Ryerson University

Digital Commons @ Ryerson

Theses and dissertations

1-1-2006
An application of a genetic algorithm to retail staft
scheduling

Maryam Khashayardoust
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations

b Part of the Mechanical Engineering Commons

Recommended Citation
Khashayardoust, Maryam, "An application of a genetic algorithm to retail staff scheduling” (2006). Theses and dissertations. Paper 257.

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by

an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/257?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

AN APPLICATION OF A GENETIC ALGORITHM
TO RETAIL STAFF SCHEDULING

by
Maryam Khashayardoust

B.Sc. in Industrial Engincering
University of Science and Technology. Tehran, 1999

A thesis presented to
Ryerson University
in partial fulfillment of the
~ requirements for the degree of
Master of Applied Science
in
Mechanical Engincering

Toronto, Ontario, Canada

© Maryam Khashayardoust 2006

PROPERTY OF
RYERSON UNIVERSITY LIBRARY

UMI Number: EC53658

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform EC53658
Copyright2009 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

DECLARATION

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend my thesis to other institutions or individuals for the purpose

of scholarly research.

Maryam Kﬁashayardoust

I further authorize Ryerson University to reproduce this thesis by photocopying or by other means,
in total or in part, at the request of other institutions or individuals for the purpose of scholarly

research.

Maryam Khashayardoust

ABSTRACT

AN APPLICATION OF A GENETIC ALGORITHM
TO RETAIL STAFF SCHEDULING

Maryam Khashayardoust
Master of Applied Science in Mechanical Engineering

Ryerson University, 2006

Staff scheduling has received increasing attention over the past few years because of its widespread
use, economic significance and difficulty of solution. For most organizations, the ability to have
the right staff on duty at the right time is a critically important factb; when attempting to satisfy
their customers’ requirements. The purpose of this study is to develop a genetic algorithm (GA) for
the retail staff scheduling problem, and investigate its effectiveness. The proposed GA is
compared with the conventional, linear integer programming approach. The GA is tested on a sct
of six real-world problems. Three are tested using a range of population size and mutation ratc
parameters. Then all six are solved with the best of those parameters. The results are compared to
those obtained with the branch-and-bound algorithm. It is shown that GA can produce ncar-
optimal solutions for all of the problems, and for half of them, it is more successful than the

branch-and-bound method.

ACKNOWLEDGMENT

The following thesis benefited from the guidance and assistance of several people. First, I would
like to thank Dr. Saced Zolfaghari, my supervisor. His direction, instructive comments and
support were invaluable in allowing me to complete this project. 1 would also like to thank Dr.

Ahmed El-bouri for his time and support.

A special note of thanks goes to Communications and Information Technology Ontario (CITO),
Workbrain, Inc., and Ryerson University. This thesis would have been impossible without their

funding and support.

Many of the staff at Workbrain, Inc. shared their knowledge and time. In particular, I would like
to thank Dr. Vinh Quan, Eddie Hsu, Brett Gersekowski, Alan Owens and Igor Lopata.

Finally, Id like to express my love and gratitude to my parents. They have always encouraged

and supported me, especially in my education.

v

TABLE OF CONTENTS

DECLARATION i
ABSTRACT i
ACKNOWLEDGMENT iv
TABLE OF CONTENTS v
LIST OF TABLES viii
LIST OF FIGURES ix
NOMENCLATURE X
CHAPTER 1 1
INTRODUCTION AND LITERATURE REVIEW 1
1.1 PERSONNEL SCHEDULING AND ROSTERING .ccetiunetteieeteeeeeeeeeeeeeeeeeeeeeessessesasssssssnsessssessnsesss]
1.2 PERSONNEL SCHEDULING STEPS ...evvieuttiietteeieeeeeeeieereeteeseeessessstesssssessssssesessessssssssssssssessssnssssns 1
1.3 PERSONNEL SCHEDULING APPLICATIONSeeeeeueieenteieteeesreeeeeeseeeessseeeessseeesssesssessssessssssessnees 3
1.4 PERSONNEL SCHEDULING SOLUTION METHODS ...ceeeteeeeteeeeeeeeeeeeeeeeeseessseseseeessssssessesssseeseees 3
1.4.1 Artificial intelligence approachescccceecverirerieenennireeeeseeseeertsesee e esesess e e eenes 3
1.4.2 Constraint Programming (CP)ccocceeoioirieriireeiteeetrcreete e esseesseestssesessesessessesaenes 4
1.4.3 IMELA-REUIISTICS w.neeeeeeeeeeeeeeeeeeeeeeeeetee et eeeeteeesteesaeesseessessssesessseesesmassssasessssesnsessrssossnessnns 5
1.4.4 Mathematical Programming Approaches.........cceceevcecenevcrrrencneerenenercneereneeseeseseenees 6

1.5 GENETIC ALGORITHM (GA) eeetiieeeeeteeecte ettt eeeeseseeesesteseeseaesessessssasssaesessessnnnessssnees 7
1.6 BRANCH-AND-BOUND. ...cceettteieeeeeeeresureeeeeeeesessssssssssesessssssssssssssssssssssassssssssssssssessssssssssesessssses 7
1.7 EFFECTIVENESS OF THE GENETIC ALGORITHM IN ROSTERING.....ccvttiiiieeeirrireeresneeeeeeeeeeesenenns 9
1.8 RESEARCH SCOPE AND OBJECTIVES .eveueeeteeietteettieeeeeteeeeeesieseeseesssssssessesssssssssssssssssssssssssssnnns 14
1.9 THESIS STRUCTURE ..coveeeeeeeeeeeeeeeeeesssresesseessssssssssssssssssssssesessssssnssssssssiesssssssssssssssssssssssssssssnen 15
CHAPTER 2 16
PROBLEM DESCRIPTION 16
2.1 OVERVIEW . eeeeeeeeeeeeeeeeeeeeseeseeeseeseesasassssasssssssssssssssssssssssssesssssssssssnsssssssassssssssssssessssnsasansanasssnes 16
2. 2 RETAILERS RULES oeeeeeeeeeeeeeeeeeteeeeeeeesssessssnssssssssnnsssssssssesssssssssssssssssssssasssssssssssssssessmsssnnsnssses 17
2.3 IMPLEMENTED STAFF CONSTRAINTS IN THIS STUDY .eeeveuteeierreneeeeeeeeeeeeresecsereesecsssseneecseseees 19
2.3.1 HATA CONSITAINIS oeveeeeeeeeeeeeeeeeseeessseseesessessesssssnsessssssessssssssssssssssssssssssssansssssnsassssnssssssssssssssas 19
23,2 SOMt CONSITAINIS oeneeeoeeeeeeeeeeeeeeeeeeasseeaeessssessssssessssssssesssesssssesasssssssassssssssssassssssssssssessssassssssns 20
2.3.3 SCheduling PreferenCes ... euiucunrurierisisisssssssesstississesessessessiessssssssssssssssssssassssssassases 20

2.4 EMPLOYEE CLASSIFICATION . ..ooeeiteeeeeeeeeessensssssnsssnssssssssssssssesssssssssssssssssenssssssssssssssssssnsansassses 20
2.5 DATA GENERATION oeeeeeeeeeeeeeeeeeeesssssssssssasasassssessesessssssssssssssssssssssssnsnsmsmmsensemssessmesrssessssasesasas 20
2.6 OPTIMIZATION METHODS ...ooeeeeeeeveeeeeeeneeseeetesessssssssssssassamessessssstssssssssssesssssssssnssssssssnsssssssens 21
2.6.1 Branch-and-bound (MOSEITM).......cccimrmrrrrerininiesteeecccscncccisiensi s 21

2.6.2 Genetic AlZOTItIIM (GA) cvvuceecercurirrmrerriesinssessssseissiesist st ses
CHAPTER 3
METHODOLOGY

3.1 OVERVIEW. . ieeeeeeeeeeseeessseessssessssasssssssesssessssssssssesssssesssssssssssssssessssssssssssesesssasssossssnsssenssnaesas
3.2 GENERAL GENETIC ALGORITHMoeoieiirieicenienisissiesiesseaeeseesesssessessesessessessssesnessssssssnns
3.2.1 BACKEIOUN.orvereeeeceeiecncisiaises sttt
3.2.2 Genetic Algorithm COMPONENLSc.cuevrureerrsninisisessistesstesiesiasinsss st ssssssnes
3.2.2.1 REPIESCNLALION.ccorcueruriurinirirrrrsetesists sttt
3.2.2.2 GA PATQMECLETS c..veevevrereereererseeceseeesestsnesessestestossersesseesssssssassssssesseseeseossessosesssssssssss
3.2.2.3 INIHAIZALION eeeveveecererereeeretecesseseesetesesestsesesesestesesesesessssssesasssssssssssesssanssssesssssanen
3.2.2.4 Parent SCICCHON. c.coviueeveererrereeerrerteetesesseeeseesseseseessssssessessersesesesessasassessessessensessessess
RANAOM SCIECION c.evevevveererereeeereeseeetsteseseseetssesessessestssessesessssesssssassesassestsssssssssenssness
Roulette WHeel SEIECHON......c.veeeeeeeereeeeereereeestesee et eteaesesest e sa e sa e s e sasssessessenne
Stochastic Universal SAmplingcoveeeeveniiniiniiire ettt
3.2.2.5 Crossover or RECOMDINAtIONceveeeveereeieeeeeeeneciecnieictetee st eeeeenes
ONC-POINE CTOSSOVETucvereereereereerrereesiesessesestssesessessessessisstsssessesnesessessssessassassassassessessessess
TWO-POINt CTOSSOVET ..vueeeverrenrerrereeressessestesestsseseesessessessesssssesssessssessessesesassassassessessessesseses
UNI{OITN CTOSSOVETvevievireereeveesteessessessessesssstestestetesseossesssssssessessessessessassssssassasssasssessesns
3.2.2.0 MULQLION «.eveveeeteeeevereetereesessessessessetstesees e sensessesessssssesssnessesssesaessasassnasnssseseensesses
3.2.2.7 FItNeSS EVAlUALIONcoverereieieteeieeeccetececnestecaetesteae s s s s st sse st eseanes
3.2.2.8 TEIMUINALION w..veeveererereererecteeeesaessestesesseseeessesesessessesseesneseesesesassassessassesessseseessessenees
3.3 THE GA DESIGN FOR RETAIL LABOUR SCHEDULINGuveeuriiietieteniennessesseseesscnnceatensenneane
330 TOIMIS ceeeeeeeeeeee ettt e et e st e et s e et sae s e s s e b s e s e s b e s s s s e b e s b e s e s e se s s e snteamsonteunsantss
3.3.2 Data Files Used in This Studyccceeeeceveeeeniniiiiiiceeeee ittt
3.3.2.1 Requirement Data File ..o
3.3.2.2 Employee Data File......c.ccoeiiiii et
3.3.2.3 Shift INformation FIleceeeveeeeeieieeceeceeeeetccecterre et
3.3.2.4 ChoiCe Data File......voiereereeeeeeeeieteeceeceeeetenteteictete st s s sa s sae s
3.3.3 GA TEIMIS .ttt et sesee e et et e e s e sesesbosssssss e s s s s s e s s ne e s e s s b s s e s e nassesaessesesstestens
3.3.4 The Steps of the Proposed GA.........cooiiee ettt
3.3.4.1 Genetic Representation of Solution to the Problem..........cooevieenninnininiiicccnne.
3.3.4.2 Create an Initial Population of SOIUtIONS ..ot
3.3.4.3 Parent Selection and Genetic Operator CTOSSOVETcoueceerueererrerreseesniessessesesnenens
3.3.4.4 Genetic Operator MULAtIONcceceuiuirininirucirerserneneeeseetesstese e sesesess e senesesacssassnes
3.3.4.5 GA Evaluation (Fitness) FUNCHONcccoevieiviiiiiiiiiierreeeneeeeeeeecencncneee
3.3.4.5.1 NOLALIONS c.cveuverrereereeeeereeeeessessessesnesnetesessteseessesssessessesssessersessessessssssassssssassesssenes
3.3.4.5.2 TP MOUEL...uieeeeete ettt e se s st st sse s s neane
3.3.4.5.3 Description of the IP Model Components..........oecueeeeeeceenenennscsesncenecnencee
3.3.4.5.4 IGP MOUEL ...ttt etrcreecctenescnesceseste s se s b s s s sme st s
3.3.4.5.5 Implemented Penalty Values and Weights ..o
3.3.4.6 Evaluation and Repair Mechanism of the GAcoouememiineeeenee
3.3.4.7 The Termination Criteriacccceeeceevcecrermrnercsnceresnesnenssennns reeeeeeneee et neteneans

CHAPTER 4

vi

22
22

2
22
22
23
23
25
25
27
27
27
28
28
29
29
29
30
30
31
31
32
34
34
34
35
35
35
36
36
36
39
44
44
45
47
48
54
56
56
57

59

EXPERIMENTAL DESIGN AND STATISTICAL ANALYSIS 59

4.1 EXPERIMENTAL DESIGN ..ottt et ee e e 59
4.1.1 Planning the EXPEriMENt............c.o.iuiiieeeeeeeeeeeeee e eeeeeeeees e e e e 59
4.1.2 Designing the EXPErimeNnt...........ooouiuiueicueeeeeeeeeeeee oo 59
4.1.3 Analyzing Data from the EXPeriment..........c.oeueieviiieieeeeeeeeeeeeeeeeeeesesseseseesssesssssssssssssesnns 60

4.2 EXPERIMENTAL DESIGN FOR THIS STUDY «.uteueteeeeeeeeeeeeeeeeeeesessessessseeseeeesese e e oo 62
4.2.1 P1anning the EXPEIMENL.......ccueuiiviveeeieccccccct e eeeee e eeesesesesess e seses e ses e ssssesene 62
4.2.2 Designing the EXPErimeNnt..........oo.ooivieieieieieceececce e eeeeeesssessesseses s sssas 63
4.2.3 Analyzing Data from the EXperiment............cocoveveieieiniviiieeeeeeeeee e eseeeens 63

4.3 D1scussSION OF ANOV A AND INTERACTION PLOTS FOR TEST PROBLEMS «..eevveeeeeeeeeeeeeeennns 64
4.3.1 Large SiZ€ PIODICIN ...c.ciimiiieeeteeccct ettt ettt s e e e seeeeene 65
4.3.2 MedIUM S1Z€ PrODIEM.......ooeeieeeeeeeeeeeeeeeeeeee e eeee e e e e e e e e e eessesessenessesesenes 72
4.3.3 SMAIl S1Z€ PrODIEIM c...eeeeeeeeeeeeee e e e e ee e e seeeseesesseesessessessesesseseennens 79

4.4 OVERALL CONCLUSIONcciiiuttieeteeeeeeeteeeeeeeeeeeeeeeeeesesesessessesssesassessssssssssssessssssssessseesanns 88

CHAPTER 5 90
EFFECTIVENESS OF THE PROPOSED GA 90

5.1 THE PROPOSED GA VERIFICATION AND EFFECTIVENESS uuuereetereeeoeeeeeeessssessesessesssssesassne 90

S 2 TERMS et e e sase e e e e et s e s sssssteeesassnnnnssessssssasessessssssssssssssssnnnn 90

5.3 COMPARED PROBLEMSoeeeeiiiiieiiieieecieeeeeeesssseseeseereessessssnsessssssessessssesessssssnsssesssssssssessessnn 91
5.3.1 Problem 1 (Large problem from chapter 4)........cccoevceviveveneneniniecneeneeneneeeeeeeseeeene 91
5.3.2 Problem 2 (Medium problem from chapter 4)cccoovvevvevennerinenenecnenneeeeeeneenes 93
5.3.3 Problem 3 (Small problem from chapter 4).......c.coooeeverennennernencnecrerectreeenees 94
R I 3 04 (0 o) [0 K- RO OO 96
IR TSI 34 1] 5] () 1 o 1S JEURUUU USSR 97
5. 30 PrODICINI Ottt eeeeee ettt sesssettesesssssssesessssessasesssssesssssssssssesesssssesssssessasnesans 98

5.4 CONCLUSION OF THE COMPARISONuuuuuureeereerreeneneeeeeereeeessesssnsseseesesssesssssssssnsssssassssssessesssaes 99

CHAPTER 6 100
CONCLUDING REMARKS AND FUTURE RESEARCH 100

6.1 CONCLUDING REMARKS .ccvtetteeeieeeieeiieeeineneeesssensnnneeasesesesesssessssssssssesssssssnnssssnssssassesssssssssss 100

6.2 KEY ASPECTS ..eeeeeeeeeeeeeeeeeeeeeeeeseeeeesessssssssssessssesesssssassssssesssesssassssssssssessnssssssssessnsessesssnoses 101

6.3 FUTURE RESEARCHevvvvvveeeeseeeeeseeeseeessseesssessssansasssssssseses 102

APPENDIX I: ANOVA PLOTS 103
APPENDIX II: GA AND MOSEL ENVIRONMENT 119
APPENDIX III: JAVA CODE 120
REFERENCES 139

vii

LIST OF TABLES

Table 1.1 - Categorization of papers by application.........cocceeverceerrcereneiereereeseneeeeeeeneenns 4
Table 1.2 - Categorization of papers by solution method..........c.ccocoveeeeerrrenirererrencurenerecennene 8
Table 4.1 - ANOVA TaDIC ... oeeeeeeeeeeetrteeeerecrteeerieneeeesesesse et st s et sssseseesesesasnes 61
Table 4.2 - Level 0f FACIOTS ...oovieeiecee ettt st esse et sas e nes 63
Table 4.3 - GA optimal objective values for large problem..........cccoooeivnvinininnnnnneenee. 65
Table 4.4 - GA search time (min) for large problem........cccocovverieneenncrceceeeenne 66
Table 4.5 - ANOVA for Large Problem- RV (With 72 = 0) c.cc.eevvevriviririeceeeeceeeeeeceeeeenene 68
Table 4.6 - ANOVA for Large Problem- RV, (With 7= 0)couvueeeeiereereereeeeeeeerreieaenenes 68
Table 4.7 - ANOVA for Large Problem - RV (without 71 =0)c.cceeveererreerrerrererecrrrernenens 70
Table 4.8 - ANOVA for Large Problem - RV, (without 71 =0)ccccueeveerrerereereecreennen. 70
Table 4.9 - GA optimal objective values for medium problemcccocveerieieecreecrnrennen. 73
Table 4.10 - GA search time (min) for medium problem..........ccoceveeveceioiecececnceeeeerenenene 73
Table 4.11- ANOVA for Medium Problem - RV} (With 1 =0)ooveereerereereeereeeeenenee 75
Table 4.12 - ANOVA for Medium Problem - RV (With 71 =0)...ccocconrnrereieeeeereennee 75
Table 4.13 - ANOVA for Medium Problem - RV} (without m = 0).....c.occverevreeveerererennne. 77
Table 4.14 - ANOVA for Medium Problem — RV, (without 7 =0).......cccceeverevvereererererenene. 77
Table 4.15 - GA optimal objective values for small problem...............ccccoveveneerereererenennee.. 80
Table 4.16 - GA search time (min) for small problemccoooeeeeveeeveeeeeereeeeeeeeee 81
Table 4.17 - ANOVA for Small Problem - RV} (With m = 0) w..ceeeererererereeeereeereeenene 83
Table 4.18 - ANOVA for Small Problem - RV (With 1 =0) c...c.ceererireeeeeeeeeeeeeenne 84
Table 4.19 - ANOVA for Small Problem - RV} (without 7 =0).......coerrreeereererererererenenes 85
Table 4.20 - ANOVA for Small Problem — RV, (without m=0).......cocecerverervrrereerreenen. 86
Table 5.1 - The best and worst case scenarios of GA solutions (Problem 1) 91
Table 5.2 - The best and worst case scenarios of GA solutions (Problem 2) 94
Table 5.3 - The best and worst case scenarios of GA solutions (Problem 3)c........... 96

Table 5.4 - GA best solutions and associated Gaps for different parameters (Problem 5) ..97
Table 5.5 - GA best solutions and associated Gaps for different parameters (Problem 6) ..98

viil

LIST OF FIGURES

Figure 3.1 - Bin Based Representationc.coeeeeeeeeinesuneeeeensesesiese s seseseens 24
Figure 3.2 - Group Based Representation..............ce.oeeeceeeeeeeeeeeeeeeseesseesesessessesesssseeeessses 24
Figure 3.3 - Basic Components of a Genetic AIZorithmc...eeveeeeeeveeeeeeeeeeeseeesee s 20
Figure 3.4 - Roulette Wheel Selection.............ocvuueiueiveierieeeeecieeeeeeceeceee e enn 28
Figure 3.5 - Stochastic Universal SAmplingooouooe oo 28
Figure 3.6 - One-Point CIOSSOVETc.cceceimiuminruesieiessessesessesaese s sssssssessesseesessesssens 29
Figure 3.7 - TWO-POINt CIOSSOVET......cccceuriuriieinieeeeteste ettt sesssesse s e eeeeen 29
Figure 3.8 - Uniform CrOSSOVETcccvcueurircieririnrieeee sttt ss e sssenens 30
FIgure 3.9 - MULALON ..ottt sttt sss s sns 30
Figure 3.10 - Genetic AIGOTIM ..o aene 32
Figure 3.11 - Chromosome or Individual Representation............c.cccueveveeeeeiccceneevenencennnns 37
Figure 3.12 - Population With SiZe (1)cceeeeeeeneeieeeieeeeeee e 40
Figure 3.13 - Flowchart for “Enforce maximum intervals per schedule™........uevevnne.. 41
Figure 3.14 - Flowchart for “Enforce maximum intervals per schedule™ Repair Module...42
Figure 3.15 - Flowchart for “Enforce maximum consecutive days™ccoeeereveeeeennnnnen. 43
Figure 3.16 - Flowchart for the Evaluation and Repair Mechanism of the GA 58
Figure 4.1 - (AL) = RV (With 177 =0) cecveueeeeeeeeete ettt se e ses e senan 69
Figure 4.2 - (BL) - RV2(WIith 1171 = 0) euceeeueieeieeeeeeeertsteceeeteeeteeee e seessesssesessesestesesassenens 69
Figure 4.3 - (A'L) - RV (WIthOUL 727 = 0)eoviiriiriecieteirete et reeeeesse s sse s e e ssesnens 70
Figure 4.4 - (B'L) - RV2 (WIthOUt 177 = 0) c.eeueenireiieeerieereteeretecreetsesesestssee st e sessesaens 71
Figure 4.5 - (C'L) - RV} (WIthOUL 772 = 0)..ccveeeeeeeeteeeeretetecteeteete e eetesaeteessesaeseesaes e esaesaens 71
Figure 4.6 - (D'L) - RV, (WIthout 77 = 0)....cceetiirreeieeteeeieeeieeeeericsteeeeese et esnesaeseeesnens 72
Figure 4.7 - (Apm) = RVI(WIth 1177 = 0) ettt ssesnene 76
Figure 4.8 - (Bm) - RV2 (WIth 171 =0) ettt sesneseens 76
Figure 4.9 - (A'M) - RV} (WIthOUt 177 = 0).ceveeeeeieieeeectecceecterectteteiesesesesessesesesesssaens 77
Figure 4.10 - (B'm) - RV2 (WIthOUt 722 = 0) c.ceeumiiceiiiiccncncnincrcncnteenctee s ene 78
Figure 4.11 - (C'y) = RV} (WIthOUt 172 = 0) ceceeeeeeeeiccccceinncieciitiiiicnesessaesesn s sesens 78
Figure 4.12 - (D'm) - RV (WIthOUt 717 = 0).eeeeeereeieeerecinereccieicteeenencnsnsscsensescssassesaeaens 79
Figure 4.13 - (As) = RV1 (With 177 = 0) ettt 84
Figure 4.14 - (Bs) = RV2 (With 17 = 0) ceeueueeeereeiciciciinicsicsi et senes 85
Figure 4.15 - (A's) - RV} (Without 711 = 0)...ceveueveereiiiccnciiietetetectsss s 86
Figure 4.16 - (B's) - RV2 (WIithout 72 = 0) ...ceeeeeieiciiiriririinceiictetete ettt 87
Figure 4.17 - (C's) - RV} (WithOUt 77 = 0)...cecueueeecriicnciiieirieietiie ettt 87
Figure 4.18 - (D's) - RV2 (Without 177 = 0)...ccevuemuiiririiinieneieeieie ettt 88
Figure 5.1 - Scatter Plot - Gapg, vs. GA Search Time (Problem 1)...c..cceemevviceiiiiiannnes 92
Figure 5.2 - Scatter Plot - Gapg, vs. GA Search Time (Problem 1) 92
Figure 5.3 - Scatter Plot - Gapgm vs. GA Search Time (Problem 2).....ccceveeeeeeeerccncnenns 93
Figure 5.4 - Scatter Plot - Gapgy, vs. GA Search Time (Problem 2)......covvvcuiiirinninninnians 94
Figure 5.5 - Scatter Plot - Gapg, vs. GA Search Time (Problem 3)....c.covvciininininnnns 95
Figure 5.6 - Scatter Plot - Gapg, vs. GA Search Time (Problem 3)......cocvvnnionininnnnnn 96
Figure 5.7 - Scatter Plot - Gapg, vs. GA Search Time (Problem 6)........covuvevvirvnrninnnnne. 99

ix

LP
IP
MIP
IGP
GA
SA
TS

m-
RV
RV>

SE
FE
NF
NFS
CH

Ch,‘

”L N~ T

-~

N,

n

NOMENCLATURE

Linear Programming

Integer Programming

Mixed Integer Programming

Integer Goal Programming

Genetic Algorithm

Simulated Annecaling

Tabu Search

chromosome length (No. of employees)
population size

mutation rate

response variable I: GA optimal objective value
response variable II: GA search time

set of employees

salaried employees’ subset

fixed-shift employees’ subset

non-fixed-shift employees’ subset
non-fixed-shift and non-salaried employees’ subset
set of choices in the GA solution

set of choices for employee i in the GA solution
set of days

set of intervals

set of jobs

set of shifts in the GA solution (chromosome)
day index

employee index

shift index

job index

constraint index

Py
a
P
Py
Pio

Py

h,'

interval index

schedule index

employee i

length of shift j expressed in interval

1, if employee i is available for shift j; 0, otherwise
1, if employee i is assigned to shift j; 0, otherwise
1, if shift j happens on day d; 0, otherwise

1, if employee i has the required skill for shift j; 0, otherwise
minimum intervals per week for fixed-shift employee i (expressed in interval)

penalty for violating soft constraint n

penalty for total hours worked by all employees

unit penalty for violating the ('; constraint

unit penalty for violating the Cy constraint

penalty per interval for giving salaried employees less than their required intervals
per schedule (unit penalty for violating the C)y constraint)

penalty per interval for giving salaricd employees more than their required intervals
per schedule (unit penalty for violating the Cj¢ constraint)

total intervals per week for employee i which is calculated for the GA solution
(expressed in interval)

preferred number of required employees for job & on interval 1 of day d

number of assigned employees to job k on interval ¢ of day d (calculated from the
GA solution)

unit penalty for understaffing of job & on interval ¢ of day d

minimum number of required employees for job & on interval 1 of day d

required intervals per schedule for salaried employce i (expressed in interval)

paid time-off intervals for salaried employce i (expressed in interval)

unpaid break intervals for shift j (expressed in interval)

paid Intervals per schedule for employee i which is calculated for the GA solution
(expressed in interval)

group-weight for employee i

option-weight for shift j and employee i
seniority-weight for employee i

skill-level-weight for employee i for the associated skill of shift j

maximum intervals per day for employee i (expressed n interval)

maximum intervals per schedule for employee i (expressed in interval)

number of days in the scheduling period

maximum intervals per schedule for employee i for the GA schedule (expressed in
interval)

number of consecutive days that employee i has worked in the previous schedule
number of maximum consecutive working days

length of shift on day d for employee i

fitness value of rule » for schedule z

total fitness value for schedule z

percentage gap between Mosel’s best solution and best bound

percentage gap between GA’s and Mosel’s best solution

percentage gap between GA’s best solution and Mosel’s best bound

quality

time

Chapter 1
INTRODUCTION AND LITERATURE REVIEW
1.1 Personnel Scheduling and Rostering

Efficient employment of manpower has always been a major concern in any organization and is
one of the most important approaches to acquire productivity. Because of its high importance,

considerable endeavours have been dedicated to tackling the problem.

Personnel scheduling for an organization is described as the process of producing optimized
timetables for its employees. This process starts with the determination of staffing requirements
and terminates with the allocation of each individual to a specific task over a period of time. The
work regulations associated with the relevant workplace agreements must be observed and the
individual work preferences should be valued during this process. Personnel scheduling
problems are typically highly constrained and complex optimization problems. Finding good
solutions for these highly constrained and complex problems is extremely difficult and even it is
more difficult to determine optimal solutions that minimize costs, meet staff preferences, fulfill

shift equity among staff and satisfies all the workplace constraints.

1.2 Personnel Scheduling Steps

The labour scheduling process starts with the determination of staffing requirements which is
referred to demand modeling in literature. Ernst et al. (2004a) describe two main components in
demand modelling: (1), a method for translating incident data to a demand for staff, and (2), a
method for forecasting incidents, unless the incidents are derived from a known timetable. These
methods are varied in different applications of staff scheduling. In some applications of
rostering, the demand may be generated from incidents in a reasonably straightforward, though
possibly complicated, manner. For example, in crew scheduling in airlines, railways, buscs, and
mass transit, the demand for crew is very straightforward becausc crew rosters are determined by

known timetables. In this case, the demand for staff is attained from lists of individual tasks to be
1

performed. The tasks are defined in terms of an earliest starting time, a latest finishing time, a
duration, a location and possibly the skills required to perform the task. The other examples are
nurse scheduling and ambulance services, in which the demand is obtained directly from a
specification of the number of staff that are required to be on duty during different shifts. For
nurse scheduling, a shift is often defined as a day’s work for a worker. In other applications of
rostering, such as call centres and retailers, the nature of demand is fluctuating. In these cases,
there are no known timetables or list of tasks, the likelihood of future incidents, such as the
fluctuating arrivals of customer queries to a call centre, must be modeled by forecasting
techniques. The conversion from an incident forecast to staffing requirements is accomplished
using techniques such as queuing theory or simulation. The result of such a conversion is the

number of staff required at each skill level for each time period.

