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Object Segmentation Methods for Online Model Acquisition to Guide
Robotic Grasping

Dmitri Ignakov, Doctor of Philosophy, Aerospace Engineering, 2013
Ryerson University

A vision system is an integral component of many autonomous robots. It enables the
robot to perform essential tasks such as mapping, localization, or path planning. A
vision system also assists with guiding the robot’s grasping and manipulation tasks. As
an increased demand is placed on service robots to operate in uncontrolled environments,
advanced vision systems must be created that can function effectively in visually complex
and cluttered settings.

This thesis presents the development of segmentation algorithms to assist in online model
acquisition for guiding robotic manipulation tasks. Specifically, the focus is placed on
localizing door handles to assist in robotic door opening, and on acquiring partial object
models to guide robotic grasping.

First, a method for localizing a door handle of unknown geometry based on a proposed
3D segmentation method is presented. Following segmentation, localization is performed
by fitting a simple box model to the segmented handle. The proposed method functions
without requiring assumptions about the appearance of the handle or the door, and
without a geometric model of the handle.

Next, an object segmentation algorithm is developed, which combines multiple appear-
ance (intensity and texture) and geometric (depth and curvature) cues. The algorithm is
able to segment objects without utilizing any a priori appearance or geometric informa-
tion in visually complex and cluttered environments. The segmentation method is based
on the Conditional Random Fields (CRF) framework, and the graph cuts energy mini-
mization technique. A simple and efficient method for initializing the proposed algorithm
which overcomes graph cuts’ reliance on user interaction is also developed.

Finally, an improved segmentation algorithm is developed which incorporates a distance
metric learning (DML) step as a means of weighing various appearance and geometric
segmentation cues, allowing the method to better adapt to the available data. The
improved method also models the distribution of 3D points in space as a distribution of
algebraic distances from an ellipsoid fitted to the object, improving the method’s ability
to predict which points are likely to belong to the object or the background.

Experimental validation of all methods is performed. Each method is evaluated in a
realistic setting, utilizing scenarios of various complexities. Experimental results have
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demonstrated the effectiveness of the handle localization method, and the object seg-
mentation methods.
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CHAPTER 1

Introduction

1.1 Motivation

Service robots have already entered our lives. A number of commercial service robots are

available from companies such as iRobot to assist in household tasks including vacuuming,

cleaning the pool, or cleaning eavestroughs. These robots are simple, perform a single

function, do not possess complex sensing capabilities, and rely entirely on the user to

move from one workspace to the next.

It has long been desired to develop autonomous robots that are capable of performing

more complex tasks. Robots that could be considered as “assistants” and not “appli-

ances”, with the ability to understand commands, autonomously navigate and traverse

the environment and interact with objects. Robots with the capability to perform such

tasks in an uncontrolled and dynamic environment could have a vast number of applica-

tions in homes and offices, hospitals, and hazardous or dangerous environments [Reiser

et al., 2009; Jain and Kemp, 2010; Tsotsos et al., 1998; Rotenstein et al., 2007; Srinivasa

et al., 2010, 2012; Chung et al., 2007].

Performing complex tasks such as grasping objects requires sophisticated vision systems

to guide the robot’s actions. This is especially true in uncontrolled settings where the

appearance and geometry of the environment is unknown. The robot’s vision system

consists of hardware and software components. The hardware components can include

one or more 2D cameras as well as 3D sensors. The vision hardware acquires the raw

data that represents what a robot “sees”. The software components are what allows

the robot to perceive and analyze the world. The algorithms are what converts the
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raw pixel intensities, colour components, or coordinates of points in a point cloud to a

more meaningful and useful representation; enabling the robot to map the environment,

estimate its own motion and localize itself within the environment, avoid obstacles, detect

objects, and guide the grasping of known objects [Filliat and Meyer, 2003; Meyer and

Filliat, 2003; Kunchev et al., 2006; Bjorkman and Eklundh, 2006].

Despite a significant body of work, a number of key problems remain unaddressed, specif-

ically, the problem of visually localizing a door handle of unknown appearance and geom-

etry such that it can be opened with a mobile manipulator, and the problem of guiding

the grasping of previously unseen objects in a realistic setting.

1.1.1 Motivation for Door Handle Localization

Without the ability to open doors, the robot’s operating space and capabilities are lim-

ited. The robot is effectively trapped in its initial operating environment.

A service robot needs to be able to gain access to new workspaces. Assistant robots for

homes and offices are intended to alleviate some of the workload traditionally performed

by people. This implies that a user should not be required to assist the robot in moving

from one room to another. Even in situations where the robot is manually operated,

it may be undesirable to require the operator to manually control the robot to grasp

and manipulate the handle. For example, the Playbot robotic wheelchair [Tsotsos et al.,

1998; Rotenstein et al., 2007] is intended to provide assistance to disabled persons, who

may be unable to produce the fine motions required to manually guide the grasping or

manipulation of a door handle. For mobile robots to navigate seamlessly through human

environments, a method for localizing a door handle so that it can be manipulated by

the robot is required.
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1.1.2 Motivation for Online Model Acquisition

To perform a basic task, the robot must be able to grasp and manipulate objects. Even if

the robot has the ability to navigate and traverse its environment, without manipulation

capabilities the robot is limited to observational roles such as patrolling or mapping.

The literature on object grasping is vast and no attempt is made to review it here. It

is sufficient to say that when the pose (location and orientation) and at least a partial

model of the object are available, a robotic manipulator can be controlled to execute a

motion that will grasp the object (for example, Miller and Allen, 2004; Huebner et al.,

2009).

In parallel, if a model of the object is available, a number of methods exist for estimating

its pose [Lowe, 1987, 1991; Goddard, 1997; Rosenhahn, 2003; Srinivasa et al., 2010; Asfour

et al., 2008; Prats et al., 2010]. However, because service robots are meant to be deployed

in uncontrolled or unknown environments containing a large umber of items, it is unlikely

that a comprehensive database of object models would be available a priori. At the same

time, it is impractical to expect the user to scan all of the items they wish the robot to

interact with prior to its deployment.

An alternative approach is to construct a model of the object online [Hirano et al., 2005;

Wang et al., 2005; Yamazaki et al., 2006, 2008; Bone et al., 2008; Kuehnle et al., 2008;

Huebner and Kragic, 2008; Rusu et al., 2009a; Marton et al., 2009; Huebner et al., 2009;

Rusu et al., 2010]. In this case, the process of acquiring a full or partial model requires

the object to be segmented from the rest of the environment.

1.1.3 Segmentation as a Tool for Online Model Acquisition

Object segmentation can be used to separate the geometric structure of a target object

from the rest of the environment. It is then possible construct a full or partial model of

the object, which can be used to guide grasping or manipulation tasks.
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Recent advances allow for segmentation of objects using a combination of features such

as intensity, colour, and texture [Boykov and Jolly, 2001; Boykov and Funka-Lea, 2006;

Ilea and Whelan, 2011; Rother et al., 2004; Kim and Hong, 2009]. Notwithstanding these

efforts, image segmentation in uncontrolled or visually complex environments is still a

challenging task.

Figure 1.1: Examples of cluttered or visually complex environments.

Human environments are visually complex. Human environments are also cluttered (Fig-

ure 1.1). Objects are placed next to each other and on top of other objects. Many of them

share multiple appearance cues with other objects, or with the background. The appear-

ance and geometry of many common objects are chosen as much for aesthetic purposes as

they are for practical ones. The result is that objects are often bright and multicoloured

with many false internal edges and irregular geometry. Uncontrolled lighting conditions

create artificial edges and alter region intensities due to shadows and highlights. Light

sources change position and intensity based on the time of day, varying the appearance

of the environment further.

In certain cases, the environment can posses a consistent geometric structure. Knowl-

edge about the structure of the environment can significantly simplify the segmentation
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problem, allowing for a simple and effective method to be developed. However, the use

of such assumptions in the segmentation algorithm needs to be considered carefully; in-

corporating invalid assumption can have a detrimental effect on the performance of the

method.

The issues discussed above make development of efficient and autonomous object segmen-

tation algorithms very challenging. Nevertheless, segmentation methods that are able to

function effectively under such conditions are required to enable online acquisition of

object models.

1.2 Literature Review

Segmentation is the process of separating an image into two or more disjoint parts. The

goal is to separate the image into components that are more meaningful or useful than

the original image. This could mean simply reducing the image to a set of homogeneous

regions, or separating areas that would be considered as objects by a human observer.

In this work the focus is placed on the second definition, where a region in the image is

thought that would be considered as an object by a person.

This section begins with a review of literature on image segmentation. The discussion

is then focused on the specific problems that are examined in this thesis: door handle

localization, and segmentation for online object model acquisition. Due to the use of

multiple appearance and geometric features in the segmentation process, a review of

distance metric learning literature is also provided as distance metric learning allows for

an estimation of the relative significance of available segmentation features and their

combinations.
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1.2.1 Review of Object Segmentation Methods

Segmentation is commonly formulated as a thresholding, clustering, or optimization prob-

lem [Forsyth and Ponce, 2002; Szeliski, 2010]. These methods are used as a foundation

for many segmentation techniques developed for 3D model acquisition. However, specific

discussion regarding segmentation methods that incorporate 3D information is reserved

for later sections.

Thresholding

Thresholding is one of the earliest segmentation techniques Szeliski [2010]. It is sim-

ple, generally fast to compute, and performs well in simple or controlled environments.

Thresholding is commonly applied when the mean intensity of the object or objects of

interest is different from the mean intensity of the background.

Thresholding involves separating the image into two or more regions based on a set of

threshold values, and a set of image features, most commonly the intensity values of the

pixels. More formally, a pixel (u, v) with some feature f(u, v) is assigned to a region k

based on a threshold range [tk−1, tk), resulting in the segmented image S(u, v):

S(u, v) = k if tk−1 ≤ f(u, v) < tk (1.1)

Threshold values can be selected manually but this requires strong knowledge of the

appearance of the object(s) and the background. Alternatively, threshold values can be

calculated from image features. When a single set of thresholds is calculated for the

entire image, the techniques are referred to as global thresholding. When thresholds are

calculated locally at different image locations, the methods are referred to as local or

adaptive thresholding.
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A number of global thresholding schemes are presented in the literature, including meth-

ods based on the known area of the object in the image, based on peaks or valleys in

the feature histogram [Weszka, 1978; Rosenfeld and Torre, 1983], based on the curvature

of the smoothed histogram [Tsai, 1995], on inter- and intra-class variance [Otsu, 1975],

and methods based on histogram entropy [Kapur et al., 1985]. Image thresholding can

also be considered as a classification or model fitting problem [Kittler and Illingworth,

1986a; Cho et al., 1989]. These methods are used when no clear valleys exist in the image

feature histogram.

When the mean intensity changes across the image, it may not be possible to find a single

set of global thresholds that can perform effectively at all locations in the image. In such

situations it is more effective to calculate a set of local or adaptive thresholds whose

values depend on the position in the image [Nakagawa and Rosenfeld, 1979; Sauvola and

Pietikainen, 2000]. Adaptive methods generally perform better than global methods when

the mean of the feature being thresholded changes based on the location in the image,

for example when the mean intensity appears to change due to uneven illumination.

A drawback of thresholding methods is that spatial relationships between pixels are ig-

nored. The resulting regions are not guaranteed to be contiguous, or represent meaningful

objects. Thresholding methods are also sensitive to illumination effects such as shadows

and highlights. Smooth changes in shading from illumination can be addressed with

adaptive methods, however, sharp illumination changes can cause parts of the scene to

be incorrectly segmented.

It is interesting to note, that more sophisticated thresholding methods utilize model

fitting, distribution fitting, and mode seeking methods. Thresholding can be considered

a simple form of feature space clustering, where the feature space is constrained to be

one dimensional, and cluster membership is assigned based on the threshold values.
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Feature Space Clustering

Unsupervised segmentation can be formulated as a clustering problem. Each point in the

image is associated with a feature vector. The feature vector encodes properties that are

used for segmentation. These can include the intensity value at a pixel, colour, texture

features, and other local image features that can describe the pixel itself, or the local

image region surrounding it. The space used to represent these feature vectors is called

the feature space. Assuming that regions that correspond to meaningful parts of the

image exhibit similarity in their feature vectors, segmentation can be accomplished by

assigning clusters to dense regions of the feature space, and labelling each pixel according

to its cluster membership.

A number of clustering methods are used in image processing to perform segmentation.

K-means [Szeliski, 2010] is used when the number of clusters is known, or can be de-

termined. This method attempts to find K clusters such that the within-cluster sum of

square distances of each point to the cluster mean is minimized. This can also be consid-

ered as model fitting, since it is equivalent to fitting a spherical symmetric distribution

to the data. The K-medians algorithm is a variation of the K-means, where the method

attempts to minimize the within cluster distance between the points and the cluster’s

median. The K-means method is sensitive to initialization. In certain cases, even with

well separated clusters, the method can converge on an incorrect solution.

If the data is assumed to be normally distributed about the cluster means, a Gaussian

mixture model (GMM) can be fitted. Each data point is assigned to a cluster implicitly

as part of the fitting process [McKenna et al., 1999; Permuter et al., 2006]. The number of

mixture components can be set manually, or determined during the model fitting process.

If a parametric model for the distribution of the data cannot be assumed, non-parametric

methods can be used to directly search for dense regions of the feature space. The mean-

shift algorithm [Fukunaga and Hostetler, 1975; Cheng, 1995; Comaniciu and Meer, 2002]

is used for locating the maxima of a density function given discretely sampled data.
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Given an initial guess, the method uses a predefined kernel to calculate a weighted mean

of nearby points in feature space. The estimate of the mode is moved to the calculated

mean, and the process is repeated, resulting in the algorithm iteratively moving to the

nearest local mode of the distribution (for details see Appendix B). The kernel acts to

smooth the discretely sampled data. Spherical and Gaussian kernels are typically used.

The bandwidth of the kernel needs to be carefully chosen such that the desired peaks

can be detected, while the noise is removed. The algorithm can be repeated for each

point in the data, thus finding all the relevant modes and assigning each point to a

cluster. However, restarting the procedure for every data point can be computationally

slow. To increase computational performance, the algorithm is commonly initialized at a

number of randomly selected seed points. Once the modes of the distribution are found,

a separate method is used to determine cluster membership for all points [Comaniciu and

Meer, 2002].

Clustering methods operate directly in the feature space and share a lot of the draw-

backs of other global feature based methods such as histogram thresholding. The most

significant drawback is that these methods do not take into consideration the spatial

configuration of image pixels. This can result in clusters that are not connected in the

image. To achieve better results pixel locations have to either be explicitly included in

the feature vector, or a connected component search has to be performed following the

clustering operation to further split the clusters into contiguous regions.

Region-Based Methods

Region-based methods group pixels with similar characteristics by either growing ini-

tial seed regions outwards, splitting regions, or merging existing regions based on a

homogeneity constraint. A combination of the above operations can also be used in

a split-and-merge approach [Haralick and Shapiro, 1985].

Growing methods start at one or more seed pixels or regions. Initial seeds can be deter-

mined manually, or automatically. Initial seeds are expanded by including neighbouring
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pixels if they meet a homogeneity condition. The candidate pixel can be compared to

either its nearest neighbour in the region, to the original seed pixel, or to some region

property such as mean intensity.

The watershed segmentation method [Vincent and Soille, 1991; Beucher, 1992] can be

considered a form of region growing. The algorithm is an edge-based (local) technique

that seeks to label regions separated by high image gradients. The technique draws its

name from the process of flooding of catchment basins. The segmentation is performed

by first calculating the gradient magnitude of the original grayscale image. The gradient

image can be considered as a height map with regions of high gradients corresponding

to ridges, and regions of low gradient corresponding to valleys. A flooding operation is

then performed starting at low gradient magnitude regions. When two regions meets,

the ridge is labelled, and the flooding process continues until only a single basin remains.

When regions are considered, the growing method is referred to as a “merging” method,

but the principle is the same. Regions are merged based on a homogeneity condition,

such as mean intensity, maximum intensity difference, or a statistical comparison of the

distributions in the two regions [Haralick and Shapiro, 1985].

In contrast to growing methods, splitting methods are initialized to contain the whole

image. The image is then split into smaller predetermined regions if a homogeneity

condition across the splitting boundary is not met. Similarly to merging methods these

conditions can be simple, such as the maximum intensity difference of the two regions to

be separated, or can involve more complex statistics. Splitting methods can be combined

with merging methods. This is done to merge adjacent regions that originated from

two different parent regions. Because these regions originate from different parents, the

regions will not be compared against each other if a merging step is not performed.

The advantage of this class of methods in comparison to feature space clustering tech-

niques is that they incorporate spatial relationships between pixels by grouping and

splitting directly in the image, which implicitly takes into consideration spatial connec-

tivity of segments. The segmentation automatically results in connected components in
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the image. Region-based methods can often produce better or more meaningful results

than feature spaced clustering methods [Shapiro and Stockman, 2001]. Similarly to fea-

ture space clustering methods, any image feature can be used, assuming a similarity or

homogeneity constraints can be defined.

Region-based methods also exhibit a number of drawbacks. The output of region growing

methods heavily depend on the initial seed points used. If a bad initialization is provided,

the algorithm may not converge to any meaningful solution. The method also does not

possess a way of detecting or correcting cases where seed regions span across object

boundaries. Finally, if the region homogeneity constraints are set too strictly the results

will appear over segmented. If they are set too loosely, the resulting image will be under

segmented.

In particular, the watershed algorithm is prone to over-segmentation, since it generates

a unique region for every local minimum in the gradient magnitude image. For these

reasons, the algorithm is often used as a preprocessing step to over segment an image

into small clusters of similar pixels, referred to as super pixels, which are used instead of

individual image pixels in more advanced methods [Szeliski, 2010].

Deformable Contour Models: Snakes and Level Sets

Deformable contour models (DCMs) represent the segmentation either explicitly using a

parametric curve, or implicitly as a level set of an embedding function. The segmentation

is obtained by minimizing an energy function whose minimum corresponds to an optimal

segmentation with respect to the constraints encoded in the energy. The constraints

encoded in the energy function are designed to attract the contour to image features

such as high intensity gradients, to enforce region homogeneity constraints, to control

the shape of the contour enforcing smoothness, or to encourage the shape to match a

known prior.

The original DCM introduced by Kass et al. [1988] minimized an energy function con-

sisting of two terms: internal and external. The internal energy of the curve consisted of
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an elasticity term and a curvature term. The elasticity term penalized the total length

of the boundary, while the curvature term penalized sharp edges acting as a smoothness

constraint. This also caused the contour to shrink into a circle, and then to disappear

entirely if no image features were used. The external energy term was set to the negative

inverse of the intensity gradient and was used to attract the contour to image edges. The

initial snake models suffered from sensitivity to initialization, and an inability to detect

distant gradients. It also relied exclusively on local edge information, and was not able

to enforce any global homogeneity in the regions.

The contour’s inability to detect distant image edges was addressed by modifying the

algorithm to utilize edge distances [Cohen and Cohen, 1993] or gradient vector flows [Xu

and Prince, 1998] in the external energy term. Statistical priors on the shape of the

snake were used by Cootes et al. [1995] to control the final shape of the contour when

the rough shape of the object was known.

An inherent limitation of the deformable contour method is caused by the explicit repre-

sentation of the contour. The snake is not able to cross itself, or change topology. This

was addressed by the introduction of the level set method as a means to implicitly rep-

resent the evolving boundary. Its first application to image segmentation was presented

by Malladi et al. [1995]. The level set segmentation approach represents the contour as

a zero level set of a higher dimensional embedding (or level set) function or surface. The

contour evolves with a speed which depends both on the shape of the contour, and on

the image features. Because the representation is implicit, the model is able to adapt its

topology to represent more complex contours.

The initial level set methods performed segmentation utilizing only intensity gradients

[Caselles et al., 1997]. The method has since been expanded to include both region

and boundary constraints, as well as other features such as texture, colour, and motion

[Cremers et al., 2007].
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Graph-Based Clustering

Graph-based clustering segmentation methods model the image as a graph. Pixels or

super pixels are considered as the nodes linked to their adjacent nodes through a neigh-

bourhood system. It is common to define the neighbourhood system to only connect

immediately adjacent nodes, for example the adjacent 4 or 8 pixels in an image, or super

pixels that share a common boundary. The weight of the edges connecting neighbouring

nodes are set based on a similarity (sometimes referred to as affinity) measure. The

similarity measure can be defined for any set of feature that can be locally assigned to

describe the nodes. These features can include intensity, colour, or texture. An addi-

tional distance term can be added to weaken the affinity between nodes that are farther

apart in the image.

Groups of nodes that should form a cluster are expected to be linked together by edges

with high weights. Different regions are expected to be linked either by very few edges,

or by edges with low weights.

Wu and Leahy [1993] performed segmentation by finding a minimum cost cut on such a

graph. A cut is defined as a subset of edges that, when removed, completely partition the

nodes of the induced graph into two disjoint subsets corresponding to image segments.

The cost of the cut is the sum of the weights of all removed edges. The minimum cost

cut was based on a formulation of a maximum flow problem. To find a minimum cut,

the graph was augmented with a source and sink nodes that were iteratively attached to

every pair of nodes in the image graph. The max flow problem was solved for each pair,

and the maximum flow solution was chosen.

The min-cut algorithm of Wu and Leahy [1993] favoured small regions. This is due to

the fact that the cost of separating a large number of weakly connected nodes is often

higher than the cost of separating just a few nodes with higher weights. In an effort

to address this issue, Wang and Siskind [2001], and Shi and Malik [2000] proposed to

normalize the cost of the cut. Wang and Siskind [2001] normalized the cut by the total
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length of the boundary, while Shi and Malik [2000] normalized the cut by the total edge

weight connections to all of the nodes in the graph.

A different graph–based clustering approach was presented by Felzenszwalb and Hutten-

locher [2004]. The segmentation was based on an assumption that for any two regions,

the variation across the region should be larger than the variation within the region. This

results in a segmentation that is defined by the authors as neither too fine nor too coarse.

Graph-based clustering has an advantage over feature space clustering methods because

the spatial relationship between pixels are implicitly encoded through the neighbourhood

system. This results in segments that are always contiguous.

Probabilistic Graphical Models

Similarly to the graph based clustering methods, the image is modelled as a graph where

the nodes correspond to pixels or super pixels connected by a neighbourhood system.

The super pixels are small collections of pixels commonly resulting from a previous seg-

mentation procedure, such as watershed. A set of hidden random variables is introduced.

In the context of image segmentation, the state of the random variables is used to assign

region labels to the nodes. The segmentation problem can then be represented as the

estimation of the maximum a posteriori (MAP) probability P (f |d) of the region labels

f conditioned on the observed data d. Using Bayse’s rule, it can be written as:

f ∗ = arg max
f

P (f |d) =
P (d|f)P (f)

P (d)
(1.2)

where f ∗ is the most likely set of labels. It is important to note that when the problem

involves MAP estimation, the denominator does not depend on the labels and is constant.

By disregarding the data probability term P (d) in the denominator, the problem can be

re-expressed as the estimation of the mode of the joint distribution on the set of data

and labels:
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f ∗ = arg max
f

P (f ,d) = P (d|f)P (f) (1.3)

P (d|f) is the likelihood function representing how well the observed data corresponds

with the assigned labels. It can depend on the intensity of the nodes, colour, texture, or

any local set of features. A Markov random field (MRF) is used as a model for the state

prior P (f) to encode a smoothness constraint.

