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Cloud services are designed to provide users with different computing models such as software-as-a-

Services (SaaS), Infrastructure-as-a-Service (IaaS), Data-as-a-Service (DaaS), and other IT related 

services (denoted as XaaS). Easy, scalable and on-demand cloud services are offered by cloud providers 

to users. With the prevalence of different types of cloud services, the task of selecting the best cloud 

service solution has become more and more challenging. Cloud service solutions are offered through a 

collaboration of different cloud services at different cloud layers.  This type of collaborations is denoted 

as vertical service composition. Quality of Service (QoS) properties are used as differentiating factors for 

selecting the best services among functionally equivalent services. In this thesis, we introduce a new 

service selection framework for the cloud which vertically matches services offered by different cloud 

providers based on users’ end-to-end QoS requirements. Functional requirements can be satisfied by the 

required cloud service (software service, platform service, etc) alone. However, users’ QoS requirements 

must be satisfied using all involved cloud services in a service composition. Therefore, in order to select 

the best cloud service compositions for users, QoS values of these compositions must be end-to-end.  To 

tackle the problem of computing unknown end-to-end QoS values of vertical cloud service compositions 

for target users (for whom these values are computed), we propose two strategies: QoS mapping and 

aggregation and QoS prediction. The former deals with new cloud service compositions with no prior 

history. Using this strategy, we can map users’ QoS requirements onto different cloud layers and then we 

aggregate QoS values guaranteed by cloud providers to estimate end-to-end QoS values. The latter deals 
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with cloud service compositions for which QoS data have been recorded in an active system.  Using the 

QoS prediction strategy, we utilize historical QoS data of previously invoked service compositions and 

other service and user information to predict end-to-end QoS values. The presented experimental results 

demonstrate the importance of considering vertically composed cloud services when computing end-to-

end QoS values as opposed to traditional prediction approaches. Our QoS prediction approach 

outperforms other prediction approaches in terms of the prediction accuracy by at least 20%.  
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Chapter 1 

Introduction 

Cloud computing has changed the way that software, development platforms and other hardware 

resources are provisioned to end users over the Internet. Nowadays, they are provisioned in “as-a-service” 

models wherever and whenever consumers want. Cloud-based services can be used by enterprises as well 

as individuals as an agile solution to their operational and business problems. Cloud services provide 

easy, on-demand and scalable access to software, development platforms, hardware resources which are 

fully managed by cloud providers [1]. The leading cloud service providers (Amazon
1
, Microsoft

2
, IBM

3
, 

etc) have built publicly accessible online marketplaces to facilitate the publication and searching of 

different types of cloud services in a more convenient way which includes accessing services on demand, 

paying per usage and managing automatic service elasticity to meet users’ requirements. With high 

proliferation of cloud services (i.e. SaaS, IaaS and all other XaaS), the task of selecting the best of these 

services that match users’ requirements has become more and more challenging. Cloud service selection 

is the process of selecting the best cloud services based on a collection of Quality of Service (QoS) 

properties (e.g. service response time, throughput, reliability, availability, cost, security) as the main 

selection criteria. The selected services should satisfy users’ requirements with respect to these criteria. 

1.1 Motivation  

Nowadays, more and more enterprises have started to consider cloud-based IT solutions. Many 

different types of cloud services such as IaaS (Infrastructure- as-a-Service), SaaS (Software-as-a-Service), 

DaaS (Data-as-a-Service) and PaaS (Platform-as-a-Service) are being offered by the IT companies. 

                                                        
1
 https://aws.amazon.com/marketplace 

2
 https://azure.microsoft.com/en-us/ 

3
 http://www.ibm.com/marketplace/cloud/us/en-us/ 
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Gartner estimates that the total spending on cloud services will rise to 250 billion dollars by 2017 [2]. 

Forbes estimates that SaaS service revenue alone will increase to $106B by 2016. It also estimates that by 

2016, 80% of global enterprises will be using IaaS services [3]. ICD expects data service market to grow 

at 26.24% annual growth rate to reach 41.52 billion by 2018 [4]. The high demand on cloud-based 

services encourages the increasing growth of published cloud services by IT enterprises and individual 

developers. Cloud-based marketplaces have witnessed exponential growth in the number and types of 

services offered [5].  

Cloud services implement what Service Computing community has long advocated since a decade 

ago – separation of concerns. Every service provider only needs to focus on its own services, and rely on 

other parties to provide other services which can collaborate with its services to deliver the end-to-end 

solution to users. For instance, machine learning software services are offered through many 

infrastructure services (e.g. Amazon EC2, Microsoft Azure, etc.), which may also be bundled with storage 

services to store the input data and the results.  In this kind of cloud environment, a typical cloud service 

(e.g. software service) searching scenario would be like this: a user specifies her functional (what services 

do) and non-functional (e.g. QoS) requirements on target service. QoS properties such as response time, 

throughput, availability and reliability are a collection of services’ attributes and they are well known for 

representing users’ non-functional requirements [6]. The selection system finds all functionally matching 

services. If these services require the collaboration of other types of services (e.g., infrastructure, 

platform, database, storage, etc.), the selection system should further find the collaborating services which 

can work together with the candidate required services (e.g. software service). Eventually, the user needs 

to do the mix-and-match job to select the complete solutions. Functional matching can be done based on 

required services’ descriptions. Then these functionally matching services should be selected based on 

their QoS properties. QoS-based matching should be done based on end-to-end QoS values, which when 

multiple cloud providers work together to offer an IT solution, cannot be guaranteed by one single 

provider itself. Despite this change in the service selection process, most of the service selection research 

work still treats cloud-based services as traditional on-premise services whose QoS values are mainly 
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decided by one service provider [7], or some researchers study the selection problem mainly for 

infrastructure services [8] or platform services [9]. The QoS matching process is a crucial process in 

several operations such as service selection [10][11][12][13], ranking [14][15][16], composition 

[17][18][19] and recommendation [20][21]. In the service selection domain, researchers rely on claimed 

QoS values by providers or on monitoring tools to obtain the values. 

We give an example that illustrates a cloud service selection scenario. Suppose an end user searches a 

cloud system for a particular cloud service such as a data mining clustering service that should have a 

response time of less than 2 seconds. The cloud system finds several services (likely from different cloud 

providers) that provide clustering functionality which matches what the end user wants. However, the 

discovered clustering services need to be hosted on infrastructure services (other type of cloud services) 

to be made available to the end user. Some popular examples of infrastructure service providers are 

Amazon EC2 and Microsoft Azure.  The clustering services may also need to collaborate with other cloud 

services to provide a complete solution based on the end user’s needs. For example, they might need to be 

bundled with data services to access data stored in the cloud. The collaboration of different types of cloud 

services (in this example, the collaboration happened between SaaS, IaaS and DaaS services) is often 

required in order to offer a complete solution to the end user. The collaboration of different types of cloud 

services in the cloud is referred to as vertical cloud service composition since these services implement 

different computing models at different cloud layers [22]. In the example above, the problem of selecting 

best cloud services remains unsolved. It is highly likely that the cloud system returns a large number of 

cloud service compositions that match end users’ functional requirements. For example, the following 

four cloud service compositions, which are vertically composed, are functionally equivalent: K-Means 

clustering service from Weka+ Amazon EC2 + DaaS a1, hierarchical clustering service from Weka + 

Amazon EC2 + DaaS a2, hierarchical clustering service from R + Amazon EC2 + DaaS a2 and  K-

Means clustering service from R + Amazon EC2 + DaaS a1. In order to select and rank these four service 

compositions, we need to get their QoS values. Our task is to process the selection and ranking of the four 

service compositions based on users’ requirement on response time which is the only QoS requirements 
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in this example. Suppose for some of these service compositions, the response time values of only one or 

two services are available but not for the whole composition. In this case, these response time values 

cannot be considered as end-to-end values since one or two service providers cannot guarantee the 

response time value of the whole service composition. In another case, no response time values are 

available since service compositions are new. Therefore, we have to find a mechanism for computing 

end-to-end response time values of vertically composed cloud services in order to be considered as valid 

candidates during the service selection process. Since these four service compositions, which match end 

user’s functional requirements, do not have end-to-end response time values, they are not considered 

during the selection process. The question is: shall we exclude these unused or new service compositions 

from the returned results? Our answer is no. 

Based on the above analysis, in this thesis, we address the problem of services selection in the cloud. 

We compute unknown end-to-end QoS values of vertically composed cloud services which functionally 

match end users’ requirements. With the computed values, all cloud service compositions could 

potentially be ranked and selected based on users’ QoS requirements, which in a way promotes a healthier 

cloud service environment.  

1.3 Contributions 

The main contributions of this thesis can be described as follows: 

1) We propose a new framework for computing end-to-end QoS values of vertical cloud service 

compositions. Functionally matching cloud services need to collaborate with other services of 

different types (services published at different cloud layers) in order to offer complete cloud service 

solution to end users. In our framework, we emphasize that a QoS value should be end-to-end since 

one service of a cloud service composition cannot guarantee the QoS value of the whole composition. 

We use these end-to-end values during the cloud service selection process in the cloud. Our 

framework is flexible so that any end-to-end computation component can be integrated to it. In our 

framework, we propose a new process for cloud service selection; the process has three main steps:  
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i. Searching for the required cloud service (e.g. software, platform, etc) based on user’s functional 

requirements. 

ii. Vertically composing the discovered services with other available cloud services so that vertically 

composed cloud services match end user’s functional requirements.  

iii. Selecting and ranking the best of these functionally equivalent cloud service compositions using 

their end-to-end QoS values. The selected compositions should satisfy users’ QoS requirements.  

Our thesis considers the third step in the process. It provides a systematic method of computing 

unknown end-to-end QoS values of vertically composed cloud services for the service selection in the 

cloud. 

2) We propose the first model for computing end-to-end QoS values for new and unused cloud service 

compositions which are offered in a new cloud system. We map users’ QoS requirements to the 

required cloud service and other collaborating services in a cloud service composition. QoS values 

guaranteed by cloud providers at multiple cloud layers are then aggregated to obtain the end-to-end 

QoS value of that cloud service composition. We designed three mapping rules that determine the 

way that particular user’s QoS requirements are mapped to the required cloud services and other 

cloud services in cloud service compositions. The mapping becomes necessary in this context because 

one provider alone cannot guarantee the end-to-end QoS values. 

3) We propose the second model for computing end-to-end QoS values for new and unused cloud 

service compositions which are offered in an active cloud system. The proposed model predicts 

unknown end-to-end QoS values of cloud service compositions which are offered in an active cloud 

system where a history of QoS data is available. We identify similar cloud service compositions to the 

target ones through our similarity computation model which utilizes historical QoS data and other 

associated information of cloud services and users for computing the cloud service similarity.  To 

improve the accuracy of the QoS prediction results and to make the predicated values personalized to 

target users, we also measure users’ similarity. Only QoS values of similar users are used during the 

prediction process. In order to verify our proposed model for predicting unknown end-to-end QoS 
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values, we used historical end-to-end QoS data (response time and throughput) of cloud service 

compositions collected from a cloud-based QoS data collecting and monitoring tool.  

These contributions have been published in the following: 

1. R. Karim, C. Ding and A. Miri, “An End-to-End QoS Mapping Approach for Cloud Service   

Selection”, in Proceedings of the IEEE World Congress on Services, (Santa Clara, CA, USA), pp. 

341-348, June 27-July 2, 2013.  

2. R. Karim, C. Ding, A. Miri and X. Liu, “End-to-End QoS Mapping and Aggregation for 

Selecting Cloud Services”, in Proceedings of the International Conference on  

Collaborative Technologies and Systems, (Minneapolis, MN, USA ), pp. 515-522,  

May 19-23, 2014. 

3. R. Karim, C. Ding and A. Miri, “End-to-End performance Prediction for Selecting Cloud  

Service Solutions”, in Proceedings of the IEEE Symposium on Service-Oriented System  

Engineering, (San Francisco Bay, USA), pp. 69-77, March 30- April 3, 2015. 

4. R. Karim, C. Ding and A. Miri, “End-to-End QoS Prediction of Vertical Service 

Composition in the Cloud”, in Proceedings of the IEEE International Conference on  

Cloud Computing (IEEE CLOUD), (New York, USA), June 27-July 2, 2015. 

5. R. Karim, C. Ding and A. Miri,” End-to-End QoS Prediction Model of Vertically Composed  

Cloud Services via Tensor Factorization”, in Proceedings of the IEEE International   

Conference on  Cloud and Autonomic Computing, (Cambridge, MA, USA),  September 21-  

24, 2015. 

6. R. Karim, C. Ding and A. Miri, “Hybrid Model for Predicting End-to-End QoS Values of  

Vertically Composed Cloud Services”, IEEE Transactions on Service Computing, 2015 

(under review). 

          

1.4 Thesis Assumptions  

In this section, we state the assumptions we made in this thesis as follows: 
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 Any other types of service feature interactions rather than the proposed service features in the 

thesis are not considered during the prediction process.   

 Throughout the thesis, we use the term “end users” to refer to individual users but not the 

following: enterprises, computer programs or services. 

 In user profiles, we only consider user locations but not other types of information. 

 All discovered cloud component services functionally match users’ functional requirements. 

However, the process of service discovery is out of the scope of this thesis. 

 Horizontal service composition occurs when multiple services published at the same cloud layer 

(usually software services) are composed together following a business process or workflow. 

Horizontal service composition is out of the scope of this thesis. 

1.5 Thesis organization 

The rest of the thesis is organized as follows: 

 Chapter 2 

In this chapter, we review background information and related work on QoS mapping and QoS 

prediction in cloud environments. 

 Chapter 3 

In this chapter, we introduce our framework for computing end-to-end QoS values of cloud service 

compositions. We discuss the core components of the framework: QoS modeling and mapping and 

QoS prediction models. We define QoS properties of cloud services and then we discuss in details the 

steps required to perform the QoS-based service selection process in the cloud. 

 Chapter 4 

In this chapter, we present a new model for mapping users’ QoS requirements to required cloud 

services and other collaborating services at different cloud layers. We propose rules for mapping QoS 
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requirements, and QoS values of the involved services are aggregated across cloud layers to obtain 

end-to-end QoS values of cloud service compositions.  

 Chapter 5 

In this chapter, we propose a model for predicting end-to-end QoS values of vertical cloud service 

compositions. We consider n cloud component services that are vertically composed to provide 

complete cloud solutions to end users. Some services that very well match users’ requirement have no 

end-to-end QoS values, so they cannot be considered in the selection process and they would be 

excluded. To overcome this problem, we use historical QoS data and other information of similar 

cloud service compositions in order to predict unknown end-to-end QoS values of target service 

compositions. The experimental study shows that our proposed model outperforms other well-known 

approaches in predicting unknown QoS values of cloud service compositions. We analyze the 

accuracy of the QoS prediction of the proposed model in various settings.  

 Chapter 6 

In this chapter, we conclude the thesis and provide some future directions that can be investigated to 

complement the work presented in this thesis. 
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Chapter 2 

Literature Review 

In this chapter, we review work related to the scope of our thesis. QoS is the key feature of cloud services 

that are often used to perform different operations such as service selection, ranking and composition. 

Since our work span multiple fields of cloud service operations, this chapter is divided into multiple 

sections that correspond to these fields: 

 QoS-based Cloud Service Selection and Ranking 

 QoS-based Cloud Service Recommendation 

 QoS-based Cloud Service Composition 

 QoS Mapping and Modeling 

 Cloud-based QoS Prediction 

2.1 QoS-based Cloud Service Selection and Ranking 

The advent of cloud computing has attracted enterprises to develop and publish their different types 

of services in cloud environment such as cloud marketplaces. Cloud services have been published to offer 

different functionalities to suit end users’ needs. QoS- based cloud service selection is the process of 

selecting the best cloud services that satisfy end users’ QoS requirements among functionally matching 

cloud services.  

He et al. [23] proposed an optimization model of service selection for multi-tenant SaaS. SaaS 

developers compose appropriate services based on different QoS constraints of multiple users. It also 

considers achieving SaaS optimization goal (less price and high performance). This is performed by 

modeling the problem as constraint optimization problem (COP). A cloud service selection framework is 
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introduced in [24] that consists of three parties: a cloud provider, a cloud user and a broker. The latter 

extracts the QoS properties from the providers and QoS requirements from users. An indexing technique 

was developed using    tree to index the providers according to their similarities. The designed cloud 

broker task is to search the index and select providers that match users’ requirements.  However, the 

indexing process does not consider the different types of services and computing models that these 

providers provision and how they impact on the indexing results. Li et al. [25] proposed a QoS-based 

model for cloud service selection. The objective of their work is to select a set of optimal services with 

minimal response time values for wide area users. Two cases were considered during the selection 

process. The first one is when a task is represented with one service, and the second case is when the task 

is represented with multiple services. In the proposed model, the distances between services’ locations 

and users’ locations are calculated. Two algorithms were proposed for the two cases. For the first case the 

algorithm selects the optimal service using a greedy technique. The second algorithm selects the set of 

optimal services based on the satisfaction of majority of users. In [26], Beran et al. discussed and 

implemented multiple versions of genetic programming and blackboard algorithms for QoS-based 

optimization and selection. These algorithms have been deployed in cloud framework for a comparison 

purpose.  Google App PaaS model was chosen for the selection framework. In their work, a single 

computing model (PaaS) was considered for deployment, and it was not clear what QoS attributes that 

have been considered for the optimization and selection process.  

Multi-Criteria Decision Making was often used as an optimization method for the selection process. 

Rehman et al. [27] proposed an approach for IaaS service selection that utilizes QoS history over different 

time slots. IaaS services are ranked using a MCDM method called TOPSIS. IaaS services are ranked at 

different time slots and then the ranking results are combined to get the overall service ranking. Although, 

the proposed approach uses historical data for the selection process, it does not utilize data based on 

composition of other services with IaaS, which could have an impact on the type of the collected data. In 

[28], a comparative study was introduced to select the best cloud service based on performance. The work 

considers a single layer (i.e. IaaS service) in the proposed selection framework. Two Multi-Criteria 
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Decision Making approaches have been employed for the selection process, Multi-Attribute Utility 

Theory and outranking methods. The work showed a case study of the selection results using these 

approaches. However, the accuracy of their results was not verified. In [29], Zhanlin and Lingchang 

proposed a SaaS service selection model with interval numbers for group user. In the proposed model, 

users’ preferences, and QoS expressed by interval numbers are considered. The SaaS alternative services 

are selected and ranked using a MCDM-based TOPSIS ranking method. 

QoS-aware cloud service ranking approach also attracted some researchers in the field. In [14], Greg 

et al. used optimization to model QoS constraints and eventually select the cloud services. The model is 

designed using the CSMI QoS properties which calculate QoS values based on services’ offers. A 

framework is proposed to handle the QoS management, monitoring and services ranking. The AHP 

method is used for optimizing the QoS criteria and rank cloud services. In [30], Zheng et al. introduced a 

component ranking framework for building fault tolerance cloud applications. Two algorithms have been 

proposed. The first algorithm identifies and ranks significant components from a large number of 

components available in the cloud. The ranking is calculated based on how frequently the components are 

invoked. The second algorithm selects the optimal fault tolerance strategy for each significant component. 