After performing demand modeling, the next steps of rostering are (1) shift scheduling, (2) days-
off scheduling, (3) tour scheduling and (4) task assignment. Bechtold et al. (1991) and Ermnst et

al. (2004a, b) describe these terms as follows:

1. Shift scheduling: Shift scheduling involves selecting a set of the best shifts from a (large)
pool of candidate shifts on a single day for each employee. Each shift is a set of
employee work schedules defined by start, finish and break times across a daily planning

horizon. Shift scheduling for transportation systems is recognized as crew scheduling.

2. Days-off Scheduling: Days-off scheduling specifies work and non-work days for
employees when the employee work week is shorter than the operating week (rostering

horizon).

3. Tour Scheduling: Tour scheduling addresses both days-off and shift scheduling over a
weekly planning horizon. The process involves both choosing the off days for the
workers and allocating shifts for each of their working days over the rostering horizon.

Tour scheduling reduces to shift scheduling when the rostering horizon is one day.

4. Task Assignment: The last step of labour scheduling is task assignment. Task assignment
is the process of allocating a set of tasks. with specified start and end times and skill
requirements, between a group of workers who have already been assigned to a sct of
working shifts (Ernst et al. 2004a, b). If shift definition for an organization includes the

start time, end time, task and skill requirement, this step is the same as shift scheduling.
1.3 Personnel Scheduling Applications

Emst et al. (2004a, b) categorize labour scheduling problems into several applications including
airlines, buses, railways, mass transit, nurse scheduling. call centers, manufacturing, health carc
systems, civic services and utilities, venue management, protection and emergency services,
hospitality and tourism, financial services and sales. Ernst et al. (2004a) provides the number of

related papers that have been worked on each application (Table 1.1).

As it is observed from Table 1.1, personnel scheduling has received little attention for retail

business in the literature.
1.4 Personnel Scheduling Solution Methods

Emst et al. (2004a) categorize the personnel scheduling solution techniques as follows:

1.4.1 Artificial intelligence approaches

Artificial Intelligence (AI) can be described as the simulation of certain human intclligence
processes using machines, especially computer systems. These processes include learning,
reasoning and self-correction. The learning is used to acquire information and rules; the entire
knowledge of the system designer about the process to be controlled is stored as rules
(Zimmermann, 1996). The reasoning process involves using the rules to rcach approximate or
definite conclusions. Burke et al. (2004) states: “Reasoning process imitates the human style of
reasoning in which problems are solved using past experience, on the premisce that similar

problems require similar solutions”. Artificial intelligence techniques including fuzzy set theory,

search and expert systems have been applied to rostering problems. Fuzzy set theory has been

used to solve air crew scheduling problems.

Application No. of Application No. of
Papers Papers
Buses 129 Civic Services and Utilities 22
Nurse Scheduling 103 Venue Management 19
Airlines 99 Protection and Emergency Services 16
Railways 37 Other Applications 14
Call Centers 37 Transportation Systems 12
General 33 Hospitality and Tourism 7
Manufacturing 29 Financial Services 6
Mass Transit 28 Sales 3

Health Care Systems 23
Table 1.1 - Categorization of papers by application (Emnst et al., 2004a, p.34)

When there are many human factors that cannot easily be modeled in software, and usually are left
up to the person in charge of rostering, the expert system approach can work well. An expert
system is a computer program that simulates the judgement and behaviour of a»'h:uman, or
organisation, with expert knowledge and experience in a particular field. Typically, a complex set
of rules for applying the knowledge base to a set of situations is setup. For scheduling and rostering

systems, these rules would be used to construct duty pairings and rosters.

1.4.2 Constraint Programming (CP)

Domain variables are used to describe the data representing a problem. Each variable has a set of
potentially feasible values, known as an associated domain. The different relationships that must
be met by a set of variables is known as a constraint. Many scheduling and rostering problems
contain complex rules that are very hard to model as mathematical equations. Constraint
programming (CP) provides a powerful tool for finding feasible solutions to these types of
problems. When a problem is highly constrained or when non-optimal feasible solutions are
sufficient, CP becomes particularly valuable. Nurse rostering, where the rules are often rigid and
highly constrained, is one area where pure CP approaches have been used and have performed
well. Some people have attempted to combine CP with traditional Operation Research (OR)

techniques because optimization with CP is generally quite inefficient. One example of that is
4

using CP as a pre-processing technique to reduce the problem size before using linear

programming (LP) based branch-and-bound method to perform the optimization.

1.4.3 Meta-heuristics

Meta-heuristic such as genetic algorithm (GA). tabu search (TS) and simulated anncaling (SA) are
most generally used to solve problems classified as NP. Herbert (1994) classifies the decision
problems into two groups: (1), class p (polynomial) and (2), class NP (nondeterministic
polynomial). P is the class of decision problems for which it is casy to find a solution. NP is the
class of decision problems for which it is easy to check the correctness of a claimed answer. A
decision problem is NP-complete if it belongs to class NP and every problem in NP is quickly
reducible to it; i.e., if an algorithm exists that can solve an NP-complete problem, then it can solve
all NP problems. A problem is hard if it is not possible to guarantee, at most, a polynomial
running time for the worst case scenario of the problem. The complexity of a problem is the cost
of solving the problem and usually is measured in running time. Running time is usually
expressed as a function of input size, if lhe»i't;nning time is at most a polynomial function of the
input size, then the problem is easy, otherwise is hard. The fact that a problem is hard docs not
mean that every instance of it has to be hard, but it means it is not possible to devise an algorithm
for which fast performance for all instances of the problem can be guaranteed. So if it is desired
to see whether the problem is hard or not, or if an algorithm is fast, the worst case scenario of it

must be considered; sometimes the average case input can be considered too.

Meta-heuristics form an important class of methods that solve hard, and usually discrete,
optimisation problems. Problems which appear to be particularly appropriate for meta-heuristics

include timetabling and real-life scheduling problems.

The popularity of these types of methods for solving rostering problems is duc to a number of

factors including:

1. They tend to be relatively robust. They cannot be guarantced to produce an optimal
solution, but they can usually produce a reasonably good feasible solution for a wide range

5

of input data in a limited amount of running time. In contrast to this, integer programming

approaches often run the risk of not returning any feasible solutions for a long time.

Most meta-heuristics are relatively simple to implement and allow problem specific

information to be incorporated.

Heuristics make it easy to deal with complex objectives, whether these are real staffing
costs or penalties for violating constraints that are desirable but not mandatory. Airline
and bus driver crew scheduling, nurse rostering and cyclic staff scheduling problems are
some examples of rostering applications to which meta-heuristics have been

implemented.

1.4.4 Mathematical Programming Approaches

In mathematical programming approaches, scheduling and rostering problems are formulated as

linear programs or linear integer programs, or general mathematical programs. The lowest cost

solutions are usually achieved using algorithms based on mathematical programming approaches.

However there are a number of shortcomings with these approaches that prevent them from being

universally applied:

o

Mathematical programming formulations are more limiting in what constraints and
objectives can be expressed easily. Hence, these approaches are more commonly applied
to unsophisticated versions of the real world rostering problem or where there are few

complications in the original problem (Ermnst et al., 2004a).

Implementing a good integer programming method for a particular crew scheduling and
rostering problem is a quite difficult and lengthy process. This is only warranted when the
advantage of the reduced cost of solutions obtained is significant, and when the rostering

rules and regulations are relatively static over time (Ernst et al., 2004a).

3. Cai and Li (2000) state that “The staff scheduling problem is in gencral very difficult to
solve even if it is only involved with a single objective and one skill. In fact the problem
has been known to be NP-complete (section 1.4.3). When multiple criteria and skills are
included, the problem becomes much more difficult to be solved by traditional

mathematical programming techniques™.

Ernst et al. (2004b) categorize the solution techniques employed for rostering problems more
comprehensively than above in Table 1.2, and also represent the number of existent papers in
each category. Some methods are special cases of more general methods. For example, lincar
programming and integer programming are special cases of mathematical programming. It is
appropriate to identify these individual methods in order to indicate their importance as rostering

solution techniques.
1.5 Genetic Algorithm (GA)

In this thesis, a genetic algorithm technique is developed and applied io a real-life retail rostering
problem. A genetic algorithm is a meta-heuristic search technique, invented by Holland (1975),
which can find the global optimal solution in complex search spaces. A genetic algorithm is based
on the natural genetic processes implemented to the optimization of data structures. Genetic
mutation, crossover and selection operators are used in GA technique. GA works with a
population of candidate solutions, each candidate solution is represented as a string of bits which is
called a chromosome, where the interpretation of the bit string is problem specific. Each bit string
in the population is assigned a value according to a problem-specific fitness function. These
strings are recombined by using the crossover and mutation operators to create the new population
and then, via the fitness function, the best strings (or chromosomes) are selected from the old and

new population. A more detailed description of the GA is provided in chapter 3 of this thesis.

1.6 Branch-and-bound

In this thesis, the proposed genetic algorithm is compared with the existent branch-and-bound
method. Branch-and-bound is an approach developed for solving discretc and combinatorial

7

optimization problems. The discrete optimization problems are problems in which the decision
variables assume discrete values from a specified set; when this set is set of integers, the problem is
an integer programming problem. The combinatorial optimization problems, on the other hand, are
problems of choosing the best combination out of all possible combinations. Most combinatorial

problems can be formulated as integer programs (Murty, 1995).

Method No. of Method No. of

Papers Papers
Branch-and-Bound 14 Lagrangean Relaxation 32
Branch-and-Cut 9 Linear Programming 35
Branch-and-Price 30 Matching 36
Column Generation 48 Mathematical Programming 27
Constraint Logic Programming 46 Network Flow 38
Constructive Heuristic 133 Other Meta-Heuristic 11
Dynamic Programming 17 Other Methods 35
Enumeration 13 Queuing Theory 32
Evolution 4 Set Covering 58
Expert Systems 15 Set Partitioning 72
Genetic Algorithms 28 Simple Local Search 39
Goal Programming 19 Simulated Annealing 20
Integer Programming 139 Simulation 31
Iterated Randomised Construction 5 Tabu Search 16

Table 1.2 - Categorization of papers by solution method (Emst et al., 2004a, p.41)

Branch-and-bound approach includes branching, bounding and fathoming steps (Hillier and
Liberman, 2001):

Branching is done by partitioning the entire set of feasible solutions into smaller and smaller
subsets. In bounding step, for each new sub-problem a bound on how good it’s best feasible
solution can be, obtained. The standard way of doing this is to solve a simpler relaxation of the
sub-problem. In most cases, a relaxation of a problem is obtained by deleting (“relaxing”) one set
of constraints that had made the problem difficult to solve. For IP problems, the most troublesome
constraints are those requiring the respective variables to be integer. Therefore, the most widely
used relaxation is LP relaxation which deletes this set of constraints. For each sub-problem, by

applying simplex method to its LP relaxation, its LP optimal solution (Z) is obtained. The bound

for the sub-problem is obtained by rounding down (for IP-maximum problem) the value of Z. Then
the best bound of the sub-problems (Z') is used in the fathoming step. Fathoming (conquering) is
done partially by bounding how good the best solution in the subset can be and then discarding the

subset if its bound indicates that it cannot possibly contain an optimal solution for the original

problem.
1.7 Effectiveness of the Genetic Algorithm in Rostering

In this section, the effectiveness of GA for personnel scheduling is investigated by reviewing

relevant literature on the subject.

Levine (1996) describes how a genetic algorithm can be effective in solving scheduling

optimization problems as follows:

1. There is no need to solve the LP relaxation (section 1.6), because GA works directly with,

integer solutions.

2. Genetic algorithm has the advantage of being flexible in handling the variations in the
model such as adding a constraint or evaluation function to the problem, or modifying
them. For more traditional methods, it is hard to add or modify a new constraint or

objective function.

3. Atany iteration, genetic algorithms contain a population of feasible solutions. Arabeyre ct
al. (1969) states: ’The knowledge of a family of good solutions is far more important than

obtaining an isolated optimum”.

Bailey et al. (1997) state: “most real-life scheduling problems are NP-hard, meaning that for cven
moderate size problems, algorithms will find them difficult to solve, duc to the exponential sizc of
the solution space. With increasing problem size and complexity in terms of objectives and

constraints, integer programming can require too much computing power to be practical. The

technique of the genetic algorithm attempts to find a solution close to (but not guaranteed to be) the

optimal solution in a reasonable amount of time”.

Abboud et al. (1998) performed a survey in the retail field and applied a genetic annealing meta-
heuristic (genetic algorithm and simulated annealing) to a salesman force problem. The problem
was to distribute the salesmen force over the branches of a company satisfying several goals
simultaneously and considering the salesmen's abilities, satisfactions and preferences. The goals
were defined as:

1. Maximize the total gross sales of all branches.

2. Maximize the gross sales of each branch.

3. Maximize the satisfaction of each salesman.

The constraints were defined as:
1. Each salesman should be assigned to only one branch.

2. At least two salesmen should be assigned per branch.

In this problem, the required number of salesmen for each branch was not specified. Instead, for
each branch a fuzzy target, gross sales, was given. A total target gross sales of all branches was
also fuzzily specified. This problem was formulated as a fuzzy combinatorial programming
problem and by applying the Bellman and Zadeh’s fuzzy decision method (Bellman and Zadeh,
1970) the problem was transformed into a mixed integer programming problem (MIP). The
developed genetic annealing delivered a nearly optimal solution in a practical amount of time for
this problem. The solution of this problem does not specify which salesman, for which task and
what time is assigned to a specific branch; it only specifies how many employees to be assigned

to each branch. In this thesis the solution does specify employee assignments.

Bailey et al. (1997) applied the genetic algorithm (GA), simulated annealing (SA) and integer
programming (IP) techniques to a nurse scheduling problem with different skill levels and then
compared the results of them. The problem is to schedule 27 nurses for a six week period

considering three shifts per day, four staff groups and three skill levels. One major requirement for

10

this problem is that at least one member of each team must be scheduled for the day time shifts
because of patient needs. The results of these three methods have been compared in terms of
solution quality, required time for generating a (near) optimal solution and scalability. Scalability
explains the capability of the above optimization techniques under increasing new constraints (in
this study the staff preference). The reported results are as follows:

e Quality: IP > (SA, GA)

e Time: SA<IP<GA

e Scalability: (SA, GA)>1P

Bailey et al. (1997) explained that by adding the staff preference constraint to the problem the
solution time for IP increases exponentially meaning that the required time for IP increases
exponentially with the population size. But adding the stafT preferences to a simulated anncaling
or genetic algorithm would only linearly increase the evaluation time of the objective function.
This is because for IP, constraints and goals are often interpreted as a large number of additional
variables or constraints in the mathematical program, but for GA and SA constraints and goals do
not increase the formulated size of the problem. It is necessary to mention that the quality of the
solution after adding the employee preference constraint to the problem has not been examined in
this research but has been referred for the future research. The results of the above study show that
a genetic algorithm can generate optimal or near-optimal solutions in a relatively short time for the

nurse scheduling problem without considering staff preferences.

Burke et al. (2001) applied GA, tabu search (TS) and a memetic algorithm (thec combination of GA
and TS) to a nurse scheduling problem including 20 nurses with different qualifications (such as
head nurse, regular nurse, nurse aid, student, etc...) and responsibilities. Some of the nurses can
replace people from another category (depending on their qualifications). This replacement is
sometimes necessary to cover for staff shortages, but it is not desirable and will be penalized in the
schedule evaluation function. This model has one hard constraint and can have up to 30 soft
constraints. The hard constraint is the number of required nurses for each category and for cach
duty of the planning period which is often one month. Some of the soft constraints applied in this

model are as follows:

11

1. Minimum time between two assignments, depending on the type of duties involved.

2. Maximum and minimum work hours during the planning period for different type of staff
(full time, part time, night nurse and etc.)

3. Maximum number of assignments during the planning period (e.g., for full time nurses this

is usually restricted to 20 assignments per 4 weeks).

The evaluation function for this problem is implemented as a series of modules, each
corresponding to a soft constraint. The user fixes the parameters and sets the penalty weight per
unit violation of the constraint. This study was examined over 4 test cases. These test cases were
different in terms of the number of soft constraints. The results for these test cases show that
memetic algorithms are robust enough to produce excellent solutions; but unacceptable solutions
usually arise when the constraints on the problem are contradictory. It is then very hard to find the
very narrow valleys in the solution space, which contain good schedules. The issue with the basic
GA is repairing the solution when it is destroyed by the crossover operator. A common issue with
rostering problems is that the quality of a solution can be destroyed by the crossover operator. The

problem with tabu search is that it is not robust enough to handle difficult problems.

In the previous two studies, the size of the problems that were considered was small (27
employees and 20 employees). In this thesis, problems with various sizes (17 to 600 employees)
have been applied; a large problem size is more applicable to most retail companies. Also, a shift
includes only start and end times while in this thesis, a shift definition is more comprehensive, it

includes day, location, start and end times, skill and activity .

Cai and Li (2000) developed a GA for the problem of scheduling staff with mixed skills. The

problem was formulated as a multi criteria optimization model with three objectives as follows:

1. Primary objective: To minimize the total cost for assigning personnel to meet the
manpower demands over time.

2. Secondary objective: To maximize the staffing surplus when assigning cost is almost the
same.

12

3. Tertiary objective: To minimize the variation of surplus staff over different period of times.

The primary criterion is similar to traditional staff scheduling model which is a single criterion
integer optimization problem. The second criterion has been included to reduce the risk of
underestimation of actual demands that may occur duc to an inaccurate forccast. The third
criterion is included to achieve a more balanced staff distribution. In this model, jobs with
different skill requirements and employees with multiple skills have been considered. This model
considers two types of jobs which consecutively needs D;, and D, staff at time ¢, where =1, 2, ...,
T and T is scheduling horizon. And also there are three types of staff. The first stafl group with
skill 1 can be assigned to type-1 job, the second staff group with skill 2 can be assigned to type-2
job and the third staff group can be assigned to either type-1 or type-2 job. In the applied GA to
the above problem, each individual or chromosome, in the population has been encoded as a four
element vector, each element of the vector corresponds to each staff group that is assigned to cach
job; element 1 shows the feasible schedules for staff group 1. element 2 shows the feasible
schedules for staff group 2, element 3 shows the feasible schedules for staff group 3 who arc
assigned to job 1 and element 4 shows the feasible schedules for staft group 3 who are assigned to
job 2. The position of each gene in the chromosome represents one feasible schedule and the value
of the gene represents the number of workers assigned to the corresponding schedules. Infeasible
offspring may be created by the crossover operation even though the parents are feasible. Each
solution is checked by every constraint in the scheduling problem and if it violates the constraint, it
is repaired by some heuristics. Computational studies have shown the effectiveness of the modcl
and the proposed approach. In all cases the proposed GA worked reliably, and successfully

delivered good, feasible solutions, in about 8 to 10 minutes.

In the above study, the number of jobs, and the demands for staff for cach job, is limited (only two
types of jobs and two demands). The solution of the problem does not specify which employee is
assigned to which job; it only specifies the number of workers assigned to cach schedule. This
thesis differs from the above study in that no limitations are placed on the number of jobs or the

number of demands, and the solution does specify employee assignments. In addition, this thesis

13

considers employee type (salary, part time, full time and etc), employee availability and employee

seniority; none of which were included in the study by Cai and Li.

1.8 Research Scope and Objectives

In this thesis, the problem of scheduling staff with different skills and employee types for large
retailers is reviewed. The objective of this study is to determine a schedule for each employee, for
a specific location of the retailer’s store that minimizes the amount of total payroll cost and
penalties for violating the various rules and employee preferences. In this study, a GA is applied as
the solution method to this problem and the effectiveness of GA for this problem is investigated.
As it was indicated in section 1.3, personnel scheduling/rostering has received little attention for
retail business in the literature; however, plenty of works have been done in the other areas of
personnelischeduling (such as crew scheduling, nurse scheduling, call centers and rostering with
multi-criteria) in the literature. Shift definition, large range in the problem size, different
employee types, various skills, various skill levels, various jobs and locations, different staff
demands, considering employee’s availability and seniority are the features that differentiate this
study from the other studies in the literature. In this study, a shift includes day, location, start
and end times, skill and activity, while in the other cited studies in the literature shift includes
only start and end times. A large range in problem size is considered in this study (from 17
employees to 600 employees), while in the other studies, only problems with small size (such as
27 employees) have been considered. In this study, there is no limitation on the number of
employee types, skills, jobs and required employees, but these have been limited in the other
studies; for instance, scheduling staff with two different skills or scheduling staff for two specific

jobs with two specific staffing demands have been discussed.

For many of the personnel scheduling applications, GA has been used as a solution method and
good encouraging results have been achieved. To the best of the author’s knowledge, GA has
been implemented for the retail personnel scheduling only in one case by Abboud et al. (1998);
please see section 1.7. What differentiates the mentioned survey (Abboud et al., 1998) from this

thesis are: The required number of salesmen for each branch was not specified; instead, for each

14

branch, a fuzzy target gross sales was given. But in this thesis. the required number of
employees is considered. The solution of this problem does not specify which salesman, for
which task and what time is assigned to a specific branch; it only specifies how many employees
to be assigned to each branch. But the solution of problem in this thesis specifies which
employee is assigned to which shift (day, location, start and end times, skill and activity). In
contrast with this thesis, employee type (salary, part time, full time and cte), employee availability,
employee seniority have not been considered in Abboud’s work. The applied constraints and

objectives in this thesis are more comprehensive than Abboud’s survey.

1.9 Thesis Structure

The structure of this thesis is as follows: In chapter 2, a detailed description of the problem is
provided. In chapter 3, a general concept of the genetic algorithm is described in more detail and a
GA is proposed for solving the problem under study. In chapter 4, the results of design of
experiment and analysis of variance (ANOVA) on three test problems are explained. In chapter 3,
the performance of proposed GA is verified with the existent integer goal programming model

(IGP). In chapter 6, the conclusion and future research are addressed.

15

Chapter 2

PROBLEM DESCRIPTION

2.1 Overview

In this study, the problem of scheduling staff for large retailers is reviewed. The objective of this
study is to determine a schedule for each employee for a specific location of the retailer’s store that
minimizes the amount of total payroll cost and penalties for violating the various rules and
employee preferences.

Large retailers continuously encounter fluctuation in customer demand and workforce availability,
and as a result, face the issue of understaffing or overstaffing. The key for a retailer success is
scheduling an adequate number of ~employees considering employee preferences. Understaffing
leads to poor customer service, causing reduced customer conversion rates and a potential loss of
revenues. Understaffing can also lead to erhp]oyee dissatisfaction. Overstaffing results in payroll
expenditures. Appropriate labour scheduling enhances customer service, operational efficiency
and employee satisfaction. It is very important for a retailer to ensure the right employees, with the
right skills, be in the right place at the right time. Retailers are involved with plenty of rules or
constraints related to either their own policy or labour union rules. These rules make the labour
scheduling problem in a retail environment very complex. Quan (2004) divides the rules for a

retailer into four categories as follows:

1- Basic workload assignment

2- Government or union regulations
3
4

Cost & budget considerations

Employee quality of life

16

2.2 Retailers Rules

Each retailer has its own policies and rules. The most common rules for retailers are listed and
described below. It is necessary to mention that not all of these rules have been implemented in

this project; the list of implemented rules in this study is provided in section 2.3.

1. Honour skill requirements: This rule ensures that each employee is only assigned to those
jobs for which he/she has the required skills. The skills are divided into job related skills
such as ability to stacking shelves or loading trucks and side skills such as first aid.

2. Honour employee availability: According to this rule the availability of all the employees
must be examined to make sure they are not scheduled for shifts for which they are not
available.

3. Enforce maximum shifis per day: Union rules may stipulate that each employee can only
work one shift per day. This will prevent employees from working a few hours, going
home and then coming back to work for another few hours. Such shift patterns may be
viewed as distressing to the employees. Each employee can individually opt out of this
rule.

4. Enforce minimum hours per shifi: This rule ensures that an employce is given at lcast the
specified minimum hours per shift (for example, union regulations may stipulate that staff
must be given at least four hours per shift).

5. Enforce maximum hours per day and per schedule: Each individual staflf member can have
different maximum allowable hours or union rules may stipulate that employees may not
work more than for instance 60 hours per schedule. This rule ensures that the schedule
does not exceed the specified maximum hours for each employec.

6. Enforce maximum consecutive work days: This rule ensures that staff members are not
scheduled for more than maximum consecutive days, for instance three days.

7. Satisfy staff requirements: This constraint ensures that the schedule satisfies workload
requirements (the preferred and minimum number of required staff for a specific job, skill
and activity) for each department in the store and for each day and time interval.

8. Enforce minimum hours per week for fixed shift employees: This constraint ensurcs that

fixed shift employees are scheduled for their total fixed hours. A fixed shift is a shift for
17

10.

11.

12.

13.

14.

15.

16.

which the start and end times do not change. Staff may have a special arrangement where
they are given fixed weekly shifts such as, Monday to Friday, 9am to Spm. An employee
who is assigned to this type of shift is referred to as a fixed shift employee.

Enforce required hours for salaried employees: This rule ensures that the salaried
employees are scheduled for their required number of hours.

Assign staff considering seniority: Given it is possible to schedule two or more employees
for the same shift, this rule ensures that the most senior employee is scheduled for the job.
Skill level better than required level: This constraint ensures that the employee with the
highest skill level is selected first.

Preferred employee type (full time, part time, seasonal): Union rules may specify that one
employee type should be preferred over another. For example, full time staff should be
given preference over part time staff. Therefore, when two or more personnel can be
assigned to a shift, the preferred one (full time employeé) is selected.

Maximum weekends per calendar month: Some constraints are in place for employee
wellbeing and morale, for example, not scheduling an employee to work more than two
Saturdays in a month, in order to allow them more time at home with their families.
Enforce maximum shifis per schedule: This rule prevents staff from being scheduled for
more than the considered maximum shifts per schedule, for example six shifts. Unlike the
maximum shifts per day rule, each employee can not opt in or out of this rule. Each
employee can not choose their own maximum number of shifts per schedule. Fixed shift
employees are excluded from this rule.

Enforce maximum nights per schedule: Union rules or local labour laws may stipulate that
if an employee is a minor (e.g. under 15 years old), they cannot be scheduled for more than
a certain number of nights after a set time (e.g. two nights after 8pm) as it is dangerous for
them to get home late at night.

Budget limit & schedule to budget: The budget may be defined in terms of payroll cost or
total hours worked. The policy of “budget limit” ensures that the cost of a schedule for all
the employees does not exceed the budget limit. While the “schedule to budget” policy

indicates that the schedule must use the entire budget assigned to a given store; for example

18

17.

18.

19.

20.

some people may be scheduled who will effectively have no real work to do, but they are
there just to use the assigned budget for that store.

Limit overtime per day, per schedule: Company policy and/or union labour agreements
may dictate limits on the maximum number of overtime hours for the day or schedule. A
general policy to minimize overall payroll costs would force individual employee wages
for regular and overtime hours to be taken into account for any given schedule.

Enforce not scheduling Saturday and Sunday on the same weekend: This rule ensures that
an employee gets at least one day off for the weekend.

Enforce minimum hours per schedule: This rule ensures that an employee is scheduled at
least for a minimum number of hours. Employees can have different minimum hours.
Enforce minimum consecutive days off: Many retail chains are open seven days a week
now and labour laws often require that employees be allowed to have two days off in any
seven day period (to simulate a weekend). It does not necessarily have to be Saturday and

Sunday, just any two consecutive days.

2.3 Implemented Staff Constraints in this Study

Some of the constraints from the list provided in section 2.2 are implemented in this study and are

listed below. Each rule or constraint depending on the company policy or union regulation is

classified as soft, hard or scheduling preferences. In this thesis, classifying constraints as hard or

soft has been done according to the policy of the industry partner. Hard constraints are those that

must be satisfied. Soft constraints are those that can be broken but there is a penalty for breaking

them. These rules and scheduling preferences are described in detail in chapter 3.

2.3.1 Hard Constraints

1.

A

Honour employee availability

Honour employee skills

Enforce maximum one shift per day
Enforce maximum intervals per day
Enforce maximum intervals per schedule

Enforce maximum consecutive days

19

2.3.2 Soft Constraints
1. Enforce minimum intervals per week for fixed shift employees
2. Satisfy minimum staff requirements
3. Satisfy staff requirements
4

Enforce required intervals per week for salaried employees

2.3.3 Scheduling Preferences
1. Seniority
2. Skill level
3. Option-weight
4. Group-weight

2.4 Employee Classification

In this study, an employee is classified into the following categories:
e Parttime
e Full time
o Fixed shift
e Salary
e Hourly

2.5 Data Generation

The data that is used in this study is generated by existing forecasting and scheduling systems (the
industry partner). The forecasting system performs sales forecasts for the associate retailer and
generates workload requirements. The scheduling system keeps track of employee availability,
employee preferences and retailer regulations (minimum/maximum hours that each employee can
work, maximum shifts per day/schedule, limit overtime per day, per schedule and so on), employee
category (full time, part time, fixed shift, salaried, hourly), employee specifications (seniority,

wage rate, skills, ...), employee schedule history (previous weekends worked, previous nights

20

worked) and shift rules. The existent pre-processor (written in Java) uses the information from
these two systems and generates several data files, some of which are used in this study. A list of

applied data files for this study is given in chapter 3.