An issue with this formulation is that a smoothness prior on labels results in penalizing

some function of the total length of the boundary. It is often more useful to encode

a smoothness constraint that depends not just on the labels, but also on the image

features. If the features at two nodes are very different, assigning different labels to

the nodes should be penalized less. Such a constraint can be difficult to factorize into

likelihood and prior terms.

An alternative formulation called the conditional random field (CRF) [Lafferty et al.,

2001] does not require the factorization to be made explicit. It models the posterior

distribution directly as an MRF, and allows for complex dependencies of the labels on

the data to be written directly in the posterior distribution.

Initial applications of probabilistic graphical models in image processing involved binary

[Greig et al., 1989], and grayscale [Geman and Geman, 1984] image restoration. Later

works by Boykov et al. [Boykov and Jolly, 2001; Boykov and Funka-Lea, 2006] demon-

strated how a minimum cost cut on an appropriately constructed image graph can be

used to exactly solve a MAP MRF problem for certain classes of MRFs and CRFs. This

method, called graph cuts, was initially demonstrated on grayscale images, but has since

been expanded to perform segmentation using other features including colour [Rother

et al., 2004], and colour and texture [Kim and Hong, 2009].

The main limitation of these methods is that they require initialization, which is com-

monly provided by a user, as marks on the image indicating regions which should belong

to the object or the background.
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1.2.2 Review of Door Handle Localization Methods

Without the ability to open doors, a robot’s operating environment is limited. To address

this issue, a number of researchers have focused on developing methods and algorithms

for robotic door opening, including both control strategies [Liu et al., 2008, 2009], as

well as vision-based approaches to guide the physical actions of the robot [Andreopoulos

and Tsotsos, 2008; Kragic et al., 2002; Chung et al., 2007, 2009; Rusu et al., 2009b;

Klingbeil et al., 2008, 2010]. To allow for effective door handle localization the method

must be able to estimate the pose (position and orientation) of a handle. Performing door

handle localization using visual or 3D geometric information is a challenging task as the

appearance of both the door and that handle, as well as the geometry of the handle, can

change significantly from one scene to another, even within the same home or building.

Andreopoulos and Tsotsos [2008] present a computer controlled wheelchair (Playbot)

capable of opening a door equipped with a lever–type handle. Playbot locates the door

and navigates to it such that the door handle is entirely visible to the robot’s camera

system. Door handle candidates are found using a feature-based algorithm, and the final

candidate is selected using a template-matching approach in hue-saturation-value (HSV)

space. Once a candidate is found, its pose is estimated by fitting a line to the handle

through a feature-rich region such as the key slot. While applying a forward force, the

robot’s arm executes a circular arc through the calculated contact point pushing the door

open. The approach developed by Andreopoulos and Tsotsos [2008] is only applicable to

doors equipped with lever–type handles that open away from the robot.

Kragic et al. [2002] modelled the handle in image space as a rectangular region and a

crossed set of lines. After the vision system detects that a door handle is visible, the

model is used to localize the handle in the image plane. The end-effector is then controlled

to move toward the handle while keeping it in the middle of the image. When the door

handle reaches a certain size in the image plane, a blind grasp is executed. The 2D model

used can only represent lever-type handles.
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Chung et al. [2007, 2009] continued the work started by Rhee et al. [2004]. The knob’s

approximate position is identified using a single camera, and the end-effector is then used

to repeatedly touch the knob. The final shape is estimated by fitting a circle to the data

using a voting algorithm.

A method is presented by Rusu et al. [2009b] for localizing the position of a door and

handle using a 3D point cloud obtained with a laser scanner. The door handle is detected

by examining the geometric structure and the surface reflectance of the subset of points

where the handle is expected to be located on the door.

Klingbeil et al. [2008, 2010] used a learning algorithm to locate all possible door handle

candidates in view after the robot has navigated to a position in front of the door. 3D

data is then extracted from the most likely location to contain the handle. Principal

component analysis (PCA) is used to estimate the shape of the surface. Locations of the

visual features are used to estimate the position of the handle and to plan a grasp.

Model-based pose estimation methods can also be used to provide an accurate location of

the handle [Petrovskaya and Ng, 2007]. These methods exploit a 3D model of the object

and attempt to match edges, interest points, or image gradients between the scene and

the model. They usually produce accurate results, but require object models [Goddard,

1997; Lowe, 1987, 1991; Prats et al., 2010; Rosenhahn, 2003; Srinivasa et al., 2010].

Summary

The main limitation of currently available methods is their inability to localize different

types of handles. While some methods constrain the problem to lever- or knob-type

handles explicitly, others are limited to a specific type of handle by the model used to

represent it.
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1.2.3 Object Segmentation in Online Model Acquisition for Grasp-

ing

Following the review of image segmentation techniques in the previous section, the dis-

cussion is focused on methods that are developed for model acquisition used to guide

robotic manipulation tasks. Methods that include depth information, but may not be

used for robotic applications directly, are also discussed.

In addition to acquired images, mobile robots have access to depth information. Using

stereo cameras or other 3D sensors, they are able to perceive not just the projection of

the world onto a 2D plane, but also its metric 3D structure. This has the potential to

remove ambiguities in images, and can enable successful object segmentation in visually

complex environments.

Most of the segmentation methods used for robotic grasping build on the base of existing

image segmentation techniques. For this reason, the following discussion is separated

into sections corresponding to the basic segmentation techniques used as a foundation

for the methods being discussed.

Dominant Plane and Model Fitting

Methods in this category function by fitting geometric models directly to the 3D data as

part of the segmentation algorithm. While other segmentation techniques can be used

later in the process, these methods rely on an assumption that a subset of the 3D data

fits one or more geometric models, and it is always assumed that the object rests on a

planar surface, often corresponding to a table or other supporting surface.

The algorithms first detect the dominant plane in the scene. Once the dominant plane

is detected, points that belong to it are removed from further processing. The remaining

points are then clustered into objects. The clustering is performed either by fitting
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geometric primitives such as boxes or cylinders [Marton et al., 2009], by a 3D region

growing algorithm [Rusu et al., 2009a], or using mean shift in 2.5D image-disparity space

[Rasolzadeh et al., 2010]. To be able to segment an object resting on top of another

object with a planar top, Rusu et al. [2009a] repeat the segmentation process again for

each detected cluster.

In addition to the assumption that the objects rest on a planar surface, it is implicitly

assumed by Rusu et al. [2009a] and Rasolzadeh et al. [2010] that the objects are separated

in space. Without further processing steps, these techniques cannot be used in cluttered

environments when the objects touch each other.

Feature Space Clustering

Since clustering techniques do not limit the type of information included in the feature

vector, they can be applied with little modification to segmentation scenarios where

appearance and 3D data is available.

Harville et al. [2001] use Gaussian mixture models to calculate background and fore-

ground models using a colour and depth feature vector. Segmentation is done by as-

signing each pixel to the closest model. Bleiweiss and Werman [2009] use a mean shift

algorithm to segment a single target from a static background using colour and depth.

The main limitation of these methods is the way depth is incorporated into the segmen-

tation. Because depth is used directly as part of the feature vector, segmentation at

points where the object meets its supporting surface may fail if the object’s appearance

is similar to that of the supporting surface.

Graph-Based Clustering

Similarly to feature space clustering techniques, graph-based clustering methods can be

applied to segmentation problems where appearance and geometric data is available with
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little modification. The only requirement is a suitable definition of similarity between

adjacent graph vertices that appropriately incorporates the multi-modal data.

Cigla and Alatan [2009] use colour, depth, and motion cues. The colour image is initially

over-segmented into super pixels, which are then clustered using a graph-based algorithm.

Hirano et al. [2005] use mean shift to pre-segment a colour image into super pixels,

which are then clustered based on curvature using the method proposed by [Shi and

Malik, 2000]. The above methods perform segmentation in separate stages for colour and

geometry. When appearance and geometric features are used separately, the relationship

between the features is not fully exploited. Additionally, any under segmentation in the

first step will be propagated to the final solution because further clustering can only

combine the initial super pixels.

Rao et al. [2010] and Strom et al. [2010] present graph-based segmentation algorithms

based on the work of Felzenszwalb and Huttenlocher [2004]. Rao et al. [2010] perform the

segmentation using colour and depth, however the relative weight between the colour and

depth features is determined off-line, and is not adaptive. In addition, depth does not

provide segmentation cues in regions where surfaces meet smoothly. The segmentation

method presented by Strom et al. [2010] uses a combination of colour and curvature.

The graph is constructed based on a mesh derived from a 3D point cloud of the scene.

The meshing process automatically removes edges from far away vertices, however the

distance between vertices is not directly used for segmentation. As opposed to combining

colour and curvature into a single weight, the segmentation has to satisfy two independent

uniformity conditions: one for colour, and one for curvature. While this allows for the

threshold to adapt uniquely to the two different features, the interrelationship between

the features is not used.

MRF and CRF Based Methods

Following the work on segmentation and Markov random fields by Boykov et al. [Boykov

and Jolly, 2001; Boykov and Funka-Lea, 2006; Boykov et al., 1998], several segmentation
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methods combining appearance and geometric cues based on random field models have

been reported [Bjorkman and Eklundh, 2006; Bjorkman and Kragic, 2010a,b; Franke,

2011; Johnson-Roberson et al., 2010].

Bjorkman and Eklundh [2006] use stereo and disparity to segment objects from the back-

ground. The image is initially over-segmented into super pixels. The robot’s attention

system is used to fixate the camera system on a region corresponding to the object of

interest. Object’s model properties are initialized using this region. Graph cuts is then

used to segment the object with super pixels acting as nodes in the graph. Since su-

per pixels are utilized as the basis for segmentation, initial under-segmentation errors

will be propagated to the final solution. Furthermore, disparity cannot be used as a

segmentation cue in regions where the object meets a surface smoothly.

This issue is addressed by Bjorkman and Kragic [2010a,b] by assuming that the object

rests on a flat surface. The segmentation is modelled as a labelling problem with three

labels: object, surface, and background. The algorithm continuously improves the seg-

mentation over a sequence of images. However, because only a single dominant surface

is modelled, this method would encounter difficulties when segmenting objects that do

not rest on a planar surface, or if one object rests on top of another object with a similar

appearance.

Franke [2011] proposes an extension of the graph cuts method that uses depth data from

a time of flight camera to initialize region models used for a graph cuts-based colour

segmentation algorithm. In this approach, 3D data is used for initialization only and not

for segmentation.

Johnson-Roberson et al. [2010] construct the graph based on a 3D mesh. The region

term depends only on the colour model, and the boundary term is a colour difference

divided by the Euclidean distance between vertices. No other geometric cues are used

for region or boundary terms. While this can result in a significant improvement near

object boundaries where a depth discontinuity is present, it does not help to distinguish

boundaries at locations where an object smoothly meets a surface or another object.
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Additionally, the relative importance of the depth cue is not taken into consideration.

Two methods are provided to autonomously initialize the algorithm. The first method

detects objects based on their distance from the dominant plane in the scene, colour

and normal direction. The second method generates object seeds using image saliency

techniques proposed by Rasolzadeh et al. [2010].

Summary

Segmentation methods that use 3D information can be categorized broadly into methods

based entirely on 3D data, commonly in the form of point clouds; and methods that

combine appearance with 3D information.

Methods that utilize only 3D information have to make strong assumptions about the

geometry of the scene. These techniques often require that objects rest on a planar

surface, or be separated in space. Without further processing steps (for example, Rusu

et al. [2009a]) these techniques cannot be used in the presence of clutter when the objects

touch each other, or when some objects rest on top of others.

Approaches that combine appearance and geometric information do so by introducing 3D

features such as depth, 3D position, or curvature into existing clustering or segmentation

frameworks. The use of depth, motion, or position information in combination with

appearance can results in an improved ability to identify which region in the image should

belong to the object, and increase segmentation performance near object boundaries

where a depth discontinuity is present.

However, depth cannot be used to detect boundaries at locations where an object meets

a surface or another object. For this reason, most methods are only effective in unclut-

tered environments where objects are separated in space, and when the appearance of

the objects differs from the surface they are placed on. To mitigate this limitation Bjork-

man and Kragic [2010a,b] introduced a dominant plane model which enables effective

segmentation of objects from their supporting surfaces. Nevertheless, current methods
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are not capable of separating objects of similar appearance that are in contact with one

another.

Depending on the appearance and geometry of the scene, some cues may be more signif-

icant for detecting object boundaries, and for separating an object from the background.

Currently, when appearance and geometric features are combined, the relative signifi-

cance of the various cues is either not considered, or it is assumed to be constant.

1.2.4 Distance Metric Learning

When multiple appearance and geometric cues are used for segmentation, it becomes

important to consider which of the available cues the algorithm should pay attention to,

and which cues should be disregarded. As stated in the previous section, current methods

that combine appearance and geometric features do not examine the relative significance

of available feature combinations.

Distance metric learning theory provides a means of learning a similarity or distance

function from input data [Yang and Jin, 2006]. Provided with sets of similar and dissim-

ilar data points, also referred to as must-link and cannot-link constraints respectively,

a distance function can be estimated such that the distance between the points in the

similar set is minimized, and the distance between the points in the dissimilar set is max-

imized. Utilizing a distance metric learned from data has been demonstrate to improve

the performance of clustering and classification algorithms [Wang et al., 2006; Sobieran-

ski et al., 2009, 2011; Xiang et al., 2008]. The application of distance metric learning to

image segmentation has recently been examined by several authors [Wang et al., 2006;

Xiang et al., 2008; Jia and Zhang, 2008; Sobieranski et al., 2009, 2011; Batra et al., 2010,

2011; Protiere and Sapiro, 2007].

Wang et al. [2006] present a graph based clustering method called Linear Neighbourhood

Propagation. The method assumes that each point of data can be reconstructed as a lin-

ear combination of its neighbours. For each data point, the linear reconstruction weights
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are calculated such that the difference between the measured data and reconstructed data

is minimized. These weights are used as a measure of similarity between adjacent data

points. Given a subset of labelled points, the weights are used to propagate the labels

through the unlabelled data. The application of the clustering method is demonstrated

on object recognition, and on supervised colour image segmentation problems.

Protiere and Sapiro [2007] present a segmentation algorithm based on a learned Geodesic

distance. The Geodesic distance is determined based on the estimated probability density

functions of user labelled regions. The probability that a pixel belongs to each region

is then estimated as the ratio of Geodesic distances from the pixel to the region under

consideration compared to the total distance from the pixel to all of the regions.

Xiang et al. [2008] present a method for learning a Mahalanobis distance from must-link

and cannot-link constraints. The distance metric is learned by maximizing the ratio

of must-link to cannot-link distances. The distance is used in a K-nearest neighbour

classifier to perform clustering, interactive colour image segmentation, and face pose

estimation.

A colour image segmentation method is presented by Jia and Zhang [2008]. A distance

metric learned from partially labelled data is used to estimate edge costs for a graph

based clustering algorithm. The method uses an Expectation Maximization strategy

similar to the method presented by Rother et al. [2004], where the segmentation and the

distance function are estimated iteratively. An initial estimate of the distance function is

obtained from user input using linear discriminant analysis. The algorithm then iterates

between segmentation using the current estimate of the distance function, and estimating

the distance function holding the segmentation constant. The distance is estimated using

gradient descent with respect to the segmentation cost function which guarantees that

the cost will decrease with every iteration. The use of a learned distance is shown to

improve segmentation accuracy compared to segmentation with a Euclidean distance.

Sobieranski et al. [2009, 2011] present a region based colour image segmentation algorithm

based on a learned Polynomial Mahalanobis Distance. The distance is learned from
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similar points only, and does not utilize points from different label classes. The learned

distance is shown to improve segmentation accuracy when compared to colour space

specific distance metrics, and when compared to the regular Mahalanobis Distance.

Summary

Distance metric learning can be used to estimate the relative significance of segmentation

cues, however, the application of distance metric learning method to image segmentation

has been limited to segmentation of colour images. Additionally, to the best of the

author’s knowledge, with the exception of the work presented by Batra et al. [Batra

et al., 2010, 2011], the use of distance metric learning in a segmentation method based

on probabilistic graphical models is not explored in the literature, and it has not been

applied to segmentation methods that combine appearance and geometric data. While

Batra et al. [Batra et al., 2010, 2011] mention the use of distance metric learning, their

work is focused on simultaneous co-segmentation of multiple colour images, and the

effects of using distance metric learning as part of the segmentation algorithm are not

discussed.

1.3 Problem Statement

1.3.1 Segmentation for Door Handle Localization

The problem of door handle localization is defined as that of estimating the geometric

shape, size, and orientation (pose) of a door handle. To accomplish this, the 3D structure

corresponding to the handle must be separated from the door, so that a model of the

handle can be constructed. Figure 1.2 shows an example of this problem where an image

of the observed scene (Figure 1.2(a)), and the final detected handle (Figure 1.2(b)) are
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Figure 1.2: Door handle localization. (a) the image of the scene. (b) detected door
handle shown over the image as a red box.

presented. The set of technical challenges that must be addressed to accomplish the

above stated goals can be summarized in the following categories:

Unknown geometry of the handle. If a robot needs to navigate effectively in hu-

man environments, it must be able to open doors equipped with different types of

handles. It must be able to operate both knob and lever type handles, and not

get confused by geometric variations of each type. For this reason, the developed

method must not make assumptions about the geometry of the door handle which

is to be segmented and localized.

Unknown appearance of the handle and the door. Handles and doors can have

different appearances. Even in a single home, or office it is not uncommon to

have doors that are of different colour or texture, and handles of different types

and appearances. More importantly, if the robot is to be deployed in unknown

buildings, it would not be possible for the appearance of handles and doors to be

known a priori.
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1.3.2 Object Segmentation for Model Acquisition to Guide

Robotic Grasping

(a)
(b)

Figure 1.3: Object segmentation. (a) grayscale image of the scene. (b) recon-
structed point cloud, with the segmented object highlighted in red.

Given a 2D image of the scene and its corresponding depth map, the goal is to separate

the 3D structure of the object to be grasped from other objects in the scene and from

the environment. Specifically, focus is placed on the segmentation of relatively small and

geometrically convex objects, which can be manipulated by a human with one hand.

The segmented 3D structure of the object can then be used to plan and execute a grasp,

while avoiding collisions with the environment. The process is demonstrated in Figure

1.3 where a partial 3D model of a multimeter is acquired by segmentation. For this task

to be performed successfully the following challenges need to be overcome:

Visually complex environment. A large number of objects and surfaces in human en-

vironments are multicoloured and multitextured. When objects are placed in close

proximity, it becomes difficult to distinguish object boundaries visually. Addition-

ally, uncontrolled and varying lighting conditions create artificial edges, shadows

and highlights complicating the problem further.

Geometrically complex environment. A large number of differently shaped objects

27



Chapter 1. Introduction

makes the environment complex from a geometric perspective. The complexity

increases in cluttered environment when objects are in contact with one another,

or when objects rest on top of other objects. Such situations can invalidate even

common assumptions that an object rests on a flat surface.

Unknown appearance and geometry of the object and the background. Due to

the large number of objects the robot may have to interact with, the visual and

geometric complexity of the environment, and because the robot may be deployed

in unknown locations, no appearance or geometric models of the object or the

background are assumed to be available.

Integration of available segmentation features. When multiple segmentation fea-

tures (cues) such as colour and depth are used simultaneously, the relative signifi-

cance of these cues needs to be determined. This issue has to be addressed for the

segmentation algorithm to be able to adapt to various scenes.

1.4 Contributions

3D Segmentation for Door Handle Localization (Chapter 2)

A method for localizing a door handle based on a 3D segmentation method, and an

analysis of the geometric structure of the door and handle environment is presented. As

opposed to detecting the handle, it is shown how commonalities in the geometry of the

environment where the handle is mounted can be used to segment all parts of the structure

except the door handle. The segmentation is performed by detecting the dominant plane

in the scene, which corresponds to the door. Points are then projected onto the plane’s

normal. The projected points form clusters, with each cluster corresponding to one

or more elements in the scene. To ensure that unique elements are detected, clusters

are separated into connected components in the image. Background elements are then
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removed by eliminating components that pass vertically through the field of view of the

camera. The largest remaining element is taken as the door handle. The localization

is then performed by fitting a bounding box around the door handle. The simple box

model efficiently provides the necessary information to guide the grasping of the handle.

The method is experimentally shown to be able to segment and localize door handles of

multiple geometries and appearances with no prior information about their appearance

or geometry.

Object Segmentation Using a Combination of Appearance and

3D Geometric Features (Chapter 3)

A method for segmenting objects in cluttered environments is developed. The proposed

method is based on the probabilistic conditional random fields (CRF) framework [Lafferty

et al., 2001] and the graph cut energy minimization technique [Boykov and Jolly, 2001;

Boykov and Funka-Lea, 2006]. To enable robust performance in visually complex and

cluttered environment, multiple appearance and geometric cues are utilized. A method to

autonomously initialize the algorithm based on closed contours of depth edges and high

curvature edges is also presented. The algorithm takes as inputs a colour or monochrome

image of a scene, and a corresponding depth map. Secondary features such as texture and

curvature are calculated from the inputs. The scene is modelled as a graph with pixels

acting as nodes, and edges connecting adjacent pixels in an 8-connected neighbourhood

system. Following object detection, an objects is selected as the target. For the target

object, region and background models, as well as a covariance matrix used to weigh the

similarity between adjacent pixels are constructed using the appearance and geometric

features in the object and background seed regions. Segmentation is then performed using

graph cuts, with graph edge weights set using the available appearance and geometric

data, the object and background models, and the covariance matrix. The method is

validated experimentally by examining its performance on a number of scenes of varying

complexities.
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Distance Metric Learning for Object Segmentation (Chapter 4)

An improved segmentation algorithm is developed which incorporates distance metric

learning (DML) [Yang and Jin, 2006] to estimate a distance function on multiple appear-

ance and geometric features. The distance function is estimated such that it separates the

points that belong to the object seed region from points that belong to the background

by a unit margin. The learned distance function is then used to weight the relative signif-

icance of various segmentation cues. The improved segmentation algorithm is initialized

by providing a single point on a target object. Points are assigned to object and back-

ground seed regions based on their Euclidean distance from the initially provided point.

The method then operates in an iterative matter, alternating between estimating object

and background models and learning the distance function, and performing segmenta-

tion. In contrast to the method presented in Chapter 3, the improved method estimates

the weights using a combination of similarity and dissimilarity constraints. This allows it

to better determine the ability of available features to separate the object from the back-

ground. As an additional contribution, a model for incorporating depth into the region

model is presented. The model is based on distributions of algebraic distances between

3D points and an ellipsoid fitted to the object seed points using least squares. The model

is incorporated into the segmentation algorithm to improve its ability to localize objects,

and to remove the need to add hard constraints to object seed regions.

1.5 Outline

This chapter acts as an introduction, presenting the motivation for the work carried out

in this thesis. It provides a review of relevant literature, presents the problem statements,

and states the contributions of this work. Chapter 2 presents the development of a 3D

segmentation algorithm to enable door handle localization. The design of a segmentation

algorithm for acquiring object models to guide robotic grasping of unknown objects is

presented in Chapter 3. An improved segmentation method incorporating distance metric
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learning and an ellipsoidal object model is developed in Chapter 4. In Chapter 5 the

accomplishments of this work are summarized and the direction for future research is

discussed.
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CHAPTER 2

3D Segmentation for Door Handle Lo-

calization

Door opening is a key requirement for autonomous robotic operation in human envi-

ronments. For this to be possible, a method is needed to guide robotic grasping of the

door handle prior to the robot being able to manipulate it. In this chapter, a method

for localizing the door handle based on a 3D segmentation method which utilizes the

geometry of the background structure is proposed.

