean: 0.66342 
Median: 0.67296 
SD: 0.10277 
Variance: 0.010561 
Lower Percentile: 25.0 (0.59932) 
Upper Percentile: 90.0 (0.78886) 

          Updated Availability  
Mean: 0.61592 
Median: 0.62281 
SD: 0.083533 
Variance: 0.0069778 
Lower Percentile: 25.0 (0.56168) 
Upper Percentile: 90.0 (0.71818) 

Figure 12: Update of fleet availability considering new evidences  

The fleet manager wants to assimilate the impact of the rare event ‘Power Blackout’, like 

Northeast Blackout of 2003, which occurred throughout Ontario Province as well as parts of the 

Midwestern and Northeastern US, on the repair rate of the fleet. On August 14, 2003, a massive power 

outage happened which lasted for two days and affected about 55 million people, including 10 million 

Ontarians [138]. We assign a Bernoulli variable to this event with the states Yes and No. A history of 

such major blackouts over the past few decades across Ontario can be found in Table 11. This 

information can be accordingly used to estimate the prior for the rare event Power Blackout expected 

to happen in the current year, i.e.  P(Yes) =
5

52
= 0.096 and P(No) = 0.904.  

Table 11. History of power outages in Ontario 

Year Event 

1965 
A Northeast blackout happened on November 9 and impacted parts of seven northeastern 

states in the US and the Canadian province of Ontario.  

1991 
A large portion of central North America was affected by a powerful wind storm which 

caused power outages on July 7 for about one million customers in Iowa to Ontario. 

2003 
Hurricane Isabel disrupted electricity for 4.3 million people across nine states in the US 

and portions of Ontario, On September 19.  

2006 

About a quarter million customers of Hydro One experienced a power outage On August 

2, after powerful thunderstorms with tornadoes ripped through southern and eastern 

Ontario. 

2013 

The December 2013 North American ice storm, caused a power outage on December 22. 

Between 300,000 to 600,000 customers in Toronto were affected. The storm also caused 

widespread power outages in mid-Michigan.  

https://en.wikipedia.org/wiki/Southern_Great_Lakes_Derecho_of_1991
https://en.wikipedia.org/wiki/Iowa
https://en.wikipedia.org/wiki/Ontario
https://en.wikipedia.org/wiki/Hurricane_Isabel
https://en.wikipedia.org/wiki/US_states
https://en.wikipedia.org/wiki/Ontario
https://en.wikipedia.org/wiki/Hydro_One
https://en.wikipedia.org/wiki/Thunderstorms
https://en.wikipedia.org/wiki/Tornado
https://en.wikipedia.org/wiki/December_2013_North_American_ice_storm
https://en.wikipedia.org/wiki/Toronto
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Repair experts know from their background that when there is no power, repair rate dramatically 

reduces, as presented in Table 12. We would like to complete missing parts of Repair Rate NPT in 

Table. 7, i.e. RAN, RMN, and RON, so that the expectations of the previous elicited repair rates are 

preserved while power blackout remains unobserved.  

Table 12. Incomplete NPT of Repair Rate, with judgments on rate reduction in the case of a major power 
blackout  

Asset Management Maturity Ad-hoc Managed Optimized 

Power Blackout Yes No Yes No Yes No 

Repair Rate 0.1 ∗  TRD−1 RAN =? 0.4 ∗  TRD−1 RMN =? 0.5 ∗  TRD−1 
RON =? 

Using Eq. 40, repair rates associated with negative outcome of Power Blackout are calculated as 

follows: 

RAN =
0.7TRD−1 − (0.1TRD−1 ∗ 0.096)

0.904
= 0.76 TRD−1. 

RMN =
1 TRD−1−(0.4TRD−1∗0.096)

0.904
= 1.06 TRD−1. 

RON =
1.2 TRD−1−(0.5TRD−1∗0.096)

0.904
= 1.27 TRD−1. 

We then incorporated the node ‘Power Blackout’ as a rare event into the model and revised the 

NPT of the node ‘Repair Rate’ using the information in Table 12. As long as this event is unobserved, 

the mean value of Repair Rate is unchanged (0.040). What would be the repair rate and the availability 

if this happens in Toronto? Once the fleet manager observes the blackout happening, he/she can 

conclude that the fleet repair rate and availability will decline as shown in Figure 13. The average 

repair rate drops to 0.023 and this decreases the average availability to 51%, with a much greater 

certainty.  
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Figure 13: Fleet repair rate and availability distributions under power blackout 

3.4. Analytical capabilities 

In addition to the above predictions on fleet availability, the model possesses analytical features, 

including what-if and scenario analyses. The following scenarios are designed to illustrate these 

features: 

Scenario 1; The company is running a construction project in a site with highly harsh conditions. 

Excavators’ operators enjoy medium skills, but repair mans are highly experienced. The manager 

would like to know the average availability of equipment. 

Scenario 2; It took repair personal 7.5 hours to diagnose the problem with a failed equipment. The 

manager would like to update her/his estimation on the remaining repair tasks and also the final repair 

time.  

We take the availability distribution updated by real data (presented in Figures 12 and 13 in green 

colours) as a baseline for our scenario analysis. Running the model under the scenario 1, the fleet 

availability is calculated, as illustrated in Figure 14. This output shows that although there is a high 

level of harsh conditions, this can be not just negated, but also outweighed by the high level of repair 

experience. As it can be seen, there would be an average increase of 3% in fleet availability.  

Availability under power blackout  
Mean: 0.51422 
Median: 0.51716 
SD: 0.087351 
Variance: 0.0076301 
Lower Percentile: 25.0 (0.4553) 
Upper Percentile: 90.0 (0.62226) 

Repair rate under power blackout  
Mean: 0.023429 
Median: 0.022313 
SD: 0.0061791 
Variance: 3.8181E-5 
Lower Percentile: 25.0 (0.018815) 
Upper Percentile: 75.0 (0.028397) 
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          Baseline Scenario  

Mean: 0.61695 
Median: 0.62578 
SD: 0.090646 
Variance: 0.0082168 
Lower Percentile: 25.0 (0.56311) 
Upper Percentile: 90.0 (0.72297) 

        Scenario 1  

Mean: 0.64552 
Median: 0.64641 
SD: 0.080394 
Variance: 0.0064633 
Lower Percentile: 25.0 (0.58917) 
Upper Percentile: 90.0 (0.75872) 

Figure 14: Availability distribution under Scenario 1 in comparison with the baseline 
availability  

 Having entered the actual duration of the task ‘Notification and Diagnosis’, the model will revise 

the expert belief about the actual level of Experience (skewed more toward Low), and consequently, 

will update the duration of incomplete repair tasks. As a result, repair rate is slightly skewed toward 

left, predicting an average rate of 0.036, and therefore, a final repair time of 28 hours (Figure 15). 

This result can be regarded as a diagnostic mechanism to find obstacles to timely repair the equipment 

or complete bigger maintenance projects.  
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   Baseline Scenario                            Scenario 2 

Figure 15: Inferring the level of experience, the duration of remaining repair tasks and the final repair 
time/rate in the light of an actual task duration-Scenario 2 

The next scenario will demonstrate the applicability of the model in calculating the required level 

of common causal factors when there is a desired floor availability. Suppose that the fleet manager 

wants to know the needed level of experience and skill in maintenance and operation personals, and 

the maturity of asset management processes, to achieve a minimum availability of 90%, while the 

environmental harshness is moderate. Figure 16 presents the results of running the model under these 

conditions (Scenario 3) in terms of the three unobserved common causes; Asset Management 

Maturity, Staff Quality, and Experience. Clearly, staff quality distribution on the reliability side has 

showed less necessary improvement, compared to the two other factors. To prioritize the factor(s) 

that should be focused on, we use the concept of total expected utility [139] and calculate the 

difference between the factor’s total expected utilities (ΔTEU) under the both scenarios: 
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 ΔTEU = ∑ Utility(State i) ∗ P𝑆2(State i)i − ∑ Utility(State i) ∗ P𝐵𝑆(State i)i ,  (43) 

where  PS2(State i) and PBS(State i) represent the probability of state i under the Scenario 3 

and Baseline Scenario, respectively. Using state utilities such as: Utility (low) = 0, 

Utility (medium) = 0.5, and Utility (high) = 1, the ΔTEUs are obtained as provided in Table 13. 

Therefore, it is Asset Management Maturity that should be enhanced primarily in order to achieve the 

desired availability defined in Scenario 3.  

 

   Baseline Scenario                            Scenario 3 

Figure 16: Inferring the required level of experience in maintenance people, quality of operation staff, 
and management maturity, to achieve a certain level of availability-Scenario 3 

Table 13. Total expected utilities under scenario 3 and baseline scenario, and their difference as a 
measure of priority areas for availability improvement 

Node Asset Management Maturity Staff Quality Experience 

Scenario Scenario 3 Baseline Scenario 3 Baseline Scenario 3 Baseline 

TEU 40.632 36.007 45.035 43.277 36.098 32.140 

ΔTEU 4.625 1.758 3.958 

3.5.  Forecasting accuracy  

In this section, we propose a procedure to evaluate the forecasting accuracy of the model, based on 

the information from a hypothetical completed project (what was discussed in the case study) and an 

under-construction project. We compared three types of failure and repair time predictions. These 

predictions are: 

1. A measure of central tendency of the historical repair and failure times from the past project.  

2. Mean values of the failure and repair distributions from the proposed model-built for the past 

project- after being updated by the final failure and repair times.  

3. Mean values of the failure and repair distributions from the proposed model-built for the 

current project- after being updated by the newest failure and repair times. 
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Each of the above predictions were compared to the actual failure/repair times from the current 

project. We applied the root mean squared error (RMSE), to measure the accuracy of each prediction. 

Obviously, more accurate predictions should show lower RMSE. RMSE is a widely acceptable 

criterion, which can be calculated as follows: 

RMSE = √
1

n
∑ (Yk − Pk)2n

k=1                                   (44) 

where 𝑌𝑘 is the predicted value of the real number 𝑃𝑘, and 𝑛 represents the number of forecasted 

events or periods [140]. 

As the historical data recorded for the past project did not follow a symmetric distribution, we 

employed Trimean as the measure of tendency  [141], so that the best forecast is derived from the 

historical data and hence the comparison will be as fair as possible. This measure can robustly reflect 

the most likely value from a sample of data, and also to represent a more reliable most likely value 

when the sample shows a significant skew in one side of the median value. If the historical 

failure/repair rates have 4n + 3 samples (n > 0) which are sorted ascendingly; the Trimean of this 

group of data is defined as follows: 

T =
HL+2M+HR

4
                                                               (45) 

where M represents the median value, which is actually the sample [2n + 2], and HL, HR are so-called 

the hinges, computed as follows: 

HL =
sample [n+1]+sample [n+2]

2
       (46) 

HR =
sample [3n+2]+sample [3n+3]

2
                (47) 

Under-study excavators were working for 20 weeks, and 23 failures happened in this period. 

Trimean value of the related failure and repair times were calculated as 33.50 and 26.25 hours, 

respectively. The mean value of the failure and repair distributions predicted by the proposed model 

(after being refined by the 23 data) are 41.47 and 25.57, respectively. For the current project, the BN 

model was reconstructed (based on new beliefs on common causes). Therefore, this new model was 

suggesting renewed predictions for the new project, which are being again updated by actual 

failure/repair times. Nine failures and repairs have been recorded so far in the current project, times 

of which will be the basis to compare the accuracy of different predictions. The above central 
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tendency and data sets are depicted in Figure 17 and Figure 18, for failure times and repair times, 

respectively.  

 

Figure 17: Comparison of three failure times’ predictions (color lines) with actual failure times (black 
line) 

 

Figure 18: Comparison of three Repair times’ predictions (color lines) with actual repair times (black 
line) 

Looking more closely at the failure time’s graph, it can be observed that the Trimean measure 

calculated based on the historical data from the past project underestimates failure times in the current 
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project. This is not surprising, as the affecting common causes became more favourable in this project 

(mainly the operating staff quality). That is presumably the reason why the final predicted failure time 

from the previous model is also pessimistic about failure times in the current project. As illustrated, 

predictions from the rebuilt model, powered by learning from occurring failures, starts from a 

relatively improved prediction and tends to adopt to the real failure times.  

The same interpretation applies to the repair times’ graph. This is proven by the result of RMSE 

calculations, provided in Table 14.  As shown, the current model for the current project gives more 

accurate forecasts, with the lowest RMSEs in both failure and repair cases.  

Table 14. RMSE values of three predictions 

Predictions RMSEs 

Trimean-Historical data from past project 
Failure 17.405 

Repair 9.117 

Predicted mean-Past model 
Failure 10.596 

Repair 8.025 

Predicted mean-Current model 
Failure 7.644 

Repair 5.497 

 

3.6. Conclusion 

This chapter presented an intelligent model to estimate fleet availability, based on a Bayesian 

network, equipped with several uncertainty and causality modelling techniques. Primarily, it factors 

in the complex organizational factors, e.g. Asset Management Maturity, which allows us to model the 

performance of intangible assets (also known as organizational capabilities including business 

processes), simultaneously with that of tangible assets (or physical organizational resources including 

machines). This mechanism, if it comprises all effectual factors, could be employed by fleet owners 

to control processes and equipment to manage the fleet availability.  

Other features of the model include modelling common causal factors to tackle the problem of 

dependency between failure and repair distributions, as well as the dependency between distinct 

stages in the repair process; formal elicitation of expert's judgments, and learning from new evidences 

that allow the model to improve itself as more actual data become available; and modelling rare or 

previously unseen events (of low probability but high impacts). For the later, we combined the model 

of Constantinou et al. [86] into our proposed approach to availability analysis. For the sake of 

simplicity, however, we incorporated as fewer causal factors and rare events as possible from the case 
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study. A more realistic application of the proposed method could take more variables into account, in 

the same structure.  

The proposed approach allows fleet managers to not just predict the uncertainty of their fleet 

availability, but also conduct enlightening analyses under various circumstances (Scenario 1). It is 

possible to monitor and control the performance of operation (in terms of reliability) and maintenance 

through actual failure and repair times and inference on causal factors (Scenario 2). Moreover, having 

the advantage of backward information propagation, the fleet owner would be able to find root causes 

and improvement points (Scenario 3). 
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4. Equipment repair-replacement decision analysis with economic 

and environmental considerations 

 

The present chapter is based on the following paper: 

Abdi, A., Taghipour, S. (2018). Incorporating maintenance quality, carbon emissions, and risk into 

asset repair-replacement decision. Computers & Industrial Engineering. Under Review.  

 

 

Equipment repair/replacement decision is an important aspect of asset management, which aims to 

find the best time to retire an in-use system based on its lifecycle costs. Previously, lifecycle analysis 

techniques have assumed that the distribution of equipment’s failure and repair time remain unaltered 

during the usage phase. In reality, however, the actual parameters that represent equipment’s 

reliability and maintainability could change by several causal factors including the quality of 

preventive and corrective maintenance, which can be dynamically adjusted through management 

intervention. Another dimension of repair/replacement problem is the environmental impact of 

equipment, which is important to be taken into account due to the effect of carbon pricing programs 

in addition to the international concerns about global warming and carbon emissions. Not every aspect 

of this issue has been addressed in the published replacement decision models. Most importantly, the 

causality between equipment failure behaviour and its greenhouse gas (GHG) emissions has not been 

examined.  

The contribution of this paper is twofold. First, an economic repair/replacement model is 

developed in two phases: 1) deterministic phase, in which the mathematical structure of the total 

repair and replacement costs are defined, and 2) probabilistic phase, which factors in the uncertainty 

of parameters in the deterministic model, preventive maintenance quality, and repair perfection. The 

probabilistic phase provides also a mechanism to learn from the observations to modify the 

predictions on the equipment failure rate and thus, updates the repair or replacement decision. Second, 

the economic model is extended to a combined model, in which the emissions associated with 

different phases of equipment lifecycle are considered. To predict the emissions of usage phase of in-

use equipment accurately, using Bayesian inference and historical data on failure times and consumed 

energy, the probable thresholds of failure rate are computed, above which the equipment begins to 

consume more energy/fuel.   
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Keywords: Equipment replacement, Bayesian networks (BN), Greenhouse gas (GHG) emissions. 

4.1. Introduction and Background 

The decision to repair or replace a physical asset is a key aspect of asset management. It involves 

many contradictory, conflicting, and uncertain factors related to the old and new assets, known as the 

defender and the challenger, respectively. Many models have been introduced for asset 

repair/replacement (R/R) decision-making. Traditionally, R/R models rely on life cycle costing 

(LCC) concepts [47]. Recently, more advanced techniques have been also proposed in this domain to 

account for technological improvements [64], uncertainty of demand and market parameters [49], 

technical failure characteristics of assets [50], the effect of unknown parameters on time-to-failure 

distribution [51], and so forth.  

Despite all these attempts, however, there are complexities associated with this problem that have 

not been modelled yet. To make an R/R decision, we need to know whether the ongoing preventive 

or corrective maintenance is truly making a positive difference, and hence, it is better to keep the 

defender. A major factor is the quality of preventive maintenance (PM) and its impact on the 

defender’s failure rate and health. In other words, whether or not a PM program, with certain costs, 

would be actually effective in delaying equipment degradation, remains uncertain. Likewise, the 

perfection of repairs can inform R/R decision making. Theoretically, the so called minimal and perfect 

repairs recover a failed system to as bad as what it was just before failure and as good as new, 

respectively. Practically, however, the real outcome of these repairs, except in some special cases, 

may not be deterministic and therefore, every repair work could be regarded as an imperfect repair 

with the effectiveness between minimal (worst-case) and perfect (best-case) repairs. Although 

complex, these factors, i.e. quality and perfection of preventive and corrective maintenance, have not 

been quantified in the previous works. They can be broken down to the quality/ perfection of smaller 

activities including lubrication, storage, cleaning, parts selection and installation, so forth. Other 

complex causal factors, such as organizational factors (e.g. repair staff experience), the risk of 

unanticipated loads, and variations in material quality are also missing in the asset replacement 

literature. If the uncertainty of such factors is not modelled, the results of LCC may not also be 

accurate.  

On the other side, environmental burdens of equipment are being considered in repair/replacement 

decisions (e.g. [52–54]. However, the new combined replacement models (with both economic and 

environmental factors) fail to model the impact of maintenance and equipment health on the amount 
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of released GHG emissions. According to [55], equipment reliability can significantly improve energy 

efficiency and thus the amount of direct and indirect emissions.  

The objective of this chapter is twofold. Firstly, we aim to formulate a model for equipment repair-

replace decision with both economic and environmental considerations, so that PM quality and repair 

perfection are taken into account in the equipment life cycle cost. A probabilistic reasoning 

mechanism is designed to formulate the effect of PM quality (and/or any other driving force) on 

equipment health and infer the effectiveness of maintenance. How perfect or imperfect the repair 

work is, is also modelled to more accurately predict the failure rate of the existing equipment during 

its remaining useful life. Secondly, we will model the causal relationship between maintenance, 

equipment reliability and equipment GHG emissions. To achieve the above objectives, we will 

develop a probabilistic R/R model using Bayesian networks (BNs), which also allows us to account 

for the uncertainty of effectual parameters. Equipped with expert knowledge and data-driven 

inference, the proposed model provides asset managers with a smart, explanatory mechanism that not 

only makes more accurate R/R decisions, through capturing more effectual uncertainties and causal 

factors, but also identifies risk and opportunities that should be focused on to further reduce lifecycle 

economic and environmental costs.  

The classic R/R problem refers to the decision of whether to replace or maintain an operating 

asset. Traditionally, the motivation behind replacing an old system is its deterioration and increasing 

operating and maintenance (O&M) costs. Yeh (1988) [142] used a geometric process technique that 

analysed the deterioration behaviour of a repairable system, where he considered separate 

replacement policies based on operation time or the number of failures. These models were later 

generalized by [143] using a bivariate replacement policy with both time of operation and the number 

of failures, either of which was enough to decide for the system replacement. Thereafter, more factors 

were taken into account in addition to O&M costs. A large number of studies incorporated the 

technological improvement of new system into the R/R problem (e.g. [48,62–64,73]). Reindorp and 

Fu [144] and Stutzman et al. [145] considered the application of real options in asset rejuvenation 

instead of complete replacement. Fouladirad et al. [51] measured the sensitivity of three different 

time-based replacement policies to the uncertainty of unknown lifetime distribution parameters. 

Wang and Zhang [146] analysed the optimal replacement decision for equipment with two failure 

types: repairable failure and unrepairable failure. Limiting availability and long-run costs were the 

objectives to find the optimal decision, which is either the nth repairable failure or the unrepairable 
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failure (if it happens first). The application of the R/R problem has been also addressed in non-

engineering assets, such as medical equipment [65] and tree harvesting [66].  

The mere environmental evaluation of physical asset has been traditionally addressed by use of 

life cycle assessment (LCA), which is defined by International Standard Organization’s ISO 14040 

[147] as “the compilation and evaluation of the inputs, outputs and potential environmental impacts 

of a product system throughout its life cycle”. There is ongoing research to combine LCC and LCA 

techniques to evaluate both economic and environmental impacts of physical assets in an integrated 

approach. For instance, Afrinaldi et al. [54] proposed an optimization model for preventive 

replacement schedule of a single system, which considers both cost and emission minimization 

objectives. The cost objective consists of O&M, breakdowns, replacement items, and the emission 

objective covers the GHGs related to the operating phase and replacement action. Alba-Rodríguez et 

al. [148] compared the economic and environmental impacts of rehabilitation scenario of a building 

versus its demolition and total replacement with a new construction. They used project bill of 

quantities and ecological footprint as economic and environmental criteria, respectively. Using a 

multi-family building case study in Spain, they concluded that regardless of the building damage 

level, retrofit and repair is a more effective option. Ahani et al. [53] optimized the combination of 

electric vehicles (EVs) and internal combustion engine vehicles (ICEVs), taking into account the 

uncertainty of energy costs and EVs purchase costs. Feng and Figliozzi (2013) [76] proposed a 

replacement model for a fleet of electric commercial vehicles (ECVs), with an objective function that 

minimizes both financial costs and GHG costs. Some GHG accounts such as the emissions related to 

the manufacturing process of new equipment and salvaging old equipment are missing in this work. 