2.6 Optimization Methods

In this study for solving the explained labour scheduling problem, two optimization techniques are

implemented. They are shown in Figure 2.1 and described as follows:

2.6.1 Branch-and-bound (Mosel™)

One approach is integer goal programming. The inputs (data files) from the pre-processor are fed
into another existent system with an integer goal programming model (written in Mosel™ - see
Appendix II) which performs optimization through the branch-and-bound method and produces the

optimal or near optimal schedules.

2.6.2 Genetic Algorithm (GA)

The other approach is implementing a genetic algorithm. In this study the proposed genetic
algorithm has been written in Java. This algorithm includes the same hard constraints and
objective functions as Mosel and uses the same data files generated by the pre-processor. This

algorithm is described in detail in chapter 3.

1GP Optimal or
; ,| nearoptimal
Forecasting] (Mosel) solutions

System

| Pre-processor .| Data]
(Java) files

Optimal or
Scheduling N GA | near optimal
System (Java) solutions

Figure 2.1 — Optimization methods

21

Chapter 3

METHODOLOGY

3.1 Overview

A genetic algorithm (GA) is developed in this thesis to solve the labour scheduling problem for
retailers. In this chapter, first the general concept and steps of the genetic algorithm is described,

and then in section 3.3, the developed GA is explained in detail.
3.2 General Genetic Algorithm

3.2.1 Background

A genetic algorithm (GA) is a meta-heuristic search technique, invented by Holland (1975) which
can find the global optimal solution in complex search spaces. Meta-heuristics are based on
searching the solution space and attempt to avoid getting stuck in local optima and move towards
global optimum. Solution x is called a local optimum when there is no solution with a better value

within a small neighbourhood of x.

The GA procedure involves the creation, with a suitable data representation, of a population of
individuals representing feasible solutions. The population is constantly updated by generating new
members of the population from existing members, and removing the weakest members using
fitness functions. After many iterations, the best member in the population will potentially be the

optimal, or close to an optimal solution to the problem.

An important feature of GA is searching several paths simultaneously starting with an initial
population, i.e., a set of random initial solutions. Each individual entry or member in the
population is called a chromosome. Each chromosome is equivalent to a feasible solution

containing a sequence of binary, real numbers or strings known as genes.

22

During an evolution process, a GA performs a process of selection and recombination to produce a
successor population, the next generation. The new population may consist of both parent
chromosomes and newly generated chromosomes called offspring. The recombination process for

generating the offspring chromosomes is called crossover.

The offspring chromosome may then pass through an operation known as mutation. Mutation is a
process of modifying the structure of a selected chromosome by arbitrarily changing one or more
genes. A fitness function, normally the decision objective function, is used to evaluate the
offspring and parent chromosomes. The best chromosomes in terms of fitness among the parents
and offspring will be selected for the next generation. As this process is iterated, a sequence of
successive generations evolves and the average fitness of the chromosomes tends to increase until

some stopping criterion is reached. In this way, a GA evolves the best solution to a given problem.

3.2.2 Genetic Algorithm Components

As it is shown in Figure 3.1 a genetic algorithm has eight basic components.

3.2.2.1 Representation

The first step is to apply a suitable genetic representation to the solution of the problem. How to
encode a solution of the problem into a chromosome is a key issue when using genetic algorithms.
The method of representation has a major influence on the GA performance in terms of accuracy
and computational time. Each candidate solution or individual is likened to a chromosome which is
represented by a sequence of genes from a string of bits. The interpretations of the bit string is
problem specific and could consist of binary digits (0,1), floating point numbers, integers, symbols,
matrices and so on. Each bit string in the population is assigned a value according to a problem-
specific fitness function. Various representations can be used for a specific problem with some
advantages and drawbacks. For example, consider the bin packing problem in which n objects are
placed into a number of bins (at most » bins). Each object has a weight and each bin has a limited
capacity. The objective is to minimize the number of used bins such that the total weight of the
objects in each bin does not exceed its capacity. Figure 3.2 indicates one way to encode the

solution of the bin packing problem into a chromosome.

23

Chromosome 511|516 |4 |3 |Bin

Figure 3.2 - Bin Based Representation

The position of the gene represents an object and the value of the gene represents a bin to which
the object belongs. The chromosome 51 5 6 4 3 in Figure 3.1 encodes a solution where the first
object is in bin 5, the second in bin 1, the third in bin 5, the fourth in bin 6, the fifth in bin 4 and the
sixth is in bin 3. The advantage of this representation is the constant length of the chromosomes,
which allows for the application of standard genetic operators. However, one of the drawbacks is
redundancy, i.e., a noticeable number of chromosomes encode the same solution of the problem.
The degree of redundancy grows exponentially with the number of bins, i.e., with the size of the
problem. So the size of the space the genetic algorithm has to search is much larger than the
original space of solutions. For example, 455322and411533 both represent the same
solution to the problem, the 2" and 3 objects are assigned to one bin, the fifth and sixth to one
bin, and the 1% and 4™ are assigned to another two bins. Another drawback of the above
representation is producing infeasible solutions in that a bin may be assigned too many objects,
passing its capacity.

Figure 3.2 depicts better representation for the bin packing problem that indicates which objects
belong to which bins. The chromosome in figure 3.2 can be rendered as BACBED, if the previous

representation is used.

1,453] 6|2 |Object
B|E|C|{D]|A]| Bin

Figure 3.3 - Group Based Representation

The encoding above is adapted to the objective function of the bin-packing problem, as the
objective function depends on grouping objects (Gen and Cheng, 2000). Another example is
labour scheduling problems. In many papers, solutions for labour scheduling problems have been

expressed as vectors of positive integers X = (Xj, X2,..., Xy). Each chromosome in the population is
24

represented as an N-element solution vector. Each gene (element) in a chromosome indicates one
of the labour tours (schedules). The value assigned to each gene (X)) is a positive integer which
represents the number of employees assigned to the corresponding tour. The length of a

chromosome depends on the number of feasible employee schedules (Easton and Mansour. 1999).

3.2.2.2 GA Parameters

There are three important control parameters of a simple GA. They are the population size, the
crossover rate and the mutation rate. These three parameters and their effects on GA performance
have been studied and reported on by many researchers which have been led to the following
conclusions (Rothlauf, 2002). Population size refers to the number of individuals, solutions or
chromosomes in the population. A large population size uses many samples from the search space
and as a result the probability of convergence to a global optimal solution increases. IHowever,
because of the concurrent handling of many solutions, the computation time per iteration .
increases. A small population size reduces the probability of convergence to a global optimal
solution. The frequency of the crossover operation is controlled by the crossover rate. A high
frequency will increase the speed of convergence to a favourable region which is advantageous at
the start of optimization, but if too high can result in saturation around onc solution. A low
frequency will decrease the speed of convergence and can result in a diffuse region of solutions. A
large diversity in the population is beneficial and can be achieved with a high mutation rate, but the
higher the mutation rate the greater the risk of instability. If the mutation rate is too low, it makes

it more difficult for a GA to find a global optimal solution.

3.2.2.3 Initialization

For any GA, a number of feasible solutions have to be created as the initial population. The initial
population can be generated randomly by a random number generator. In the cases that a prior
knowledge about the given optimization problem exists, this knowledge can be uscd to form an
initial population. In this way, GA starts searching in a set of approximately known solutions and

as a result converges to an optimal solution in less time.

25

Representation
A genetic representation
of solution to the problem is
designed
4

GA parameters
Values for population size and
mutation ratio are determined.

¥
Initialization
An initial population of feasible
solutions (chromosomes) is created.

> ¥
Parent selection
Candidate chromosomes are
selected according to a parent
selection rule.
¥
Crossover
The parent chromosomes
exchange some of their genes
according to the crossover pattern
¥
Mutation
One or more genes of a
chromosome is changed to allow
exploration
¥
Fitness evaluation
The next generation is formed by
selecting the best chromosomes

4
Termination
The above steps are repeated until a
termination criterion is met

Figure 3.1 - Basic Components of a Genetic Algorithm

26

3.2.2.4 Parent Selection
Candidate chromosomes are selected according to a parent selection rule. In each generation, a set
of offspring chromosomes are produced through a recombination process of two parent

chromosomes which will be explained later. Zolfaghari and Liang (2003) describe three types of

parent selection rule as follows.

Random Selection

This rule is considered as the simplest selection rule. As per this rule, two parents are sclected
randomly from the current population without taking account of the quality of the parents. There is
no restriction for selecting a parent. A parent can be selected any number of times to take part in

the process of generating offspring chromosomes.

Roulette Wheel Selection

The quality of parents is considered in this rule. A selection probability py is assigned to cach
individual or chromosome Cy in the population, this probability is proportional to the fitness value
Jrof the chromosome. First, all chromosomes are ranked based on their fitness value and then py for
each chromosome is calculated by dividing its fitness value to the total cumulative fitness value of
all chromosomes in the population. A uniform random number in the range of [0, 1] is gencrated
and according to Figure 3.4 by comparing this random number with the py, a parent is sclected.
This process is repeated until the desired number of parents is gained. A model roulette wheel can
be made displaying these probabilities. The selection process is based on spinning the wheel the
number of times equal to population size, each time selecting a single chromosome for the new

population.

27

= >/, k = Position index of a chromosome
l Cuy Ce) l .- l Cw | .- |
I Py I P2 I .- l P I ot I
0 Py payt P T I
uUJ[0,1]

Figure 3.4 - Roulette Wheel Selection

Stochastic Universal Sampling

In this rule, similar to the roulette wheel selection rule, chromosomes are mapped to a line. Each
segment of the line is equal in size to the chromosome fitness value. Then n pointers equal to
population size are placed with equal space over the line. The position of the first pointer is
_ randomly generated over the range [0, 1/n] and the consecutive pointers are placed at 1/n units

apart on the line according to Figure 3.5.

Pir= Zf}' k = Position index of a chromosome
i
1/n |
I Cuy | v Co l I\LC«) l |
| | A | | | |
o 0 Py pe) potpe) P 1
U[0,1/n]

Figure 3.5 - Stochastic Universal Sampling

3.2.2.5 Crossover or Recombination
Two existing individuals (parents) are picked from the current population by the selection

operation and two new individuals (offspring) are created by the crossover operation. The

28

crossover is used to perform a local search to try to find an improved solution. Many crossover

techniques exist; the most common of them are as follows:

One-Point Crossover
A crossover point on the parent chromosome is selected. All data beyond that point is swapped
between the two parent chromosomes. The two resulting individuals are the children or offspring.

Figure 3.6 depicts a one-point crossover.

parents

crossover point

offspring

Figure 3.6 - One-Point Crossover

Two-Point Crossover
Two crossover points are selected for the parent chromosomes and all the genes between the two
points are swapped between the two parents and two offspring are generated. Figure 3.7 depicts a

two-point crossover.

parents

crossover
pomts

Figure 3.7 - Two-Point Crossover

Uniform Crossover

This type of crossover is accomplished by selecting two parent solutions and randomly taking a

component from one parent to form the corresponding component of the child.

29

A template chromosome of binary genes with the same length as parents is randomly generated.
Each gene of the child is formed by the accordant gene of the template chromosome, in that for
offspring 1 if the value of the accordant gene is 1, the gene is taken from parent 1 and if 0 it is

taken from parent 2; and for offspring 2 if the value of the accordant gene is 1 it is taken from

parent 2 and if 0 it is taken from parent 1. Figure 3.8 illustrates a uniform crossover.

L[[[| | [rarentl

L] Parent2

[1 1 Jo]1]o]o | Template

[T T 1 [2-]-]chid1

[T T]child2

Figure 3.8 - Uniform Crossover

3.2.2.6 Mutation

The mutation operator tends to make small random changes in one parent to form one child. The
mutation operator selects one or more gene randomly and changes their value. The purpose of
mutation is an attempt to explore the entire solution space and escaping from the local optimum by
preventing the population of chromosomes from becoming too similar to each other. Figure 3.9

depicts a mutation operation.

LI [[T [[Parent

| | Offspring
Figure 3.9 - Mutation

3.2.2.7 Fitness Evaluation

The fitness evaluation function acts as an interface between the GA and the optimization problem.
The GA fitness function evaluates the quality of solutions (chromosomes) according to the
objective of the optimization problem. Fitness function might be complex or simple depending on
the optimization problem at hand. Consider the population size for a GA is n, i.e. the number of

30

feasible solutions in the current population equals to n. Afier conducting crossover on the
population, the population size including parent and offspring solutions increases to 21 if the
crossover produces two children from a pair of parents. By the fitness function the 2n
chromosomes are ranked and the best n chromosomes out of the 2 available ones are selected as
the population of the next generation. Therefore, the new population consists of the best

individuals from the parents and offspring.

3.2.2.8 Termination

This process (steps 4 to 7 in Figure 3.1 - parent selection, crossover, mutation and fitness

evaluation) is repeated until a stopping criterion is met. The most frequently stopping criteria are as

follows:

1. Maximum number of generations

2. Population convergence criterion when the sum of the deviations among individuals becomes
smaller than a specified threshold.

3. Lack of improvement in the best solution over a specified number of generations.

3.3 The GA Design for Retail Labour Scheduling

In this section, a genetic algorithm is designed for the retail labour scheduling problem. This GA
has been written in Java. A portion of the Java code is included in Appendix IIl. The steps that
were described in section 3.2.2 are represented by the box labelled “Genetic Algorithm” in Figure
3.10. The GA uses the “potential solutions” and the other “data files” (explained in section 3.3.2)

as input and then finds the global optimal or near optimal solution through the GA steps.

31

Potential solutions

(Choice data file)
Genetic | GA optimal or
Algorithm near optimal
luti
Employee data file, solution

shift information
data file,
requirement data
file

Figure 3.10 - Genetic Algorithm

To describe the developed GA in this study, first some terms and data files are described as

follows:

3.3.1 Terms

Interval: An interval is the smallest segment of fime that is defined for scheduling purpose. In this
study an interval can be 15 min, 30 min or 60 min. Counting intervals starts from 12:00am. For
instance, if interval is defined as 15 min, a day includes 96 intervals. Interval 1 is 12:00am to
12:15am, and interval 96 is 11:45pm to 12:00am. The start time and length of a shift are expressed

in intervals.

Shift: A shift specifies day, location, position, skill, activity, start time and length. An example of
a shift ID is as follows: (please note the following examples are provided in the same format as the
data files)

4, 46304*20002*12481*10001.37.10 which indicates

day = 4 (Thursday)

location = 46304 (sports equipment store)

position = 20002 (sales associate)

skill = 12481 (knowledge of sports equipments)

activity = 10001 (providing information to customers for what they are looking for)

shift start interval = 37 (i.e. if interval is 15 min, shift starts at 9:00am)

32

shift length = 10 intervals (shift ends at interval 46, i.e.. if interval is 15 min, shift ends at

11:30am)

Job: A job specifies location, position, skill and activity.
Here is an example of a job: 46304*20002*12481*10001 (i.c. providing information to the
customers at the sports equipment store as a sales associate and having the knowledge of sports

equipments as the required skill)

Choice: A choice is formed by assigning a possible shift to an employee.

‘4, 46304*20002*%12481*10001.37.10°, 252574, 1.9744, 1.9 is an example of one choice which
indicates employee 252574 is assigned to shift ‘46304*20002*12481*10001.37.10°

shift = 46304*20002*12481*10001.37.10

employee = 252574

Associated with each choice there are “option-weight” and “skill-level-weight” values which are
used for developing the GA fitness function in section 3.3.4.5. For the above example
option-weight = 1.9744

skill-level-weight = 1.9

Option-Weight: Associated with each choice is an option-weight. A smaller option-weight means
the particular choice is more likely to be chosen. The existent system considers some factors and
constraints for calculating option-weight as follows:

1. Preferred employee type: Any number of different employee types can be defined such as
full time, part time, seasonal and regular. Suppose the preferred employee type has been
specified as full time. If the employee associated with a choice is full time, pre-processor
does not do anything, but if he is not full time, it makes the associated option-weight for
that choice higher, so that the choice is less likely to be chosen.

2. Max Saturdays (or Sundays) per calendar month: Suppose the Max Saturdays (or Sundays)
per calendar month is equal to 2. If, for example, one employee has already worked two
Saturdays in the calendar month the pre-processor makes the associated option-weight for
all of employee’s Saturday choices in the current schedule higher. This will prevent the

optimization model from giving the employee a Saturday shift.

33

3. Longest shifts are preferred: If the shift length of a choice is long, the pre-processor makes
the associated option-weight for that choice smaller so that the choice is more likely to be

chosen.

4. Earliest shifts are preferred: If the related shift of a choice starts earlier, the pre-processor
makes the associated option-weight for that choice smaller so that the choice is more likely

to be chosen.

Staff group: Organize staff members governed by the same shift rules, break rules and staff rules

into logical “teams” for scheduling. Staff groups are defined for each location.

Shift rules: Shift rules are applied to a location and a staff group which specifies the “Min shift

length”, “Max shift length”, “shift start time”, “shift end time” and “interval length”.

3.3.2 Data Files Used in This Study

For each data file, only the data that are used for this thesis are listed.

3.3.2.1 Requirement Data File
The following data are extracted from the data file:

- Preferred number of required employees for job & on interval ¢ of day d: Ry

- Minimum number of required employees for job & on interval 1 of day d: Rpy

- Unit penalty of understaffing of job k on interval ¢ of day d: Py

3.3.2.2 Employee Data File
The following data are extracted from this file for each employee:

- Employee Id: i
- Maximum intervals per schedule for employee i: IS"*
- Maximum intervals per day for employee i: ID]"*

- Fixed-shift employees: FE
- Salaried employees: SE

34

- Minimum intervals per week for fixed-shift employee i: 7;™™"

- Required intervals per schedule for salaried employee i: RJ;
- The number of paid time-off intervals for salaried employee i: IP;
- The number of consecutive days from the previous schedule: CD;

- Seniority-weight for employee i: S;

- Group-weight for employee i: G;

3.3.2.3 Shift Information File
- Unpaid break intervals for shift j: UBI;

3.3.2.4 Choice Data File

- Choices (The combination of employees and shifts)

- Option-weight for shift j and employee i: Oy

- Skill-level-weight for employee i for the associated skill of shift j: IV

- If choice ¢ is mandatory or not:

3.3.3 GA Terms
Potential solutions: Potential solutions include all the potential valid combination choices of shifts
and employees and are derived from the choice data file. The employee skill and employce

availability are the factors that determine the choice validity.

Search space: Genetic algorithm search space includes all the potential solutions. GA explores the

search space and finds the optimal solution.

Feasible solution: The feasibility of a GA solution is verified by the hard constraints which are
explained in section 3.3.4.2. A solution is feasible only if all the hard constraints of the problem are

satisfied.

Optimal solution: Optimal solution is the employee/shift combination which minimizes the value

of fitness function (also called the best schedule).

35

3.3.4 The Steps of the Proposed GA

In this section, the steps of the proposed GA are described as follows:

3.3.4.1 Genetic Representation of Solution to the Problem

In this study, the solution of GA is the schedule for all of the employees which can indicate how to
encode a solution of the problem into a chromosome. Each individual or chromosome is
represented by a one-week schedule for all the employees. Figure 3.11 shows the schema of one
chromosome. In each chromosome or individual, each weekly schedule for each employee is

considered as one gene. The chromosome length is the number of employees (V).
3.3.4.2 Create an Initial Population of Solutions

GA explores the search space in order to find the optimal solution starting with an initi.;cll
population. GA’s search space is included all the potential solutions. Potential solutions in this
study include all the potential valid combination choices of shifts and employees and are derived
from the choice data file. The employee skill and employee availability are the factors that
determine the choice validity. In this study, initial population with size p is generated randomly.
Figure 3.12 shows the schema of a population with size p. Initial population must be feasible and
during the search process the feasibility of the solutions always must be maintained. The feasibility
of a GA solution is verified by the hard constraints. A constraint is considered as hard if it must be
satisfied. A solution is feasible only if all the hard constraints of the problem are satisfied. As it

was indicated in chapter 2, the hard constraints in this project are as follows:

1. Honour employee availability

The GA initial population of solutions is always feasible in terms of satisfying employee
availability. Because, as it was mentioned earlier, the GA search space is the choice data file which
is created by the pre-processor. When this rule is checked, the pre-processor will not create a
choice for any employee who is not available to work on a particular day and interval. Thus, the
initial population of GA always satisfies this constraint. However, this feasibility must be

maintained during the search process by crossover and mutation operation. As it will be described

36

in sections 3.3.4.3 and 3.3.4.4, the implemented crossover and mutation operator in this study do
not disturb this feasibility.

v

5 (Employee 1

&0 day 0: choice 1
:-3 day 1: choice 2
2 4 day 2: choice 3
E— day 3: choice 4
3 day +: choice 5
& day 5: choice 6
N day 6: choice 7
= .

3 : S

ke Employee 2

Q

w .

=

o

=

L

K

=z

g (Employce N

2 day 0 : choice 1°
= day 1: choice 2°
5 < day 2: choice 3°
:§ day 3: choice 4°
n day 4: choice 5
g day 5: choice 6
2 day 6: choice 7°
S .
%]

Figure 3.11 - Chromosome or Individual Representation

2. Honour employee skills

Similar to the above, the pre-processor does not create a choice for any employee who does not
have the required skill for a specific job. As a result, the GA initial population of solutions which is
derived from the choice data file is always feasible. The same discussion as “honour employee

availability” holds for maintaining the feasibility during the search process.

37

3. Enforce maximum one shift per day

The feasibility of a GA solution for this constraint is simply maintained by the gene structure. Each
gene of each solution is a weekly schedule for each employee containing one shift per day. The
implemented crossover and mutation operator do not disturb the feasibility of the GA solution for

this constraint, because they do not change the gene structure.

4. Enforce maximum intervals per day

Because of “Enforce maximum one shift per day” constraint and the fact that pre-processor does
not generate any choice in choice data file unless maximum intervals per shift for an employee is
satisfied, the maximum intervals per day for employee i, is always satisfied by the gene structure
and does not to be checked. The implemented crossover and mutation operator do not disturb the

feasibility of the GA solution for this constraint, because they do not change the gene structure.

5. Enforce maximum intervals per schedule

This rule must be checked for any GA solution during the search process including the initial
population of solutions. It is shown in Figure 3.13 that as a schedule is generated, the algorithm
compares the total intervals of the GA solution for employee i (is;) with the allowable maximum

intervals for that employee (1S;"™). IS;™™ is obtained from the employee data file; if is;

> IS™™ , a repair method is applied to make it feasible. Figure 3.14 shows the repair process for

this constraint. Fixed-shift and salaried employees are not considered for this constraint.
Following notations are used in Figure 3.13 and 3.14.

Lgi = Length of shift on day d for employee i

ND = Number of days in the scheduling period

ch; = Set of choices for employee i in the GA solution

e;= Employee i

6. Enforce maximum consecutive days
This rule must be checked for any GA solution during the search process including the initial

population of solutions. The consecutive days are “carried forward” from last week. For example

if a person worked Friday, Saturday, Sunday last week and then Monday and Tuesday this week,
38

the person is considered to be working for five consecutive days. - Figure 3.15, depicts how this
constraint is checked for any GA solution by the algorithm. If a GA solution violates this
constraint, a repair method is implemented to that solution in order to make that solution feasible.
Fixed-shift employees are not considered by this constraint. Following notations are used in

Figure 3.15.

CD; = number of consecutive days that employee i has worked in the previous schedule (obtained
from the employee data file)

CD™ = number of maximum consecutive days that is defined as a parameter for the problem
3.3.4.3 Parent Selection and Genetic Operator Crossover

The one-point crossover is used for this algorithm. At each iteration of GA, parent sclection and

crossover operation are performed as per following steps:

1. Two chromosomes (parents) are selected from the initial population randomly. .

2. One employee is selected randomly from the first chromosome (parent 1) then one day is
selected (start with day 0), and the shift belonging to that day and that employec is sclected
from this chromosome.

3. The same employee and day as the ones in step 2 is selected from the second chromosome
(parent 2); then the shift belonging to this employee and day is selected from this chromosome.

4. Steps 2 and 3 are repeated for all the days in the scheduling period (7 days).

5. The start interval and shift length of all the selected shifts from parent 1 are swapped with the

ones from parent 2 and two offspring (child 1 and child 2) are generated.
The crossover operation is repeated as many times as the population size.

By performing crossover as above, the feasibility of the GA solutions is maintained for “honour
employee availability”, “honour employee skill”, “enforce maximum one shift per day” and

b

“enforce maximum intervals per day” hard constraints of the problem.

39

Another way of doing crossover operation was also examined. In this crossover, instead of being
limited to the same employee (step 3 above), any operator could be selected. The problem was, too
many infeasible solutions were generated in terms of employees’ unavailability, and GA had to
spend plenty of time for repairing the generated infeasible solutions. For this study, only the first

crossover method (crossover over the same employee) has been implemented.

Chromosome 1 Chromosome 2 Chromosome p

5

§ (Lmployee 1 5 (Limployce 1

~ day 0: choice 1 i’b day 0: choice 1
5 day 1: choice 2 . 8 day 1: choice 2
z day 2: choice 3 2 < day 2: choice 3
= ﬁ day 3: choice 4 = day 3: choice 4
5 day 4: choice 5 e * 5 day 4: choice 5
S day 5: choice 6 S day 5: choice 6
= g day 6: choice 7 * S- 9 day 6: choice 7
§ Iimployce 2 "§ Iimployce 2

S 5 ’

%] . 197} .

e (

Employee N
day 0: choice 1°
day 1: choice 2°
day 2: choice 3°
< day 3: choice 4°
day 4: choice 5
day 5: choice 6°
day 6: choice 7°

Limployce N
day 0: choice 1°
day 1: choice 2°
day 2: choice 3°
< day 3: choice 4°
day 4: choice 5°
day 5: choice 6
L day 6: choice 7°

Schedule p for employee N (gene N)

Schedule 1 for employee N (gene N)

Figure 3.12 - Population with Size (p)

40

i=1

!

Y i=i+1 > Get e, from the GA
solution

Yes

Ise, e
FE or SE

Get ISI-mﬂx fore,:

is,~=0
d=0

Get L; from the GA solution

A

is,=is,+ Ly

d=d +1

Figure 3.13 - Flowchart for “Enforce maximum intervals per schedule”

41

\ 4

. diff = s, - IS

Sclect one choice randomly (not
selected before) from ch;

Get the L, of the selected choice

Ld: = [4‘/, - diff
is, = is; - Ly No

Ldl =
is; = isj- Ly,

Yes

Isis; > IS

Y

Figure 3.14 - Flowchart for “Enforce maximum intervals per schedule”

42

i=1
count=0

A

o Gete, from the GA
solution

o =i+]
Get CD, for e,
A4
count =CD,
d -0
y
. Get L, from the
GA solution
d=d+1 No
A A

Yes

count = count + 1

No

Is count >

CDI‘I‘IGK

Isd<ND -]

Figure 3.15 - Flowchart for “Enforce maximum consecutive days”

43

3.3.4.4 Genetic Operator Mutation

In this study, mutation is applied to the offspring. After the creation of child 1, an integer random
number y in the range [0, b] is generated. If y is smaller than mutation threshold, mutation is
performed on child 1 in the following steps.
1. One gene for one random employee is selected from child 1
2. One choice for one random day is selected from that gene
3. One choice is selected from the potential choices for that employee and that day
4. The selected choice on step 2 is replaced with the selected choice on step 3.
The same procedure is repeated for child 2.
Example:
mutation base = b = 100000
mutation threshold = mutation rate * mutation base
mutation rate = 0.3
mutation threshold = 0.3 * 100000 = 30000
y=456
456 <30000 mutation operation is performed on child 1.
In this algorithm, if mutation rate is 0.3, 30% of the time mutation is performed. If mutation rate is

selected greater than or equal to 1, the mutation is always performed on the offspring.
3.3.4.5 GA Evaluation (Fitness) Function

After crossover and mutation operation, the fitness value of the parent population and offspring
population is calculated by the fitness function which is developed in this section and the best
individuals i.e., the individuals with the best fitness value either from the parent or offspring
population are selected and the new population is evolved. The number of best selected individuals
is as many as the population size.

The fitness of the GA solutions is based on the objective of the retail labour scheduling problem.
As it was explained in chapter 2, the objective of the labour scheduling problem for retailers is to
determine a schedule that minimizes the amount of total hours worked as well as the penalties from
violating the specified staffing rules (soft constraints) and other scheduling preferences.

44

Soft constraints are those that can be broken, but a penalty is considered for breaking them. The
penalty value of breaking a rule can vary from small to large considering the importance level of
that rule. Each soft constraint and also scheduling preferences like seniority, option-weight, group-

weight and skill-level-weight are considered as a component of the GA fitness function.

In the section below, in order to derive the fitness function for the proposed GA. first a
mathematical integer programming (IP) model representing objective function. soft and hard
constraints and then an IGP model are provided. In order to develop the IGP model, a penalty is
defined for the violation of each soft constraint of the IP model. After assigning a penalty, cach
soft constraint of the IP model becomes a component of the objective function for the IGP model.