The chapter is organized as follows. Section 2.1 presents an overview of the proposed

algorithm, and describes the geometry of the problem. Section 2.2 describes the method

used to reconstruct 3D data from optical flow. Section 2.3 presents the method used to

segment and then localize the door handle. Section 2.4 presents experimental validation

of the proposed method. Concluding remarks are given in Section 2.5.

2.1 Algorithm Overview

In this section, an overview of the proposed algorithm, any assumptions made, and a

brief description of major calculation steps are provided.

The presented approach utilizes the common structure of the door-handle environment.

While the geometry and appearance of the handle may vary, the geometry of the sup-

porting structures (consisting of the door, walls, columns and door frames) is consistent.

These structures, together with the door handle, will be referred to as the elements in
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the scene. By detecting and segmenting the background elements, it becomes possible

to isolate and localize the door handle. This is in contrast to most published methods,

which attempt to localize the handle directly, and as result often require models that

restrict their applicability to a specific class of handles. The approach presented here

does not require any knowledge of the handle’s appearance or geometry, allowing it to

be applicable to any type or door and handle assuming the 3D structure of the scene can

be reconstructed. Following segmentation, a simple geometric model can be constructed

to guide the grasping of the handle by a mobile robot.

An assumption is made that the mobile robot observing a door and handle scene is

already positioned in front of the door, and the handle is visible in the camera’s field

of view (FOV). This assumption is justifiable for several reasons. First, a number of

approaches have been presented that enable a mobile robot to position itself in front of

a door, such that the door handle would be visible to the camera [Andreopoulos and

Tsotsos, 2008; Klingbeil et al., 2008]. Second, the system under consideration utilizes

an end-effector mounted camera which can be re-positioned to obtain a more favourable

view of the handle. This re-positioning procedure could be performed by the operator if

the robot is manually controlled, or autonomously (e.g. Kragic et al., 2002).

The proposed algorithm operates in several steps which are shown in Figure 2.1. First,

optical flow is used to extract 3D information and generate a point cloud of the scene.

Next, door handle segmentation is performed in several stages. A random sample con-

sensus (RANSAC) algorithm [Fischler and Bolles, 1981] is used to find a plane that best

fits the points corresponding to the door in the point cloud. All of the points are pro-

jected onto the normal to this plane, and then separated into clusters using a mean shift

algorithm [Fukunaga and Hostetler, 1975; Cheng, 1995; Comaniciu and Meer, 2002]. A

brief description of the mean shift algorithm is provided in Appendix B. A region with

a high density of points is considered a cluster, and any point within that region is said

to belong to that cluster. To ensure that the clusters represent contiguous region in the

image, the clusters are further separated into connected components in the image. A

connected component is formed by a group of pixels that are all adjacent to each other

34



2.1. Algorithm Overview

3D
R
ec
on
st
ru
ct
io
n

S
eg
m
en
ta
ti
on

L
oc
al
iz
at
io
n

Im
ag

e
se

q
u
en

ce

3D
p

oi
n
tc

lo
u
d

re
co

n
st

ru
c-

ti
on

u
si

n
g

op
ti

ca
l

fl
ow

D
o
or

p
la

n
e

es
ti

m
at

io
n

M
ea

n
sh

if
t

cl
u
st

er
in

g
of

p
oi

n
ts

p
ro

je
ct

ed
on

to
th

e
d
o
or

’s
n
or

m
al

S
ep

ar
at

io
n

of
cl

u
st

er
s

in
to

co
n
n
ec

te
d

co
m

p
on

en
ts

R
em

ov
al

of
b
ac

k
-

gr
ou

n
d

el
em

en
ts

F
it

ti
n
g

of
a

b
ox

m
o
d
el

F
ig

u
re

2.
1:

S
eq

u
en

ce
of

p
ro

ce
ss

in
g

st
ep

s
in

th
e

p
ro

p
os

ed
al

go
ri

th
m

.

35



Chapter 2. 3D Segmentation for Door Handle Localization

vertically, horizontally, or diagonally. The door, and any other structural elements are

removed by detecting component that extend vertically past the FOV of the camera. The

largest component that does not vertically extend to the top and bottom edges of the

image is selected as the door handle. All other points are discarded. Finally, a bound-

ing box is fitted around the set of handle points along their principal components. The

bounding box is aligned along the largest principal component of the handle point cloud,

and its top face is aligned to be parallel with the door plane.

The box efficiently provides the necessary information for the mobile manipulator to grasp

the handle enclosed in it. Door opening can then be performed using the strategy reported

by Liu et al. [2008, 2009]. By segmenting the handle, and constructing the model online,

the algorithm presented here allows the robot to localize a handle of arbitrary shape and

appearance, while not requiring a large library of door handle models. Additionally, this

procedure utilizes only a single end-effector mounted camera.

2.2 3D Data Acquisition

This section describes the process used to construct the point cloud of the scene (see

Cyganek and Siebert [2009]). The reconstructed point cloud is then used in the segmen-

tation of the door handle, and the construction of the handle box model.

The vision system used is a single camera mounted on the end-effector of the robot. The

camera is positioned to take several images of the door handle. These images are used

in pairs, such that optical flow can be used with known position and orientation of the

camera at each frame in order to recover a dense depth map of the scene.

Figure 2.2 shows position vectors pC and pB of a point in space with respect to the

camera reference frame C and the robot body reference frame B. The frame C is located

at cB with respect to the robot body frame B. The rotation matrix from frame C to
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Figure 2.2: Coordinate frames associated with camera and robot body.

frame B is denoted as RBC . The vector q = [u, v]T denotes the projection of the point

pC = [xC , yC , zC ]T onto the image plane in frame C:

q =
f

zC
[xC , yC ]T (2.1)

where f is the focal length of the camera lens. The motion field q̇ is the motion of points

in the scene as observed in the image plane. Given a sequence of images, the motion

field q̇ can be estimated using optical flow, and the depth of each pixel in the image can

be recovered. From Equation (2.1), q is the projection of a point p when the camera

reference frame C is located at cB. Let q′ = q+q̇ be the estimated projection of the same

point captured when the camera frame C ′ is at position c′B. If the rotation between the

two cameras isRCC′ , and the relative position of the cameras is tC = RT
BC(c′B−cB), then

the location of the point pC can be determined by finding the point of closest approach

between the two rays created by the points [qT , f ]T , [q′T , f ]T , and the camera centres
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c and c′. Let r = αv be the ray projected through the centre of the camera c and

the point on the image plane v = [qT , f ]T . Let the second ray be r′ = tC + βv′ where

v′ = RCC′ [q
′T , f ]T . The point at which the distance between the two rays is minimized

can be found as (see Cyganek and Siebert [2009]):

αv − βv′ + γ(v × v′) = tC (2.2)

When the rays v and v′ are not parallel, the parameters α, β, and γ in Equation (2.2)

can be determined as:

[α, β, γ]T = (ATA)−1AT tC (2.3)

where

A = [v,v′, (v × v′)] (2.4)

The position of pC can then be calculated as:

pC = αv + (β/2)(v × v′) (2.5)

Only the depth value from each point pC is used.

The optical flow algorithm used for 3D reconstruction is based on the approach outlined

in Zach et al. [2007]. This algorithm uses variational methods to calculate the optical flow

between two image frames and was chosen for the present algorithm because of its proven

performance [Baker et al., 2007, 2009], and because it can be implemented in real-time

on modern graphics cards. For a demonstration of the accuracy of 3D reconstruction
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Figure 2.3: The central frame of the image sequence (a), with the corresponding
filtered depth map (b). Several frames of the image sequence (c), and their asso-
ciated unfiltered depth maps (d) are also shown. A portion of a wall protruding
forward from the plane of the door can be seen on the right-hand side of the images.

using the chosen optical flow algorithm see Appendix D. For details of implementation,

see Zach et al. [2007].

The final depth estimate is obtained by applying a median filter to a 5 × 5 × Nmaps

window around each pixel, where Nmaps is the number of available depth maps. The

median filter is used to smooth the depth maps while preserving edges, and to remove
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(a) (b) (c)

Figure 2.4: Reconstructed point cloud (a), with the dominant plane (b), and the
door handle bounding box (c) shown.

individual pixel outliers. Figure 2.3(a) shows one of the images used in the experiment.

The final filtered depth map is shown in Figure 2.3(b). Several images of the sequence

used for 3D reconstruction are shown in Figure 2.3(c). One image in each direction of

the center is shown. Depth maps obtained from these images are shown in Figure 2.3(d).

The position of each pixel in the camera frame is calculated using the filtered depth map.

As a final step, the points are transformed into the robot body reference frame B, and

the point cloud {pB} is obtained as:

pB = cB +RBCpC (2.6)

Figure 2.4(a) shows the point cloud {pB} obtained from the experimental images (Figure

2.3).

2.3 Handle Segmentation and Localization

The current section describes the process of segmenting and localizing the door handle.

This task is accomplished by detecting and removing all background elements, leaving

the door handle as the only significant element in the scene.
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Figure 2.5: Geometry of the door in 3D space (a), and in the horizontal plane of
the robot body reference frame (b).

The door is expected to be the largest element in the view. Due to its shape it is detected

by finding the dominant plane in the scene. The plane of the door is found by projecting

the entire point cloud onto a horizontal plane (in our case the x-y plane of the robot

body reference frame B), and then finding a line that best fits the projected point cloud

using the RANSAC algorithm [Fischler and Bolles, 1981]. The calculation is performed

in 2D to ensure that the resulting plane is vertical in the robot body frame. This is

shown in Figure 2.5 where the door in 3D (Figure 2.5(a)) can be seen to form a line in

the horizontal plane (Figure 2.5(b)).

The RANSAC is a method that attempts to find a set of model parameters to maximize

the number of points that are considered inliers with respect to the model. Let {pH} be

the set of points in the horizontal plane of the robot body reference frame. The model

to be found consists of a point on the best fit line pl and a vector perpendicular to the

line, called the normal n̂l that maximize the number of points within a distance t of the

line which are considered inliers:
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max
pl,n̂l

∑
pk∈{pH}

δ(|(pk − pl)T n̂l| < t) (2.7)

where δ(·) is a function which is equal to one if the condition is true, and zero otherwise.

The threshold t was set to 1cm based on experimental observations of the noise present

in the point clouds, and based on the geometry of a typical door and handle scene.

The RANSAC procedure consists of iteratively choosing two points pa, pb ∈ {pH}. One

of the points is taken as the point on the line pl = pa. The normal is estimated as a

vector perpendicular to the ray connecting the two points:

n =

 0 −1

−1 0

 (pb − pa) (2.8)

The vector n is normalized as a last step in the model calculation n̂ = n/|n|. Once the

model is obtained Equation (2.7) is evaluated to determine the number of inliers that

support the current model. The procedure is iterated, and the model with the largest

number of inliers is chosen. The final model is fitted using least squares to the set of

inlier points only.

The final normal vector is estimated using a least squares fitting procedure on the set of

inlier points. Let {pI} be the set of inlier points obtained using the RANSAC procedure.

The covariance matrix of the set of inlier points can be calculated as:

M =
1

|{pI}|
∑

pk∈{pI}

pkp
T
k − p̄I p̄TI (2.9)

where |{pI}| denotes the number of points in the set, and p̄I is the centroid:
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p̄I =
1

|{pI}|
∑

pk∈{pI}

pk (2.10)

The normal vector to a line that best fits these points is the eigenvector corresponding

to the smallest eigenvalue of the covariance matrix M .

Inlier points
Outlier points
Least squares

RANSAC + least squares

Figure 2.6: Comparison of best fit lines generated by the least squares method, and
the RANSAC algorithm followed by least squares on the set of inlier points.

The RANSAC algorithm is used for this stage of the method because of its ability to deal

with a large number of outliers in the data. Given that the door handle points and any

part of the wall offset from the door are considered outliers, and since these points are

expected to be distributed asymmetrically about the centroid of the point cloud, a least

squares algorithm may return an incorrect estimate (Figure 2.6). The RANSAC algo-

rithm performs much better under these conditions. Details of the RANSAC algorithm

are provided in Appendix A.
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Figure 2.4(b) shows a calculated door plane overlaid onto the point cloud of the door

handle scene. Note that all of the important elements in the scene, including the handle

and any other structural element, will form clusters at specific distances from the surface

of the door. By clustering the points according to their projection in the direction of the

plane’s normal the various elements in the scene can be identified.
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Figure 2.7: Histogram of points projected onto the normal of the door. The large
peak (A) corresponds to points that lie in the door plane, while the smaller peaks
correspond to points from a protruding portion of a wall (B), and the door handle
(C).

Projecting the point cloud onto the normal vector of the door plane results in a set of

one dimensional data. A histogram of points projected onto the normal of the door

plane is shown in Figure 2.7. The values on the horizontal axis of the histogram are

negative because of the orientation of door’s normal vector with respect to the robot’s

body frame. Several clusters are expected to be present in the projected data, including

a large cluster corresponding to the door, and a smaller cluster corresponding to the

door handle. Additionally, other clusters may be present which would correspond to any

other extruding element in the camera’s FOV, such as an extruding portion of a wall. To
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2.3. Handle Segmentation and Localization

identify these clusters, the mean shift algorithm is used [Fukunaga and Hostetler, 1975;

Cheng, 1995].

The mean shift algorithm is an iterative mode seeking method. If the space of the

one dimensional data resulting from projecting the point cloud into the door’s normal

is considered as a feature space, the mean shift algorithm allows for locating locally

dense regions of the feature space, or clusters. Temporarily, let {xi} be the set of point

projections onto the door’s normal. Mean shift clustering is performed by moving each

point toward a locally denser region. Starting with an estimate of a cluster center yt at

some iteration t the estimate is iteratively moved toward the weighted mean of points

surrounding it. The weights are determined by the kernel function. A Gaussian kernel

is used resulting in the following update rule for the cluster center:

yt+1 =

∑
xi
exp

(
(yt−xi)2

h2

)
xi∑

xi
exp

(
(yt−xi)2

h2

) (2.11)

In the above equation, h is called the bandwidth of the kernel. It defines the region and

weight of points that contribute to the estimate of the new cluster center. A value of

h = 1cm is used. The process can be initialized at each point. Points which converge

to a cluster center close to each other are assigned to the same cluster. Preforming this

procedure for each point in the set can be slow. For this reason, a multi-start approach is

used. An initial set of 1000 points evenly spaced through {xi} is chosen, and mean shift

is used to determine the cluster centers for these initial points. Any point in between one

of the initial points and its cluster center is also assigned to the same cluster. This allows

for most of the points to be assigned to a cluster efficiently. The mean shift algorithm is

then applied to all remaining points individually. Additional information regarding the

mean shift algorithm is provided in Appendix B. If only a single cluster is found following

the mean shift procedure, then it is concluded that the handle is indistinguishable from

the door based on the available 3D data.

It is possible that several features were initially grouped together into a single cluster,

45



Chapter 2. 3D Segmentation for Door Handle Localization

either because the bandwidth of the mean shift kernel is too large, or because these

objects are at the same distance away from the door and naturally form a cluster. An

example of this scenario would be the handle and the extruding portion of the wall shown

in Figure 2.3 and Figure 2.4. To address this issue and to ensure that the clusters repre-

sent contiguous elements in the image, the clusters are further separated into connected

components (see Ritter and Wilson [2001]). The purpose of clustering the points and

separating them into connected components is not to detect the handle, but to remove

the points that belong to the door and any other structural elements. While RANSAC

is able to detect a subset of points that belong to the door, it is unable to identify any

of the other structural element. Additionally, any noisy points that may have been part

of the door but fell outside of the threshold value would not be identified by RANSAC.

Structural elements extend from the floor to at least the top of the door, and pass ver-

tically through the field of view of the camera. Any component that vertically passes

through the image, simultaneously touching the top and bottom edges of the screen is

considered as part of the background structure, and removed. This is achieved by deter-

mining whether any component contains pixels corresponding to the top and bottom rows

of the image; these components are removed. Points belonging to the largest remaining

component are labelled as the handle points {phB}.

As a final step, the handle is localized by fitting a bounding box to the handle points. The

pose of the bounding box is calculated by determining the largest principal component

of the handle point cloud {phB} when projected onto the plane of the door. The points

in {phB} are orthographically projected onto the door by representing them in a new

coordinate system D, resulting in a 2D set of points {phD}. This reference frame has

the first axis as the cross product of the up-vector [0, 0, 1]Tand the door’s normal n̂ =

[n̂1, n̂2, n̂3]T , and the second axis as the up-vector

phD =

−n̂2 n̂1 0

0 0 1

phB (2.12)
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The centroid p̄hD of the 2D handle set {phD} is

p̄hD =
1

|{phD}|
∑

pk∈{phD}

pk (2.13)

The 2× 2 covariance matrix of {phD} can be calculated as

M =
1

|{phD}|
∑

pk∈{phD}

pkp
T
k − p̄hD(p̄hD)T (2.14)

The principal component vectors eD,1 and eD,2 of the 2D handle set are the eigenvectors

corresponding to the eigenvalues, λ1 > λ2, of the covariance matrix M . The principal

component vectors are transformed back into the robot body frame B by augmenting

each 2D vector with a zero in the 3rd component, and rotating the vector into the B

reference frame

eB =


−n̂2 0

n̂1 0

0 1

 eD (2.15)

After these vectors are transformed back to the B reference frame, a bounding box is

constructed such that its long axis is aligned with the largest principal component eB,1,

and its top face is aligned with the normal direction of the door n̂. The box is scaled

such that it encompasses all of the points in the handle set (Figure 2.4(c)).
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2.4 Experimental Validation

2.4.1 Experimental Setup

Experimental validation was performed using a 5-axis robotic arm which can move the

camera mounted on its end-effector in 5-DOFs (Figure 2.8). The scene was captured

5-Axis robotic platform

Doors used for 
experimental 
validation

End-effector mounted 
camera (Basler A601f)

Figure 2.8: Experimental set up.

with a Basler A601f camera, with a resolution of 656× 491 pixels. Seven sample handles

ranging from brushed metal, to specular and reflective were used. An example of a

featureless, reflective knob-type handle is shown in Figure 2.9(a). Examples of brushed

metal, lever-type handles are shown in Figure 2.9(b), and Figure 2.9(c). The handle in

Figure 2.9(c) has a distinct feature in the form of a key hole on the front surface of the
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(c)

Figure 2.9: Examples of knob (a), and lever (b) and (c) type door handles. Handles
shown in (a) and (b) are considered featureless. The handle showin in (c) has a
lock feature on the front surface. A strongly textured door is shown in (a). A door
with visible but not strong texture is shown in (b). A door with almost no texture
is shown in (c).

handle. Three types of doors were used in the experiment: one with a strong wooden

texture (Figure 2.9(a)), one with a light texture resulting from monochrome paint on

wood grain (Figure 2.9(b)), and a featureless door with a smooth monochrome painted

surface (Figure 2.9(c)). This was done to clearly demonstrate the effective range of the

algorithm, where it fails and where it succeeds. A series of images were taken of each

door handle attached to each of the doors under normal indoor lighting conditions. The

door and handle were positioned approximately 0.5m from the camera. Encoders on the

arm were used to gather position data of each joint. This data was used to calculate the

pose of the camera mounted on the end-effector at the time each image was taken.

All steps of the algorithm were executed on a computer with an Intel Q9550 processor,

with 8 GB of memory. With the exception of the optical flow method, all the steps

of the algorithm were implemented in Matlab. Specifically, evaluation of the method’s

computational performance was performed in Matlab 8.1 (release R2013a). A summary

of the method’s computational performance is shown in Table 2.1. The table shows

the mean and maximum time required for the algorithm to execute, as well as the time

required to execute each step of the algorithm. The standard deviation associated with

the mean execution time is also shown.
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Time Required (s)

Algorithm Step Mean σ Maximum

Optical flow for 16 images 307.788 3.494 318.604

Depth map calculation 523.302 5.452 534.497

Point cloud construction 36.036 9.042 50.141

Plane estimation (RANSAC) 0.051 0.002 0.057

Mean shift clustering 6.367 0.409 7.11

Connected components search 0.027 4.6×10−4 0.028

Bounding box fitting 1.6×10−5 9.2×10−6 4.9×10−5

Combined algorithm 873.574 6.776 889.346

Table 2.1: Computational performance of the door handle segmentation and local-
ization algorithm.

2.4.2 Experimental Results

An example of one of the experimental images, and its corresponding filtered depth

map can be seen in Figure 2.3(a) and Figure 2.3(a) respectively. The 3D point cloud

reconstruction of the scene is shown in Figure 2.4(a). Images in Figure 2.10 show the

bounding box projected onto the front and top views of each handle. Figure 2.11 shows

two instances where the door handle had to be localized while a part of it was outside

of the camera’s field of view. Table 2.3 presents a summary of the most common errors

observed in the shape and position of the bounding box. The types of errors, and their

abbreviations are described in Table 2.2.

The most commonly encountered bounding box errors was when the box did not fully

encompass the volume occupied by the door handle (error types F and S). While one

case was observed where this occurred at the side of the handle (Figures 2.10(f)), in all

other cases the handle protruded through the front face of the bounding box.

This defect occurred frequently with flat handles (Figures 2.10(k), and 2.10(r)) and spher-
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Error Type Abbreviation

Bounding box is larger than the handle L

Handle protrudes through the front of the bounding box F

Handle protrudes through the side of the bounding box S

Bounding box is misaligned with the door plane M

Table 2.2: Common error types, and their abbreviations.

ical knobs (Figures 2.10(p), and 2.10(u)) with no visually distinct features on the front

surface. When features or texture are not visible, the most prominent remaining feature

that can be tracked between images is the edge of the handle with respect to the door.

When the handles do not have any distinct features on the front surface, the optical

flow algorithm is unable to accurately estimate the motion field on the surface of the

handle. As a result, the bounding boxes for these cases do not fully capture the front

surface of the handles. When the handle has features such as locks or key holes, the

additional detail allows for a more accurate estimate the depth of the handle, resulting

in the bounding box that much closer approximates the volume occupied by the handle

(e.g. Figures 2.10(c), 2.10(m), and 2.10(q)).

While the generated bounding boxes in the above examples are sufficient to roughly

localize the handle, the manipulator would need to allow for a margin of error when

executing a grasp. In most cases the handle protrudes to a small extent, which is unlikely

to cause difficulties. In certain cases the handle protrudes to a significant extent, and a

collision of the end effector with the handle is possible. In such cases, the manipulator

would require a means of detecting contact with the handle.

In Figures 2.10(a) and 2.10(e), the bounding box appears to extrude further forward than

the handle. This occurs when a set of outlier points are not fully removed by the median

filter. If the pixels corresponding to these points are adjacent to the handle in the image,

these points end up being grouped together with the handle points in one component.

The resulting bounding box appears larger than the true handle. However, this type of
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Error Type

Door Type Handle Type Surface Keyhole L F S M

painted, monochrome spherical gold yes x x

painted, monochrome spherical gold no x x

painted, monochrome lever metalic yes

painted, monochrome lever metalic no

painted, monochrome cylindrical metalic no x x

painted, monochrome spherical metalic yes x x

painted, monochrome spherical metalic no x

painted, wood spherical gold yes

painted, wood spherical gold no x

painted, wood lever metalic yes

painted, wood lever metalic no x

painted, wood cylindrical metalic no

painted, wood spherical metalic yes x x

painted, wood spherical metalic no x

wood spherical gold yes x

wood spherical gold no x

wood lever metalic yes

wood lever metalic no x

wood cylindrical metalic no

wood spherical metalic yes x

wood spherical metalic no x

Table 2.3: Summary of the performance of the door handle localization algorithm.
Error types are defined in Table 2.2.

error was observed in only two of the tested cases.