Giordano et al. (2017) [149] conducted a comprehensive study to compare the environmental, social 

and economic impacts of battery electric versus diesel vans. The result of this study proves the 

importance of indirect GHG emissions. They showed that in cities with a clean mix of electricity 

generation, replacing diesel vans with battery electric vehicles would significantly reduce carbon 

emissions (by 93 to 98 percent). In regions with coal-fired electricity generation, however, mitigation 

is only 12 to 13 percent. 

 In the literature, the models make simplified assumptions about the degradation and failure 

behaviour of equipment. For example, the models use static probabilistic failure distributions, which 

remain unchanged until the end of the equipment useful life. This is diametrically opposed to the 

intended dynamic failure distribution of this study that can be continuously modified through 

maintenance quality in specific and asset management performance in general. In addition, despite 
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the fact that maintenance is a major part of the usage phase of a product life cycle, the environmental 

impact of maintenance itself has not been considered. Equipment complexity probably makes the 

maintenance steps more resource intensive, which consequently creates more environmental impact 

[150].  

4.2. Methodology 

In this section, we will elaborate on the details of different stages and aspects of the proposed model. 

Figure 19 graphically illustrates the modelling process. It begins with a deterministic repair-

replacement model, with economic considerations. We were provided with an initial version of the 

deterministic model by our industry partner, Fiix Software, which was revised and improved in a few 

aspects (e.g. the blended decision which will be explained later in this chapter). This model will be 

then extended to incorporate the environmental burdens, specifically GHG emissions, of each 

decision scenario. At this stage, we converted the model into an algorithm and an automatic R/R 

Calculator. The GHG calculator is used to support this part of the research. The next step is to map 

the model into a Bayesian network, which allows modelling the uncertainty of input parameters, PM 

quality and the extent to which the repair is perfect, risk events and other causal factors, which affect 

two or more parameters, and the casual relationship between equipment failure time and GHG 

emissions. In addition to the formulation of R/R decision model, a learning feature is included in the 

model to improve the precision of this decision, considering new evidence from the system. Details 

of the above steps are described in the following subsections.  
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Figure 19: Different aspects of the proposed methodology 

4.2.1. Deterministic economic R/R model 

The primary deterministic R/R decision model calculates the total life cycle cost of equipment, based 

on cost breakdown structures of repair and replacement scenarios. The cost breakdown structures of 

the repair and replace scenarios are provided in Tables 15 and 16, respectively. The following sections 

describe their mathematical relations.  

Table 15. Repair cost breakdown structure over the equipment remaining life 

Level 0 Level 1 Level 3 

Cost of repair (COR) Labour costs Direct labour cost 

Indirect labour cost 

Cost of disposing component  

 Cost of replacement parts and 

supplies 

 

Cost of lost production (COL) Cost of equipment downtime Direct cost of lost profit from lost production 

Cost of scrap per breakdown 

Collateral costs per incident 

(COC) 

Occupational health and safety 

fines and penalties 

 

 
 

GHG Calculator 

 

Combined Model 

Parameter 

Learning 

 

Deterministic Model 

Economic Model 

Probabilistic Model 

Uncertainty of 

Parameters 
Bayesian Network 

R/R Decision 

Analysis 

PM Quality & 

Repair Perfection 

Failure-Emissions 

Causality  

Risks &  

Causal Factors 
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Miscellaneous legal liability 

costs 

 

Cost of Inventory (COI) Capital cost of additional 

rotating spares to compensate 

for lost production (CCR) 

 

Capital carrying cost (CCC)  

Impact on product quality and 

production capacity (IPQ) 

  

 

Table 16. Cost breakdown structure to replace equipment 

Level 0 Level 1 Level 3 

Disposal and salvage cost 

(DSC) 

Cost of decommissioning  Direct labour cost 

Indirect labour cost 

Cost of disposing equipment 

Realized salvage value   

Write off cost (non-cash)  

Equipment replacement cost 

(ERC) 

Cost of researching replacement 

unit 

 

Direct cost of new equipment  

Cost of spare parts inventory   

Inbound shipping  

Monthly financing cost  

Cost of installing replacement 

equipment 

Direct labour Cost 

Indirect labour cost 

Parts and supplies 

Safety inspection and certifications 

Training  

Safety meetings 

Lost production cost (LPC) Direct cost of lost profit from lost 

production 

 

During warranty cost/saving 

(DWC/S) 

Impact on product quality and 

production capacity 

Improved production capacity 

Miscellaneous impact on improved quality 

(returns, reworks, etc.) 

Reduced operating costs (energy, utilities, 

services, etc.) 

Labour (reduction if negative) 

Indirect labour cost (overhead) 

Cost of scrap  

Out of warranty cost 

(OWC/S) 

Cost of removing component  Direct labour cost 

Indirect labour cost (overhead) 

Cost of disposing component 

Cost of installing replacement 

components 

Direct labour cost 

Indirect labour cost (overhead) 

Cost of replacement parts and supplies 

Cost of equipment downtime  Direct Cost of lost profit from lost 

production per day 

Cost of Scrap per breakdown 

Miscellaneous Costs 

Collateral costs Environmental clean-up, fines, etc. 

Occupational health and safety fines and 

penalties 

Miscellaneous legal liability costs 
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Cost of spares inventory Capital cost of additional rotating spares to 

compensate for lost production 

Capital carrying cost 

Impact on product quality and 

production capacity (IPQ) 

 

4.2.1.1. Repair scenario 

Total repair cost (TRC) of the old equipment accounts for five categories of cost items: cost of repair 

(COR) if a failure occurs; cost of lost production (COL) due to corrective maintenance; collateral 

costs (COC); cost of inventory (COI); and impact on product quality and production capacity (IPQ): 

TRC = COR + COL + COC + COI + IPQ      (48) 

Cost of repair, COR, is calculated from the expected number of failures, n, over the remaining 

equipment service lifetime in months, l, and the sum of labour costs (LAC), cost of disposing 

component (CDC), and cost of replacement parts and supplies (CRP): 

COR = 𝑛 ∗ (LAC + CDC + CRP)       (49) 

 

Labour costs consist of direct cost of labour to complete total repair duration (TRD) in hours 

(including notification and diagnostic, fix time, reassembly alignment and calibration, and test time) 

and indirect labour costs as an overhead percentage for fully loaded labour rate (a), based on a 

standard labour rate per hour (r): 

LAC = TRD ∗ (1 + a) ∗ 𝑟        (50) 

Cost of lost production, COL, is calculated from the amount of downtime (practically TRD) in 

days multiplied by the cost of lost profit from lost production per day (c), plus cost of scrap per 

breakdown (CSB). The total COL is obviously the product of n and the above costs per incident:  

COL = 𝑛 ∗ (
TRD

8
∗ 𝑐 + CSB)        (51) 

Collateral costs, COC, includes occupational health and safety fines and penalties (OHS) and 

miscellaneous legal liability costs (LLC): 

COC = 𝑛 ∗ (OHS + LLC)         (52) 

Cost of inventory, COI, accounts for capital cost of additional rotating spares to compensate for 

lost production (CAR) and capital carrying cost (CCC): 

COI = CAR + CCC         (53) 
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CAR and CCC are calculated as follows: 

CAR = 𝑠 ∗ CRP         (54) 

CCC = CAR ∗ (
𝑖

12
) ∗ 𝑙         (55) 

where s is the number of scraps and i is the annual cost of money. Finally, in this category of cost 

items, the impact on product quality and production capacity (IPQ) is formulated as IPQ = −𝑐 ∗ 30 ∗

𝜌 ∗ 𝑙, where 𝜌 denotes the percentage of production capacity gain or loss (if negative) following 

breakdown and repair. The value of IPQ is a measure of lost production cost, capacity gain/loss, and 

remaining lifetime in months.  

Deterministically, the expected number of failures, n, is obtained by rounding up the ratio of the 

remaining useful life, l, to the mean time between failures (MTBF), that is, the sum of mean time to 

failure (MTTF) in months and the total repair duration, TRD: 

𝑛 = [𝑙/(MTTF +
TRD

8∗30
)] + 1        (56) 

4.2.1.2. Replacement scenario 

Total replacement cost (TCR′) of the old equipment with a brand-new, takes into account the five 

categories of cost items: disposal and salvage costs (DSC); equipment replacement costs (ERC); lost 

production costs during replacement period (LPC); during warranty costs/savings (DWC/S); and out 

of warranty costs/savings (OWC/S): 

TCR′ = DSC + ERC + LPC + DWC/S + OWC/S     (57) 

Disposal and salvage costs, DSC, is calculated by considering the cost of decommissioning 

(COD), realized salvage value (RSV) of the retired equipment, and non-cash write off costs (WOC). 

COD is calculated from the hours required to complete the decommissioning process (TDD), indirect 

costs coefficient, and the standard labour rate per hour: 

DSC = COD − RSV + WOC        (58) 

COD = TDD ∗ (1 + a) ∗ r        (59) 

Equipment replacement costs, ERC, factors in the cost of researching replacement unit (CRU), 

direct cost of new equipment (DCN), cost of spare parts inventory, as a percentage of equipment 

purchase price (j), inbound shipping costs (ISC), monthly financing costs (MFC) to tie up working 

capital, and cost of installing replacement equipment (CIR): 
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ERC = CRU + DCN ∗ (1 + 𝑗) + ISC + MFC + CIR     (60) 

where cost of researching the replacement unit is calculated by multiplying the total selection duration 

(TSD) and the standard labour rate, and adding the related indirect costs: CRU = TSD ∗ (1 + a) ∗ 𝑟. 

Monthly financing costs (as the cost to tie up working capital) includes the cost of invested money in 

replacement scenario, which is modelled as follows:  

MFC = 𝑙 ∗ (
𝑖

12
) ∗ (DCN ∗ (1 + 𝑗) + ISC − RSV)     (61) 

Cost of installing replacement equipment, CIR, is computed using the following equation in which 

the direct and indirect labour costs associated with the total installation duration (TID), as well as the 

cost of parts and supplies (CPS), safety inspection and certification (SIC), training (TRN), and safety 

meetings (SMS) are factored in:  

CIR = TID ∗ (1 + a) + CPS + SIC + TRN + SMS     (62) 

Lost production cost during replacement period, LPC, is obtained from the total downtime until 

the replacement equipment is production ready and the corresponding lost profit. The total downtime 

would be the critical path (CP) over the activities of the replacement process, as depicted in Figure 

20, where LT is the lead time for receiving the equipment after placing the purchase order. Therefore, 

LPC = (
CP

8
) ∗ 𝑐.  

 

Figure 20: Activity on node diagram of the replacement process 

During warranty costs/savings (DWC/S) is computed by taking into account the monthly impact 

of replacement on productivity (MIP), cost of scrap per breakdown, CSB, the expected number of 

failures during warranty period (𝑛′), and the mean time to failure during warranty (MTTF′): 

DWC/S = CSB ∗ 𝑛′ − MIP ∗ MTTF′       (63) 

It is assumed that the reliability of new equipment will be improved by 𝜃 as a proxy for new mean 

time to failure: MTTF′ = MTTF ∗ (1 + θ). Clearly, 𝑛′ = [
𝜔

MTTF∗(1+θ)+
TRD

8∗30

]. Monthly impact on 

Start  TDD  TID  

TSD  

Finish 

LT  
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productivity during the warranty period, MIP, measures the productivity increase of replacement unit 

during warranty, in terms of costs. It is calculated using the following formula, where σ and τ denote 

improved production capacity of new equipment during warranty, and miscellaneous impact on 

improved quality (returns, reworks, etc.), respectively. ROC is the reduced operating costs (energy, 

utilities, services, etc.), FTE is the full time equivalent increase (or reduction if negative), 𝑟′ is the 

related standard labour rate per hour, and ω is the warranty period: 

MIP = (𝜎 + 𝜏) ∗ 𝑐 ∗ 30 + ROC + FTE ∗ 40 ∗ 4 ∗ (1 + a) ∗ 𝑟′   (64) 

Out of warranty costs/savings (OWC/S) is formulated as follows: 

OWC/S = 𝑛′′(COR + COC + COL) + COI′ − 𝑐 ∗ 30 ∗ 𝜌 ∗ (𝑙 − 𝜔)   (65) 

where 𝑛′′ is the expected number of failures after the warranty period; 𝑛′′ = [
𝑙

𝑀𝑇𝑇𝐹′
] − 𝑛′. COI′ 

represents the cost of inventory after the warranty period which is calculated as COI = 𝑠 ∗

CRP (1 + (
𝑖

12
) ∗ (𝑙 − 𝜔)). Other cost items in this equation were defined earlier in the repair 

scenario. 

4.2.1.3. Blended repair and replace scenario 

It may take less time to repair an equipment than replacing it. Consider a case where the total cost of 

replacement decision is less than that of the repair decision. In this case, if the equipment can be 

repaired in a shorter time than the lead time, in essence TRD < LT, and the cost of lost production 

during this lead time (CLT) is more than that of a one-time repair (CLT > COR + COC), then it is less 

costly to start repairing the old equipment in addition to placing the order for the new unit at the same 

time. Figure 21 graphically represents the above discussion.  

 

Figure 21: A condition for the mixed ‘repair and replacement’ decision 

4.3.  Combined model 

We extend the deterministic R/R model to a combined model with both environmental and economic 
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considerations. For the environmental dimension of the decision model, we incorporate the impact of 

different life cycle stages of both defender and challenger, where applicable. The stages are: 

manufacturing; shipping; O&M; and decommissioning. One or a group of impact category [151] such 

as Acidification Potential, Eutrophication Potential, Global Warming Potential, Ozone Depletion 

Potential, Photochemical Ozone Creation Potential, and Primary Energy Use can be used to construct 

the environmental dimension of the model. In this study, we use GHG emissions as an indicator for 

Global Warming Potential category to account for the environmental impacts of an equipment, when 

it comes to make an R/R decision.  

To have a single cost-based measure, emissions will be then converted into a monetary value, 

using the price of carbon in the related carbon market. To account for the cost of emissions 

corresponding to each decision scenario, total costs to repair and replacement of the equipment is 

revised as follows:  

TCR𝜀 = TCR + 𝑙 ∗ EO&M        (66) 

TCR′𝜀 = TCR′ + Edec + Eman + Eship + 𝑙 ∗ E′O&M     (67) 

where TCR𝜀 and TCR′𝜀 represent the total cost of repair and replacement with both economic and 

environmental impacts. Eman, Eship, and Edec denote the cost of emissions associated with 

manufacturing the challenger, shipping the challenger to the operation site, and decommissioning the 

defender, respectively. EO&M and E′O&M represent the monthly emission cost of O&M activities 

associated with the old and new equipment, respectively. Therefore, as long as TCR𝜀 > TCR′𝜀, the 

decision would be to maintain the defender. 

We have converted the above model into an automatic repair/replacement (R/R) Calculator. The 

interface of this tool is shown in Figure 22. The tool is connected with the GHG Calculator (Appendix 

B) which allows the user to enter the activity data associated with each LCA phases and send their 

final carbon emissions to the R/R tool. We have also included a database of the carbon price in the 

carbon markets or carbon tax systems that are currently in place all over the world. Hence, the R/R 

tool is able to calculate the emission costs and add them to the economic cost items.  
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Figure 22: The R/R Calculator 

4.4. Probabilistic model 

In this section, we map the deterministic R/R model into a fully probabilistic model, using Bayesian 

networks. Then, we will include supplementary variables to incorporate the effect of PM quality, 

repair perfection, risks and common causal factors.  

We first describe the economic Bayesian R/R model and then the emissions modelling part will 

be incorporated. The schematic of the economic Bayesian R/R is presented in Figure 23. A node is 

created in the BN model for the density function of the ith failure time. If the equipment is new, the 

first failure density function is a baseline distribution, f0, with one or more parameters, depending on 

the type of the distribution. Failure density of the equipment is influenced by PM Quality and Repair 

Perfection nodes. Therefore, depending on the quality of PM and the perfection of repair, the next 

failure time will be reformed. This reformation is also advised by the actual failure times (occurred i-

1 times), through parameter learning feature of the model, which will be elaborated on later in this 

chapter. Accordingly, the expected number of failures during the useful lifetime of the equipment (n) 

is revised. A ranked probabilistic variable, with a 5-point Likert scale 

(Very poor, Poor, Fair, Good, Excellent) is assigned to PM Quality. Repair Perfection is modelled 
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using a Bernoulli variable with two states: “Yes” and “No”, such that Pr(Yes) = 𝑝, and Pr(No) = 𝑞, 

where 𝑞 = 1 − 𝑝. This is compatible with the (𝑝, 𝑞) rule, which was first introduced by Nakagawa 

(1979) [152] for treating imperfect maintenance. We assign a prior distribution, f(y), 0 < y < 1, to 

the node 𝑝, where the mean value of which will flow to the Repair Perfection node. PM Quality and 

f(y) can be estimated either from an expert judgment or by conditioning them on technical causes, 

such as repairing the wrong part, damaging adjacent parts, etc., and then use corresponding historical 

data, if available. There are several possible causes that contribute to an imperfect repair and/or a 

poor maintenance: repairing the part incompletely; repairing amiss part; damaging adjacent part(s); 

inaccurately determining the condition of the inspected unit; tardy maintenance; and invisible faults 

and breakdowns that are not noticeable during maintenance [152,153]. 

The NPT of the node f𝑖 is dependent on the status of the nodes Repair Perfection and PM Quality, 

as well as the updated baseline density function, f0
𝑖−1, which its parameters have been now learnt from 

the observed times of the previous failures (f1
𝑎, f2

𝑎, … , f𝑖−1
𝑎 ). This updated density function will be 

intensified or diminished, depending on the PM quality and repair perfection status. If 

“Repair Perfection” = No, and "PM Quality" = Fair, then f𝑖 = f𝑖−1, which means the equipment 

will have the same failure behaviour as what it had before the latest breakdown. If 

“Repair Perfection” = Yes, and "PM Quality" = Fair, then f𝑖 = f0, which means the equipment will 

have the failure behavior of a brand new one.  

Applying backward propagation and effect to cause inference, the model infers the actual levels 

of PM quality and repair perfection, and updates the prior estimation of failure distribution 

parameters, using actual inter-failure times (f1
𝑎 , f2

𝑎 , … , f𝑖−1
𝑎 ). Posterior probabilities of PM Quality, for 

example, are updated using the following Bayes rule: 

Pr(PM Quality|f𝑖−1
𝑎 ) =

𝑓𝑋|𝑃𝑀 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(f𝑖−1
𝑎

|PM Quality).Pr(PM Quality)

∑ 𝑓𝑋|𝑃𝑀 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(f𝑖−1
𝑎

|PM Quality).Pr(PM Quality)𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡
𝑉𝑒𝑟𝑦 𝑝𝑜𝑜𝑟

  (68) 

Consequently, the next time-to-failure, the number of failures during the remaining useful life 

(that is 𝑙 − ∑ f𝑘
𝑎𝑖−1

𝑘=1 ), and therefore a considerable part of total repair cost will be predicted.   
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Figure 23: Economic Bayesian R/R model
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Together with PM Quality, the prior for the level of repair perfection (f(y)) can be informed by 

common causal factors, such as staff experience, the maturity of (asset) management system, 

material quality, and so forth. These common causes might also affect the equipment 

maintainability and total repair duration (TRD). Like PM Quality, a ranked variable is assigned 

to the common causes related to repair durations. The simple BN in Figure 24 describes this 

dependency. Variables D1, D2…, Dn represent n repair task durations (e.g. notification and 

diagnosis, fix time, wait time, reassembly alignment and calibration, and test time), and variable 

E represents a cause to Di, such as shared experience, which influences repair perfection (R). 

The dependency connection between R, E, and D is Pr(R, E, D)  =  Pr(E | R)Pr(E|D)Pr(E), 

which means evidence on repair durations will influence experience and this subsequently 

influences the repair perfection. In this example, as discussed above, an observation on repair 

duration Di will infer the level of experience which in turn updates the duration of remaining 

tasks, Dj, as well as the level of repair perfection. 

 

Figure 24: A BN to model the dependency between repair tasks durations (Di) and the shared 
driving factor experience (E) (a) and its influence on the repair perfection (R) 

As depicted in the graph of Figure 23, a node is created for other time and cost items of the 

deterministic model, e.g. total selection duration (TSD), total installation duration (TID), 

realized salvage value (RSV), inbound shipping costs (ISC), etc. The distribution of these 

variables can be generated from historical data if data from similar cases is available. If we have 

insufficient or no historical data, the probability distribution can be elicited from expert-but 

subjective- judgment.  
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A Poisson distribution with the parameter 𝜆 is assigned to the node “s,” corresponding to 

the number of spare parts per breakdown. Considering the previous failures as independent tests 

(Figure 25), the observations on the number of spare parts result in 𝑖 − 1 independent Poisson 

distributions: {𝑠𝜁}
ζ=1

i−1
 ~ Poisson (λ). The conjugate prior distribution for Poisson’s parameter 

is Gamma with unknown hyperparameters 𝛼 and 𝛽 [154]: λ~ Gamma(𝛼, 𝛽); f(λ) =

𝛽𝛼

Γ(𝛼)
λ𝛼−1𝑒−𝛽𝜆 , λ > 0, where 𝛼 is the shape parameter, 𝛽 is an inverse scale parameter, and f(λ) 

is the Gamma density to distribute λ. 

A prior probability distribution should be now assigned to the hyperparameters 𝛼 and 𝛽. 

Because 𝛼 and 𝛽 are unknown, there is no joint conjugate prior for them and hence their priors 

need to be specified independently. Although vague priors can be assigned to them, we can feed 

the model with priors containing additional information from experts. We assign Triangular 

priors for the shape and inverse scale, where its parameters are decided by experts: 

α~ Triangular (a𝛼, b𝛼, c𝛼); log10 𝛽 ~ Triangular (a𝛽 , b𝛽 , c𝛽). Based on a sample of 𝑖 − 1 

observations of the number of spare parts, the posterior distribution of the rate of spare parts per 

failure is: λ~ Gamma(𝛼 + ∑ 𝑠𝑘
𝑖−1
𝑘=1 , 𝛽 + 𝑖 − 1). If there is only one observed number of spare 

part, the posterior becomes a negative binomial distribution [155] called the Gamma-Poisson 

distribution.  