The GA fitness function is represented in section 3.3.4.5.4.
3.3.4.5.1 Notations

In this section, the notations which are used for the /P and /GP model are provided as follows:

E set of employees
SE salaried employees’ subset
FE fixed-shift employees’ subset
NF non-fixed-shift employees’ subset
NFS non-fixed-shift and non-salaried employees’ subset
D set of days
¢ set of constraints
I set of intervals
J set of jobs
N set of shifts in the GA solution (chromosome)
d day index
i employee index
J shift index
job index

45

Pro

Py

RES
RI;
IP;
UBI;
PS;

Gi

constraint index

interval index

schedule index

length of shiftj (expressed in interval)

1, if employee i is available for shift; 0, otherwise

1, if employee i is assigned to shift j; 0, otherwise

1, if shift j happens on day d; 0, otherwise

1, if employee i has the required skill for shift j; 0, otherwise

minimum intervals per week for fixed-shift employee i (expressed in interval)

penalty for violating soft constraint »

penalty for total hours worked by all employees

unit penalty for violating the C7 constraint

unit penalty for violating the Cy constraint

penalty per interval for giving salaried employees less than their required intervals
per schedulé (unit penalty for violating the Cyo constraint)

penalty per interval for giving salaried employees more than their required intervals
per schedule (unit penalty for violating the Cyo constraint)

total intervals per week for employee i which is calculated for the GA solution
(expressed in interval)

preferred number of required employees for job & on interval 7 of day d

number of assigned employees to job k on interval ¢ of day d (calculated from the
GA solution)

unit penalty for understaffing of job k on interval 7 of day d

minimum number of required employees for job & on interval ¢ of day d

required intervals per schedule for salaried employee i (expressed in interval)
paid time-off intervals for salaried employee i (expressed in interval)

unpaid break intervals for shift j (expressed in interval)

paid Intervals per schedule for employee i which is calculated for the GA solution
(expressed in interval)

group-weight for employee i

46

Oy option-weight for shift j and employee i

S; seniority-weight for employee i
Wy skill-level-weight for employee i for the associated skill of shift j
D™ maximum intervals per day for employee i (expressed in interval)
s maximum intervals per schedule for employee i (expressed in interval)
is; maximum intervals per schedule for employce i for the GA schedule (expressed in
interval)
CD; number of consecutive days that employee i has worked in the previous schedule
cD™ number of maximum consecutive working days
3.3.4.5.2 IP Model

minimize Z = ZZaLjX,-j + Z Z 0;X

JjeSieE

2. 2. SiLiX;

jeS ieNF

subject to

X;€{0,1}, 4; €{0,1},U; €{0, 1}

Ty €401}

hard constraints:

« X;<4y

. Xy <Uj

. ZTdJXU <1

¢ ZTdJ 1]'—

Jjes

Dmax

. D LiXy; <IS™

i S
JjeS

Xy + 2, 2 GXy+ 2 0 W

JjeSieNF jeSiek

VieE, VjeS

VYdeD, VjeS

VieE, Vjes
VieE, VjeS

VieE, VYdeD

Vie NFS, Vde D

Vie NFS

47

(Co)

(Cy)
(C2)

(&))

(Cy)

(Cs)

D X;+CD; <CD™ Vie NF (Ce)
JjeS

soft constraints:

> LiX,; 2T Vie FE (C)
jeS
S = Ry VkeJ, Vtel VYdeD (Cs)
S,y = R VkelJ, Viel, Yde D (Cy)
D (L,-UBI,)+IP,=RI, VieSE (Co)
jes

3.3.4.5.3 Description of the IP Model Components

L. Objective function components of the IP model

1. Total hours worked objective function component: The purpose of this objective is to

determine a schedule that minimizes the amount of total hours worked by all the staff.

minimize Z, = Z Z aLjX,-j
jeSiekE

a = penalty for total hours worked by all employees, this will help reduce the total hours of the
schedule

L, = length of shift j (expressed in interval)

X, =1, if employee i is assigned to shift j; 0 otherwise

Option-weight objective function component: As it was explained in section 3.3.1, associated
with each choice is an option-weight. A smaller option- weight means the particular choice is
more likely to be chosen. Fixed-shift employees are not considered by this objective

component. This objective component for a schedule is simply defined as follows:

minimize Z; = Z Z 0, X
JjeSieNF

Oj; = option-weight for shift j and employee i (derived from the choice data file)

48

3.

w

Group-weight objective function component: Each employee belongs to a staff group. Each
staff group has a group-weight assigned to it. A higher group-weight means employees
belonging to that group are less likely to get scheduled. Fixed-shift employees are not

considered by this objective component.

minimize Z; = Z ZGiX,.J.
JeSieNF

Gi = group-weight for employee i (obtained from the employee data filc)

Skill-level-weight objective function component: A retailer may divide cach skill into different
levels. It is desired that a choice with the highest skill level for the associated employee is
selected. Each choice includes a skill-level-weight in the choice data file; the smaller skill-

level- weight represents the higher skill level. The purpose of this objective is to find a

_schedule with the highest skill level or the lowest skill level weight. The length of the shift (L)

in (Z,) indicates that the highest skill level is desired over entire time of the schedule.

minimize Z; = > WL X,
. jeSieE

W;= skill-level-weight that employee i has for the associated skill of shift j (derived from the

choice data file)

Seniority-weight objective function component: For all the employees who are not fixed-shift,
given two or more employees can be scheduled for the same day/shift, this rule ensures that the
staff with the highest seniority (lowest seniority-weight) is assigned to the schedule. The
purpose of this objective is to find a schedule with the highest seniority level. Fixed-shift
employees are not considered for this objective component. The length of the shift (L)) in (Zs)
indicates that the highest seniority (lowest seniority-weight) is desired over entire time of the

schedule.

minimize Zs = Z Z SiLi X
JjeSieNF

S; = seniority-weight for employee i (obtained from the employee data file)

49

RYERSON UNNERSITY LIBRARY

II. Hard constraints of the IP model

In section 3.3.4.2 hard constraints were explained in detail. Here they are explained in terms of the

formulation.

1. Honour employee availability (Cy): The purpose of this constraint is to prevent the assigning of
shifts to employees who are not available for those shifts.

Xij <4 VieE, VjeS

4; €40, 1 } 1, if employee i is available for shift j; 0 otherwise

2. Honour employee skills (C3): The purpose of this constraint is to prevent the assigning of shifts
to employees who do not have the required skill for those shifts.

Xist,.j VieE, VjeS

U; €40, 1 } 1, if employee i has the required skill for shift j; 0 otherwise

3. Enforce maximum one shift per day (Cs): This constraint prevents the assigning of more than

one shift per day to employees.

D TyX; <1 VieE, VdeD
j

Ty €40, 1} 1, if shift j happens on day d; 0, otherwise

4. Enforce maximum intervals per day (Cs): This constraint ensures that the schedule assigned to
each employee does not exceed the maximum intervals per day for that employee. This

constraint excludes the fixed-shift and salaried employees.

> Tyl Xy < IDI™ Vie NFS, Vd € D
jes

ID/"™ = maximum intervals per day for employee i expressed in terms of interval (obtained

from the employee data file)

50

5. Enforce maximum intervals per schedule (Cs): This constraint ensures that the assigned
schedule to each employee does not exceed the maximum intervals per schedule for that

employee. This constraint excludes the fixed-shift and salaried employees.

> LX< IS Vie NFS
jes

max __ : : . . .~ e
IS;™" = maximum intervals per schedule for employee i expressed in terms of interval

(obtained from the employee data file)

6. Enforce maximum consecutive days (Cg): This constraint prevents stafT from being scheduled
for more then the maximum number of consecutive days. This constraint excludes the fixed-

shift employees.

> X;+CD,<CD™ Vie NF
JjeS ;

CD; = number of consecutive days that employee i has worked in the previous schedule
(obtained from the employee data file)
CD™ = number of maximum consecutive working days that is defined as a parameter for the

problem

L. Soft constraint of the IP model:
After assigning penalties for violating these constraints, each soft constraint of the IP model will
be an objective component for the IGP model. The purpose of these objective components is to

discover a schedule which minimizes the violation of these constraints.

1. Enforce minimum intervals per week for fixed-shift employees (C5): This constraint cnsures that
fixed-shift employees are scheduled at least for their minimum intervals per week. In any GA
solution if the minimum intervals per week are not assigned to a fixed-shift employce, a
penalty is considered for that solution. After defining the penalty for Cs, this constraint will be

one objective component (Zs) for the IGP model as follows. The violation from this constraint

for the GA solution is obtained by Zg.

51

S LiX; =T Vie FE
jeSs

P7 = penalty for violating the “Enforce minimum intervals per week for fixed shift employees”

constraint

7}'"i”= minimum intervals per week required for fixed-shift employee expressed in terms of

interval (obtained from the employee data file)

hi = ZL ;X ;= total intervals per week assigned to employee i expressed in terms of interval
Jjes
(calculated for the GA solution)

minimize Zg= Y (™" =)" L,X;)x P xY;
ieFE jes

Y, €{0,1} Y;=1,if h,<T/"™;0, otherwise

. Satisfy staff requirements (Cg): As it was implied earlier, this constraint ensures that the
workload requirements for each job (i.e. location, position, skill and activity) on each interval
of a day are satisfied. Associated with each job and each interval of a day, there is a preferred
number of required employees (Ry4) in the requirement data file. For each GA solution the
number of assigned employees to job k on interval of day d is calculated (Syq). If Skia < Rk,
that GA solution is penalized with the pre-defined understaffing penalty (PuJ). After defining
penalty for Cg, this constraint will be one objective component (Z7) for the IGP model as

follows. The violation from this constraint for the GA solution is obtained by Z7.

Ria = preferred number of required employees for job k on interval ¢ of day d (obtained from
the requirement data file)
Swa = number of assigned employees to job & on interval ¢ of day d (calculated from the GA

solution).

Std 2 Ry VkeJ,Vtel, Vde D
Pra = Unit penalty for understaffing of job k on interval ¢ of day d (obtained from the

requirement data file)

52

minimize Z7 = Z z Z Rutd = Staa)* Prag x Vg

keJ tel deD

Yia € {0,1} Yua=1, if Spa< Rya; 0, otherwise

3. Satisfy minimum staff requirements (Co): This constraint ensures that the minimum number of’

required staff for each job on each interval of a day is satisfied. Associated with cach job and
each interval of a day, there is a minimum number of required employees (Rin) in the

requirement data file. For each GA solution, the number of assigned employeces to job & on

interval ¢ of day d is calculated (Sy4). In any GA solution, if the minimum required number of

staffs for a job on an interval of a day is not satisfied (S, < Rin), a penalty is considered for

that solution. This constraint will be one objective component for the IGP model as follows.

The violation from this constraint for the GA solution is obtained by Zs.

R&n = minimum number of required employees for job on interval ¢ of day d (obtained from
the requirement data file).
Sia = Rt VkeJ,Viel, Vde D

Poy= unit penalty for violating the Co constraint.

minimize 7, = ZZ Z (R ~S;)%x Py x¥,
keJ tel deD

¥, €{0,1} Yo=1,if Syy< gmin; 0, otherwise

4. Enforce required intervals for salaried employees per schedule (C)p): This constraint ensures
that the salaried employees are scheduled for their required intervals. After assigning penalty,
this constraint will be two objective components (Zy and Zjg) of the IGP model. The GA

solution violation from this constraint is obtained by Zyand Z),.

D.(L,—UBI,)+IP,=RI, VieSE
JjeS

53

RI;= required intervals per schedule for salaried employee (obtained from the employee data
file, expressed in terms of interval)
IP,;= number of paid time-off intervals per schedule for the salaried employee i (obtained from
the employee data file, expressed in terms of interval)
UBI; = number of unpaid break intervals for shift j (obtained from the shift-information data
file, expressed in terms of interval)
PS; = paid intervals per schedule for employee i, expressed in terms of interval, which is

calculated as follows:

PSi= > (L; -UBI;)+ 1P,
J
Py = penalty per interval for giving salaried employees less than their required intervals per

schedule

Py = penalty per interval for giving salaried employees more than their required intervals per

schedule
minimize:
Zy= 3 (Y.(L;~UBI,)+IP=RI,)xYox By = 3 (PS,—RI,)x Yy x Ry
ieSE je§S ieSE
Zyo= Z (ZRIi—(Lj—UBIj)—IPI)XYIO'xPIO' = z (RI; - PS;)x Yy x Ry
ieSE jeS ieSE

Y10 €{0,1} 1,if PS;> RI; 0, otherwise
Yo €{0,1} 1,if PS;<RI; 0, otherwise

3.3.4.5.4 IGP Model

The objective function of the following IGP model is the fitness function of the GA. And the
constraints of the IGP (hard constraints), as was explained in section 3.3.4.2, are used to determine

the feasibility of each GA solution (chromosome).

54

minimize Z = Z ZaL Xy + Z ZOUX + Z ZG,\’

jeSieE

ieS ieNF

JjeSieNF

+ZZ ij jX + z Z SiLinj+ Z(ﬂ"'i"—ZL,x\’y)xPﬁYv

JjeSieE

+ ZZ Z (Rkld —Skrd)x Pktd "Ykrd

keJ tel deD

JeSieNF ieFE Jjes

DY R -S)x Byx Y,

keJ tel deD

+ 3 (D (L, —UBI)+IP,— RI,)x Y,y x B,

ieSE jeS§

+ 2 (O RI,=(L; —UBI)~ IP)x Y, x P

icSE jeS

subject to
X;€{0,1}, 4;€{0,1},U; €{0, 1} VieE, VjeS
T;€{0,1} Vde D, VjeS
Y, e{0,1} 1,if h;< 7™ ; 0, otherwise
Yia €{0,1} 1, if Spa< Rpa; 0, otherwise
Y, €{0,1} 1, ifSk,d<R;{"";‘ ; 0, otherwise
Yi0 €{0,1} 1,if PS;> RI}; 0, otherwise
Y0 €{0,1} 1,if PS;<RI; 0, otherwise
hard constraints:
. XU_A VieE, VjeS
o XU_U VieE, VjeS
. ZdeX,JSI VieE, VdeD
. D Tyl X, < IDM™ Vie NFS, Vde D

Jjes
. D LiX; <ISM™ Vie NFS

jes
. D X, +CD, <CD™ Vie NF

jeSs

55

(Co)

(C)
(&)

(C3)

(Ca)

(Cs)

(Co)

3.3.4.5.5 Implemented Penalty Values and Weights

The user is free to define weights and the penalties associated with a constraint violation in the
IGP model (section 3.3.4.5.4). The following values have been used by the industry partner in
Mosel. For numerical experiments in this thesis, in order to compare GA and Mosel, the penalty
values and weights in the GA have been set the same as those used in Mosel. These values are
as follows:

a=>5

P7;=400,000

P9=399,900

Py =4000

Pp-=400

S, =(S;/1000)x0.12

W; =0.12x W

3.3.4.6 Evaluation and Repair Mechanism of the GA

A key feature of the proposed GA is that all the solutions (schedules) in the population are
feasible at all times. A schedule is evaluated as it is generated. This occurs regardless of how it
is created; from initial population, crossover, mutation or any change in the schedule such as
repair. Every solution must be evaluated for fitness, and if necessary repaired, as it is created or
modified in order to maintain its feasibility. The evaluation mechanism for the proposed GA
therefore includes the ability to repair the schedules while determining the cost of the schedule.

This ensures that there are no infeasible solutions in the population.

Figure 3.16 depicts the evaluation and repair mechanism of the GA. In this flowchart each hard
constraint and objective function component is referred to as a rule. Suppose the total number of
rules is equal to R and schedule z is evaluated by the sequence of the R rules and an evaluation
value (F,.) is returned for each rule »n. If rule n is an objective function component, the objective

value of that (any value greater than or equal to zero) is returned for F,...If rule » is a hard

56

constraint and is satisfied by schedule z (if the schedule = is feasible), the value of zero is
returned for .. If rule » is a hard constraint and is violated by the schedule z, a pre-defined very
large number (an error code) is returned. If an error is returned, the repair method specific to that
hard constraint is called (two repair methods specific to two hard constraints were explained in
section 3.3.4.2). The repair method modifies the schedule in a way that ensures that the hard
constraint will pass its own evaluation test and the value of zero is returned for #,.. Modilying
the schedule during the repair process in effect creates a new schedule. and so the sequence of
individual rule evaluations has to start at the beginning again. Once all hard constraints and
objective function components have been checked and have passed, the fitness values from cach
individual rule evaluation are totalled to determine the overall fitness value (TF.) for the

schedule z.

3.3.4.7 The Termination Criteria

In the proposed GA, the lack of improvement in the best solution over a specified number of
generations is implemented as a termination criterion. For the test problems of this study, if the GA
fitness value is the same over 50,000 iterations, the GA terminates the scarch process. The value
of 50000 iterations was selected after some preliminary tests. The preliminary tests showed that if
a small value is selected as the number of iterations, there is a high chance that the entire GA
search space is not investigated, and there is a possibility of further improvement in the GA
solution. Choosing a large value such as “50,000” iterations, ensures that there is a very low
probability of further improvement in the GA solution. Please note that GA scarch time that will
be used in chapter 4 is not the time taken to complete 50,000 iterations, but it is the time of

iteration for when the GA best objective value is first observed.

57

No

No. of hard constraints +
objective function
components =R

Evaluate schedule z by the
C,, module;

Retumn F,.

TF;=TF; + F,;
n=n+1

Is an error code
retuned for F,.
(Does schedule z
violates rule C,))?

> Return TF7 for

schedule =

Repair Schedule z by the

repair module of C,;
Fre=0

Figure 3.16 - Flowchart for the Evaluation and Repair Mechanism of the GA

58

Chapter 4

EXPERIMENTAL DESIGN AND STATISTICAL ANALYSIS

4.1 Experimental Design

In an experiment, the values (levels) of one or more input, or independent variables, are chosen and
the values of the output, or dependent variables are observed. The purpose of an experiment is to
investigate the relationship between input and output variables.
Experimental design is performed using the following steps (Berger and Maurer, 2002):

1. Planning the experiment

2. Designing the experiment

3. Analyzing data from the experiment

4.1.1 Planning the Experiment
The planning process is vital to the success of the experiment, and it consists of the following
steps:
1. Establish the dependent, or response, variable(s) or performance measure.
2. Identify the input, or independent, variable(s) or factor(s) that potentially affect the
response variable.

3. Determine the number of levels and values for each factor.

4.1.2 Designing the Experiment

In this step, the type of design of experiment is selected. Factorial design and one-at-a-time design
are two types of experimental design. In the one-at-a-time design, the effect of cach factor on the
response variable(s) is investigated separately, while in the factorial design, the effect of factors on
the response variable(s) are studied simultaneously. Fewer observations are needed for factorial
design compared to one-factor-at-a-time, in which separate experiments for cach factor arc
conducted independently. Also, studying the interaction between factors on the responsc variable

is possible with factorial design and not with the one-at-a-time. The simplest factorial experiment

59

considers two factors, with two levels for each, and is called a 22 factorial experiment. Replication
allows a researcher to investigate interaction. The experimental runs in a factorial experiment
should also be randomized. Randomization attempts to reduce the impact that bias could have on
the experimental results. When there are many factors, many experimental runs are necessary. For
cxample, experimenting with 13 factors at three levels each produces 313 = 1,594,323 different
combinations. The full factorial design may not be feasible due to high cost or insufficient

resources. In this case, a fractional factorial design may be used.

4.1.3 Analyzing Data from the Experiment

Sometimes the conclusions from an experiment seem deceptively clear. Often the results are not
obvious, even when appear that way. It is important to tell whether an observed difference is
indicating a real difference, or is caused by fluctuating levels of background noise. To make this
judgrﬁent, a statistical method called analysis of variance (ANOVA), which was developed by Sir
Ronald Fisher (year 1925), is employed. The objective of ANOVA is to investigate whether the
level of a factor (or interaction of factors) influences the value of the response variable
(performance measure). In order to investigate this influence, these two alternatives are defined

into two hypotheses, a null hypothesis H, and an alternate hypothesis Hi, and then the hypothesis

test is performed.

If the response variable is called Y, and the factor is called X, then the two alternative hypotheses
would be as follows:

H,: Level of X does not affect ¥

H;: Level of X does affect ¥

In order to carry out the hypothesis test, F,. statistic is calculated according to the ANOVA Table
(Table 4.1) and from F_4, the P-value is calculated.

The P-value is described as the weight of evidence against the null hypothesis. For a one-sided

upper-tailed test, the P-value refers to the area under the curve to the right of the test statistic (on an

F curve, to the right of F; ona X curve, the area to the right of X and so on). Here the test

60

statistic 1S Feg.. A smaller P-value or a larger confidence level represents stronger evidence

against H,.

In ANOVA, besides studying the influence of each factor on the response variable, the effect of
interaction of factors on the response variable is also investigated. If the effect of one factor varies
depending on the level of another factor; there is interaction between the two factors. A uscful
way to depict interaction between two factors is with an interaction plot. In an interaction plot,

only when the lines are parallel there is no interaction.

Source of
Variability SSO df MS Feate
R SS8,
Rows SSBy = ncX(¥j. - ¥.)’ R-1 SSB, _(R-D)
5 i SSI
RC(n-1)
_ c SSBe
Columns SSBe =nRY (Y - Y) c-l SSB, €-n_
J=1 c-1 SSW._
RC(n-1)
SS1
Interaction | SSI,c = TSS— SSB, - SSB, - SSW (R-1XC-1) SSI (R=IXC-1)
(R-DC-1) SSW
RC(n-1)
R C n SSW
— V - I ;
Bror | SSW = 33 3 (Ve - P R0 ooy
i=lj=lk=1
15§ = Yik - Y.)
Total i=lj=1k=1 nRC -1

Table 4.1 - ANOVA Table

SSB, = Sum of square between rows
SSB. = Sum of square between columns
SSW = Sum of square within columns
7SS = Total sum of squares

df= Degree of freedoms
61

MS = Mean square

R =Number of rows

C = Number of columns

n = Number of replications

y_= Grand mean (mcan of all the data)

Yj_ =Meanofrowi

Y. j.= Mean of column j

}7,-1-'= Mean of cell [i, j]

4.2 Experimental Design for this Study

In this section, the implementation of the above steps to this study are discussed.

4.2.1 Planning the Experiment

For this study response variables and fa.ct;)rs are established as follows:

Response variable I: GA optimal objective value (RV)

Response variable II: GA search time (RV>)

Factor I: population-size (p)

Factor 1l: mutation-rate (m)

These two factors are crossed or cross-classified, meaning that each level of one factor is in

combination with each level of the other factor.

After doing some preliminary tests on different values for population-size and mutation-rate, as
depicted in Table 4.2, eight levels for population size and six levels for mutation rate were selected.
It is necessary to explain that levels 1 to 8 of the population-size are only applied to one test
problem; for the other two test problems only the first five levels are employed. In Table 4.2,”N”

refers to the size of the problem, which is defined as the number of employees for that problem.

62

FACTORS
population-size mutation-rate
Level 1 =N/I2 Level 1 =0
Level 2 =N/6 Level 2=0.3
Level 3=N/3 Level 3=04
Level 4 = N/2 Level 4=0.5
Level 5=N Level 5=0.7
Level 6 =2N Level 6=1
Level 7=7N
Level 8 = 12N

Table 4.2 - Level of Factors

4.2.2 Designing the Experiment

* In this study, a full factorial cross design is implemented to three test problems of different sizes.
The number of employees (V) in each problem specifies the size of the problem. The test problem
(1), with N =290 employees, is referred to as the large size problem; the test problem (2), with N =
131 employees, is referred to as the medium size problem; and the test problem (3), with N =17
employees, is referred to as the small size problem. Each problem is solved by the proposcd GA

considering the constraints and scheduling preferences that were explained in chapter 3.

Test problems (1) and (2) have been run by the proposed GA with five levels of factor I and six
levels of factor II; Test problem (3) has been run by the proposed GA with eight levels of factor
and six levels of factor II. To account for the randomness effect, each scenario has been replicated
three times with three different random seeds. For test problems (1) and (2), a total of 90 GA runs

and for test problem (3), a total of 144 GA runs have been carried out.

4.2.3 Analyzing Data from the Experiment

In this study, for analyzing the experiment, a two-factor analysis of variance (ANOVA) with the

following hypotheses is performed on the test problems described in 4.2.2. As it was pointed out

03

earlier, analysis of variance determines if row or column factors, or interaction effects are

statistically significant.

For response variable (I), which is defined as GA optimal objective value, the following three

hypotheses are tested:

HY?: All levels of the population-size (row factor) have the same effect on the GA optimal
objective value.

HP: All levels of the mutation-rate (column factor) have the same effect on the GA optimal
objective value.

H(: There is no interaction between row and column factors.

For response variable (I1), which is defined as GA search time, the following three hypotheses are

tested:

H.Y: All levels of the population-size (row factor) have the same effect on the GA search time.
HY: All levels of the mutation-rate (column factor) have the same effect on the GA search time.

H{: There is no interaction between row and column factors.

4.3 Discussion of ANOVA and Interaction Plots for Test Problems

The results of ANOVA for the mentioned test problems are provided in this section. The

Minitab™ software has been used for performing ANOVA and plotting the interaction graphs. For
all three problems, interaction plots are named as plot (A)s and (B)s. These plots illustrate the
interaction between two factors, population-size (p) and mutation-rate (m), while the response
variable for plot (A)s is the GA optimal objective value (response variable I ; RV7) and for plot (B)s
is the GA search time in minutes (response variable II ; RV5). The subscripts L, M and S refer to
the large, medium and small problems respectively (for example, plot Ay is the large problem

interaction plot for RV). In addition to the plots in this chapter, more detailed plots are provided in

64

Appendix 1. The P-value from the analysis and variance tables is compared with the commonly
used alpha level of 0.05 and 0.1.

4.3.1 Large Size Problem

The optimal objective values and search times obtained from 90 GA runs for the large problem are
represented in tables 4.3 and 4.4 respectively. In this problem, five levels for factor 1 (p) and six
levels for factor II (m), are implemented with three replications, i.c. R =5, C =6 and n =3. The
Fealc statistic is calculated according to section 4.1.3 and the results are depicted in tables 4.5 and

4.6.

Replication

m =0 m = 0.3 m =04 m =05 m = 0.7 m =1
1 2,902.454,979 116,884,363 116.883,998 116.883,295 120.484.863 120,184,590
p=N12=24 | . 2 2,886.854,689 116,883,345 116,884,956 116.883.690 116,883,758 116,885.253
3 2.779.255.395 116.883.626 116.884.778 116.884.370 116.883.655 116.883.186
cell mean 2.856.188.354 116,883,778 116.884.577 116.883.785 118.084.092 118.084.443
1 2,777,255,738 116,883,870 116,883,161 116,882,886 116,884,346 116,882,633
p=N6=48 2 12,833,656,469 116,883,118 116,884,580 116,883,740 116,884,043 116,885,205
3 -1 "2,754.454.906 116.883.604 116.883.584 116.883.791 116.884.932 116.883.784
cell mean 2,788.455.704 116,883.531 116.883,775 116.883.472 116.884.440 116.883.874
1 2,686,855,678 116,882,730 116,882,581 116,883,499 116,885,087 116,882,654
p=N3=97 2 2,590,057,768 116,882,799 116,881,885 116,884,563 116,882,553 116,884,146
3 1,926.864.482 116,884,348 116.881.771 116.884.863 116.883.257 116.884,762
cell mean 2.401.259.309 116,883,292 116.882.079 116.884,308 116.883.632 116.883.854
I 2,692,055,748 116,884,459 116,882,922 116,885,064 116,882,528 116,885,496
p=NR2=145 2 2,558,859,893 116,884,485 116,885,106 116,882,758 116,882,525 116,884,071
3 1,420,069,823 116,885,081 116.882.656 116,885.327 116.884.940 116,886,042
cell mean 2,223,661,821 116,884,675 116,883.561 116,884,383 116.883.331 116.885.203
I 968,077,822 117,284,441 116,882,761 117,282,674 116,883,367 116,883,301
p=N =290 2 2,526,858,558 116,883,434 116,882,841 116,884,455 116,883,145 116,881 915
3 695,680,055 116,883,388 116,882.923 117.684,433 117,682,934 117.684.161
cell mean 1,396,872,145 117,017,088 116,882.842 117,283,854 117.149.815 117.149,792

Table 4.3 - GA optimal objective values for large problem
The following outcomes are achieved by reviewing the ANOVA tables and interaction plots for
this problem:

a. Examining Table 4.5, it can be seen that the P-value for rows (0.021), for columns (0.000)

and for interaction (0.000) is small. Hence, there is strong evidence for rejecting the HY,

65

H®and HY hypotheses, meaning that the p and m factors, and also the interaction of the

factors, have significant effect on RV}.

Replication
m=0 m= 0.3 m =04 m =05 m = 0.7 m =1
1 0.02200 10.60943 4424967 8.88333 1.87233 1.69883
p - NI2=24 2 0.00804 12.52762 3.96889 329107 1247779 1.69284
3 0.01129 8.60390 427744 2.97658 676321 9.99802
cell mean 0.01378 10.58032 17.49866 5.05033 7.03778 4.46323
1 0.12433 11.03117 60.23300 52.29683 8.02250 2733333
p - NG6=48 2 0.05344 8.46844 4437932 6.55730 1236967 12.16191
3 0.03332 13.45424 2710334 832738 40.61499 10.03778
cell mean 0.07036 10.98462 4390522 2239384 2033572 1651101
] 020550 2826983 128.18200 13.47100 2288817 16.60000
p = N3=97 2 030827 204.26966 46.17130 3594241 31.08172 11.06414
3 0.69268 99.31092 106.01044 7.01314 36.08354 13.19003
cell mean 0.40215 110.61681 93.45458 18.80885 30.01781 13.61806
1 0.17483 175.19617 137.97267 1853767 50.80217 15.66667
p = NIRZ=145 2 0.42068 1043663 30.66895 72.38160 17.75927 105.50592
3 1.85883 23.32153 113.18798 51.93301 1723234 | . 5875988
cell mean 081811 69.65144 93.94320 4761743 2859793 59.97749
] 5.56150 71.79367 60.19883 83.11100 29.09900 2632717
p=N=290 2 1.59743 80.43997 130.91663 43.09979 17.28932 50.12954
3 5.57359 111.87253 75.82214 274.16564 5822210 17.55282
cell mean 424417 88.03539 88.97920 133.45881 34.87014 3133651
Table 4.4 - GA search time (min) for large problem
b. From Table 4.6, the small P-value for rows and columns (0.000) indicates that there is

strong evidence for rejecting the H{" and H{” hypotheses, but the P-value for interaction
(0.180) is large (a value larger than 0.05) which does not provide strong evidence for
rejecting H.”. So it is concluded that the p and m factors have significant effect on RV>,

but the interaction between them does not.