Two criteria are employed for strategy selection: response time and cost. The ranked components with 

their fault tolerance strategies are returned to a cloud designer for building cloud applications.  

In all above discussed work, the proposed approaches deal with a single cloud layer to select and rank 

services. In cloud environments, services usually are composed with other services often from different 

cloud layers so that whole cloud solutions offered to end users; therefore, the traditional way of service 

selection is not suitable for cloud services. In our work, we consider multi-layer cloud service 

provisioning approach where we vertically composed cloud services in order to perform the selection in 

the cloud.  
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2.2 Cloud Service Recommendation 

Recommender systems provide users with suggestion about items they are likely to be interested in 

such as what book to read and what movie to watch next. Recommender systems are classified into three 

main groups: collaborative recommendation, content-based recommendation and knowledge-based 

recommendation. The idea of collaborative filtering is that if users shared the same interest in the past for 

common items, it is highly likely they share the same interest in the future. So, if their histories are 

strongly correlated, and one user is interested in purchasing an item, it is wise to suggest that item to the 

other user. The idea of content-based recommendation is to exploit item descriptions and user profiles to 

recommend items to users. For example, extracting movie information such as movie genre and actors 

and matching them with users’ feedback or explicit questionnaire results can lead to recommending 

movies to users. The idea of knowledge-based recommendation is to use technical and quality features of 

items by exploiting additional knowledge for recommendation. The main difference from the above two 

recommendation groups is that the historical data are not required to make recommendation [31].  

In cloud service recommendation domain, the same concept is used. For example, if user1 and user2 

observed similar QoS values (service performance values) when they have invoked common cloud 

services (e.g. Amazon EC2 IaaS service), they are considered similar to each other with respect to their 

QoS observation. This mechanism is important since it can be used to predict a user’s future QoS values 

using the history record of a similar user. However, in cloud-based recommender system, instead of 

traditional rating structures used for recommending items to users, cloud services’ QoS properties are 

employed to recommend and select services to users based on their requirements of QoS. The main 

difference between the QoS-based recommendation and the QoS-based selection processes is that the 

former highly relies on historical information from past experiences and how items or users behave in the 

past. Recommender techniques are used to analyze this type of behavior in order to perform the 

recommendations. However, the selection mainly relies on the item (e.g. cloud service) itself by 



13 

 

evaluating its QoS properties. An item is selected based on how well it performs in terms of these 

properties using optimization techniques. 

In [32], Pereira et al. introduced a recommender system that computes online similarity of items and 

users. The system makes use of cloud resources to scale up and down with different scales of input data.  

The objective of running the systems on real scenario is to demonstrate its efficiency. The system has 

been deployed in Amazon EC2 platform and it was evaluated against two criteria: performance and cost. 

Although, the proposed system was deployed in a cloud environment, the similarity calculation process 

which represents the core function of a recommendation system does not consider the tested video 

application (SaaS) and the Amazon EC2 servers as two cloud computing models and the similarity was 

only calculated for the video application. In [33], Zheng et al. proposed a service recommender system 

that uses a collaborative filtering method to recommend and select services. Historical QoS data of similar 

users to an active user, who have similar QoS experiences when they invoked common services in the 

past, are employed to predict QoS performance of a service for the active user. In the propose system, 

both users and services information are employed in collaborative filtering method. The prediction is 

performed based on the similarity measurements of users and services, and then missing QoS 

performance values are predicted using information of both similar users and similar services. The final 

prediction was computed by combining both predictions. 

Some of current estimation approaches mainly rely on whatever QoS values cloud providers claim to 

have. Other approaches use monitoring tool to collect QoS data and then averaged values are computed, 

thus estimated QoS values could be largely different from what expected by the users. In [34], Yu et al.  

proposed a framework that takes into account users’ experiences on QoS to achieve a personalized QoS 

estimation. The user centric approach is based on the fact that users with similar historical experiences 

have also similar features such as physical distance to servers. This implies that these users have similar 

behaviors in future. Similar users and similar cloud services are grouped together in forms of 

communities. To create these communities, the adopted approach builds upon the matrix factorization 
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model. The latter has the capability to capture latent features such as users and cloud services locations 

which can be used to refine these communities.  

In [35], Zhang et al. proposed a real time QoS-based cloud service selection using MCDM method, 

specifically the AHP algorithm. The work is designed to help users choose IaaS services that suite their 

defined requirements. Using AHP algorithm facilitates the selection process using multiple criteria related 

to IaaS resources such as CPU, memory, operating systems. The optimization problem addressed in this 

work includes defining cost estimation and estimation function using resource utilization estimations, and 

a benefit-cost ratio-based evaluation function which considers weights. Then a pair-wise comparison is 

presented to normalize weight. In [36], Han et al. proposed a cloud- based service selection model. In 

their model, a recommendation system is used to recommend to the user the best service from different 

cloud providers who registered in the cloud market. The recommender system will measure how user 

requirements are met by cloud service providers and then rank cloud services to the end users to select the 

appropriate one. The underlying selection mechanism is based on assessing QoS attributes that are chosen 

by the authors such as execution time, reliability, availability, throughput, user feedback and cost.  

One of the key features of our proposed model is the vertical composition of cloud services when 

computing the similarity. The rationale is that if two cloud services are similar to each other with respect 

to some QoS attributes they can no longer be considered similar after they have  been combined with 

other cloud services from different types unless a new similarity process is performed. In this work, we 

demonstrate the impact of considering the multi-layer cloud architecture on the similarity results. Our 

model computes the similarity for multiple cloud services which are combined together as a complete 

solution. 

2.3 Cloud Service Composition 

A basic definition of service composition is: the process of determining the collection of atomic web 

services that should be selected such that service combination satisfies both user’s functional and non-

functional requirements [37]. The prerequisite processes to the service composition are service discovery 
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and service selection. Therefore atomic services have to be discovered based on users’ functional 

requirement then selected based on users’ non-functional requirements. For example, a user requests a 

travel service online. It should offer a combination of flight booking, hotel reservation, car rental, map 

services and any other related services. Each of these services is discovered based on users’ functional 

requirements and then selected among a large pool of similar services based on users’ non-functional 

requirements (e.g. service response time, availability, cost, security, etc). When combined as a service 

composition, users’ functional and non-functional requirements still have to be met by the composite 

service [38]. 

In the literature, two classifications of service compositions in the cloud have been introduced. They 

are a Dimensional and a vertical modality-based composition. The dimensional-based classification refers 

two different paradigms. A composition of heterogeneous services such as storage, compute unite, and a 

composition of homogenous services such as multiple storage services to increase the storage capacity. 

The modality classification refers to the way that a user consumes a service composition system, a one 

time or persistent composition. In the one-time composition, a service composition system receives a 

request from a user and returns the result. No more communication between the user and the system 

happens after that. An example of this case is when a user requests travel services. In the persistent 

composition, a user needs to use the composition system for long time such as using IaaS services to 

provide access to cloud applications [39]. The modality classification is also supported by [40]; however, 

they argued that cloud-based service composition should only be for long term and economically driven.  

For example which service composition to use in the next few years depends on which one performs the 

best, despite the fact that it may not perform well at a certain time. 

Recently, several work have been introduced that tackle the problem of service composition in cloud 

environments. In [40], Bao et al. proposed a web service composition tree-based approach for web service 

composition in cloud environment. Their work considers composing web services, which provide 

required tasks by users, within the Software-as-a-Service (SaaS) layer. The assumption made in this paper 

is that a SaaS service provider publishes a group of dependent application services with a restriction on 
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invocation sequences. The Finite State Machine based model aims at composing optimal services from 

communities of services using aggregated QoS properties. A typical example is listed in which a user 

requests multiple service applications booking for flight, train, hotel and renting a vehicle. In [41], Pham 

et al. proposed an agent-based High Performance Computing service compositions framework. Ontology 

is used as a knowledge base for discovering cloud services and their dependencies. The agent parses 

requests using the knowledge base to resolve the dependencies and retrieve relevant services for the 

composition stage. The result of composition is a new service specification which has information of the 

required components and their dependencies. The specifications are used by the agent to update the 

knowledge base for later uses. Then the specifications are forwarded to a specific engine to pack all 

required software services as a new composition. In [42], Wu et al. proposed a Hidden Markov Model 

(HMM) based prediction model for cloud service compositions. The main idea is that if existing services 

do not match users’ requirements, compositions of services are considered for QoS matching process. The 

paper proposed to predict QoS using HMM. This work has been designed specifically to simulate and test 

cloud storage services. The model neither considers the complexity of QoS prediction process nor the 

multilayered cloud architecture when composing cloud services. In [43], a game theory model was 

proposed to regulate the service offering and consuming between users and cloud providers. The 

regulation is set up using SLA which must be signed by both parties. The paper mainly focused on IaaS 

layer as users request computing components (e.g. CPU, memory, storages, etc). A composition of this 

type of services is needed for applications at the top layer. In [44] a cloud-based semantic based service 

composition model was proposed. It uses Bayesian decision to analyze cloud-oriented semantic web 

service compositions. The model has been analyzed on Amazon EC2 infrastructures for effectiveness and 

feasibility. The proposed approach mainly consider service discovery as a prerequisite step for cloud 

service composition. 

The above work tackle the service composition problem in cloud environments. They consider a 

single cloud layer where multiple services are published. The surveyed cloud composition models 

completely ignored the important fact that a requested service by a user need to be composed with other 
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cloud services, often from different layers so that end-to-end solutions are provisioned to end users based 

on their requirements. This common scenario requires a new way of computing QoS values which are 

offered by matching cloud services since one provider cannot guarantee a solution’ overall QoS value. 

Examples of cloud-based service compositions are composing multiple SaaS applications or composing 

different computing units of IaaS services. Our proposed QoS prediction model is designed based on 

composing cloud services from multiple cloud layers. A realistic scenario would be when an end user 

submits her requirement to a cloud service selection system, the required cloud service (e.g. SaaS service) 

needs to be composed with an IaaS (a different cloud layer) in order for the SaaS service to be accessed 

by the end user. Furthermore, the SaaS service might need to be bundled with a different service such 

DaaS service. The composition of the three service types represents an end-to-end solution. 

2.4 QoS Modeling and Mapping 

In the recent years, a few researchers have proposed QoS models and mapping in cloud environments. 

They considered using semantic-based approaches to define concepts related to cloud service models, 

cloud deployment models, cloud service functionalities and resources. The proposed models attempt to 

facilitate a variety of service related activities such as service discovery, ranking and selection process, 

service performance measurement and multi-tenancy workload balancing. This section surveys work 

related to semantic-based QoS modeling and QoS mapping.  

2.4.1 QoS Modeling 

Cloud-based QoS modeling has attracted some researchers to propose QoS models in the cloud which 

define QoS properties, cloud resources and facilitate different operations such as cloud service discovery 

and composition at a single cloud layer. In [46], Zhang et al. proposed ontology that defines functional 

cloud service descriptions and non-functional service configurations of IaaS services. It is built upon 

standard semantic technology (OWL-S). The ontology has two parts: functional service configuration and 

non-functional service configuration. It defines detailed concepts of IaaS properties and their 
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measurement units such as compute, storage and network. The aim is to select an appropriate IaaS service 

for users. In [47], Chen et al. proposed a QoS model that considers software services deployed in the 

cloud. It has two aspects of the QoS in the cloud: QoS concerns and QoS properties. The latter describes 

the cloud resources performance and price. The former describes the QoS constraints, influence and QoS 

weights. They further evaluate the model from the user’s perspective by calculating weighted sum of 

users’ satisfaction with respect to the QoS concerns using the Analytical Hierarchy Process (AHP) 

method. In [53], Ngan et al. proposed a cloud service selection brokering system which is based on OWL-

S. The system semantically represents the service constraints using SWRL rules and supports the dynamic 

matching of services described with these constraints. The brokering system facilitates the service 

discovery process through semantic definitions of advertised cloud services. In [49], Fortis et al. proposed 

architecture for cloud management that supports different concerns of cloud services such as service 

definition, characterization and service lifecycle which facilitate easy service discovery and composition. 

The proposed architecture has four subsystems: management, security, services and audit. As a way to 

facilitate service discovery automation, service lifecycle ontology is proposed that defines different 

concepts like semantic descriptor, offer, contract, instantiation and running. In [50], Han et al. proposed a 

cloud service discovery system that finds cloud services based on users’ requests. Ontology-based 

solution was adopted that determines the similarities between advertised services. It represents relations 

among cloud services to facilitate the discovery process. A cloud service reasoning agent consults with 

the cloud ontology to reason about services relations. The services similarity is calculated through the 

agent that uses three reasoning methods: similarity reasoning, equivalent reasoning and numerical 

reasoning. In [51], Moscato et al. presented ontology that facilitates creating, promoting and exploiting an 

open-source cloud application programming interface. The objective is to gain easy access to 

heterogeneous cloud resources. Common user interfaces are developed to enable intelligent service 

discovery and composition and to allow management of SLA among cloud services. Several independent 

ontologies are presented which represent different cloud computing interfaces: language, deployment 

models, actors, and functional and non-functional properties. In [52], Martino et al. presented an attempt 
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to develop a functional ontology for defining characteristics of cloud services and virtual machines. The 

authors chose specific vendors for their proposed ontology (i.e. Amazon EC2 VMs). The goal of the 

ontology is to help customers select the best services that suite their needs. Some of the defined properties 

are images, operating systems and vendors. Their purpose was to define relations between cloud services 

and virtual appliances as individuals for these specific functionalities they provide. In [53], Modica et al. 

presented several ontologies that semantically describe and capture vendors’ offers and users’ demands 

from business perspectives. They mainly focus on the functional aspect of cloud services’ offers in open 

markets. The ontologies provided in this work are: application ontology which represents different cloud 

applications, support ontology which represents supports that customers need to use offered services, 

SLA ontology which describes functional and non-functional requirements, market ontology which 

describes different market concepts such as participants, market types and resource allocations, and offer 

and request ontologies which build up vendor and customer domains respectively. In [54], Rodriguez et 

al. proposed a dynamic semantic service composition solution. It considers multiple QoS attributes and 

minimizes the number of services produced by the service composition system. A multi objective 

Dijkstra-based algorithm was proposed that finds the optimal composition. 

 The above QoS models attempted to provide definitions for cloud services and associated QoS and 

functional concepts; however, they have the following drawbacks: 1) the proposed QoS models consider 

only a single cloud layer and one service type (e.g. IaaS), 2) most of the existing models consider the 

functional aspect of advertised services in order to facilitate the service discovery process through 

reasoning. With respect to the first limitation, the proposed QoS model failed to represent the 

collaboration required between cloud services to provide end-to-end solutions to end users as they only 

consider one service layer. As a consequence, end-to-end QoS value of a whole cloud service 

composition cannot be obtained. With respect to the second limitation, since the proposed semantic-based 

QoS models are to discover cloud services based on users’ demands, the QoS information are not the 

main consideration which makes these models not very suitable for QoS-based service matchmaking. Our 

proposed model in [55] defines different types of cloud service and an end user entity. It establishes 
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relations between QoS requirements and QoS guarantees at multiple cloud layers. An agent can use our 

defined rules to map and aggregate QoS values guaranteed by cloud services at different cloud layers. 

2.4.2 QoS Mapping 

Researchers in other research domains (e.g., multimedia and network systems) proposed to use QoS 

mapping to deal with the problem of provisioning different QoS across multiple system components. 

They believed that user requirements should be understood over different components and the mapping 

should be performed through a controlled process so that requirements could be properly mapped to the 

right network components. In [56], Marchese et al. proposed a model for vertically mapping QoS between 

upper and lower layers of a wireless network. In order to provide an end-to-end QoS guarantee over the 

heterogeneous networks to users, the concept of abstract queue is used to model the QoS mapping by 

decomposing it into different problems at each network layer. In [57], Rakas et al. proposed a QoS 

mapping model for multi-user sessions in network systems. The model considers multiple users who 

submit their requirements, and maps them onto the most suitable network service class. A QoS adaption 

mechanism is also used to overcome the problem of QoS derogation due to network problems. In [58], 

Battisti et al. discussed mapping service providers’ QoS to users’ quality of experience in multimedia 

services. The proposed model is based on the argument that QoS of service providers not necessarily 

represents users’ opinions and overall experiences. Also, QoS experienced by users is costly and complex 

to measure and obtain. The paper compares the performance of some well-known mapping models and 

recommends optimal model based on different parameters such as delay, jitter and packet loss rate and 

throughput limitation. In [59], Gao et al. proposed a QoS mapping mechanism in an integrated 

UMTS/WLAN networks. Both networks are different in geographical coverage and computational 

complexity, so their QoS provisioning levels are also different. Therefore, in order to guarantee users’ 

QoS, QoS mapping in integrated networks is required. The proposed mapping mechanism is applied 

horizontally on the application level in order to support end to end QoS and minimize the service quality 

degradations. In [60], Hsu et al. proposed to map network QoS parameters into users’ quality of 



21 

 

experience in cloud-based multimedia infrastructure systems. The model has three components: QoS 

function, practical measurement and statistical analysis, and a simulated streaming video platform. The 

practical measurement component collects scores assigned by users to a number of videos and then it 

analyzes the scores to find optimum values to the quality of experience parameters. The proposed model 

can monitor and adjust users’ quality of experience if its value degrades. This enables video providers to 

respond quickly to poor quality of experience perceived by users. 

The above mapping models deal with the QoS mapping process in different environments (e.g. 

network and multimedia systems). These systems are not cloud-based and thus their associated QoS 

properties are mapped and aggregated differently. The mapping process proposed in these work is based 

on propagating (transferring) QoS information from one layer (e.g. a network layer) to a lower layer (e.g. 

a physical layer). Therefore, QoS data need not to be aggregated across layers or components. For this 

reason, in the surveyed work, no aggregation models have been used or proposed. 

Our approach provides concrete definition for mapping relationships between user’s QoS requirements 

and QoS guarantees of multiple cloud services which participate in composing service solutions for end 

users.  Our goal is to compute the end-to-end QoS values of cloud service compositions. In our approach, 

we consider the collaboration between multiple cloud services at multiple cloud layers. Then we map 

user’s QoS requirements onto a required cloud service (e.g. SaaS service) and other collaborating cloud 

services. We use aggregation models that aggregate QoS values at multiple cloud layers and calculate 

end-to-end QoS values of cloud service composition which can be used for the cloud service selection 

process.  

2.5 QoS Prediction 

Using prediction approaches for computing QoS values have been proved to be robust and reliable 

approach [61][62]. They are widely accepted among cloud service research community to predict various 

types of service metrics such as performance, reliability, workload and cost. These metrics are important 

for estimating cloud resources required to run applications and for satisfying users’ requirements in terms 



22 

 

of scalability and workloads. The surveyed work used two different approaches to process the prediction: 

collaborative recommendation techniques and optimization and model- based techniques. 