 

Figure 25: Learning structure for the rate of spare parts per failure 

4.4.1. Incorporating risk events 

It is assumed that the purpose of the probability distributions derived for the model quantities 

is to capture the quantities’ inherent uncertainty. Therefore, these distributions do not account 

for event risks which, if they occurred, might escalate some of the quantities on both repair and 

replacement scenarios. For instance, rapid pace in technological change is an uncertain event 

that leads to unexpected obsolescence and consequently a lower realized salvaged value (RSV) 

𝑠1 

𝑠𝑖−1  

𝜆 𝑠  

https://en.wikipedia.org/wiki/Negative_binomial_distribution
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of the equipment. To incorporate such risks into the R/R model, we propose using a qualitative 

risk analysis with the following steps:  

1 Risk identification: relevant risks can be identified through brainstorming sessions, 

historical records, or conducting special interviews with experts considering one or 

more quantity.  

2 Risk analysis: the probability of occurrence and the impact of each identified risk will 

be estimated. Following the same structure in many risk management practices and 

standards [94,156,157], the scales presented in Table 17 will be used to perform this 

step.  

3 Risk connection: a node will be created for each risk and will be connected to the 

related quantity. The estimated probability acts as the prior probability of this node 

and the estimated impact will be used to revise the NPT of the affected quantity.  

4 Risk mitigation: regardless of the optimal decision (repair or replacement), responses 

to the highest risks will be designed such that they will be possibly transmitted to 

lower levels and the total cost associated with the optimal decision will be further 

lowered. A Probability-Impact matrix can be used to classify the risks into ranked 

levels and identify the highest risks in need of a response.  

Table 17. Risk probability and impact scales 

Probability Impact 

Improbable, not expected to occur 0.10 Very low Insignificant 

impact 

Seldom, likely than not to occur 0.30 Low < 10% impact 

Occasional, may or may not occur 0.50 Moderate 10-20% impact 

Likely, more likely than not to occur 0.70 High 20-40% impact 

Frequent, expected to occur 0.90 Very high > 40% impact 

4.4.2. Incorporating emissions 

Similar to the cost and time items of the R/R model, a triangular distribution will be fit to the 

cost of GHG emissions related to keeping the old equipment (EO&M) and replacing it with new 

equipment (Edec + Eman + Eship + E′O&M). Based on the assumption of a positive correlation 

between equipment reliability and the amount of consumed energy [55], we aim to find the 

causal relationship between the equipment failure distribution and its O&M emissions. As 

illustrated in Figure 26, an emission impact scale (EIS) is defined for the latest predicted f𝑖 as 
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follows: 

{
Pr(EISi = 𝑁𝑜𝑟𝑚𝑎𝑙) = Pr(X ≥ EET) = ∫ fi(X)dx

∞

EET

Pr(EISi = 𝑆𝑐𝑎𝑙𝑎𝑡𝑖𝑛𝑔) = Pr(X < EET) = ∫ fi(X)dx
EET

0

.       (69) 

where X represents the possible values of the failure density function and EET is an unknown 

emission escalating threshold. That is to say, a shorter MTTF contributes to a larger energy 

consumption and GHG emission if it is less than a normal range [EET, ∞). The parameter EET 

can be modeled with an expert prior and be trained through experiments or historical records on 

both failure time and consumed energy, as a measure of emitted GHGs. It will be further trained 

after (𝑖 − 1) failures during the use phase of the current equipment as well. Let the probability 

distribution of O&M emissions of new equipment be denoted as fN(e) and that of a retired 

equipment (which has reached to the end of its useful life) be denoted as fR(e). The cost of 

emissions associated with the equipment before its (𝑖 − 1)th failure is calculated as follows: 

EO&M = [Pr(IS𝑖 = 𝑁𝑜𝑟𝑚𝑎𝑙). fN(e) +  Pr(IS𝑖 = 𝑆𝑐𝑎𝑙𝑎𝑡𝑖𝑛𝑔). fR(e)] ∗ CP  (70) 

where CP is the price of carbon emissions in a carbon market. As illustrated in Figure 26, the 

cost distribution of other emission items in each scenario is integrated into the economic impact 

to simulate the total combined economic and environmental impacts of the defender (TRCε) and 

the challenger (TRC′ε).  

 

Figure 26: Integration of emission costs into the economic model 
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4.5. Case study and analytical results  

In this section, we demonstrate the application and analytical capabilities of the proposed model, 

using a plastic shredder case. The defender is Noma 44 XLR Plastic Shredder and the challenger 

is Noma XJ57 Grinder. The information on the model parameters and prior probabilities were 

estimated as presented in Tables 18-22. Table 18 includes the information on constants and most 

of the nodes that do not have a parent. The failure probability density functions are assumed to 

follow a Weibull distribution with the scale and shape parameters 𝜂 and 𝛾, respectively. The 

useful life of a plastic shredder is considered 120 months. The old equipment has been operating 

for 41 months, and that two breakdowns have occurred thus far, with failure times 22 and 14 

months, respectively. The number of spare parts associated with the failures were 2 and 3. The 

common cause “Experience” affects both Repair Perfection and total repair duration consisting 

of the repair tasks: diagnosis time, fix time, reassembly alignment and calibration (RAC) time, 

and test time. This experience factor refers to the experience of the repair staff. The prior 

probability of repair perfection (f(y)) and the distribution of the above repair tasks conditional 

on this common cause are presented in Table 19.  We have assumed that PM Quality is not 

influenced by Experience in this case study.  

Table 18. Estimated parameters and probabilities for the Bayesian R/R calculation 

𝑙 84 months DCN C$52000 

𝑐 C$3000/day CDC Triangular (184, 200, 228) C$ 

𝜌 -1% CRP Triangular (2950, 3200, 3550) C$ 

a 15% CSB Triangular (1740, 2000, 2280) C$ 

j 15% OHS 0 C$ 

i 5.75% LLC 0 C$ 

𝜔 36 months TDD Triangular (9.5, 12, 14.8) hrs 

𝜎 2% per month TSD Triangular (6.5, 8, 9.9) hrs 

𝜏 1.5% per month TID Triangular (79.5, 84, 91.2) hrs 

𝑟 C$80/hr ISC Triangular (1040, 1200, 1495) C$ 

r’ C$15/hr CPS Triangular (96, 200, 334) C$ 

LT 2 days SIC Triangular (388, 400, 528) C$ 

ROC -150 C$ TRN Triangular (4450, 5000, 5611) C$ 

FTE -0.5 SMS Triangular (779, 1000, 1243) C$ 

WOC 0 C$ RSV Triangular (9500, 12000, 13500) C$ 

f0  Weibull (η, γ), η~Triangular(19.14,24,29.63), γ~Triangular(1,2,5) 

PM Quality (Very poor, Poor, Fair, Good, Excellent) = (9.37,18.55, 31.11, 24.84,16.13 ) 

Experience (Low, Medium, High) = (24.59, 42, 33.41 ) 
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s 
Piosson (λ), λ~Gamma(α, β),  α~ Trian (0.2, 0.5, 0.8), 

log10 β ~ Trian (−6, −3, −1) 
 

Table 19. Repair perfection prior and repair activity durations conditional on the level of 
experience 

Experience f(y) Diagnostic Fix RAC Test 

Low Uniform(0.2, 0.5) (2, 3, 4.1) (13.1, 15, 17.6) (2.0, 3, 4.4) (1.1, 1.5, 2.7) 

Medium Uniform(0.4, 0.7) (1.3, 2, 3.5) (12.4, 14, 16.5) (1.2, 2, 3.5) (0.4, 1, 1.6) 

High Uniform(0.6, 0.9) (0.1, 0.5, 1.2) (10.7.1, 13, 15.7) (0.6, 1, 1.4) (0.2, 0.5, 1.3) 

The NPT of the upcoming failure distribution (f3) conditional on the level of PM Quality 

and repair perfection state is provided in Table 20, in which η′ and γ′ are the latest updated 

parameters of the Weibull failure time. Having constructed and run the economic BN model 

using the estimated parameters and probabilities, Figure 27 illustrates part of the network, which 

includes the distribution of the node f3, and its parent and child nodes. As indicated, the PM 

Quality, Repair Perfection, and the Weibull parameters have been updated based on the 

observed failure times. It can be seen from the posterior probabilities that while the Repair 

Perfection posterior has slightly increased, PM Quality has skewed towards Very poor, 

revealing the root cause for the short time between failures. The distribution of the next failure 

(f3) has accordingly been revised, showing a decline in MTTF from 22.453 months (prior) to 

20.994 months (posterior). Thus, the distribution for the number of failures during the remaining 

useful life of the equipment has skewed towards the right, raising the mean value of the 

distribution from 3.91 to 4.13. 

Table 20. NPT of the node f3 conditional on the level of PM Quality and Repair Perfection 

PM Quality 
Repair Perfection 

Yes No 

Very poor 0.8*f0 0.8*Weibull (η′, γ′) 

Poor 0.9*f0 0.9*Weibull (η′, γ′) 

Fair 1.0*f0 1.0*Weibull (η′, γ′) 

Good 1.2*f0 1.2*Weibull (η′, γ′) 

Excellent 1.4*f0 1.4*Weibull (η′, γ′) 
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Figure 27: Part of the BN model which includes the priors and posteriors of PM Quality, Repair 
Perfection, failure time parameters, the upcoming failure time, as well as the updated number of 
failures (Dashed lines are created due to the existence of intermediate, hiden nodes to ease the 

calculation) 

Four risks have been identified at this stage of the R/R decision process. Table 21 indicates 

the risks, their probability and impact, and the affected quantities. By adding a node for each 

risk and revising the affected NPTs, we ran the entire economic network to calculate the total 

costs associated with the repair (TRC) and replace (TRC′) scenarios. Figure 28 illustrates the 

probabilistic distributions of TRC and TRC′. As indicated, the most likely value of replacement 

costs (C$89,264) is less than that of repair costs (C$163,230) and hence, it is less costly to 

replace the old equipment. The chance of replacement costs being less than repair costs is 

78.97% (Pr(TRC′ < TRC) = 0.7422), which shows our confidence about this decision. The 

most probable advantage of replacing the equipment over maintaining it would be C$72,144. 
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Table 21. Identified risks, related affected items, probability of occurrence, and impacts 

ID Risks Item(s) affected Probability Impact 

1 
Faster technology change and obsolescence 

of the old equipment 

RSV 34.28% -40% 

2 

Safety incidents during the delivery and 

locating process of new equipment and 

decommissioning process of old equipment 

DCN 87.12% 10% 

3 Lack of spare parts TRD 20.79% 40% 

4 
Lack of knowledge on how to repair the 

new equipment, due to unlikeness  

COR (as a component 

in OWC/S), TRD 

67.33% 20% (COR) 

40% (TRD) 

As provided in Table 22, cost of emissions, Eman, Eship, and Edec, were estimated based on 

the related activity data in tons of CO2_eq and the carbon price in the Western Climate Initiative 

(WCI) cap-and-trade market. We used the price of C$18.77/ton estimated by our model 

presented in the next chapter.  

 

Figure 28: The probability distributions of total repair (TRC) and replacement (TRC′) costs in 
economic model 
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Table 22. Emissions costs of each lifecycle phase based on the carbon price in the WCI market 

Eman               1035 C$ fN(e) Normal (800, 100) kg CO2_eq 

Eship               (11.3, 16, 24.8) C$ fR(e) Normal (1800, 300) kg CO2_eq 

Edec                (27.9, 32, 41.5) C$ CP C$18.44/ton 

We assigned a Normal (10, 5) prior to the Emission Escalation Threshold (EET) and trained 

it by using 55 records of similar equipment on time between failures and monthly average cost 

of GHG emissions relevant to these times. The trained threshold is shown in Figure 29. Based 

on the records, the EET posterior shifts to the higher failure times, with a mean value of 14.23 

months, having a smaller standard deviation (1.11 months), which represents a higher certainty 

than the starting prior (with a standard deviation of 5 months). The predicted amount of O&M 

emissions is also updated, revealing that greater emissions are expected to be released over the 

remaining life time of the old equipment. Based on the prior EET, the probability of f3 being 

escalating was about 12% and the estimated monthly emissions was initially calculated as 921. 

The posterior EET rises this probability to 21% and the monthly emissions to 1010 kg CO2_eq. 

To calculate the cost of O&M emissions (EO&M), this distribution was converted to a monetary 

based distribution using the carbon price.   

 

   Prior                        Posterior 

Figure 29: Posterior distribution of emission escalating threshold and update of O&M emissions 
cost  
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Having integrated the emissions cost items into the economic Bayesian model, the combined 

total cost of repair and replacement scenarios are calculated, as shown in Figure 30. The average 

total costs associated with the repair and replacement scenarios are C$165,210 and C$91,465. 

The best decision is still to replace the equipment, and the confidence has increased only slightly 

(79.29%). The mean value of the advantage corresponding to this decision in the combined 

model is however C$71,701, which is marginally lower than the advantage in the economic 

model. This is not surprising because we have accounted for the carbon footprints of 

manufacturing new equipment, shipping it to the operation site, as well as that of 

decommissioning the old equipment. Although the operating organization does not always pay 

for the carbon emissions of these stages of the equipment life cycle, when it comes to climate 

change and global warming, it is imperative to design a sustainable asset management that 

considers emissions from manufacturing and even the supply chain of the materials being 

converted into the final equipment. In fact, extraction and processing the materials used for 

manufacturing many of the so called “low carbon” technologies (such as windmills, batteries of 

electric vehicles, solar panels, and biofuels), release a significant amount of carbon emissions.   

 

Figure 30: The probability distributions of combined total repair (TRC𝜀) and replacement (TRC′𝜀) 
costs 
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4.6. Discussion 

In addition to primary comparative application, the proposed model has analytical and 

explanatory features, some of which are explored in this section. The decision maker can enter 

new evidence and information anywhere in the network to perform predictions, trade-off, and 

what-if analyses. Take, for instance, the following scenario. Scenario 1: 

• The level of experience among maintenance staff is low, 

• PM Quality is poor, and 

• Technology change is undoubtable (Risk #1=True), and the defender is no longer 

valuable as it was in the normal depreciation trend.  

Figures 31 and 32 show how the failure time, repair perfection, total repair duration (TRD), 

and total repair and replacement costs have changed. From the model output, mean time to 

failure decreases to 19.45 months, and total repair duration (TRD) increases to almost 31 hours 

on average. Thus, the model has captured the dependency between the equipment reliability and 

its maintainability through a common cause that affects both. As illustrated in Figure 32, this 

scenario will escalate the total repair and replacement costs to C$180,910 and C$101,640, 

respectively.  



85 

 

 

   Baseline                        Scenario 1 

Figure 31: The effect of scenario 1 on failure time, repair perfection, and total repair duration  
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Figure 32: Comparison of total repair and replacement costs in baseline scenario and scenario 1 

The risk analysis part of the project can proceed in order to mitigate the lifecycle costs. The 

common practice in risk management is to: 

• rank the risks using qualitative analysis, 

• design risk responses for top risks in the ranking (a risk response is driven from four 

strategies: avoidance, mitigation, transference, and acceptance), and  

• re-rank the risks to monitor and control the overall risk level. 

We used the probability-Impact (PI) matrix to classify the risks into three levels; minor, 

moderate, and major. Using the estimated probabilities of occurrence and impacts, the four 

identified risks are mapped on the PI matrix of Figure 33-a. Therefore, risks with the ID 2 and 

4 are major risks, for which a response action is in priority. Let us suppose that the following 

responses are planned to be implemented in order to respond to the major risks, which will 

transfer these major risks to the moderate area, as shown in Figure 33-b: 
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ID Risks Planned response(s) 

2 

Safety incidents during the delivery and 

locating process of new equipment and 

decommissioning process of old 

equipment 

• Insurance plans for the new equipment 

• Training sessions before the process start  

 

4 

Lack of knowledge on how to repair the 

new equipment, due to unlikeness  

• Training sessions for the repair staff 

• Consulting agreements with the supplier 

to get advice before and during the repair 

period  

Considering the costs of implementation of responses, the probability and impact of major 

risks were modified as a new scenario. As a result, TRCε and TRC′ε distributions show a lower 

range of costs (Figure 34), and the advantage would increase to C$76,589.  
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Figure 33: Probability-Impact matrix before (a) and after (b) responses implementation 
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Figure 34: TRCε and TRC′ε distributions before and after responding to the high-level risks 

Assuming the equipment owner does not pay for the cost of emissions associated with 

manufacturing, shipping, and decommissioning processes, the model was run without the 

related cost items. This scenario, as expected, would lead to a higher advantage in the 

replacement decision over repair decision (C$88,583), as depicted in Fig. 16.  

 
Figure 35: The PDF of combined total repair (TRC𝜀) and replacement (TRC′𝜀) costs with only 

O&M emissions 
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Moreover, the proposed model is capable of propagating information backward (from effect 

to cause) to infer desired variables in order to meet a condition or to diagnose the root cause(s) 

of a favourable performance. For example, the management can set a target on the equipment 

reliability (through the distribution of failure time or number of failures), as well as 

maintainability (through TRD and repair tasks durations) to find the required level of PM 

quality, repair perfection, experience, and so forth. Likewise, observations on important cost 

items, such as TRC𝜀, TRC′𝜀, during warranty costs, etc., can be entered into the model to 

diagnose the most probable causes. Similarly, a budget limit can be used to analyse the required 

level of performance in other variables or the maximum probability/impact of risks to meet that 

limit.  

4.7. Conclusion 

This paper proposes a repair/replacement decision model with both economic and 

environmental considerations. A deterministic model was first developed, considering a wide 

range of effectual variables on both repair and replacement sides. It was then mapped into a 

probabilistic Bayesian structure (called Bayesian R/R model), which allowed us to: 

1. Capture the full uncertainty of input variables, 

2. Model complex variables including the quality of preventive maintenance, repair 

perfection and staff experience, and the causality between them, 

3. Incorporate risks and conduct a formal risk management process to further mitigate the 

lifecycle costs, 

4. Infer the causality between the equipment failure behaviour and its operation’s GHG 

emissions, 

5. Learn the parameters and actual level of complex variables in the light of new evidence 

and therefore, improve the accuracy continuously. 

Both economic and environmental costs of equipment are taken into consideration. 

Environmental burdens are modelled by capturing the GHG emissions of manufacturing new 

equipment, shipping them to the operation site, O&M process, and decommissioning the retired 

equipment. The Bayesian R/R model was applied to a plastic shredder case study located in 
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Canada. GHG emissions were converted into a monetary value using the expected carbon price 

in the WCI market.  

This monetary value, however, may not reflect the exact cost of the equipment 

environmental impacts, in a global warming point of view. From the results of the case study, 

we found out that putting the reported price of carbon, that is C$18.44 per ton of CO2_eq, cannot 

make a remarkable difference in the total costs, comparing to a mere economic decision model, 

whether it is a repair or a replacement decision. That is to say, it is unlikely that accounting for 

GHG emissions based on this carbon price would change the decision so that it can help 

mitigating carbon emissions. This would become even more discouraging if we exclude GHG 

emissions for which, the equipment owner does not yet pay in a carbon market (e.g. emissions 

from manufacturing new equipment or outsourced decommissioning projects). Much greater 

prices, with very small probabilities based on the historic records on the WCI market [158], 

might actually alter the decision variable and consequently reduce the total emissions.  

As a future extension of this study, the Bayesian R/R model could be rebuilt using other 

impact assessment categories reported by EPA, such as Acidification Potential (moles of H+ 

eq), Ozone Depletion Potential (kg CFC-11 eq), and Fresh water use (kg).  
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5. Carbon Price Forecasting in a Cap-and-Trade Market 

 

The present chapter is based on the following paper: 

Abdi, A., Taghipour, S. (2018). Forecasting carbon price in the Western Climate Initiative 

market using Bayesian networks. Carbon Management. Accepted for publication.  

 

 

Many studies have been conducted to forecast and analyse the price of carbon in an emission 

trading scheme (ETS), also known as cap-and-trade market. Exhaustive forecasting studies have 

been seldom (if not never) performed in the Western Climate Initiative (WCI)’ market. Because 

of the distinctive market dynamics in WCI, the results of research on other markets may not be 

applicable to forecast the carbon price in this market. Moreover, modelling the causality 

between driving forces (including energy prices, economic growth, weather, etc.) and carbon 

price is a complex problem. The objective of this chapter is to forecast carbon price in the WCI 

market, by modelling the uncertainty of the driving forces and their causal relationship with 

carbon price. A probabilistic model is developed using Bayesian networks (BNs) to infer the 

possible ranges of each driving force that could have an escalation/depreciation effect on price 

as well as the magnitude of the impact. The model is developed based on retrospective and 

prospective information on the selected driving forces in all the jurisdictions of the WCI market, 

providing the most probable price(s) over the period 2018-2030. 

 

Keywords: emission trading scheme (ETS); the Western Climate Initiative; Bayesian 

networks (BNs). 

5.1. Introduction and Background 

To fight climate change and mitigate greenhouse gas (GHG) emissions, governments have 

already implemented (or plan to implement) carbon pricing schemes such as a carbon tax and 

emission trading scheme (ETS), also known as cap-and-trade. According to Scholtens & van 

der Goot [21], an ETS can influence the participating firms’ value due to two circumstances. 

First, there is a direct complying cost which requires the firms to adjust their business processes 
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towards low carbon technologies and/or purchase more emission allowances, thereby impacting 

their cash flows. Second, unlike carbon tax, ETS’s price of carbon is uncertain in that it is 

changing and volatile. 

Affected organizations in this market, therefore, need to be able to predict carbon price so 

that they can vigilantly adjust their business plans. Many studies have been conducted to 

forecast and analyse the price of carbon in, for example, European Union ETS (EUETS) [21–

30], China’s ETSs [31,32], and Korea ETS [33]. However, similarly exhaustive forecasting 

studies have been seldom (if not never) performed in the Western Climate Initiative (WCI)’ 

market. Sousa and Aguiar-Conraria [34] evaluated the dynamics of this market and the 

connection between energy and carbon prices. They reported contrasting market dynamics in 

WCI compared to EUETS. Hence, the results of research on other markets may not be applicable 

to forecast the carbon price in this market. Of course, regardless of the market, there is a 

continuous dispute over modelling the causality between driving forces (including energy 

prices, economic growth, weather, etc.) and carbon price. 