In several cases, a small misalignment between the orientation of the bounding box and

the normal to the door was noted. This occurs when the normal to the door plane
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cannot be accurately estimated. Optical flow algorithms attempt to estimate how far

each image pixel has moved between two images taken from slightly different viewpoints,

under the assumption that the intensity of the pixel should remain constant. Since the

constant intensity constraint alone is insufficient, a smoothness constraint is introduced.

In regions where no image features are visible the smoothness constraint is dominant,

and the surface of the door can appear to curve when it is not parallel to the image plane.

This was noticed to occur in scenes with the plane painted door, where the detail used

for the optical flow estimation came largely from the line where the door was closed, from

detail where the handle was mounted to the door, and from shadows cast by the handle

(Figure 2.10 (a), (b), and (f)).

Figure 2.11 shows two cases where the handle is partially outside of the FOV of the

camera. In each case a structural element is present on the right side of the image.

The algorithm was able to detect the handle, and construct a bounding box in both of

these cases. The accuracy of the localization is similar to what was demonstrated in

Figure 2.10.

2.5 Conclusions and Discussion

This chapter presents a method for localizing a door handle of arbitrary geometry and

identifying its pose. The method is based on segmentation algorithm that separates the

background structure in the scene, allowing for the handle to be localized. The pose and

geometry of the handle are estimated by fitting a bounding box to its principal com-

ponents when projected onto the dominant plane in the scene. The bounding box can

then be used to guide robotic grasping and manipulation of the handle. The effectiveness

of the proposed method was demonstrated experimentally. The method performed well

under conditions similar to those which would be encountered in a normal indoor envi-

ronment. The method was able to successfully perform segmentation and localization of

multiple types of door knobs and handles mounted on doors with a varying amount of

texture.
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The performance of the algorithm is limited by the performance of the vision system.

If the vision system is able to accurately reconstruct the 3D structure of the observed

scene, the proposed algorithm should be able to segment and localize any door handle,

of arbitrary shape. However, 3D reconstruction based on optical flow becomes unreliable

when dealing with featureless or highly reflective surface regions, as demonstrated by

some of the experimental results. While in these cases the method was still able to

segment the handle from the background environment, error in 3D reconstruction reduced

the accuracy with which the bounding box was able to approximate the volume occupied

by the door handle. Passive vision systems, such as those using stereo or optical flow,

can not be used to accurately estimate the geometry of featureless surfaces. Recovery of

surface shape when no features are visible requires the use of active vision [Ihrke et al.,

2010; Zhang et al., 2003; Kosov et al., 2011; Zickler et al., 2003; Wang et al., 2007;

Scharstein and Szeliski, 2003]. Additionally, incorporating features that are not effected

by illumination effects could improve the performance of the algorithm.

The location where the vision system can be mounted also has to be considered. It is

not always possible to mount a stereo camera or a 3D camera in the optimal position for

door opening. Often, stereo or 3D cameras have to be mounted at the base of a mobile

robot. The small size of the handle, combined with the high angle at which a base-

mounted vision system would have to observe it, make 3D reconstruction challenging.

Alternatively, a camera mounted on the end-effector can be moved to observe the handle

from a more favourable position.

The algorithm was shown to be able to function successfully when a portion of the handle

was outside of the field of view of the camera. When a significant part of the handle is

not visible, the bounding box may not be effective for guiding the grasping of the handle.

However the ability to move the camera can be used to repeat the operation from a better

view point, or to avoid this situation entirely.

Even with a low resolution of 656× 491 there were sufficient details captured for optical

flow to be used to obtain a rough estimate of the door’s and handle’s geometry. While

most results presented with defects in the shape or orientation of the bounding box, in a
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majority of cases these errors are considered minor, and are not likely to cause difficulties

to later grasping operations. In the worst cases, where the handle was reflective, or had

no visible features, the handle’s surface appeared to be pushed closer toward the door.

When features such as locks, or key holes are visible, the algorithm performs very well,

with the bounding volume closely approximating the boundaries of the handle.
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(a) Gold spherical handle with a lock on a painted monochrome door.
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(b) Gold spherical handle on a painted monochrome door.
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(c) Metallic handle with a lock on a painted monochrome door.
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(d) Metallic handle on a painted monochrome door.

Figure 2.10: Visualization of the bounding box for different types of handles.
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(e) Cylindrical metallic handle on a painted monochrome door.
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(f) Spherical metallic handle with a lock on a painted monochrome door.

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

(g) Spherical metallic handle on a painted monochrome door.
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(h) Gold spherical handle with a lock on a painted wooden door.

Figure 2.10: Visualization of the bounding box for different types of handles.
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(i) Gold spherical handle on a painted wooden door.
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(j) Metallic handle with a lock on a painted wooden door.
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(k) Metallic handle on a painted painted wooden door.

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

(l) Cylindrical metallic handle on a painted wooden door.

Figure 2.10: Visualization of the bounding box for different types of handles.
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(m) Spherical metallic handle with a lock on a painted wooden door.
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(n) Spherical metallic handle on a painted wooden door.

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

(o) Gold spherical handle with a lock on a door with strong wooden texture.
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(p) Gold spherical handle on a door with strong wooden texture.

Figure 2.10: Visualization of the bounding box for different types of handles.
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(q) Metallic handle with a lock on a door with strong wooden texture.
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(r) Metallic handle on a door with strong wooden texture.
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(s) Cylindrical metallic handle on a door with strong wooden texture.
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(t) Spherical metallic handle with a lock on a door with strong wooden texture.

Figure 2.10: Visualization of the bounding box for different types of handles.
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(u) Spherical metallic handle on a door with strong wooden texture.

Figure 2.10: Visualization of the bounding box for different types of handles.
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(a) Flat metallic knob on a door with strong wooden texture. A small portion of the handle is
outside of the camera’s FOV.
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(b) Metallic handle on a door with strong wooden texture. Most of the handle is outside of
the camera’s FOV.

Figure 2.11: Handle localization with part of the handle outside of the camera’s
FOV. An extruding portion of a wall can be seen on the right-hand side of the
images.
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CHAPTER 3

Object Segmentation

The door handle localization method developed in the previous chapter has the potential

to improve the mobility of autonomous robots in human environments. However, the

segmentation method that allows for the door handle model to be acquired incorporates

strong assumptions about the specific geometry of the door and handle scene. This makes

it not applicable to acquiring models of objects other than door handles.

Without the ability to manipulate objects, the usefulness of a robot is severely limited.

In this chapter, a segmentation method is developed to assist in guiding autonomous

robotic grasping and manipulation tasks.

This chapter is organized as follows. Section 3.1 presents an overview of the segmenta-

tion algorithm. Section 3.2 describes the use of probabilistic graphical models in image

segmentation. It provides the necessary theoretical background, and describes the for-

mulation of the energy function used to solve the segmentation problem. It also describes

the graph cuts optimization method used. Section 3.3 presents the method for detecting

the initial object seeds which are used to construct object and background models, and

to estimate the covariance matrix of the Mahalanobis–like distance used for measuring

similarity between pixels. Section 3.4 describes how the unary term of the segmenta-

tion energy function is defined, and explains how the features used in the segmentation

algorithm are modelled. Section 3.5 describes pairwise term used as a smoothness con-

straint, and defines the Mahalanobis–like distance used to evaluate similarity between

image feature vectors. Section 3.6 describes the process used to learn the parameters

of the segmentation energy function from training data. Section 3.7 discusses experi-

mental validation, and presents experimental results. Concluding remarks are given in

Section 3.8.
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3.1 The Proposed Segmentation Algorithm

Segmentation in uncontrolled environments is challenging. Algorithms that rely on im-

age features alone can perform poorly under certain lighting conditions, or if the object

and the background have similar appearance. Object segmentation methods that rely

exclusively on three dimensional (3D) geometric data are derived under strong assump-

tions about the geometry of the scene. While a significant improvement in segmentation

robustness and accuracy can be achieved by utilizing both appearance and geometric

cues, current methods that combine appearance and geometry still have limitation: they

either do not utilize all available information, or use this information at different stages

of the algorithm. The result is that these methods must still rely on certain geometric

assumptions about the scene, the most common of which is that the object rests on a

planar surface.

To address the challenges in performing segmentation in complex environment, the algo-

rithm proposed in this chapter utilizes both appearance and geometric features jointly

in a probabilistic framework. Specifically, combining appearance features such as inten-

sity or colour and texture, with geometric features such as depth and curvature, enables

the proposed algorithm to function effectively when the object and the background have

similar appearance. Texture is utilized to allow for a richer description of the appearance

properties of both the object and the background, particularly in situations where the

object and the background have the same mean intensity or colour. Curvature is used to

model the objects’ geometric properties.

In contrast to methods that use depth to model object regions directly, which can cause

the segmentation to spill past the object of interest, curvature allows for a more accurate

description of the objects geometry. It also allows the proposed algorithm to detect

regions where objects contact supporting surfaces or other objects, removing the need

to assume that objects rest on the dominant planar surface. In the proposed algorithm,

appearance and geometric cues are used jointly, avoiding segmentation errors inherent
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in algorithms which use such cues independently at different stages of the algorithm. In

addition, the method presented here uses a Mahalanobis–like distance to weight relative

significance of the available segmentation cues. In different scenes, some features are

more significant for detecting the boundary of the object. For example, intensity should

be considered more significant when the object and the background are uniformly shaded,

and less significant when the object is multi-shaded. The use of the Mahalanobis–like

distance allows the algorithm to decide which feature differences are assigned greater

significance, while also allowing features of different scales to be effectively combined. The

term Mahalanobis–like is used because the feature differences are evaluated using feature-

specific functions, and not as differences of feature vectors. This allows the algorithm

to better adapt to the available data. The proposed method can function in visually

complex and cluttered environments, and only requires the use of image and 3D data

that can be easily available to many mobile robots.

Input:
Image and
Depth Map

Feature Calculation:
Texture and
Curvature

Object Detection
using Depth

and Curvature

Construction of
Object Models
and Edge Co-

variance Matrix

Energy mini-
mization with

GraphCuts

Figure 3.1: Major processing steps of the proposed object segmentation algorithm.

The proposed algorithm operates in several steps, which are shown in Figure 3.1. The

flow of information between components of the proposed method is shown in Figure 3.2.

Prior to segmentation, a vision system is used to acquire a colour or monochrome image

of the scene and a corresponding depth map. The scene is modelled as a graph, with pix-

els in the image acting as nodes, and edges connecting adjacent pixels in an 8-connected

neighbourhood system. Initial object seed regions are detected using closed contours of

depth edges and high curvature edges. Once a target object has been selected, foreground

and background region models are built from the depth, curvature, image, and texture

data in the detected object and background seed regions. A covariance matrix used to

weigh the similarity between adjacent pixels is also constructed based on image, texture,

depth, and curvature information within object and background seed regions. Segmen-

tation is then performed using graph cuts, with graph edge weights assigned using the
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available appearance and geometry data, the calculated region models, and covariance

matrix.

Input

Object Detection

Output

Depth ImageCurvature Texture
Curvature

Edges

Depth
Edges

Closed
Contours

Detected
Objects

Region Models
and

Edge Covariance Matrix

Energy Minimiza-
tion with GraphCuts

Labelled
Image

Figure 3.2: Flow of information in the proposed segmentation algorithm, from input
to output.

3.2 Markov and Conditional Random Fields in Im-

age Segmentation

This section introduces Markov and Conditional Random Field (MRF and CRF, re-

spectively) models for image segmentation. An energy function based on a conditional

random field model of the segmentation problem is defined, and the graph cuts method

is presented as a means of obtaining the optimal solution to the segmentation problem.
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3.2.1 Segmentation as a Labelling Problem

Image segmentation can naturally be modelled as a labelling problem. Segmentation is

the partitioning of the image into a number of disjoint segments. This is equivalent to

assigning a label to each pixel, such that each label corresponding to a specific image

segment. Pixels with the same label therefore represent a single segmented region of the

image, and the total number of labels is equal to the number of regions in the image.

More formally, let the set S = {1, ..., i, ..., |S|} index the sites in the image, where |S|
denotes the total number of elements in S. The term site is used as opposed to pixel

because it is possible to perform segmentation utilizing different structures based not

only on image pixels, but also on superpixels, which are collections of small segments

resulting from a pre-processing step; or vertices in a 3D mesh. Each site i ∈ S must be

assigned a label out of the set of all possible labels L. As the focus of this chapter is the

segmentation of a single object from the background the label set is binary L = {0, 1},
where 0 corresponds to the object, and 1 to the background.

3.2.2 Random Field Models

Let Fi be a random variable associated with a site i ∈ S that may take on a value

from the previously defined label set L. The family of such random variables F =

{F1, ..., Fi, ...F|S|} defined on the set S is called a random field. The event that the

random variable Fi takes on a specific value fi is denoted as Fi = fi. The joint event that

all random variables in a field assuming specific values (F1 = f1, ..., Fi = fi, ..., F|S| = f|S|)

is denoted as F = f , where f = {f1, ..., fi, ..., f|S|} is called the configuration of F .

The set of all possible configurations that a random field can take is denoted F. The

probability that a random variable Fi takes on a specific value fi is denoted P (Fi = fi),

and the probability of the joint event is denoted P (F = f). It is common to abbreviate

the probability of a realization of the random variable or field P (Fi = fi) as P (fi) and
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P (F = f) as P (f) respectively. For convenience, this notation will be used from now

on.

The goal of segmentation is to separate an image into meaningful or useful regions.

Therefore a labelling is sought which is optimal with respect to some criterion defined on

the set of labels and the observed image data. Given a set of data d = {di, ...,di, ...d|S|}
where di corresponds to an observation at the site i ∈ S. A labelling is sought that maxi-

mizes the posterior distribution of labels conditioned on the available data P (f |d). Using

Bays’ rule, the posterior distribution can decomposed into a product of the observation

model P (d|f) and the prior P (f):

P (f |d) =
P (d|f)P (f)

P (d)
(3.1)

The data term d is fixed and the denominator of Equation (3.1) can be ignored. This

reduces the problem to finding the joint probability of the labelling and the data:

P (f |d) ∝ P (f ,d) = P (d|f)P (f) (3.2)

Markov Random Fields

The prior distribution P (f) in Equations (3.1), and (3.2) encodes a set of (smoothness)

assumptions on the distribution of labels. It is can modelled as an MRF.

A Markov random field is a probabilistic model on the graph G(S,N ) where the set of

sites S is defined as above, and the relationship between various sites is described by

the neighbourhood system N . The neighbourhood system N = {N i|∀i ∈ S}, where

N i = {i, j|j 6= i, j ∼ i} contains the set of all neighbours j of the site i. A site cannot be

a neighbour to itself, and the notation i ∼ j indicates that sites i and j are neighbours

and share an edge in the graph. The neighbourhood relationship is mutual, if j is a
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neighbour of i, then symmetrically, i is also a neighbour of j. In segmentation problems

the neighbourhood is commonly defined as the 4– or 8–neighbourhood system on image

pixels for a regular set of sites (Figure 3.3). In a 4–neighbourhood (Figure 3.3(a)), each

pixel is connected to its four immediate neighbours vertically and horizontally. In the

8-neighbourhood (Figure 3.3(b)), the diagonally located pixels are also considered neigh-

bours. When irregular sites are used, such as vertices formed by a mesh, or superpixels

from a pre-processing step, the size of the neighbourhood may not be constant. Neigh-

bours in these situations are defined based on a shared boundary in case of superpixels,

or based on their distance from the site under consideration, their connectivity in the

mesh, or other criteria. Figure 3.4 show examples of regular and irregular sites defined

for images and point clouds, along with sample neighbourhood systems defines on those

sites.

(a) (b)

Figure 3.3: Examples of 4–connected (a), and 8–connected (b) neighbourhood sys-
tems.

For the random field F to be an MRF it must satisfy two additional condition. The

first condition is called Markovianity, and it states that the probability of a any random

variable taking on a specific value depends only on the values in the neighbourhood of

that random variable:

P (fi|{fj|j 6= i}) = P (fi|{fj|(i, j) ∈N i}) (3.3)

The set of neighbours of a site i is also referred to as its Markov blanket. The second
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(a) (b) (c)

Figure 3.4: Examples of regular and irregular neighbourhood systems. (a) Regular
neighbourhood system. (b) Irregular neighbourhood system resulting from pre-
segmentation into superpixels. (c) Irregular neighbourhood system resulting from
triangulation.

condition is positivity. It states that probability density of the field must be strictly

positive:

P (f) > 0, ∀f ∈ F (3.4)

For an MRF, the Hammersley–Clifford theorem, states that the prior distribution P (f)

can be written as a Gibbs distribution:

P (f) =
1

Z
exp

(
− 1

T
E (f)

)
(3.5)

where Z is the normalizing constant of the distribution called the partition function:

Z =
∑
f∈F

exp

(
− 1

T
E (f)

)
(3.6)

The temperature T controls the spread of the distribution. For high values of T , the

distribution is spread out, and all configurations of f are equally likely. For low values
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of T the distribution is narrow, with a defined peak. The energy function E(f) is [Li,

2009]:

E(f) =
∑
c∈C

Vc(f) (3.7)

The term Vc represents the clique potential energy corresponding to a specific configu-

ration of labels in a clique, and a clique is a fully connected subgraph of G(S,N ). The

size of the clique is equal to the number of sites it contains. Trivially, a single site is

considered a clique of size one c ∈ C1 = {i}. Pairs of connected sites are cliques of size

two c ∈ C2 = {i, j}. The maximum size of a clique depends on the neighbourhood system

of the graph. The energy function measures the likelihood of a particular combination

or realization of labels in the field F . The more likely the realization of the field, the

lower the corresponding energy will be. The prior model is commonly limited to pairwise

terms only [Blake et al., 2011; Li, 2009]:

E(f) =
∑

(i,j)∈N

V2(fi, fj) (3.8)

Combining Equation (3.2) and (3.8), the joint distribution can be written as:

P (f ,d) = P (d|f)
1

Z
exp

− 1

T

∑
(i,j)∈N

V2(fi, fj)

 (3.9)

The observation model P (d|f) is determined based on the the knowledge of the data

formation process, or based on a model of the data distributions. A detailed description

of the models used in this chapter will be presented in Section 3.4. A common assumption

is that observations at different sites are conditionally independent when the label of the

site is available. This allows the likelihood to be written as a product of likelihoods for

individual sites:
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P (d|f) =
∏
i∈S

P (di|fi) (3.10)

resulting in a the joint probability density function of the form:

P (d,f) =
1

Z(d)
exp

−ln(
∑
i∈S

P (di|fi))−
1

T

∑
(i,j)∈N

V2(fi, fj)

 (3.11)

The joint distribution (3.11) is also an MRF of the form:

P (f ,d) =
1

Z(d)
exp (E(f ,d)) (3.12)

where

E(f ,d) =
∑
i∈S

V1(di, fi) +
∑

(i,j)∈N

V2(fi, fj) (3.13)

V1 is called the unary or the data term which evaluates how well the data agrees with the

assigned label, and V2 is the pairwise smoothness or prior term encoding prior assump-

tions about the distribution of labels. The pairwise term is commonly used to enforce a

smoothness constraint on the solution.

Conditional Random Fields

In segmentation problems, the set of labels is unordered. There is no meaningful way

of expressing the smoothness of a solution with the exception of a binary condition

indicating whether the labels are the same or not. This has lead to the wide adoption of

the Ising prior model [Blake et al., 2011; Li, 2009]:
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V2(fi, fj) =

β1, fi = fj

β2, otherwise
(3.14)

where, (i, j) ∈ N and β2 > β1. This prior model penalizes any discontinuity between

labels at neighbouring sites, and encodes the basic prior assumption that regions should

be contiguous. This is equivalent to penalizing the total boundary length of an object.

When performing segmentation, it would be desirable to weaken the penalty imposed by

Equation (3.14) when the image data indicates the existence of an edge. For example, in

grayscale image segmentation, it may be desirable to fully penalize the separation of two

sites that share the same intensity. However a reduced penalty may be preferable when

separating two sites that have an intensity of 0, and 255 respectively. Such a smoothness

constraint can be written as a modulated Ising prior:

V ′2 = g(d)V2 (3.15)

where the function 0 ≤ g(d) ≤ 1 weakens the usual pairwise smoothness prior of Equa-

tion (3.14) based on the image data. This is illustrated in Figure 3.5. An image of three

pop cans on a light table is presented, along with the corresponding Ising prior, and the

contrast sensitive pseudo “prior”. For each site, the sum of all pairwise potentials in the

pixel’s neighbourhood is shown:

intensity(i) =
∑

(i,j)∈N i

V2(i, j) (3.16)

Brighter regions corresponding to higher affinity between the pixel and its neighbours.

The main issue that arises in weakening the prior term depending on the image data, is

that it can no longer be considered a prior on the distribution. This results in potentials
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(a) (b) (c)

Figure 3.5: Comparison of the Ising (a) and the contrast sensitive (b) prior terms
for a sample scene (c). Darker values indicate a lower cost for separating sites
associated with the image pixel. Note that a uniform penalty is applied to any
discontinuity by the Ising prior (a), demonstrated by the uniform grey image. The
contrast sensitive model (b) penalizes boundary placement at image edges less
compared to placing boundaries in regions of constant intensity.

that are not fully factored into observation and prior. A model that allows for this is

called a conditional random field (CRF) [Lafferty et al., 2001; Li, 2009; Blake et al.,

2011]. The CRF models the posterior conditional distribution P (f |d) directly without

requiring the factorization of the prior and the observation terms:

E(f ,d) =
∑
i∈S

V1(d,f) +
∑

(i,j)∈N

V2(fi, fj,d) (3.17)

While the CRF model allows for arbitrary dependence of each of the unary and pairwise

terms on all of the data, this is not required. It is sufficient to allow the pairwise term to

utilize the data only at sites directly involved in the evaluation of the clique potential:

E (f ,d) =
∑
i∈S

V1 (fi,di) +
1

T

∑
(i,j)∈N

V2 (fi, fj,di,dj) (3.18)

Similarly to the case of the MRF, the unary potential function V1 indicates how well

the data di at site i matches the assigned label fi. It’s formulation will be described in
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Section 3.4. The pairwise potential V2 acts as a smoothness constraint (data dependent

“prior”) penalizing discontinuities between labels. To preserve edges the value of V2 must

be high when the features at i and j are similar and low when they are different. The

process of estimating this term will be presented in Section 3.5. The term 1/T controls

the relative significance of the smoothness term. It’s value is determined offline during

training, and remains constant when segmentation is performed.