From Figure 4.1 (AL), it is clear that GA has the poorest performance in terms of quality
when the mutation operator is not implemented (m = 0) or when the mutation-rate is very
small (m<0.3). It is also evident that there is a large difference in the GA optimal objective
value between m < 0.3 and the other levels of m. In order to find out more precisely which
levels of m produce the best GA solution, the worst level of mutation-rate (m = 0) is
omitted and ANOVA is repeated for the remaining data. The results of ANOVA following

this change are depicted in tables 4.7 and 4.8 and the interaction graphs are represented by

66

Figure 4.3 (A]) and Figure 4.4 (B.). By omitting the first level of m (m =0), the
conclusion that was reached in part (a) is no longer valid. From Table 4.7, it can be seen
that the P-value for rows (0.14), for columns (0.506) and for interaction (0.771) is large,
which implies that there is no strong evidence for rejecting HYY . HPand HSY . Therefore,
the main effect, and the interaction of the m and p factors on RV, is not significant.

However, the results obtained in part (b) remain valid.

The existence of parallelism between most of the lines in Figure 4.3 (A}), supports the

conclusion obtained in part (c) that the effect of the interaction between factors on RV is
not significant. Figure 4.3 (A!) demonstrates that for a small population-size (N/12),
choosing a large mutation-rate (0.7 and 0.1) impairs the quality of the GA solution, but for
other levels of the population-size,‘ changing the mutation-rate has minimal effect on the
GA optimal objective value. It also indicates that choosing m = 0.4, with any level of
population-size, generates the best GA solution in terms of quality. Another effect is that
for a constant m, when p increases up to level 4, quality does not change and alter level 4,
quality degrades. From these observations, it can be concluded that the best combination
for RV is a small population-size (N/6, N/3, N/2) with any mutation-rate of 0.3 or higher
(m=0.3).

A solid pattern can not be observed in Figure 4.4 (B). In general, it can be concluded that

by increasing the level of m while holding the level of p constant, after exceeding the
second level of m (0.4), the GA search time decreases. Also it can be deduced that by
increasing the level of p, while holding the level of m constant, in general the GA scarch
time increases. Hence, the best combination for the RV; is choosing a small population-size

(N/12, N/6, N/3) and a large mutation-rate (m > 0.5).

From part (d), it was concluded the best combination for RV, is choosing a small
population-size (N/6, N/3, N/2) with any mutation-rate (m=0.3) and from part (c) it was
deduced the best combination for RV is choosing a small population-size (N/12, N/6, N/3)

and a large mutation-rate (m=0.5). Therefore, any p with the value of (NV/6 and N/3) and
67

any m with the value of (0.5, 0.7 and 1) generate the best overall solution in terms of both

quality and time.

g. The conclusions that have been derived above, are also observed in the main effect plots:

Figure 4.5 (C}) and Figure 4.6 (D). Figure 4.5 (C}) supports the conclusion that N/6,
N/3 and N/2 are the best levels of p for RV}, and Figure 4.6 (D]) supports the outcome that

the larger the population size, the larger the search time.

h. As a result of performing ANOVA for the large size problem, running GA with a small
population-size (N/6 or N/3) and a large mutation-rate (0.5 or 0.7 or 1) is recommended for
any other large size problem in order to get the most optimal solution in the shortest
possible time. However, for the large size problem, choosing a mutation-rate of 0.4 with

any population-size generates the best GA solution in terms of quality.

Source of Variability SSO df MS Feale P-value | Significant?
Rows (population-size) 6.87319E+17 4 1.71830E+17 3.14 0.021 Yes
Columns (mutation-rate) 6.13979E+19 5 1.22796E+19 224.32 0.000 Yes
Interaction 3.43503E+18 20 1.71752E+17 3.14 0.000 Yes
Lrror 3.28452E+18 60 5.47420E+16

Total 6.88048E+19 89

Table 4.5 - ANOVA for Large Problem- RV, (with m = 0)

Source of Variability SSQ df MS Feale P-value | Significant?
Rows (population-size) 38265 4 9566.14 6.47 0.000 Yes
Columns (mutation-rate) 45564 5 9112.70 6.16 0.000 Yes
Intcraction 40204 20 2010.22 1.36 0.180 No
Error 88735 60 1478.92

Total 212768 89

Table 4.6 - ANOVA for Large Problem- RV, (with m = 0)

68

Interaction Plot- Population Size and Mutation Rate

00 03 04 05 07 1.0

- 3000000000
Population Size
—o— Llevel 1 =N/12
—B— Level2=Ng
—A - Level 4=NpR
Population Size S Level5=N
- 1000000000
SR N U
3000000000 - - 0
Mutation
Rate
—— 0.0
2000000000 — - 0.3
<& 0.4
Mutation Rate —aA - 05
1000000000 B 3 0.7
—— 1.0
G A—A—A—a—a
1 2 3 4 5
Figure 4.1 - (Ar) - RV, (with m = 0)
Interaction Plot- Population Size and Mutation Rate
00 03 04 05 07 1.0
150 Population Size
'; —&— Level 1 =N/12
. P —B— Level2=Nf6
A 100 1. 6 Level3=Np
’f';“/ T ! —A - Level4=N/R
Population Size -, NS A > Level5=N
Y “A_ - |50
/ AN ¥ -
i) .
,:VM
- -0
150 1 Mutation
f Rate
!
n —— 0.0
100 -+ o> - oo //’,3 —m— 03
I N - Ky - 0.4
q :/ Mutation Rate —aA - 05
50 4 "; ."(/ -\‘.’. o 0.7
B - -’-/}.7{ __‘V”_,,*‘ —— 1.0
& . T ~T— ¢
04 K’—Q——'—’.’_'_’.
1 2 3 4 5

Figure 4.2 - (BL) - RV2(with m=0)

69

Source of Variability SSQ df MS Fealc P- value | Significant?
Rows (population-size) 2.6Y8611+12 9 6.74653E+11 1.82 0.140 No
Columns (mutation-rate) 1248431+ 12 4 3.12108E+11 0.84 0.506 No
Interaction 1205711412 16 2.631821 411 0.71 0.771 No
Lrror 1. 836831+ 13 50 3.71370E4 11
Total 26731314 13 74
Table 4.7 - ANOVA for Large Problem - RV (without m = 0)

Source of Variability SSQ df MS Feale P- value | Significant?
Rows (population-size) 143025 B 11256.3 6.34 0.000 Yes
Columns (mutation-rate) 22493 B 5623 .4 3.17 0.021 Yes

Interaction 33106 16 2087.9 1.18 0.318 No
rror 88723 S0 17714.5
lotal 189617 71
Table 1.8 - ANOVA for Large Problem - RV (without 11 = 0)

Interaction Plot- Population Size and Mutation Rate

03 04 05

I 118000000

Population Size

- 117750000

Population Size

—&— Level 1 =Nj12
Level 2 = Nj&

- 117500000

- 117250000

- 117000000

118000000 4 -
117750000

117500000

Mutation Rate

—8—
& Level 3=N/2
—h& - Level 4=N/2
i Level 5=N
Mutation
Rate
—— 0.3
—m— 0.4
¥ 0.5
—h - 0.7
- 1.0

\
117250000 - '
117000000 - " L
B O L T
t 2 2 4 5
Figure 4.3 - (A") - RI (without m = 0)

Interaction Plot- Population Size and Mutation Rate

0.3 0.4 as 0.7 1.0
7_ 150 Population Size
- @= Level | = HFD
] Level 2 = Nk
A A Lewel 3 = 1R
)) - i —A - Level 4= N2
Population Size A lewel G =N
A a S0
-
- ™ ae ~
= 4‘-\\.‘ .
150 =
Mutshon
Fate
- - 0.3
100 AN " "t
;;'. . Ut
r » Mutation Rate ~A - 0.z
S0 = -‘;').", “L{,
A
R e S
- AL &
¢———=
o4 . T T T
1 2 3 4 5 J
Figure 4.4 - (B')) - RV (without m - (0) o o
Main Effects Plot
Population Size Fatation F":l_E o]
117400000 -
3 !
[17] |
> 117300000{ |
2 \
-’ !
Q
2
8 117200000 - \
o *—— L 4
@
£ \
“:a 117100000 - |]
< " /
3 |
LTS
S 117000000 - | /
5 '. ¢
g \
= Y . /
116900000 |, e
MAZ N6 M3 M2 M 03 04 05 07 10
Figure 4.5 - (C'y) - RV, (withoutm = 0)

71

Main Effects Plot

Population Size Mutation Rate

80 -

704

60 -

S04

40-

30 -

204

Mean of GA Search Time (Min)

10 -

N2 N6 NS N2 2N 03 04 05 07 10

Figure 4.6 - (D') - RV, (without m = 0)

4.3.2 Medium Size Problem

The optimal objective values and search times, obtained from 90 GA runs, for the medium
problem are represented in tables 4.8 and 4.9 respectively. In this problem, five levels for factor I
() and six levels for factor II (), are implemented with three replications, i.e. R=5,C=6 and n
=3. The Fa statistic is calculated according to section 4.1.3 and the results are depicted in tables
4.9 and 4.10. The following outcomes are attained by reviewing the ANOVA tables and

interaction plots for this problem:

a. From Table 4.11, the small P-value for rows and columns (0.000) indicates that there is
strong evidence for rejecting HY? and H{. But the P-value for interaction (0.907) is large
(a value larger than 0.05) which does not provide strong evidence for rejecting H® . So it

is concluded that p and m factors have significant effect on RV, but the interaction between

them does not.

72

Replication

m=0 m=03 m= 04 m =035 m= 0.7 m =1
1 802017274 | ALIT4120 |~ 779624177 | 728429038 | 657970536 | 60657550
p=NI2=11 2 794412189 | 769216570 | 769616735 | 757998670 | 381967560 | $80.972.59%
3 786000038 | 604368070 | 608369472 | 573166290 | 730000866 | 730808979
cell mean 794.143.167 | 671586253 | 719203461 | 686531336 | 656.676320 | 630453 146
] 789188613 | 622373455 | M1538225 | 608.776.173 | 608777920 | 611376071
p= N6=22 2 774.800.699 573.165.993 583973.754 373965784 573,966,738 595,595,075
3 781020814 | 723179685 | S73.067718 | 782768824 | 782768824 | 373566361
cell mean 782670042 | 63957304 | 63289989 | 635170460 | 655070061 | 591 513.502
i 784790921 [574767957 | 376367052 | $76367590 | 577309555 1573967593
p=N3=43 2 780800728 | 574365635 | 573567056 | 573566668 | 573565527 | $73.166.457
3 775574729 | 577.568.179 | 573965034 | 573967268 | 373565470 | 873866344
ol mean 780.388.793 | 575567257 | 574.33.081 | S74.633.825 | ST4.000187 | 573566999
] 747583167 [T 573566495 | 574366360 | STAT65802 | 576373271 | 671368003
p=N2=65 2 772386757 | 573165589 | 573565779 | 573565449 | 373966140 | $73961 744
3 753572536 | 573165880 | 574365272 | 573565906 | 573566819 | $75.165953
cell mean 757847487 | 573299321 | 574.099.037 | 573965719 | 574635410 | §71999387
1 666.007.046 | 576765796 | S75.166406 | 574767262 | S79.765.962 | $73.966.007
p=N=131 2 7TIL194940 [573965705 | S74367.016 | 573565440 | 573066283 | S73.061990
3 661.567.907 | 573.967.005 | 573165487 | 573165653 | 573.565860 | 574306840
cell mean 679.589961 | 574899502 | 574233003 | 573832785 | 573832535 | ST3RI2GIS

Table 4.9 - GA optimal objective values for medium problem

b. Observing Table 4.12, it can be seen that the P-value for rows (0.000) and columns is small

(0.053), so there is strong evidence for rejecting M and HY .

But the P-value for

interaction (0.322) is large (a value larger than 0.1) which indicates that there is no strong

evidence for rejecting the H{” hypothesis. These observations mean that the p and m

factors have significant effect on the GA search time

Replication
m =0 m =03 m =04 m =05 m =07 m =1

1 0.00252 1.81978 0.03046 0.55817 0.22238 1.62033

p=NI12=11 2 0.00239 0.03675 0.03413 0.04194 1.49443 1.46703
3 0.00862 0.94453 1.53164 7.13960 0.06186 0.06164

cell mean 0.00451 0.93369 0.53208 2.57990 0.59289 1.04967

1 0.00865 261417 0.08650 2.48333 16.96350 0.72450

p=N6=22 2 0.01390 14.06818 3.26094 7.95488 9.11068 1.30294
3 0.00643 0.14814 33.06205 0.02567 0.02349 9.24816

cell mean 0.00966 5.61016 12.13650 3.48796 8.69923 3.75853

1 0.03983 6.73750 543317 4.69583 1.92583 4.10200
pP=N3=43 2 0.02926 23.71185 6.74698 29.03971 33.36266 48.88990
3 0.05737 433147 941175 3.13898 33.82589 29.23093

cell mean 0.04215 11.59361 7.19730 12.29151 23.03813 27.40761

1 0.12060 39.65433 11.09050 11.28967 2.26667 3.99100

pP=N2=65 2 0.04492 3225750 12.95563 9.54173 4.07699 8.43543
3 0.13064 11.40193 7.37604 7.75174 6.16391 17.66372

cell mean 0.09872 27.77125 10.47406 9.52771 4.16919 10.03005

1 0.82350 22.03700 16.23717 7.93917 11.07767 9.93817

p=N=131 2 0.37063 4528748 100.05815 21.50243 115.47392 38.94908
3 0.73289 18.28580 38.96001 1541704 17.97956 7.70458

cell mean 0.64234 28.53676 51.75178 14.95288 48.17705 18.86394

Table 4.10 - GA search time (min) for medium problem

73

c. From Figure 4.7 (A, the same discussion regarding (m < 0.3) that was addressed in part
(¢) of the large problem also holds true here. The worst level of m (m = 0) is omitted and
ANOVA is repeated for the remaining data. The results of ANOVA following this
modification are represented in tables 4.13 and 4.14, and the interaction graphs are

represented by Figure 4.9 (A},) and Figure 4.10 (B},). By omitting the first level of m (m

=0), only the conclusion for columns that was reached in part (a) is no longer valid, which

indicates that p has significant effect on RV; but m and interaction do not. From Table
4.12, the P-value for columns (0.797) does not provide strong evidence for rejecting H?.
The conclusion from this discussion is that only the effect of p is significant on RV
IHowever, by examining Table 4.14 it is clear that the results obtained in part (b): “only the

p factor has the significant effect on RV5>” remains valid.

d. The presence of parallelism between most of the lines in Figure 4.9 (A},), supports the

conclusion obtained in part (c) that the effect of interaction between factors on RV is not

significant. Figure 4.9 (A},) demonstrates that for all the levels of m (m > 0.3), by

increasing the level of p while holding the level of m constant, the quality of GA solution
improves up to level 3 of m (m = 0.5), and after passing this level, no further improvement
is observed. It also shows for levels 3, 4 and 5 of p, increasing the level of m while holding
the level of p constant, does not change the quality of RV;. Hence the best combination for
RV is choosing a large population-size (N/3, N/2 and N) with any mutation-rate (m=0.3).
This conclusion supports the outcome of part (c): “only the effect of p is significant on
RVY.

e. A solid pattern can not be observed in Figure 4.10 (B;,). But in general it can be

concluded that choosing a small p can reduce the GA search time. Also it can be noticed
that for level 1 to level 4 of p, with all of the levels of m the GA search time does not vary

significantly and remains in the range of 0 to 30 minutes.

74

f. The conclusions that have been obtained above are also observed in Figure 4.11 (C;,) and

Figure 4.12 (D};) main effect plots. Figure 4.11 (C,,) supports the conclusion from part

(c) that N/3, N/2 and N are the best levels of p for the GA search time.

g From part (c), it was concluded that choosing a large population-size (N/3. N/2 and N), with
any mutation-rate (m=0.3), generates the best GA optimal objective value. By combining
this result and the results from part (), and observing main effect plots in Figures 4.11 and
4.12, it is deduced that choosing a small p (N/3) and a large m (1) can generate the best
overall solution in terms of both quality and time. A good solution can also be produced

with mutation rates 7:=0.5 and m=0.7.

h. As aresult of performing ANOVA for the medium size problem. running GA with a small
population-size (N/3) and a large mutation rate (0.5 or 0.7 or 1) is reccommended for any

other medium size problem in order to get the most optimal solution in the shortest possible

time.
Source of Variability A df MS Feale P-value | Significant?
Rows (population-size) 1.36820E+17 4 3.42051E+16 12.87 0.000 Yes
Columns (mutation-rate) 2.95239E+17 5 5.90477E+16 22.21 0.000 Yes
Interaction 3.11750E+16 20 1.55875L+15 0.59 0.907 No
Error 1.59501E+17 60 2.65835E+15
Total 6.22735E+17 89

Table 4.11- ANOVA for Medium Problem - RV (with m = 0)

Source of Variability SSQ df MS Feate P-value | Significant?
Rows (population-size) - 7140.7 4 1785.18 6.86 0.000 Yes
Columns (mutation-rate) 3044.1 5 608.81 2.34 0.053 Yes
Interaction 6023.6 20 301.18 1.16 0.322 No
Error 15621.5 60 260.36
Total 31829.8 89

Table 4.12 - ANOVA for Medium Problem - RV, (with m = 0)

75

Interaction Plot- Population Size and Mutation Rate

00 03 04 05 07 1.0

- 800000000 Population Size
—&— Level 1 =N/12
- 750000000 | _ g Leyel2=N/6
~ - Level 3=Nf3
- 700000000 | A - Level 4=Nj2
Population Size e Level 5=N
- 650000000
“a |- 600000000
| P
800000000 - Mutation
Rate
750000000 —— 0.0
¢ —— 0.3
700000000 - - s - 0.4
NN Mutation Rate —aA - 05
650000000 1 »2ik —_p - 0.7
< ©
SRR —— 1.0
* 600000000 - RN
T —A—
1 2 3 4 5
Figure 4.7 - (Am) - RV, (with m = 0)
Interaction Plot- Population Size and Mutation Rate
00 03 04 05 07 1.0
» Population Size
S p 48 —&— Level 1=N/12
K «)f' —B— Level2=Nj/6
- 5, 36 | 4 - Llevel3=NJf3
® LU e —aA - Level4=Nf2
Population Size S AT ST - B Level S5=N
\, 'S
/ k.
. L 2 b - AT 12
R N -
fow Py > = 2
== -0
. -
48 - ke Mutation
B Rate
N —— 0.0
! —— 0.3
e 0.4
Mutation Rate —a - 0.5
— - 0.7
—— 1.0

Figure 4.8 - (Byy) - RV, (with m = 0)

76

Source of Variability SSQ df MS Feale | P-value | Significant?
Rows (population-size) 1.28994E+17 4 3.22486E+16 | 10.25 0.000 Yes
Columns (mutation-rate) 5.21846E+15 4 1.30462E+15 0.41 0.797 No
Interaction 1.33208E+16 16 8.32551E+14 0.26 0.997 No
Error 1.57380E+17 50 3.14761E+15
Total 3.04914E+17 74
Table 4.13 - ANOVA for Medium Problem - RV, (without m = 0)
Source of Variability SSQ df MS Feate | P-value | Significant?
Rows (population-size) 8497.8 4 2124 .44 6.80 0.000 Yes
Columns (mutation-rate) 716.0 4 179.01 0.57 0.683 No
Interaction 4665.6 16 291.60 0.93 0.539 No
Error 15621.3 50 312.43
Total 29500.8 74
Table 4.14 - ANOVA for Medium Problem — RV, (without m = 0)
Interaction Plot- Population Size and Mutation Rate
03 04 05 07 10
- 720000000 Population Size
—o— Level 1 =N/12
L 680000000 |—M— Level2=N/6
r'S Level 3=N/3
—h - Level4=NJf
Population Size - 640000000 | o Level § = N
N
Y [600000000
B i
720000000 - Mutation
Rate
—— 0.3
680000000 - 0.4
o 05
640000000 - Mutation Rate —aA - 0.7
P 1.0
600000000

Figure 4.9 - (A'm) - RV) (without m=0)

Interaction Plot- Population Size and Mutation Rate

0.3 0.4 0.5 0.7 1.0
L 43
Population Size
| o |7 Lewel 1= M/12
- - Lewvel 2 = M6
-, . Level 3= M3
Population Size - 2 Al Lewvela= N2
.. ~ Level 5=H
P S A . - 12
= el A T
*— o TT—e——o | 0
= Iutation
45 1 ,‘ Rate
L —— 0.3
36 J,' —m— 0.4
._—4——0 05
24 A S Mutation Rate —A - 07
oo 1.0
. N
12 _:J—-" . v_,.u/ N -'4"
‘,_.,,—:‘“/ " A
04 X
1 2 3 4)
Figure 4.10 - (B'\) - RV (without m = 0)
Main Effects Plot
Fopulation Size Mutation Rate
620000000
o °
°
> 660000000 -
)
2
b
u -~
Q2 640000000 -
a2
o
@
£ 620000000
)
Q. >
8 ./ ‘\‘
& soooooono | \
e
o ®
%
@ S80000000 -
=
S60000000 A , .
1 2 3 4 S 0.3 0.4 0.5 0.7 1.0

Figure 111 - (C'y) - RI7 (without m = 0)

78

Main Effects Plot
Population Size Mutation Rate o
354 T)
g
‘= 30- .'"'
U o5 .""
£
[i
=
o 20
5 ;
% /)
. i) N
< 15 AN o\
g . -

5 Ve . N\ .
c 104 N
g ,f'r ..‘
= .

5 -~

.-"/"
o
0
/12 MN/B M3 M2 §] 0.3 0.4 0.5 0.7 1.0

Figure 4.12 - (D'y) - RIS (without i 0)
4.3.3 Small Size Problem

The optimal objective values and scarch times obtained from 144 GA runs for the small problem
are represented in tables 4.15 and 4.16. For this problem, cight levels of factor | (population-size)
and six levels of factor Il (mutation-rate) arc implemented with three replications. i.c. 8 8.7 6
and n =3. For the large and medium problems. only five levels for population size were used. but
cight levels were required for the small problem before a pattern of consistency was exhibited.
The F4. statistic is calculated according to scction 4.1.3 and the results are depicted in tables 4.17
and 4.18.

The following outcomes are achicved by reviewing the ANOVA tables and interaction plots for

this problem:

a. Examining Table 4.17. it can be scen that the P-value for columns (0.000). for rows (0.104)

and interaction (0.000) is small which indicates that there is strong cvidence lor

79

rejecting HY’, H?and HY . Hence, the m and p factors and the interaction of them have a

significant effect on GA optimal objective value.

Replication

m=0 m =03 m=04 m =05 m = 0.7 m=1
1 110,327,548 97,131,443 96,731,420 96,331,202 97,531,027 96,331,523
p=NI2=2 2 121,127,039 96,731,499 96,331,810 97,531,284 95,931,347 99,131,364
3 117,127,013 95.931.379 95,931,787 102,729,662 99,130,643 95,931,383
cell mean 116,193,867 96,598,107 96,331,672 98,864,049 97,531,006 97,131,423
| 104,329,016 95,931,663 97,131,373 96,731,427 97,531,107 97,931,450
p=N6=3 2 121,126,419 96,330,759 97,131,661 95,931,876 95,931,789 96,731,368
3 110,727,740 95.931.551 95,931,572 97,131,195 96,731,473 95,931,610
cell mean 112,061,058 96,064,658 96,731,535 96,598,166 96,731,456 96,864,809
I 101,529,776 96,331,547 96,331,501 96,731,506 96,331,493 96,331,215
p--N3=6 2 107,128,850 95,931,293 95,931,361 95,931,300 95,931,611 95,931,283
3 111,929,249 96,731,511 98,731,057 100,330.130 96,331,318 95,931,271
cell mean 106,862,625 96,331,450 96,997,973 97,664,312 96,198,141 96,064,590
| 100,730,128 101,129,964 96,331,566 97,131,334 97,931,089 96,731,142
p o N2=9 2 106,328,627 95,931,224 96,331,395 99,130,987 98,730,839 99,130,335
3 107,128,531 96,331,185 96,331,572 96,331,540 96,331,262 96,331,809
cell mean 104,729,095 97.797.458 96,331,511 97,531,287 97,664,397 97,397,762
I 96,331,683 96,730,815 96,731,080 97,531,314 97,131,302 96,331,343
p=N=17 2 98,731,140 99,530,664 99,530,216 98,730,362 98,730,993 98,730,357
3 103,530,257 99.130,547 99,130,926 98,730,680 98,730,988 98,731,045
cell mean 99,531,027 98.464,009 98,464,074 98,330,785 98,197.761 97,930,915
1 100,329,978 99,130,592 96,731,115 99,130,663 99,130,351 99,530,563
p o2V =34 2 98,730,916 99,529,971 98,730,675 98,730,357 99,130,658 99,130,335
3 98,730,908 99.130,300 99,129,987 99,130,623 99,130,300 98,730,357
ccll mean 99,263,934 99.263.621 98,197,259 98,997,214 99,130,436 99,130,418
] 99,130,312 99,130,620 99,130,592 99,130,297 99,130,581 99,130,592
p =7N =119 2 98,730,473 98,730,357 98,730,670 98,730,357 98,730,993 98,730,357
3 99,130,101 99,129,987 99,130,263 99,130,503 99,129,987 99,129,987
cell mean 98.996.962 98.996.988 98,997,175 98,997,052 98,997,187 98,996,979
1 99,130,307 99,130,592 99,130,269 99,130,269 99,130,269 99,130,269
p=12N=204 2 98,730,680 98,730,357 98,730,357 98,730,357 98,730,680 98,730,357
3 99.130,351 99,129.987 99,129,987 99,129,987 99,129,987 99,129,987
cell mean 98.997.113 98.996.979 98,996,871 98,996,871 98,996,979 98,996,871

Table 4.15 - GA optimal objective values for small problem

b. From Table 4.18, the small P-value for rows and columns (0.000) indicates that there is
strong evidence for rejecting Hi” and H{”. But the P-value for interaction (0.818) is large
which does not provide strong evidence for rejecting H” . So it is concluded that both the

p and the m factors have significant effect on RV5, but the interaction of them does not.

c. From Figure 4.13 (As), the same discussion regarding (m < 0.3) that was addressed in part
(c) of the large problem also holds true here. The worst level of m (m = 0) is omitted, and

ANOVA is repeated for the remaining data. The results of ANOVA following this
80

modification are represented in tables 4.19 and 4.20 and the interaction graphs are
represented by Figure 4.15 (A'y) and Figure 4.16 (B}). By omitting the first level of m (m

=0), the conclusions that were reached in part (a) and part (b) arc no longer valid. From

Table 4.19, the small P-value for rows (0.000) and large P-values for columns (0.442) and
for interaction (0.771) imply that there is strong evidence for rejecting H". but there is no
strong evidence for rejecting H{”and H.". Therefore only the effect of p factor on RV} is
significant. From Table 4.20, the small P-value for rows (0.000). large P-value for
columns (0.570) and interaction (0.805) imply that there is only strong evidence for

rejecting H;”, meaning that only the effect of p factor on RVx is significant.