The aim of this chapter is to capture the uncertainty of the carbon price in WCI market, by 

determining the causality between carbon price and its driving forces. A probabilistic model is 

developed using Bayesian networks (BNs) to infer the possible ranges of each driving force that 

could have an escalation/depreciation effect on price as well as the magnitude of the impact. 

The model is developed based on retrospective and prospective information on the selected 

driving factors in all the jurisdictions of the WCI market, providing the most probable price(s) 

over the next ten years.  

Unlike classical estimators, Bayesian networks consider the parameters as random variables 

rather than unknown constants. Thus, there would be a probability density function for each 

parameter, which can be used for using any prior knowledge we might have about its value. 

Contrary to frequentist approaches in forecasting, such as traditional time series models, BNs 

allow us to factor in additional information, in the form of prior probabilities for the under-study 

parameters. These priors reflect our degree of belief about the parameters and can be updated 

in light of data, providing a sequential learning. This allows us to incorporate subjective beliefs 

in addition to objective information from historical records [139]. Moreover, the Bayesian 
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inference is notably appropriate for forecasting, considering all effectual variables or even 

model uncertainty [159].  

5.1.1. Previous works  

It was not that long ago when forecasting carbon price in an ETS market became a field of 

research. In fact, the first and the largest market, EU ETS, began its test phase (in essence Phase 

I) in 2005. Many studies [28,160–166] revealed that carbon price is mainly affected by energy 

prices, due to the capacity of power generators to switch between possible fuel alternatives. 

Evaluating price drivers of EU ETS, Alberola et al. [28] reported that rare weather changes 

during colder events could also impact carbon price. The correlation between weather and 

carbon price is also supported by other studies [161,167,168]. Another driving factor of carbon 

price is economy, as an increase/decrease in economic activities can rise/decline the demand 

for emission allowances, thereby affecting carbon price [161,169,170].   

Focusing on the relationship between macroeconomic fundamentals and carbon price, Jiao 

et al. [171] proposed an economic state-dependent (SD) model to analyse carbon market Value 

at Risk (VaR). They applied their model to the EU ETS and concluded that the carbon returns 

are individually distributed in two different periods of the EU economy, i.e. expansion and 

recession periods. Applying EGARCH model and the crude oil volatility index (OVX), Dutta 

[172] evaluated the impact of oil market on carbon price. He reported that there is a strong 

correlation between oil market implied volatility and carbon prices. Moreover, extracting 

outliers from historical data and OVX improves the accuracy of carbon price volatility forecasts. 

Zhao et al. [173] developed a real-time method to predict weekly carbon price in the EU ETS. 

Applying MIDAS regression models, five weight-type schemes, as well as data on economic 

and energy indicators, they claimed that information on coal market can provide the best 

indicators for forecasting carbon price.  

Zhao et al. [174] studied the effect of coal price, economy, and temperature on carbon price 

in six Chinees’ ETS pilots. They concluded that coal price has the greatest influence on the 

carbon price, suggesting the existence of different weights for the carbon price driving forces. 

Studying the Korean ETS, Etiennea and Yu [175] evaluated the contributors of the ironic price 

correlation between carbon allowance credits and offset credits. After the Korean ETS began, 
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offset credits were unexpectedly regularly traded at a much greater price, while an immediate 

liquidity happened soon.  

Artificial intelligence (AI) techniques have been used to predict and analyse carbon price. 

For example, Atsalakis [176] developed and compared three AI-based models using fuzzy and 

artificial neural network techniques, to predict carbon price in the EU ETS. They claimed that 

their proposed hybrid neuro-fuzzy controller (also called PATSOS) outperforms other carbon 

price prediction methods. Various forecasting models including statistical and AI techniques 

proposed in the field of energy planning have been recently reviewed and evaluated in [177]. 

The models are compared based on their prediction accuracy, relevance to temporal and spatial 

forecasts, and appropriateness regarding the objectives and policies. Reviewing 483 models and 

considering the accuracy criterion, such techniques were identified as better methods than 

statistical techniques. In addition, they appear to be applicable for different forecasting horizons, 

whereas statistical methods are applied only to short and medium-term predictions. To improve 

the accuracy of carbon price forecasts, a multiscale nonlinear ensemble leaning paradigm is 

developed in [178] and [179] which is integrated with empirical mode decomposition and least 

square support vector machine. The authors of these studies claim that the proposed approach 

yields better results with a greater robustness if the carbon price is considerably nonstationary, 

nonlinear, and irregular. 

5.2. Methodology 

This section explains our methodology including the techniques we have used to construct the 

proposed carbon price forecasting model. Figure 36 shows different stages of the model 

development. These stages are summarized as follows. First, driving forces of the carbon price 

in WCI market are identified. From the literature review, energy prices, weather, and economy 

are selected as the main categories of carbon price driving forces, which is supported by [34] as 

well. Natural gas, oil, coal, and electricity are considered as variables in energy prices category. 

Since the industries in the WCI market are energy intensive, gross domestic product (GDP) was 

selected to mirror economic activities. To model weather conditions, temperature is factored in.  

Second, retrospective (historical) data and prospective data (projections) on each driving force 

are collected over the market jurisdictions. Projections need to be collected based on the 

intended forecasting horizon. Third, the best-worst method (BWM) [180] is employed to 
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generate a weight for the driving forces. Lastly, a Bayesian network (BN) model with an 

inference mechanism, as the focal point of the proposed approach, is built and run using the 

above information. Each of the above steps is described through the following subsections. 

 

Figure 36: Model development stages 

5.3. Data collection  

For each driving force, projections over the period 2018-2030 were collected from reputable 

reports, for the participating jurisdictions, i.e. California, and Quebec5. They were then 

integrated into a single value for the whole market. To begin with, natural gas projections in 

Quebec were extracted from Deloitte’s Price Forecast report [1002]6, and projections on natural 

gas price for California were extracted from California Gas Report [1003]. Average forecasts 

were then calculated over the two participating jurisdictions, in US$/MMBtu. Oil, coal, and 

electricity price projections were collected from the EIA’s Annual Energy Outlook [1004]; 

Canada National Energy Board’s (NEB) Energy Future 2017: Projections to 2040 [1005]; 

California Energy Commission’s Integrated Energy Policy Report [1006]; and Kanoema’s 

Crude Oil Price Forecast [1007]. Likewise, the projections were converted into average, market-

level predictions with the consistent units.  

GDP projections of the province Quebec and the state of California were extracted from 

Desjardins’s Economic Viewpoint [1008], and the California Country-Level Economic 

                                                 
5 On January 1, 2017, Ontario’s cap-and-trade program began, with the initial batch of carbon allowances auctioned 

off on March 22, 2017, and a linking agreement with WCI’s ETS came into effect on January 1, 2018 [101]. 

However, recently the new provincial government cancelled the cap and trade regulations and prohibited trading 

emission allowances (effective July 3, 2018).  
6 [100x] is a website reference  
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Forecast 2016-2050 [1009], respectively. Average GDPs were then calculated in US$ Trillion. 

Regarding the variable weather, average monthly records of temperature (°C) from 2005 to 

2018 were gathered from the Government of Canada website [1010], for Quebec, and from the 

Weather Company, LLC website [1011], for California.   

5.4. Best-Worst Method (BWM) 

Proposed by Rezaei in 2015 [180], BWM is a new multi criteria decision making (MCDM) 

model, which similar to Saaty’s AHP [181] can be utilized by either one or a group of decision 

makers to prioritize a list of alternatives or to weight a set of criteria. BWM outperforms AHP 

in that it needs less comparison information, and generates more consistent comparisons and 

therefore more reliable rankings/weights [180,182,183]. Aiming to determine the weights of n 

criteria, wj, j = 1, … , n, one can perform BWM through the following steps: 

(1) Decide the best (B) and worst (W) criteria (in essence, the most and the least 

important/desirable criteria). In the case of our forecasting study, B and W represent the 

most and least effectual carbon price driving force in the under-study market; 

(2) Specify the preference of B over the rest of the criteria, based on a 9-point Likert scale 

from 1 to 9. Number 1 and 9 indicate that the best criterion is equally and extremely 

more important than the related criterion, respectively. Thus, a best-to-others (BO) 

vector is created: A𝐵 = (𝑎𝐵1, 𝑎𝐵2, … , 𝑎𝐵𝑛), where 𝑎𝐵𝑗 is the preference of B over j and 

𝑎𝐵𝐵 = 1; 

(3) Specify the preference of other criteria over W, based on a 9-point Likert scale from 1 

to 9. Number 1 and 9 indicate that the related criterion is equally and extremely more 

important than the worst criterion, respectively. Thus, an others-to-worst (OW) vector 

is created: A𝑊 = (𝑎1𝑊, 𝑎2𝑊, … , 𝑎𝑛𝑊)T , where 𝑎𝑗𝑊 is the preference of j over W and 

𝑎𝑊𝑊 = 1; 
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(4) Calculate optimal weights, in a way that the maximum absolute differences {|𝑤𝐵 −

𝑎𝐵𝑗𝑤𝑗|, |𝑤𝑗 − 𝑎𝑗𝑊𝑤𝑊|} is minimised for all j: 

minmax
j

 {|𝑤𝐵 − 𝑎𝐵𝑗𝑤𝑗|, |𝑤𝑗 − 𝑎𝑗𝑊𝑤𝑊|}  

s. t.  

∑ wj = 1j    

wj ≥ 0, ∀ j          (71) 

The above problem can be expressed as the following linear problem: 

min 𝜉 

 s. t. 

 |𝑤𝐵 − 𝑎𝐵𝑗𝑤𝑗| ≤ ξ,    ∀ j  

 |𝑤𝑗 − 𝑎𝑗𝑊𝑤𝑊| ≤ ξ,   ∀ j 

 ∑ wj = 1j   

wj ≥ 0,    ∀ j          (72) 

The optimal weights, 𝑤1, … , 𝑤𝑛, as well as the optimal objective function, 𝜉, representing 

the consistency index, can be obtained by solving this linear model. Values of 𝜉 close to zero 

indicate a significant consistency associated with the expert pairwise comparisons.   

5.5. Proposed BN model 

We aim to model the cause and effect relationship between carbon price and its drivers. The 

general idea can be described using the simple BN in Figure 37. This model consists of two 

nodes: the price of carbon (or alternatively any trading price such as stock price, or the price of 

products and services) and a cause (C) that affects this price. Starting with a prior probability 

for the cause, P(C), the likelihood for carbon price conditional on the cause, P(P|C), is calculated 

from a cause-to-effect inference or forward propagation: 

 P(P
C⁄ ) = P(C/P)P(P)

P(C)
 .                                                             (73) 
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Figure 37: A naïve Bayesian network with two nodes: Carbon price (P) and its cause (C) 

This rule provides an effect-to-cause or backward propagation, which allows the causation 

from carbon price to its cause to be captured (graphically represented by a dashed arrow in 

Figure 2). Thus, evidence on carbon price can be used to revise our prediction about the actual 

probability of its cause, that is P(C|P), which can be calculated by multiplying the prior 

probability of the cause, P(C), by the likelihood P(P|C), and normalizing the results by dividing 

by the constant P(P): 

P(C
P⁄ ) =

P(P
C⁄ )P(C)

P(P)
 .                                                            (74) 

Making an extreme assumption, let us suppose that oil price (O) is the only cause for carbon 

price and that every oil price has always an escalating or depreciating impact on price. The 

degree to which oil price impacts carbon price can be incorporated to this simple BN, by adding 

the node I, as shown in Figure 38. The dependency connection between O, P, and I is 

P(O, P, I) =  P(P |O, I)P(O)P(I), which means an observation on oil price and/or its impact 

factor will influence carbon price. As long as nothing is known about P, its parents, O and I, are 

independent: 

P(I|O, P) =  P(I|P)  (75) 

which means observing O does not influence I, and vice versa. On the other hand, evidence on 

P makes the parent nodes O and I dependent:  

P(I|O, P) =  P(I|P = p, O)   (76) 

In other words, data (or new evidence) on both carbon and oil prices can be used to infer the 

impact factor. We have employed this simplified, conceptual BN to quantify the escalating and 

depreciating behaviours of carbon price in the WCI market depending on its driving factors. 

First, a node can be incorporated to determine the chance of a specific value of oil price, e.g. 

𝑂𝑎, having an escalating/depreciating effect or otherwise having no effect on carbon price. 
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Moreover, rather than only one impact node, two nodes should be created to estimate the size 

of both escalating and depreciating impacts, because we argue that an escalating effect due to 

an increasing change (𝑂𝑎 → 𝑂𝑏 , 𝑂𝑎 < 𝑂𝑏) in the oil price may not be equal to the depreciating 

effect due to the same decreasing change (𝑂𝑏 → 𝑂𝑎, 𝑂𝑎 < 𝑂𝑏). This mechanism is demonstrated 

in the next section.   

 

Figure 38: A BN to model the causality between oil price (O), carbon price (P) and the impact factor 

of oil price on carbon price (I) 

We have developed a probabilistic BN model which captures the uncertainty of carbon price 

and its driving forces in the WCI market. Figure 39 presents the graphical structure of the model. 

As shown, a node is created for each driving force in the three corresponding categories. Using 

the projections of each driving force, a probabilistic distribution was calculated and assigned to 

their related nodes7. Distribution fitting for the node Temperature was performed for different 

months of a year and therefore the NPT of the node Temperature is conditional on the months. 

In this model. information propagates from a driving force to the others. For this reason, we did 

not call the driving forces as “independent” variables, as in the real world they may affect each 

other. Furthermore, new observations on the response and predictor variables can be used to 

calculate the posterior, updated distributions of the model’s parameters, including the impact 

scales, the thresholds, and the impact factors. 

                                                 
7 We used EasyFit Professional Version 5.6 to extract these distributions. 

𝐎 

𝐈 

𝐏 
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Figure 39: Graphical structure of the proposed BN model. The first layer indicates the nodes that 
are created to capture the uncertainty of driving forces. The second layer is the impact scale (IS) of the 
driving forces. The third layer of nodes shows the escalating and depreciating impact factors (EIF and 

DIF) (dashed lines are created because there are intermediate nodes in the model to facilitates NPT 
assignments and to lower the calculation volume). 

Let’s denote a driving variable as X, with the two depreciating and escalating thresholds  𝑥1 

and 𝑥2. An impact scale (IS) node is created for each X with the following NPT: 

{

𝑃(IS𝑋 = 𝑁𝑜𝑟𝑚𝑎𝑙) = 𝑃(𝑥1 ≤ 𝑋 ≤ 𝑥2)         

𝑃(IS𝑋 = 𝐸𝑠𝑐𝑎𝑙𝑎𝑡𝑖𝑛𝑔) = 𝑃(𝑋 > 𝑥2)               

𝑃(IS𝑋 = 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑛𝑔) = 𝑃(𝑋 < 𝑥1)      

      (77) 

Historical data or expert elicitation can be used to estimate the thresholds 𝑥1 and 𝑥2. As 

illustrated in Figure 4, the purpose of defining IS is to calculate the probability of a driving force 

being in a normal, escalating, or depreciating status.  
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Figure 40: The probabilistic distribution of the driving force X and its threshold parameters 𝑥1 and 
𝑥2, to define normal, depreciating and escalating regions 

The impact scale for temperature is defined a little differently. As extreme hot and cold 

weather both have an escalating impact on emission allowances demand, IS for Temperature 

comes with only two statuses, i.e. normal and escalating: 

{
𝑃(IS𝑇 = 𝑁𝑜𝑟𝑚𝑎𝑙) = 𝑃(𝑥1 ≤ 𝑋 ≤ 𝑥2)             

𝑃(IS𝑇 = 𝐸𝑠𝑐𝑎𝑙𝑎𝑡𝑖𝑛𝑔) = 𝑃(𝑋 < 𝑥1 𝑜𝑟 𝑋 > 𝑥2)
.       (78) 

In the next step, for each driving force, two depreciating and escalating impact factors (DIF 

and EIF, respectively) are incorporated into the model. These factors represent the significance 

of the depreciating/escalating effect of a driving force. The purpose of incorporating these 

factors is to modify a baseline carbon price (BCP). The BCP is an estimation of carbon price 

assuming all the driving forces are in their ‘normal’ status. If the impact scale of a driving force 

is depreciating (escalating), a depreciating (escalating) impact factor would be active to adjust 

the estimated baseline price. Otherwise, i.e. when the impact scale is normal, BCP does not 

alter. The motivation behind DIF and EIF is the fact that carbon price may not be affected by 

every driver equally.  

Thus, carbon price derived by energy prices (CPEnergy), economic activities (CPGDP), and 

weather (CPTemperature) are calculated as follows: 

CPEnergy = ∑ [P(ISXN). f(BCP) +  P(ISXE). f(BCP). f(EIFX) + P(ISXD). f(BCP). f(DIF_X)]𝑋  (79) 

𝑥1 𝑥2 
𝑋 

𝑓𝑋(𝑥) 
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CPGDP = P(ISGN). f(BCP) +  P(ISGE). f(BCP). f(EIF_G) + P(ISGD). f(BCP). f(DIF_G) (80) 

CPTemperature = P(ISTN). f(BCP) +  P(ISTE). f(BCP). f(EIF_T)    (81) 

where ISXN, ISXN, and ISXN are the probability of the normal, escalating, and depreciating states 

in driving force X, respectively. Considering the weights we, wg, and wt associated with the 

categories energy prices, GDP, and temperature, forecasted carbon price (CP) is formulated as 

follows: 

CP = we. CPEnergy + wg. CPGDP + wt. CPTemperature          (82) 

Like the thresholds 𝑥1 and 𝑥2, prior distribution of DIF, EIF, as well as BCP can be 

generated using historical records of the market or expert judgment. Whenever a new price is 

observed from the market, the proposed model would update the above parameters, by 

calculating their posterior distribution. In fact, even if the model begins with vague priors for 

the parameters, it learns these parameters by use of actual data and therefore the predictions 

would become more accurate.  

5.6. Results and analysis 

This section demonstrates the results of applying the proposed carbon price forecasting model 

to the WCI market. As discussed earlier, we assigned a probability distribution to the projections 

of energy prices and GDP over the period 2018-2030, for the two jurisdictions. For temperature, 

we used historical records of Quebec and California to extract its probabilistic distribution. We 

created a separate Bayesian inference network to estimate the thresholds 𝑥1 and 𝑥2, and the 

impact factors EIF and DIF of the driving variables. Using historical values of the driving forces 

and WCI carbon prices, the above parameters were learnt. To do so, we first assigned a uniform 

prior to the variables and parameters, and trained them by applying a K-fold cross-validation  

(CV) [184]. CV is a common technique to test the prediction power of a machine learning 

model. It allows the analyst to use part of limited data (called the training dataset) to measure 

the model performance from its accuracy on the rest of data which is not used in the training 

dataset (called test data). To run a K-fold CV, the entire dataset is split into K equal groups of 

samples; then the model will be trained using the samples of K-1 groups (that is the training 

dataset) and tested on one remaining group (which is the test or hold out dataset). The training 

and testing will be replicated on K different combinations of groups, to select the best prediction 
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model.  

We trained the model parameters and tested their performance in two processes of K-fold 

CVs: 

1) After evaluating the posteriors on each test data, the parameters’ priors were reset to 

the initial uniform distribution. We repeated this training/testing K times to obtain 

the most accurate posteriors for the model parameters. 

2) We kept the calculated posteriors obtained in each of the K tests and used them as 

the new priors for next test. Thus, we obtained K additional series of posteriors 

which needed to be compared to those in the first process (i.e. the overall number of 

comparisons was 2K). This second process of training allows to evaluate the learning 

capacity of the model.  

In order to test the posteriors’ prediction performance, the root mean squared error (RMSE) 

was used. The uniform priors for all the driving forces were defined as follows:  

x1~U (1% − lower percentile, mean)  DIF~U (0, 1) 

 

x2~U (mean, 99% − lower percentile)  EIF~U (1, 2) 

Using the last 64 historical weekly prices8 of the market from January, 2017 to March, 2018 

[185] along with their corresponding driving forces, we created four groups of data (after 

shuffling them) to run two 4-fold CV processes, in which the groups had 16 samples. Having 

run the eight trainings, we compared their predictive accuracy, as plotted on Figure 41. As it 

can be seen, the second process of 4-fold CV generally generates more accurate posteriors. This 

is because we preserved the learnt posteriors obtained in the previous tests. This is evident 

especially in the significant improvement occurred in the second test, in which the priors come 

from the posteriors obtained in the first test.  

                                                 
8 We considered the average value of the prices reported within a week.  
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Figure 41: RMSE values associated with the eight tests conducted in two 4-fold cross-validations 

Therefore, we selected the trained model with the least RMSE, obtained in the second 

process when it was tested using the fourth hold-out dataset. The posterior distributions of this 

model are presented in Table 1. The probability distribution functions (PDFs) extracted for the 

driving forces are also provided in this Tables. As mentioned earlier, we applied a software 

package to fit these PDFs to the average projections of the market. For example, the PDF best 

suited to oil prices is Logistic (72.26,5.77) US$ per blue barrel (bbl). We modelled the baseline 

carbon price (BCP) by a truncated normal distribution, using the mean value and variance of 

500 recent prices of WCI market (C$17.32 and C$3.2, respectively). The lower and upper 

bounds of the distribution were set as $10 and $67 respectively, as suggested by ICF’s Long-

Term Carbon Price Forecast Report (2017) [186]. Thus, BCP ~ TNormal (17.21, 3.20, 10, 67).  
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Table 23. Probability distribution functions (PDFs) and parameters of the proposed model for the 
WCI market. 

Variable PDF (
𝐱𝟏

𝐱𝟐
) (

𝐃𝐈𝐅

𝐄𝐈𝐅
) 

IS 

(Esc., Norm., Dep.) 