3.2.3 Inference Using Graph Cuts

Given a random field model, the problem of inference is to estimate the most likely

realization of the random field.

f ∗ = arg max
f∈F

P (f |d) (3.19)

This is referred to as maximum a posteriori (MAP) estimation. An important fact about

obtaining the MAP estimation of a labelling is that the partition function is evaluated

over all possible labelling F. As such, it is not a function of any particular labelling, and

can be ignored. The MAP estimate can therefore be obtained by finding the labelling

with the minimum energy:

f ∗ = arg min
f∈F

E(f ,d) = arg min
f∈F

∑
i∈S

V1 (fi,di) +
1

T

∑
(i,j)∈N

V2 (fi, fj,di,dj) (3.20)

A number of algorithms exist to solve MAP problems in graphical models. For example,

belief propagation can be used to obtain exact solutions for acyclic graphs, as well as

high quality approximate solutions for graphs with cycles like the ones used to model

images. [Blake et al., 2011; Mudigonda, 2008]. Alternative methods to approximate MAP
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solutions in cyclic graphs have included simulated annealing, mean field approximation,

and Gibbs sampling. While classical approaches such as simulated annealing have been

shown to perform poorly in practise, often converging far from the globally optimal

solution, belief propagation and graph cuts have become very popular in recent literature

[Mudigonda, 2008].

Of particular interest is the graph cuts approach, which can be used to obtain an exact

global solution to a MAP-MRF problem provided that the energy function meets certain

condition. This method of inference has become widely used in the image segmentation

literature, as energy functions commonly formulated for segmentation meet the necessary

conditions of being optimizable with graph cuts, resulting in solutions that are exact and

numerically stable [Mudigonda, 2008; Blake et al., 2011].

The graph cuts algorithm can be used to obtain an exact minimum of a submodular

quadratic pseudo–boolean energy function. A pseudo-boolean energy function maps a

set of n boolean variables to a single real number. Energy functions formulated for binary

image segmentation where each label is only allowed to take on one of two possible values

in L = {0, 1} can therefore be optimized using graph cuts if they can be shown to be

submodular. For functions of up to two variables, it is sufficient to show:

V2(1, 0) + V2(0, 1) ≥ V2(1, 1) + V2(0, 0) (3.21)

Since the indicator function is zero whenever fi = fj, and since the edge costs are

otherwise greater or equal to zero, the condition above is satisfied.

It was shown by Boykov and Jolly [2001], that submodular quadratic pseudo–boolean

energy functions can be efficiently minimized by finding the maximum flow through a

special graph. This is also equivalent to finding a minimum cost cut on the graph. This

procedure is referred to as graph cuts.

To implement the graph cuts algorithm [Boykov and Jolly, 2001; Boykov and Funka-Lea,

2006], two special vertices called the source {s} and sink {t} are introduced. These
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vertices represent the target object to be segmented and the background, respectively.

The augmented graph G̃(V ,E) which is used to segment the image is described as the

vertex set V = S ∪ {s} ∪ {t} containing the set S of vertices corresponding to image

pixels as well as the source and sink vertices, and the set of edges E = N ∪ S ∪ T ,

where S and T represent the edges between the vertices in S, and the source and sink

vertices respectively. Each edge (i, j) ∈ E connecting vertices i and j is assigned a

weight w(i, j) ≥ 0. An s-t cut C is a subset of edges C ⊂ E , such that source and sink

nodes become completely separated on the induced subgraph G̃(V ,E\C). Such a cut

can be considered as a solution to the binary labelling problem where each i in S can

be connected (labelled) to either the sink vertex or the source vertex, corresponding to

assigning i to the object or the background respectively, but not both. The cost of a cut

is the sum of the weights of all edges in C:

cost =
∑

(i,j)∈C

w(i, j) (3.22)

A minimum cost s-t cut is defined as an s-t cut that minimizes (3.22). By setting the

weights corresponding to the source and sink edges (S and T ) to be equal to the first

term of Equation (3.18), and by setting the weights corresponding to the neighbourhood

edges (N ) to be equal to the second term of Equation (3.18), the minimum cost s-t cut

on the augmented graph G̃ will produce a labelling that minimizes the energy function

(3.18).

To demonstrate the graph cuts algorithm, consider a problem of minimizing an energy

function defined by Equation (3.18), over four sites S = {a, b, c, d}, with a neighbourhood

system N = {(a, b), (b, c), (c, d)}. Let the unary (V1) and pairwise (V2) potentials be

defined as shown in Table 3.1 and Table 3.2 respectively. The augmented graph associated

with this labelling problem is shown in Figure 3.6(a).

The weights connecting the sites in S to the source s and sink t nodes correspond to the

assignment of the node to one of the two labels. If a site is assigned a label fi = 0 then
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Site (i) V1(fi = 0) V1(fi = 1)

a 7 1

b 4 1

c 5 9

d 2 3

Table 3.1: Example unary potentials.

Neighbours (i, j) V2(fi 6= fj) V2(fi = fj)

a, b 6 0

b, c 3 0

c, d 2 0

Table 3.2: Example pairwise potentials.

a b c d

s

t

7
4 5

2

1
1 9

3

6 3 2

(a)

a b c d

s

t

7
4 5

2

1
1 9

3

6 3 2

(b)

Figure 3.6: An example graph with four sites (a). The minimum cost cut s-t cut is
shown with a dashed line (b), with severed edges highlighted.

it’s connection with the source node s is severed, and the corresponding unary cost is

incurred. Similarly, if a site is assigned a label fi = 1, its connection with the sink t node

is severed.
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The weights shown connecting neighbouring sites correspond to the pairwise potentials.

When two adjacent sites are assigned different labels, the edge connecting them must be

severed, and the corresponding cost is incurred.

Labelling

a b c d Cost of Cut Probability

0 0 0 0 18 0.0020

0 0 0 1 21 0.0001

0 0 1 0 27 0.0000

0 0 1 1 26 0.0000

0 1 0 0 24 0.0000

0 1 0 1 27 0.0000

0 1 1 0 27 0.0000

0 1 1 1 26 0.0000

1 0 0 0 18 0.0020

1 0 0 1 21 0.0001

1 0 1 0 27 0.0000

1 0 1 1 26 0.0000

1 1 0 0 12 0.8064

1 1 0 1 15 0.0401

1 1 1 0 15 0.0401

1 1 1 1 14 0.1091

Table 3.3: Costs of cuts and probabilities associated with all possible labellings of
the example graph shown in Figure 3.6.

An s-t cut must completely separate the source node s from the sink node t. It severs

exactly one of the s or t edges for every site, and all edges which connect neighbouring

sites with different labels fi 6= fj. This corresponds directly with a binary labelling,

and the cost of the cut is equal to the energy of the labelling. A minimum cost s-t cut

finds a partitioning of the graph while minimizing the total cost of the severed edges,

which is equivalent to finding a minimum energy labelling. The minimum cost s-t cut for
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the example problem is shown in Figure 3.6(b). The energy associated with all possible

labellings, as well as the probability of each labelling is shown in Table 3.3. Note that

the minimum cost s-t cut is equal to the labelling associated with the lowest energy, and

highest probability. This labelling is shown highlighted in bold in Table 3.3.

The minimum cut algorithm used is based on the work presented by Boykov and Kol-

mogorov [2004].

3.3 Initial Object Detection

This section describes the method for detecting object seed regions, which are used for

constructing object and background models used to evaluate the unary potential function

V1. The seed regions are also used for estimating the parameters of the pairwise potential

function V2, used to evaluate the similarity between neighbouring sites.

Initial object seed regions are detected by searching for regions enclosed in contours

corresponding to depth discontinuity and high curvature. Depth discontinuity allows for

the identification of the top edges of an object. High values of negative curvature allow

for the detection of boundaries where the object contacts the surface. Only points with

negative curvature are considered as they are more likely to correspond to an object

boundary.

The detection method operates as follows. First, a gradient magnitude image of the

depth map is calculated. The depth gradient image, and the negative curvature map

are thresholded to find high depth gradients and high negative curvature values. The

thresholds are individually determined for each of the maps using the method proposed by

Kittler and Illingworth [1986b]. The resulting thresholded boundary images are combined

into a single boundary map.

Initial boundaries are dilated. Regions enclosed by the boundaries are filtered by size to

remove small regions which are likely generated by contours of edges caused by noise in
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Scene image

Depth map

Depth edges Negative curvature

Thresholded boundary map

Detected object seed regions

Figure 3.7: Steps of the object detection process.
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depth data. The remaining regions are taken as object seeds, and the area outside of

the detected and dilated contours is taken as the background. The steps involved in the

object detection process are shown in Figure 3.7.

3.4 The Unary Potential

This section defines the unary potential, and shows how appearance and geometric fea-

tures are modelled.

The unary potential function V1 is the negative log likelihood of the feature vector di

conditioned on the label fi of the site i. Assuming that the appearance and geometric

cues are independent, V1 can be expressed as:

V1 (fi,di) =
∑
dni ∈di

−lnP (dni |fi) (3.23)

where dni represents the n-th feature in the feature vector di.

The performance of each feature in different situations is demonstrated using the log

likelihood ratios (LLRs) which are presented in Figure 3.8. The LLR is used to indicate

whether a given site in the image is more likely have been generated by the object or

the background model. This is indicated by brighter and darker intensities in Figure 3.8

respectively. For a site i ∈ S the LLR can be written as:

LLRi = ln

(
P (dni |f = 0)

P (dni |f = 1)

)
(3.24)

where dni represents the n-th feature in the feature vector di, and the value of f = 0 or

f = 1 indicates whether the foreground or background model is used respectively.
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Figure 3.8: Examples of log likelihood ratios for three different objects (a)–(c)
calculated using intensity models (d)–(f), texture models (g)–(i), curvature models
(j)–(l) and the likelihood ratio of the combined models (m)–(o).
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3.4.1 Intensity / Colour

Whether colour or grayscale images are available depends on the hardware. However,

both features are modelled similarly. A median filter is initially applied to the image to

reduce noise. A histogram of intensity values or colour vectors is then constructed for the

object and the background regions. The negative log likelihood of the colour or intensity

component can then be calculated as:

−lnP (ai|fi) = −ln
(
hafi (ai)

)
(3.25)

where hafi is the histogram of colour or intensity values (a) corresponding to the fore-

ground or the background model indicated by the subscript fi ∈ {0, 1}, and ai is the

intensity value or the colour vector of the site i.

If a colour image is available additional consideration needs to be given to the colour

model used. While the RGB colour space is commonly used, it suffers from several

drawbacks including device dependency, perceptual non-uniformity, and a poor ability to

represent observed colour separately from the lightness component. This results in two

challenges for segmentation. First, models of the object and background colour become

depended on the illumination. And second, the magnitudes of colour differences between

two RGB vectors do not correspond to the colour difference perceived by a human.

Alternatively, colour models based on the separation of colour into hue, saturation, and

intensity or lightness components can be used. While still perceptually non-uniform and

device dependent, these models separate the “colour” of the object from its lightness

or saturation components. This can be used to reduce the dimensionality of the model

by only including the hue component, and to remove some of the model’s sensitivity to

illumination and shading.

Finally, several perceptually uniform colour spaces exist including the CIE-XYZ, the

CIE-Lab, and the CIE-Luv colour spaces. These spaces represent all colours by two
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chroma components, and a single intensity component. The colour spaces are specifically

designed to mimic human visual perception, and colour differences correlate well with

human perception. For recent reviews of colour models and their applications see [Tkalcic

and Tasic, 2003; Busin et al., 2008].

Figures 3.8(d)–(f) shows the LLRs for a set of objects using only the intensity histograms.

Brighter intensities indicate that a pixel is more likely to belong to the object.

3.4.2 Texture

Texture can be a valuable visual cue to distinguish regions that otherwise have the same

mean color or intensity.

From the available texture models [Szeliski, 2010; Shapiro and Stockman, 2001; Ojala

et al., 1996, 2002; Leung and Malik, 2001; Varma and Zisserman, 2005], a model based

on a distribution of filter responses is used [Jain and Farrokhnia, 1991; Malik and Perona,

1990]. It should be noted that, in general, the segmentation model only requires that the

texture feature can be calculated from a local region surrounding the pixel. This allows

for other texture features to be used to replace or augment the selected model.

The image is first convolved with a set of frequency and orientation selective filters [Leung

and Malik, 2001; Varma and Zisserman, 2005]. The set used consists of first and second

derivatives of Gaussians at 6 orientations, and 5 scales (σ = {3, 5, 7, 9, 15} pixels), 8

Laplacian of Gaussian filters, and 4 Gaussian filters. The filters are L1 normalized and

each image patch being convolved is intensity normalized to minimize global illumination

effects. The set of filtered images is also contrast normalized. As a final step, each

magnitude filter response image is convolved with a large support Gaussian filter [Varma

and Zisserman, 2005].

This process results in a high dimension texture feature vector for every pixel. To reduce

the dimensionality of the texture features, the filter magnitude responses are projected
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onto the principal components of a subset of feature vectors located within the object

and background seed regions. Only the projections onto the three largest principal com-

ponents are used.

A Gaussian mixture model is generated for each seed region, one for the object and one

for the background. Each mixture model is set to use five components.

Figures 3.8(i)–(l) shows the log likelihood ratios for the texture models. Brighter inten-

sities correspond to a higher likelihood that the pixel belongs to the object.

3.4.3 Depth
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Figure 3.9: Comparison between the log likelihood ratios of depth (b) and curvature
(c) models for a cylindrical object.

Depth discontinuities are strong indicators of object boundaries. Depth can be used to

determine the true object boundary when multiple strong image edges are present, or

when the object is very similar to the background in appearance. However, depth is not an

effective cue to model object regions. Figure 3.9 shows this effect. It shows the likelihood

ratio of pixels based on the depth models. The object model is constructed using the

detected object seed, while the background likelihood is assumed to be uniform across

the entire depth range. Figure 3.9 demonstrates that a large part of the background near

the object’s supporting surface is incorrectly expected to belong to the object (Figure

3.9(b)). If other cues are not sufficiently strong, this could lead to the segmentation
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spilling into the background region. For this reason, depth is used only in the boundary

term as described in Section 3.1.

3.4.4 Curvature

Curvature is used to model the object’s geometric properties. It is also used in the

boundary term to allow the algorithm to segment an object from its supporting surface

without the necessity to make assumptions about the surfaces’ geometry.

The chosen curvature measure is based on the ratio of eigenvalues (see Gumhold et al.,

2001) of the covariance matrix for a small neighbourhood around a point. This ratio is

chosen because it is less sensitive to noise than mean or Gaussian curvature calculated

using derivatives on depth images, and it requires less computation than fitting more

complex surfaces to local neighbourhoods.

Let {pk}m+1
1 be a set of points in 3D corresponding to some query point pi and its m

nearest neighbours, the covariance matrix M can be calculated as:

M =
1

m+ 1

m+1∑
k=1

pkp
T
k − p̄p̄T (3.26)

where p̄ is the centroid of {pk}.

p̄ =
1

m+ 1

m+1∑
k=1

pk (3.27)

If λ1 < λ2 < λ3 are the eigenvalues and e1, e2 and e3 are the corresponding eigenvectors

of the matrix M , then the eigenvector e1 corresponding to the smallest eigenvalue λ1

is also the normal n̂ to the least squares plane fitted to the point set {pk}. Correct

87



Chapter 3. Object Segmentation

orientation of the normal vector is enforced by making sure that it points toward the

camera, pTi n̂ < 0. The curvature measure κ is calculated by dividing the smallest

eigenvalue of the covariance matrix by the sum of all of the eigenvalues:

|κ| = λ1

λ1 + λ2 + λ3

(3.28)

The sign of the curvature can be determined by checking whether the query point pi lies

in front or behind the centroid p̄ in the direction of the surface normal:

sign(κ) = sign
(

(pi − p̄)T n̂
)

(3.29)

A two-component Gaussian mixture model is used to model curvature likelihoods. Two

models are constructed from seed regions; one for the object and one for the background.

The LLRs for the curvature feature can be seen in Figures 3.8(j)–(l), as well as Figure

3.9(c). Similarly to the previous two features, brighter intensities correspond to a higher

likelihood that the pixel belongs to the object. In contrast to the depth model, the

likelihood model based on curvature is able to identify the region belonging to the object

more accurately (Figure 3.9(c)).

3.5 The Pairwise Potential

This section defines the form of the pairwise potential, and shows how it is evaluated

using a Mahalanobis-like distance.

The pairwise potential V2 acts as a smoothness constraint (data dependent pseudo

“prior”) penalizing discontinuities between labels, and T is a parameter controlling the

relative significance of the smoothness term. It is analogous to the temperature variable
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in the MRF prior. To preserve edges, the value of V2 must be high when the features at

i and j are similar and low when they are different. We use a function of the form:

V2 (fi, fj,di,dj) = exp

(
−
ρTijS

−1
ρ ρij
ν

)
· 1

|qi − qj|
δ(fi, fj) (3.30)

where di and dj are feature vectors at sites i and j respectively, δ(fi, fj) is one if fi 6= fj,

and zero otherwise. The term |qi − qj| represents the distance in the image between

the pixels qi and qj associated with sites i and j respectively. The difference between

feature vectors is denoted as ρij. The components of ρij include the intensity or colour

difference, the difference between texture features, depth difference of the two sites, and

the maximum negative curvature of either site:

ρij = [diff(ai,aj), diff(τ i, τ j), |zi − zj|,max(κ−i , κ
−
j )]T (3.31)

where a is the appearance feature which represents the intensity value or colour vector

of the site, τ is the texture feature vector, and κ− is the magnitude of the negative

curvature:

κ−

|κ|, κ < 0

0, κ ≥ 0
(3.32)

For grayscale images, diff(ai,aj) is the difference of the gray values, and for colour im-

ages it is the appropriate difference of the colour vectors. Texture difference is calculated

as a Euclidean distance between the texture vectors. The patches for calculating the tex-

ture vectors are taken from the opposite, non-overlapping sides of the edge connecting

sites i and j. Maximum negative curvature is used as the last element in the difference

vector because it corresponds to creases in the surface that indicate object boundaries.
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Finally, Sρ is the covariance matrix of feature differences in the same region. It is esti-

mated using feature differences from within the object and background seed regions. Let

R = {(i, j)|fi = fj} be a set of pairs of sites such that both sites are in the same region.

The matrix Sρ is the covariance matrix of feature differences associated with sites in the

set R:

Sρ =
1

|R|
∑

(i,j)∈R

ρTijρij (3.33)

The exponent’s numerator in (3.30) is analogous to a squared Mahalanobis distance,

with the main difference being that we do not take simple feature vector differences

but instead allow for more complex similarity evaluations within the components of ρij.

This Mahalanobis–like distance weighs the differences of features across an edge (edge

patterns) by the inverse of their covariance, allowing the algorithm to determine which

edge patterns are assigned greater significance when the edge costs are calculated.

Combining Equations (3.18), (3.23), and (3.30) results in the following energy function:

E(f ,d,ω) =
∑
i∈S

∑
dni ∈di

−lnP (dni |fi)

+
1

T

∑
(i,j)∈N

exp

(
−
ρTijS

−1
ρ ρij
ν

)
· 1

|qi − qj|
δ(fi, fj) (3.34)

This energy function contains a set of parameters ω = {T, ν} that control its behaviour.

They are assumed to be constant and will be determined offline using a set of training

images. When ω is known, the energy function (3.34) can be minimized using graph

cuts, resulting in a solution to the segmentation problem.
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3.6 Parameter Learning

This Section describes the process of learning the unknown parameters for the energy

function.

Parameter Initial Value Final Value

T 1 5.8× 10−3

ν 1 47

Table 3.4: Segmentation energy function parameters before and after optimization.

The energy function (3.34) has two unknown parameters ω = {T, ν} that need to be

determined before the algorithm can be used. When the task is MAP inference, the

partition function Z(d,ω) is constant, and can be ignored. However when the task

involves finding the optimal set of parameters given training data, the partition function

depends on the parameter vector ω, and can no longer be disregarded. This constitutes

a difficult problem as the calculation of the partition function is intractable for this

problem.

To avoid the calculation of the partition function when learning the parameters ω, an

energy based learning approach is used [Szummer et al., 2008; LeCun et al., 2006]. This

approach seeks to find a set of parameters such that the probability of the true labelling

is greater than the probability of any other possible labelling. This can be represented

as:

P (f̂ |d,ω) ≥ P (f |d,ω) ∀f 6= f̂ (3.35)

where d is the set of data from the training image, f̂ is the true labelling, and f is

any other labelling. Because the data d and the parameter vector ω are the same on

both sides of the inequality, the partition function can be ignored. The problem can be
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(a) (b)

(c) (d)

Figure 3.10: Segmentation results using the initial (a)–(b) and the final (c)–(d)
values for the energy function parameters.

restated as finding the set of parameters ω that result in the energy of the true labelling

being as low as possible with respect to all other possible incorrect labellings:

min
ω

E(f̂ ,d,ω)− E(f ,d,ω) ∀f 6= f̂ (3.36)

Although checking all of the possible labellings f 6= f̂ is intractable, it is sufficient to

check the labellings with the lowest energy f ∗ 6= f̂ , which can be found using graph cuts

and the current estimate of ω as described in Section 3.1. The algorithm loops over all

of the training images. For all images where the calculated labelling f ∗ is not within a
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small margin of the ground truth labelling f̂ , the labelling f ∗ is added to the constraint

set Θ = Θ∪ f ∗. The parameters ω are then adjusted so that the ground truth labelling

has the lowest possible energy relative to the constraint set:

min
ω

E(f̂ ,d,ω)− E(f ,d,ω) ∀f ∈ Θ (3.37)

Because the energy function (3.34) is not linear in the parameters ω, a direct search

algorithm is used to minimize (3.37) (see Kolda et al., 2003). The process is repeated

until ω stops changing, the iteration limit is reached, or the algorithm is unable to find

a set of parameters to satisfy Equation (3.37). Table 3.4 shows the initial and learned

parameters of the energy function. Figure 3.10 shows initial (Figure 3.10(a), Figure

3.10(b)) and final (Figure 3.10(c), Figure 3.10(d)) segmentation results for a pair of

experimental images.

3.7 Experimental Results

To investigate the effectiveness of the proposed segmentation method, it is used to seg-

ment scenes of various complexity levels. Several application cases were considered. Case

one consisted of detecting and segmenting objects in an office or domestic setting. It in-

volved detecting various household objects placed in a variety of environments. The less

complex scenes involved a single object, while the more complex scenes involved multiple

objects in close proximity, with some objects resting on top of other objects of similar

appearance. Examples of this category are shown in Figure 3.18 scenes 1–12, 16–20, and

24–16. Case two was intended to simulate what a rover may observe while segmenting

a sample rocks resting in sand. The complexity ranged from rocks well separated in

space and resting on top of a planar surface, to multiple rocks buried to various extents

in the sand and located in close proximity to each other. Example of scenes from this

category can be seen in Figure 3.18 scenes 13–15. Additional challenging scenes, where
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the object and background had the same appearance are shown in Figure 3.18 scenes

21–23 and 28–30. Finally, to demonstrate the applicability of the proposed segmenta-

tion method to door and handle environments, four door handle segmentation scenes are

shown (Figure 3.18 scenes 31–34).

In total, the algorithm was applied to 34 scenes. The scenes, along with ground truth

labellings, and segmentation results are shown in Figure 3.18. Note that objects in

Figure 3.18 marked with an “X” were not detected using the geometric object detection

method.

For each scene, the ground truth segmentations were obtained manually. In all cases, the

region models are computed from seed regions generated by the object detection algo-

rithm. The parameters in the segmentation energy function are determined as described

in Section 3.6. All parameters are kept constant for all of the experiments.

(a) (b) (c)

Figure 3.11: Example depth map reconstructed with the aid of a projected light
pattern. (a) Image of the scene. (b) Image of the scene with a projected light
pattern. (c) Reconstructed depth map.

The scenes are captured with a Basler A601f camera, with a resolution of 656x491 pixels.

The camera is mounted on the end-effector of a 5-axis robotic arm. A series of images are

taken of each scene. Encoders on the arm are used to gather position data of each joint.