2.5.1 QoS Prediction using Collaborative Recommendation Techniques 

The collaborative recommendation techniques have been broadly used in the literature to solve the 

problem of predicting services’ QoS values. In [21], [62] and [34], a collaborative filtering approach was 

employed for predicting QoS values. Users’ contributions of their past usage information are considered 

for the prediction process. The Pearson Correlation Coefficient (PCC) is used to measure users’ 

similarities as well as services’ similarity. The prediction is done using information of neighbor users of 

an active user for whom the QoS is calculated. Although the paper claimed the efficiency of their 

approach, the prediction model only fits on-premise services in a two dimensional similarity and 

prediction process. Similarly, in [63], Sun et al. proposed a model for predicting QoS values of web 

services for an active user. The values are computed by employing QoS information of other similar users 

who have similar QoS experiences from previous service invocations.  Their work is extended from a 

previous one [64], so that the similarity between users takes into consideration the range of QoS values 

experienced by different users. In [61], Zhang et al. proposed a model to generate recommended services 

to end users. The similarity between users is computed using the PCC technique combined with a fuzzy 

clustering algorithm since users may have different properties. In [65], Zheng at al. introduced a 

collaborative service reliability prediction model. The information obtained from similar users who 

observed past failure data when invoked common services are employed to predict reliability values for a 

current user. The PCC method is used to compute users’ similarities. Then a missing reliability value is 

predicted using average failure probabilities of different services invoked by a current user and its similar 

users. In [7], a QoS ranking framework for cloud services is proposed. The purpose is to make optimal 

service ranking among functionally matching services. The Kendall Rank Correlation Coefficient is used 

to measure users’ similarity. A greedy-based algorithm is proposed to generate a ranked list of cloud 

software applications. The work only considers ranking SaaS applications using their QoS values. It does 
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not provide a mechanism to compute QoS that span all involved cloud services for ranking SaaS 

applications. In [66], Wu et al. proposed a QoS model that employs an adjusted cosine similarity 

technique to measure users’ similarity. This technique minimizes the impact of different QoS scales 

among similar users to an active user. A data smoothing process is adopted by calculating the average 

QoS within a cluster of similar users.  

The above work can only handle the similarity and the prediction processes for on-premise services (a 

one component service) in a two dimensional model (services vs. users). Therefore the similarity 

calculation is always a two-dimensional process. In our work, we consider multiple cloud component 

services which collaborate with each other to offer a complete solution (cloud service compositions). We 

designed our prediction model to handle the similarity and the prediction computations of cloud 

composite services (a composition of multiple component services) taking into consideration users’ 

similarities as well. 

Exploiting information related to services and their users for predicting services’ QoS values has 

become a common research trend. However, besides considering single layered cloud architecture, most 

of the existing research work solely concentrate on using services’ or users’ locations as the only feature 

to help predicting QoS values. The work in [62], [67], [68], [69] and [70] used geographical locations of 

on-premise services or locations of users to calculate services’ and users’ similarities for the prediction 

process. Some common techniques to calculate geographical distances are using longitudes and latitudes, 

Autonomous Systems and IP addresses. The idea is that users or services located in the same region or 

within short distances have similar QoS experience. 

Another collaborative recommendation technique that has been recently adopted to solve the 

prediction problem is Matrix Factorization techniques (MF). It has been considered by researchers as an 

improved collaborative filtering method for its latent features. In [71], both user neighborhood and service 

neighborhood were computed using the PCC technique. Then a MF-based model is used to minimize the 

difference of latent features among users in the same neighborhood. In [72], a QoS prediction framework 

was proposed in which shared QoS information by different users are employed to find users’ 
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neighborhoods. The neighborhood is obtained via the PCC technique which represents a set of similar 

users with similar QoS experiences. In [73], in order to perform an efficient QoS prediction, domain 

knowledge was combined with a MF model.  A local neighborhood of users is defined to create a latent 

factor space of low dimensionality based on user information. The local information is formulated as two-

level selection process in a MF model. In [34], a user-centric framework was proposed that takes into 

account users’ experiences on QoS to achieve a personalized QoS estimation. The user centric approach is 

based on the fact that users with similar historical experiences have also similar features such as physical 

distance to servers. This implies that these users have similar behaviors in future. However, to make the 

prediction more accurate the services’ information has to be taken into account. Hybrid collaborative 

approach can enhance the recommendation result and overcome the disadvantages of the recommendation 

approaches. On the other hand, the work (similar to most of cloud-based recommendation work) does not 

consider the multiple cloud layers architecture of the provisioned solutions. In [74], a probabilistic MF 

model is proposed for predicting on-premise services’ QoS values. First, latent features of users and 

services are learned within a basic model. Then, location-based model in which QoS values of a user and 

their neighbors is incorporated in the basic matrix factorization model. In [75], a QoS prediction model 

for cloud applications is proposed. In this work, latent features of users and cloud applications are 

explored and employed via MF to produce QoS prediction matrix.  

In other work, temporal dimension is considered during the prediction process. For this, tensor 

factorization models are proposed. Tensor factorization is a generalized form that includes matrix 

factorization as a specific case of two dimensions. In [76], Zhang et al. proposed to use tensor 

factorization to predict missing QoS values. Three aspects are considered for collecting QoS data; user 

information, service information and time-aware information. The tensor factorization was used to learn 

users’, services’ and time features. By learning the three aspects, missing QoS values are predicted for a  

specific service observed by a specific user during certain time intervals. Similarly, in [77], a tensor 

factorization model is proposed to predict on-premise services’ QoS values. The model is based on an 

extension of a user-service model by adding temporal dimension into it and presenting it as a tensor 
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factorization. Three components are included: users, services and time of services invocations. Initially, 

the tensor has sparse QoS data. By employing users’ collaborative QoS information from past 

invocations, the temporal QoS prediction is performed to predict missing QoS values. The tensor 

factorization models in both [76] and [77] were designed to factorize two matrices (on-premise services 

and users matrices), so the learning process is based on information of two dimensional models. The 

designed structures of the proposed models cannot capture information of multiple cloud component 

services collaborating with each other as an end-to-end solution. 

The above work (the collaborative recommendation including the MF-based work) can only consider 

two dimensional setting of on-premise services and users. The main hypothesis is that an on-premise 

service is provisioned as one component service which could match user’s functional requirements. 

Therefore, the matrix factorization-based models proposed in all above work cannot handle cloud 

composite services where multiple services from different computing models collaborate with each other. 

The similarity and prediction processes, in this case, need to consider the new structure of cloud service 

provisioning environments which existing collaborative models do not. 

 In our work [78], we have designed a QoS prediction model using tensor factorization that can 

handle multiple cloud component services which constitute cloud composite services. In our model, the 

learning process is based on observed QoS data and other information associated with multiple cloud 

services. In order to improve the accuracy of the predicted QoS values, the learning process includes 

integrated data and information of similar cloud composite services to a target cloud composite service as 

well as data and information of similar users.  

2.5.2 QoS Prediction using Optimization and Model-based Techniques 

This section reviews related work which exploit the advantages of optimization and model-based 

technique to make different types of predcitions (e.g. performance, workload, cost and relaibility). Our 

main observation is that existing predcition approaches mainly consider a single cloud layer that is IaaS 

layer. The reason is that IaaS providers primarly are responsible for cloud resource management which 
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includes important task such as load balancing, resource allocation, scheduling, fault tolerence, etc. In [8], 

Rehman et al. proposed a methodology for selecting cloud services using MCDM techniques. The 

proposed framework uses the QoS history data of IaaS services and ranks these services. The work refers 

to historical QoS data to assist users making appropriate decision for selecting the best services. However, 

the proposed method ignores the fact that a selected cloud service should consider cloud multiple layers in 

order to respect users’ end-to-end QoS requirements. In [79], Qazi et al. proposed a workload prediction 

method for VMs that exploits past behaviors including geographical location information. The goal is to 

predict VMs’ workload. In [80], Imai et al. proposed a computing resource prediction model for hybrid 

cloud that estimates the resources based on a specific workload. The paper introduces the notion of 

workload –tailored Elastic Compute unit to measure the predictability power and present a dynamic 

programming-based scheduling algorithm to select resources that satisfy the desired throughput. In [81], 

Zhang et al. proposed a performance prediction framework to accurately predict computing resources for 

cloud computing-intensive applications. The proposed prediction model is based on measuring the 

computation time and the communication time. However, their prediction mechanism involves high 

computational and time complexity. This is due to the need for looking up scaling blocks in client’s 

application, creating a prototype version of it and then replaying it in the cloud for the purpose of 

performance prediction. In [82], Fan et al. proposed an execution time prediction model for job scheduler 

by utilizing the Rough Set Theory (RST). RST uses historical data to perform the prediction so the job 

scheduler informs the user the time that the job starts and terminates. The proposed model ignores the 

execution time of the job processing and only focuses on the VMs’ time. In [83], Tsai et al. proposed a 

cloud utility service prediction algorithm that estimates the number of services needed to serve service 

requests (throughput) from users. Different parameters are considered in the proposal: service requests 

rate, the number of services and the number of requests served at a given time. The Poison probability is 

used to estimate the number of requests arriving at a particular time and to assign the required number of 

services. The goal is to use a minimum number of services that handle a certain number of requests. 

Although the authors consider SaaS services, the proposed model only considers IaaS service prediction 
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to estimate the number of services needed based on users’ requests. In [84], Bankole et al. presented a 

predictive approach to cloud resources (CPU, Storage, memory, etc) that helps scaling decisions ahead of 

time to predict future demands on resources and compensate for the delay in starting up VMs. However, 

the scope of this work concentrates on the IaaS cloud model. The general theme of cloud-based QoS 

prediction approaches is that single services are considered for predicting missing QoS values. The multi-

layers cloud architecture is completely ignored in the proposed models so the computed QoS values do 

not reflect end users’ requirements which can only be satisfied by using end-to-end values. 

In this thesis, we propose an end-to-end QoS computation model for cloud service compositions of 

vertically composed cloud component services. We consider a vertical composition since a required cloud 

service by an end user needs to be composed with other services published at different layers in order to 

provision end-to-end solutions to end users. Therefore, from an end user’s perspective, QoS matching 

between her requirements and cloud services’ QoS guarantees must be end-to-end process. Different from 

the existing approaches which only deal with single component in the cloud to compute QoS values , our 

work considers multiple cloud component services of cloud service compositions during the similarity 

computation and the prediction processes in order to compute end-to-end QoS values of the compositions. 

We provided two solutions to the problem of end-to-end QoS computation. The first solution deals with a 

scenario in which cloud service compositions have not been invoked before, thus no prior history is 

recorded. In this case, we map users’ QoS requirements to multiple cloud layers where QoS values of 

atomic component services are guaranteed. The second solution deals with a scenario in which historical 

QoS data are available based on past invocations. In this case, we predict QoS values of cloud service 

compositions based on end-to-end QoS matching in which we compute the similarity between the 

compositions with respect to their multiple component services. 
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Chapter 3 

A Framework for Computing End-to-End QoS Values of 

Vertical Cloud Composite Services 

In this chapter, we introduce our proposed framework for computing end-to-end QoS values of vertical 

cloud service compositions. In the first part of the chapter, we provide detailed descriptions of cloud 

services’ QoS properties, their classifications and characteristics. We adopt QoS properties in this 

framework as differentiating criteria to select the best cloud service compositions. In the second part, we 

introduce a new process of cloud service selection. The major task of the framework is to compute the 

end-to-end values of QoS associated with cloud service compositions to select the best of these 

compositions that match both functional and QoS requirements of end users. The framework uses our 

proposed two models which effectively deal with two different environments in the cloud, and utilize the 

available information in order to compute the values. 

3.1 QoS Properties for Cloud Services 

In this section, we define QoS properties of cloud services which we use in our proposed models of 

QoS mapping and aggregation and QoS predictions. In this work, we only use some of the QoS properties 

to illustrate and verify our approach. Our proposed end-to-end QoS mapping and QoS prediction models 

are both extensible to cover more properties. QoS properties are used as discrimination criteria to select 

the best services which optimize the total of QoS values and satisfy users’ non-functional requirements. 

Kritikos et al. [85] define QoS as “a set of non-functional attributes of the entities used in the path from 

services to the client that bear on the services’ ability to satisfy stated or implied needs in an end-to-end 

fashion”.  QoS properties can change without impacting services’ functionality. QoS properties can be 
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quantitatively or qualitatively measured. The quantitative QoS properties usually have value types (e.g. 

integer, float, string, etc.), and they are associated with measuring units. Some examples of this type of 

QoS properties are response time which is measured by milliseconds or seconds, cost which is measured 

in currencies (e.g. US$, EU, etc.) and throughput which is measured in number of requests per second. 

Qualitative QoS properties are not directly associated with values rather they are associated with 

linguistic descriptions that tell how a service performs. Some examples of this type of properties are 

security which is measured by different security levels (high, medium and low), and usability which can 

be described as (high, medium and low). Each of these levels can be mapped to an integer value to be 

mathematically processed and optimized. Moreover, QoS properties can also have tendencies which can 

be either high or low [86]. High tendency means that the higher the value of a QoS the better the service is 

with respect to a measured QoS property. Low tendency means that the lower the value of a QoS the 

better the service is with respect to a measured QoS property.  For example, response time and cost are 

two properties with low tendency; availability and security are two properties with high tendency. 

The Cloud Service Measurement Index Consortium (CSMIC) introduced a set of key business 

attributes for cloud service business and technical measurements in a form of Service Measurement Index 

(SMI) [87]. The collection of the QoS properties can be used to evaluate and compare cloud services by 

users. SMI is designed to provide standards for organizations to measure cloud services based on their 

requirements. It covers a wide range of properties to suit the different cloud models (i.e. IaaS, SaaS, PaaS, 

Big Data, etc.). They are organized in seven main categories, and each category has several attributes. 

This initiative has attracted researchers in the field to investigate the SMI attributes in order to improve 

QoS modeling in the cloud [14]. 

In this thesis, we use some of QoS properties defined in SMI for our proposed end-to-end QoS 

computation method. Below, we provide definitions of some commonly used QoS properties. Some are 

specific to a certain cloud model (cloud layer) while other can apply to all layers (SaaS, IaaS, PaaS, 

DBaaS, etc). We have used them to illustrate the concepts we introduce in our first proposed model. We 
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have used response time and throughput for the experiments of our second proposed model. The 

definitions below are based on [87]. 

Availability ( AV): it measures the degree of service accessibility by end users. Cloud service providers 

usually declare their services availability using a percentage value (e.g. 99.1%). Tendency of availability 

is typically high. It applies to IaaS layer. 

Reliability (RL): it is defined as “the ability of an item (which it can refer to a service, in our work) to 

perform a required function under stated conditions for a stated time period”. Cloud service providers 

usually declare their services reliability using a percentage value (e.g. 99.8%). Tendency of reliability is 

typically high. It applies to all layers. 

Response Time (RT): it measures the time between sending a request to a service and successfully 

receiving a response. It is measured in milliseconds or seconds. Tendency of response time is typically 

low. It applies to all layers. 

Throughput (TP): it measures the number of requests (r) successfully processed and served in a period of 

time (t). It is measured using (r/t). Tendency of throughput is typically high. It applies to all layers. 

Cost (CO): it measures the amount of money a user pays for acquiring and using a service. It is measured 

using a currency (e.g. US$). Tendency of cost is typically low. It applies to all layers. 

Data Ownership (DO): it refers to provider’s mechanisms that guarantee a certain level of control for 

users over their data stored and processed in the cloud. A cloud service provider declares its data control 

policy for accessing and storing data in the cloud. Data ownership is a qualitative property that we 

measure using linguistic values (high, medium, low). Tendency of data ownership is typically high. It 

applies to IaaS layer. 

Security (SE):refers to the degree of security that a service offers. We use three parameters for measuring 

service security: access control, privacy and encryption algorithm. It is a qualitative property that we 
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measure using linguistic values. Tendency of security is typically high. It applies to all layers. 

Stability (ST): it refers to the service ability to remain unchanged in terms of its performance. We measure 

stability as an aggregation of QoS properties which describe service performance such as response time, 

availability and reliability. It is measured using a percentage of full stability in a perfect condition. 

Tendency of stability is typically high. It applies to all layers. 

Accuracy (AC): it measures the degree of the service’s functional conformance to the Service Level 

Agreement (SLA). We measure the accuracy as an aggregation of QoS properties which describe features 

that users are usually interested in such as cost, security, data ownership and usability. It is measured in a 

percentage of full service accuracy in a perfect condition. Tendency of accuracy is typically high. It 

applies to all layers. 

3.2 A New Cloud Service Selection Process  

In this chapter, we introduce a concrete framework for computing unknown end-to-end QoS values of 

new and un-invoked cloud service compositions for users who initially submit their requirements to a 

cloud service selection system looking for a service solution. We consider the cloud-based service 

selection as a three-step process: 1) Searching for the required cloud service (e.g. software, platform, etc.) 

based on user’s functional requirements. 2) Vertically composing the discovered services with other 

available cloud services so that vertically composed cloud services match end user’s functional 

requirements. 3) Selecting and ranking the best of these functionally equivalent cloud service 

compositions using their end-to-end QoS values. The selected compositions should satisfy users’ QoS 

requirements. 

We denote the service composition in the cloud as a cloud composite service. A single service which 

is part of a composite service is called component service. The vertical cloud composition can include 

component services from multiple cloud layers. In this research, we consider that a cloud composite 

service    has multiple component services from S                       layers. We define an end-
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to-end QoS value as a QoS value of a cloud composite service that is observed by an end user which is 

different from individual QoS values of cloud component services at multiple cloud layers. The cloud 

composite services that have end-to-end QoS values recorded from previous invocation history can be 

considered in the selection candidacy list (a set of all cloud composite services associated with their end-

to-end QoS values). However, it is very likely that some of the very well matching composite services 

may not have end-to-end QoS values recorded or published. As a consequence, this kind of composite 

services cannot be included in the selection candidacy list. There are two reasons for this: 1) cloud 

composite services are new and they have never been invoked before by users, and thus no historical QoS 

data are available for the selection process, 2) a user may have invoked one or two components of a cloud 

composite service but not all of them, thus end-to-end QoS values are missing. We call this kind of 

composite services, target composite services, and we call users for whom we want to compute end-to-

end QoS values of target composite services, target users. 

In this thesis, our primary task is to consider all functionally matching cloud composite services in the 

cloud service selection process so the services with unknown end-to-end QoS values can also be good 

candidates for the selection process. We propose a new QoS computation mechanism that deals with two 

common scenarios related to the availability of historical QoS data of previously invoked cloud composite 

services. The first scenario happens when a new cloud service selection system is launched and newly 

published cloud services are bound to be provisioned to end users.  The selection system has no log files 

which record the historical QoS data of the registered services. Therefore, these new services cannot be 

considered as the potential service candidates since composite services with these new services as 

components have no end-to-end QoS values. The second scenario happens when some composite services 

have been invoked in the course of time by end users. So, log files exist which contain historical end-to-

end QoS values of the invoked cloud service compositions. We have designed two models that handle the 

two scenarios: QoS mapping and aggregation for the first scenario, and QoS prediction for the second 

one. Our framework is designed so that the end-to-end QoS computation process is personalized for target 
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users since the exploited historical data may have been recorded based on invocations made by other 

users in a cloud environment.  