Natural Gas 

(US$/MMBtu) 
Beta (0.43, 0.32, 2.87, 5.23) 

U (2.80, 3.41)

U (3.84,4.02)
 

U (0.68, 0.82)

U (1.15,1.37)
 (26.81, 66.49, 7.69) 

Oil 

(US$/bbl) 
Logistic (72.26,5.77) 

U (51.17, 63.29)

U (76.11, 82.91)
 

U (0.61, 0.87)

U (1.07,1.36)
 (13.58, 80.66, 5.76) 

Coal  

(US$/ton) 
Triangle (34.14, 35.34, 36.79) 

U (34.19,34.45)

U (35.79,36.11)
 

U (0.67, 0.93)

U (1.09,1.50)
 (7.10, 83.37, 9.53) 

Electricity 

(USȻ/kwh) 
Weibull (73.81,10.59) 

U (9.40.10.08, )

U (10.95,11.24)
 

U (0.58, 0.96)

U (1.15,1.45)
 (2.51, 85.31, 12.18) 

GDP  

(Trillion USD) 
Beta (0.65, 0.75, 1.3, 1.78) 

U (1.16,1.40)

U (1.37,1.68)
 

U (0.61, 0.87)

U (1.18,1.43)
 (29.05, 66.82, 4.13) 

Variable Month PDF (
𝐱𝟏

𝐱𝟐
) 𝐄𝐈𝐅 

IS 

(Esc., Norm.) 

Temperature 

(°C) 

Jan. Beta (0.59, 0.69, -4, 1) 

U (−3.09,0.30)

U (16.33,22.17)
 U (1.14,1.36) (16.41., 83.59) 

Feb. Beta (3, 2, -1, 4) 

Mar. Beta (3, 2, 4, 8) 

Apr. Beta (3, 2, 10, 14) 

May Beta (3, 2, 15, 20) 

Jun. Beta (3, 2, 20, 24) 

Jul. Beta (3, 2, 23, 27) 

Aug. Beta (3, 2, 22, 26) 

Sep. Beta (3, 2, 18, 22) 

Oct. Beta (3, 2, 12, 16) 

Nov. Beta (3, 2, 6, 10) 

Dec. Beta (3, 2, 2, 8) 

Having constructed and run the BN model, the PDF of CPEnergy,
 CPGDP, CPTemperature

 nodes 

are obtained as shown in Figures 42-44. As illustrated, energy prices, GDP and temperature 

generate different predictions for carbon price. Average price of carbon over the period 2018-

2030 based on the correlation between carbon price and energy prices has a distribution close 

to Normal with the mean value of C$17.293 and variance of 1.67. The distributions obtained 

from the dependency between carbon price and GDP and temperature are skewed toward right, 

with the mean values of C$19.103 and C$18.278, respectively.  
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Mean: C$17.293 

Median: C$17.258 

SD: C$ 1.2924 

Variance: 1.6702 

Lower Percentile: 25.0 (C$16.377) 

Upper Percentile: 75.0 (C$18.077) 

 

Mean: C$19.103 

Median: C$17.859 

SD: C$ 3.9703 

Variance: 15.764 

Lower Percentile: 25.0 (C$16.262) 

Upper Percentile: 75.0 (C$21.366) 

 

Mean: C$18.278 

Median: C$17.533 

SD: C$ 3.2357 

Variance: 10.47 

Lower Percentile: 25.0 (C$16.099) 

Upper Percentile: 75.0 (C$19.442) 

Figure 42: Distribution of carbon price over the period 2018-2030 only dependent on a single 

category of driving forces, i.e. energy prices, GDP, and temperature  

Assuming that the following weights corresponding weight of each driving category have 

been obtained using BWM method, we = 0.42; wg = 0.33; and wt = 0.25, the overall 

distribution of carbon price (the node Carbon Price) was calculated as shown in Figure 43. This 

probabilistic distribution combines the effect of all the driving forces. As it can be seen from 

the graph, in average the price of carbon in the WCI market over the forecasting horizon is 
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distributed mostly between C$14 and C$25, with a most likely price of C$18.174. The 

distribution is skewed toward right and its variance is around three. With a 90 percent 

confidence, the price would not be higher than C$20.58.  

 

Figure 43: Probability distribution function of the predicted carbon price in the WCI market 

The proposed model allows to predict the carbon price in different scenarios and perform 

various what-if analyses to update the prediction, when there is a new evidence on the driving 

forces, as well as the market’s actual prices. For example, if we know that the average 

temperature will be 17° C (Scenario 1), the PDF of carbon price will be revised as presented in 

Figure 44, which compares the result of running the model under this scenario with the baseline 

scenario. As illustrated, the PDF of carbon price has slightly shifted toward left, decreasing the 

mean value of the distribution from C$18.17 to C$17.04.  
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   Baseline Scenario 

Mean: 18.174 

Median: 17.872 

SD: 1.6997 

Variance: 2.889 

 

 Scenario 1 

Mean: 17.036 

Median: 16.949 

SD: 1.1274 

Variance: 1.271                      

Figure 44: PDF of carbon price in Scenario 1 compared to the baseline PDF  

In addition to the above long-term prediction, short term predictions including predictions 

for a specific period of time can be calculated by applying the projections of the driving forces, 

corresponding to that period. For instance, entering the projections for the years 2019, 2022, 

and 2027 into the model, we obtained carbon price forecasts specific to these years, as presented 

in Figure 45. The distributions of carbon price reveal a price of C$17.22, C$18.65, and C$19.43 

for the years 2019, 2022, and 2027, respectively. This output provides a sense of midterm 

prediction of carbon price. The graph shows that as time goes on the distributions are skewed 

towards right, suggesting higher prices in the future of the WCI market.  
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   2019 

Mean: 17.036 

Median: 16.949 

SD: 1.1274 

Variance: 1.271 
 

   2022 

Mean: 18.452 

Median: 18.16 

SD: 1.7341 

Variance: 3.0073 
 

 2027 

Mean: 19.175 

Median: 19.141 

SD: 1.8343 

Variance: 3.3645 

Figure 45: PDF of projected carbon price for the years 2019, 2022, and 2027 

5.7. Conclusion  

In this paper, a probabilistic approach to forecasting carbon price in an ETS was proposed, using 

Bayesian networks (BNs). Equipped with the inference mechanism of BNs, the proposed model 

is supported by based retrospective and prospective data on the driving forces of carbon price. 

This allows us to not only capture the historical correlations between carbon price and its 

drivers, and therefore estimate the future prices, but also update the correlations based on actual 

prices of the market. This mechanism can combine both historical data and expert knowledge.  

We applied the proposed model to the Western Climate Initiative (WCI) market. The driving 

forces of carbon price were identified from the literature, including the studies conducted on the 

European Union ETS. For each driving force, a distribution was calculated using its projections 

in the participating jurisdictions, which reflects the uncertainty of the driving force in the whole 

market. We designed a cause-and-effect module which determines the chance of a driving force 

having an escalating/depreciating effect on carbon price. The parameters to perform this 

calculation analysis were first modeled using vague priors and then learnt through historical 

records of carbon prices. Likewise, the power of the driving forces to alter the carbon price was 

modeled using an impact factor specific to them. By integrating these variables and uncertainty 
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of the driving forces, the probability density function of carbon price was simulated. The results 

showed that carbon prices over the future decade ranges between approximately C$14 and 

C$26, with the most likely prices around C$18. There is a 90 percent chance of the price being 

greater than C$16.19 or lower than C$21.17.  

The model could be rebuilt if a new jurisdiction is joint to the WCI market. Had the 

Ontario’s cap and trade regulations not been revoked by the new provincial government of 

Ontario, we would have included Ontario’s projections of the driving factors in the proposed 

forecasting model. Although joining a new participating jurisdiction increases the uncertainty 

of the market, the model first revises the prior estimations (using the revised market projections) 

and is capable of revising them continuously by calculating the posterior estimations as soon as 

an actual price is observed in the expanded market.  
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6. Project GHG Performance Measurement 

 

The present chapter is based on the following paper: 

Abdi, A., Taghipour, S., & Khamooshi, H. (2018). A model to control environmental 

performance of project execution process based on greenhouse gas emissions using earned value 

management. International Journal of Project Management, 36(3), 397-413 [82]. Published 

online at: https://doi.org/10.1016/j.ijproman.2017.12.003  

Abdi, A., Taghipour, S. (2018). Uncertainty Analysis of Project Emissions: A Bayesian 

Network Model to Estimate and Monitor Greenhous Gas Emissions. The 18th annual IEEE 

Canada Electrical Power and Energy Conference (EPEC 2018). 

 

Projects do have a significant share in GHGs and therefore their environmental performance, 

like their schedule and cost performance, should be monitored and controlled. Although many 

large projects would pass an environmental assessment in the project evaluation phase, the issue 

of environmental performance monitoring during the project execution phase has not been 

addressed in project management methodologies. The objective of this chapter is to develop a 

model to estimate project GHG emissions, and to measure project GHG performance using the 

developed metrics, which can be used at any point in time over the life of a project. Two models 

are developed. First, a GHG performance measurement model is formulated based on the logic 

used in earned value management (EVM) methodology. A breakdown structure is proposed 

which supports managing all the project GHG accounts. This model is then implemented to a 

work package of a real construction project. The results present the project initial GHG plan 

and show that the model is able to calculate project GHG variance by the reporting date and 

predict project final GHG based on a project GHG performance index. Second, we propose a 

probabilistic model to quantify the uncertainty of project GHG emissions using Monte Carlo 

Simulation and BNs techniques. The model provides a quantitative risk analysis mechanism to 

estimate the total emissions of the project as well as prediction of final emissions during the 

implementation process. The proposed models are applied to a work package of a real 

construction project. 

https://doi.org/10.1016/j.ijproman.2017.12.003
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(EVM), Project quantitative risk analysis. 

6.1. Introduction and Background 

Projects, with a significant role in global economy as much as one third [15] have a serious 

contribution to global climate change and GHGs. This is the case specifically in construction 

projects which are the primary contributor of global GHG emissions [16]. Moreover, because 

of the growing competitive pressure and tendency to apply modern management techniques, 

organizations are being more and more projectized or project oriented [17]. Despite this fact, 

common practices in project performance measurement use project conventional triple 

constraints (i.e. quality, time and cost), neglecting its investment effectiveness and 

organizational benefits [18]. To integrate and incorporate the impact of GHGs emission in 

project execution and control, and to address national and international concern on the climate 

change, sustainability and reducing environmental impacts, GHGs emission can be considered 

as a cost for almost any types of project. Furthermore, carbon pricing using either a carbon tax 

or cap-and-trade program can motivate organizations to model project’s environmental impacts 

in their estimations and performance measures. Therefore, it is essential for future project 

managers to have a monitoring system for their project environmental impact performance or 

GHG management, and hence it is not far-fetched to see a ‘Project GHG Management’ chapter 

in Project Management Institute's (PMI) standard “Project Management Body of Knowledge, 

PMBOK” [94]. 

The common practice for project performance measurement is earned value management 

(EVM) technique and its extensions. A comprehensive study by [187] shows that EVM-based 

models have been mostly developed for time or cost control. Many studies have been published 

to represent the basic concepts of EVM (e.g. [94,188,189] and its more complicated, advanced 

extensions (e.g. [187,190,191]). It is believed that the traditional EVM technique is one of the 

most straightforward and widely used methods for monitoring and controlling project cost and 

schedule. For this reason, the EVM concepts have been used to propose a model to control 

environmental performance of a project during its execution process.  

Recently, several studies have been conducted to estimate and report the total amount of 

GHG emissions contributed to construction phase of a project [16,192–196].  These studies are 
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conducted with a focus on environmental review process within project evaluation phase and 

try to find the total emissions released from a project. This evaluation specifically addresses the 

environmental performance of project deliverables, without looking at the performance of 

project management during project delivery. As Kivilä et al. (2017) [197] pointed out, the 

sustainability of the delivery process, as well as that of deliverables themselves, are crucial as 

they could have considerable environmental and social impacts. Therefore, project management 

practices need to be modified to incorporate methods to assess the environmental impact of the 

project compared with the intended performance, during the execution phase. Previously, the 

issue of GHG emission control during project execution, however, has not been addressed in 

the literature. Kim et al. (2015) [198] developed a method to evaluate CO2, cost and schedule 

of building construction projects, using the cost and schedule performance indices (CPI and 

SPR). However, this method uses cost and schedule-based criteria to monitor project overall 

performance and fails to decouple the environmental performance from cost and schedule 

profiles. Therefore, this model does not reflect the project current environmental variance also 

its final GHG emission.  

In current practices, environmental and social costs are only analysed during project 

inception and investment decision. The analysis normally includes some consideration of GHG 

emission reduction through changing and modification of methods, material, location, etc. After 

such planning and evaluation at the preparation phase, failure to monitor the project 

environmental impact generally and project GHG emissions specifically during the project 

delivery, can derail the intended plans. Therefore, there is a need for an all-encompassing 

approach to “sustainability-oriented project control” in projects [197]. In this regard, Martens 

and Carvalho (2017) [199] suggest that incorporating sustainability performance management 

into projects requires decision models/tools to be applied in various phases of the project 

including project selection, evaluation, production, and project processes.   

6.1.1. Previous studies 

Previous research makes it evident that a large amount of GHG emissions are being released 

from construction projects all around the world. For example, Hanson and Noland (2015) [4] 

reported 2671.5 metric tons of CO2_eq for a pavement rehabilitation project in the US, state of 

New Jersy. Fernández-Sánchez et al. (2015) [200] calculated 390 kilo tons of CO2_eq for a 
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highway project in Ciudad Real, Spain. About 273.5 kilo tons of CO2_eq was reported by Chou 

and Yek [194] for a wholesale building project in Taiwan. In China, after performing a 

comprehensive study on different types of highway project, Wang et al. (2015) [192] stated that 

there is an average CO2_eq of 5229, 35547, and 42302 kg per meter for road, bridge, and tunnel 

construction, respectively.  

It is possible to identify the most effective reduction strategies by accounting for emissions. 

Not only can this lead to energy and material efficiency, but also the development of new 

products and services that reduce the GHG impacts of clients or suppliers. Consequently, 

limiting GHG emission reduces the cost of production and differentiates the company in the 

future environmentally responsive marketplace [79]. As an important driving force, energy 

consumption plays an essential role in economic development and social progress of the early 

twenty-first century. According to the 2013 BP World Energy Statistics [201], although the 

growth in consumption and production of most of fuels has slowed, compared to the past, they 

hit record levels. The consumption of fossil fuels is increasing fast, and this has the greatest 

impact on CO2 emissions [77]. The global demand for energy, as the life-blood of the modern 

world, has increased in recent years. Without a significant change in governments’ policies, 

worldwide primary energy demand is predicted to rise from 12,271 to 18,048 Mtoe9 between 

2008 and 2035, which means an increase of 47% [202] while the global population mostly relies 

on traditional, polluting and unsustainable energy sources [203]. 

Review of the literature shows that in recent years many studies have been conducted to 

estimate Scope 1 GHGs, emitted from the equipment and or materials of construction projects. 

Cao et al. (2016) [204] made in-use emission measurements from 27 pieces of construction 

equipment, to accurately estimate emissions from non-road construction equipment. Using the 

life cycle assessment (LCA), Pöyry et al. (2015) [205], estimated the total GHG emissions 

associated with construction phase of a low-energy multi-story residential building in Finland. 

They reported that building frame and roofing, and HVAC and the electrical systems were the 

two main contributors to total emissions, with about 40 and 20 percent, respectively. Based on 

data from a road construction case in New Jersey, Hanson and Noland (2015) [4] analysed the 

amount of direct and indirect GHG emissions from materials, equipment, maintenance 

                                                 
9 Million tons of oil equivalent 
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activities, and transformation of resources to the project site. Ozcan-Deniz and Zhu (2017) [206] 

used a multi-objective optimization technique to analyse the correlation between time, cost, and 

environmental impact (as a new conflicting objective) of highway construction projects. Results 

of this study shows that correlation between time and cost, cost and GHG emissions, and time 

and GHG emissions are strongly positive, moderately positive, and weakly positive, 

respectively. Conversely, Cass et al. (2011) [207] had reported that there is a meaningful 

correlation between project GHGs and delays. Hong et al. (2016) [16] developed a multi-

method-based framework for uncertainty analysis of construction GHG emissions and applied 

it to a residential complex project. Their model finally calculates the probabilistic distribution 

of total emissions related to construction activities. The Athena Sustainable Materials Institute 

(ASMI) (a Canadian science-based organization in life cycle assessment of the built 

environment) has developed a series of software which allows construction industry 

professionals to incorporate environmental considerations into building projects. 

Athena’s Impact Estimator for Buildings is the most relevant tool in which users can model 

their own custom assembly and envelope configurations. The software then calculates the 

operating embodied, and a cradle-to-grave life cycle inventory profile for a whole building 

[1012]. In this tool, however, impacts associated with only construction material and 

transportation are calculated and therefore it does not incorporate Scope 2 emissions yet.  

It can be observed that researchers are also paying attention to Scope 2 and Scope 3 (or 

indirect) GHGs. Sattary and Thorpe (2016) [208] investigated the level of GHG emissions 

reduction which can be obtained by use of bioclimatic principles in Australian buildings. Based 

on their results, bioclimatic principles can make up to 65 percent reduction in construction GHG 

emissions, for the whole building including floor, wall and roof. Using Monte Carlo simulation 

(MCS) tool, Chou and Yeh (2015) [194] estimated both Scope 1 and Scope 2 CO2 emissions of 

a building during its life cycle (i.e. construction material manufacturing and transporting phase, 

occupation and renovation phase, and demolition phase). They also proposed a metric to convert 

CO2 emissions into environmental costs. Using data from four real highway construction 

projects, i.e. subgrade, pavement, bridge, and tunnel in China, Wang et al. (2015) [192] 

estimated the total CO2 emission of three construction phases: production of raw material, 

material transportation and construction. Both Scope 1 and Scope 2 emissions (from electricity 

consumption) have been considered in this study. Also, tunnel and bridge projects have 
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generated more emission compared to pavement and subgrade projects. Du Can et al. (2015) 

[209] proposed a framework to estimate indirect CO2 emissions generated from electricity and 

heat production. Downie and Stubbs (2013) [210] evaluated Scope 3 emissions of Australian 

organizations by analysing the data and methods that they currently use. The authors found a 

considerable variation in the number of Scope 3 emission sources reported by their participants. 

Their suggestion was to utilize more comprehensive guidance on emission sources to improve 

the relevance and completeness of inventories based on WRI & WBCSD’s GHG Protocol.  

Clearly, the focus in the previous studies has been directed on the life cycle of the project 

deliverable (such as a building). As Huemann and Silvius (2017) [211] argue, to appreciate 

sustainable development principles, project management should consider project development 

life cycle in addition to the life cycle of its deliverables. Moreover, there is a lack of decision 

support systems for measuring sustainability-oriented performance in project management 

practices, whereas the existing indicators are mostly focused on products to be developed.  

6.1.2. EVM, an overview 

Traditional EVM, introduced by the U.S. Department of Defense (DoD) primarily to measure 

cost performance and forecast project final cost, has three main quantities as shown in Figure 

46. PV or planned value is budgeted cost of work scheduled, EV or earned value is planned cost 

of the work actually performed, and AC or actual cost is the observed cost of work actually 

performed. PV information can be extracted from the project baseline or contractor bid which 

has been initially submitted and accepted. AC curve indicates the accumulation of all the actual 

costs incurred. EV accounts for the sum of the planned costs of all the completed work.  
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Figure 46: Basic EVM quantities 

EV for in progress work packages can be measured by percent complete (PC) technique 

using the following formula: 

EV =  PV ×  PC         (83) 

BAC or budget at completion is the estimated total cost approved as the baseline budget. At 

each reporting time, EVM uses a cost variance (CV) and cost performance index (CPI) to assess 

the performance of the project and to predict the project final  cost or estimate at completion 

(EAC), as formulated in equations 84-86 [188]: 

CV = EV − AC,        (84) 

CPI =
EV

AC

,         (85) 

EAC = AC +
BAC−EV

CPI
=

BAC

CPI
 .       (86) 

This control framework allows project managers to know the performance of their project 

at any time, and also gives new estimates about the project final cost. Traditional EVM was then 

extended to measure the performance of other attributes (such as time) and to consider real 

world conditions (such as uncertainty). Lipke et al. (2009) developed earned schedule (ES) 

metric to monitor project time performance and forecast its final duration. This method still uses 

cost-based measures as a proxy to measure project schedule performance. Therefore, 
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Khamooshi & Golafshani (2014) introduced their time-based earned duration management 

(EDM) technique in which time and cost dimensions have been decoupled. Dodson et al. (2015) 

introduced a new earned value-based model to monitor project quality, as the third element of 

EVM, and applied it to an agricultural project in Brazil. Using time and cost incentives and 

traditional EVM, Kerkhovea and Vanhoucke (2017) developed a new metric for project control. 

Instead of measuring time and cost performance based on the planned schedule, they evaluated 

incentives’ variation.  

Using the EVM approach, the present study develops a systematic model which provides 

project managers with measures to track the project GHG emissions during the execution phase 

and forecast its final emissions. 

6.2. Project GHG performance measurement model 

The conceptual framework of this study is represented in Figure 47. Briefly, the GHG Calculator 

is employed to measure emissions associated with an activity in a project. A project GHG 

breakdown is proposed and discussed using a case study to account for project emissions. The 

proposed mathematical model for GHG performance measurement is developed based on the 

EVM approach. This allows project managers to estimate total planned emission of the project 

before its commencement, quantify the emitting performance over project life cycle, compare 

the findings with the planned quantities and forecast final emissions. We first present quantities 

and metrics of the project GHG performance model at a micro level, i.e. for a single task and 

then we develop them at a macro level over multiple tasks within a work package. This 

hierarchical model could be used for the whole work breakdown structure of the project. 

   

http://www.sciencedirect.com.ezproxy.lib.ryerson.ca/science/article/pii/S0263786316302940
http://www.sciencedirect.com.ezproxy.lib.ryerson.ca/science/article/pii/S0263786316302940#af0005
http://www.sciencedirect.com.ezproxy.lib.ryerson.ca/science/article/pii/S0263786316302940
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Figure 47: The research framework 

6.2.1.  GHG measures of a single task  

We define the following variables to measure GHG emissions of an activity: 

Planned GHG emissions of scheduled activity i (𝑃𝐺𝑖): is the amount of carbon dioxide 

equivalent emissions estimated for the scheduled work to be performed for activity i. PGi 

quantity is the GHG emission counterpart to PV in the basic EVM model. Similar to the cost 

estimation classifications of AACE’s International Recommended Practice [212], planned GHG 

could be developed using different levels of accuracy. The method presented in this paper is 

corresponding to the most accurate estimate (class I). To ease calculation, one may go with less 

accuracy. The level of accuracy is determined by and is correlated with the level of work 

breakdown structure used in the estimation process. The more layers of breakdown the more 

accuracy one can expect. 
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Actual GHG emissions of scheduled activity i (𝐴𝐺𝑖): is the carbon dioxide equivalent 

emissions actually emitted and reported for work performed until the present time. This quantity 

is equivalent to actual cost in EVM. 