The data is used to calculate the pose of the end-effector mounted camera at the time each

image is taken. Optical flow [Zach et al., 2007] is extracted from image pairs, and used

with the pose of the camera to reconstruct the 3D structure of the scene. To improve the
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quality of 3D reconstruction, a random pattern is projected onto the scene after the image

used for appearance and texture models is captured [Rusu et al., 2009a]. The pattern

adds additional detail to surfaces that would otherwise be untextured, allowing the optical

flow algorithm to obtain better 3D reconstruction results. Figure 3.11, which shows an

example scene without the projected light pattern (Figure 3.11(a)), with the projected

light pattern (Figure 3.11(c)), and the reconstructed depth map (Figure 3.11(c)).

All steps of the algorithm were executed on a computer with an Intel Q9550 processor,

with 8 GB of memory. With the exception of the optical flow algorithm, and the graph

cuts algorithm, all other the steps of the segmentation method were implemented in

Matlab 8.1 (release R2013a). A summary of the method’s computational performance is

shown in Table 3.5. The table shows the mean time required to complete each step of

the algorithm, as well as the standard deviation in the computation time. The maximum

time observed when computing each step is also shown.

3.7.1 Object Detection

Figure 3.12 shows the results of the object detection process for the tested scenes. It

shows the precision (Figure 3.12(a)) and recall (Figure 3.12(b)) measures for each scene.

Precision and recall measures are used to evaluate the performance of the object detection

algorithm, as well as part of the performance evaluation of the segmentation algorithm.

Precision and recall are defined as:

precision =
TP

TP + FP
(3.38)

precision =
TP

TP + FN
(3.39)
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Time Required (s)

Algorithm Step Mean σ Maximum

Optical flow for 16 images 307.788 3.494 318.604

Depth map calculation 523.302 5.452 534.497

Point cloud construction 36.036 9.042 50.141

Curvature calculation 78.334 0.768 80.622

Texture features calculation 27.568 2.131 31.128

Object detection 1.897 0.003 1.901

Intensity model construction 1.2×10−4 7.3×10−6 1.4×10−4

Texture model construction 3.246 0.327 3.614

Curvature model construction 1.3×10−4 8.5×10−6 1.6×10−4

Graph construction 1.135 0.003 1.138

Edge covariance matrix estimation 4.993 0.699 6.751

Edge cost evaluation 0.193 0.035 0.281

Graph cuts 0.269 0.020 0.304

Combined algorithm 981.521 10.237 1005.204

Table 3.5: Computational performance of the proposed segmentation algorithm.

where TP, FP, and FN stand for true positive, false positive, and false negative, respec-

tively. A true positive corresponds to a correctly detected object in the scene. A false

positive is any detected object region, where in reality an object is not present at that

location. A false negative is counted when an object in the scene is not detected by the

method. If a single object is detected in multiple parts, one part is considered a true

positive detection, while the remaining parts are considered false positives.

Precision (Equation (3.38)), measures the fraction of correctly detected objects with

respect to the total number of detected objects. A high precision score indicates that all

of the detected objects were correct, while a low precision score indicates a high number

of false detections.
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Figure 3.12: Precision (a) and recall (b) scores for the object detection step. Scene
numbers are shown in the first column of Figure 3.18.

Recall (Equation (3.39)), measures the fraction of correctly detected objects with respect

to the number of objects that are known to be present in the scene. A high recall rate

indicates that most objects are detected, while a low recall rate indicates that the method

is not able to detect objects that are present.

High recall rates are noted in the majority of cases, indicating that the method was able

to detect most objects with few false negatives. Lower recall rates are observed in the

rock sample segmentation cases (Figure 3.18 scenes 14 and 15).

When the rocks are mostly buried in the sand, there is no crease region of high curvature

to complete the contour required for object detection. This resulted in the algorithm not

being able to detect the objects.

In Figure 3.18 scene 11, two coffee cups were detected as a single object.The top surfaces

of the cups are on the same plane and touching. In such a scenario, neither a depth
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or curvature edge is present at the contact point of the two objects, and the detection

method is unable to differentiate the two objects.

Precision rates for object detection are lower, indicating that the method is more likely to

detecting false positives. Edges that appear due to noise in the 3D data can form closed

contours with themselves or parts of objects in the scene, resulting in false detections.

For example the small region between the book and the mouse in scene 1 of Figure 3.18.

In Figure 3.18 scene 8, the tea cup is detected as two separate objects, resulting in one

of the two parts being considered a false positive. Due to the thin structure of the cup,

there is a sharp depth discontinuity between the front and the back surfaces. Because

the connecting region is thin, it is filled in during the object detection process. This

results in the algorithm detecting two objects, one corresponding to the front surface of

the cup, and a second one corresponding to the back surface. This is not the case when

the object is thicker, such as the duct tape in Figure 3.18, scene 12, which is successfully

detected as a single object. Two other instances where an object is detected in multiple

parts can be seen in Figure 3.18, scene 9, where the teddy bear and the plush Stewie doll

are each detected as multiple objects. Each detected part of these objects is separated

by a either depth edges as in the case of the teddy bear, or by curvature edges, as in the

case of the plush doll. These edges cause the algorithm to detect multiple objects, where

only one complex object is present.

3.7.2 Segmentation

Segmentation results can be seen in Figure 3.18. A quantitative evaluation of the seg-

mentation method’s performance is shown in Figure 3.14, and Figure 3.15. Figure 3.14

shown the F1 (Figure 3.14(a)), precision (Figure 3.14(b)) and recall (Figure 3.14(c))

scores. Figure 3.15 shows the mean (Figure 3.15(a)) and maximum (Figure 3.15(b)) dis-

tances between the true and detected object boundaries. These measures provide for an

evaluation of the method’s performance both in terms of area and perimeter errors.

98



3.7. Experimental Results

The precision and recall values are calculated as described in Equation (3.38) and Equa-

tion (3.39) respectively. In the context of segmentation a true positive is any object

pixel that was correctly labelled as an object. Background pixels that were correctly

labelled as background are not counted. A false positive is any background pixel that

was incorrectly labelled as an object pixel, and a false negative is any object pixel that

was incorrectly labelled as background.

The precision score can be considered as an evaluation of how much of the object region

spills onto the background. A high precision indicates that most of the pixels labelled as

belonging to the object are correct. A low precision rate indicates that a large portion

of pixels predicted to belong to the object, in reality, are part of the background.

The recall rate allows for evaluation of how much of the object was detected. A high

recall rate indicates that a large portion of the object was detected correctly. A low recall

rate indicates that parts of the object were missed.

A combined measure of these two metrics is the F1 score. It is the harmonic mean of

precision and recall:

F1 = 2 · precision · recall
precision+ recall

(3.40)

The F1 measure is an overall indicator of the algorithm’s performance, taking into account

both how much of the true object was detected, and to what extent the segmentation

spills onto the background.

It was found that the algorithm was able to accurately segment most detected objects in

the test scene. Specifically, the method was able to perform well in several challenging

scenarios, including cases where the object and the background had a similar appearance

and cases where multiple objects were in contact with one another or when one object was

resting on top of another. The proposed method was also able to function in cluttered

environments.
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The method’s performance when the object’s appearance is nearly identical to that of

the background is demonstrated in Figure 3.18 scene 5, and scenes 21 through 30. The

mean intensities of the school bus and its background, the book and the pop can in scene

5, as well as most of the objects in scenes 21 though 30, are nearly identical. While

intensity edges can still be seen between the eraser box and the tissue box, such edges

are not present for a large portion of the school buses’ and the pop can’s boundaries.

In scenes 21 through 23, the checker pattern makes it difficult to distinguish intensity

edges between objects. It is important to note, that a number of objects in these scenes

are placed on surfaces that do not correspond to a dominant plane. In these cases, the

assumption that the objects rest on a dominant plane would be invalid. In each case, the

objects were successfully segmented from the background, and from each other.

Several examples of segmentation in cluttered environments are shown in Figure 3.18 (for

example scenes 2, 8, 9, 23, and 27, as well as others). In these cases, a number of objects

are placed in a scene with a complex background. In several scenes, the appearances

of the background and the objects are similar (for example scene 23). The rest of the

scenes contain multiple objects in contact with one another. Under these challenging

conditions, the algorithm was able to accurately segment most of the detected objects in

each scene.

While the algorithm performed well overall, a number of issues were noted. In several

cases the segmentation can be seen spilling onto the object’s supporting surface (the

school bus in Figure 3.18, scene 2), or cutting off a part of an object near its supporting

surface (the toy frog in Figure 3.18, scene 2). Even when intensity edges separating the

object from the background are strong and well defined, there can be a large amount

of intensity variation within seed regions. This is not so for curvature and depth, as

these values tend to be more constant or change slowly. Additionally, high negative

curvature regions are not common on most small graspable objects. In these situations,

the algorithm tends to follow high depth or high curvature edges which can be less precise

than intensity edges. Because curvature is calculated based on neighbourhoods of points

taken from a noisy depth map, its maximum does not always correspond to that of the
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true boundary, resulting in the segmentation appearing to be less accurate. This can

also be seen to a lesser extent near depth edges, but since the depth data used for this

experiment was obtained from optical flow, depth discontinuities are likely to coincide

with intensity edges, thus the effect is lessened.

An example of a poor segmentation can be seen in Figure Figure 3.18, scene 8, between

the tea box in the foreground, and the cereal box in the background. In this example,

the appearance of the two objects is very similar in the area where the segmentation is

spilling from the tea box onto the cereal box. At the same time, the tea box is close

enough to the cereal box for depth difference to be small, and just far enough away

that the curvature in the area is near zero. This results in the segmentation algorithm

following the strong intensity edge, which is located on the surface of the cereal box itself.

When other cues are present, for instance where the tea box meets the pop cans or the

plate, segmentation remains accurate.

Thin or non convex objects can be detected as two or more separate objects. For thin

objects, parts may be missed altogether. Examples of this type of error are the segmen-

tation results of the tea cups in Figure 3.18, scenes 6 (object 20), scene 7 (object 21), and

scene 8 (object 25), as well as the teddy bear and the Stewie doll in Figure 3.18, scene 9

(objects 31 and 35 respectively). In these situations the segmentation algorithm is unable

to recover from the detection error. Since different parts of these objects are separated

from other parts by contours of curvature or depth, and because of the added constraints

that are based on the initial region detection, the segmentation algorithm is unable to

expand into adjacent object regions. Correspondingly, these scenes are observed to have

the lowest recall, and F1 scores (Figure 3.14), as well as the highest mean and maximum

distance between the predicted and the true boundaries (Figure 3.15).

3.7.3 Comparison with Prior Work

To compare the performance of the proposed segmentation method, three methods for

object segmentation were implemented. Implemented methods included the graph-based
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clustering method of Rao et al. [2010], the CRF based methods presented by Johnson-

Roberson et al. [2010], and the method proposed by Bjorkman and Kragic [2010a,b].

The methods presented in the original works were modified to use grayscale images. For

each of the methods, any free parameters were optimized using the same training set

that was used to determine the parameters for the proposed method. Methods requiring

initialization were provided with the same object seed region as was used by the proposed

algorithm.

While all three tested methods performed well in simple environments where the objects

had different intensities, the methods of Johnson-Roberson et al. [2010] and Rao et al.

[2010] were unable to cope with situations where the objects had strong internal intensity

edges, or if the intensity distributions of multiple objects were similar. The method

proposed by Bjorkman and Kragic [2010a,b], however, performed exceptionally well on a

number of challenging test scenes. For this reason, it is used as the benchmark to measure

the performance of the proposed segmentation algorithm. The other two methods are

not considered further.

(a) (b) (c) (d) (e)

Figure 3.13: Sample segmentation results for the implemented segmentation meth-
ods. (a) Scene image. (b) Proposed method. (c) Bjorkman and Kragic [2010a,b].
(d) Johnson-Roberson et al. [2010]. (e) Rao et al. [2010].

Results comparing the performance of the proposed segmentation algorithm to the method

of Bjorkman and Kragic [2010a,b] are shown in Figure 3.14 and Figure 3.15. A sum-

mary of the results is shown in Table 3.6, and Table 3.7. These tables show the mean

and standard deviations of the performance metrics for the proposed algorithm and the

method of Bjorkman and Kragic [2010a,b].
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The results demonstrate that the proposed segmentation algorithm performs on average

better than the benchmark method of Bjorkman and Kragic [2010a,b]. The proposed

algorithm shows a higher average F1 and precision scores, with less variation in these

measures. The recall scores for the two methods are similar. The proposed method

also shows lower mean and maximum distances between the detected and true object

boundaries, with less variation in these values as well.

F1 Precision Recall

Method Mean σ Mean σ Mean σ

Proposed method 0.8979 0.0896 0.9780 0.0540 0.8441 0.1331

Bjorkman and Kragic
[2010a,b]

0.8367 0.1671 0.8564 0.2341 0.8753 0.1302

Table 3.6: Mean and standard deviation (σ) of the F1, precision, and recall scores
for the proposed method, and the method of Bjorkman and Kragic [2010a,b].

Mean Distance to True
Object Boundary

Maximum Distance to
True Object Boundary

Method Mean σ Mean σ

Proposed method 5.8074 8.4696 23.7206 28.6687

Bjorkman and Kragic
[2010a,b]

13.9709 19.5428 46.7471 51.1294

Table 3.7: Mean and standard deviation (σ) of the average and maximum distances
to the true object boundary for the proposed method, and the method of Bjorkman
and Kragic [2010a,b].

The proposed method exhibits similar performance to the method of Bjorkman and

Kragic [2010a,b] in situations where the objects are well separated in space, or where a

strong intensity edge exists between objects (Figure 3.16).

In cluttered scenes where multiple objects of similar intensity are in contact with one

another, or when one of the object rests on top of another, the proposed segmentation
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Figure 3.14: Comparison of the F1 (a), precision (b), and recall (c) score for the pro-
posed segmentation algorithm and the method of Bjorkman and Kragic [2010a,b].
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Figure 3.15: Comparison of the mean (a), and maximum (b) distance to the true
object boundary for the proposed segmentation algorithm and the method of Bjork-
man and Kragic [2010a,b].

method shows superior performance (Figure 3.17).

The dominant plane, and Gaussian position-depth models used by the method of Bjork-

man and Kragic [2010a,b] are not useful in segmenting objects from other contacting

objects of similar appearance. In contrast, the proposed method is able to utilize the

additional information provided by curvature and texture to better predict which regions

should belong to the object. Additionally, by employing the curvature feature, the pro-

posed method is able to detect boundaries between contacting objects even when they
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(a) (b) (c)

(d) (e) (f)

Figure 3.16: Comparison of example segmentation results for the proposed method
(a)–(c), and the algorithm presented by Bjorkman and Kragic [2010a,b] (d)–(f).

otherwise have the same appearance.

3.8 Conclusions and Discussion

This chapter presents a method for segmenting objects in cluttered environments. The

proposed method has incorporated both appearance and geometric cues, which allow

it to be more robust in situations where some of the data is ambiguous. The problem

is formulated using the Conditional Random Fields framework, and a globally optimal

solution is obtained efficiently using the graph cuts energy minimization technique. A

simple object detection method based on closed contours of depth edges and high cur-

vature edges is used to initialize the segmentation algorithm. The effectiveness of the
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(a) (b) (c)

(d) (e) (f)

Figure 3.17: Example segmentation results for scenes where the proposed segmen-
tation algorithm (a)–(c) exhibits better performance when compared to the method
of Bjorkman and Kragic [2010a,b] (d)–(f).

proposed method has been verified by experiments performed on a number of scenes.

The method was able to detect and segment most of the objects it was tested on, even in

challenging scenarios where the object’s appearance was nearly identical to that of the

background and when objects were in contact with each other. The method was able

to perform segmentation without requiring the assumption that the objects rest on the

dominant planar surface in the scene, which allowed for the segmentation of objects when

one was placed on top of the other.

When compared against other methods in the literature, the proposed method matched

or exceeded their performance, specifically, the proposed method exhibited superior per-

formance in cluttered scenes where objects were in contact with one another, or where

some objects were placed on top of other objects of similar appearance.
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A limitation of the proposed object detection system is its reliance on 3D data. If the

3D data is too noisy, smaller objects may be missed or regions that do not correspond

to actual objects may be incorrectly detected. If an object is not detectable with the

available 3D data, its segmentation will not be performed, even if it would have been

possible based on appearance cues.

In the presented method, depth information was only used in the pairwise smoothness

term to detect object edges. While incorporating depth can increase the accuracy of the

region term where the object is far removed from any other nearby object or from the

background, at points where the object is in close proximity to other object, depth can

cause the segmentation to spill. Excluding depth or location from the unary term avoids

the issue of segmentation spilling onto adjacent surfaces, but also ignores potentially

useful information. A method to incorporate depth into the regional terms of the seg-

mentation energy function, while avoiding issues with segmentation spilling onto adjacent

surfaces could improve the accuracy of the segmentation results.

The use of multiple segmentation cues requires for the algorithm to be able to determine

which of the cues, or combinations of cues, should be assigned greater significance. Since

the unary region term V1 is a negative log of a product of individual feature likelihoods,

the relative significance of the individual features is implicitly accounted for. However, in

the boundary term V2, the relative significance of features has to be addressed explicitly.

To weigh the relative significance of available segmentation cues in the boundary term of

the energy function V2, the proposed method utilizes a squared Mahalanobis–like distance

in the exponent of the term. The covariance matrix used by the distance is calculated

based on the edges found inside of the object and background seed regions. A lower

distance (higher cost) is assigned to edges where the feature difference across the edge

is small compared to the variation of the feature differences within the object and the

background region. While this approach is effective at finding edge patterns that do not

occur commonly within object or background regions, it ignores the feature similarity

or difference between the different regions. The method is also unable to properly judge

the importance of edges where multiple cues vary simultaneously. For example, one may
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expect that edges where depth and intensity, or depth and curvature vary simultaneously

to be more likely to correspond to object boundaries than edges where any feature varies

individually. Such a relationship cannot be observed within either the object or the

background seed regions.
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Figure 3.18: Scenes used to evaluate the performance of the proposed method.
Scene number is shown separately on the left. Column 1 shows an image of the test
scene. Column 2 shows the ground truth labelling and object numbers, with an X
indicating that the object was not detected. Column 3 shows results of applying
the proposed segmentation method.
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Figure 3.18: Scenes used to evaluate the performance of the proposed method.
Scene number is shown separately on the left. Column 1 shows an image of the test
scene. Column 2 shows the ground truth labelling and object numbers, with an X
indicating that the object was not detected. Column 3 shows results of applying
the proposed segmentation method.
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Figure 3.18: Scenes used to evaluate the performance of the proposed method.
Scene number is shown separately on the left. Column 1 shows an image of the test
scene. Column 2 shows the ground truth labelling and object numbers, with an X
indicating that the object was not detected. Column 3 shows results of applying
the proposed segmentation method.
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Figure 3.18: Scenes used to evaluate the performance of the proposed method.
Scene number is shown separately on the left. Column 1 shows an image of the test
scene. Column 2 shows the ground truth labelling and object numbers, with an X
indicating that the object was not detected. Column 3 shows results of applying
the proposed segmentation method.
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Figure 3.18: Scenes used to evaluate the performance of the proposed method.
Scene number is shown separately on the left. Column 1 shows an image of the test
scene. Column 2 shows the ground truth labelling and object numbers, with an X
indicating that the object was not detected. Column 3 shows results of applying
the proposed segmentation method.
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Figure 3.18: Scenes used to evaluate the performance of the proposed method.
Scene number is shown separately on the left. Column 1 shows an image of the test
scene. Column 2 shows the ground truth labelling and object numbers, with an X
indicating that the object was not detected. Column 3 shows results of applying
the proposed segmentation method.
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Figure 3.18: Scenes used to evaluate the performance of the proposed method.
Scene number is shown separately on the left. Column 1 shows an image of the test
scene. Column 2 shows the ground truth labelling and object numbers, with an X
indicating that the object was not detected. Column 3 shows results of applying
the proposed segmentation method.
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CHAPTER 4

Distance Metric Learning for Object

Segmentation

Combining multiple appearance and geometric cues for segmentation has the potential

to remove the ambiguity associated with individual cues, resulting in a more robust seg-

mentation algorithm capable of functioning in complex environments. However, using

multiple cues introduces new challenges. Depending on the appearance and geometry

of the scene, certain cues are more useful for differentiating the object from the back-

ground, and for predicting the location of the object’s boundaries. Additionally, when

using appearance and geometric features jointly, correlation between these features be-

comes significant. While the various features are considered independent within object or

background regions, a correlation between features is expected at object boundaries. For

a segmentation algorithm to adapt effectively to the available data it needs the ability

to select which combination of features are the most useful in a given situation.

Few of the current segmentation methods which combine appearance and geometry ex-

plicitly address the ranking of features. In this chapter, an improved segmentation algo-

rithm is developed which incorporates distance metric learning to estimate the distance

function between multiple appearance and geometric features.

The segmentation algorithm proposed here is based on the method presented in the

previous chapter. A learned distance function is introduced into the pairwise smoothness

term to weight the relative significance of various segmentation cues according to their

ability to separate points that belong to the object seed region from the background.

As a secondary contribution, a geometric region model of the object is presented. The

model is similar to the one proposed by Bjorkman and Kragic [2010a,b]. In their work,
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Bjorkman and Kragic [2010a,b] modelled the object as an ellipsoid. The distribution of

points belonging to the object was modelled as a normal distribution in 2.5D image–

disparity space; object points were assumed to be normally distributed in space about

a mean position. The same assumption is followed here. The object is assumed to be

ellipsoidal in shape. However, the distribution of 3D points in space is modelled as a

function of the points distances from an ellipsoid fitted to sample points from the object.

The rest of this chapter is organized as follows. Section 4.1 provides an overview of

the segmentation algorithm. Section 4.2 reviews the terms in the segmentation energy

function. Section 4.3 presents the elliptical object model used to incorporate 3D location

information into the unary term of the energy function. Section 4.4 introduces distance

metric learning, and describes how it is used to learn a distance function used in the eval-

uation the pairwise smoothness term of the segmentation energy function. Section 4.5

presents experimental validation of the improved segmentation method. Concluding re-

marks are given in Section 4.6.

4.1 Overview of the Improved Segmentation Algo-

rithm

The improved segmentation algorithm operates in an iterative manner, similar to the

method presented by Rother et al. [2004]. As an initial step, the grayscale image, and

the depth map are used to calculate secondary features such as texture, curvature and

normal vectors at each pixel.

The method is initialized by providing a single point on the image. The 3D location of

this point is determined, and the object region is initialized to include all points within

a small distance from the seed point. The background region is initialized by centring

a large sphere on the location of the seed point. A set of points in a ring outside of

this sphere is taken as a set of initial background seed points. An example of this is
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shown in Figure 4.1(a) and Figure 4.1(b), where object and background seed regions

(respectively) are shown highlighted in white. The algorithm then iteratively estimates

the object and the background models, and learns a distance metric. The models and

the distance metric are used to obtain a new estimate of the segmentation using graph

cuts.

(a) (b)

(c)

Figure 4.1: Initialized object (a), and background (b) regions. Segmentation results
after several iterations of the algorithm are also shown (c).