3.3 Cloud Service Selection Architecture 

Figure 3.1 shows the process model of a cloud service selection system. Our end-to-end QoS 

computation model is a core part of this system, which includes two main modules: QoS mapping and 

aggregation, and QoS prediction components. The workflow of the cloud service selection process is as 

follows: 

1. A target user submits functional and non-functional requirements to a service selection system to 

select the best cloud services that satisfy the user requirements. 

2. The system finds functionally matching services and composes them with available collaborating 

services according to the user’s needs.  

3. The system computes unknown end-to-end QoS values of target cloud composite services for 

target users. There are two main scenarios: 

a.  The service selection system is newly developed. The cloud component services are newly 

published. Thus, no historical end-to-end QoS data are available.  

i. QoS mapping and aggregation process is executed. 

ii. End-to-end QoS values of composite services are computed. 

b. The service selection system has been active for a while. It keeps logs for historical end-to-

end QoS data of cloud composite services which have been invoked by different end users in 

the past. 

i. QoS prediction process is executed 

ii. End-to-end QoS values of composite services are computed. 

4. Using the computed end-to-end QoS values, a QoS matchmaking process can be triggered to 

select and rank the best cloud composite services that satisfy the target user’s non-functional 

requirement. 
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3.4 Chapter Summary 

In this chapter, we proposed a framework for cloud service selection in cloud environment such as 

cloud service marketplaces. The core functionality of our cloud service selection framework is the QoS 

computation process. QoS properties of cloud services are often used to determine the best of the 

functionally equivalent cloud services. We defined and listed some of the important properties that we 

used in our research. In the second part of the chapter, we defined and gave an overview of our proposed 

cloud service selection process. We emphasized that service selection in the cloud is performed based on 

vertical composition of different types of services from multiple cloud layers. Two main scenarios are 

considered in the framework for computing end-to-end QoS values of cloud composite services: a cold 

start scenario in which a cloud service selection system is newly launched, and no invocations were made 

to cloud composite services, 2) a cloud service selection has been active for a while and cloud composite 

services were invoked in the past, thus historical QoS data are available. We have proposed two models 

that correspond to these two scenarios: QoS Mapping and Aggregation, and QoS Prediction. 
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Chapter 4 

Cloud Service QoS Mapping and Aggregation  

In a situation where a new service selection system is launched with newly registered cloud services and 

no historical QoS records are available, selecting the best services based on QoS requirements becomes a 

challenging task. These services have no invocation history that can be employed towards computing end-

to-end QoS values for the selection process. To overcome this “cold start” problem, we propose a novel 

QoS mapping scheme that can be used as a mapping tool to perform the mapping between the user’s QoS 

requirements and cloud services’ QoS requirements and guarantees at multiple cloud levels. We define 

three rules for the mapping scheme. The QoS values at different cloud layers are aggregated according to 

the defined rules to compute end-to-end QoS values of cloud composite services. Then the calculated 

values are used during the cloud service selection process to select the best composite services based on 

users’ QoS requirements. The experimental results will show that the mapping computation process is 

linear with respect to the number of SaaS services composed with IaaS services and bundles with a 

selected DBaaS service.    

4.1 An Overview of the QoS Mapping and the Aggregation  

In this chapter, we propose a method for mapping and aggregating users’ QoS requirements to a 

required cloud service (e.g. SaaS, PaaS, DBaaS, etc) in order to compute end-to-end QoS values of cloud 

composite services. The required cloud service has QoS guarantees which must satisfy their users’ QoS 

requirements. It also has QoS requirements which must be satisfied by QoS guarantees from other 

collaborating cloud component services from different computing models at different layers.  Thus 

mapping users’ QoS requirements to the required cloud services and then to other cloud services at 



37 

 

different layers is required to compute unknown end-to-end QoS values. The computed end-to-end values 

are used during the cloud service selection process. In our work [88], we hierarchically modeled QoS 

properties of cloud services and user QoS requirements using the Analytic Hierarchy Process (AHP) 

method [89]. Using this approach, we modeled QoS properties of cloud services at different layers with 

different categories such as customer related QoS and performance related QoS properties.  

With the cloud computing evolution and proliferation of cloud services, some work have focused on 

semantically modeling concepts related to cloud services such as cloud service discovery (functional 

requirements) [90], life cycle and deployment [46] and cloud infrastructure [49] and cloud service 

characteristics and development [51]. However, these approaches suffer from the following: 1) they do 

not consider cloud component services at multiple cloud layers, 2) they do not have well defined 

representation of QoS requirements and guarantees of services and users and relationships among them. 

Any requirements from a required cloud service on other collaborating services should always be rooted 

from their end users’ demands. The mapping becomes necessary in this context because one service 

provider cannot guarantee the end-to-end QoS values in this collaboration. To map users’ QoS 

requirements onto a required service and then to other services at multiple cloud layers, we define three 

mapping rules. 

The main purpose of these rules is to determine the way (path) that a particular QoS requirement is 

mapped onto different cloud layers which represent the multiple component services of a target cloud 

composite service. After applying the rules, all QoS requirements submitted by the end user are mapped. 

In the last step, we use the adopted aggregation models that calculate the end-to-end value for each QoS 

requirement. With these values, target cloud composite services are now valid candidates for the cloud 

service selection process. Figure 4.1 shows our concept of the QoS mapping in the cloud. In this figure, 

user QoS requirements are mapped to a required cloud service (SaaS) and other two cloud services at IaaS 

and DBaaS layers. To the best of our knowledge, our proposed QoS mapping and aggregation model is 

the first attempt to model and map QoS requirements and guarantees of cloud component services at 

multiple cloud layers in order to compute end-to-end QoS value for the cloud service selection process. 
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4.2 QoS Mapping Rules  

The focus of our mapping mechanism is to map the user’s QoS requirements to required cloud 

component services at multiple layers. The mapping process facilitates the aggregation process required 

to compute the end-to-end QoS values. We have analyzed the characteristics of QoS properties of cloud 

services based on definitions provided by CSMI [87], Choi et al. [91] and Greg et al. [14]. We have 

found that QoS properties defined in CSMI, including the ones we have used in our research, can have 

three ways of mapping them across cloud layers. Mapping of a QoS requirement occurs only to the layer 

at which a service provider (which corresponds to that layer) can guarantee this specific requirement. 

Using QoS property definitions, if a cloud provider cannot guarantee a particular QoS requirement, our 

     IaaS’s QoS Guarantees DBaaS’s QoS Guarantees SaaS’s  QoS  specifications 

(requirements and guarantees) 

             

     I a a S 

VM1     

  VM2      

VMn  

SaaS 

 

 

 

 

 

 

 

 

 

SaaS1 

SaaS2 

SaaSn 

              QoS Mapping  

DBaaS 

 User’s  QoS  

Requirements 

 AV             RL              RT               DO               US                  SE                  CO                 RP   

99.9%      10000  hrs     < 2 sec.    Very High       95.0%          excellent        < 20 $/month     80%                                                                                                                                             

99.9          10^4         < 2            veryHigh           95.0          excellent            < 20         80%  

   

 

Figure 4.1:  Mapping Users’ QoS Requirements onto Multiple Cloud Layers. 
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mapping model will not map this requirement to that layer. For example, our mapping model maps 

availability to hosting services which means the IaaS layer but not to other service types. So, if the target 

cloud composite service is composed of three service types (e.g. SaaS, IaaS and DBaaS) in which SaaS 

and DBaaS services are hosted on different IaaS services then the QoS mapping occurs only at the IaaS 

layer. This is because based on the definition of availability, both SaaS and DBaaS providers have no 

control on the accessibility of their services since both services are hosted and accessed via IaaS provider 

which has a full control on them. 

We designed three rules to perform the mapping process: 

QoS Mapping Rule #1. Based on this rule, user’s QoS requirements are mapped to all component services 

at all cloud layers. 

Example:  users’ requirements on response time, cost and security are mapped to a required service (e.g. 

clustering service from Weka-SaaS), to the IaaS layer (e.g. an Amazon EC2 VM) and the DBaaS layer 

(Oracle DBaaS). 

QoS Mapping Rule #2. Based on this rule, user’s QoS requirements are mapped only to the hosting 

service (i.e. IaaS layer) but not to the hosted services (e.g. SaaS or DBaaS layer). In this rule, we assume 

that hosted services are hosted in different IaaS services so QoS requirements are mapped to IaaS services 

which host the other components. 

Example:  users’ requirements on availability and data ownership are mapped only to the IaaS layer (e.g. 

an Amazon EC2).  

 QoS Mapping Rule #3. Based on this rule, user’s QoS requirement is an aggregation of different QoS 

properties. Each property may span all or some cloud layers (according to Rule#1 and Rule#2). Therefore, 

this type of property is complex since it spans different QoS properties at different cloud layers. 

Example: users’ requirements on stability and accuracy. The stability is the aggregation of performance- 

oriented properties such as response time, availability and reliability. Following Rule#1 and Rule#2, we 
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map the three properties and we aggregate the values at cloud layers for each. Then we linearly aggregate 

the obtained values to get the final stability value. We follow the same steps for the accuracy; however, it 

is mapped to user-oriented properties such as cost, security and data ownership.  

At this point, all user requirements are mapped according to the defined rules. The final step is to 

aggregate QoS guarantees (values) at different cloud layers according to the mapping outcome (scheme). 

The obtained values represent the end-to-end QoS values of target cloud composite services. We adopt 

the aggregation functions used in the sequential service composition system in order to aggregate the QoS 

values [92].  The choice of this type of aggregation is natural since the required service by the end user 

(e.g. SaaS service) is first composed with the hosting service (i.e. IaaS) so it becomes accessible by end 

users, and then based on users’ requirements, it may collaborate with other service type (e.g. DBaaS) and 

provisioned as a complete cloud solution. 
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Figure 4.2 illustrates the workflow of our proposed mapping and aggregation process of users’ QoS 

requirements in cloud environments. 

4.3 QoS Aggregation 

In this section, we present the aggregation computation of QoS values in order to obtain the end-to-

end values. The presented process is based on the aggregation at three cloud layers (SaaS, IaaS and 

DBaaS). The aggregation process is based on the aggregation models for the sequential service 

composition [92]. In order to facilitate the designing of our mapping rules, we classify the available QoS 

properties of cloud services into three categories: Performance QoS, Customer QoS, and Derived QoS. 

The first category includes properties that are more oriented towards the service performance. In our 

research, we select properties such as response time, throughput, reliability and availability. The second 

category includes properties that are more oriented towards the user (consumer) side. In our research, we 

select properties such as cost, security and data ownership. The third category includes properties that are 

more generic than the ones in the first two categories. Therefore, we can derive them by combining other 

properties from the other categories. In our research, we select properties such as stability and accuracy to 

represent the third category.  

End-to-End Availability (AV):  

  SaaS DaaSAV =  (IaaS ( ) AV, IaaS ( ) AV)                                                  (4.1) 

                                                IaaS AV = MTTF / (MTTF + MTTR)                                                   (4.2)  

We compute end-to-end availability value by aggregating values at the hosting IaaS services where SaaS 

and DaaS services are hosted. We use two metrics to calculate the availability value: the Mean Time To 

Fail (MTTF) and the Mean Time To Repair (MTTR). 
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End-to-End Response Time (RT):  

 RT = SaaS RT + IaaS RT + DaaS RT                                                  (4.3) 

We compute the end-to-end response time value by aggregating the values at all layers. We calculate the 

response time at each layer using two metrics: processing time and transmission time. The former 

measures the time it takes a service to process a user’s request. The latter measures the total round trip 

time of a user’s request not including processing time. 

End-to-End Data Ownership (DO):  

 

                                             SaaS DaaSDO =  (IaaS ( ) DC, IaaS ( ) DC)∏                                                (4.4)  

We compute end-to-end data ownership values by aggregating values at the hosting IaaS services where 

SaaS and DaaS are hosted. It is calculated using one metric: data ownership policy. The value of data 

ownership is obtained by measuring the similarity between the claimed policies of a cloud provider (e.g. 

IaaS and DBaaS) and the predefined data ownership policies. The latter represents the standard policies 

for maintaining the data control in the cloud. We use Jaccard Similarity Coefficient [93] to calculate the 

matching percentage between the two policies of two services. The Jaccard similarity value represents the 

number of common words found in two service description documents divided by the total number of 

words in two documents. 

End-to-End Security (SU):  

 

   SU =  (SaaS SU, IaaS SU, DaaS SU)∏                                                  (4.5) 

We compute end-to-end security values by aggregating values at all three layers. We calculate the 

security value using three metrics: access control, privacy and encryption algorithm. We assume that the 

values of the security metrics are predefined in cloud environment. To compute the security value of 

SaaS, we measure the similarity between the offered access control mechanisms (e.g. authorization,  
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authentication) and the predefined ones. To do so, we can use a text- based similarity measurement such 

as Jaccard technique. In the same fashion, we compute the security at IaaS and DBaaS levels by 

measuring the similarity between the offered and the predefined values considering the three metrics 

(access control, encryption algorithms and service privacy). We linearly combine the values of the three 

metrics to obtain the final security value. 

End-to-End Cost (CO):  

CO = (SaaS CO+ ΙaaS CO+DaaS CO)                                                 (4.6) 

We compute end-to-end cost values by aggregating values at all three layers. We calculate the value of 

the cost property using one metric: cost per hour. We aggregate QoS values claimed across multiple 

cloud levels.  

End-to-End Reliability (RL):  

(  ,  ,  )RL SaaS RL IaaS RL DaaS RL                                                   (4.7) 

The end-to-end value of reliability is a product of the reliability values at SaaS, IaaS and DBaaS layers. 

We calculate the reliability values using MTBF and DPM metrics. 

SaaS reliability can be calculated using DPM that refers to the number of (defects per million) 

attempts of user’s requests.  The less DPM value the better the service is. The DPM is calculated as 

shown below [94]. 
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DPM

Total request
                                                            (4.8) 

The DPM measure is transformed to reliability as shown below.  

 100
1000,000  DPM

1000,000
SaaS RL   

 
 
 

                                                               (4.9)                                                                            

To calculate the IaaS reliability value, the MTBF metric is computed as shown below [94]: 
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  time between failure
100

 of failures

Total
MTBF

Number
                                                           (4.10) 

The MTBF stands for Mean Time Between Failures which refers to the average time between failures. 

The reliability unit is percentage and tendency is high. 

4.3 An Illustrating Example 

A small software company ‘TinySoft’ just developed new and easy to use project management (PM) 

software service to plan schedule and execute projects for SMEs. Since TinySoft does not have enough 

resources to provide an all-in-one solution, it has to use other utility services such as infrastructure, 

database and security to work collaboratively. 

     

 

 

 

 

 

 

 

 

 

 

 

TinySoft plans to use two cloud services, infrastructure and database services. Figure 4.3 shows a service 

flow and an execution plan for TinySoft. There are multiple tasks (t1…t5) in the service flow which 

represent TinySoft’s tasks for searching for and selecting cloud services to collaborate with in order to 

offer cloud composite services (denoted as Sp) that match end users’ functional requirements. The service 
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Figure 4.3:  Cloud Service Selection Example. 
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flow follows a specific work flow process (i.e. sequence flow). An execution plan is formed by 

composing the TinySoft SaaS service (PM) with an infrastructure service (denoted as Sn) and database 

service (denoted as Sm) that are selected through the service flow. The execution plan collectively 

achieves TinySoft’s goal of finding the best cloud composite services that satisfy their users’ 

requirements.  
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                  Potential 

             Cloud Solution 
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 End RT 
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Table 4.1: The Aggregated Availability Values of Cloud Component Services and          

                   the Obtained End-To-End Value of the Availability. 

 

Table 4.2: Aggregated Response Time Values of Cloud Composite Services and Obtained End-To-End 

                Value of the Response Time. 
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Following TinySoft’s execution plan, suppose there are 8 IaaS offers and 3 DBaaS offers. When they 

collaborate with TinySoft’s PM service, there are altogether 24 candidate composite services which could 

meet its users’ functional needs. The best of the 24 services will be selected and offered to a potential end 

user. After the market analyses, TinySoft has had a basic understanding of the typical QoS requirements 

from end users. Some important services’ QoS properties that end users concern about are availability, 

reliability, response time, data ownership, cost, and security. The question now for TinySoft is that given 

the end-to-end user’s QoS requirements, what QoS requirements it should have on potential IaaS and 

DaaS offers. For instance, QoS requirements from a user on cost, response time and availability could be 

“< $15 month”, “<= 4 seconds” and “> 99.5%”, respectively. Our mapping tool could help TinySoft map 

each of these requirements to the required cloud layers (i.e. TinySoft service- SaaS, DBaaS and IaaS 

levels) using the proposed rules. First, the mapping tool will determine which mapping rule is applied on 

each requirement (i.e. cost, availability and response time). The Rule#1 is used for the cost and response 

time requirements. The Rule#2 is used for the availability requirement. The availability guaranteed by 

IaaS services hosting TinySoft’s PM service and the DBaaS service is calculated by adding the measured 

(claimed) values of MTTF and MTTR of the service and dividing the result by MTTF. Then the two values 

are aggregated using the product operation to get the end-to-end availability value of a target cloud 

composite service. For the response time requirement, the end-to-end value is obtained by summing up 

the values guaranteed by SaaS, IaaS and DBaaS providers at three cloud layers. Table 4.1 and Table 4.2 

show an example for a cloud composite service (i.e. TinySoft + IaaS1+ DBaaS1) from the set of the 24 

available solutions. The calculated availability value is in percentage and the response time value is 

calculated in seconds. 

By applying the mapping rules, the end-to-end QoS values of the 24 composite services could be 

calculated. Then the cloud composite services can be ranked and the best one is selected. Without our 

mapping tool, it would be difficult for TinySoft to select the best utility services that can collaborate so 

that together they can satisfy users QoS requirements. Now both the selection accuracy and efficiency 

could be largely improved because of the mapping tool. 
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4.4 Experiments 

The purpose of conducting our experiment is to answer the following question: does the QoS mapping 

and aggregation process proposed in this paper incur much computational overhead when integrated to 

any service selection system? We perform an efficiency test to answer the question. 