Activity Progress, for activity i (𝐴𝑃𝑖), is the progress of activity i at status time. Percent 

complete (PC) is one of the simplest techniques used for measuring progress if there is a linear 

relationship between activity progress and time. When such relationship does not exist, 

indicators for physical progress, such as material used, work hours, number of design 

documents, etc., can be used to estimate the progress [213]. Progress calculated by above-

mentioned techniques may not reflect the exact percentage of emitted GHGs. Therefore, in order 

to measure project environmental performance, we need to use an emission based method, 

similar to the activity progress index (API) defined by Khamooshi and Golafshani (2014) [190], 

which is duration based. We define 𝐴𝑃𝑖 as follows: 

𝐴𝑃𝑖 =
𝐴𝐺𝑖

𝐴𝐺𝑖+𝐸𝐺𝑇𝐶𝑖
 ,                    (87) 

where EGTCi is the estimated GHG emission to complete scheduled activity i. This progress 

fraction is based on the actual GHG emission at status time and remaining GHG emission until 

the activity is complete. In fact, 𝐴𝑃𝑖 will measure the activity’s GHG progress, rather than its 

physical work or schedule progress. Starting from zero, 𝐴𝑃𝑖 approaches one as the activity is 

becoming complete.  

Earned GHG of scheduled activity i (𝐸𝐺𝑖): is the amount of estimated CO2_eq that was 

expected or planned to be released from work performed. EGi can be regarded as the counterpart 

to EV of an activity in EVM. At first glance, it might seem unreasonable to call this variable 

“earned” GHG, as it not something positive to gain. However, if we can call the ‘budgeted cost 

of work performed’ as “earned value”, we can do the same for budgeted emissions of work 

performed, because both cost and greenhouse gas emissions are undesirable project objectives 

that should be minimized. In fact, project GHG should be considered as another cost element 

associated with any project. We can calculate EGi as follows: 

EGi =  PG i ×  APi .         (88) 

6.2.2.  GHG measures over multiple tasks 

The following variables are defined to measure GHG emissions at project level: 
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Total Planned GHG (TPG): is the sum of PGi for completed or in-progress activities that 

are scheduled to occur up to the status date: 

TPG = ∑ PGii  .        (89) 

Similar to EVM’s BAC (budget at completion), total amount of carbon footprint of a project 

over its execution process, GHG at completion (GAC) is the last point on the TPG curve.  

Total Actual GHG (TAG): is the sum of AGi for completed or in-progress activities up to the 

reporting time: 

TAG = ∑ AGii  .        (90) 

Total Earned GHG (TEG): is the sum of EGi for completed or in-progress activities up to 

the reporting time, i.e. the total amount of GHG expected to be emitted from work performed: 

TEG = ∑ EGii  .        (91) 

6.2.3.  Performance measurements and forecasting final emission 

Like any other control system, we want to measure the difference between the amount of 

emissions which were actually released and the amount of planned or earned emissions (EG). 

A GHG variance (GV) can be defined at both activity and project levels, as shown in Eq. 90 

and 91, respectively. TGV in Eq. 91 stands for the total GHG variance. Negative variances make 

it evident that for the performed work, the project has emitted more GHGs than what was 

expected.  

GV𝑖 = EG𝑖 − AG𝑖 .        (92) 

TGV = TEG − TAG .        (93) 

Using the same quantities, a GHG performance index (GPI) can be defined in activity and 

project levels, as indicated in Eq. 94 and 95: 

GPI𝑖 =
EG𝑖

𝐴𝐺𝑖
 .         (94) 

GPI =
TEG

𝑇𝐴𝐺
 .         (95) 

If the project is emitting as it was planned, the value of GPI would be one. If GPI is less 

than one, the project environmental performance is worse than what it was initially planned, 

and if GPI is greater than one, the project is environmentally performing better than expected.  
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Using GPI as a project GHG performance, we can formulate estimated GHG at completion 

(EGAC), based on the assumption that project GHG performance will be similar to the past: 

EGAC = TAG +
GAC−TEG

GPI
=

GAC

GPI
 .      (96) 

A graphical representation of the proposed GHG performance model is portrayed in Figure 

48.  

 

Figure 48: Project GHG performance measurement model 

6.2.4.  Putting the model to work 

There are two applications for this model, estimation and control. Firstly, it could be used for 

estimation of total GHG for any construction or industrial project using the classic deliverable 

work breakdown structure (DWBS) approach, knowing that the level of detail/accuracy will be 

decided by the design of the DWBS. The second usage is monitoring and controlling the actual 

GHG emission. This data could be used for improving future estimates and accounting of the 

GHG emissions.  

In this section, we demonstrate the applicability of GHG performance measurement model 

using an element within the DWBS of a construction project. The example used is a work 

package of a commercial complex construction project, consisting of five 3.5-story building 

totalling 36,289 square feet. The example refers to concrete foundation work package which 
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consists of five activities: excavation, lean concrete, reinforcement, formwork, and concrete 

placement.  

6.2.4.1. Project GHGs breakdown structure 

In order to manage project GHG emissions, we propose a GHG breakdown structure (GBS) that 

can classify project total emissions into measurable GHG accounts. Using the intersection of 

GBS and work breakdown structure (WBS), project GHG accounts can be identified (see Figure 

49).  

 

Figure 49: Intersection of project GHG breakdown structure (GBS) and work breakdown structure 

(WBS) 

We used the breakdown structure depicted in Figure 50 as a possible GBS of the example 

project. In this decomposition, emissions associated with transportation are considered in 

mobile combustion package. On-site and out-site transportations are captured in non-road and 

on-road parts, respectively.   
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Figure 50: GBS of the example project 

6.2.4.2. Results  

By intersecting proposed GBS and Foundation activities, all GHG elements in the example 

project were identified. Table 24 represents each activity’s GHG accounts including 

construction material, equipment and consumed fuels/energies, and their related category 

according to the GBS. Estimated activity data, emission factors for CO2, CH4 and N2O, and 

CO2_eq of all GHG accounts are then calculated, as shown in Table 25. GWP factors associated 

with CH4 and N2O were also used to calculate the amount of CO2_eq released from each GHG 

account. For example, CO2_eq associated with gasoline combustion in wheeled excavator used 

for excavation activity can be calculated as follows:  

1000 (2.2 + 0.00013 × 28 + 0.000058 × 265) = 2,219.01 kg 
 

Table 24. Determination of GHG accounts of each activity and their related category in the GHG 
breakdown structure 

Activity GHG account Category in GBS 

Excavation Gasoline-Wheeled Excavator Scope 1-Mobile Combustion-NonRoad 

 Gasoline-Truck (2005) * Scope 1-Mobile Combustion-OnRoad 

Lean Concrete Concrete Material 

 Gasoline-Mixer Scope 1-Stationary Combustion 

…   Electricity/Heat/Steam 

Project GHG 

Scope 1 Scope 2 Materials 

Plastics Steel Concrete 

Mobile Combustion Stationary Combustion 

Non-road On-road 
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Reinforcement Steel bar Material 

 Tie wire Material 

 Electricity-Steel bar bending machine Scope 2-Electricity Consumption 

Formwork/Shuttering - - 

Concrete Placement 

and Vibrating 
Concrete Material 

 Gasoline-Pump  Scope 1-Stationary Combustion 

 Gasoline-Mixer Scope 1-Stationary Combustion 

 Electricity-Vibrator Scope 2-Electricity Consumption 

According to the IPCC Fifth Assessment Report [214], GWP values for CH4 and N2O are 

28 and 265, respectively. It is estimated (or planned) that 1000 liters gasoline will be consumed 

to complete the excavation work. Thus, 221.59 kg CO2_eq is planned to be emitted from this 

GHG element or activity data. Table 26 presents planned and actual duration of activities and 

also the value of PGi, APi, AGi, EGi, TPG, TEG, TAG quantities, after six weeks from the start of 

the project.  

Table 25. Activity data, emission factors, and total CO2_eq associated with each GHG account 

Activity GHG account 
Estimated 

Activity Data 
Emission Factor CO2_eq (Kg) 

Excavation 

Gasoline-Wheeled 

Excavator 1000 (liters) 

2.2 (kg CO2/liter) 

0.00013 (kg CH4/liter) 

0.000058 (kg N2O/liter) 

2,219.01 

 

Gasoline-Truck (2005) * 
1550 (liters) 

500 (km)* 

2.2 (kg CO2/liter) 

0.00029 (kg CH4/km) 

0.00003 (kg N2O/km) 

13,609.48 

Lean Concrete** 
Concrete 1791 (m3) 87 (kg CO2_eq / m3) 155,817 

 Gasoline-Mixer 500 (liters) 

2.195 (kg CO2/liter) 

0.000095 (kg CH4/liter) 

0.000018 (kg N2O/liter) 

1,101.215 

 Steel bar 446.5 (ton)  1450 (kg CO2_eq /ton) 647,425 

Reinforcement Tie wire 0.19 (ton) 1450 (kg CO2_eq /ton) 275.5 

 

Electricity-Steel bar 

bending machine 
1000 (kwh) 

0.040 (kg CO2/kwh) 

0.00001 (kg CH4/kwh) 

0.000001 (kg N2O/kwh) 

40.545 

Formwork/Shuttering - - - - 

 Concrete 4480 (m3) 261 (kg CO2_eq / m3) 1,169,280 

Concrete Placement 

and Vibrating 

Gasoline-Pump  500 (liters) 

2.195 (kg CO2/liter) 

0.000095 (kg CH4/liter) 

0.000018 (kg N2O/liter) 

1540.224 

 

Gasoline-Mixer 1000 (liters) 

2.195 (kg CO2/liter) 

0.000095 (kg CH4/liter) 

0.000018 (kg N2O/liter) 

2200.32 

 

Electricity-Vibrator 1200 (kwh) 

0.040 (kg CO2/kwh) 

0.00001 (kg CH4/kwh) 

0.000001 (kg N2O/kwh) 

48.654 
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* For on-road vehicles, the CO2_eq of released emissions is dependent on the amount of combusted fuel, the traveled 

distance, and the age of the vehicle.   

** The proportion of cement in the lean concrete used in this project was 1/3 of that of the structure concrete.   

Based on the planned duration (PD) of the project activities, schedule at completion (SAC) 

or project total duration is 16.9 days. Planned GHG (PG) of each activity is calculated by 

summing up its correspondent GHG elements, evaluated in Table 1. Using these values, the 

amount of GHG at completion (GAC) is 1,993,556 kg. Actual percentage of completion (AP) 

of each activity and its related actual duration (AD) are presented in fourth and fifth columns. 

Activities earned GHGs (EG) for the amount of completed work are calculated using 

formulation of Eq. 86. Therefore, total earned GHG (TEG) is calculated as 269,907 kg. Actual 

GHGs are calculated based on the observed activity data and their emission factors. Using these 

values, total actual GHG (TAG) released by the time from the completed work is 323,530 kg. 

Table 26. Quantities of GHG control model for the case study 

Activities 
PD 

(day) 

PG 

(kg) 

AD 

(day) 

AP 

(%) 

EG 

(kg) 

AG 

(kg) 

Excavation 21 15,828 24 100 15,828 19,230 

Lean Concrete 4 156,918 6 100 156,918 177,281 

Reinforcement 51 647,741 12 15 97,161 127,019 

Formwork/Shuttering 35 0 - 0 0 - 

Concrete Placement and 

Vibrating  
7 1,173,069 - 0 0 - 

𝐒𝐀𝐂 = 𝟏𝟔. 𝟗 day 

𝐆𝐀𝐂 =1,993,556 Kg 

𝐓𝐄𝐆 =269,907 kg 

𝐓𝐀𝐆 =323,530 kg 

Based on Eq. 91 and 93, the total GHG variance and performance index of the project at the 

reporting time are calculated as follows: 

TGV = TEG − TAG = 269,907 − 323,530 = −53,623 . 

GPI =
TEG

𝑇𝐴𝐺
=

269,907

323,530
= 0.83 . 

This is showing a GHG overrun. Using the GPI and Eq. 94, we can now calculate the project 

final GHG or estimated GHG at completion:  
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EGAC = TAG +
GAC−TEG

GPI
=

GAC

GPI
=

1,993,556 

0.83
= 2,401,874.698 kg CO2_eq,  

which is almost 408 tons greater than the initial estimate (i.e. GAC). 

With the global warming point of view, this amount of emission overrun is quite significant 

in mega projects, as it equals to 20 percent of the initial estimated emissions. Considering the 

carbon price in Ontario’s cap and trade program, the forecasted GHG overrun in this particular 

work package is economically equal to a C$ 7,349 cost overrun.  

6.3. Uncertainty Analysis of Project Emissions 

As a key project management practice, quantitative risk analysis aims to capture the project 

uncertainty in terms of its cost or schedule. Similar to project schedule and cost, activities’ 

carbon emissions are uncertain, and if not considered, the results of project emissions estimation 

may not be reliable. We propose a probabilistic model to quantify the uncertainty of project 

GHG emissions using Bayesian networks (BNs) and simulation techniques. The model provides 

a quantitative risk analysis to estimate the total emissions of the project, and a monitoring 

mechanism to predict the final emissions based on the completed activates.  

Figure 51 illustrates different aspects of the modelling process. The basic inputs to estimate 

a project GHG emissions are the work breakdown structure (WBS) and GHG breakdown 

structure (GBS). These tools allow us to identify the GHG elements or activity data associated 

with each activity of the project. Examples of activity data are the amount of material (such as 

concrete and steel) that would be used in an activity, the amount of fuel or electricity that would 

be combusted or consumed, the distance that the equipment travel to complete the activity, etc.  

Second step is to identify risks and other sources of uncertainty that act as a driving force to 

affect the volume of the above activity data. The uncertainty sources include risk events, such 

as test failures that would increase the amount of material in cases like concrete test. Test 

failures may also duplicate other activity data, i.e. electricity usage or transportation. For such 

risks, we assign a Bernoulli variable with the parameter p. Starting with the prior density for 

this parameter, f(p) (corresponding to the probability P(Risk)=Yes), a posterior density, f(p|x), 

will be obtained using evidence from the number of failures (x) in each reporting time: 

𝑓(𝑝|𝑥) =
𝑃(𝑥|𝑝)𝑓(𝑝)𝑑𝑝

𝑃(𝑥)
=

𝑃(𝑥|𝑝)𝑓(𝑝)𝑑𝑝

∫ 𝑃(𝑥|𝑝)𝑓(𝑝)𝑑𝑝
     (97) 
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The number of failures follows a Binomial variable: x ∼Bin(n, p), where n is the number of 

total tests performed in the related period. Therefore, it is possible to use actual evidences from 

the implementation phase of the project to revise the risks’ probability of occurrence.  

The second group of uncertainty sources are qualitative, complex variables, which could 

cause an increase/decrease in the volume of an activity data [119]. For example, project site’s 

team quality and the maturity of the project management system are common causes that can 

impact the performance of the project. A ranked variable (with three states “Low”, “Medium”, 

and “High”) is assigned to this group of effectual variables. 

 

Figure 51: Components of the proposed model 

Next step is to generate a probabilistic distribution for each activity data, to capture its 

uncertainty. The common practice in project quantitative risk analysis is to use Triangular, Beta, 

Lognormal distributions to calculate project cost and schedule risk analysis. Again, because of 

the simplicity of Triangular distribution, this distribution is used in this study to model the 

uncertainty of project activities data. To generate the distributions, the procedure is to elicit 

upper, lower, and most-likely values of each activity data, conditional on the states of its 
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relevant risks or driving forces, and fit a Triangular distribution to these three values, using the 

upper and lower values to bound 90% of the probability to counteract known biases in 

elicitation. 

A result variable is defined to integrate all the generated distributions to simulate the project 

total emission. This variable gives the project manager information about the level of emissions 

risk and the chance of failing to meet the targeted GHG emissions. After the project starts and 

activities are completed, the actual volume of activity data is used in the model to first infer the 

real level of risks and common factors and predict the final GHG emissions. In other words, the 

model uses the current performance of the project to forecast the final performance. This 

forecast is important, especially in the early stages of a project, as the managers would be able 

to take control actions to keep the project on track.   

6.3.1. Numerical example 

We apply the proposed model to the same work package in the previous case study. We exclude 

the formwork activity from the analysis, as no emission is released from performing this 

activity. We consider the risk of ‘Test failures’ and the common factor ‘People experience’ that 

can affect the identified GHG items. Unlike the variable “People experience’ that affects all 

activities, the risk ‘Test failure’ only affects lean concrete and concrete placement activities. 

Hypothetical parameters for Triangular distribution of activity data of GHG items conditional 

on these variables are converted to a CO2_eq value using the emission factors and GWP factors, 

as shown in Table 27.  
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Table 27. The parameters for Triangular distribution of CO2_eq of values associated with GHG 
items, conditional on risks and common factors  

G
aso

lin
e-M

ix
er 

G
aso

lin
e-P

u
m

p
  

C
o
n

crete 

E
lectricity

-S
teel b

ar b
en

d
in

g
  

S
teel b

ar 

G
aso

lin
e-M

ix
er 

C
o
n

crete
 

G
aso

lin
e-T

ru
ck

 (2
0
0

5
)

  

G
aso

lin
e-W

h
eeled

 E
x
cav

ato
r

 

P
e
o

p
le

 E
x

p
e
rie

n
c
e 

T
e
st F

a
ilu

re 

(2
3
5
6
, 2

4
1
2
, 2

5
8
8
) 

(1
6
2
3
, 1

7
7
6
, 1

8
4
5
) 

(1
1

9
2

3
2

4
, 1

2
6

9
2

5
5

, 1
3

3
3
4

3
1

) 

  (1
1
9
6
, 1

3
0
2
, 1

3
7
9
) 

(1
6
4
5
4
1
, 1

7
5
8
6
5
, 1

8
2
7
2
2
) 

  L
o

w
 

T
ru

e 

(2
2
3
2
, 2

3
4
1
, 2

4
0
6
) 

(1
5
2
3
, 1

6
4
0
, 1

7
1
1
) 

(1
1

2
7

7
5

8
, 1

2
1

2
2

4
0

, 1
3

5
5
4

3
1

) 

  (1
1
1
4
, 1

2
0
5
, 1

3
5
7
) 

(1
5
6
3
2
7
, 1

6
9
8
1
7
, 1

8
4
7
3
4
) 

  M
ed

iu
m

 

(2
1
2
7
, 2

2
1
0
, 2

3
3
8
) 

(1
4
0
2
, 1

5
4
0
, 1

6
6
2
) 

(1
0

1
2

3
5

8
, 1

1
6

9
2

8
0

, 1
2

3
3
4

3
1

) 

  (1
0

5
6
, 1

1
4
5
, 1

2
3
3
) 

(1
4
4
2
8
6
, 1

5
5
8
1
7
, 1

6
2
7
3
3
) 

  H
ig

h
 

(2
2
9
4
, 2

3
6
5
, 2

4
7
8
) 

(1
5
6
6
, 1

6
0
9
, 1

7
7
6
) 

(1
2

3
4

3
2

9
, 1

3
0

3
4

7
9

, 1
3

9
3
5

6
7

) 

(4
2
, 4

5
, 4

9
) 

(6
4
2
8
1
2
, 6

5
5
4
2
5
, 6

8
7

2
3
4
) 

(1
0

8
7
, 1

2
1
1
, 1

3
6
3
) 

(1
4

9
6
7
4
, 1

5
8
7
6
9
, 1

6
9

0
7
5
) 

(1
3
7
5
9
, 1

4
8
0
9
, 1

6
3
7
2
) 

 (2
1
4
5
, 2

4
6
5
, 2

7
9
3
) 

L
o

w
 

F
alse 

(2
1
4
4
, 2

2
0
0
, 2

3
9
8
) 

(1
4

3
4
, 1

5
4
0
, 1

6
4
4
) 

(1
0

1
2

3
5

8
, 1

1
6

9
2

8
0

, 1
2

3
3
4

3
1

) 

(3
8
, 4

0
, 4

5
) 

(6
3
0
8
9
5
, 6

4
7
4
2
5
, 6

6
7
2
1
1
) 

(1
0
2
4
, 1

1
0
1
, 1

2
4
3
) 

(1
4
4
2
8
6
, 1

5
5
8
1
7
, 1

6
2
7
3
3
) 

(1
2
1
5
9
, 1

3
6
0
9
, 1

5
6
7
2
) 

 (2
0
5
0
, 2

2
1
9
, 2

6
8
7
) 

M
ed

iu
m

 

(2
0
3
2
, 2

1
4
5
, 2

2
7
8
) 

(1
3
7
7
, 1

4
0
8
, 1

5
3
3
) 

(9
5
2

1
8

5
, 1

0
7

5
2
4

0
, 1

1
2

6
4
0

1
) 

(3
5
, 3

8
, 4

4
) 

(6
2
2
8
9
0
, 6

3
3
4
2
5
, 

6
5
1
5
8
4
) 

(9
5
1
, 1

0
2
5
, 1

1
2
4
) 

(1
3
4
2
0
1
, 1

4
5
8
2
4
, 

1
5
0
7
5
4
) 

(1
1
7
5
9
, 1

2
9
0
9
, 1

4
3
7
2
) 

 (1
9
9
0
, 2

0
1
4
, 2

4
1
2
) 

H
ig

h
 

 



131 

 

A uniform distribution was assigned as the prior probability of occurrence for the test failure 

risk: 

P(Test failure = True) = p~U(0.1,0.3)      

Prior probabilities for the variable people experience were estimated as follows: 

{

P(People experience = Low) = 0.18

P(People experience = Medium) = 0.43

P(People experience = High) = 0.39

 

Using the above information, the BN model was constructed and run, as illustrated in Figure 

52. The node X is the Binomial distribution associated with the expected number of test failures 

in 10 tests which is planned be conducted on the activities lean concrete and concrete placement. 