Replication

m=0 m =03 m =04 m = 0.5 m = 0.7 m =1

1 0.00014 0.02993 0.03334 0.03296 0.01369 001111

p=NI12=2 T2 0.00012 0.01691 0.02557 0.01253 0.01743 0.00573
3 0.00042 0.06015 0.02104 0.00641 0.01007 0.01019

cell mean 0.00022 0.03566 0.02665 0.01730 0.01373 0.01901

1 0.00060 0.02203 0.00998 0.01367 0.00733 0.01055

p=N6=3 2 : 0.00021 0.03821 0.01432 0.01633 0.03542 0.00168
3 0.00053 0.02218 0.01200 0.01390 0.01868 0.01991

cell mean 0.00044 0.02747 0.01210 0.01463 0.02018 0.01171

1 0.00020 0.02375 0.01552 0.01065 0.00845 0.02622

p=N3=6 2 0.00162 0.01118 0.02274 0.02270 0.01454 0.00995
3 0.00292 0.01469 0.00545 0.00516 0.02586 0.01890
cell mean 0.00158 0.01654 0.01457 0.01284 0.01628 0.01836

1 0.00188 0.01725 0.01288 0.01341 0.00721 0.01277

p=N2=9 2 0.00117 0.00977 0.01353 0.01421 0.01097 0.01359
3 0.00112 0.01198 0.04598 0.03249 0.02716 0.00832
cell mean 0.00139 0.01300 0.02413 0.02004 0.01511 0.01156

1 0.00781 0.01567 0.00740 0.00740 0.01938 0.01915

p=N=17 2 0.00418 0.00816 0.06205 0.02521 0.02155 0.02162
3 0.00550 0.03016 0.01592 0.03948 0.01946 0.01723

cell mean 0.00583 0.01799 0.02846 0.02403 0.02013 0.01933

1 0.01306 0.01614 0.01103 0.03632 0.02998 0.02837
p=2N =34 2 0.00970 0.02506 0.01772 0.01768 0.02306 0.02500
3 0.01136 0.04914 0.03199 0.04067 0.02022 0.03539
cell mean 0.01137 0.03011 0.02025 0.03156 0.02442 0.02959
1 0.01750 0.05707 0.04033 0.03321 0.03447 0.03086
p=7N =119 2 0.02880 0.03505 0.03553 0.03645 0.04893 0.03320
3 0.03684 0.04983 0.04257 0.04997 0.03185 0.03410

cell mean 0.02771 0.04732 0.03948 0.03988 0.03842 0.03272

1 0.04192 0.05770 0.04795 0.05670 0.06987 0.06377

P =12N=204 2 0.05108 0.05262 0.05359 0.05081 0.04687 0.05912
3 0.04137 0.04737 0.04302 0.06742 0.05310 0.05433

cell mean 0.04479 0.05256 0.04818 0.05831 0.05661 0.05907

Table 4.16 - GA search time (min) for small problem

81

d. The lack of parallelism between the lines in Figure 4.15 (A's) represents the existence of
interaction between the p and m factors. For a constant level of p, when m increases a solid
pattern is not observed, but it can be concluded that a large p (such as N, 2N, 7N and 12N)
generates the worst GA solution in terms of quality. The straight line in Figure 4.15 (A')
for a large population-size (such as 2N, 7N and 12N), indicates that changing the mutation-
rate does not affect the quality of the GA solution significantly, i.e. the same GA optimal
objective value is produced by any mutation-rate. This only became obvious at the higher
levels of p. It was unnecessary for the medium and large problems to use this many levels
of population size, as a consistent result became evident at lower levels of p. For a constant
level of mutation rate, when population size increases a solid pattern is not observed, but in
general after passing level 4 of p (N/2) the quality of the GA solution deteriorates. After
passing level 7 of p (7N), the quality of GA does not change, indicating that for large
population-sizes (p> 7N) the value of mutation-rate does not affect RV,. It is also
observed that any level of mutation-rate with a small population-size (N/6, NI3, N/2)
generates a good GA solution in terms of quality, this conclusion supports the result
obtained from part (c) that only p has the significant effect on RV). A very small p (N/12)
is not reccommended, because as it is clear from this plot that for any level of m, after

passing this level of p (V/12), the RV} improves. As a conclusion from Figure 4.15 (A}), a
small p (N/6 and N/3) with a small m (0.3, 0.4) is the best combination for GA optimal

objective value.

e. The lack of parallelism between the lines in Figure 4.16 (B5) represents the existence of

interaction between the p and m factors. For a constant level of p, when m increases a solid
pattern is not observed, but it can be concluded that a large p (such as N, 2N, 7N and 12N)
generates the worst GA solution in terms of search time. For a constant level of mutation
rate, when population size increases a solid pattern is not observed, but in general for any
level of m, after passing level 4 of p (N/2) the GA search time increases. It is also seen that
a small population size (N/12, N/6, N/3, N/2) with any level of mutation-rate generates a

faster solution, this conclusion supports the result obtained from part (c) that only p has the

82

significant effect on RV5. As a conclusion from Figure 4.16 (BY), a small p (NV/12, N/6,
N/3, N/2) with any m is the best combination for GA search time.

Some of the conclusions reached in the above parts arc also verified by the main eflccts
plots in Figure 4.17 (Cy) and Figure 4.18 (Dg). These two plots support the outcome of
part (c) that the effect of p on RV and RV is significant while the effect of m is not. Also,
it is concluded that the effect of m on RV 1 is more than the effect of m on RV>. From Figure
4.17 (Cy), it is seen that when population-size increases the quality of solution gets worse,
and after passing level 7 of p (2N) it does not change. It also shows a small pp (N/6, N/3)

with any mutation-rate produces a good GA solution in terms of quality and time;

however, a small mutation rate like (0.3 and 0.4) slightly produces a better one.

From part (d), it was concluded the best combination for RV, is choosing a small p (NV/6,
N/3) with a small m (0.3, 0.4), and from part (e) it was deduced the best combination for the
RV, is choosing a small p (N/12, N/6, N/3, N/2) with any level of m. Therefore, a small p
(N/6, N/3) with a small m (0.3, 0.4) will geﬁerale the best overall solution in terms of both

quality and time.

As a result of performing ANOVA for the small size problem, running GA with a small
population-size (N/6 or N/3) and a small mutation rate (0.3, 0.4) is rccommended for any

other small size problem in order to get the most optimal solution in the shortest possible

time.

Sourcé of Variability SSQ df MS Feale | P-value | Significant?
Rows (population-size) 5.34904E+13 7 7.641481+12 1.76 0.104 Yes
Columns (mutation-rate) 9.00624E+14 5 1.80125E+14 | 41.54 0.000 Yes
Interaction 1.01695E+15 35 2.90557E+13 6.70 0.000 Yes
Error 4.16295E+14 96 4.33640E+12

Total 2.38736E+15 143

Table 4.17 - ANOVA for Small Problem - RV, (with m = 0)

83

Source of Variability 550 df MS Feale | P-value | Significant?
Rows (population-size) 0.0249998 7 0.0035714 34.43 0.000 Yes
Columns (mutation-rate) 0.0050513 5 0.0010103 9.74 0.000 Yes
Interaction 0.0027642 35 0.0000790 0.76 0.818 No
Error 0.0099568 96 0.0001037
Total 0.0427721 143
Table 4.18 - ANOVA for Small Problem - RV, (with m = 0)
Interaction Plot- Population Size and Mutation Rate
00 03 04 05 07 1.0
L 115000000 Population Size
—&— Level 1=N/f12
—B— Level2=N/f6
- 110000000 | o o |eyelz =3
—h - Level4=Nf2
Population Size - 105000000 |- - Level 5 =N
—— Level 6 = 2N
- 100000000 |—¥— Level7=7N
——-- Level8=12N
- 95000000
115000000 - Mutation
Rate
110000000 ¢ 0.0
- 0.3
e o 0.4
105000000 - Mutation Rate —aA - 05
e 07
100000000 - 1.0
" %ga«‘- FEs S i —=
95000000 L T T ‘qlr vl ¥ T T T
1 2 4 5 6 7 8

Figure 4.13 - (As) - RV, (with m=0)

Interaction Plot- Population Size and Mutation Rate

03 04 05 07
A~ T 0.060 Population Size
—&— Level 1 = N/12
F0045 |—B— Level2=Nj
¢ - Level3=Nj3
—— A —A - Level4=N/2
Population Size 0030 | L LevelS =N
—4— Llevel6=2N
(0015 [_w— Level7=7N
-~ Llevel8$=12N
- 0,000
0.060 Mutation
Rate
0,045 + —— 0.0
—m— 0.3
n - 0.4
0.030 Mutation Rate —A- 05
o 2 0.7
0.015 —— 1.0
0.000
Figure 4.14 - (Bs) - RV, (with m = 0)
Source of Variability SSQ df MS Feate | P-value | Significant?
Rows (population-size) 1.13563E+14 7 1.622331:+13 12.28 0.000 Yes
Columns (mutation-rate) 4.99196E+12 4 1.24799E+12 | 0.94 0.442 No
Interaction 2.03578E+13 28 7.27064E+11 0.55 0.961 No
Error 1.05656E+14 80 1.32070E+12
Total 2.44569E+14 119

Table 4.19 - ANOVA for Small Problem - RV; (without m = 0)

85

Source of Variability SSQ df MS Fegie | P-value | Significant?
Rows (populalibn-size) 0.0196700 7 0.0028100 23.20 0.000 Yes
Columns (mutation-rate) 0.0003566 4 0.0000891 0.74 0.570 No
Interaction 0.0025360 28 0.0000906 0.75 0.805 No
Error 0.0096917 80 0.0001211
Total 0.0322543 119
Table 4.20 - ANOVA for Small Problem — RV, (without m = 0)
Interaction Plot- Population Size and Mutation Rate
03 04 05 07 10
93000000 Population Size
i —&— Level 1 =N/12
—m— level2=Npj
-4 - level 3=Nf3
L9
o sooo000 | Nf2
Population Size — - Level5=N
97000000 [Level6=2N
—— Level 7 = 7N
——4-- Level8=12N
- 96000000
99000000 - Mutation
Rate
—— 0.3
98000000 - —=- 0.4
-~ 05
Mutation Rate —dh - 0.7
97000000 - —%-- 1.0
96000000

Figure 4.15 - (A's) - RV, (without m = 0)

86

Interaction Plot- Population Size and Mutation Rate

03 04 05 07 10
- 0.06 Population Size
—o— Llevel 1 =N/12
—B= Level2=NJ
- level3=N/3
) . 004 —A - leveld=Np
Population Size e Level5=N
—4— levelb=2N
L 002 |[—Y— Llevel7=7N
-+~ Level8=12N
0.06 4 Mutation
Rate
—— 0.3
0.04 - —m- 0.4
9 0.5
Mutation Rate —aA - 0.7
e 1.0
0.02 -
Figure 4.16 - (B's) - RV, (without m = 0)
Main Effects Plot
Population Size Mutation Rate
99000000 - o—
S
@
>
2 98500000 -
2
0
2,
a
% 98000000 -
£ ¢ o
. ~/
o
et 97500000 -
i
[v,
o
c
3 97000000 -
b
96500000 - T T T T T
3 04 05 07 1.0

¥ L])]] T 1 T
Nf12 Nf6 N3 Nf2 N 2N 7N 12N 0.

Figure 4.17 - (C's) - RV, (without m1 = 0)

87

Main Effects Plot

Population Size Mutation Rate

0.06 -
0.05 -
0.04 -

0.03 - ~

0.02 4

$

Mean of GA Search Time (Min)

0.01 - , . ; ; ;
Nf12 Nf6 Nf3 Nf2 N 2N 7N 12N 0.3 0.4 0.5 0.7 1.0

Figure 4.18 - (D's) - RV, (without m = 0)

4.4 Overall Conclusion

Alter reviewing the results of ANOVA for the three problems above, the following overall

conclusions are reached:

1. Regardless of size of the problem, implementing any mutation-rate less than 0.3 (m<0.3),

with any population-size, generates a poor GA solution in terms of quality.

(S

For the problems of size medium and large, defining the size of the problem as N, running
GA with a small population-size (N/6 or N/3) and a large mutation-rate (0.5 or 0.7 or 1) is
recommended in order to get the most optimal solution in the shortest possible time.
However, for the large size problem choosing a mutation-rate of 0.4, with any population-

size, generates the best GA solution in terms of quality.

88

For the problem of small size, defining the size of the problem as N, running GA with a
small population-size (N/6 or N/3) and a small mutation-rate (0.3, 0.4) is recommended in
order to get the most optimal solution in the shortest possible time. However, applying a
small population-size (N/6 or N/3) with a large mutation-rate (0.5 or 0.7 or 1) to a small

size problem does not generate a bad solution.

89

Chapter 3
EFFECTIVENESS OF THE PROPOSED GA

5.1 The Proposed GA Verification and Effectiveness

In this section, the GA is compared with the existent branch-and-bound method (Mosel) for the
purpose of checking the proximity of the GA solution to the optimal solution. In order to do so, six
problems, including the three problems from chapter 4, have been solved with both methods, and

then the results have been compared.

The hardware and software specifications used for running Mosel and GA are provided in

“Appendix I1.

Before solving each problem by GA, a test was performed in order to verify the accuracy of GA.
First each problem was solved by Mosel, and then the generated schedule (solution) from Mosel
was fed as input to GA. The GA produced the same objective values for each objective component
(described in chapter 3) as Mosel. In this way, the accuracy of modeling each constraint and
objective function (in Java code) was verified. After this verification test the problem was solved
by GA. What follows is a comparison of GA and Mosel for each of the six problems. First, some

terms that are used in this section are defined.
5.2 Terms

Best Solution: The value of the best integer feasible solution found by Mosel or GA; also known as
the Best Objective Value.
Best Bound: A bound on the value of the best integer feasible solution found thus far by Mosel.
Gap,»: The percentage gap between Mosel’s best solution and best bound.
Gapg,: The percentage gap between GA’s and Mosel’s best solution.
Gapgs: The percentage gap between GA’s best solution and Mosel’s best bound.
O: Quality
90

T: Time
GA Time: GA Search Time
GA Objective: GA’s Best Objective Value for a Specific GA’s Run

5.3 Compared Problems

3.3.1 Problem I (Large problem from chapter)

This problem includes 289 employees (N = 289). The best integer solution found by Mosel is
“116,881,006.40”; the percentage gap between Mosel’s best solution and best bound is *0.00003%”.
Mosel found this solution after “0.03” min. The same problem was solved with GA. The GA best
solutions with different p and m parameters were provided in chapter 4. The percentage gap
between these GA solutions and the above Mosel solution are represented in Figure 5.1 and Figure
5.2. Figure 5.1 depicts the gaps (Gapg,) for all the GA parameters (five levels of p and six levels
of m) and Figure 5.2 depicts the gaps (Gap,,,) only for the best parameters that were concluded
from ANOVA (p=N/3 and N/6, m= 0.4, 0.5.0.7, 1). Figure 5.2 indicates that solving GA with the
above parameters ensures that the proximity of GA to Mosel’s best solution is less than 0.004 %.
The best and worst case scenarios in terms of quality and time, for the GA solutions that arc

depicted in Figure 5.2, are given in Table 5.1.

GA Objective | GA Time (Min) | Gaps% | Gap,, % m p
best case scenario (Q) 116,881,771.00 106.01 0.00068 | 0.00065 04 | N3=97
worst case scenario (Q) 116,885,205.00 12.16 0.00362 0.00359 ! N/6= 48
best case scenario (7) 116,883,740.00 6.56 0.00237 | 0.00234 0.5 | N3=97
worst case scenario (7) 116,882,581.00 128.18 0.00137 | 0.00135 04 | N3=97

Table 5.1 - The best and worst case scenarios of GA solutions (Problem 1)

As observed in Table 5.1, Mosel functions between 0.00065% and 0.00359% better than GA in terms

of quality for this problem.

21

c 3.5
2
2 30] °
g
.m 2.5 1
I
$ 2.0
=}
c
n
» 1.5
<
L
g
v 1.0-
2
S 05 * * ¢
é ' o0
Q
5 0.0 eoosewpemed® we o000 ®we .]
0 50 100 150 200 250 300
GA Search Time {Min)
Figure 5.1 - Scatter Plot - Gap,,, vs. GA Search Time (Problem 1)
0.0040 - P m
§ ® Nfs 04
s A N N/ 05
3 00035 S o N 07
s <, A Nf 10
2 . b N3 04
@ 00004 2 < N3 05
E: + ¥ Nf3 07
N3 10
£ ooos{ ° * NB
2 [
E < .
U
« 0.0020 v
E .
§ 0.00151 v a -
s v | 3
~~
& 0.0010-
g >
v L
0.0005 4, . i
0 20 40 60 80 100 120 140
GA Search Time (Min)

Figure 5.2 - Scatter Plot - Gap,, vs. GA Search Time (Problem 1)

5.3.2 Problem 2 (Medium problem fiom chapter 4)

This problem includes 131 employees (N = 131). The best integer solution found by Mosel is
“556,770,618.50; the percentage gap between Mosel’s solution and best bound is *0.12%". Mosecl
found this solution after “10.7” min. Mosel finds a better integer solution. *556.770,070.90, after

10 hours.

The same problem was solved with GA. GA’s best solutions with different p and m parameters
were provided in chapter 4. The percentage gap between these GA solutions and the above Mosel
solution are represented in Figure 5.3 and Figure 5.4. Figure 5.3 depicts the gaps (Gapy,,) for all
the GA parameters (five levels of p and six levels of n1). and Figure 5.4 depicts the gaps (Gapg,)
only for the best parameters that were concluded from ANOVA (p = N/2 and N/3, m = 0.5.0.7, 1).
The best and worst case scenarios, in terms of quality and time, for GA solutions that are depicted

in Figure 5.4 are given in Table 5.2.

59 8

5

3 'Y

(7]

-E .

s a0 ¢

]

w

-]

b

-]

&

° 204

< .

L

5 []

(1)

2 .

T 101 e .

3 4

IE' w fo o o oo ° Py
D T L] T L]

0 20 40 60 80 100 120
GA Search Time (Min)

Figure 5.3 - Scatter Plot - Gapy, vs. GA Search Time (Problem 2)

93

p m
s 404 ™ ® Nf 05
= B N5 07
< 4 N 1.0
o A NB 0S5
] » N3 0.7
& 30- <4 NS 10
.
(=]
z
°
&
5 20-
<
O
[~
[
o
2
g 104 %, n
) *
N R~ AT <«
0 T L] L] T T
0 10 20 30 40 50
GA Search Time (Min)
Figure 5.4 - Scatter Plot - Gap,,, vs. GA"Séarch Time (Problem 2)

GA Objective | GA Time (Min) Gap,, % Gapm % m p
best case scenario (Q) 573,166,457.00 48.88990 3.07024 2.94481 1 N/3 =43
worst case scenario (Q) | 782,768,824.00 0.02567 40.76220 40.59090 0.5 N/6 =22
best case scenario (7) 782,768,824.00 0.02349 40.76220 40.59090 0.7 N/6=22
worst case scenario (7) | 573,166,457.00 48.88990 3.07024 2.94481 1 N/3=43

Table 5.2 - The best and worst case scenarios of GA solutions (Problem 2)

As observed in Table 5.2, Mosel functions between 2.95% and 40.59% better than GA in terms of

quality for this problem. However, as it is observed from Figure 5.4, the Gap,,, for most of GA’s

objectives is less than 4%.

5.3.3 Problem 3 (Small problem from chapter 4)

This problem includes 17 employees (N = 17). The best integer solution found by Mosel is
"95,931,457.24” and best bound is “95,931,457.24 the percentage gap between the best Mosel

solution and best bound is “0.00%”. Mosel found this solution after “0.001”

that the problem is unfinished which indicates it is still possible to find a better integer solution

than best bound (95,931,457.24).

94

min. Mosel denotes

The same problem was solved with GA. The GA best solutions with different p and m parameters
were provided in chapter 4. The percentage gap between these GA solutions and the above Mosel
solution are represented in Figure 5.5 and Figure 5.6. Figure 5.5 depicts the gaps (Gapy,,) for all
the GA parameters (eight levels of p and six levels of m). and Figure 5.6 depicts the gaps (Gapem)
only for the best parameters that were concluded from ANOVA »=N2and N/3, m= 0.3 and
0.4). The value of “-0.00017” for Gapy,, from Table 5.3. indicates that GA found a better solution
than Mosel for this problem.

g
[=
2
Sy e
Q
W
g 6-
[==]
o .
2 54
£ .
B 4
5 . s o .
= P 0 MO 00 IO OO ®® e @ e oo
li_’ 31 . 'Y ®eo o ce@ o so 000 'y
g
22 o o
= LI 1
-~ * - * .
Eol 14 ® 6 ®wwesee .
3 o 0o o o ® o .
U 0 90 ¢ S0 000 o o .
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
GA Search Time (Min)

Figure 5.5 - Scatter Plot - Gap,,, vs. GA Scarch Time (Problem 3)

95

3.0 . P m
c A ® N5 03
;§ B N 04
2 ¢ Nj3 03
8 2.5- A Nf3 04
]
L
[-=]
W
ij 2.0 N
Q
X
2 15-
o " .
L
§ 1.0 1
3 %
@
g 0.5 A =3 .
o
n
L 00 om ok
0005 0010 0015 0020 0025 0030 0035 0040
GA Search Time (Min)
Figure 5.6 - Scatter Plot - Gap,,, vs. GA Search Time (Problem 3)-

GA Obj GA Time(Min) Gap,, % Gap,,, % m p
best case scenario (Q) 95,931,293.00 0.01118 -0.00017 -0.00017 0.3 N3=6
worst case scenario (0) 98,731,057.00 0.00545 291833 2.91833 0.4 N3=6
best case scenario (7) 98,731,057.00 0.00545 2.91833 2.91833 04 N3=6
worst case scenario (7) 96,330,759.00 0.03821 0.41624 0.41624 0.3 N6=3

Table 5.3 - The best and worst case scenarios of GA solutions (Problem 3)

5.3.4 Problem 4

This problem includes 45 employees (N = 45). The best integer solution found by Mosel is
*2,177,299,943.00” and best bound is “1,958,935,552.00%; the percentage gap between Mosel’s best
solution and best bound is “11.15%”. Mosel found this solution after “8.60” min. Mosel could not
find a better solution after increasing the search time to 10 hours. The same problem was solved
with GA using the following parameters: p=N/2and N/3 and m = 0.3, 0.4, 0.5, 0.7 and 1. With
cach of the above parameters, GA found a better solution than Mosel. The worst case scenario for
GA was found with m = 0.3 and p = N/3 parameters.

objective value of '2,154,503,746.00™, search time of «

96

The associated values are as follows:

13.13” min, the Gapg, of “9.98339%” and the

Gapgn of “-1.04700%”. All other parameters produced the same best case scenario result; the
solution with the objective value of “2,147,704,852.00™. the Gapy of *9.63632%" and the Gapy. of **-
1.35926%”. The search times ranged from “5.58" min for m =1 and p = N/6, to *14.15” min for m

=0.4 and p = N/6. As aresult GA behaves between 1.36% and 1.05% better than Mosel in terms off
quality for this problem.

3.3.5 Problem 5

This problem includes 331 employees (N = 331). The best integer solution found by Moscl is
«787,926,158.70” and best bound is “787,923,291.50 “; the percentage gap between Mosel’s best
solution and best bound is “0.04%”. Mosel found this solution after “2.85™ min. The same
problem was solved with GA with the parameters in Table 5.4; the parameters were chosen
according to results of ANOVA.. The results of GA runs and the calculated gaps are also displayed
in Table 5.4. As observed in Table 5.4, Mosel’s best solution is 3.42% better than GA’s worst
solution; but GA can find a better solution than Mosel in terms of both quality and time with m =

0.4 and p = N/12 parameters .

GA Objective | GA Time (Min) Gap,, % Gapym % m p
806,057,710.00 0.01 2.30155 2.30117 04 NI6 = 55
806,059,510.00 0.01 2.30177 2.30140 0.5 NI6 =55
806,057,710.00 0.01 2.30155 2.30117 0.7 NIG = 55
806,059,090.00 0.01 230172 2.30135 | NI6 =55
806,057,710.00 0.02 2.30155 2.30117 0.4 N3 =110
806,057,710.00 0.02 2.30155 2.30117 0.5 N3 =110
806,057,710.00 0.02 2.30155 2.30117 0.7 N3 =110
806,911,060.00 0.02 2.40985 2.40948 1 N3 =110
780,458,052.00 0.74 -0.94746 -0.94782 04 NN12=28
814,864,421.00 0.02 3.41926 3.41888 04 N2 =165
814,863,761.00 0.05 3.41917 3.41880 0.4 N=331

Table 5.4 - GA best solutions and associated Gaps for different parameters (Problem 5)

97

5.3.6 Problem 6
This problem includes 599 employees (N = 599). The best integer solution found by Mosel is

“026,575,489.30” and best bound is “926,239,040.00 **; the percentage gap between Mosel’s solution

and best bound is “0.04%”. Mosel found this solution after “73.30” min. Mosel could not find a
better solution than above after increasing the search time to 10 hours. The same problem was
solved with GA with the parameters in Table 5.5; these parameters were chosen according to
results of ANOVA. The gaps are depicted in Table 5.5 and Figure 5.7. As observed in Table 5.5,
and from Figure 5.7, Mosel functions between 7.34% (worst case scenario of GA) and 1.6% (best
case scenario of GA) better than GA in terms of quality for this problem. However, GA can
produce a better solution in terms of time with most of the GA parameters. The best solution in
terms of time and quality is the solution with a Gapy,, of “2.59268%”, search time of “46.93” min

and is generated by m = 0.4 and p = N/6 parameters.

GA Objective | GA Time (Min) Gapg % Gapg, % m p
945,402,341.00 81.12 2.0689 2.03187 0.4 N/3 =100
968,201,469.00 99.94 4.53041 4.49245 0.5 N/3 =100
980,198,676.00 47.71 5.82567 5.78724 0.7 N/3 =100
941,393,574.00 164.33 1.63614 1.59923 1 N/3 =100
950,598,649.00 46.93 2.6299 2.59268 0.4 N/6 =200
975,799,150.00 41.65 5.35068 5.31243 0.5 N/6 =200
976,600,044.00 50.27 543715 5.39886 0.7 N/6 =200
980,200,030.00 41.97 5.82582 5.78739 1 N/6 =200
994,596,361.00 25.54 7.38009 7.34110 04 N/12=50

Table 5.5 - GA best solutions and associated Gaps for different parameters (Problem 6)

98

6
c + ¢ p m
:g ® N5 04
3 P v B Nj§ 05
s 5 < N6 07
8 > N3 04
2 u « N3 05
§ 4 v N3 07
5 b + N3 1.0
-
c
o
-Ul
5 3-
c
8)
E
ohed
[,
=27 *
&
— A
a
)
[}
1 L L] T T T T T
50 75 100 125 150 175
GA Search Time (Min)

Figure 5.7 - Scatter Plot - Gap,,, vs. GA Search Time (Problem 6)

5.4 Conclusion of the Comparison

GA found good solutions for all of the above problems in a reasonable amount of time, and found
better solutions than branch-and-bound in three of the above problems. The range of problems
tested was large (V=17 to N=599) which shows that the proposed GA is capablc of producing

optimal, or near optimal, feasible solutions for different sizes of problems.

99

Chapter 6

CONCLUDING REMARKS AND FUTURE RESEARCH

6.1 Concluding Remarks

In this thesis, a real-world retail labour scheduling problem with different skills, employee types,
employee preferences, scheduling preferences, objectives and constraints, that has more difficulties
than the problems solved in the literature, has been examined. A GA meta-heuristic has been
implemented as the solution approach to the problem. To the best of the author’s knowledge, GA
has not been used for this type of problem before.

The proposed GA was compared with the conventional, linear integer programming approach.
The GA was tested on a set of six real-world problems. In order to tune the GA parameters, three
test problems were tested using a range of population size and mutation rate parameters. Then all
six were solved with the best of those parameters. The results were compared to those obtained
with the branch-and-bound algorithm. It was shown that GA can produce near-optimal solutions
for all of the problems, and for half of them, it is more successful than the branch-and-bound

method.

Branch-and-bound method (Mosel) is an exact method, however under some circumstances, such
as when the size of the problem is large or when the problem is complicated caused by adding

some constraints or objective function components to the problem, it is possible that branch-and-
bound can not find an optimal solution. In the cases where branch-and-bound method does not

behave well, GA can be suggested as an alternative method.

100

6.2 Key Aspects
Below, some of the key aspects of this thesis are provided.
1. The problem under study is a real-life retail scheduling problem. The size of the problem
tackled in this thesis is larger than what the author came across in literature; for instance,

one of the test cases is to schedule 599 employees.

2. The objective functions and constraints are more comprehensive compared to those of

other studies in the literature.

3. The definition of shift is more comprehensive than the cited studics in the literature. A shift

includes day, location, start and end times, skill and activity.

4. Employee type such as fixed-shift, full time, part time, salaricd and scheduling preferences

such as seniority and the level of skills are considered.

5. There is no limitation on the number of jobs, skills, and skill levels.

6. Shift scheduling, days-off scheduling and task assignment steps (or, in other words, tour
scheduling and task assignment steps) are performed simultancously. Days-off scheduling
is performed by “maximum consecutive days” hard constraint.

7. The proposed GA is very flexible to adding more objective functions and constraints.

8. The proposed GA approach can be applied to any non-linear fitness functions, although the

fitness function considered in this thesis is a linear function.

101

9. The solution of this GA specifies which employee is assigned to which shift while the
solution of the other reviewed GAs in the literature, only specify the optimal number of

assigned employees.

10. The proposed GA is capable of producing optimal, or near optimal solutions for different

sizes of problems. A large range of problems (N=17 to N=599) were tested in this thesis.

11. At cach iteration of the proposed GA, the feasibility of each solution is checked by every
hard constraint in the scheduling problem and if it violates the constraint it is repaired by
some repair methods, therefore at each iteration the genetic algorithm contains a population

of feasible solutions.

6.3 Future Research

This thesis covered only a GA meta-heuristic. Further study to tackle the problem of retail labour
scheduling could be performed using other meta-heuristic approaches, such as tabu search or
simulated annealing. When more solution methods become available, it would be beneficial to
compare their performance. Developing a memetic algorithm that incorporates other solution

methods into the GA is another area of future research.

One of the strengths of the proposed GA is that additional constraints and objectives can be
incorporated ecasily. Further work could be done by adding more constraints and comparing the

effectiveness of the GA with different constraints enabled.

More complex crossover methods and dynamic mutation rates could affect the quality and speed of
solutions, and additional testing in these areas could enhance the abilities of GA for solving real-

world problems.

APPENDIX I: ANOVA PLOTS

This appendix contains all the individual plots used in chapter 4 — Experimental Design and

Statistical Analysis. For example. Figure (A;,) and Figure (A)2) are the individual plots of (Ar) in

chapter 4.