4.4.1 Description of the QoS Datasets  

In our experiments, we have used three types of cloud services (SaaS, IaaS and DBaaS).We have used 

two data sets that represent SaaS layers. They are collection of different applications which implement 

different functions. Besides, we used QoS values from Amazon EC2 North Virginia (IaaS layer) which 

we collected using a network monitoring tool
4
. The response time value of a DBaaS service was available 

by its provider (Clustrix
5
) so we used it in this experiment. Using our mapping tool, response time values 

of SaaS service from the first data set were aggregated with the values of Amazon EC2 service and the 

DBaaS service. We repeated the same process for the second set of SaaS services by aggregating their 

response time values with the values of Amazon EC2 and the DBaaS. We measured the time it took our 

mapping tool to map QoS values across the three cloud layers with respect to the two SaaS data sets. The 

first dataset was collected by Zheng et al. [95] which is part of their WS-DREAM project. It is generated 

from 4532 web services when invoked by 142 users and both response time and throughput values have 

been collected by the provider. The dataset can be found in [96]. The second SaaS dataset was collected 

by E. Almasry et al. [97]. The dataset contains 2507 web services with a set of 9 QoS properties. The 

dataset can be found in [97].  

                                                        
4
 https://prtg.paessler.com/ 

5
 http://www.clustrix.com/ 

 

https://prtg.paessler.com/
http://www.clustrix.com/
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4.4.2 Experiment Setup and Details 

In the experiment, we evaluate the performance of the QoS mapping and aggregation process using the 

collected QoS datasets. In our implementation, we ran our tests on a machine running under Windows 7 

with 64 bit, 3.16GHz Intel Duo2 CPU and 4 GB RAM.  
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        Figure 4.4: QoS mapping Efficiency Test. 

 

     (a) using SaaS [96]+Amazon EC2+ Clusterix. 
     (b) using SaaS [97]+Amazon EC2+ Clusterix. 
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In the first part of the experiment, we used the first SaaS dataset, and values of the response time and 

throughput were aggregated with the values of Amazon EC2 and Clusterix to resemble end-to-end 

response time values of the compositions of three services at the three cloud layers. We increased the 

number of services by 250 and we measured the time it took to map and calculate the end-to-end QoS 

values. In the second part of the experiment, the values of 9 properties from the second SaaS data set were 

aggregated with the same Amazon EC2 and Clusterix services. We increased the number of services by 

250. Figure 4.4 shows the result of the two parts of our experiment. From the results, we observed that the 

execution time of the QoS mapping and aggregation process is linear with the increasing of the service 

numbers (i.e. from 0 to 2500 services in the first part, and from 0 to 4500 services in the second part). 

This indicated that our mapping and aggregation has a minimal effect on the whole process of the service 

selection and ranking.  

4.5 Chapter Summary 

In this chapter, we propose a novel QoS mapping and aggregation process for mapping users’ QoS 

requirements onto QoS guarantees from different cloud services at multiple cloud layers. Mapping users’ 

QoS requirements become necessary because end-to-end QoS values are needed to select the best 

composite services for end users. Based on their definitions and characteristics, QoS properties can be 

mapped in different ways across multiple cloud layers. For this reason, we have proposed mapping rules 

which determine the way that a certain QoS property is mapped across different cloud services. To 

facilitate the mapping process, we classified QoS properties of cloud services into three categories. We 

defined metrics associated with each property to calculate QoS values guaranteed at each layer. 

According to the mapping process, we aggregated these values to obtain end-to-end QoS values using 

some well-known aggregation models. We have also conducted an efficiency test of our mapping process. 

This test demonstrates that our proposed QoS mapping and aggregation process has linear computational 

complexity which indicated that the process is efficient and can be integrated into a service selection 

system.  
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Chapter 5 

End-to-End QoS Prediction 

After following the cloud service selection steps mentioned in Chapter 3, a set of functionally matching 

cloud composite services are returned to end users. It is highly likely that some well matching services do 

not have end-to-end QoS values; we referred to this kind of services as target cloud composite services. 

As a consequence, these services are excluded from the service selection process which results in an 

unhealthy cloud service market environment. In Chapter 4, we introduced our proposed approach to 

compute end-to-end QoS values of target cloud composite services taking into consideration a cold start 

scenario in which a cloud service selection system is newly launched and cloud composite services are 

newly published and thus no historical QoS data are available. In this chapter, we consider a different 

scenario in which historical QoS data of previously invoked cloud composite services by end users are 

recorded and accessible by a cloud service selection system. We propose a novel method to predict 

unknown end-to-end QoS values of target cloud composite services for target users by exploiting 

available historical QoS data and information associated with cloud services and users. Only QoS data 

from similar cloud composite services are used to predict the unknown end-to-end QoS values. The 

reason for considering only similar composite services in the prediction process is that these specific 

services share similar behaviors in terms of QoS experiences when they have been invoked in the past. 

So, if the end-to-end QoS values of the similar cloud composite services are known (they are recorded in 

QoS logs), they can be used (during the prediction process) to predict end-to-end QoS values of the target 

composite services. Therefore, we compute the similarities between cloud composite services to find a set 

of similar composite services to the target one.  To make the predicted QoS values more accurate and 

personalized to a target user for whom we want to predict its end-to-end QoS value, we consider only 
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QoS values of similar users to the target user in the prediction process. Therefore, in this thesis, we also 

compute users’ similarities to find similar users to the target one to personalize the prediction results. 

5.1 Overview of Cloud Composite Service Similarity Calculation and    

           QoS Prediction 

In our prediction model, we estimate unknown end-to-end QoS values of vertical composite services 

for the selection process in a two-phase process. In the first phase, we compute the similarities between 

cloud composite services to find those similar to the target cloud composite service. Two composite 

services are considered similar to each other if their component services are similar. Suppose, two cloud 

composite services (    and    ) that each has multiple component services of different types; so that  

    = {     ,      ,      , …,        and     = {     ,      ,      , …,      }. To compute the 

similarity between     and    , we compute the similarities between their component services. So, if 

every pair of services from these two composite services (      and      ), (      and      ), (      

and      ), …,(      and      ) has a high similarity level, we can decide that (    and    ) are 

similar to each other. As a result, their QoS values are similar. We determine the component services’ 

similarity of two cloud composite services using two types of information: 

 Historical QoS data: we use the available data of previously invoked cloud composite services to 

calculate the correlation score between corresponding component services in two cloud composite 

services.  We only consider component services with positive correlation which means that both have 

similar QoS values in the past when they were combined with the same set of other type of 

component services. More details are provided in Section 5.4.4. 

 Services’ and users’ internal features: we propose to use the available information associated with the 

measured component services to calculate their similarity scores. We denote this information as 

“internal features”. Two component services are similar to each other if both services have similar 
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values in terms of the internal features (e.g. they provision the same function, have similar 

configuration or are located in a close distance). More details are provided in Section 5.4.2. 

In the second phase, we propose a Multi-dimensional Cloud Service Similarity Tensor Factorization 

model (MCSSTF) to make the prediction. The idea is that we use historical QoS data and other associated 

information of similar cloud composite services to predict unknown end-to-end QoS values of a target 

composite service in a multi-dimensional tensor. In MCSSTF, we consider that a cloud composite service 

has multiple component services and the number of cloud component services is n. First, we fit a 

factorization model in the tensor of multiple cloud component services. In this format, multiple matrices, 

each is specific to a component service, are utilized to make the prediction of unknown end-to-end QoS 

values. The original regularization term in the MCSSTF model learns the latent features of all multiple 

component services through a basic factorization model. The premise is that there are only a few factors 

that affect the observed QoS values of the compositions of the multiple component services, and that QoS 

values are determined by how these latent factors apply on the multi-component services tensor. Second, 

we extend the MCSSTF model to improve the prediction results by incorporating the local information of 

the similar composite services with global learning process of all component services’ information for 

fitting the factorization model. The MCSSTF predicts unknown QoS values by balancing the overall 

information of all cloud composite services and QoS data of the similar composite services. The 

prediction is further improved by calculating the composite services’ similarity scores as weights of the 

employed composite services in the learning process. Hence, unknown QoS values are obtained based on 

learning relationships of the multiple component services. The latent features are different from our 

proposed internal features. They are defined as hidden features in the matrices that correspond to the 

involved component services        ,        ,         and         that compose the tensor, 

where S, I, D and X denote specific matrices of cloud component services (e.g. SaaS specific matrix, IaaS 

specific matrix, DaaS specific matrix and XaaS specific matrices, respectively) and l refers to latent 

features. In general, tensors can be naturally extended to higher dimension which makes tensors very well 

fit our problem domain, since MCSSTF is designed to include z cloud component services. It is also 
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important to mention that the known sparse QoS values in the z component services tensor (i.e. the values 

that MCSSTF uses to predict unknown QoS values) are recorded based on multiple invocations made by 

different users. To make the prediction of MCSSTF more accurate and personalized to a target user for 

whom we want to predict end-to-end QoS value, we also compute users’ similarities. Only QoS values of 

similar users to the target user are considered in the prediction computation process. The result of users’ 

similarities is integrated in the similar composite services term which we incorporate in the MCSSTF 

prediction model. 

5.2 Architecture of the End-to-End QoS Prediction Model 

Figure 5.1 shows the architecture of the proposed MCSSTF prediction model. The system workflow is 

as follows: a user submits her request that includes functional and non-functional (QoS) requirements. 

The system searches for matching cloud services (SaaS) based on user’s functional requirements. In order 

to return a complete solution to the user, the required cloud services (e.g. SaaS services) collaborate with 

other available cloud services which are denoted as XaaS. The collaboration result is multiple 

combinations of cloud composite services,     , where i = {1… z}. A few of them have end-to-end QoS 

values and can be directly considered in the selection process. For the rest, their unknown end-to-end QoS 

values are computed using our MCSSTF model. Then they could be considered in the service selection 

process. 

 As illustrated in Figure 5.1, there are multiple inputs to our proposed end-to-end QoS prediction 

model (MCSSTF): the functionally matching cloud composite services whose end-to-end QoS values are 

unknown, their historical QoS data, and service descriptions/information which are used to extract 

internal features for the similarity calculation. First, MCSSTF computes required cloud services’ and 

users’ similarities for the prediction process. It uses the Similarity Model component which computes all 

similarities required during the prediction process. Cloud composite service similarities are calculated 

using Cloud Service Similarity component, and users’ similarities are calculated using User Similarity 

component. The former can be used to identify similar composite services to the target composite service. 
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The latter can identify similar users to the target user in order to personalize the prediction results. The 

similarity results obtained from the Similarity Model are injected into the prediction process which is the 

second part of our proposed MCSSTF model. The MCSSTF combines the global information of all cloud 

composite services represented by the original Global Regularization Term and the local information of 

similar cloud composite services represented by the Local Regularization Term. The MCSSTF makes the 

prediction by minimizing the difference (error) between the global predicted values and the QoS values 

from similar composite services through a learning process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.1: Architectural Model for Predicting Unknown End-To-End QoS Values of  Cloud  
                  Composite  Services. 
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5.3 A New Multi-Dimensional Model for Predicting End-to-End QoS Values  

Tensor Factorization (TF) is a powerful tool for presenting multi-way matrices and predicting missing 

entries [98]. TF is a multi-dimensional form of Matrix Factorization model which is a very well known 

method for recommendation and prediction. In this thesis, we propose a novel end-to-end QoS prediction 

model to fit multiple dimensions considering n cloud component services using tensor techniques. In [78], 

we presented an instance of our work which represents three-dimensional end-to-end QoS prediction 

model, considering three types of services (SaaS, IaaS and DaaS).  

In our work, a QoS tensor m   n   c   …  x is constructed to represent multiple services of different 

types. For instance, the tensor could represent m SaaS services, n IaaS services, c DaaS services and x 

XaaS services. The goal is to approximate the low-rank tensor R                          , where the 

subscripts s, i, d and x denote SaaS, IaaS, DaaS and any cloud service XaaS,  C              is a diagonal 

tensor and C = 1 if s = i = d =…= x , otherwise it is equal to 0; S        , I        , D        X   

    denote latent feature matrices in which each column represents a component service, and l is the 

number of latent features. Since in real scenarios, only a few composite services have their end-to-end 

QoS values recorded due to few users’ invocations, latent features l            ; the symbol 

  denotes tensor-matrix multiplication operator. Figure 5.2 illustrates the decomposition of our QoS tensor 

of three component services, SaaS-IaaS-DaaS. QoS values in the tensor are recorded based on invocations 

of combinations of SaaS and IaaS when bundled with DaaS services.  

The QoS tensor R can be mathematically written as follows: 

R =     
                                                                     (5.1) 

The QoS tensor is predicted by minimizing the objective function as follows: 

 

 
         

  ,                                  (5.2) 
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where R denotes the original QoS tensor, and    denotes the predicted QoS tensor;     
  denotes the 

Frobenius form which is calculated as the square root of the sum of the absolute squares of          

         . 

Since R is very sparse, only composite services that observe QoS values are factorized. The tensor 

factorization term is minimized by applying the following function:  
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where      is an indicator function that is equal to 1 if a composite service is invoked, and a QoS value is 

available; otherwise it is equal to 0. 

To avoid overfitting problem, three terms are added as follows: 
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Figure 5.2: QoS Tensor of Three Cloud Component Services SaaS-IaaS-DaaS. On the Right: QoS Matrices  

                   of SaaS- IaaS per Slices of DaaS Services. The Shaded Area Indicates Observed QoS Values. 
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where   ,    and    are learning rate, and they are all greater than 0.  

Considering the original tensor factorization term, unknown end-to-end QoS values are predicted by 

learning the latent features of all known QoS values through factorizing the three matrices. There are two 

drawbacks for using only this term: 1) the prediction accuracy is low because information from all 

composite services of the tensor (including dissimilar services) are included in the prediction process 

which could degrade the prediction accuracy; 2) considering all composite services in the latent features 

learning can add high computational overhead which degrades the prediction efficiency. To overcome 

these drawbacks, we propose to add an additional regularization term to the tensor factorization model 

(i.e. Local Regularization Term). It considers information of similar composite services in the prediction 

of unknown end-to-end QoS values of target composite services. The new term is shown in Formula 

(5.5). 

                               
 

 
                                       

  
   

 
      

   
 
                      (5.5)       

       With the new term, the MCSSTF aims at minimizing the predicted QoS observations of a target 

composite service/component service i and its similar composite services/component services j within the 

global information and builds the following objective function: 

 

 

 

 

where           denotes a similar composite service to           ;      is a parameter which 

determines the degree of similar cloud composite services engagement in the prediction result. The   has 

no direct impact on the prediction performance  rather  it  balances  the  impact  of  both  the  global  
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information of the whole structure of the tensor and the local information of similar composite services. 

In the experiments (Section 5.7), we set the range of   to [0.001 – 0.1], and iterate the learning algorithm 

in a step of 0.001; K(i) is a set of top k similar cloud composite services to a target composite service i. 

Later, we will explain how to compute the top k similar composite services in Section 5.4.4. 

    is the similarity weight of a similar composite service, and it is calculated as follows:  

                                                            
                

                       
 ,                                                           (5.7)                  

In Section 5.5, we will explain how to compute the similarity of cloud composite services 

(                ). 

A local minimum of the objective function in formula (5.6) can be found by performing the gradient 

descent algorithm in                 . This is done by computing   
 

   
 
 

   
 
 

   
  

 

   
  on the 

objective function. By performing the gradient descent the latent feature vectors are learned and the 

distance (error) between the actual QoS tensor and the predicted tensor is minimized. The parameter      

has an important role in the convergence of the objective function to a local minimum. It represents the 

significance of the contributed similar composite services during the iterative learning process which 

helps reaching a better local minimum. It prevents the predicted value from deviation against values of 

the similar composite services.      

In Section 5.5, we present the similarity calculation process required to construct the incorporated 

Local Regularization Term of the tensor R as part of the MCSSTF model. 

5.4 Constructing the Local Regularization Term 

The objective of this section is to construct the Similarity Model which represents the Local 

Regularization Term in our MCSSTF. The Similarity Model computes the similarity between available 

cloud composite services and the target cloud composite service. As explained in Section 5.1, we use two 
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types of information to compute the similarity, historical QoS data and services’ internal features. We 

consider only similar cloud composite services which have high similarity levels during the prediction 

process. In Section 5.4.1, we present our similarity computation process based on internal features. In 

Section 5.4.2, we present our similarity computation process based on QoS historical data of previously 

invoked cloud composite services. 

5.4.1 Internal Features-based Similarity 

In this section, we define the proposed internal features and the premise of using them to compute the 

similarities of cloud composite services. Then, we present the internal features-based similarity 

computation process between two cloud composite services (    and    ). We have proposed to use a set 

of internal features extracted from each service type that a component service belongs to. We define the 

services’ and users’ internal features as services’ and users’ characteristics and specifications that can be 

extracted from providers’ documentations, services’ WSDL files and user profiles. The premise for using 

services’ internal features is that: 1) they can have impacts on the similarity and prediction results, 2) the 

amount of the recorded historical QoS data are low. Therefore, a similarity measurement based on service 

correlation will not be accurate since correlation measurement techniques such as Pearson Correlation 

Coefficient (PCC) heavily relies on available QoS data. Consequently, using the internal features is 

important since no new invocations and testing are required to obtain the QoS values for computing the 

similarity between cloud composite services.  

Some of the available internal features of three cloud services and users are listed below. More 

internal features can be added as information become available. Internal features of other cloud service 

type can also be considered when measuring the similarity between cloud composite services.  

 SaaS internal features: service functions (functions offered by a service such as clustering, 

classification or association rules) and implementation algorithms (for example, clustering services 

can be implemented using K-Means or Hierarchical algorithms). 
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 IaaS internal features: service configuration (technical specifications of IaaS computing units which 

include memory, CPU, storage and other specifications) and service geographical location (where a 

service is physically located). 

 DaaS internal features: size of accessed data (the size of the data accessed through a data service) and 

service geographical location (where a DaaS service is physically located). 

 Cloud user internal features: user’s geographical location (where a user is physically located). 

For the sake of simplicity, we assume that cloud composite services are composed of three types of 

services (SaaS, IaaS and DaaS) which correspond to three cloud layers. Therefore, in order to compute 

the similarity between two composite services we need to compute the similarities between their 

component services (of same types) and then we aggregate the similarity values to obtain the final 

similarity between the two composite services. The SaaS similarity is computed as an aggregation of 

software functionality and implemented algorithms similarities. The IaaS similarity is computed as an 

aggregation of IaaS instance configuration and its geographical locations similarities. We consider two 

internal features for IaaS: location and configuration of the IaaS instance. The DaaS similarity is 

computed as an aggregation of data service locations and sizes of accessed data similarities. 

IaaS Similarity Computation 

There are some research work [68], [69], [70] on geographical location-based similarity calculation. 

Our work is in the similar line as theirs in terms of calculating location-based similarity between IaaS 

services. Since IaaS providers such as Amazon and Microsoft provision their services on regional basis 

around the world (e.g., USA west, central and east, Europe, Pacific, etc.), to avoid discrepancies among 

different providers in defining regions, we calculate the geographical distances between IaaS instances. 