The model has calculated the statistical distribution of the total carbon emissions of the work 

package in the node ‘GHG Emissions’. As indicated, possible values of total emission range 

from below 1.7 MtCO2_eq to around 2.3 MtCO2_eq. The most probable amount of GHG 

emissions (i.e. mean value) is 1.971 MtCO2_eq.  
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Figure 52: Baseline total GHG emissions of the example project (in kg CO2_eq) 

One could use the cumulative distribution function (CDF) of the result node, to calculate 

the probability of meeting a targeted emission limit or so-called cap on the work package. If, 

for example, this work package has an emission cap of 2.00 MtCO2_eq, the probability of 

meeting this emission limit is only 54% (Figure 53). 

 

Figure 53: Cumulative distribution of total emissions 

Now, we can present the inference-based approach to monitoring project performance. 

Suppose that the excavation and lean concrete activities are completed, with the following actual 

GHG emissions, and that four tests have been failed in lean concrete activity: 

Excavation:  Gasoline-Wheeled Excavator    2915 kg CO2_eq 

   Gasoline-Truck    13000  kg CO2_eq 

Lean concrete: Concrete     168000 kg CO2_eq  

   Gasoline-Mixer    1302 kg CO2_eq 

Having entered these observations into the BN model, the model first applies a backward 

propagation to infer the real level of the project risks/common factors (and in fact the real level 

of uncertainty sources). Thereby, it runs a forward propagation to update the estimation of the 
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remaining activities, which are not started yet. Hence, the final emissions of the project will be 

recalculated, which is provided in Figure 54. As indicated, the range of the distribution gets 

smaller, showing a decrease in uncertainty of estimation, and the most likely final GHG 

emission is now predicted to be 2.07 Mt CO2_eq. This scenario will increase the probability of 

test failure to 0.22 and update our belief about the actual level of people experience, which 

appears to be low. Secondly, it will predict the emission of the remaining activities. This 

approach can be used, instead of heat maps, to identify a project’s high-level risks. 

 

  Baseline GHG     GHG at completion 

Figure 54: GHG emissions at completion 

6.4. Discussion 

As explained earlier, we used the price of carbon in an ETS to calculate the monetary value of 

the project GHG overrun in the deterministic GHG control model. This monetary value, 

however, may not reflect the exact impact of environmental burdens associated with the project 

GHG overrun, which is 408 tons of global warming potential (or carbon dioxide equivalent). In 
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fact we cannot assign a dollar value to emission overruns and simply sum them, as the true cost 

of these GHG emissions is not yet understood [215]. We discussed the environmental 

performance of the project from the global warming potential perspective (with kg CO2 eq unit), 

as the most common measure in environmental impact assessment and applied the proposed 

model to control this type of impact. The same calculation can be performed by considering 

other impact assessment categories, i.e. Fossil Fuel Consumption (MJ), Acidification Potential 

(moles of H+ eq), Human Health-Particulate (kg PM10 eq), Human Health-Cancer (kg 

CTUcancer), Human Health-noncancer (kg CTUnoncancer), Eutrophication Potential (kg N 

eq), Ozone Depletion Potential (kg CFC-11 eq), Smog Potential (kg O3 eq), Eco toxicity (kg 

CTUe), Fresh water use (kg), as emphasized by EPA [151]. By replicating the model using such 

impact criteria, the GHG overrun may appear to be even more critical. Take, for example, 

concrete which is a major construction material and emits a large amount of substances with 

environmental impacts not only on global warming but also on acidification and eutrophication. 

Acidification and eutrophication are the main causes of air pollution, forest destruction, red tide 

phenomena, and deterioration of reinforced concrete structures [216].  

While reducing GHG emission may not be pragmatic in the middle of a project, one can use 

the information to change the strategy for the future projects. This can be accomplished by 

several actions. According to Huisingh et al. (2015) [217] and Zhang et al. (2015) [218], the 

most effective action to reduce GHG emissions in constructions sector is to use low carbon 

materials and change the construction method. In fact, the benefits from implementing the 

proposed model include increased visibility and control to not necessarily promptly but 

proactively react to impacts overrun to meet the project environmental objective. The approach 

is more relevant to projectized organizations where multi-projects are run concurrently. In other 

words, the proposed approach can be applied more effectively by project-based companies such 

as contractors, with the objective of minimizing the environmental burden of their portfolio of 

projects, where organizational project management (OPM) plays a key role to harmonize the 

overall performance of an organizations’ projects, resulting from performance of relatively 

disconnected projects/subcontractors/plans. Also, the obligations to follow international 

agreements to fight climate change, persuade and sometimes require investors as well as 

national governments to progressively reduce the negative impact of their portfolios on the 

environment, keeping financial returns. It is now well accepted that sustainable and low carbon 
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businesses would benefit all the stakeholders. Hence when it comes to management practices, 

keeping projects on the right track, regarding their planned environmental impacts, is practically 

the role of project management as one expects the project managers to support and promote a 

low carbon economy.  

Moreover, in public and especially mega projects, the societies, clients, governments and 

regulators could require formulation of strategies which evaluates the level of confidence in the 

contractor’s capacity to keep the environmental impacts of project execution down. This could 

be achieved by using analytical tools developed in this paper. To this end, the introduced process 

of planning and controlling project GHGs could be one of the project management processes to 

monitor this capacity.  

6.5. Conclusion 

In this chapter, we have demonstrated how the GHG emissions from a work package and by the 

same token for the entirety of a project could be estimated. The calculated GHG allocation to 

each work package and thereby for the whole project could be regarded as a baseline GHG 

emissions plan or budget. Using the baseline GHG emissions plan, the performance of any 

project and specifically construction projects from GHG emissions point of view could be 

evaluated and costed to the project. Also, we presented a method for collecting all the required 

information for calculation of project GHG performance index and other related attributes such 

as EGAC.  While monitoring and control of GHG emissions for small to medium size projects 

could be futuristic at present, applying the proposed GHG monitoring model in mega projects 

is well justified, as the cost of GHG emission could be a sizable share of the project budget. Not 

only monitoring and evaluation of GHG emission could lead to development of a GHG 

emissions estimation data base, it could also serve as an energy estimation platform. The size, 

complexity, duration and value of a project could dictate the duration of monitoring and control 

iterations cycles. For some projects, we may only develop quarterly reports. As such the ultimate 

objective for now, may not even be monetary values but to address climate change issue which 

relates to one of the three sustainability dimensions, i.e. environment, economic and society 

[219].  

In this study, we also proposed a risk analysis model using Bayesian networks (BNs) for 

assessment of project greenhouse gas (GHG) emissions as a new objective of projects, in 
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addition to the traditional objectives of schedule and cost. The model accounts for the risk events 

or qualitative driving forces that impact a project objective (in this study GHG emissions) and 

provides a full probabilistic estimation of the possible impacts of the project. This model can be 

used in the implementation phase as well, to monitor the environmental performance of the 

project and possibly take an action to return the project on track. It uses information on 

completed activities and also the number of observed risks to date, to modify the previous 

estimations on uncertainty sources, and update the final emissions of the project.  
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7. Conclusions and Future Research 

7.1. Main Results and Contributions 

In this dissertation, a number of management, analytical models, with the aim of improving 

sustainable asset and project management disciplines, were proposed. We have tried to 

incorporate the concept of sustainability into some of the traditional asset/project management 

practices, with a focus on environmental dimension of this concept. The dimension of society, 

therefore, is not considered in the present research. Among the environmental impact categories, 

the targeted impact of this research was limited to the category of global warming potential and 

the issue of greenhouse gas (GHG) emissions. So, we would rather call the topic of this 

dissertation as “green asset/project management”.  

The presented models and proposed approaches of this research contributed to the literature 

in two main lines: 

1) Dealing with assets’ and projects’ carbon emissions in an emission trading scheme 

(ETS); and 

2) Improving conventional, financial-based techniques in asset/project planning and 

control. 

Starting with the first line, the main contributions are as follows: 

1-a) Incorporating asset’s emissions in fleet optimization-Chapter 2; we developed a 

mathematical fleet optimization model, which factors in the GHG emissions associated with 

different stages of an asset’s lifecycle- that is manufacturing, shipping, operation and 

maintenance (O&M), storage, and decommissioning.  

1-b) Forecasting carbon price in an ETS-Chapter 5; we specifically studied the Western 

Climate Initiative (WCI) market, with the jurisdictions Quebec and California, and developed a 

probabilistic model using Bayesian networks (BNs) to predict the price of carbon for the next 

ten years. We used the price forecasts to put a dollar value on the emission related parameters 

of the proposed models. The driving forces of carbon price were identified by conducting a 

literature review on the existing ETSs. The proposed model employs projections of the driving 

forces and their historical records to capture the uncertainty of these variables and their causal 

relationship with the carbon price.   
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1-c) The effect of equipment health on its O&M emissions-Chapter 4; we proposed a 

Bayesian inference model to estimate the variability of equipment carbon emissions based on 

its reliability indicator, i.e. failure time/rate. The assumption behind this model is that there is a 

positive causation from equipment health to the amount of GHG emissions it releases during 

the operation phase.   

1-d) Repair/Replacement (R/R) decision model with economic and GHG emission 

considerations-Chapter 4; we formulated a new model to decide whether to repair a failed 

equipment or replace it with a bran new equipment in the market. We also built an automatic 

tool (the R/R Calculator) that works with the mere economic model as well as the combined 

model with both economic and emission considerations.  

1-e) Project GHG estimation and control- Chapter 6; two models were proposed to plan and 

monitor project carbon emissions during its implementation process. First, we used the 

mechanism of earned value management (EVM), a common technique in project cost 

performance measurement, to plan the project emissions and track them in different reporting 

times during the execution phase. Second, we proposed a probabilistic method to estimate the 

uncertainty of project total emissions.  

1-f) Emission footprinting; As a side contribution and a means of support for the above parts 

of the research, we conducted a comprehensive review to collect the latest emission factors in 

both Scope 1 (direct) and Scope 2 (indirect) categories of GHGs as well as emission factors of 

manufactured material, reported by well-known environmental organizations, such as 

Environmental Protection Agency (EPA), International Energy Agency (IEA), World Bank, 

Canada Environment, and different governments’ energy related departments (Appendix A). 

Using the collected database, we developed a GHG calculator to calculate the direct and indirect 

carbon footprint of an activity, using Visual Basic for Applications (VBA) of Microsoft Excel 

(Appendix B). This calculator allows the users to enter detailed evidences about the activity 

data (such as location, type of vehicle, distance travelled, fuel, material, amount of 

electricity/heat/fuel, etc.), and provides the total carbon emissions and its cost in the 

corresponding carbon market, if in place.  

Other contributions, covering technical and economic aspects of the proposed models are as 

follows: 
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2-a) Fleet optimization with the possibility of storing equipment so that they would not age 

as an in-service equipment- Chapter 2; We designed a fleet optimization mathematical model 

that allows the assets to be kept in storage over any time period, in which such assets do not 

deteriorate as in-use assets do. The mathematical model optimizes the number of new, in-use, 

in-storage, and salvaged assets in each time period, so that the total economic costs and 

environmental impacts are minimized. To make a more realistic difference between assets, we 

consider asset capacity as well as its environmental impact. Therefore, the assets, which are 

purchased in the future, are considered more technologically improved, so they have a higher 

capacity and are more energy-efficient. 

2-b) Uncertainty analysis of fleet availability, with respect to the effect of complex, 

organizational factors that affect equipment reliability, maintainability, or both simultaneously- 

Chapter 3; We have modeled variables that have dual effect on the two availability wings, i.e. 

failure rate and repair rate.  

2-c) Incorporating extremely rare or previously unobserved events into fleet availability 

assessment- Chapter 3; We have combined a method to analyze the effect of rare risks (also 

known as emerging risks, with a low probability of occurrence and extreme impact) with our 

base Bayesian availability analysis model.  

2-d) Maintenance quality and risks events in R/R decision analysis- Chapter 4; We 

developed a probabilistic method for the repair/replacement problem, which factors in 

preventive maintenance (PM) quality and repair perfection. A probabilistic reasoning 

mechanism is designed to formulate the effect of PM quality (and/or any other driving force) 

on equipment health, and infer the effectiveness of maintenance. How perfect or imperfect the 

repair work is, is also modeled to more accurately predict the failure rate of the existing 

equipment during its remaining useful life. We, using Bayesian networks. Then, we also 

mapped a deterministic R/R model into a fully probabilistic model and included supplementary 

variables  to model the effect of common causal factors and risk events. Equipped with expert 

knowledge and data-driven inference, the proposed model provides asset managers with a smart, 

explanatory mechanism that not only makes more accurate R/R decisions, through capturing 

more real world uncertainties and causal factors, but also identifies risk and opportunities that 

should be focused on to further reduce lifecycle economic and environmental costs.  
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2-e) Forecasting using BNs- Chapter 5; A new forecasting approach is introduced using the 

learning feature of BNs. We have formulated variables to capture the essence of a driving factor 

in terms of its depreciating or escalating impact on the targeted response variable (could be a 

trading price such as carbon price or stock price, or the price of products and services). For each 

driving force, we have defined a theoretical impact scale to determine the probable nature of 

causation- whether it is depreciating or escalating, and a depreciating/escalating impact factor 

to capture the significance of this causation. Regardless of how big or small the value of the 

driving force (also known as predictor or independent variable) is, multiple regression models 

assign a fixed coefficient to each driving factor. In our model, however, we have formulated 

probabilistic thresholds that decide whether or not a possible value of a driving force can hold 

a coefficient (what we called impact factor). The probability of possible impact scales and the 

distribution of their corresponding impact factor was extracted from the historical records of the 

response variable and its driving forces. The model also considers the causal relationship 

between the driving forces. Hence, it propagates information from a driving force to the others. 

For this reason, we did not call the driving forces as “independent” variables as in the real world 

they may affect each other. Furthermore, new observations on the response and predictor 

variables can be used to calculate posterior, and hence more accurate, distributions of the model 

parameters including the impact scales, the thresholds, and the impact factors.  

2-f) Risk-based project performance measurement- Chapter 6; In general, the proposed 

approach suggests using project risks and uncertainty sources to monitor project performance. 

The concept model is: poor performance in project objectives (cost, GHG, time, quality, etc.) 

signifies high level of risk and knowing the real level of project risks updates our knowledge on 

how the remaining work will perform10. Unlike our EVM-based GHG model and the previous 

models introduced in the literature to measure project cost and schedule performance (such as 

EVM, ES, EDM, etc.), the risk-based model reflects the performance non-linearity and 

management interventions. It infers the actual level of uncertainty sources and thereby forecasts 

the project final performance. This mechanism also sheds light on the major uncertainties that 

should be focused on in order to return the project on track if we have observed a variance at 

the status time.  

                                                 
10 Which implies“risk management is project management”, the idea first heard from Lister & Carr (1997), 
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The main conclusions derived from the case studies of the present research are summarized 

as follows: 

• Asset management decisions and strategies are not influenced by a price that a 

market like the WCI puts on carbon pollutions.  

• The proposed BN approach to availability analysis has been found more accurate in 

forecasting the availability level of a fleet of assets. It provides an explanatory model 

for analyzing complex management causalities and rare risks. 

• The expected price of carbon in the WCI market, that is C$18.44 per ton of CO2_eq, 

cannot make a remarkable difference in the total cost of equipment and therefore the 

repair/replacement decision. That is to say, it is unlikely that accounting for GHG 

emissions based on this carbon price would change the decision so that it can help 

mitigating carbon emissions. This would become even more discouraging if we 

exclude GHG emissions for which, the equipment owner does not yet pay in a carbon 

market (e.g. emissions from manufacturing new equipment or outsourced 

decommissioning projects). Higher prices, small probabilities, might actually 

change the decision and consequently reduce the total emissions. 

• The results of running the carbon price forecasting model showed that carbon prices 

over the future decade ranges between approximately C$14 and C$26, with the most 

likely prices around C$18. There is a 90 percent chance of the price being greater 

than C$16.19 or lower than C$21.17. 

• Project GHG models has been found to applicable for evaluating the performance of 

any project from GHG emissions point of view. It provides a method for collecting 

all the required information for calculation of project GHG performance index and 

other related attributes such as EGAC.  Although monitoring and control of GHG 

emissions for small to medium size projects could be futuristic at present, applying 

the proposed model to mega projects is well justified, as the cost of GHG emission 

could be a sizable share of the project budget.  

7.2. Weaknesses and Future Work 

There are weaknesses in the proposed models of this study, especially with regard to their 

applications from a practitioner’s point of view. To begin with, because of the highly uncertain 
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world of business and technology, relying on our optimization model which decides the 

combination of a fleet’s assets in a decade seems far fetched. There are definitely known and 

unknown uncertainties that can impact the objective function of this model. Second, the impact 

of maintenance activities including preventative and corrective maintenance and also the 

management intervention are not considered in this model. Improving the quality of such 

interventions increases the cost of assets ownership (O&M), but it may result in a greater benefit 

in terms of capacity, GHG emissions, etc.  

As a future extension of this study, the uncertainty of parameters of the optimization model 

should be factored in, by mapping the model into a stochastic model. Further, parameters and 

decision variables should be included to consider the quality of preventive maintenance and the 

type of repairs-perfect, imperfect, or minimal. Hence, the more advanced model can decide on 

the optimum strategy for maintenance or repair type. Moreover, The replacement model could 

be remodeled into a multi objective function problem with separate objectives to minimize cost, 

carbon emissions, and other impact assessment categories stressed by the Environmental 

Protection Agency (EPA), such as Acidification Potential (moles of H+ eq), Ozone Depletion 

Potential (kg CFC-11 eq), Fresh water use (kg), etc. [220]. 

Regarding the fleet availability analysis model, the focus was primarily on external factors 

affecting reliability/maintainability of physical assets and it rather neglects the internal complex 

characteristics and configuration. We believe the model can be extended, mainly for improving 

its reliability side, to capture the risk of internal damages caused by components degradation, 

as well as the configuration of equipment components and common cause failures (CCFs), as 

investigated by O’Connor and Mosleh [221].  

We integrated the model form Constantinou et al. [86] into our BN model to consider the 

effect of extremely rare or unobserved risks. The assumption behind their model is that the 

statistical outcomes of such rare events are already reflected in the historical data (or likewise 

in the expert judgments). This method, however, does not include extreme hidden, unknown 

risks which are surprising relative to the present knowledge and therefore have not been taken 

into consideration in data or expert belief. Such events were first introduced as black swans by 

Taleb [222] in his book: “The Black Swan- The Impact of the Highly Improbable”. A black 

swan has three characteristics: 1) It is an outlier because it lies outside of the realm of regular 
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expectations and nothing in the past can convincingly point to its possibility; 2) It carries an 

extreme impact; and 3) It is retrospectively predictable because despite its outlier status, human 

nature makes us concoct explanations for its occurrence after the fact, making it explainable and 

predictable.  

When risks are rare or novel (like external risks), commonly used methods of risk 

assessment, such as risk register or data-driven approaches are inadequate because there is 

insufficient relevant data [139]. Although extreme events are not very frequent but these days 

they are actually more common than what people imagine, thanks to the climate change. A few 

studies show that these risks are on the rise [223–225]. By reviewing catastrophic events 

throughout the world during the recent years, even years ago Pells (2011) alarms that these 

events, especially natural disasters, are increasing: “If your program spans 2-3 years anywhere 

in the world, in my opinion, you will have one or more weather-related emergency to deal with” 

[224].  

The proposed model can be extended to incorporate black swans. Our idea is to use a Noisy-

OR operator with a leak variable that allows to include the probability of hidden factors. The 

Noisy-OR operator (gate) is a member of the family of models referred to as independence of 

causal influences (ICI) [226]. The word ‘noisy’ reflects the fact that the interaction among the 

causes and the effect is not deterministic. Noisy-OR can be thought as a probabilistic extension 

of the deterministic binary OR. Mapping this operator into a BN will then allow for learning the 

leak parameter as new observations on the risk or its indicators are available.  

The BN model developed for making R/R decision involves many nodes with continuous 

probabilistic distributions. The main shortcoming of this model is that in real size problems with 

several more common causes, the BN becomes too complex in terms of their speed of inference 

and running the model. This problem can be addressed using object oriented Bayesian networks 

(OOBNs) approach [227], by which complex models with many more variables can be 

constructed and run using inter-related objects. This not only facilitates the process of building 

the model but also can speed up the inference process [228].  

Regarding the carbon price prediction model (Chapter 5), still the uncertainty of carbon 

price in the WCI market may have not been fully captured in our model. There is a possibility 
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to extend the model for taking into account extremely rare or emerging events, such as financial 

crises, major green technological advances, natural disasters, etc. Moreover, political risks, such 

as new Government of Ontario which resulted in the cancellation of the linkage with The WCI 

market, should also be factored in. 

We acknowledge the challenge of implementing the GHG performance model and 

collecting its required data. For instance, to calculate TAG at a given time, any consumed 

material, fuel or energy, and any vehicle movement on-site or off-site must be recorded. The 

same effort is needed to estimate total planned GHG (TPG), estimated GHG to complete 

(EGTC), etc. However, integrating the proposed mathematical model of this study and the GHG 

Calculator and the algorithm behind it to a project planning tool, will go a long way by entering 

the amount of work performed and resources spent, to automatically calculates the metrics for 

GHG related quantities. Furthermore, the EVM-based and BN-based models of project GHG 

can be extended to an integrated cost-schedule-GHG model to monitor and control the three 

objectives at the same time. Hence, the interrelationships among activities cost, durations, and 

emissions would be considered.  

As mentioned earlier, we only included Scope 1 and Scope 2 categories of GHG emissions. As 

a future work, Scope 3 (or corporate value chain) emissions can be incorporated into the models 

presented in Chapters 2,4, and 6. Scope 3 emissions often represent a company’s largest GHG 

impacts. According to road tester Kraft Foods, Scope 3 emissions comprise more than %90 of 

their total GHGs. Therefore, a full consideration of Scope 1, 2 and 3 emissions enable 

organizations to account for their full value chain GHGs and to focus their efforts on the biggest 

emission reduction opportunities. This would also allow companies to engage their value chain 

partners including suppliers and contractors in GHG management.  