Figure (AL1) = RV (WD 2= 0) e ee s e 104
Figure (A12) = RVI(WIth 5= 0) .o e 104
Figure (BLi) = RV2 (WIH 2122 0) e 105
Figure (Br2) = RV2 (WIth 1= 0) co.oooveieeeeeeee e ee s es e ses e 105
Figure (CL) - RV} (WIth 511 = 0) ceeeieeeeeee et s s ease s sesanens 106
Figure (DL) = RV2 (WIh 227 =0) .o eeeeses s st eneeesessssss s senas 106
Figure (A'L1) = RVi (WIHOUL 221 = 0) ettt et eenese e ee s e esenenae 107
Figure (A'L2) = RV} (WItROUL 177 = 0)....oeeeeceeeeeeeeeeee e s eeseses s s sesssssnans 107
Figure (B'L1) - RV2 (WIthOUL 71 = 0)..cecereeeieeceeeevete et s seseaas 108
Figure (B'L2) = RV2 (WIROUL 277 = 0.ttt et eete e e eseeseseeseseeassesessesennens 108
Figure (AM1) = RV (WIth 1722 =0) ceovieeeeeeeeeeeeeeee ettt se s s s bsnens 109
Figure (Amz) = RV} (WIh 212 =0) oottt saens 109
Figure (Bmi1) = RV2 (WIth 7115 0) .ottt ses s essssnsnes 110
Figure (Bpz) - RV2 (WIth 11 = 0) .ottt eese e eaess e ese s ssanans 110
Figure (Cpm) = RV} (WIh 117 0) ettt vt e s sn e se s s snenne 111
Figure (Dp) - RV2 (With 112 =0) ettt eteaeve s s e sse s sesaesaneens 111
Figure (A'M1) = RV (WIhOUL 172 = 0) ..ttt et et sssnns 112
Figure (A'M2) = RV} (WIthOUE 177 = 0) c..ccuuiieeeieceeeieieetcceee ettt csasseesssssssssssesesssenns 112
Figure (B'M1) = RV2 (WIhOUL 777 = 0) ettt sesesestsssesesnasas 113
Figure (B'M2) - RV2 (WIthOUt 717 = 0)..ueueieeieiteeeeeeeeecrctrrcccinscictsesssesaestssesssnenens 113
Figure (Ag1) = RV} (WIth 177 =0) ettt sescsesessssesesesssenss 114
Figure (Asz) = RV} (With 17 = 0) ceeeeieeciieeeeeeceecteeiecsse s ssae s senes 114
Figure (Bs)) = RV (With 711 = 0).cecuireicieieereececciiciietc ittt sbe s senes 115
Figure (Bsz) = RV2 (With 17 = 0)ceceeiecciiiiiiicicicictcnite ettt 115
Figure (Cs) = RV} (With N = 0) ettt ettt sssnasnes 116
Figure (Ds) - RV2 (With I = 0) ..ttt ssnssens 116
Figure (A'sy) - RV} (WIthOUt 77 = 0) wcecemueiniirciiicceeee ettt 117
Figure (A's2) - RV} (WIthOUE 717 = 0) weueeeceieinininiciicte st tsassssstassaes 117
Figure (B'sy) - RV2 (WIthOUL 717 = 0) ettt sesscsisens 118
Figure (B'sz) - RV2 (WIthOUL 717 = 0) w.ccoumrrmirinrninisieieesiteieieneseescssssnsaans 118

103

Interaction Plot- Population Size and Mutation Rate
2000000000 4

Population Size
H —— M1z
"1 —B— R
2500000000 - ! ' M3
z) —aA - M2
'ra 4% "
> _ y :‘.
o 20000000004 Y
2 Y ‘!‘
peri]
2 4
T 1500000000 Wy
= By
2 iy
c (W]
S 1000000000 "4
n o)
(=) '||1.|
< R
© Spnoo0o00 - 4
\
R LT
Ij T T T T T T
a.n 0.3 0.4 n.5 0.7 1.0
Mutation Rate
Figure (Ayy) - RV, (with m = 0)
Interaction Plot- Population Size and Mutation Rate
2000000000 A . IMutation
___—0\ Rate
\ —— 0.0
o 2500000000 - ~e. —B— 0.3
3 T R 0.4
2 e —A - 0.5
o 2000000000 A I 0.7
2 —— 1.0
<
2
o 1500000000 -
O 'Y
©
g
'{'EFL 1000000000 A
o
5
S00000000 -
e —n " # «
Q- T T T T T
1 2 3 4 5
Population Size
Figure (A;>) - RT) (with m = 0)

104

Interaction Plot- Population Size and Mutation Rate

105

140 T
W Populatinn Sice
—o— NS12
12D 1 = tk
NS
—_ A e
e 100 - t
o gnd)
R= -7
[A N
S 60 ‘
/ A
UJ ~
< 107 / - T~
S .
. ‘ A
20 - I B ' e B-— - g
¥ L -'“F— - ‘_‘_.__—__”__‘
01 &
0.0 0.3 0.4 n.s 0.7
Mutation Rate
Figure (By) - RIS (with e 0)
Interaction Plot- Population Size and Mutation Rate
140 4 M”'.."l’ N
A
a Fate
L 2 nn
120 - . o
F _ 0.4
= 100 - ; —A - 0.
= 0.7
ép ; .~ < 1.0
m i -‘ 'In‘ e - - B
g 20 ; v ,
= ! LI
S 60- / <,
] { s
o ; .A
< 490 o
o ; 3 / 4
] o —
20 . e :
B -r;.;—'"i —u
- . . .
0 L * g *
1 2 3 4 =
Population Size
Figure (By2) - RV (withm - 0)

Mean of GA Optimal Objective Value

2500000000 -

2000000000 -

1500000000 A

1000000000 -

Main Effects Plot

Population Size

Mutation Rate

——o

04 05 0.7

500000000 - ,\‘ l
D- T T T T T T T T L] T T
N/12 N/6 N/3 N/f2 N 00 03 04 05 07 10
Figure (Cp) - RV, (with m=0)
Main Effects Plot
Population Size Mutation Rate
70 4
T 60+
3
g S0
E
S 40-
1]
Q
0
« 304
[da}
k]
c 20- y
2
10 -
L]
0
N2 N6 N3 N2 N 00 03 04 05 07 10

Figure (D.) - RV; (with m = 0)

106

Interaction Plot-

Population Size and Mutation Rate

118200000 -
Population Size
—— N/12
118000000 - —B- N5
= —a - Nf2
> 117800000 - . N
1}
2
S 117600000 -
2.
O
% 117400000 -
£
et
ju
O 117200000 -
<
[Ka}
1170000001 ™
A —
03 0.4 0.5 0.7 1.0
Mutation Rate
Figure (A")) - RV, (without m = 0)
Interaction Plot- Population Size and Mutation Rate
118200000 A Mutation
& Rate
—— 0.3
118000000 - v —.— 0.4
03J %..‘ L2 05
$ 117800000 - ¢ S
9 i
S 117600000 -
2 §
Q 3
O '1_
% 117400000 - \
£ M
= v ¢
Q %
O 117200000 4 . R
< -
P L -
117000000 - o
i b —{% - ——a
1 2 3 4 5

Population Size

Figure (A'L2) - RV; (without m = 0)

107

Interaction Plot- Population Size and Mutation Rate

140 - ___
» Population Size
—— Nf12
120 —B— Nj6
- - N3
~ —ah - NR
£ 100 4 o B N
< A
. \
= . \
E \
L \
£ 1 A
5 60 \\ p
Q AN)
53] A X /
g 40; - ~. -
h ~i
20 -
0 1 l . '
0.5 0.7 1.0
Mutation Rate
Fighre (B'L1) - RV, (without m = 0)
Interaction Plot- Population Size and Mutation Rate
101 Mutation
* Rate
’ —— 0.3
120 - - 03
- - 0.5
? 100 9 _‘_ 0.7
E — - 1.0
£ 80
£
<
£ 60-
@
Q
7]
< 40+
20 -
0

Population Size

Figure (B'L2) - RV, (without m = 0)

108

Interaction Plot- Population Size and Mutation Rate

Population Size

800000000 - Population Size
—— N/f12
— - N/
¢ N
S 750000000 - —A- N//:
> s e
[o1]
2
‘g 700000000 -
2
[]
T
£ 650000000 -
e}
Q
o
<
o
600000000 -
> R, NG (U M-
00 03 04 05 07 10
Mutation Rate
Figure (Amy) - RVy (with m=0)
Interaction Plot- Population Size and Mutation Rate
800000000 Mutation
.\H. Rate
\ —— 0.0
— - 0.3
3 750000000 6. 04
[1) —aA - 05
> » 0.7
3 * —— 1.0
'S 700000000 -
9 Al
o RN
e T
E esooooooo{ 7 s
et ~.
=% 4. NN
D . ° \.\
<L \h,' N
S . .
600000000 - .
-___\b- !";
g 4 —
1 2 3 4 5

Figure (Amz) - RV (with m=0)

109

Interaction Plot- Population Size and Mutation Rate

Population Size

50 '
ot Population Size
R —— N/12
| . "
A 40 ‘ o NP
= —A - Nj2
;’ , ‘ ; — - N
£ 30- g !
» .
3 20 /N L .
)] ¢) '%
<L .
“ 10 '/ “ /\ r S Y A
/ ' e - Kk) \. ‘\ - /
; e 4 - . ‘,/ -
[~
0 ye
0.0 0.3 0.4 0.5 0.7 1.0
Mutation Rate
Figure (By)) - RV (with'ni = 0)
Interaction Plot- Population Size and Mutation Rate
& Mutation
50+ ;h Rate
—— 0.0
—m— 03
—~ 40 - - 0.4
c R —A - 05
b —p - 07
—— 1.0
g 30 b ;j{ ’:x‘
= A, -~ — "
_8 S AN Ve ¢ ‘ir
ot S e
@ 20 LN\ s
o ; P
2] 7 \\/ e P "
<C /“ ,/ ' \\ A ! /"’} —a
“ 10 Ry SN NS
T L e
s 2 S
A
0- . e L T > —e
1 2 3 ‘; 5'

Figure (Byy) - RV, (with m = 0)

110

Mean of GA Optimal Objective Value

Main Effects Plot

Population Size

Mutation Rate

780000000
760000000 A
740000000
720000000
700000000
680000000
660000000 4
640000000

620000000 -

600000000 A

Nf12

N6 NS N2 N 00 03 04 05 07 10

Figure (Cy) - RV, (with m = 0)

Mean of GA Search Time (Min)

Main Effects Plot

Population Size

Mutation Rate

30+

254

20 -

151

10 1

\

N/12

N/6

NS N2 2N 00 03

T T

04 05

0.7

1.0

Figure (Dy) - RV, (with m=0)

111

Interaction Plot- Population Size and Mutation Rate

720000000 - Population Size
—— N/f12
—— N/6
700000000 - o N
3 —a- Nf2
T 680000000 - - N
2
:.3 660000000 -
2
2 6400000001 -
©
£ 620000000 - N
-
=] \
< 600000000 5
| |
o
580000000 - B e e
560000000 A . . : : .
0.3 0.4 0.5 0.7 1.0
Mutation Rate
Figure (A'm) - RV, (without m = 0)
Interaction Plot- Population Size and Mutation Rate
720000000 - L] Mutation
Rate
—— 0.3
o 700000000 - . o
= < - 05
g 680000000 - . —h - 0.7
Q e 1.0
% 660000000 -
2
'8 640000000 -
‘®
£ 620000000 -
)
Q.
()
< 600000000 -
o
580000000 -
560000000 -

Population Size

Figure (A'\p) - RV, (without m = 0)

112

Interaction Plot- Population Size and Mutation Rate

Population Size

» Population Size
S0 O . —— N/12
A —m- N/
© Nf3
o~ 40- —A - Nf2
_S L N
£
g3y
= - .
5 R)
&
T 20- N
@ . >
@ AN
< . »
S
& o .
10 - TR T A . -u L
| ¥ ™~ ~= ?"4 -
— - -
0 0“—0——/.\“»——0
0.3 0.4 05 0.7 1.0
Mutation Rate
Figure (B'\yy) - RV (without m = 0)
Interaction Plot- Population Size and Mutation Rate
Mutation
50 1 Rate
—— 03
—n- 04
23 05
—~ 40- —a - 07
"E > 1.0
2 30-
E
=
s
8 20-
»
<L
L
10
0

Figure (B'v) - RV, (without m = 0)

113

- Interaction Plot- Population Size and Mutation Rate

n
w 4
H
a
(=]

Population Size

Population Size
—— N/12
115000000 1 —.— N6
-~ N/3
g —h - Nf2
T —p - N
> 110000000 —— 2N
._‘3 - - 12N
Z
e
© 105000000 -
Q
E
e}
j= 1§
=)
< 100000000 -
o
95000000 . ' i . : .
0.0 0.3 0.4 0.5 0.7 1.0
Mutation Rate
Figure (As)) - RV, (with m=0)
Interaction Plot- Population Size and Mutation Rate
Mutation
115000000 - Rate
—— 0.0
—- 0.3
E -o- 04
g —aA - 05
D 110000000 - —p - 0.7
2 —— 1.0
et
Q
2
2
S 105000000
1]
£
et
j=
o
<« 100000000 -
[da]
95000000 -

Figure (Asz) - RV (with m = 0)

114

Interaction Plot- Population Size and Mutation Rate

4 S 6 7 8
Population Size

0.06
d— e
’,’ Rt S Population Size
PN - —— N/12
0-05' ,/’ \‘\ \+r’, - N/B
- *,f’ RN R N3
£ ™~ —aA - N/2
Z, 0.04 - < B e > N
o : —t— 2N
£ —v- N
(] 0.03 -t 12N
<
et
@
& 0.02-
<L
G
0.01 -
0.00 -
0.0 0.3 0.4 05 07- 10
Mutation Rate
Figure (Bs)) - RV (with m = 0)
Interaction Plot- Population Size and Mutation Rate
0.06 1 ‘ Mutation
) Rate
—— 0.0
0.05 A —.— 0.3
? o 04
£ —a - 05
.E_, 0.04 - - 0.7
o — 1.0
£ -
= 0.03 -
=
e
@
& 0.02-
<
P
0.01 -
0.00

Figure (Bsz) - RV, (with m = 0)

115

Main Effects Plot

Mean of GA Search Time (Min)

Population Size Mutation Rate

105000000
5
% 104000000 -
>
)]
% 103000000 -
Q
2
-8 102000000 A
®
E 101000000
a N
(=]
< 100000000 - \
]
S 99000000 *. — oo
: / - -
8 \./_,05.
2 98000000 -

97000000 h L] T T T T T 1 T ¥ T T T 1] T

Nf12 Nj6 N3 Nf2 N 2N 7N 12N 0.0 03 04 05 07 1.0
Figure (Cs) - RV} (with m = 0)
Main Effects Plot
Population Size Mutation Rate

0.05 4

0.04 1

0.03 1

0.02 -

0.01 1

/

NS

Nf12 Nf6 Nf3 N2 N 2N 7IIV 12IN EI.'D

0.3

0.4

05 07 10

Figure (Ds) - RV, (with m = 0)

116

Interaction Plot- Population Size and Mutation Rate

3 4 5 6 7 8
Population Size

99500000 A
< j Population Size
. —— N/12
99000000 | - NS
g & Nf3
= —A - N
3 98500000 - . ﬁ
g.J —— 2N
o= —— N
E 98000000] - IZN
2
g 97500000 -
£
2 97000000 -
o
&
96500000 -
96000000 4
0.3 0.4 05 0.7 1.0
Mutation Rate
Figure (A's)) - RV, (without m = 0)
Interaction Plot- Population Size and Mutation Rate
09500000 Matation
Rate
T —— 0.3
99000000 A R / pi T —.— o4
g . & 05
98500000 —A- W@
. 1.0
Q
=
+ 08000000 -
2
O
% 97500000 -
£
T 97000000 -
o
&
96500000
96000000 | ' , '

Figure (A'sy) - RV, (without m = 0)

117

o
~
as]

3 4 S
Population Size

Interaction Plot- Population Size and Mutation Rate
0.06 1 o+ Population Size
S~ PPt ol —— N/f12
f/’ —-—- Nfs
el -~ N3
D.DS- ‘\"--.._\ ,’, —ah - N}Z
’E‘ Y. + - N
= o —— 2N
< e —— 7N
2 0.0d44 I o A -4- 12N
£
o=
& 003 A
8 N Neo /
0.02 - A ¢
g A
O
0.01 - i l - ' '
0.3 0.4 0.5 0.7 1.0
Mutation Rate
Figure (B's)) - RV, (without m = 0)
Interaction Plot- Population Size and Mutation Rate
0.06 -
Mutation
Rate
—_— 0.3
0.05 —n- 0.4
< -4- 05
E —h - 0.7
© —p - 1.0
o 0.04 1
£
=
L
£
8 0.03 -
»
<L
o
0.02
0.01 - -

Figure (B's;) - RV, (without m = 0)

118

APPENDIX II: GA AND MOSEL ENVIRONMENT

For this study two computer systems were used for running Mosel™ and GA. Both systems were

carefully chosen in order to ensure that the performance characteristics were identical.

Mosel is a modeling and programming language. and is part of the Xpress-MP™ softwarce
produced by Dash Optimization (www.dashoptimization.com). Xpress-MP is a suite of
mathematical modeling and optimization tools used to solve linear, integer, quadratic, non-lincar,

and stochastic programming problems.

Mosel hardware and software system specifications:
e Dual Intel Xeon 2.80GHz CPU with 512KB cache
e Linux 2.4 Kernel

e DASH Xpress-MP version 2004e

GA hardware and software system specifications:
e Dual Intel Xeon 2.80GHz CPU with 512KB cache
e Linux 2.4 Kernel

e Sun Java version 1.5

119

APPENDIX III: JAVA CODE

Included below is a small portion of the java code used to model the proposed GA in this thesis.

Main. java

/t
* Main.java
.
* Created on March 14, 700%, *:31 EM
*/

package geneticalgorithm;

import geneticalgorithm.algorithm.GeneticBase;

import geneticalgorithm.algcrithm.GeneticChcice;

import geneticalgorithm.algorithm.rule . EnforceFixedShiftMinHcurs:
import. geneticalgorithm.algorithm.rule.MaxConsecutivelays;
import geneticalgorithm.algorithm.rule.MaxHoursPerSchedule;
import geneticalqgorithm.algerithm.rule.MinRequirementskule;
import geneticalgorithm.algerithm.rule.OBJSalary;

import geneticalgorithm.algorithm.rule.ObjOptionWeight;

import geneticalgorithm.algorithm.rule.ObjSeniority;

import geneticalgorithm.algorithm.rule.ObjiSkillLevelWeight;
import geneticalgorithm.algorithm.rule.Rule;

import geneticalgorithm.algorithm.rule.StrictRequirementsRule;
import geneticalgorithm.algorithm.rule.TotalHoursRule;

import geneticalgorithm.model.Context;

import geneticalgorithm.model.Population;

import geneticalgorithm.model.Schedule;

import geneticalgorithm.util.Random;

import java.util.List;

import java.util.Arrays;

import java.util.lterator;

/Ah
.
* Qauthor mkhashayardoust
¢/

public class Main {

private static final long LIMIT = 1;

/** The set of rules to be applied by this algorithm. */
protected static List rules;

/** The context for this algorithm. */
protected static Context context;

/** Creates a new instance of Main */
public Main() {
}

/QQ

* @param args the command line arguments

v/

public static void main(String[] args) throws Exception {
if (args.length > 1) {
Random.setSeed (Long.parseLong(args(1]));

}
int POPUATION_SIZE = 55;
double MUTATICN_RATE = 0.7;
GeneticBase genetic = new GeneticChoice (POPUATION SIZE, MUTATION RATE);
genetic.addRule (MaxHcursPerSchedule.RULE) ; B -
genetic.addRule (new MaxConsecutiveDays (5));
genetic.addRule (TotalHoursRule.RULE) ;
genetic.addRule (MinRequirementsRule.RULE) ;
genetic.addRule (StrictRequirementsRule.RULE) ;
genetic.addRule(EnforceFixedShiftMinHours.RULB);
genetic.addRule (ObjOptionWeight .RULE) ;
genetic.addRule (ObjSkillLevelWeight .RULE);
genetic.addRule (CbiSeniority.RULE);

120

genetic.addRule (OBJSalary.RULE);
genetic.readAll (args[0]);
long start = System.currentTimeMillis();

Population pop = genetic.getPopulation(};
long[] diffs = new long[l€];
Arrays.fill(diffs, 0);
int index = 0;
long movingSum = 0;
long lastBest = OL;
int ITERATION =50000;
int jlocp = 50;
int 3 = 0:
int countZeroMovingSum = 0;
Schedule best = null;
for (int i = 0; i <= ITERATION ; i++) {
pop = genetic.getPopulation(pop):
best = (Schedule) pop.getSchedules().get (';
movingSum ~-= diffs[index];
diffs([index] = lastBest - best.getCost ();
lastBest = best.getCost();
movingSum += diffs([index];
if (movingSum == 0){
countZeroMevingSum++;
if (countZercMovingSum >49500) {
System.cut.println("countZercMovingSum is:™ + countZerceMevingsum) g
break;
}
} else{
countZeroMovingSum = 0;

}
index = (index + 1) & O0x0f;

System.out.println("Iteration: " + i
+ ", Best Schedule Cost: "

+ best.getCost() + ", Moving sum: " + moevinarum
+ ", index: " + index);
J++ 5
if (j == jloop)i
double time = ((double) (System.currentTimeMillis=:(' - s=tart); / 1000.0;
System.out.println("Processing time for iteraticn: "¢ i ois: Mt time v " oseconds™);
j = 0;

}
}

genetic.evaluate (best);
double time = ((double) (System.currentTimeMillis() - start)) / 1000.0;

System.out.println("Processing time: " + time + " seccnds");
System.out.println("Schedule " + best.getName ()

+ " = " 4+ best.getCost());
System.out.println("optimal solution is:" + best);
System.out.println("Iteration: " + ITERATION) ;
System.out.println("Population Size :" + POPUATION_SIZE}
System.out.println("Mutation Rate :" + MUTATION_RATE) ;

System.out.println("Rules");

for (Iterator n = genetic.getRules().iterator(}); n.hasNext (;; |
Rule rule = (Rule) n.next();
System.out.println(rule + ": " + rule.getLastResult (});

model/Context.java

/*
* Context.java
*

* Created on March 25, 2005, 12:39 FM
*/

package geneticalgorithm.model;

import geneticalgorithm.model.ShiftRegistry;
import java.util.HashMap;

121

import java.util.Map;

Jo
.
* @author mkhashayardoust
*/

public class Context |

/** The label used for the set of employee details. */
/** wariable LEL EMPLOYEES store a reference ro an object of type lakel. */
private static final Label LBL EMPLOYEES = new Label ("employees™) ;

/** The label used tor the set cf chcices in this context. */
private static final Label LEL CHOICES = new Label ("choices")};

/** The label used for the set cf staff requirements. */

private static final Label LBL REQUIREMENTS = new Label ("requirements");

/** The label used for the interval length in this context. */
private static final Label LkL_INTERVAL _LENGTH = new Label ("intLength");

/** The label used for the shift information in this context. */
private static final Lakel LBL SHIFT INFORMATION = new Label ("shiftinformation”);

/** The label used tor the number of days in this context. */
private static final Label LBL _NUMBER_OF DAYS = new Label ("numDays");

/** The internal map ot all context values. */
private Map values;

/ih
*default constructor
v/

public Context () {

}

/.h
* Creates a new context.

* @param days the number of days in the schedule associated with this
* context
* @param intervallength the interval length in this context
v/
public Context(int days, int intervalLength) {
this(new Integer (days), new Integer(intervallength)};
}

/i‘
* Creates a new context.
N
* @param days the number of days in the schedule associated with this
* context
* @param intervallLength the interval length in this context
*/
public Context (Integer days, Integer intervallength) {
values = new HashMap();
values.put (LBL_INTERVAL_LENGTH, intervalLength);
values.put (LBL_NUMBER_OF DAYS, days):
values.put (LBL_EMPLOYEES, new EmployeeRegistry(getIntervallength()));
values.put (LBL_CHOICES, new ChoiceRegistry());
values.put (LBL_SHIFT_INFORMATION, new ShiftRegistry());
values.put (LBL_REQUIREMENTS,
new RequirementRegistry(days.intValue(),
intervallLength.intValue()));

/Qi
* Get a specified value from this ceontext.
.

* @param name the name of the value to be retrieved
N
* @return the specified value, or <code>null</code> if there is no value
* associated with the specified name in this context
*/
public Object get (String name) {
return values.get (name);
}

VAR

122

* Set a specified value in this ceontext.

@param name the name of the value to be stored

@param value the value to be asscciated with the specified name in this
* context

* @return the old value asscciated with the specified name, or
* <code>null</code> if nc value was revicusly defined
*/
public Object set(String name, Obiect value) {
return this.values.put {name, value!;

}

Ja
* Get the interval length for this context.

-

* @return the interval length in minutes

*/
public int getIntervallength{) {

return ((Number) this.values.get (LBL INTERVAL LENGTH)).intValue();

) - -~

/**
* Get the number of days fcr the schedule associated with this contest .
*

* @return the number of days

*/
public int getNumberOfDays(} {
return ((Number) this.values.aetaLBL‘NUMBER‘OF‘PAYﬁ)).intvulunm):
}
/*i

* Get the set of all employees known in this context.
-
* @return the set of employees
*/
public EmployeeRegistry getEmplcoyees(} {
return (EmployeeRegistry;} this.values.get (LBL EMPLOYEES);
}

/*'
* Get the set of all choices known in this context.
*
* @return the set of choices
*/
public ChoiceRegistry getChoices() {
ChoiceRegistry chr = (ChoiceRegistry) this.values.get (LBL_CHOICES);
return chr;

}

/*i

* Get the set of all shift information known in this context.

*

* Q@return the set of shift information

*/
public ShiftRegistry getShiftInformation() {

return (ShiftRegistry) this.values.get (LBL_SHIFT_INFORMATION);

}

/t*
* Get the set of all requirements known in this contexzt.
*
* @return the set of requirements
*/
public RequirementRegistry getRequirements() f{
return (RequirementRegistry) this.values.get (LBL _REQUIREMENTS);

}

public String toString() {
return "Requirements:" + this.values.get (LBL_REQUIREMENTS);
}
/**)
* private internal class used to keep internally defined contezt attribu
* in a separate namespace frcm user-defined attributes.
*/
private static class Label {
private String name;

tes

public Label (String name) {
this.name = name;

123

}

public String toString/) |
return this.name;
}

public int hashCode (} {
return this.name.hashCode(, + 17
)

public boclean equals(Cojest cbj) |

return this == obj;
)

model/Population.java

7
¢ bopulation.java
¢ Created on March 16, 2005, 7:25 KM
v/

packaqge geneticalgorithm.model;

import. java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;

/tl

.

* @author mkhashayardoust

./ b
public class Population {

/** The list of schedules in this population. */
private List schedules;

/** An unmodifiable list for external use. */
private List external;

/** The number of days represented in this population. */
private int days;

/!1
* Creates a new population
.
/
public Population() {
schedules = new ArrayList();
external = Collections.unmodifiableList (schedules);
days = 0;
}

/ii
* Create a new population that is a copy of an existing population.
Al
* @param population the population to be copied
*/
public Population(Population population) {
this();
for (Iterator n = population.getSchedules().iterator(); n.hasNext(); } {
addSchedule ((Schedule) n.next());
}
}

AR

* Get the list cof schedules in this population.
*

* @return the list cf schedules
N
/
public List getSchedules() {
return external;
}

/QQ
* Get the size of this population.

124

*

* Qreturn
*/
public int
return
}

/i*
* Get the
* greater

*
* @return

*/
public int
return

}

/i*
* Add a sc
* @param s

*/
public void
schedul

if (sch
day
}
}

/*i
* Get a sc
*

* @param i
*
* @return
*/
public Sche
return

}

/ti
* Truncate

* %

lowest c
method w

@param s

/

public void

if (sc
Col
whi

L

}
}

/**
* Return a
*/
public Stri
String
StringB
int len
for (in
buf

}

return

the number of schedules in this porulation

getSize() {
schedules.size();

number of days represented in this pcepulation. This will

than the highest day number tound.
the number of days represented in this population

getNumberOfDays () {
days;

hedule to this population.
chedule the schedule to be added

addSchedule (Schedule schedule' |
es.add(schedule);

edule.getNumberOfDays (' > days® |
s = schedule.getNumberCflays(;;

hedule from this population.
ndex the schedule in this pcopulation
the requested schedule

dule getSchedule(int index! {
(Schedule) schedules.get (index!;

this population to the specified size.

ost schedules will ke retained after truncation.
ill have no effect.</p>

ize the target size of the population
truncate(int size) {

hedules.size() > size) {

lections.sort (schedules);

le (schedules.size() > size) {
schedules.remove (schedules.size() - 1);

string representation of this pcpulation.

ng toString() f{

If

the

lineSep = System.getPrcperty(”line.separator"”, "/n");

uffer buf = new StringBuffer(!;

= schedules.size();

t i=20; 1< len; i++) {

.append ("Schedule: ").append!i).append(lineSef]
.append (schedules.get (i}) .append(lineSep;;

buf.toString();

algorithm/GeneticBase.java

be one

<p>The population will first be scrted in order of cost, and only the

pcpulation size is already equal tc cr less than the target size, this

/*

* GeneticBase.java

125

.

v Created on March 14, 2005, 9:22 FM
v/

package geneticalqgorithm.algorithm;

import. geneticalgorithm.algorithm.orule kule;
import geneticalgorithm.bean.Choice;

import geneticalgorithm.bean Employea;

import qgeneticalgorithm.pean.Shifrinformation;
import geneticalgorithm.model . Choicekegistry;
import geneticalgorithm.model Shiftkeqgistry;
smport geneticalgorithm.model Context;

import geneticalgorithm.model JEmployeckegistry;
import genet icalgorithmomede ! (bopulation;
import geneticalqgorithm.mode chediale;

import genet icalgorithmout il Random;

import java.io.lOExzception;

import java.ic.Reader;

import java.util Arraylist;

mport Gjava.util.Collections;

import java.util.lterator;

import java.util.List;

/-0
* @author mkhashayardoust
‘/

public abstract class GeneticBase |

s
* Add zero-length shifts to a registry.
.
* @param the reqgistry tc have zero-length shifts added
v/
public static void addZerclLengthshifts(ChoiceRegistry chcices,
Context context) {
ShiftRegistry shifts - context.getShiftInformation();
int maxDays = choices.getNumberOfDays();
EmployecRegistry employees = context.getEmployees();
for (Iterator n = choices.getEmployees().iterator(); n.hasNext(); } {
Integer empld = (Integer) n.next();
Employee employee = employees.getEmployee (emplId);
tfor (int day = 0; day < maxDays; day++) {
Choice choice = new Choice();
choice.setEmployee (empId.intValue());
choice.getShift ().setLength(0);
choice.getShift () .setStartInterval(1l);
choice.getShift () .setDay(day):
choices.addChoice (choice);
ShiftInformaticn shift = new ShiftInformation(choice.getShift(), day, 1, 0, 0, 0);
shifts.addShiftInformation(shift);

}

/** The default interval length to be used. */

private static final int DEFAULT_INTERVAL_LENGTH = 15;
/** The default schedule length to be used. */
private static final int DEFAULT_SCHEDULE_LENGTH = 7;

/** The context for this algorithm. */
protected Context context;

/** The size of the population to be used by this algorithm. */
protected int size;

/** The number of days per schedule. */
protected int scheduleLength;

/** The set c¢f rules to be applied by this algorithm. */
protected List rules;

protected List publicRules:;

/Qﬁ

* Creates a new instance cf <code>GeneticBase</code>.