Services located in a short distance most likely have similar performance when they are invoked by a user 

[33]. In the similarity calculation process, we measure the pair-wise distances of all IaaS service 
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locations. First, we look up latitudes and longitudes of services using their IP addresses using some tools
6
 

for this purpose. The distances are calculated using Formula (5.8) [62]: 

                                                                                            ,                       (5.8) 

where             denotes the geographical distance between IaaS services Ii and Ij;          

           denotes the altitude of IaaS      location, and                     denotes the longitude 

of IaaS      location; a is a constant used to convert the distance into meter which is equal to 111,261. 

We then normalize the distances so the range of values is between 0 and 1 as shown below. 

                                              ,                                   (5.9) 

where    is a distance that we want to normalize its value;                   denote the maximum and 

the minimum values among all distance values.  

The location-based similarity between two services is then computed as follows:  

                                                                                                                                                 (5.10) 

To calculate the similarity based on IaaS configuration, we consider two parameters for measuring 

the similarity: CPU and memory. They represent the computing units of a Virtual Machine (VM), and are 

measured by the number of vCPUs and the size of memory in GiB respectively. We measure the 

similarities between two IaaS services as follows: 

i.  We measure the Manhattan distances between IaaS services with respect to each parameter as 

shown below.  

                                                                                        ,                                               (5.11)  

                                                                                         ,                                            (5.12)  

                                                        
6
 http://www.iplocation.net/ 
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where            and           denote the distance between vCPUs and memory units of two IaaS 

services Ii and Ij. 

ii. We normalize the distance values to the range of [0, 1] with respect to each parameter using 5.11 and 

5.12.  

iii. We linearly combine the normalized values based on these two configuration parameters to get the 

configuration-based similarity value as shown in Formula (5.13). 

                                                                                          ),                    (5.13)  

where     is a coefficient that determines weights of the two similarity terms and         . A 

decision maker can use them to emphasize on one parameter which has a higher impact on the similarity 

calculation. 

In the last step, we aggregate the two similarity values (                 to obtain the final 

configuration-based similarity value as shown in Formula (5.14).  

                                                                                                ,                        (5.14) 

where      represents a  weight  of  the  two  IaaS  features  and          .  

SaaS Similarity Computation  

We use two internal features for calculating SaaS similarity including service functions and 

algorithms. We compute the functionality-based similarity between SaaS services by comparing their 

description documents (i.e., WSDL) in which service functions are defined. We use the Jaccard Similarity 

Coefficient technique (Jaccard) [93] to calculate the words matching percentage between WSDL 

documents of two SaaS services. The Jaccard similarity value represents the number of common words 

found in two service description documents divided by the total number of words in two documents. To 

further improve the accuracy of the similarity score, other techniques can also be used such as semantic-

based technologies. We calculate the similarity based on service functions using Formula (5.15). 
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       ,                                  (5.15)                                                      

where   
  

represents a set of words which can be used to describe the functionality of service   .   

Since one function can have multiple implementations, each of them may have different accuracy, 

efficiency levels, or even produce different results, to more accurately measure the similarity between two 

SaaS services with same functionality, we also consider their implementation algorithms. For instance, a 

clustering service can be implemented using many different algorithms such as K-means, hierarchical, 

EM, etc. Every implementation is considered as a different SaaS service which could have different QoS 

values (e.g., execution time). Services using same algorithms usually have similar performances. The 

algorithm-based similarity is dependent on the functionality-based similarity. If two SaaS services are 

functionally dissimilar then the algorithm-based similarity value is 0; otherwise, it is evaluated using 

Jaccard Coefficient measurement. We compute the SaaS similarity based on algorithms using Formula 

(5.16). 

                                                          
      

     
                           

                                               
  ,                               (5.16) 

where   
   represents a set of words which can be used to describe the implementation algorithm of 

service   and     is the Jaccard coefficient of   
   and   

  . 

In the last step, we aggregate the two SaaS similarity values (                to obtain the final 

similarity value of SaaS services using Formula (5.17). 

                                                                                       ,                        (5.17)        

where    is a coefficient used as a weight for the two SaaS internal features and        .  

 

DaaS Similarity Computation  

We compute the similarity of DaaS service (DaaS) using service location and size of accessed data.   
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 We compute the similarity based on DaaS service locations (              in the same way we 

calculate the location-based IaaS similarity (             ) in Formula (5.10). 

Two services are considered similar to each other if they provide access to data with similar sizes. 

The amount of data accessed through a data service, and processed by a SaaS service can have an impact 

on QoS values such as response time and throughput (the rate of data transferred in a period of time).  

We aggregate the two DaaS similarity values to obtain the final DaaS similarity value as shown in 

Formula (5.18). 

                                                                                       ,                   (5.18) 

where                denotes the DaaS similarity;    and    are two DaaS component services of     

and    ;      denotes the DaaS similarity w.r.t services locations;       denotes the DaaS similarity 

w.r.t data size. 

Finally we aggregate the three similarity values of IaaS, SaaS and DaaS computed in formulas (5.14), 

(5.17) and (5.18) to obtain the internal features-based similarity value of two measured cloud composite 

services (    and    ) as shown below: 

                                                                                       (5.19) 

Where c and d denote weights for the three similarity terms and      . 

5.4.2 Historical QoS Data-based Similarity Computation 

In this section, we define the historical QoS-based similarity process and the premise of performing 

this type of similarity. Then, we present the historical QoS-based similarity computation process between 

two cloud composite services (    and    ). 

In order to improve the similarity results obtained by measuring the internal features-based similarity 

(as explained in Section 5.4.1), we propose to further compute the similarity using historical QoS data, 

which are recorded based on previously invoked cloud composite services, on the set of similar 

composites service identified from the internal features-based similarity calculation. We use the new set 
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of similar composite services in the incorporated Local Regularization Term of the tensor R to predict 

end-to-end QoS values. In this thesis (see also [99]), we proposed to use historical QoS data of cloud 

composite services by measuring the correlation of their component services in order to predict unknown 

end-to-end QoS values of target cloud composite services. The basic idea is that if two cloud component 

services share the same experiences (they have similar QoS values) when they were combined 

(separately) with other components (from other service type) and invoked in the past, they are more likely 

to have similar experiences when they are combined with a certain component in the future. This kind of 

similarity based on past experiences can be measured by correlation between the considered component 

services. A strong correlation between component services indicates a high similarity between them. The 

correlation score is calculated using the Pearson Correlation Coefficient (PCC) [31]; a well-known and 

effective collaborative filtering technique that is used in recommendation systems. The range of the 

correlation score is [-1, 1]. The positive score (0, 1] indicates strong correlations between the component 

services, the negative score [-1, 0) indicates weak correlation, and zero value indicates no correlation. 

We compute the similarity between two cloud composite services by calculating the correlation 

degrees between their corresponding component services using historical QoS data. We employ the PCC 

technique to calculate the correlations as shown in Formula (5.20) [31].  

                                                              
                                    

                
 
       
                

 

      

  ,                               (5.20) 

where                  denotes the historical QoS data-based similarity between two cloud component 

services of two composite services (    and    );           and          are two component services of a 

certain type (e.g. SaaS, IaaS, DaaS) whose internal features-based similarities have been already 

calculated. For example, the internal features-based similarity of IaaS, SaaS and DaaS are calculated in 

formulas (5.14), (5.17) and (5.24);       is a set of component services from other type that   and    are 

commonly composed with;        and        denote QoS values of compositions of services from    with    
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and   , respectively;     
and     

 denote the average QoS values of    and    when composed with   , 

respectively. 

5.4.3    Selecting Nearest Neighbors for the Prediction Process 

The internal feature-based similarity values calculated using formulas (5.14), (5.17) and (5.18) are in 

the range of [0, 1]. The historical QoS-based similarities (Formula 5.20), which are computed based on 

the results of the internal features-based similarities, are in the range of [-1, +1], where -1 means a 

negative correlation, +1 means positive correlation and 0 means no correlation. We only consider values 

that are greater than 0 during the prediction process where a bigger value means a higher similarity 

degree. Determining the accepted range of similarity degree is important since the similarity value of 0 

means that two composite services are dissimilar (in the case of internal features-based similarity) and the 

value range of [-1, 0] means that composite services are not correlated with each other. Consequently, the 

new sets of similar cloud composite services are smaller than the initial one containing less number of 

similar composite services. We use the new set to predict end-to-end QoS values of a target composition 

for a target user. We denote the set as top K similar cloud composite services. Selecting a proper value of 

K is important for computing an accurate prediction. On one hand, including a large pool of similar 

component services in the prediction can cause noise to the prediction computation. Composite services 

with low similarity values can degrade the prediction accuracy. On the other hand, including a small set 

of similar services can eliminate important information which could help in the learning process to predict 

missing QoS values. 

5.4.4 User Similarity Computation for Prediction Personalization 

Since there could be multiple invocations from different users on one composite service, instead of 

one recorded QoS value per invocation of a cloud composite service, there could be multiple values for 

each composite service based on invocations from these users. The obvious challenge is to personalize the 

prediction process so that the predicted end-to-end QoS values of target composite services are computed 
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for target users. To predict end-to-end QoS values for target users, the composite service similarity 

calculation should be based on only QoS data recorded from similar users to the target users. To achieve 

this goal, we compute users’ similarity. The premise for computing users’ similarities has two folds. First, 

similar users in some respect (e.g. from close-by-locations) tend to observe similar QoS values when 

invoking the same services. Second, if a target user has not invoked a composite service in the past, end-

to-end QoS values of similar users can be used to predict end-to-end QoS value of that user. We compute 

users’ similarity using their geographical locations. To do so, we follow the same steps of the location-

based IaaS similarity calculation. We compute the similarity between two users using their calculated 

geographical distances (          ), and then we normalize the distances to compute the similarity 

values as shown below. 

                                                                                         ,                (5.21) 

                                                       n                               ,                                            (5.22) 

where              denotes the location-based similarity between users   and   ;              

denotes the normalized geographical distance between    and   ; alt refers to altitude and long refers to 

longitude.  

Then, we use the historical QoS data-based method to compute the correlation degrees between the 

similar users. A new set of similar users is obtained. The similarity calculation based on the historical 

QoS data is shown in Formula (5.23) [31]. 

                                                      
          

        
      

       
      

    

         
      

 
 

           
      

 
 

    

     ,                         (5.23) 

where      
          denotes the historical QoS data-based similarity between users   and   ;     is  

a set of cloud composite services that are commonly invoked by   and   ;       and       are two vectors 
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of QoS values experienced by   and    when invoked c;     
and     

 denote the average QoS values 

experienced by   and   . 

Similarly, we identify the top K similar users whose similarity values are greater than 0. We use the 

recorded historical QoS values of only top K similar users to predict QoS values of cloud composite 

services which have been invoked by multiple users in the past. For this type of composite services, we 

predict their QoS values using Formula (5.24). 

                                                                      
                                    

                       
,                                  (5.24) 

where             is the predicted QoS value of a composite service c for a target user tu;   tu denotes the 

average QoS value of multiple composite services invoked by tu;     is the average QoS value a composite 

service experienced by similar users   who are identified using Formula (5.23);      denotes the QoS 

value of c observed by users   . 

We performed the prediction process presented above for all composite services which have been 

invoked by different users with recorded QoS values. The computed QoS values in this process are used 

during the similarity process of cloud composite services as it is explained in the previous sections. 

5.5 Computing Predicted End-to-End QoS Values  

In Section 5.4.4, we have personalized all recorded QoS values (historical data) to target users. In the 

next step, we predict end-to-end QoS values for target cloud composite services. In this section, we 

present two case studies of the prediction process. Both represent specialized prediction models of the 

generalized prediction model presented in Section 5.3. The first case study shows the prediction model for 

cloud composite services with two cloud component services. The second case study shows the prediction 

model for cloud composite services with three cloud component services.     
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5.5.1 End-to-End QoS Prediction for Cloud Composite Services with Two Component  

           Services  

In this section, we present a case study where we apply our prediction model MCSSTF on cloud 

composite services with two component services. We consider SaaS and IaaS component services. The 

generalized form of the objective function we presented in Section 5.3 can be written for two component 

services as shown in Formula (5.25) below:  
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To further improve the accuracy of the predicted values, we apply the incorporated local term twice 

with respect to the SaaS component and IaaS component. In the first step, we need to identify two 

neighborhoods for SaaS services and IaaS services, respectively, which include similar SaaS and IaaS 

component services to the target ones. To do so, we apply the proposed internal features-based similarity 

process on the available SaaS services and IaaS services in the tensor R and then we apply the proposed 

historical QoS data-based similarity process on the two sets obtained from the internal features-based 

process, respectively. Then we combine the SaaS-based local term and IaaS-based local term so that the 

information of similar SaaS component services and similar IaaS component services are utilized within 

the MCSSTF to predict the end-to-end QoS values of the target cloud composite services. 

We compute a local minimum of the objective function in Formula (5.25) using the gradient descent 

algorithm in           as follows: 
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The gradient function in Formula (5.26) uses similar SaaS component services so K (i), in this case, 

refers to the top K similar SaaS services. And, the gradient function in Formula (5.27) uses similar IaaS 

component services so K (i), in this case, refers to the top K similar IaaS services. The gradient descent 

algorithm can handle any number of dimensions which very well suit our objective. It also provides the 

required accuracy with a lower iteration cost compared to the other methods such as conjugate algorithm. 

The predicted QoS values, which are obtained by calculating the errors through gradient decent algorithm, 

are used in the evaluation process (Section 5.7.1.2 and Section 5.7.2.2) to compare our prediction 

approach against other approaches in terms of the accuracy of the predicted QoS values.   

5.5.2 End-to-End QoS Prediction for Cloud Composite Services with Three Component  

           Services  

In the second case study, we apply our MCSSTF model on cloud composite services with three 

component services (SaaS, IaaS and DaaS). The objective function we build to minimize the error can be 

applied on three matrices of SaaS, IaaS and DaaS. It can be written with respect to the three components 

as shown below: 

 

 

  

 

 

A local minimum of the objective function in (9) can be found by performing the gradient descent in 

        as follows: 

 

   
         

 
   

 
                  

                                          
        

                                                                                                                                                   

(5.28) 

(5.29) 
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By performing the gradient descent, the latent feature vectors are learned and the distance (error) 

between the actual QoS tensor      and the predicted tensor       is minimized. Similarly, we use the 

predicted values obtained from the gradient descent process to evaluate the MCSSTF model by 

comparing its performance with other prediction approaches. Section 5.7.1 shows the experimental results 

for the MCSSTF considering three cloud component services.  

5.6 Computational Complexity Analysis 

The computational process of our proposed end-to-end QoS prediction model MCSSTF has two main 

parts. In the first part, we construct the cloud similarity model. In the second model, we build a prediction 

model-based on the similarity results. In this section, we analyze the time complexity of both models. 

5.6.1 Complexity of Similarity Computation 

The formulas 5.8-5.12, (5.15), and (5.16) compute similarities between a component service of a 

target cloud composite service and all available component services using services’ internal features. If 

there are at most s, i, d component services (SaaS, IaaS and DaaS services, respectively), then the 

computational complexity of computing component services similarities is O( ), O( )and O( ), 

respectively. Similarly, users’ similarities calculated in the formulas (5.21) and (5.22) have computational 

complexity of O (m), assuming that there are at most m users. Formula (5.20) computes the collaborative 

filtering-based component services’ similarities using the PCC technique. The main process of PCC is 

computing the correlation between each pair of component services in the QoS matrix which required a 

(5.30) 

(5.31) 
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nested loop. Therefore, the computational complexities of the PCC is O (   ) where se denotes a number 

of component services in a cloud composite service such as SaaS, IaaS and DaaS. Similarly, the 

computational complexity of the PCC applied on user similarities calculated in Formula (5.23) is O (  ). 

As we discussed before, the PCC technique is applied on initial set of similar composite services after 

computing the internal features-based similarity. It means that there are only a small number of services 

involved in the PCC-based similarity computation process. Besides, all similarity computations are done 

offline, before launching the prediction model in real time. As a consequence, the similarity computation 

has no influence on the real time prediction performance. When required, we aggregate similarity results 

using a linear combination approach to get the final similarity results. Therefore, the computational 

complexities of IaaS, SaaS and DaaS similarity aggregations calculated in formulas 5.14, 5.17 and 5.18 

are O(  +  ), O(  +  ) and O(  +  ), respectively. The computational complexity of the aggregation of 

the three similarities is O(      ). 

5.6.2 Complexity of Prediction Computation 

The main computation of the prediction model is computing the objective function in Formula 5.6 

and their gradient descent algorithms (formulas 5.26, 5.27, 5.29, 5.30 and 5.31). The computational 

complexity of the objective function is O (pl + plK |cs|), where p is the number of non-zero entries of the 

tensor R, l is the dimensionality which refers to the number of latent features, K is the nearest neighbor 

cloud composite services to a target composite service, and |cs| is the total population of cloud composite 

services that has end-to-end QoS values recorded in the tensor. Since tensor R is sparse, we can assume 

that |cs| is very small, so it is reasonable to assume that K is far less than p (k << p), since K represents 

the number of similar composite services. Therefore, the total computation of a single iteration of the 

learning process in the tensor R factorization is O (pl).  

A special case of our model is the one that deals with cloud composite services with two components, 

as we discussed in Section 5.5.1. The computational complexity of its gradients 
 

   
 and 

 

   
 are O (pl + 
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pl   |S|) and O (pl + pl   |I|), respectively, where S is the number of SaaS services population and I is 

the number of IaaS services population,    and    are nearest SaaS and IaaS neighbors to SaaS and IaaS 

components of target cloud composite services. Both    and    are very small numbers since including a 

large pool of service could introduce noise to the learning process; thus, the two values have no influence 

on the computational complexity. Therefore, the total computational complexity in the case of the two-

component-based prediction process is O (pl). 

The computational complexity analysis indicates that our end-to-end QoS prediction process is linear 

with the growing numbers of R’s entries. As a result, our proposed model can scale up to a large dataset 

efficiently. It also indicates that our model can scale out to a multi-dimensional model (i.e. including 

more cloud component services in a composite service) without affecting the total complexity since the 

total computational complexity relies on p and l. The number of entries, in general, is small since our 

realistic scenario assumes that R is sparse. On the other hand, l cannot be set to a large number regardless 

of the number of component services in R and the size of their populations. The experimental results have 

shown the negative impact of setting l to a large number on the prediction accuracy. 

5.7 Experiments  

These series of experiments validated our end-to-end QoS prediction model. We chose to conduct the 

experiments for two dimensional and three dimensional QoS prediction models. The first part of the 

experiments validates the three-dimensional prediction model, and it is presented in Section 5.7.1. The 

second part of the experiments validated the three-dimensional prediction model, and it is presented in 

Section 5.7.2. In the experiments, we had several objectives: 1) we evaluated the performance of our 

proposed QoS prediction model by comparing it with other well-known prediction models; 2) we studied 

the impact of QoS data sparseness on prediction accuracy of all prediction models including ours; 3) we 

demonstrated the impact of considering vertical service composition on the prediction accuracy; 4) we 

studied the impacts of important parameters used in the proposed model. 
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 We conducted the experiments using real end-to-end QoS data of cloud composite services. To 

monitor and collect end-to-end QoS data, we have used a cloud-based QoS service monitoring and 

collecting system which has been developed in our department at Ryerson University [100]. The system 

was developed using Apache platform and Java language. The collected data is stored in MySQL 

database. The system has a client application through which a user can submit her request for a cloud-

based service solution. We have conducted experiments to validate the two and the three dimensional 

QoS prediction process. In the two-dimensional-based process, each cloud composite service is composed 

of two component services: SaaS and IaaS. In the three-dimensional-based process, each cloud composite 

service is composed of three component services- SaaS, IaaS and DaaS. Accordingly, we have set two 

environments for the two cases.  