Our GHG Calculator (Appendix A) can be improved by including the following items: 

• Mix of energy: we decided to consider the average emission factor of electricity 

generation in a region. If the information about the mix of energy in the purchased 

electricity is available, a more accurate estimation of the GHG emissions can be 

calculated.  

• Hydrofluorocarbon (HFC) and perfluorocarbon (PFC) emissions: we only included 

CO2, N2O, and CH4 gases. HFC and PFC emissions resulting from manufacturing, 
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servicing, and disposal of refrigeration and air-conditioning equipment can be added 

specifically for this type of industrial units.  

• Mode of transport (Road, Rail, etc.): although we have included almost every common 

type of vehicle in calculating emissions from mobile sources, they can be classified 

based on the mode of transport.  

• Corporate Value Chain (Scope 3) emissions.  

The next step towards a full sustainable asset/project management is to include other 

environmental objectives and also the society pillar of sustainability. Environmental objectives 

of sustainability merge primary objectives (e.g. environmental quality), secondary objectives 

(e.g. using less non-renewable resource), and objectives in terms of solutions (e.g. using public 

transport rather than personal vehicles). Due to the complexity of social factors, less study has 

been conducted on assessing this dimension of sustainability in the asset management literature. 

Social dimension of sustainability encompasses criteria such as social equity, community 

resilience, livability, health equity, community development, and social responsibility. To this 

aim, a sustainability breakdown structure (SBS) should be extracted from the standards and 

guidelines, including ISO 14000 (Environmental Management), ISO 37101 (Sustainable 

development in communities), ISO 26000 (Guidance on social responsibility), and the newly 

revised indicators for sustainable development of the UN Commission on Sustainable 

Development (CSD), containing 50 core indicators. Multi objective functions should be then 

considered in asset and project management models. Asset and project management success in 

the revised models goes beyond the mere economic considerations and requires benefit 

realization of all three sustainability dimensions and the requirements for circular economy 

(CE)- a new system of thinking for improving the efficiency of natural resources through 

reducing waste and pollution, keeping products and materials in use, and regenerating natural 

systems. 
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Appendices 

Appendix A. Global warming potentials and Scope 1 and Scope 2 emission factors  

Appendix A-1. Global warming potentials (GWPs) by IPCC Fifth Assessment Report 

[214]  

Industrial designation or common 

name 
Chemical formula 

Global Warming 

Potential (100 years) 

CO2 CO2 1 

Methane CH4 28 

Nitrous oxide N2O 265 

Substances controlled by the Montreal Protocol 

CFC-11 CCl3F 4660 

CFC-12 CCl2F2 10200 

CFC-13 CClF3 13900 

CFC-113 CCl2FCClF2 5820 

CFC-114 CClF2CClF2 8590 

CFC-115 CClF2CF3 7670 

Halon-1301 CBrF3  6290 

Halon-1211 CBrClF2 1750 

Halon-2402 CBrF2CBrF2 1470 

Carbon tetrachloride CCl4 1730 

Methyl bromide CH3Br 2 

Methyl Chloroform CH3CCl3 160 

HCFC-21 CHCl2F  148 

HCFC-22 CHCLF2  1760 

HCFC-123 CHCl2CF3 79 

HCFC-124 CHClFCF3  527 

HCFC-141b CH3CCl2F 782 

HCFC-142b CH3CClF2 1980 

HCFC-225ca CHCl2CF2CF3 127 

HCFC-225cb CHClFCF2CClF2 525 

Hydroflurocarbons (HFCs) 

HFC-23 CHF3 12400 

HFC-32 CH2F2 677 

HFC-41 CH3F2 116 

HFC-125 CHF2CF3 3170 

HFC-134 CHF2CHF2 1120 

HFC-134a CH2FCF3 1300 

HFC-143 CH2FCHF2 328 

HFC-143a CH3CF3 4800 

HFC-152 CH2FCH2F 16 

HFC-152a CH3CHF2 138 
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HFC-161 CH3CH2F 4 

HFC-227ea CF3CHFCF3 3350 

HFC-236cb CH2FCF2CF3 1210 

HFC-236ea CHF2CHFCF3 1330 

HFC-236fa CF3CH2CF3 8060 

HFC-245ca CH2FCF2CHF2 716 

HFC-245fa CHF2CH2CF3 858 

HFC-365mfc CH3CF2CH2CF3 804 

HFC-43-10mee CF3CHFCHFCF2CF3 1650 

Perfluorinated compounds 

Sulfur hexaflouride SF6 23500 

Nitrogen triflouride NF3 16100 

PFC-14 CF4 6630 

PFC-116 C2F6 11100 

PFC-218 C3F8 8900 

PFC-318 c-C4F8 9540 

PFC-31-10 C4F10 9200 

PFC-41-12 C5F2 8550 

PFC-51-14 C6F14 7910 

PFC-91-18 C10F18 7190 

Trifluoromethyl sulfur 

pentafluoride 
SF5CF3 17400 

Perflurocyclopropane c-C3F6 9200 

Fluorinated ethers 

HFE-125 CH2OCF3 12400 

HFE-134 CHF2OCHF2 5560 

HFE-143a CH3OCF3 523 

HFE-235da2 CHF2OCHClCF3 491 

HFE-245cb2 CH3OCF2CF3 654 

HFE-245fa2 CHF2OCH2CF3 812 

HFE-347mcc3 CH3OCF2CF2CF3 530 

HFE-347pcf2 CHF2CF2OCH2CF3 889 

HFE-356pcc3 CH3OCF2CF2CHF2  413 

HFE-449sl (HFE-7100) C4F9OCH3  421 

HFE-569sf2 (HFE-7200) C4F9OC2H5  57 

HFE-43-10pccc124(H- Galden 

1040x) 
CHF2OCF2OC2F4OCHF2 2820 

HFE-236ca12 (HG-10) CHF2OCF2OCHF2  5350 

HFE-338pcc13 (HG-01) CHF2OCF2CF2OCHF2 2,910 

HFE-227ea CF3CHFOCF3 6,450 

HFE-236ea2 CHF2OCHFCF3 1,790 

HFE-236fa CF3CH2OCF3 979 

HFE-245fa1 CHF2CH2OCF3 828 

HFE 263fb2 CF3CH2OCH3 1 

HFE-329mcc2 CHF2CF2OCF2CF3 3,070 
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HFE-338mcf2 CF3CH2OCF2CF3 929 

HFE-347mcf2 CHF2CH2OCF2CF3 854 

HFE-356mec3 CH3OCF2CHFCF3 387 

HFE-356pcf2 CHF2CH2OCF2CHF2 719 

HFE-356pcf3 CHF2OCH2CF2CHF2 446 

HFE 365mcf3 CF3CF2CH2OCH3 <1 

HFE-374pc2 CHF2CF2OCH2CH3 627 

Perfluoropolyethers 

PFPMIE CF3OCF(CF3)CF2OCF2OCF3 9,710 

Hydrocarbons and other compounds - direct effects 

Chloroform CHCl3 16 

Methylene chloride CH2Cl2 9 

Methyl chloride CH3Cl 12 

Halon-1201 CHBrF2 376 

 

Appendix A-2. Scope 1 Emission Factors [229] 

Table A-2-1. Stationary Combustion Emission Factors 

Fuel Type CO2 Factor CH4 Factor N2O Factor 

 
kg CO2 per 

short ton 

g CH4 per 

short ton 

g N2O per 

short ton 

Coal and Coke 

Anthracite Coal 2,602 276 40 

Bituminous Coal 2,325 274 40 

Sub-bituminous Coal 1,676 190 28 

Lignite Coal 1,389 156 23 

Mixed (Commercial Sector) 2,016 235 34 

Mixed (Electric Power Sector) 1,885 217 32 

Mixed (Industrial Coking) 2,468 289 42 

Mixed (Industrial Sector) 2,116 246 36 

Coal Coke 2,819 273 40 

Fossil Fuel-

derived Fuels 

(Solid) 

Municipal Solid Waste 902 318 42 

Petroleum Coke (Solid) 3,072 960 126 

Plastics 2,850 1,216 160 

Tires 2,407 896 118 

Biomass Fuels 

(Solid) 

Agricultural Byproducts 975 264 35 

Peat 895 256 34 

Solid Byproducts 1,096 332 44 

Wood and Wood Residuals 1,640 126 63 

  
kg CO2 per 

scf 
g CH4 per scf 

g N2O per 

scf 

Natural Gas Natural Gas 0.05444  0.00103  0.00010  

Blast Furnace Gas 0.02524 0.000002 0.000009 
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Fossil-derived 

Fuels 

(Gaseous) 

Coke Oven Gas 0.02806 0.000288 0.000060 

Fuel Gas 0.08189 0.004164 0.000833 

Propane Gas 0.15463 0.000055 0.000252 

Biomass Fuels 

(Gaseous) 

Landfill Gas 0.025254 0.001552 0.000306 

Other Biomass Gases 0.034106 0.002096 0.000413 

  
kg CO2 per 

gallon 

g CH4 per 

gallon 

g N2O per 

gallon 

Petroleum 

Products  

Asphalt and Road Oil 11.91  0.47  0.09  

Aviation Gasoline 8.31  0.36  0.07  

Butane 6.67  0.31  0.06  

Butylene 7.22  0.32  0.06  

Crude Oil 10.29  0.41  0.08  

Distillate Fuel Oil No. 1 10.18  0.42  0.08  

Distillate Fuel Oil No. 2 10.21  0.41  0.08  

Distillate Fuel Oil No. 4 10.96  0.44  0.09  

Ethane 4.05  0.20  0.04  

Ethylene 3.83  0.17  0.03  

Heavy Gas Oils 11.09  0.44  0.09  

Isobutane 6.43  0.30  0.06  

Isobutylene 7.09  0.31  0.06  

Kerosene 10.15  0.41  0.08  

Kerosene-Type Jet Fuel 9.75  0.41  0.08  

Liquefied Petroleum Gases 

(LPG) 
5.68  0.28  0.06  

Lubricants 10.69  0.43  0.09  

Motor Gasoline 8.78  0.38  0.08  

Naphtha (<401 deg F) 8.50  0.38  0.08  

Natural Gasoline 7.36  0.33  0.07  

Other Oil (>401 deg F) 10.59  0.42  0.08  

Pentanes Plus 7.70  0.33  0.07  

Petrochemical Feedstocks 8.88  0.38  0.08  

Petroleum Coke 14.64  0.43  0.09  

Propane 5.72  0.27  0.05  

Propylene 6.00  0.27  0.05  

Residual Fuel Oil No. 5 10.21  0.42  0.08  

Residual Fuel Oil No. 6 11.27  0.45  0.09  

Special Naphtha 9.04  0.38  0.08  

Still Gas 9.54  0.43  0.09  

Unfinished Oils 10.36  0.42  0.08  

Used Oil 10.21  0.41  0.08  

Biomass Fuels 

(Liquid)  

Biodiesel (100%) 9.45 0.14 0.01 

Ethanol (100%) 5.75 0.09 0.01 

Rendered Animal Fat 8.88 0.14 0.01 

Vegetable Oil 9.79 0.13 0.01 

  
kg CO2 per 

mmBtu 

g CH4 per 

mmBtu 

g N2O per 

mmBtu 
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Biomass Fuels  

(Kraft Pulping 

Liquor, by 

Wood Furnish)  

North American Softwood 94.4 1.9 0.42 

North American Hardwood 93.7 1.9 0.42 

Bagasse 95.5 1.9 0.42 

Bamboo 93.7 1.9 0.42 

Straw 95.1 1.9 0.42 

 

Table A-2-2. Mobile Combustion CO2 Emission Factors 

Fuel Type kg CO2 per unit Unit 

Aviation Gasoline 8.31  gallon 

Biodiesel (100%) 9.45  gallon 

Compressed Natural Gas (CNG) 0.05444  scf 

Diesel Fuel 10.21  gallon 

Ethanol (100%) 5.75  gallon 

Kerosene-Type Jet Fuel 9.75  gallon 

Liquefied Natural Gas (LNG) 4.46  gallon 

Liquefied Petroleum Gases (LPG) 5.68  gallon 

Motor Gasoline 8.78  gallon 

Residual Fuel Oil 11.27  gallon 

 

Table A-2-3. Mobile Combustion CH4 and N2O Emission Factors for On-Road Gasoline 

Vehicles 

Vehicle Type Year 
CH4 Factor  

(g / mile) 

N2O Factor  

(g / mile) 

Gasoline Passenger Cars 

1973-74 0.1696 0.0197 

1975 0.1423 0.0443 

1976-77 0.1406 0.0458 

1978-79 0.1389 0.0473 

1980 0.1326 0.0499 

1981 0.0802 0.0626 

1982 0.0795 0.0627 

1983 0.0782 0.0630 

1984-93 0.0704 0.0647 

1994 0.0531 0.0560 

1995 0.0358 0.0473 

1996 0.0272 0.0426 

1997 0.0268 0.0422 

1998 0.0249 0.0393 

1999 0.0216 0.0337 

2000 0.0178 0.0273 

2001 0.0110 0.0158 

2002 0.0107 0.0153 

2003 0.0114 0.0135 

2004 0.0145 0.0083 

2005 0.0147 0.0079 

2006 0.0161 0.0057 



151 

 

2007 0.0170 0.0041 

2008 0.0172 0.0038 

2009-present 0.0173 0.0036 

Gasoline Light-Duty Trucks 

(Vans, Pickup Trucks, SUVs) 

1973-74 0.1908 0.0218 

1975 0.1634 0.0513 

1976 0.1594 0.0555 

1977-78 0.1614 0.0534 

1979-80 0.1594 0.0555 

1981 0.1479 0.0660 

1982 0.1442 0.0681 

1983 0.1368 0.0722 

1984 0.1294 0.0764 

1985 0.1220 0.0806 

1986 0.1146 0.0848 

1987-93 0.0813 0.1035 

1994 0.0646 0.0982 

1995 0.0517 0.0908 

1996 0.0452 0.0871 

1997 0.0452 0.0871 

1998 0.0391 0.0728 

1999 0.0321 0.0564 

2000 0.0346 0.0621 

2001 0.0151 0.0164 

2002 0.0178 0.0228 

2003 0.0155 0.0114 

2004 0.0152 0.0132 

2005 0.0157 0.0101 

2006 0.0159 0.0089 

2007 0.0161 0.0079 

2008-present 0.0163 0.0066 

Gasoline Heavy-Duty Vehicles 

<1981 0.4604 0.0497 

1982-84 0.4492 0.0538 

1985-86 0.4090 0.0515 

1987 0.3675 0.0849 

1988-1989 0.3492 0.0933 

1990-1995 0.3246 0.1142 

1996 0.1278 0.1680 

1997 0.0924 0.1726 

1998 0.0641 0.1693 

1999 0.0578 0.1435 

2000 0.0493 0.1092 

2001 0.0528 0.1235 

2002 0.0546 0.1307 

2003 0.0533 0.1240 

2004 0.0341 0.0285 
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2005 0.0326 0.0177 

2006 0.0327 0.0171 

2007 0.0330 0.0153 

2008-present 0.0333 0.0134 

Gasoline Motorcycles 
1960-1995 0.0899 0.0087 

1996-present 0.0672 0.0069 

 

Table A-2-4. Mobile Combustion CH4 and N2O Emission Factors for On-Road Diesel and 

Alternative Fuel Vehicles 

Vehicle Type Vehicle Year 
CH4 Factor  

(g / mile) 

N2O Factor  

(g / mile) 

Diesel Passenger Cars 

1960-1982 0.0006 0.0012 

1983-1995 0.0005 0.0010 

1996-present 0.0005 0.0010 

Diesel Light-Duty Trucks 

1960-1982 0.0011 0.0017 

1983-1995 0.0009 0.0014 

1996-present 0.0010 0.0015 

Diesel Medium- and Heavy-Duty Vehicles 1960-present 0.0051 0.0048 

CNG Light-Duty Vehicles  0.737 0.050 

CNG Medium- and Heavy-Duty Vehicles  1.966 0.175 

CNG Buses  1.966 0.175 

LPG Light-Duty Vehicles  0.037 0.067 

LPG Medium- and Heavy-Duty Vehicles  0.066 0.175 

LNG Medium- and Heavy-Duty Vehicles  1.966 0.175 

Ethanol Light-Duty Vehicles  0.055 0.067 

Ethanol Medium- and Heavy-Duty 

Vehicles 
 0.197 0.175 

Ethanol Buses  0.197 0.175 

Biodiesel Light-Duty Vehicles  0.0005 0.001 

Biodiesel Medium- and Heavy-Duty 

Vehicles 
 0.005 0.005 

Biodiesel Buses  0.005 0.005 

 

Table A-2-6. Mobile Combustion CH4 and N2O Emission Factors for Non-Road Vehicles 

Vehicle Type 
CH4 Factor  

(g / gallon) 

N2O Factor  

(g / gallon) 

Residual Fuel Oil Ships and Boats 0.11 0.57 

Gasoline Ships and Boats 0.64 0.22 

Diesel Ships and Boats 0.06 0.45 

Diesel Locomotives 0.80 0.26 

Gasoline Agricultural Equip. 1.26 0.22 

Diesel Agricultural Equip. 1.44 0.26 

Gasoline Construction Equip. 0.50 0.22 

Diesel Construction Equip. 0.57 0.26 

Jet Fuel Aircraft 0.00 0.30 
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Aviation Gasoline Aircraft 7.06 0.11 

Other Gasoline Non-Road Vehicles 0.50 0.22 

Other Diesel Non-Road Vehicles 0.57 0.26 

LPG Non-Road Vehicles 0.50 0.22 

Biodiesel Non-Road Vehicles 0.57 0.26 

 

Appendix A-3. Scope 2 Emission Factors  

Table A-3-1. Location-based electricity generation GHG emission factors: Sample of Canada 

[230] 

Province 
CO2 intensity 

 (g CO2 / kWh) 

CH4 intensity 

 (g CH4 / kWh) 

N2O intensity 

 (g N2O / kWh) 

Newfoundland and Labrador 30 0.0004 0.001 

Prince Edward Island 8 0.0002 0.0002 

Nova Scotia 690 0.03 0.01 

New Brunswick 290 0.02 0.004 

Quebec 2.1 0.0002 0.0001 

Ontario 40 0.01 0.001 

Manitoba 3.4 0.0003 0.0001 

Saskatchewan 780 0.05 0.02 

Alberta 790 0.04 0.02 

British Columbia 14.3 0.003 0.0009 

Yukon 38 0.002 0.01 

the Northwest Territories and Nunavut 400 0.02 0.06 

 

Table A-3-2. Heat and Steam generation emission factors [231] 

Kg Co2 per mmBtu g CH4 per mmBtu g N2O per mmBtu 

66.33 0.00125 0.000125 

 

Appendix A-4. CO2_eq Emission Factors for manufactured materials [16,192]  

Material Factor Unit 

Concrete 261 Kg CO2/m
3 

Talcum Powder 1.25 Kg CO2/Kg 

Steel 1.45 Kg CO2/Kg 

U.F. foamed plastic 2.91 Kg CO2/Kg 

Polyamides safety net 9.27 Kg CO2/Kg 

Cement 0.759 Kg CO2/Kg 

Aluminum 5.9 Kg CO2/Kg 

Stainless steel product 1.45 Kg CO2/Kg 

Glass 1.09 Kg CO2/Kg 

Slag 0.433 Kg CO2/Kg 
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Clay hydite 0.327 Kg CO2/Kg 

Welding rode 20.5 Kg CO2/Kg 

Polyurethane 4.31 Kg CO2/Kg 

Perlite 0.995 Kg CO2/Kg 

Timber plates 583 Kg CO2/m
3 

Asphalt 248 Kg CO2/ton 

Emulsified asphalt 160 Kg CO2/ton 

Pebbles 3.11 Kg CO2/m
3 

Gravel 3.9 Kg CO2/m
3 
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Appendix B. The GHG Calculator 

 

Figure B-1. The GHG calculator (Fiix® is a registered trademark of Maintenance Assistant Inc., 
that supported this part of the study) 

Appendix C. A method to estimate prior probabilities of common causes [123]. 

Assume that the node N, with no parents, has n states S1, S2, … , Sn, and P(Si), i.e. the probability 

of the state Si,  is needed to be generated. Traditional method is to directly assign a value to 

P(Si) by the expert(s), which may involve significant biases when as the number of states 

increases.  A more reliable method would be performing pair-wise comparisons among different 

states to specify the probabilities. Obviously, providing expert values for only two states at a 

time by pair-wise comparisons would be considerably easier, rather than directly providing n 

state probabilities. The states’ prior probability can be specified by a pair-wise comparison 

matrix, as follows: 

 S1 S2 . . . Sn 𝛚 

S1 a11 a12 . . . a1n ω1 

S2 a21 a22 . . . a2n ω2 
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. . . . . . . . . . . . . . . . . . 

Sn an1 an2 . . . ann ωn 
𝛌𝐦𝐚𝐱=  CI=  CR=  

To determine aij (i = 1,2, … , n; j = 1,2, … , n) questions like "comparing the state 𝑆𝑖 with 

𝑆𝑗: which one is more likely to occur and how much more likely?" can be used. In fact, aij 

reflects the multiplication of the likelihood of the presence of Si by that of Sj. This is to say 

aji = 1/aij and aii=1, and hence there are n(n − 1) different comparisons in the pair-wise 

comparison matrix. Although having more comparisons is helpful to check consistency, it 

would be more satisfactory to provide (n − 1) inter-related comparisons than all the n(n − 1) 

comparisons.  

Like Saaty’s AHP, the maximum eigenvector ω = (ω1, … , ωn)T of the matrix Si  can be 

applied to calculate the relative priorities of Si. Consistency of the pair-comparison matrix can 

be confirmed by a consistency ratio CR = CI/RI, where CI represents consistency index, defined 

as (λmax − n)/(n − 1) (λmax shows the maximum eigenvalue corresponding to ω), and RI is a 

random index related to n, as provided in Table C-1. Pair-wise comparison matrixes with CR 

values less than 0.10 are consistent. It would be adequate to consider ωi as the prior probability 

of stat Si, as the sum of all the elements in ω is 1, and the ith element ωi shows the relative 

importance of the state Si among all the states. Thus: 

P(Si) = ωi.                                                                                                (C-1)
 

 Table C-1. Random consistency index. 

n 1 2 3 4 5 6 7 8 9 

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 
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