126

* @param populationSize the size of the populations te be generated by this
* algorithm ‘

*/

public GeneticBase () {
}

public GeneticBase(int pepulaticnfice: |

this(populaticnSize, DPEFAULT SCHEDULE LENGTH, DEFAULT INTERVAL LENGTH;
)

Creates a new instance cf <code>GeneticRases code~,

@param pcpulationSize the size ¢t the populations to be generated by this
* algorithm
* @param intervallength the interval lenath in minutes te be used by this
* algerithm
*/
puklic GeneticBase (int pcpulaticonSire,
int days,
int intervallength® {
centext = new Context {days, intervallenath';
size = populationSize;
scheduleLength = DEFAULT SCHEDULE LENGTH;
rules = new Arraylist();
publicRules = Collections.unmcditiabielist irules);

}

/ii
* Add a rule tc this algorithm.
.
* @param rule the rule to be added
*/
public void addRule(Rule rule) {
rules.add(rule);
}

s .
* Get the current list of rules.
*
* @return the list of rules
v/
public List getRules() {
return publicRules;
}

/it
* Return the context for this genetic alqorithm instance.
*/
public Context getContext () {
return this.context;

}

/’i
* Read all files into this genetic algorithm for processing.
+
* @param prefix the filename prefixz for the set cf files to be Joaded
N
* @throws IOException if there is an errcr reading from the specitied
* stream
*/
public veid readAll(String prefizj throws IO0Exception {
readEmployees (prefixz + "TmpSchd_Employees.txt");
readChoices (prefix + "TmpSchd_Choices.txt");
readRequirements (prefiz + "TmpSchd_Staffkequirements.tzt™);
readShiftInformation(prefix + "TmpSchd ThiftlInfo.tzt™);
System.out.println(”file is:" + prefiz;;
}

/it
* Read the choices from the specified stream.
*

* @param rdr the stream from which tc read the choices for this algorithm
*
+ @throws IOException if there is an errcor reading frem the specified
* stream
*/
public void readChoices (Reader rdr; thrcws ICEzception |
context.getChoices () .readChcices (rdr;;
127

* kead the choices from the specified file,

* @param filename the name of the file frem which the choices will be
¢ read

* fathrows 1OException if there is an error reading from the specified
v file
>/
public void readChoices(String filename) throws IOException {
context . getChcices!() .readChcices(filename);

* Fead the shift information from the specified file.

* @param filename the name ot the file from which the choices will be

read

* fAthrows [OException if there is an errcr reading from the specified
Cotile
v/
public void readthifrInformation(Ctring filename) throws IOExcepticn |
context (getShiftInformat ion!) creadChifts(filename);
¥

s
* kead the employees from the specitied stream.

.

* @param rdr the stream from whih to read the employees for this algorithm
* @throws lOException if there is an error reading from the specified
* stream
L/
public void readEmployees (Reader rdri throws 1OException {
context.getEmployees () .readkmployees (rdr);
}

* Read the employees from the specified file.

* @param filename the name of the file from which the emplcyees will be
¢ read

* @throws TOFxception if there is an error reading from the specified
* file
¢/
public void readEmployees(String filename) throws IOException {
context.getEmployees().readEmployees (filename);
}

* Read the requirements from the specified stream.

* @param rdr the stream from which to read the requirements for this
* algorithm

* @throws IOException if there is an error reading from the specified
* stream
*/
public void readRequirements (Reader rdr) throws IOException {
context.getRequirements().readRequirements(rdr);
}

* Read the requirements from the specified file.

* @param filename the name of the file from which the requirements will be
* read

* @throws IOException if there is an errcr reading frem the specified
* file
*/
public void readRequirements(String filename) throws IOException {
context.getRequirements{().readRequirements(filename);
}

128

Add the specified schedule tc the specified population.

* <p>This method will also evaluate the cost of the schedule. Schedules
with a cost of <cede>Long.MAX VALUEL/code™ indicate a will be discarded
* and not added. Other schedules will have their cost set according to the
* calculaticn dene by this algerithm.

* @param pcrulation the populaticn to which the schedule is to be added
* @param schedule the schedule to be added
v/
prutp*ted veid addSchedule (Population pepulaticn, fchedule schedule) |
st = evaluate {schedule);
t != Long.MAX VALUE) {
edule.setCost(cost\;
laticn.addSchedule (schedule: ;

em.cut.printlni"schedule reiected: oount "
+ populaticn.aetSice g

Jes
* Get the initial population for this alacrithm,
* @return the initial pcpulaticn
v/

public Fepulaticn getPcepulationt) |

Fcpulation pcpulaticn = new Populaticn(:;
ChoiceRegistry base = context.getCheic
addZerclengthShifts (base, context)}
ChciceRegistry temp new Choicekeagistry b

while ‘pcpulaticn.getSize() < size’ {
Schedule schedule - new Schedule!
Integer.toString(populaticn.geti
fcr (Iterator n = context.getEmployees () getkEmployees (). iterator (0
n.hasNext (};) {
Emplcyee emp = (Employee) n.next (1
int empld = emp.getEmployeeld(};
fcr (int day = 0; day < schedulelenath; dayes) |
List choicelist = temp.getChcicestempld, day);
if (choiceList.isEmpty()) {
choicelist = base.getChoices (empld, day)
if (choiceList.isEmpty(:){
continue;

}
temp.addChoices (choiceList);
}
Cheice choice = (Choice) choicelist.get (Random.nextInt (

choiceList.size()));
schedule.addChoice (choice) ;
temp.removeChoice (choice);
}
}
addSchedule (population, schedulej;
]
return pcpulation;
}

/"
* Evaluate the cost of the specified schedule according to the rules used
* by this algerithm.
* fAparam schedule the schedule to be evaluated
*/
public lcng evaluate(Schedule schedule;] |
int len = rules.sizel);
icng result = OL;
fcr fint i=0; i < len; i++) |
Rule rule = (Rule) rules.get(i);
lecng tmp = rule.evaluate(schedule, context,;
if ‘tmp == Long.MAX_VRLUE) {
if trule.repair!schedule, <cntezt,; |{
result = OL;
tmp = 0;
= -1;
P else |

return tmp;

o

129

}

result += tmp;
) .
return result;

+ Get the next generation population for this algorithm.
* @param population the current generation
+ @return the next generation pcpulation

*/
public abstract Population getPopulation (Population population};

algorithm/GeneticVl.java

/Q

* GeneticVl.java

+ Created on March 19, 2005, 8:01 AM
*/

package geneticalgorithm.algorithm;

import geneticalgorithm.bean.Choice;

import geneticalgorithm.model.ChoiceRegistry;
import geneticalgorithm.model.Context;

import geneticalgorithm.model.CrossoverDetail;
import geneticalgorithm.model.Population;
import geneticalgorithm.model.Schedule;

import geneticalgorithm.util.Random;

import java.util.List;

/Ot
*
* Qauthor mkhashayardoust
*/
public class GeneticVl extends GeneticBase {

/** The attribute prefix used to store the crossover data for each day. */

public static final String ATTRIBUTE_CROSSOVER = "crossover";

/00

* The attribute prefix used to store the primary parent schedule of a
* schedule.

*/

public static final String ATTRIBUTE_MOTHER = "mother";

/i'
* The attribute prefix used to store the seccndary parent schedule of
* schedule.
v/

public static final String ATTRIBUTE_FATHER = "father";

/.'
* The list of property names used in the crossovers performed by this
* algorithm.
*/

private String properties = "startInterval,length";

private static final int MUTATION_BASE = 100000;

/** A flag indicating whether or not to store meta-data information in
* schedules created by this algorithm.

*/

private boolean debug = true;

/** A serial counter used to generate schedule names. */
int serialName = 0;

/** The threshold level for causing mutation in this genetic alorithm.
private int mutationThreshold;

/t‘
* Creates a new instance of <code>GeneticBase</code>.
»*

new

a new

the

*/

* @param populationSize the size of the populations to be generated by this

130

;
3
1

ot v,

* algorithm
*/
public GeneticVl(int populationSize) {
this(populationSize, 0.0);
}

VAR

* Creates a new instance of <code>GeneticBase</code>.
*

* @param populationSize the size of the populations to be generated by this
* algorithm

* @param mutationRate the rate at which mutations will occur on each

* generation

*/

public GeneticVl(int populationSize, double mutationRate) {
super (pcpulationSize);
this.mutationThreshold = (int) (mutationRate * MUTATION_BASE);

}
/*i
* Creates a new instance of <code>GeneticBase</code>.
*
* @param populationSize the size of the populations to be generated by this
* algorithm
* @param days the number of days per schedule for this algorithm
* @param intervallength the interval length in minutes to be used by this
* algorithm
*/

public GeneticVl(int populationSize, int days, int intervallength) {
super (populationSize, days, intervallength);

}

/ii
* Double the size of the existing population by doing a crossover
* operation.
-
* @param population the starting population
-
* @return a list of the original population's schedules plus the results
* of the crossover operation
*/

protected void crossover (Population population) {
List schedules = population.getSchedules();
int size = population.getSize();
int max = size << 1;

while (population.getSize() < max) {
crossover (population,
(Schedule) schedules.get (Random.nextInt (size)),
(Schedule) schedules.get (Random.nextInt(size)));

}

protected Schedule createSchedule(Schedule mum, Schedule dad) {
Schedule result = new Schedule(Integer.toString(serialName++), mum);
return result;

-~

*

Produce a new schedule by performing a crossover between two existing
schedules.

@param population the population that is being grown by the crossover
operation

@param mum one of the parent schedules

@param dad the other parent schedule

/
protected void crossover (Population population, Schedule mum, Schedule dad) |

assert (mum.getNumberOfDays () == dad.getNumberOfDays()):
Schedule kidl = createSchedule (mum, dad);
Schedule kid2 = createSchedule(dad, mum);
Integer (] mumEmps = mum.getEmployeelds();
Integer[) dadEmps = dad.getEmployeelds();

L

for (int day = mum.getNumberOfDays() - 1; day >= 0; day--) {

Integer empl = mumEmps[Random.nextInt(mumEmps.length)],
Integer emp2 = dadEmps[Randcm.nextInc(dadEmps.length)]:

crossover (kidl, empl, day, kid2, emp2, day);

131

if (debug) {
String key = ATTRIBUTE_CROSSOVER + '.' + day;
kidl.setAttribute (key, new CrossoverDetail (mum.getName(),
dad.getName (),

day, emp2.intValue(),
day, empl.intValue(),
properties));
kid2.setAttribute(key, new CrossoverDetail (dad.getName (),
mum.getName (),
day, empl.intValue(),
day, emp2.intValue(),
properties));

}

if (Random.nextInt (MUTATION_BASE) < mutationThreshold) {
mutate (kidl, context);
}

if (Random.nextInt (MUTATION_BASE) < mutationThreshold) {
mutate (kid2, context):
}

addSchedule (population, kidl);
addSchedule (population, kid2);

/'i
* Cause a mutation in the specified schedule.
* @param schedule the schedule to mutate
* @param context the context of the current algorithm
*/
protected void mutate(Schedule schedule, Context context) {
ChoiceRegistry choices = context.getChoices();
int maxDays = choices.getNumberOfDays();
Integer[] emplds = schedule.getEmployeelds():;
Integer emp = emplds[Random.nextInt (empIlds.length)];
int day = Random.nextInt (maxDays):
Choice choice= (Choice) schedule.getChcices(emp, day).get(0);
schedule.removeChoice (choice);
List listChoice = context.getChoices().getChoices(emp, day);
choice = (Choice) listChoice.get(Random.nextInt(listChoice.size()));
schedule.addChoice (choice);

-~

/i'
* Swap the required properties of the two choices, as required by the
* crossover operation.
*
* @param kidl the first schedule involved in the crossover
* @param empldl the employee for which details are to be swapped in the
* first schedule
* Q@param dayl the day on which details are taken from the first schedule
* @param kid2 the second schedule involved in the crossover
* @param empld2 the employee for which details are to be swapped in the
* second schedule
* @param day2 the day on which details are taken from the second schedule
v/

protected void crossover (Schedule kidl, Integer empldl, int dayl,
Schedule kid2, Integer empld2, int day2) ({

Choice srcl = (Choice) kidl.getChoices(empIdl, dayl).get(0);
Choice src2 = (Choice) kid2.getChoices(empld2, day2).get(0);

Choice destl = new Choicel(srcl);
Choice dest2 = new Choice(src2);

destl.getShift () .setLength(src2.getLength());
destl.getShift () .setStartInterval (src2.getStartInterval());
dest2.getShift () .setLength(srcl.getLength());
dest2.getShift () .setStartInterval (srcl.getStartInterval());

kidl.removeChoice (srcl);
kidl.addChoice (destl);
kid2.removeChoice{src2);
kid2.addChoice (dest2};

}

public Population getPopulation(Population pcpulation) {
Population result = new Population(population);

132

crossover (result);

result.truncate(population.getSize());
return result;

model/CrossoverDetail.java

/*
*
*

*

*/
pac

VAR

*

*

*/

CrossoverDetail.java

Created on March 24, 2005, 2:26 PM

kage geneticalgorithm.model;

@author mkhashayardoust

public class CrossoverDetail {

/** The name of the first parent schedule used in the crossover. */
private String mum;

/** The name of the second parent schedule used in the crossover. */
private String dad;

/** The day of the schedule from which the crossover data was obtained. */
private int fromDay;

/** The day of the schedule to which the crossover data was applied. */
private int toDay;

/** The numeric id of the employee to which the crossover was applied. */
private int toEmpld;

/i*
* The numeric id of the employee from which the crossover data was
* obtained.
*/

private int fromEmpId;

/**

* A comma-separated list of property names that were involved in the
* exchange described by this instance.
*/

private String properties;

/**

* Creates new crossover details.

* @param mother the name of the primary parent schedule

@param father the name of the secondary parent schedule

@param fromDay the day of the schedule from which the crossover data
was obtained

@param fromEmpld the numeric id of the employee from which the crossover
data was obtained

@param toDay the day of the schedule to which the crossover data was
applied

@param toEmpId the numeric id of the employee to which the crossover
data was applied

@param properties a comma-separated list of property names that were
exchanged in the crossover

L A

*

*/
public CrossoverDetail (String mother, String father,
int fromDay, int fromEmpld,
int toDay, int toEmpId,
String properties) |
this.mum = mother;
this.dad = father;
this.fromDay = fromDay;
this.fromEmpld = fromEmpld;
this.toDay = toDay;
this.toEmpId = toEmpIld;
this.properties = properties;
}

/** :
* Get the name of the primary parent schedule involved in this

133

crossover.

.
* @return the parent schedule name
ﬁ/ -
public String getMother () {

return mum;
}

/t'
* Get the name of the secondary parent schedule involved in this crossover.
-

* @return the parent schedule name
*/
public String getFather() {
return dad;
}

/ﬁ‘
* Get the day of the schedule from which the crossover data was obtained.
*/
public int getFromDay() {
return fromDay’
}

/"
* Get the numeric id of the employee from which the crossover data was
* obtained.
v/
public int getFromEmployee() {
return fromEmpld;
}

/Qﬁ
* Get the day of the schedule to which the crossover data was applied.
*/
public int getToDay() {
return toDay;
}

/Qﬁ
* Get the numeric id of the employee to which the crossover data was
* applied.
*/
public int getToEmployee() {
return toEmpld;
)

/ﬁi
* Get the list of properties involved in the exchange.
*
* @param a comma-separated list of property names that were exchanged in
* the crossover operation described by this object
*/
public String getProperties() {
return properties;
}

/"
* Return a string representation of this instance.
v/
public String toString() {
return mum + '/' + dad + ':°'
+ fromDay + ',' + fromEmpld
+ '-' 4+ toDay + ',' + toEmpld;

algorithm/GeneticChoice.java

/Q
* GeneticChoice.java
*

* Created on June 7, 2005, 6:13 PM
v/

package geneticalgorithm.algorithm;

import geneticalgorithm.bean.Choice;
import geneticalgorithm.model.Schedule;

134

/*i
*
* Qauthor mkhashayardoust
*/
public class GeneticChoice extends GeneticVi{

/ﬁ*
* Creates a new instance of <code>GeneticChoice</code>.
*

* @param populationSize the size of the populaticns to be generated by this

* algorithm
*/
public GeneticChoice(int populationSize) {
super (populationSize);
}

*

Creates a new instance of <code>GeneticChoice</code>.

@param populationSize the size of the populations to be generated by this
algorithm

@param mutationRate the rate at which mutations will occur on each
generation

* ok R ok ok ko k

~

public GeneticChoice(int populationSize, double mutationRate) {
super (populationSize, mutationRate);
}

/i-ﬁ

* Swap the required properties of the two chcices, as required by the

* crossover operation.

*

* @param kidl the first schedule involved in the crossover

* @param empldl the employee for which details are to be swapped in the
* first schedule

* @param dayl the day on which details are taken frcm the first schedule
* @param kid2 the second schedule involved in the crossover

* @param empId2 the employee for which details are to be swapped in the
* second schedule

* @param day2 the day cn which details are taken from the second schedule
*/

protected void crossover(Schedule kidl, Integer empldl, int dayl,
Schedule kid2, Integer empld2, int day2) {

Choice srcl = (Choice) kidl.getChoices (empldl, dayl).get(0);
Choice src2 = (Choice) kid2.getChoices (empldl, dayl).get(0);

kidl.removeChoice(srcl);
kidl.addChoice (src2);
kid2.removeChoice (src2);
kid2.addChoice(srcl);

algorithm/rule/MaxConsecutiveDays.java

/*
* MaxConsecutiveDays.java
*
* Created on April 10, 2005, 10:12 AM
*/

package geneticalgorithm.algorithm.rule;

import geneticalgorithm.bean.Choice;

import geneticalgorithm.bean.Employee;

import geneticalgorithm.model.Context;

import geneticalgorithm.model.EmployeeRegistry;
import geneticalgorithm.model.Schedule;

import java.util.Collection;

import java.util.Iterator;

import java.util.List;

/*i
*
* @author mkhashayardoust
*/
public class MaxConsecutiveDays extends RuleBase {
/tﬁ

135

+ The maximum number of consecutive days that employees
* are allowed to work.

t/ .

private int maxConsecutiveDays;

/*6
*+ Creates a new instance of MaxConsecutiveDays.
v/
public MaxConsecutiveDays(int maxConsecutiveDays) {
this.maxConsecutiveDays = maxConsecutiveDays;

}

public long evaluatelmpl (Schedule schedule, Context context) {
int count = 0;
boolean isMandatory = true;
EmployeeRegistry registry = context.getEmployees(};
Collection employees = registry.getEmployees();
for (Iterator n = employees.iterator(); n.hasNext();) {
Employee employee = (Employee) n.next():
if (!employee.isFixedShift()) {
count = employee.geConsecutiveDays();
for (int day=0; day <= context.getNumberOfDays(); day++) {
List list = (List)schedule.getChoices(employee.getEmployeeld(), day):
if(isWorkDay(list)) {
count++;
isMandatory = isMandatory && hasMandatoryChoice(list);
if (count > this.maxConsecutiveDays && !isMandatory) {
return Long.MAX VALUE;
}
} else {
count = 0;
isMandatory = true;

}
}
return 0;
}

/iQ
* Test if any choice in the choice list is mandatory.
-

* @param list the list of choices to be tested
-
* @return true if any of the choices are mandatory
*/
private boolean hasMandatoryChoice(List list) {
for (Iterator n = list.iterator(); n.hasNext();) {
if (((Choice) n.next()).isMandatory()) {
return true;
}
}
return false;
}

/t.
* Test if any choice in the choice list has the interval length
* greater than zero.

@param list the list of choices to be tested

. % %

@return true if any of the choices have the interval length greater than
* zero
*/
private boolean isWorkDay(List list) {
for (Iterator n = list.iterator(); n.hasNext();) {
if (((Choice) n.next()).getLength() > 0) {
return true;
}
}
return false;
}

/Oi
* Set the shift length of all the choices in a list to zero.
*
* @param list the list of choices to be modified
*/
private void zeroShiftLengths(List list) {
for (Iterator n = list.iterator(); n.hasNext();) {

136

((Choice) n.next()).getShift().setLength(0);

}
Jx
* Attempt to repair this schedule so that it does not break a hard
* constraint.
* @param schedule the schedule to be repaired
* @param context the context in which the current rule is to be repaired
*
* @return <code>false</code>
*

~

public boolean repair(Schedule schedule, Context context) |
int count = 0;
boolean isMandatory = true;
EmployeeRegistry registry = context.getEmployees();
Collection employees = registry.getEmployees();
for (Iterator n = employees.iterator(); n.hasNext ();) {
Employee employee = (Employee) n.next():
if (!employee.isFixedShift()) {
count = employee.geConsecutiveDays();
for (int day=0; day <= context.getNumberOfDays(); day++) {
List list = (List)schedule.getChoices(employee.getEmployeeld(), day);
if(isWorkDay(list)) {
count++;
isMandatory = isMandatory && hasMandatoryChoice(list);
if (count > this.maxConsecutiveDays && !isMandatory) |{
zeroShiftLengths(list);
count = 0;
isMandatory = true;
}
} else {
count = 0;
isMandatory = true;

}
}
return true;

}

/**
* Return a string representation of this rule.
*/
public String toString() {)
return "Maximum Consecutive Days = " + maxConsecutiveDays;

}

algorithm/rule/ObjSeniority.java

* Seniority.java

* Created on May 3, 2005, 8:07 AM
*/

package geneticalgorithm.algorithm.rule;

import geneticalgorithm.bean.Choice;

import geneticalgorithm.bean.Employee;

import geneticalgorithm.model.Context; .
import geneticalgorithm.model.EmployeeRegistry;
import geneticalgorithm.model.Schedule;

import java.util.List;

import java.util.Collection;

import java.util.Iterator;

/*i
*
* Rauthor mkhashayardoust

*/
public class ObjSeniority extends RuleBase {

/** The singleton instance of this rule. */

137

public static final ObjSeniority RULE = new ObjSeniority();

/** Creates a new instance of Seniority */
private ObjSeniority() {
}

/"
+ Bvaluate this rule for a specified schedule in the current context.
*
+ @param schedule the schedule to be evaluated
* @param context the context in which the current rule is to be evaluated
>
* @return <code>0</code>
-

/
public long evaluatelmpl (Schedule schedule, Context context) {
int seniority = 0;
double objSeniority = 0;
double senior = 0;
EmployeeRegistry registry = context.getEmployees();
Collection employees = registry.getEmployees();
for (Iterator n = employees.iterator(); n.hasNext();) {
Employee employee = (Employee) n.next();
if (!employee.isFixedShift()){
seniority = employee.getSeniority();
for (int day = 0; day < context.getNumberOfDays(); day++) {
List list= (List)schedule.getChoices (employee.getEmployeeId(), day);
for (int i=0; i< list.size(); i++){
senior=((double)seniority/1000)* ((Choice) list.get(i)).getLength()* 0.12;
objSeniority += senior;

}
}
return (long)objSeniority;
) ke

138

REFERENCES

Abboud, N., Inuiguchi, M., Sakawa, M. and Uemura, Y., 1998. Manpower Allocation Using
Genetic Annealing. European Journal of Operational Research, 111 (2), pp.405-420.

Arabeyre, J.P., Feamnley, J., Steiger, F.C. and Teather, W., 1969. The Airline Crew Scheduling
Problem: A Survey. Transportation Science, 3 (2), pp.140-163.

Bailey, R.N., Gamner, K.M. and Hobbs, M.F., 1997. Using Simulated Annealing and Genetic
Algorithms to Solve Staff Scheduling Problems. Asia - Pacific Journal of Operational Research,
14 (2), pp.27-43.

Bechtold, S.E., Brusco, M.J. ahd Showalter, M.J., 1991. A Comparative Evaluation of Labor Tour
Scheduling Methods. Decision Sciences, 22 (4), pp. 683-699.

Bellman, R.E. and Zadeh, L.A., 1970. Decision Making in a Fuzzy Environment. Management
Science 17 (4), pp-141 - 164.

Berger, P.D. and Maurer, R.E., 2002. Experimental Design with Applications in Management,

Engineering, and the Sciences. Belmont, CA: Thomson Group.

Burke, E., Cowling, P., Causmaecker, P.D and Berghe, G.V., 2001. A Memetic Approach to the
Nurse Rostering Problem. Applied Intelligence, 15 (3), pp-199-214.

Burke, E.K, Causmaecker, P.K., Berghe, G.V and Landeghem, H.V., 2004. The State of The Art of
Nurse Rostering. Journal of Scheduling, 7 (6), pp-441-499.

Cai, X. and Li, K.N., 2000. A Genetic Algorithm for Scheduling Staff of Mixed Skills Under

Multi- Criteria. European Journal of Operational Research, 125 (2), pp.359-369.
139

Easton, F.F. and Mansour, N., 1999. A Distributed Genetic Algorithm for Deterministic and
Stochastic Labour Scheduling Problems. European Journal of Operational Research, 118 (3), pp.
505-523.

Emst, A.T., Jiang, H., Krishnamoorthy, M. and Sier, D., 2004a. Staff Scheduling and Rostering: A
Review of Applications, Methods and Models. European Journal of Operational Research, 153

(1), pp.3-27.

Emst, A.T., Jiang, H,, Krishnamoorthy, M., Owens, B. and Sier, D., 2004b. An Annotated
Bibliography of Personnel Scheduling and Rostering. Annals of Operations Research, 127 (1-4),
pp.21-144.

Gen, M. and Cheng, R., 2000. Genetic Algoritizms and Engineering Optimization. New York:
Wiley.

Herbert, S.W., 1994. Algorithms and Complexity. [e-book]. University of Pennsylvania. Available

from: www.cis.upenn.edu/wilf / E-books|[cited 2005]

Hillier, F.S and Liberman, G.J., 2001. Introduction to Operations Research. 7th ed. Boston,
Toronto: McGraw-Hill.

Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. Ann Arbor: University of
Michigan Press.

Levine, D., 1996. Application of a Hybrid Genetic Algorithm to Airline Crew Scheduling.
Computers & Operations Research, 23 (6), pp.547-558.

Rothlauf, F., 2002. Representations for Genetic and Evolutionary Algorithms. Heidelberg:
Physica-Verlag.

140

Murty, K.G., 1995. Operations Research: Deterministic Optimization Models. Englewood Cliffs,
NJ.: Prentice Hall.

Quan, V., 2004. Retail Labour Scheduling, ORMS Today, 31 (6), pp.32-36.

Zimmermann, H.J., 1996. Fuzzy Set Theory and Its Applications. 3rd ed. Boston, Dordrecht,

London: Kluwer Academic Publishers.
Zolfaghari, S. and Liang, M., 2003. A New Genetic Algorithm for the Machine/Part Grouping

Problem Involving Processing Time and Lot Sizes. Computers & Industrial Engineering, 45 (4),
pp.713- 731.

141

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2006

	An application of a genetic algorithm to retail staff scheduling
	Maryam Khashayardoust
	Recommended Citation

	EC53658.pdf
	00001
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079
	00080
	00081
	00082
	00083
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091
	00092
	00093
	00094
	00095
	00096
	00097
	00098
	00099
	00100
	00101
	00102
	00103
	00104
	00105
	00106
	00107
	00108
	00109
	00110
	00111
	00112
	00113
	00114
	00115
	00116
	00117
	00118
	00119
	00120
	00121
	00122
	00123
	00124
	00125
	00126
	00127
	00128
	00129
	00130
	00131
	00132
	00133
	00134
	00135
	00136
	00137
	00138
	00139
	00140
	00141
	00142
	00143
	00144
	00145
	00146
	00147
	00148
	00149
	00150
	00151
	00152
	00153
	00154
	00155
	00156