5.7.1 Experiments for the Three-Dimensional End-to-End QoS Prediction  

5.7.1.1      Experimental Setup 

Based on user’s request, a composite service was created from the three component services which 

represent three layers in cloud computing architecture (i.e. SaaS, IaaS and DaaS). The software services 

were developed based on data mining algorithms provided by Weka. The data services were developed to 

provide on demand access to different types of data which are downloaded from Weka. In our work, the 

main task of data services was to provide on demand access point to the data through local search process. 

The main task of SaaS services was to invoke the data services in order to access and process the data 

based on users’ functional requirements. In the proposed model, the cloud service composition is made of 

SaaS services, data services and infrastructure services. Figure 5.3 illustrates the experimental 

environment that we used to conduct the required experiments for our proposed model. In the 

experiments, the infrastructure services were represented by Amazon EC2 instances. They host the 

software and data services, and they were selected with different configurations and at different locations. 

To mimic real world scenarios, software and data services within a certain composite service were not 
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necessarily hosted in the same location. The system was designed to monitor and record data of five QoS 

properties: response time, throughput, latency, reliability and availability. 

In the experiments, for simplicity, we chose response time and throughput to evaluate our model and 

demonstrate its effectiveness. The response time measures the round trip time of a request sent by a user, 

who submits her information using the client application, plus the time it takes to receive the results. It 

includes transmission and service communication and processing time. The measurement unit is in 

seconds, and the tendency is low meaning the lower the value the better the service performance is. The  

 

 

 

 

 

 

throughput measures the number of requests (requests) transferred in a period of time (seconds). The 

measuring unit is r/sec, and the tendency is high meaning the higher the value the better the service 

performance is. We have selected 9 SaaS services for the experiment that offer three different functions. 

Each service function was implemented using different algorithms as shown in Table 5.1. We also used 9 

different virtual machines from 7 Amazon EC2 instances which represent IaaS services; their 

configurations are shown in Table 5.2.  We used 9 developed DaaS services that provide access to 9 data 

files from Weka with different ranges of sizes, as shown in Table 5.3. The selected locations of IaaS 

which was composed with SaaS and DaaS services are (US east N.Virginia, US west N. California, US 

west Oregon, EU Ireland, EU Frankfurt, Asia Pacific Singapore, Asia pacific Tokyo, Asia Pacific Sydney, 

and South America Sao Paulo). To add some complexity, we assumed that SaaS and DaaS services of a 

 

                         Figure 5.3: Experimental Environment. 
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composite service were not hosted in the same location. SaaS services (data mining services, in this 

experiment) invoked data services to access and process the required data according to users’ 

requirements. The response time and throughput values of 9 SaaS services composed with 9 IaaS services 

and 9 DaaS services were recorded in a 9 x 9 x 9 tensor. In the experiments, 100000 requests were sent by 

10 users from 10 different locations so that each user sent 10000 requests to each composite service. In 

order to simulate users’ locations, we used the virtual private network (VPN) technology. By configuring 

the VPN service, multiple VPN servers were created in different locations. So, using our client 

application, requests were sent from different locations around the world to be processed by different 

composite services. The users’ locations were selected in three regions (USA west, central Europe and 

Asia Pacific). In real world, users only invoke a few services. To make the service’s QoS tensor sparser, 

we only recorded a few response time and throughput values.  

 

 

 

 

 

 

 

 

 

 

 

 

        SaaS service Functionality 

Weka EM Clustering 

Weka Hierarchical Clustering 

Weka FarthestFirst Clustering 

Weka SimpleKMean Clustering 

Weka BFTree classification 

Weka LMTree classification 

Weka RandomForest classification 

Weka Apriori Associative rules 

Weka Tertius Associative rules 

 

Table 5.1: Data Mining SaaS Services. 

 

IaaS service  Compute Configuration  

(CPU cores; Memory GiB;    

Storage GB) 

Amazon t2.micro 1; 1; 15 

Amazon t2.small 1; 2; 15 

Amazon t2.medium 2; 4;15 

Amazon m3.large 2; 7.5; 32 

Amazon m3.xlarge 4; 15; 80 

Amazon c4.2xlarge 8; 15; 15 

Amazon c4.4xlarge 16; 30; 30 

 

Table 5.2: Configurations of Hosting IaaS Services. 

. 
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5.7.1.2     Evaluation  

To evaluate the accuracy of the proposed MCSSTF prediction model, we compared its accuracy in 

predicting unknown end-to-end response time and throughput values with other well-known prediction 

models. We carefully selected the compared methods to reflect different prediction approaches from basic 

to advanced algorithms. Below is a list of the selected prediction methods. All these methods can be used 

to predict unknown end-to-end QoS values of target composite services: 

MEAN: this method calculated the average QoS value of composite services. In this experiment, R is a 

three dimensional tensor of IaaS, SaaS and DaaS. MEAN does not handle multi-dimensional structure. 

Therefore, we computed the QoS average value of compositions of all SaaS and IaaS services with 

respect to one DaaS service.  

PCC: this method was used to calculate the similarity using the PCC technique on a two-dimensional 

matrix of users and services [64]. The PCC technique is not capable of predicting QoS values of cloud 

composite services of multiple components. Therefore, we used PCC on compositions of SaaS and IaaS 

services with respect to one DaaS service.  

Data files  Size in KB 

Hayes-roth_test.arff 7222 

Iris.arff 7486 

Lung-cancer.arff 7734 

glass.arff 17823 

hepatitis.arff 17135 

Spectf_train.arff 17169 

cmc.arff 33589 

Primary-tumor.arff 34090 

Credit-a.arff 34315 

 

Table 5.3: Data Set Accessed through Data Services. 
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IF (Internal Features-based Model): we proposed this method to predict end-to-end QoS values of cloud 

composite services by employing internal features in the similarity and the prediction computation 

processes [101]. In the experiments of this thesis, we used it to compute the similarity of cloud composite 

services and then we calculated the average values of QoS data of similar composite services to predict 

QoS values of target composite services. 

MF (Matrix Factorization-based Model): it is a common method for recommendation systems which is 

used to predict future values [62][67][71]. It is composed of a traditional regularization term of a matrix 

factorization model to compute predicted values through a learning process. The MF can only factorize a 

matrix of two parameters.  Therefore, in the experiments, we applied it on matrices of SaaS and IaaS with 

respect to one DaaS service to learn the latent features in order to predict end-to-end QoS values.  

IF-MF (Internal Feature Incorporated Matrix Factorization Model): we developed this method that 

calculates the internal features-based similarity of a matrix of SaaS and IaaS services. In this experiment, 

we computed the matrix factorization on a two- dimensional matrix of SaaS and IaaS service with respect 

to one DaaS. We built a local regularization term with internal features-based similar cloud composite 

services. The similarity regularization term is incorporated in the traditional matrix factorization model.  

PCC-MF (PCC Incorporated Matrix Factorization Model): this method was used to compute predicted 

values by integrating the similarity model using PCC into a matrix factorization model [69]. This method 

cannot handle the similarity and the prediction computation processes for our multi-dimensional 

prediction model. In our experiments, we applied it on matrices of SaaS and IaaS services with respect to 

one DaaS service.  

MCSSTF: we proposed our multi-dimensional cloud service similarity tensor factorization model and 

used it in this thesis to predict end-to-end QoS values of cloud composite services with multiple 

component services. It factorizes latent features of multiple matrices. It incorporates a new regularization 

term in the global learning process. The new term computes cloud composite service similarity using 
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services’ internal features and historical QoS data. In the experiments and for the sake of simplicity, we 

considered a tensor of three component services (SaaS, IaaS and DaaS). 

The above methods are evaluated by comparing The Mean Absolute Error (MAE) values. The MAE 

method is adopted to measure the prediction accuracy by computing the average absolute deviation of the 

predicted values from the actual data. The smaller MAE values indicate higher prediction accuracy. MAE 

is defined using the following Formula (5.32): 

                                                                            
   𝑹 𝒆𝒇𝒈  𝑹𝒆𝒇𝒈      

 
  ,                                  (5.32) 

where m, n, c denote the number of the SaaS, IaaS and DaaS components;      denotes the actual 

QoS value of a composite service;       denotes the predicted QoS value; L is the number of the predicted 

values. 

To mimic real world scenarios where only a few services are invoked, we randomly removed values 

from the tensor  . The remaining values are used for the learning purpose to predict the removed ones. In 

the experiment, we created four tensor densities as follows: 10%, 30%, 50% and 90%. The percentages 

represent the amount of QoS values we keep for learning purpose, and the removed parts are used for 

testing. We used multi-fold cross validation method on the observed QoS data to study the impact of the 

parameters used in our method. The following setting was used for the parameters:   =  =  =  = 0.01, 

l = 12, K = 20. Table 5.4 shows the MAE values of the compared prediction methods on response time 

and throughput. The observation is that our MCSSFT model outperforms all other models in terms of the 

accuracy of end-to-end QoS prediction results as it produces the lowest MAE values. This observation 

applies to all tensor density settings.  
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Impact of Tensor Density 

To study the impact of tensor density on the prediction accuracy of the selected prediction models, we 

used four density settings (10%, 30%, 50% and 90%). We observed that all models had lower MAE 

values as tensor density increases. This indicates that the sparse tensor provides more accurate results 

when more information is injected into them for the learning process. We observed that the MCSSTF 

model has a better performance than other models for all densities as more QoS data are provided along 

with the internal features information. With regard to the response time, Figure 5.4 shows that as the 

tensor density increases from 10% to 90%, our model has improved by 20% in terms of the prediction 

accuracy. Other models have improved by 4%, 5.5 %, 7%, 7.8 %, 8% and 10% respectively. With regard 

to the throughput, Figure 5.5 shows that our model has made an improvement of 11% compared to the 

other models which have made the improvements of 1.8%, 2.4 %, 2.8%, 3.4 %,3.8%, 5.5%, , respectively.  

Furthermore, we observed that our model’s improvement has doubled when the density increased from 

10% to 90% compared to the increase from 50% to 90% for other models. This indicates that accuracy 

result of a sparser tensor can improve significantly using our model when more information is provided.   

 

 

Prediction 

Approach  

Density=10% Density=30% Density=50% Density=90% 

RT TP RT TP  RT TP RT TP 

MEAN 2.103 11.125 2.084 11.118 2.062 11.103 2.029 10.933 

IF 2.004 11.108 1.977 11.088 1.947 11.037 1.892 10.850 

PCC 1.817 11.031 1.790 11.022 1.759 11.004 1.691 10.722 

MF 1.801 11.015 1.771 11.004 1.721 10.992 1.659 10.638 

IF-MF 1.769 11.002 1.740 10.989 1.702 10.967 1.631 10,593 

PCC-MF 1.742 10.980 1.711 10.959 1.666 10.928 1.581 10.487 

MCSSTF 1.579 10.871 1.521 10.825 1.411 10.727 1.269 9.701 

 

Table 5.4: Comparison of Different Prediction Approaches for the Three-

dimensional Prediction Model (Lower MAE Values Indicate Better Prediction Accuracy) 
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Impact of Latent Features   

Our prediction model has the capability to discover latent features that underlines the interactions 

between different types of cloud services. Latent features are very small number compared to the number 

of services involved in the prediction process. The parameter l determines the number of latent features 

used to factorize the tensor into SaaS specific, IaaS specific and DaaS specific matrices. In the 
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Figure 5.5: Impact of Tensor Density (Throughput). 
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Figure 5.4: Impact of Tensor Density (Response Time). 
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experiment, we vary the value of l from 1 to 20 with a step of 1 to study the number of latent features 

needed in the learning process of the proposed MCSSTF model. We used the following settings: top k 

composite services = 20, tensor density= 30% and 90%.  Figure 5.6 shows the response time results, and 

Figure 5.7 shows the throughput results. The MAE value decreases when the number of latent features 

(the value of l) increases. This indicates that including more latent data helps improve the prediction 

accuracy. We also observed that after a certain point the accuracy does not improve and remains stable 

around an average value of MAE. Increasing the latent features after a certain point not only has no effect 

on the prediction result but also creates computational overhead which affect the efficiency of the 

prediction process. Furthermore, we set l to a larger number and we found that the prediction accuracy 

degrades. This is due to overfitting problem which usually hurts the prediction quality. The tensor density 

plays an important role in determining the value of l needed to achieve a better prediction result. When 

the tensor is very sparse (density = 30%), a small number of latent features is enough for the factorization 

model of SaaS, IaaS and DaaS. In this experiment, the number of latent features required to obtain the 

lowest MAE value is 10. However, when enough data from the QoS tensor are available (density = 90%), 

more latent feature are required (i.e. the required number of latent features in the experiment is 12) to 

factorize the three cloud components. 

 

 

 

 

 

 

 
Figure 5.6: Impact of Number of Latent Features (Response Time). 
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Impact of K value 

The K value determines the number of similar cloud composite services that are employed in the 

MCSSTF model to predict end-to-end QoS of a target composite service. We investigated the impact of K 

using the following settings in the experiment: l = 10 and 12, tensor density = 30% and 90%. We vary the 

value of K from 1 to 30 with a step of 1. We observed that regardless of the tensor density, the MAE 

value decreases as the value of K increases until it reaches a certain point where the MAE value starts to 

increase indicating a degrading of the prediction accuracy.  This behavior can be explained as follows: on 

one hand, when K value is small a small number of composite services do not provide valuable 

information for the learning process. On the other hand, when K value is set too high, a large pool of data 

may introduce unwanted noise (dissimilar composite services) to the learning process. Figure 5.8 and 

Figure 5.9 show the impact of K value for the response time and throughput, respectively. For both 

density settings, the highest prediction accuracy is obtained when K is 20. 

 

 

Figure 5.19: Impact of Number of Latent Features (Throughput). 
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Figure 5.7: Impact of Number of Latent Features (Throughput). 
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Impact of Internal Features  

In a series of experiments, we evaluated the impact of the proposed internal features of both services 

and users on the similarity and the prediction computation processes. Our observation indicated the 

significant impacts of the internal features on response time and throughput which eventually affect the 

similarity and prediction results.  In order to conduct this type of experiments, we used the experimental 

settings presented in Section 5.7. Below, we present the experimental results for the impact of the 

proposed internal features: 
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Figure 5.8: Impact of K Value (Response Time). 
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1) IaaS configuration: to evaluate the impact of IaaS service configurations, we created 7 Amazon EC2 

instances which represent different IaaS services. Their different configurations are shown in Table 5.2. 

They all were created in the same location (US east- N. Virginia). The same SaaS service (i.e. EM 

clustering) was composed with the seven IaaS services to create seven composite services. A user located 

in (US east) sent 10000 requests to each composite service to process the same data file 

(weathernominal.arff). The latter was accessed using a developed data service which was hosted in the 

same locations of IaaS services. The response time and throughput values were calculated, and their 

average values were recorded. We observed that the composite services that have instances with advanced 

configurations (i.e. higher CPU core, memory size and storage and network) have much better 

performance than those that have instances with basic configurations. Figure 5.10 and Figure 5.11 show 

that the composite service with (c4.4xlarge) instance has the best response time (the lowest value) and 

throughput (the highest value), respectively, whereas the composite service with (t2.micro) has the worst 

response time (the highest value) and throughput (the lowest value). The other composite services were 

ranked in the order and they are listed in the two figures according to their instance configurations. This 

indicates that IaaS configurations with specifications of the memory, the CPU and other units such as 

network bandwidths have great impacts on their performance (response time and throughput). The impact 

of IaaS configurations on composite services’ performance eventually affects the similarity and the 

prediction results.  
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Figure 5.10: Impact of IaaS Configuration on Response Time. 
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2) IaaS location: to evaluate the impact of the hosting service’s locations, we used 7 instances in 7 

locations (one in US east, two in US west, two in Europe, and two in Asia Pacific). All instances have the 

same configuration (t2.micro). Then 7 composite services were created which include farthestFirst data 

mining algorithm as SaaS services. The SaaS services processed a data file (weathernominal.arff) which 

is accessed through a data service. A user located in Toronto sent 10000 requests to each composite 

service. The average values of the recorded response time and throughput values are recorded for each 

composite service. We observed that the response time and throughput of composite services located 

closer to the user are better than those located farther. The response time values of close-by services are 

lower compared to services hosted far from the user who sent requests, and the throughput values are 

higher. Figure 5.12 shows that the composite service located in US east N. Carolina responded to the user 

request (located in Toronto) faster than any other services, and Figure 5.13 shows that the composite 

service has also a higher throughput rate than the other composite services. Other observations from the 

two figures are as follows: i) services located in Asia Pacific responded slower than any other services 

and have lower throughput rate; ii) composite services of same location (or located within short distances) 

have similar response time values; iii) composite services located in Europe (CS4 and CS5) are similar in 

their response time and throughput with respect to requests sent from a user located in Toronto. 
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Figure 5.11: Impact of IaaS Configuration on Throughput. 
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Figure 5.12: Impact of IaaS Location on Response Time. 
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3) SaaS functions and algorithms: the experiment demonstrated the impact of SaaS functionality on 

services similarity and eventually the predicted response time and throughput values. We selected an 

Amazon EC2 instance (t2.micro) located in US west. There were eight composite services; each has 

different SaaS service processing the same data file (weathernominal.arff). The data file is accessed 

through a data service and it was processed by the eight SaaS services.  The SaaS services represent three 

different data mining algorithms (clustering, classification and association rules). A user located in 

Toronto sent 10000 requests to each of the 8 composite services. We observed that composite services 

that offer the same functionality have similar response time and throughput levels. Figure 5.14 and Figure 

5.15 show three different levels of response time and throughput values, respectively, that correspond to 

the three different SaaS functionalities. Also, in the two figures, we observed the different response time 

and throughput values of different implemented algorithms within a particular service functionality (e.g. 

EM, Hierarchical and FartherFirst clustering services).  