The new estimates of the object and background regions are then passed as seeds to

the next iteration of the segmentation algorithm. The process is repeated until the

segmentation stops changing or until a set number of iterations is reached. Several

iterations of the segmentation process are shown in Figure 4.1(c), with the object and

background initial seed regions shown in Figure 4.1(a) and Figure 4.1(b), respectively.
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4.2 Segmentation Energy Function

In Chapter 3, an energy function was defined the minimum of which corresponds to an

optimal labelling of the image into foreground and background regions. This labelling is

considered optimal with respect to the posterior probability of label assignments condi-

tioned on the available image and geometric data. The energy function has the following

form:

E (f ,d) =
∑
i∈S

V1 (fi,di) +
1

T

∑
(i,j)∈N

V2 (fi, fj,di,dj) (4.1)

where f = {f1, ..., fi, ...f|S|} and d = {d1, ...,di, ...d|S|} denote the sets of assigned labels,

and observed data, respectively, for each site (pixel) i ∈ S. The set S contains all sites

in the image, and the total number of sites is denoted as |S|. The set N represents the

neighbourhood system, and contains pairs of sites that have direct influence over each

other. The parameter T controls the relative weight between the terms V1 and V2.

The energy function consists of two terms: the unary and pairwise potentials, corre-

sponding to V1 and V2 respectively. The unary term measures the agreement between

the data and the assigned labelling. The term is modelled as a negative log likelihood of

a feature vector di conditioned on the label at the site fi:

V1 (fi,di) =
∑
dni ∈di

−lnP (dni |fi) (4.2)

where dni represents the n-th feature in the feature vector di

The available features include image intensity, texture, depth, and curvature. Instead of

using depth directly, the likelihood of a given point belonging to the object is calculated as

a function of its distance from an ellipsoidal object model. This model will be described
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Figure 4.2: Log likelihood ratios of the feature models for the first iteration of the
segmentation algorithm. (a)–(c) Objects being modelled. (d)–(f) Intensity models.
(g)–(i) Texture models. (j)–(l) Curvature models. (m)–(o) Ellipsoidal models. (p)–
(r) Log likelihood ratio of the combined models.121
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Figure 4.3: Log likelihood ratios of the feature models for the last iteration of the
segmentation algorithm. (a)–(c) Objects being modelled. (d)–(f) Intensity models.
(g)–(i) Texture models. (j)–(l) Curvature models. (m)–(o) Ellipsoidal models. (p)–
(r) Log likelihood ratio of the combined models.122
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in more detail in Section 4.3. The probability density functions for all features are

modelled using kernel density estimation (see Appendix B). For each feature, the kernel

size is selected experimentally. Gaussian kernels are used for all features. Examples

of the performance of the nonparametric feature models are shown in Figure 4.2, and

Figure 4.3 for the first and last iterations of the segmentation method. The first row in

each figure shows the region of the object from which the models were constructed. The

remaining rows show the log likelihood ratios (LLRs) of the object and the background

models:

LLRi = ln

(
P (dni |f = 0)

P (dni |f = 1)

)
(4.3)

The LLR indicates whether a given site in the image i is more likely to have been

generated by the object or the background model, corresponding to lighter and darker

values in Figure 4.2 and Figure 4.3.

The pairwise term in Equation (4.1) acts as a smoothness constraint penalizing a change

in labels between sites with similar data. It has the following form:

V2 (fi, fj,di,dj) = exp

(
−dist (di,dj)

2

ν

)
· 1

|qi − qj|
δ(fi, fj) (4.4)

where dist (di,dj) is a distance function which measures the similarity between two data

vectors di and dj. The parameter ν is introduced to control the shape of the function.

At larger values of ν, smaller distances have little effect. At smaller values, the cost of

separating two sites falls to zero quickly with an increase in distance. The term δ(fi, fj)

is an indicator function, and is one only if fi 6= fj, and zero otherwise. The fraction

1/|qi− qj| accounts for the different image distances between horizontally, vertically, and

diagonally connected sites, with qi and qj representing the pixels locations of sites i and

j respectively. In Section 4.4, a DML method is applied to estimate the distance used in

numerator of the exponential function Equation (4.4).
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4.3 Ellipsoidal Object Model

Depth is not an effective cue to model object regions. When depth is used directly,

large parts of the scene that are at the same distance from the camera as the object are

incorrectly expected to belong to the object. If other cues are not sufficiently strong, the

segmentation could spill into the background.

In the previous chapter, this issue was avoided by not using the depth cue in the region

model entirely. Such an approach, however, does not utilize information regarding the

potential location of the object in space. As a consequence, when multiple objects of a

similar appearance and curvature are present, they are all considered equally likely to

be the target object. This was previously counteracted by adding an extra constraint

derived from the object detection step to focus the segmentation on the correct object.

An alternate approach involves constructing a model of the object which utilizes the full

3D position of points in space, or 2.5D position of points in depth-image or disparity-

image space. This has the benefit of improving the algorithm’s ability to correctly identify

points likely to belong to the target object, while reducing the spilling effect when the

depth feature is used by itself. When such models are used, the object is commonly

approximated as elliptical in shape. The likelihood of points in space is then modelled

using a normal distribution. The likelihood of background points is modelled as either

a uniform distribution, or based on their distance from the dominant plane in the scene

[Bjorkman and Kragic, 2010a,b].

A similar approach is taken in this method. The object is assumed to be approximately

elliptical in shape. However, the distribution of object points is modelled as a function

of their algebraic distances to the ellipsoid fitted to sample object points. The sample

points are initially obtained from the input to the method. Segmentation results from

a previous iteration are used in the later stages. The model is constructed by fitting an

ellipsoid to the current set of object seed points using a last squares fitting method [Li

and Griffiths, 2004], details of which can be found in Appendix C. The 3D positions of
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4.3. Ellipsoidal Object Model

points in the scene are converted to algebraic distances. For an ellipsoid, the algebraic

distance is:

F (v,p) = ax2 + by2 + cz2 + 2fyz + 2gxz + 2hxy + 2px+ 2qy + 2rz + d (4.5)

where p = [x, y, z]T is a 3D point, and the vector v = [a, b, c, f, g, h, p, q, r, d]T contains

the parameters of the ellipsoid obtained using the fitting procedure. The distribution of

algebraic distances is then used to generate an object model.

The ellipsoid often expands past the object being segmented when the object is thin, or

cylindrical. This can cause the ellipsoidal model to assign low likelihoods to points still

inside the ellipsoid, but at some distance from the hull. To address this limitation, the

likelihood of points inside the ellipsoid is modelled as a uniform distribution with respect

to the range of algebraic distances inside the ellipsoid. A convention is enforced that

points inside the ellipsoid should have a negative algebraic distance, and points outside

should have a positive distance. Considering that the number of points that can belong to

the object is significantly smaller than the number of points in the scene, the convention

is enforced by reversing the sign of the algebraic distances if the number of points with

a negative distance is greater than the number of points with a positive distance. The

likelihood of a point outside of the ellipsoid is then modelled using a zero mean Gaussian

distribution, the left half of which is replaced with a uniform distribution over the range

of negative algebraic distance:

P (F (v,pi)|fi = 0) =


1√

2πσal
exp

(
−F (v,pi)

2

2σ2
al

)
if F (v,pi) ≥ 0

0.5
|minF (v,p)| if F (v,pi) < 0

(4.6)

where pi is any 3D point in the scene, σal is the standard deviation of algebraic distances

for points from the object seed region outside of the ellipsoid, and minF (v,p) is the

largest negative algebraic distance.
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The background is modelled as a uniform distribution over the range of algebraic distances

considered.

P (F (v,pi)|fi = 1) =
1

maxF (v,p)−minF (v,p)
(4.7)

where maxF (v,p) is the largest positive algebraic distance.

4.4 Learning the Pairwise Potential

The pairwise term in the energy function (4.1) is used to enforce a smoothness constraint.

It is intended to allow for sites to be easily separated where the image or geometric data

indicates a likely presence of an object boundary while penalizing placing the boundary in

homogeneous regions. When multiple features such as texture, depth, or surface normal

are considered, the choice of a proper smoothness term becomes challenging. In different

circumstances different segmentation cues may be better suited for localizing the object’s

boundary. The smoothness term needs to be able to adapt to the scene, choosing which

cues will be considered, and which will be disregarded.

4.4.1 Distance Metric Learning

Given a training set of points where some are known to be from the same class, while

other are from different classes, the goal of distance metric learning is to estimate a

Mahalanobis distance function such that the distance between similar points is smaller

than the distance between dissimilar points [Xing et al., 2002].

The Mahalanobis distance is parametrized by a positive semi definite matrix Λ � 0:
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4.4. Learning the Pairwise Potential

distΛ(di,dj) =
√

(di − dj)TΛ(di − dj) (4.8)

where di and dj are data vectors at sites i and j respectively.

When performing segmentation with a combination of appearance and geometric data, it

is beneficial to incorporate similarity or dissimilarity measures that cannot be calculated

by taking a difference of feature vectors at the two sites. For example, the angle between

two normal vectors may be more informative than a direct difference of the two normal

vectors. To allow for this, the problem is modified to learn a pseudo-distance:

dist′Λ(ρij) =
√
ρTijΛρij (4.9)

where

ρij = [diff(ai,aj), diff(τ i, τ j), |zi − zj|, θ(n̂i, n̂j)]T (4.10)

The vector ρij contains a set of difference measures for available appearance and geomet-

ric features. The first term diff(ai,aj) corresponds to an appearance difference which

could be a difference of intensities at sites i and j, a difference of colour vectors, or a

specific colour difference measure. A texture difference is represented as diff(τ i, τ j).

The third term is a difference of depth values at sites i and j.

It is not possible to measure the curvature from two points at two different locations.

Because of this, a different measure is used:

θ(n̂i, n̂j) = 1− |n̂Ti n̂j| (4.11)

where n̂i and n̂j are normal vectors at sites i and j respectively.
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(a) (b) (c)

Figure 4.4: Determination of the type of junction between two surfaces. (a) A
concave junction likely indicating a boundary between multiple objects, or an object
and a surface. (b) A convex junction that is likely part of an internal edge on the
object. (c) Undetermined type of junction.

It is important to note that how two surfaces meet is significant. Objects tend to be

convex; they bend in onto themselves. A junction between an object and a supporting

surface is likely to be concave. For this information to be taken into consideration, a

means of determining how surfaces meet is needed. A simple method of determining how

surfaces meet is based on inspecting the point of closest approach between the surface

normals. A ray is formed for each site under consideration. The ray originates at the

3D point associated with the site, and travels in the direction of the estimated surface

normal. If the closest point of approach between the two rays is in front of both 3D

points the surfaces are expected to meet at a concave intersection (Figure 4.4(a)). If

the point of closest approach is behind both points, a convex intersection is expected

(Figure 4.4(b)). Otherwise, no determination about how the surfaces meet can be made

(Figure 4.4(c)).

This set of conditions requires the learning of three positive semidefinite matrices Aα =

{A+,A−,A×}. The superscripts +, −, and × correspond to cases where the surfaces

meet at a convex, concave, or undetermined intersections, respectively.

To estimate the set of positive semidefinite matrices Λα, a maximum margin formulation

of the distance metric learning problem is followed [Nguyen and Guo, 2008; Weinberger

et al., 2006; Weinberger and Saul, 2008, 2009].

128



4.4. Learning the Pairwise Potential

Consider a labelled training set of triplets T = {(i, j, l)|fj = fi, fl 6= fi}, where the pair of

sites i and j are considered similar and share the same label (both object or background).

A site l is selected from a different region. The pairs (i, j)α form the similarity constraints,

while the pairs (i, l)α form the dissimilarity constraints. The superscript α above each

pair indicates how the surfaces associated with the two sites would meet. For each pair,

a corresponding matrix Λα would be used to evaluate their distance. For instance, if a

pair of sites i and j meet at a convex angle, the distance evaluation would be performed

as: ρ+T
ij Λ+ρ+

ij.

The goal of the learning process is to find a set of matrices Λα such that for each triplet,

the squared distance between data vectors at sites i and l is greater than the squared

distance between data vectors at sites i and j plus a unit margin. Formally this can be

written as:

∀(i, j, l) ∈ T ραTil Λαραil ≥ ραTij Λαραij + 1 (4.12)

This constraint can be expressed as the following optimization problem [Nguyen and

Guo, 2008]:

min
Λα,ξijl

1

2
||Λα||2F +

µ

|T |
∑

(i,j,l)∈T

ξijl (4.13)

s.t. ραTil Λαραil − ραTij Λαραij ≥ 1− ξijl
Λα � 0

ξijl ≥ 0

where |T | indicates the number of triplets in T . The first term in Equation (4.13)

penalizes the size of each matrix in Λα proportional to its squared Frobenius norm,

|| · ||2F . The second term penalizes the violations of a margin constraint through the use
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of a slack parameter ξijl. The parameter µ ≥ 0 is used to control to what extent the

margin violations are penalized.

The optimization problem in Equation (4.13) can be solved as follows [Weinberger and

Saul, 2008]. First, the term ραTij Λαραij is re-written as tr(Cα
ijΛ

α), where Cα
ij = ραijρ

αT
ij ,

and tr(·) is the trace of a matrix. The slack variable ξijl is replaced with a hinge loss,

resulting in the following optimization problem:

min
Λα

1

2
||Λα||2F +

µ

|T |
∑

(i,j,l)∈T

max
(
0,
[
1 + tr(Cα

ijΛ
α)− tr(Cα

ilΛ
α)
])

(4.14)

s.t. Λα � 0

The solution is obtained iteratively. At each step t, the gradient of the objective function

in Equation (4.14) is calculated with respect to a set of triplets (i, j, l) ∈ K ⊆ T that

violate the margin constraint. A descent step is taken, and Λα is projected onto the set

of positive semidefinite matrices. The gradient Gα
t of Equation (4.14) can be written as:

Gα
t = Λα +

µ

|T |
∑

(i,j,l)∈K

(
Cα
ij −Cα

il

)
(4.15)

Each matrix in Λα is then updated by taking a gradient descent step with:

Λα
t+ 1

2
= Λα

t − ηGα
t (4.16)

where η is the step size. As a last step in the iteration, each of the Λα
t+ 1

2
are projected

onto the set of positive semidefinite matrices:

Λα
t+1 =

m∑
k=1

max(0, λk)eke
T
k (4.17)
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where λk and ek are the eigenvalues, and eigenvectors of Λα
t+ 1

2
.

4.5 Experimental Results

To examine the performance of the improved segmentation method, it was tested on

the set of images presented in Chapter 3. In each case, a point on a target object was

provided to initialize the segmentation algorithm. The segmentation is then performed

autonomously.

The scenes were captured with a Basler 601f camera with a resolution 656× 491 pixels,

using a 16mm focal length lens. Dense depth estimation was performed using optical

flow [Zach et al., 2007], with a random pattern projected onto the scene to improve the

quality of the 3D reconstruction [Rusu et al., 2009a]. The parameters of the energy

function were set to T = 1.4× 10−2 and ν = 0.003.

All steps of the algorithm were executed on a computer with an Intel Q9550 processor,

with 8 GB of memory. With the exception of the optical flow algorithm, and the graph

cuts algorithm, all other the steps of the segmentation method were implemented in Mat-

lab 8.1 (release R2013a). A summary of the computational performance of the method

and it’s constituent parts is shown in Table 4.1.

The use of normal vectors to estimate edge costs requires that sharp features are pre-

served. For this reason a voting based approach proposed by Boulch and Marlet [2012]

is used to calculate normal vectors. In this method triangles are formed between a point

of interest, and pairs of randomly selected points within a small sphere around the tar-

get point. Each triangle is used to calculate a normal vector. The calculated normals

are converted into spherical coordinates, and are binned on a spherical grid. The bin

with the largest number of votes is selected, and the normal vector is reconstructed

from the average values of angles within that bin. Figure 4.5 shows the maximum nor-

mal vector difference as defined by θ(n̂i, n̂j) calculated from normals estimated using
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Time Required (s)

Algorithm Step Mean σ Maximum

Optical flow for 16 images 307.788 3.494 318.604

Depth map calculation 523.302 5.452 534.497

Point cloud construction 36.036 9.042 50.141

Curvature/normal calculation 330.490 9.658 357.569

Texture features calculation 27.568 2.131 31.128

Intensity model construction 0.655 0.018 0.703

Texture model construction 3.246 0.327 3.614

Curvature model construction 0.341 0.008 0.355

Ellipsoid model construction 1.953 0.976 4.308

Graph construction 1.135 0.003 1.138

Distance metric learning 30.649 3.841 38.842

Edge cost evaluation 60.475 3.703 67.415

Graph cuts 0.269 0.020 0.304

Combined algorithm 1320.668 25.443 1382.211

Table 4.1: Computational performance of the improved segmentation algorithm.

the voting method (Figure 4.5(a)), and a method based on least squares plane fitting

(Figure 4.5(b)). It can be seen that most sharp features are preserved in Figure 4.5(a)

where the normals were calculated using the voting method [Boulch and Marlet, 2012].

When normal vectors are calculated using a least squares plane fit, sharp features are

lost (Figure 4.5(b)).

Sets of similar and dissimilar points used to learn the distance are generated from the

object and the background regions. The set of similar points is chosen as the set of

neighbours in the image graph for which both vertices appear in the object seed region.

For each pair of similar points, a dissimilar point is chosen from the background region.

This point is selected radially outwards from the centroid of the object region. Figure 4.6
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Figure 4.5: Normal vector differences calculated for vectors estimated using a voting
algorithm (a), and a least squares plane fitting method (b).

(a) (b)

Figure 4.6: Selected pairs of similar and dissimilar points. Similar points are taken
from the neighbours among the highlighted region (a). These points are paired
with points in the background region to generate dissimilar points (b).

shows a subset of generated similar and dissimilar points. Similar pairs of points are taken

from the region highlighted in Figure 4.6(a). A sample of dissimilar pairs of points is

shown in Figure 4.6(b). Prior to the distance learning step, the feature differences are

normalized such that the maximum difference of each feature in the training set is one.

Segmentation results for all of the tested scenes are shown in Figure 4.15. The figure

shows the tested scene, along with the ground truth segmentations for each object, and
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the results obtained using the improved segmentation method. Segmentation results

for objects that were not detected with the geometric object detection method in the

previous chapter are shown separately, in Figure 4.7.

(a) (b) (c)

Figure 4.7: Segmentation results for objects which could not be detected using the
geometric object detection method.

Figure 4.8 and Figure 4.9 present quantitative evaluation of the segmentation perfor-

mance. The same metrics are used as in Chapter 3. They include the F1 score, preci-

sion, and recall measures (Figure 4.8). Mean and maximum distances from the detected

boundary to the true object boundary are also shown (Figure 4.9). For comparison,

the performance of the segmentation algorithm developed in the previous chapter is also

presented.

Table 4.2 and Table 4.3 present summaries of segmentation performance in comparison to

the algorithm developed in the previous chapter, as well as the benchmark segmentation

method proposed by Bjorkman and Kragic [2010a,b]. Table 4.2 shows the means and

standard deviations of the F1, precision, and recall scores for the three tested algorithms.

Table 4.3 shows the mean and standard deviation of the average and maximum distances

between the detected and true object boundaries.

The results show that on average the improved segmentation algorithm exhibits slightly

higher F1 score, and higher recall score than the method presented in Chapter 3. How-

ever, due to several instances where the method was not able to segment the object,

the improved method performs worse in terms of mean and maximum distance from the
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Figure 4.8: Results for the improved segmentation algorithm, showing the F1 (a),
precision (b), and recall (c) scores. The same performance metrics for the segmen-
tation algorithm developed in the previous chapter are shown.135
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Figure 4.9: Results for the improved segmentation algorithm, showing the mean (a)
and maximum (b) distance from the detected boundary to the true object boundary.
The same metrics for the segmentation algorithm developed in the previous chapter
are shown.

true object boundary. For the same reasons, the standard deviation of the performance

metrics of the improved method is higher. In two instances the segmentation collapsed

to zero area (Figure 4.11). If these two extreme cases are excluded from the perfor-

mance evaluation, the improved method shows better performance on all metrics when

compared against the method presented in Chapter 3; with the exception of precision.

Similarly, when these two cases are excluded, the improved method presents with similar
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variations of the performance scores. In comparison to the method of Bjorkman and

Kragic [2010a,b], the improved algorithm exhibits overall better performance.

F1 Precision Recall

Method Mean σ Mean σ Mean σ

Improved method 0.9100 0.1549 0.9380 0.1576 0.8920 0.1667

Improved method* 0.9309 0.0696 0.9596 0.0669 0.9125 0.0974

Method presented in
Chapter 3

0.8979 0.0896 0.9780 0.0540 0.8441 0.1331

Bjorkman and Kragic
[2010a,b]

0.8367 0.1671 0.8564 0.2341 0.8753 0.1302

Table 4.2: Mean and standard deviation (σ) of the F1, precision, and recall scores
for the improved segmentation algorithm, as well as the method proposed in Chap-
ter 3 and the method of Bjorkman and Kragic [2010a,b]. Performance metrics
obtained by excluding the two failed segmentations (Figure 4.11) from the analysis
are indicated by *.

When segmenting object with a thin structure, such as the tea cups (Figure 4.15, scene 6,

object 20; scene 7, object 21 and scene 8, object 25), the improved method shows better

performance when compared to the method presented in Chapter 3. Due to the use of the

ellipsoidal object model, the method is able to accurately predict that the back surface

of the cups belongs to the object region. This is in contrast to the previously presented

method, which is unable to expand the object region to include the back surface of the

cup.

When presented with multi-part, non-convex objects, such as the Stewie doll (Figure 4.15,

scene 9, object 35), the improved method is still unable to segment the entire object. The

parts composing the complex objects are individually convex. Additionally, the objects

are placed in visually cluttered scenes, making it difficult for the method to use intensity

or texture. In these cases, the method converges to a locally convex component of the

larger object.

137



Chapter 4. Distance Metric Learning for Object Segmentation

Mean Distance to True
Object Boundary

Maximum Distance to
True Object Boundary

Method Mean σ Mean σ

Improved method 7.0818 18.1381 25.2667 40.5549

Improved method* 4.8571 9.7187 21.8116 33.7214

Method presented in
Chapter 3

5.8074 8.4696 23.7206 28.6687

Bjorkman and Kragic
[2010a,b]

13.9709 19.5428 46.7471 51.1294

Table 4.3: Mean and standard deviation (σ) of the average and maximum distances
to the true object boundary for the improved segmentation algorithm, as well as the
method proposed in Chapter 3 and the method of Bjorkman and Kragic [2010a,b].
Performance metrics obtained by excluding the two failed segmentations (Figure
4.11) from the analysis are indicated by *.

The method was also not able to fully segment the coffee cups (Figure 4.15, scene 1,

object 1, and scene 11), and the large book (Figure 4.15, scene 5, object 15). Due to the

intensity difference between the cups and the background table, and because the mean

intensity of the top surface of the cups is much closer to that of the background, the

method is not able to correctly segment the objects. In the case of the book in scene 5

(Figure 4.15, object 15) the segmentation was not able to expand past the high intensity

edges provided by the white lettering on the book.

The method was not able to segment the books scene 1 and 5 (Figure 4.15, scene 1

object 2 and scene 5 object 17). These scenes are also shown in Figure 4.11, with

the initial object seed regions, and background seed rings shown in Figure 4.11(a) and

Figure 4.11(b). The regions were removed because the cost of separating the edges at

the perimeter of the object seed region was higher than the cost of removing the region

entirely. Following the learning step, no significant edges were detected near the object

seed regions. Combined with the similarity in appearance between the regions from which

the object and background are modelled, the cost of separating the edges surrounding
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(a) (b) (c)

(d) (e) (f)

Figure 4.10: Comparison of segmentation results on objects with thin structure
between the improved segmentation algorithm (a)–(c), and the method proposed
in the previous chapter (d)–(f).

object region was higher than the cost of removing it.