 

  

 

3 

3.05 

3.1 

3.15 

3.2 

3.25 

SaaS1 SaaS2 SaaS3 SaaS4 SaaS5 SaaS6 SaaS7 SaaS8 

response time 

SaaS services with different functions 

R
T 

(s
ec

) 

Figure 5.14: Impact of SaaS Functionality and Algorithms on Response Time. 
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4) User location: The experiment objective was to demonstrate the impact of users’ locations on the 

similarity measurements. Using the VPN service, we simulated 9 users’ locations in the three selected 

regions as follows: US west (San Francisco, Las Vegas and Los Angeles), central Europe (Munich, 

Zurich and Zlin), Asia Pacific (Tokyo, Hong Kong and Singapore) so there are 3 users within each 

defined region. In the experiment, we selected an IaaS instance (t2.micro) located in US west. A 

composition of Weka EM (SaaS) and Amazon EC2 t2.micro (IaaS) was created.  A data file 

(weathernumeric.arff) was accessed using a developed DaaS service and it was processed by the 

composite service (WekaEM, t2.micro) for all users. This ensures that all users have the same workload. 

As shown in Figure 5.16 and Figure 5.17, users in the same region observed similar response time and 

throughput levels, respectively, when invoking the composite service. However, users located across the 

regions observed different response time and throughput levels when invoking the composite service. 

Furthermore, users who are located in regions close to the hosting IaaS service observed better response 

time (lower values) and throughput (higher value) than those located farther.  For example, the users (U1, 

U2 and U3) who are located in US west observed better response time and throughput rates than other 

users since the composite service is hosted in US west. 
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5) Data size of DaaS services: In the experiment, we selected 9 composite services that have the same 

software service (i.e. EM clustering algorithm) and the same infrastructure service (i.e. Amazon EC2 

t2.micro instance). They are all located in US west region. To investigate the impact of the size of the data 

processed by the EM service, we chose 9 data services to access 9 data files which have different sizes 

and they all are located in the same location (i.e. US east). The 9 data services are clustered based on the 

Figure 5.16: Impact of User Location on Response Time. 
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Figure 5.17: Impact of User Location on Throughput. 
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sizes of the data they provide access to. A user located in Toronto region sent 10000 requests to each of 

the 9 composite services, and their end-to-end response time and throughput values are recorded in our 

database. Figure 5.18 and Figure 5.19 show the response time and throughput, respectively, of the three 

clusters with three ranges of data sizes. We observed that composite services that process data with very 

close sizes have similar end-to-end QoS values. However, the values across different clusters vary a lot. 

This clearly indicates that sizes of the data, processed by composite services which have similar setup 

(e.g. location and configuration), have a great impact on the QoS similarity of cloud composite services 

which eventually affect the prediction results. 
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Figure 5.18: Impact of Data Size on Response Time. 

Figure 5.19: Impact of Data Size on Throughput. 
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6) DaaS locations: In the experiment, a service composition of SaaS (i.e. EM clustering) and IaaS service 

(i.e. Amazon EC2 t2.micro instance) is created in US west. It processed 9 DaaS services which are 

created and hosted in 9 different locations of Amazon EC2 from where the service composition is located. 

They all provide access to the same data file (vote.arff- 40 KB) to be processed by the service 

composition.  A user located in Toronto region sent 10000 requests to each of the 9 composite services, 

and their end-to-end response time and throughput values are recorded in our database. As shown in 

Figure 5.20 and Figure 5.21, the composite services whose DaaS components are located in the same 

region, have similar end-to-end QoS values. However, end-to-end QoS values of composite services (of 

which DaaS services are located across different regions) distinctly vary. Moreover, composite services of 

which DaaS services located closer to US west (where SaaS service is located) have shorter response time 

and larger throughput values than those of which DaaS services are located in farther distances from the 

hosting locations of SaaS services. Our conclusion is that DaaS service’s hosting locations have a great 

impact on the measured response time and throughput values, and consequently locations affect the 

similarity and the prediction results. 
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Figure 5.20: Impact of Data Service Location on Response Time. 
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5.7.2  Experiments of the Two-Dimensional End-to-End QoS Prediction  

5.7.2.1   Experimental Setup 

The experiment environment of the two dimensional QoS prediction is similar to the one of the three 

dimensional model. However, cloud composite services are composed of only two component services 

(i.e. SaaS and IaaS). The data files are not provided as services; rather, they are uploaded to IaaS services 

to be processed by SaaS services at the same locations. This is a simple form of provisioning the data 

compared to a more realistic process which we presented in the three dimensional QoS prediction model. 

The response time and throughput values of 14 SaaS services composed with 14 IaaS are recorded in a 14 

x 14 matrix. Table 5.5 shows SaaS services (Weka-based data mining algorithms). The IaaS service 

instances shown in Table 5.2 are used for both two dimensional and three dimensional models. Similarly, 

100000 requests were sent by 10 users from 10 different locations so that each user sent 10000 requests to 

each composite service. VPN servers are created to simulate users’ locations in three different regions 

(USA west, central Europe and Asia Pacific). To make the service’s QoS tensor sparser, we only record a 

few response time and throughput values by adjusting the level of the matrix density.   
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Figure 5.21: Impact of Data Service Location on Throughput. 
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5.7.2.2      Evaluation  

We evaluate the accuracy of our proposed model by comparing its prediction results with other well-

known prediction approaches. Below is a list of the compared models: 

MEAN: this method calculates the overall average QoS values of invoked cloud composite services in a 

matrix of SaaS and IaaS services to predict unknown end-to-end QoS values. 

MF-Basic: this method is commonly used in the recommendation system to predict future values 

[62][67][71]. It applies a factorization technique on QoS values of invoked cloud composite services to 

predict unknown end-to-end QoS values. It factorizes two specific matrices (SaaS and IaaS) to learn latent 

features. Only a basic factorization term that learns global information is included for learning process. 

MF-IInt: (IaaS Internal Features Incorporated MF Model): we developed this method which is based on 

incorporating IaaS internal features-based similarity model in a matrix factorization process. The local 

information of similar composite services are generated based on only IaaS internal features, and they are 

SaaS service Functionality 

Weka EM Clustering 

Weka Hierarchical Clustering 

Weka FarthestFirst Clustering 

Weka SimpleKMean Clustering 

Weka Cobweb Clustering 

Weka Filter Clustering 

Weka DBScan Clustering 

Weka ADTree classification 

Weka BFTree classification 

Weka LMTree classification 

Weka REPTree classification 

Weka RandomForest classification 

Weka Apriori Associative rules 

Weka Tertius Associative rules 

 

Table 5.5: Composed SaaS Services (for Two-Dimensional Model). 
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incorporated in a global learning process to predict unknown end-to-end QoS values of cloud composite 

services. 

MF-SInt (SaaS Internal Features Incorporated MF Model): we developed this method is based on 

incorporating SaaS internal features-based similarity model in a matrix factorization process. The local 

information of similar composite services are generated based on only SaaS internal features, and they are 

incorporated in a global learning process to predict unknown end-to-end QoS values of cloud composite 

services. 

MF-Int: we developed this method which combines the two prediction approaches: MF-IInt and MF-SInt. 

The incorporated local factorization term is based on internal feature information of both SaaS and IaaS 

component services. 

MF-IPCC (IaaS PCC Incorporated MF Model): we developed this method which is based on 

incorporating IaaS correlation- based similarity model (using PCC technique) in a matrix factorization 

process. The local information of similar composite services are generated based on only QoS data of 

IaaS services, and they are incorporated in a global learning process to predict unknown end-to-end QoS 

values of cloud composite services. 

MF-SPCC (SaaS PCC Incorporated MF Model): we developed this method which is based on 

incorporating SaaS correlation- based similarity model (using PCC technique) in a matrix factorization 

process. The local information of similar composite services are generated based on only QoS data of 

SaaS services, and they are incorporated in a global learning process to predict unknown end-to-end QoS 

values of cloud composite services. 

MF-PCC: we developed this method which combines the two prediction approaches MF-IPCC and MF-

SPCC. The incorporated factorization term is based on QoS information of both SaaS and IaaS 

component services. 
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CSSMF: we proposed a Cloud Service Similarity Matrix Factorization model and used it in this thesis to 

predict unknown end-to-end QoS values of cloud composite services. It represents a two-dimensional 

model of our generalized model (MCSSTF). It is based on incorporating similar cloud composite services 

in regular matrix factorization process. The local information are generated by combining internal 

features-based similarity process with historical data-based similarity process of both SaaS and IaaS 

services. The local information are incorporated in the global learning process to learn latent features of 

the factorized matrices (SaaS and IaaS). 

The evaluation method is performed by computing the Mean Absolute Error (MAE). The MAE is 

calculated as follows: 

                                                                    
   𝑹 𝒆𝒇  𝑹𝒆𝒇    

 
  ,                                                          (5.33) 

where m and n denote the number of the SaaS and IaaS components;     denotes the actual QoS value of 

a composite service;      denotes the predicted QoS value; L is the number of the predicted values.  

 

 

 

 

 

 

 

 

 

Prediction 

Approach  

Density=10% Density=30% Density=50% Density=90% 

 RT TP  RT TP  RT TP  RT TP 

MEAN 2.349 12.356 2.341 12.334 2.319 12.316 2.289 12.254 

MF-Basic 1.655 11.611 1.642 11.579 1.628 11.48 1.598 11.364 

MF-IInt 1.442 11.547 1.433 11.508 1.415 11.389 1.369 11.225 

MF-SInt 1.449 11.573 1.439 11.529 1.425 11.407 1.386 11.276 

MF-Int 1.421 11.449 1.404 11.404 1.381 11.291 1.332 11.099 

MF-IPCC 1.299 11.348 1.274 11.239 1.240 11.093 1.191 10.941 

MF-SPCC 1.313 11.362 1.297 11.278 1.258 11.122 1.218 10.977 

MF-PCC 1.290 11.194 1.261 11.112 1.208 10.981 1,149 10.745 

CSSMF 1.198 10.920 1.150 10.769 1.062 10.508 0.990 10.171 

 

Table 5.6: Comparison of Different for the Two-dimensional Prediction Model 

                     (Lower MAE Values Indicate Better Prediction Accuracy. 
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We mimic a real scenario by considering a few service invocations, so we randomly removed values 

for the QoS matrix for testing. The remaining values are used for training purpose and predicting the 

removed ones. We created four densities of the QoS matrix: 10%, 30%, 50% and 90%. The percentages 

refer to the amount of the remaining data for the training. We used multi-fold cross validation method on 

the observed QoS data to study the impact of the parameters used in our method. We used the following 

setting for the parameters:   =  =  =  = 0.01, l = 9, top K composite services = 12. Table 5.6 shows the 

MAE values of the compared prediction methods using response time and throughput. From this table, we 

can observe that our CSSMT model outperforms all other models in terms of the accuracy of predicted 

end-to-end QoS values as it produces the lowest MAE values.  

The experiments demonstrated the impact of matrix density on the prediction accuracy of the 

compared prediction models including CSSMF model. We considered the density settings (10%, 30%, 

50% and 90%). Our observation indicated that the prediction accuracy of all prediction models has been 

improved as the QoS matrix becomes denser. With regards to the response time, Table 5.6 shows that 

CSSMF outperforms all other models in terms of the accuracy of the predicted values. It has 18% 

improvement compared to the other models which are (2.6%, 3.5%, 5%, 4.4%, 6.3%, 8.4%, 7.3% and 

11%, respectively). With regards to the throughput, it shows that CSSMF outperforms other models with 

7% in improvement in the prediction accuracy. The other models made the following improvements (1%, 

2.1%, 2.8%, 2.6%, 3.1%, 3.6%, 3.4% and 4%, respectively). These observations clearly indicated that 

using our model (CSSMF), the prediction accuracy of a sparser matrix can be greatly improved as more 

information (services internal features and QoS data) contribute towards the learning process of our 

model. 

5.8 Chapter Summary 

In this chapter, we tackled the problem of predicting unknown end-to-end QoS values of target cloud 

composite services for target users. The end-to-end QoS values are used during the selection process to 

select the best of functionally matching cloud composite services to end users. We proposed a novel 

similar cloud service incorporated tensor factorization model to predict unknown end-to-end QoS values. 
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The tensor factorizes the QoS data into three specific SaaS, IaaS and DaaS matrices and captures the 

relationships through latent features learning process. The global-based prediction process is improved by 

incorporating local QoS data from similar cloud composite services. We considered two types of 

information during the prediction process: historical QoS data and internal features of cloud component 

services and uses. We used these information to compute the similarities between the component services. 

We identified the nearest neighbors to a target cloud composite service using the similarity results. The 

neighbor component services represent similar cloud composite services. Then, we used QoS data of 

similar candidates along with global information in the tensor factorization process. Our tensor-based 

prediction model is extensible to consider n component services. We have conducted comprehensive 

experiments to validate our prediction approach. We evaluated the accuracy of our proposed model by 

comparing its performance with other well-known prediction model. We studied the impact of services’ 

and users’ internal features on the similarity and prediction computation processes. We also demonstrated 

the impact of considering vertical service composition (multi-layer cloud architecture) on the prediction 

accuracy of our model. Our model can easily accommodate different number of QoS properties and 

internal features.  
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Chapter 6 

Conclusions and Future Works 

6.1 Conclusions 

With the advent of cloud computing and the rapid growth of different service models provisioned by 

different cloud service providers, it has become highly challenging to select the best of functionally 

matching cloud services for end users. When end users query about particular services (e.g. a business 

software service) from a cloud service environment, a huge variety of functionally similar cloud services 

are available on the internet. We consider composing the discovered (functionally matching) cloud 

services with other collaborating cloud services (services which implement different computing models 

and are published at different cloud layers) in order to provision complete cloud service solutions to end 

users based on their requirements. 

In this thesis, we first proposed a framework for cloud service selection. We consider a three-step 

service selection process in the cloud. Upon receiving a request from an end user, the first step is to 

discover the required cloud services based on user’s functional requirements. Second, the discovered 

cloud services are vertically composed with other available cloud services (e.g. infrastructure, data, and 

database services) to be offered as complete solutions to the user. Third, the best cloud service 

composition candidates, among a large number of functionally matching service compositions obtained 

from the previous step, are selected which satisfy user’s QoS requirements. In vertical cloud service 

compositions, functional requirements can be satisfied by the required cloud services alone. However, 

QoS requirements must be satisfied using all involved component services in a cloud composite service. 

Therefore, in order to select and recommend the best composite services to end users, their QoS values 

must be end-to-end.  
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It is highly likely that end-to-end QoS values of many of functionally matching cloud service 

compositions are unknown. We believe that even cloud service compositions without known end-to-end 

QoS should be included in the selection process, and our objective was to offer more cloud-based service 

solution alternatives to end users that satisfy both their functional and QoS requirements. This approach 

can also provide equal opportunities of selection to all different cloud providers with published similar 

services. In this thesis, we addressed the problem of computing unknown end-to-end QoS values of 

vertically composed cloud services which functionally match users’ requirements. The computed values 

can then be used for the cloud service selection process based on how these values satisfy users’ QoS 

requirements. For our framework, we have proposed two models to solve the problem of computing the 

end-to-end QoS values. 

Our first proposed model deals with a cloud environment in which cloud service compositions are 

new, since no invocations have been made by end users and no prior history exists. To compute end-to-

end QoS values of cloud composite services in such environments, we proposed to map users’ QoS 

requirements to the required cloud services and then to other cloud services involved in the candidate 

cloud composite services. Then, QoS values offered by these mapped services are aggregated using some 

aggregation models to obtain end-to-end QoS values. We have designed three mapping rules that 

determine the way a specific QoS requirement (submitted by an end user) should be mapped across 

multiple cloud layers. We have conducted an experiment to evaluate the efficiency of our proposed 

mapping model. The experimental results showed that the time required to do the mapping is linearly 

increasing with the growth of the number of SaaS services we employed in the experiment. 

Our second proposed model deals with cloud environments in which registered cloud composite 

services have been invoked in the past by end users and thus historical QoS data are available. We have 

proposed to predict end-to-end QoS values of cloud composite services using two types of information: 1) 

historical QoS data which were recorded based on cloud composite services’ past invocations, 2) internal 

features associated with cloud services and end users which can be extracted from services’ WSDL files 
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and users’ profiles such as service location, configuration, functionality, data size and user location. We 

used the two types of information to measure the similarity between cloud composite services in order to 

obtain the similarity between two cloud composite services. By measuring the similarity, we were able to 

identify similar cloud composite services. We predicted the unknown end-to-end QoS values using a 

tensor factorization technique. We applied the factorization model on multi-component service tensor to 

learn latent features of multiple specific matrices which correspond to multiple component services of 

cloud composite services. The tensor factorization model aims at estimating the unknown end-to-end QoS 

values (a sparse tensor) through a learning process. We incorporated in the tensor factorization process, 

the similar cloud composite services which we have computed in a previous step. Incorporating local data 

of similar cloud composite services in the global learning of the tensor factorization process has improved 

the accuracy of the predicted values. Our QoS prediction model was generalized to consider n cloud 

component services in the tensor factorization process (a two-dimensional model is a special case of 

tensors which is called matrix factorization). 

We have conducted several experiments to validate our approach. In the experiments, we have 

considered two cases of our proposed QoS prediction model: 1) a two-dimensional tensor (matrix 

factorization) of two matrices of SaaS and IaaS component services; 2) a three-dimensional tensor of 

three cloud component services of SaaS, IaaS and DaaS. The objectives were to evaluate the prediction 

accuracy of our model compared to well-known prediction approaches, to study the impact of different 

settings and important parameters on the prediction results, to demonstrate the significance of considering 

vertical service compositions and to analyze the impact of our proposed internal features on the similarity 

and the prediction results. The experimental results showed that our QoS prediction model has 

outperformed the other prediction approaches considered in the evaluation process. These approaches 

could not handle multi-dimensional-based prediction process, so in order to evaluate their prediction 

performance we had to always deal with our problem as a two dimensional prediction problem and then 

we applied these approached multiple times. This way of processing the prediction was time consuming 

and not accurate enough compared to our approach. Our proposed multi-dimensional tensor factorization 
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model was capable of efficiently and accurately computing the predicted end-to-end QoS values. This 

clearly demonstrated the significance of considering vertical service composition process during the 

similarity and the prediction processes. 

 6.2 Future Work 

There are several research directions we plan to investigate as future work. 

A more important research direction is to build a QoS-based cloud service selection system as a core 

component of a cloud marketplace. Our framework and its two components (QoS mapping and 

aggregation, QoS prediction) can be integrated in the system. The role of our framework is to provide 

estimated en-to-end QoS values of those cloud composite service that have not been invoked before or 

they are new to users. With the end-to-end values, these services could be included during the selection 

process in the cloud marketplace.  

For the QoS mapping, we would like to investigate about using AI-based models to automatically 

map users’ QoS requirements across multiple cloud layers, and to handle our defined mapping rules 

intelligently. One promising approach is using semantic technology, specifically, OWL-based ontology 

which could be designed to facilitate the mapping process automatically.  

Another direction is to study other machine learning algorithms such as Gaussian Process Model and 

Convex methods in order to learn latent features of the tensor factorization process and find the local 

minimum for the objective function. The study objective is to investigate the efficiency and accuracy 

levels of these approaches. 

Further, other techniques can be evaluated for measuring the similarity based on the availability of 

services’ and users’ information. The recommendation methods such as content-based recommendation 

and knowledge-based recommendation techniques can be investigated for this purpose.  
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