Segmentation spilling into the background region was observed for a round plate (Fig-

ure 4.15, scene 8, object 30) and for a tissue box (Figure 4.15, scene 11, object 41). The

results of segmentations for these scenes are additionally shown in Figure 4.12(a), and

Figure 4.12(b) respectively.

The segment corresponding to the plate is observed to include the cup resting on top of the

plate, as well as a part of the background. This occurs because the plate curves upwards

near its edges. Over a number of iterations the ellipsoid fitted to the plate increases in

volume, and expanded upwards. Combined with the similar appearance between the cup

and the plate, this causes the cup to be assigned to the object region. The segmentation

was not observed to converge, and continued to expand into the background as the

139



Chapter 4. Distance Metric Learning for Object Segmentation

(a) (b)

(c) (d)

Figure 4.11: Examples of segmentation error due to shrinking of the object region.
Initial object seed regions and background seed rings are shown in (a) and (b). No
segmentation is obtained, which is shown with unlabelled images (c) and (d).

ellipsoid expanded further.

The object region corresponding to the tissue box in Figure 4.11(b) is observed to contain

the eraser box resting on top of it. Due to the shape of the tissue box, the ellipsoid extends

past the boundaries of the object, causing a part of the smaller box to be contained within

the ellipsoid. The appearance of the two objects is very similar, and over several iterations

parts of the smaller top object are assigned to the tissue box. The segmentation converges

when both objects are segmented together. It should be noted that the method was able

to successfully segment the smaller top object from the tissue box.

Examples of learned feature weights are shown in Figure 4.13, and Figure 4.14 for the

pop can (Figure 4.15, scene 5, object 16) and the doll (Figure 4.15, scene 7, object 22)

respectively. The top row shows feature weights estimated for the convex surfaces. The
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(a) (b)

Figure 4.12: Examples of segmentation error due to the object region expanding
onto the background.

middle row shows feature weights associated with a concave surfaces, while the bottom

row presents feature weights which are used when the surface type cannot be determined.

The first column shows the feature weights for the first iteration of the algorithm, and

the second column shows the weights for the last iteration. The first bar in each graph

corresponds to the overall significance assigned to that feature type.

In both cases, for convex surfaces, depth is considered as a significant feature, in combi-

nation with intensity and texture. This is due to the fact that most dissimilar points of

this type result from samples on the top of the object being paired with a distant portion

of the background surface, while similar pairs come from internal object regions where

depth does not change significantly.

Features for the unknown surface type are most often the result of pairings of points on

the side of the object with distant background features. This results in a combination

of surface normal and depth, combined with other features when they are informative as

being considered most significant.

For concave surface junction types the normal vector difference feature is dominant. In

the case of the doll, the learned distance favours a combination of normal difference and

intensity. This is a desired result as the darker object is separated from the lighter table

by both intensity and a difference in surface normal direction. For the pop can object,

the normal difference is detected as the most significant feature. This is again desirable,
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Figure 4.13: Learned feature weights from the first and the last iteration of the
segmentation algorithm for object 16 in Figure 4.15, scene 5.
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Figure 4.14: Learned feature weights from the first and the last iteration of the
segmentation algorithm for object 22 in Figure 4.15, scene 7.
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Chapter 4. Distance Metric Learning for Object Segmentation

since the can and the book which supports it, share the same intensity but are separated

by a change in surface normal orientation. Note that since both objects are convex, the

magnitude of the convex surface is considered less significant. This indicates that the

method assigns higher importance to feature differences across the unknown and concave

surface junction types.

4.6 Conclusions and Discussion

This chapter presents a graph–based segmentation algorithm that incorporates a distance

metric learning step used to estimate the relative significance of multiple appearance

and 3D geometric cues. The learned distance is used in the smoothness term of the

segmentation algorithm to improve it’s ability to accurately detect object boundaries,

and increase the method’s ability to adapt to each segmentation task. The segmentation

is performed utilizing the graph cuts energy minimization method, while the energy

function is derived based on the Conditional Random Fields framework. The effectiveness

of the proposed segmentation method, and the effect of distance metric learning on the

segmentation accuracy have been examined experimentally. When contrasted against

the method developed in the previous chapter, mean improvement is observed in the

recall score and F1 score, with a slight decline in other performance metrics. In two cases

the method was unable to obtain a segmentation, and the object region was observed to

collapse to zero area. These cases are shown in Figure 4.11. If the two extreme cases

are removed from the performance analysis, the improved method is observed to perform

better in all metrics except precision. The removal of these cases from evaluation also

results in the standard deviation of all performance metrics in the improved method to

appear similar to what was observed with the method presented in Chapter 3.

With a few exceptions discussed in the previous section, the method was able to ac-

curately segment 82 of the 89 objects it was tested on, with a majority of segmenta-

tions being performed in cluttered and visually complex environments. Additionally, the
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4.6. Conclusions and Discussion

method does not rely on a sophisticated initialization or object detection scheme, and

only requires a single point on the object as initialization.

In the improved method, an ellipsoidal object model is used. This allows the method

to predict which parts of the scene should correspond to the object, and allows for a

distinction between multiple similar objects in the scene. However, the model does not

allow for segmentation of complex object that may consist of multiple non-convex parts.

Additionally, the model can expand past the boundaries of the object and in certain

circumstances can cause the segmentation to spill onto the background or other adjacent

objects. An alternative model that could allow for the region belonging to the object to

be identified, while avoiding the errors observed when using the ellipsoidal model would

be desired.

Similarly to the method presented in Chapter 3, the improved algorithm is limited by its

reliance on accurate dense 3D reconstruction of the scene. While it is not dependent on

3D information for object detection, the method does require accurate 3D reconstruction

to perform segmentation in scenes that are visually complex. Without the means to

deal with missing 3D data, or data of poor quality, the performance of the segmentation

algorithm can degrade.
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Figure 4.15: Scenes used to evaluate the performance of the improved segmentation
method. Scene number is shown separately on the left. Column 1 shows an image
of the test scene. Column 2 shows the ground truth labelling and object numbers,
with an X indicating that the object was not detected by the method presented in
Chapter 3. Column 3 shows results of applying the improved segmentation method.
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Figure 4.15: Scenes used to evaluate the performance of the improved segmentation
method. Scene number is shown separately on the left. Column 1 shows an image
of the test scene. Column 2 shows the ground truth labelling and object numbers,
with an X indicating that the object was not detected by the method presented in
Chapter 3. Column 3 shows results of applying the improved segmentation method.
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Figure 4.15: Scenes used to evaluate the performance of the improved segmentation
method. Scene number is shown separately on the left. Column 1 shows an image
of the test scene. Column 2 shows the ground truth labelling and object numbers,
with an X indicating that the object was not detected by the method presented in
Chapter 3. Column 3 shows results of applying the improved segmentation method.
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Figure 4.15: Scenes used to evaluate the performance of the improved segmentation
method. Scene number is shown separately on the left. Column 1 shows an image
of the test scene. Column 2 shows the ground truth labelling and object numbers,
with an X indicating that the object was not detected by the method presented in
Chapter 3. Column 3 shows results of applying the improved segmentation method.
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Figure 4.15: Scenes used to evaluate the performance of the improved segmentation
method. Scene number is shown separately on the left. Column 1 shows an image
of the test scene. Column 2 shows the ground truth labelling and object numbers,
with an X indicating that the object was not detected by the method presented in
Chapter 3. Column 3 shows results of applying the improved segmentation method.
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Figure 4.15: Scenes used to evaluate the performance of the improved segmentation
method. Scene number is shown separately on the left. Column 1 shows an image
of the test scene. Column 2 shows the ground truth labelling and object numbers,
with an X indicating that the object was not detected by the method presented in
Chapter 3. Column 3 shows results of applying the improved segmentation method.
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Figure 4.15: Scenes used to evaluate the performance of the improved segmentation
method. Scene number is shown separately on the left. Column 1 shows an image
of the test scene. Column 2 shows the ground truth labelling and object numbers,
with an X indicating that the object was not detected by the method presented in
Chapter 3. Column 3 shows results of applying the improved segmentation method.
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CHAPTER 5

Conclusions

This final chapter presents a summary of the contributions of this thesis, and discusses

possible directions for future research.

5.1 Summary of Contributions

3D Segmentation for Door Handle Localization

Based on the analysis of the geometric structure of door and handle environment, a 3D

segmentation method has been proposed to allow for the segmentation and localization

of a door handle of unknown geometry and appearance. The method functions by first

detecting and segmenting the background elements of the scene such as the door and

any adjacent walls or structures, leaving only the handle. The pose and geometry of

the handle are estimated by fitting a bounding box to it’s principal components when

projected onto the dominant plane in the scene. The bounding box can then be used to

guide robotic grasping and manipulation of the handle. This method can be performed

with a single, end effector mounted camera. By focusing on the removing the background

elements in the scene, the proposed method does not require any knowledge of the han-

dle’s geometry, and by utilizing 3D data no appearance information of either the door or

the handle is required.

The proposed algorithm was tested experimentally by performing door handle localization

in scenes composed of a combination of six handles and 3 doors. Experimental results

have demonstrated the effectiveness of the proposed method.
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Object Segmentation for Online Model Acquisition

Two object segmentation methods are developed to allow online partial object model

acquisition. The object models are intended to be used to guide robotic grasping or

manipulation tasks.

The segmentation problem is formulated as the Maximum a Posteriori estimation of pixel

labels conditioned jointly on appearance and geometric data. The problem is formulated

using the Conditional Random Fields framework, and an exact solution is obtained effi-

ciently using the graph cuts energy minimization technique.

The first segmentation method utilizes a combination of intensity, texture, depth, and

curvature. The use of depth information in the region term is avoided to eliminate

segmentation errors in areas where the object contacts it’s supporting surface, or other

objects. Initial object seeds are detected based on closed contours of depth edges and

high curvature edges, allowing the segmentation algorithm to initialize appearance and

geometric models without relying on user input. By utilizing appearance and geometric

data jointly, the method is able to function effectively in situations where individual

cues alone cannot accurately determine the regions or boundaries of the object. The

effectiveness of the proposed method was verified by performing segmentations on a

number of scenes of varying complexities.

A second, improved, segmentation algorithm is developed which incorporates a distance

metric learning step to estimate the relative significance of available segmentation fea-

tures. Using distance metric learning from pairs of similar and dissimilar points sampled

from object and background seed points, the method learns the distance used in the

smoothness term of the segmentation energy function. The segmentation is performed

iteratively. The method alternates between learning the object and background models,

learning a distance metric, and performing segmentation. Additionally, the improved

segmentation algorithm incorporates an ellipsoidal object model to improve the methods

ability to localize object regions. The likelihood of 3D points in space is modelled as a
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function of a point’s algebraic distance from an ellipsoid fitted to the object seed points.

This allows for better localization of the object, while avoiding the draw backs of mod-

elling the distribution of points based on their distance from the camera. The method’s

performance is tested experimentally on the same dataset as the method described above.

5.2 Future Work

3D Segmentation for Door Handle Localization

The presented method for door handle segmentation and localization was demonstrated

to perform well in most circumstances. However, the performance of the algorithm is

limited when presented with featureless, reflective or transparent surfaces. While dense

depth estimation of reflective or transparent surfaces is very challenging, the algorithm’s

performance when dealing with textureless surfaces, or reflective handles can be im-

proved by incorporating sparse features such as corners, lines or conics in both the door

plane detection and door handle localization phases of the algorithm. Incorporating the

robot’s other available sensors in the detection of background elements could also assist

in improving the performance of the method.

Object Segmentation for Online Model Acquisition

The proposed segmentation algorithms were shown to be able to accurately segment

objects in a variety of visually and geometrically complex environments. Despite this,

a number of limitation are noted, which provide several avenues for future work. One

limitation of the presented segmentation methods is their computational complexity.

The presented methods require a dense 3D reconstruction of the observed scene, as well

as the calculation of a number of secondary features such as texture and curvature.
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Chapter 5. Conclusions

Before segmentation is performed, both region models and distance functions have to be

estimated, which leads to large amount of computation. Improving the computational

performance of the presented methods is a recommended direction for future research.

Both of the presented segmentation methods rely on the availability of dense 3D data for

segmentation. The first segmentation algorithm also relies on 3D information for object

detection. The methods currently cannot function with missing 3D information. One

direction for future work would involve enabling the segmentation algorithm to function

with missing, or very noisy 3D data.

It is important to note that the problems of image filtering and restoration, and segmen-

tation are related. In image restoration, it is common to enforce a smoothness constraints

at all points of the image except where a discontinuity is present. As a consequence, the

regions where this smoothness constraint is broken can be considered as a segmentation

of the image. It should be possible to combine filtering and restoration (in particular of

noisy or missing 3D data) and segmentation into a uniform framework.

It was emphasized by Rasolzadeh et al. [2010] that, in contrast to traditional image

processing systems, a robot is an “active” observer. A robotic system is able to interact

with the environment to obtain more information, and to utilize this information to

learn and improve its performance in future tasks. With this in mind it may be a

desired direction for future research to utilize the results of the manipulation process to

provide information regarding the accuracy of the segmentation. This could allow the

segmentation algorithm to improving it’s performance over time, and reduce the need for

offline training with manually labelled images.
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APPENDIX A

Random Sample Consensus (RANSAC)

The Random Sample Consensus (RANSAC) algorithm is a method for fitting models

to data containing a significant number of (potentially gross) outliers. The algorithm

iterates over two main steps. First a model is fitted to a minimal subset of points

randomly selected from the data. The subset of points is minimal in the sense that it is

the smallest set of points needed to estimate the model’s parameters. An evaluation step

then determines the “quality” of the model. In more detail, the steps of the RANSAC

algorithm can be described as follows [Fischler and Bolles, 1981]:

1. Randomly select a minimal subset of data points.

2. Estimate the model using the randomly selected set of points.

3. Determine the number of inliers as points whose distance from the model is less

than a threshold t.

4. If the number of inliers is greater than for any previous model, keep the current

model, else disregard.

5. Repeat 1–4 for k iterations (optionally, terminate if the number of inliers is greater

than some threshold d).

6. Using the largest set of inlier points calculate the model using any desired model

fitting method.

The threshold t for determining inliers will depend on both the model being thought, and

the noise properties of the data. While it can be set analytically, it is also common to
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Appendix A. Random Sample Consensus (RANSAC)

Inlier points
Outlier point
Least squares

RANSAC + least squares

Figure A.1: Demonstration of the RANSAC algorithm.

set the threshold experimentally or heuristically based on knowledge about the problem

at hand.

The number of iterations k can be set heuristically, or based on an expected number of

inliers in the data and the desired precision. Assuming that the ratio of inliers w in the

data is known (or can be estimated), and given a desired probability z that at least one

iteration randomly sampled a set of points containing no outliers, the number of required

iterations can be determined as [Fischler and Bolles, 1981]:

k =
ln(1− z)

ln(1− wn)
(A.1)

A simple line fitting example demonstrating the RANSAC algorithm is shown in Fig-

ure A.1. A set of points forming a line with one gross outlier point is used as input

to the RANSAC and least squares algorithms. Because RANSAC is able to ignore the

160



outlier point, it is able to correctly estimate the desired model parameters, whereas the

lest squares method fails to produce a useful result.
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APPENDIX B

Kernel Density Estimation and Mean

Shift

Kernel density estimation is a nonparametric method for estimating the probability den-

sity function of a d-dimensional random variable. Consider a set of n discretely sampled

points {xi}ni=1 from some probability density function in d-dimensions. The kernel density

estimate of the underlying density function can be calculated as:

f̂K(x) =
cK
nhd

n∑
i

k

(∣∣∣∣∣∣∣∣x− xih

∣∣∣∣∣∣∣∣2
)

(B.1)

where K(x) = cKk(||x||2) is the kernel with a bandwidth h, and cK is a constant ensuring

that the kernel integrates to 1.

The mean shift algorithm is a non-parametric iterative mode seeking method. It is used

to efficiently find peaks in high dimensional data and assign points to the corresponding

clusters. The mean shift algorithm is derived from kernel density estimation methods

[Comaniciu and Meer, 2002].

Taking the gradient of Equation (B.1) results in:

∇f̂(x) =
2cK
nhd+2

[
n∑
i

g

(∣∣∣∣∣∣∣∣x− xih

∣∣∣∣∣∣∣∣2
)]∑n

i xig
(∣∣∣∣x−xi

h

∣∣∣∣2)∑n
i g
(∣∣∣∣x−xi

h

∣∣∣∣2) − x
 (B.2)
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Appendix B. Kernel Density Estimation and Mean Shift

where the first term on the right hand side of Equation (B.2) can be considered as a kernel

density estimate using the kernel G(x) = cGg(x), with a kernel profile g(x) = −k′(x).

The second term of Equation (B.2) is called the mean shift :

mG,h(x) =

∑n
i xig

(∣∣∣∣x−xi
h

∣∣∣∣2)∑n
i g
(∣∣∣∣x−xi

h

∣∣∣∣2) − x ∝ ∇f̂K(x)

f̂G(x)
(B.3)

where

f̂G(x) =
cG
nhd

n∑
i

g

(∣∣∣∣∣∣∣∣x− xih

∣∣∣∣∣∣∣∣2
)

(B.4)

From Equation (B.3), it can be seen that the mean shift vector points in the direction of

maximum ascent of the kernel density estimate f̂K(x), and is modulated by the density

estimate f̂G(x). The mean shift vector, therefore, takes large steps in the direction of the

gradient of f̂K(x) when the density estimate f̂G(x) is low, and takes smaller steps near

the peaks of f̂G(x) [Comaniciu and Meer, 2002].

The mean shift procedure can now be summarized as follows:

1. Using a kernel G(x) with a bandwidth h calculate the mean shift vector mG,h(x)

at location x.

2. Set x = x+mG,h(x).

3. Repeat steps 1. and 2. until the mean shift vector is zero or is sufficiently small.

As an additional benefit, the mean shift algorithm can be used to assign each point to a

cluster by tracking which local maximum a point is attracted to. The local maxima then

become clusters, with points in their attraction basin being assigned to them.
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The mean shift procedure is demonstrated in Figure B.1 using a set of points sampled

from a 2-dimensional distribution with one mode. The mean shift algorithm easily con-

verges to the mode of the distribution.

(a)

(b) (c) (d)

Figure B.1: Demonstration of the mean shift algorithm. (a) the path a point takes
to the local maximum. (b)–(d) three iterations of the mean shift algorithm using a
uniform kernel, showing the initial location (red) and the final locations (blue) at
each iteration. The bandwidth of the kernel is indicated by the black circle. Dark
gray points are used to calculate the mean shift vector at each iteration.
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APPENDIX C

Least Squares Ellipsoid Fitting

Let p = [x, y, z]T be any point in 3D space. An ellipsoid is a quadric surface which can

be described by a second degree polynomial:

F (v,p) = ax2 + by2 + cz2 + 2fyz + 2gxz + 2hxy + 2px+ 2qy + 2rz + d = 0 (C.1)

where v = [a, b, c, f, g, h, p, q, r, d]T is a vector of parameters, and F (v,p) is called an

algebraic distance. Equation (C.1) can be written in matrix form as:

XTv = 0 (C.2)

where X = [x2, y2, z2, 2yz, 2xz, 2xy, 2x, 2y, 2z, 1]T .

To ensure that the quadratic surface represents an ellipsoid, constraints are introduced.

Let:

I = a+ b+ c (C.3)

J = ab+ bc+ ac− f 2 − g2 − h2 (C.4)

K =

∣∣∣∣∣∣∣∣∣∣
a h g

h b f

g f c

∣∣∣∣∣∣∣∣∣∣
(C.5)

A quadratic surface is an ellipsoid when:

J > 0, I ×K > 0 (C.6)

It was shown by Li and Griffiths [2004], that a sufficient condition for the quadric surface

to represent an ellipsoid is:

4J − I2 > 0 (C.7)
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Appendix C. Least Squares Ellipsoid Fitting

Because the scale of the parameter vector can be chosen arbitrarily, the inequality can

be re-written as:

4J − I2 = 1 (C.8)

Ellipsoids satisfying the condition of Equation (C.8) are a subset of the ellipsoid family.

For this reason Li and Griffiths [2004] propose a search based method. The constraint in

Equation C.8 is replaced with:

kJ − I2 = 1 (C.9)

where k ≥ 4. A range of k ∈ [a, b], a ≥ 4, is selected. The range [a, b] is searched for

the solution to Equation (C.1) with largest value of k, that satisfies the constraints of

Equation C.9 and Equation (C.6). Since the search is over a single variable, a good value

for k can be found quickly. Alternatively, k can be set to k = 4, removing the need to

perform a search, but resulting in a poor fit to flat, or elongated data [Li and Griffiths,

2004].

For a given value of k the ellipsoid fitting procedure is as follows. Let {pi}mi=1 be the set

of m points in 3D to which the ellipsoid is to be fitted. For each 3D point k, we can

write:

X i = [x2
i , y

2
i , z

2
i , 2yizi, 2xizi, 2xiyi, 2xi, 2yi, 2zi, 1]T (C.10)

A solution to Equation C.1 under the constraint of Equation (C.9) can then be obtained

by minimizing the sum of squared algebraic distances between the quadric surface, and

the set of data points:

min ‖Dv‖2 s.t. kJ − I2 = 1 (C.11)

where D = [XT
1 ,X

T
2 , ...,X

T
m]T . To enforce the constraint in Equation (C.9), an addi-

tional matrix C is defined as:

C =

 C1 06×4

04×6 04×4

 (C.12)
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where

C1 =



−1 k
2
− 1 k

2
− 1 0 0 0

k
2
− 1 −1 k

2
− 1 0 0 0

k
2
− 1 k

2
− 1 −1 0 0 0

0 0 0 −k 0 0

0 0 0 0 −k 0

0 0 0 0 0 −k


(C.13)

The solution to the constrained linear least squares optimization can be obtained as the

eigenvector vector associated with the unique positive eigenvalue of the system [Li and

Griffiths, 2004]:

DDTv = λCv (C.14)

Once obtained, the solution is checked against the constraints of Equation (C.6). If the

constraint is not satisfied, the value of k is reduced by a step δk, and the procedure is

repeated.

169





APPENDIX D

Optical Flow

Optical flow can be considered as an approximation of the projection of 3D motion of

points or surfaces onto the image plane of the camera [Horn 1986]. It is estimated from

the apparent motion of intensity patterns in the observed images of the scene.

Optical flow is most often estimated under the assumption that the intensity of a point

does not change when it is imaged from slightly different positions, this is called the

brightness constancy constraint [Baker et al., 2011; Truccp and Verri, 1998]. Following the

notation in chapter 2, let q = (u, v) be a point on the image, and let q̇ = (u̇(u, v), v̇(u, v))

be the motion field at that point; the brightness constancy can then be expressed as:

I0(q) = I1(q + q̇) (D.1)

where I0 and I1 are images taken of the same scene at time t = 0 and t = 1 respectively.

The equation provides only one constraint for two unknowns at each pixel. To address

this, a second constraint is introduced, often called the prior or smoothness constraint

penalizing non smooth motion fields [Baker et al., 2011; Truccp and Verri, 1998]. Most

existing methods combine the data and the smoothness terms in an optimization problem

with a two term energy or function:

E =

∫
Ω

λEdata + Esmooth (D.2)

Where Ω represents the set of image coordinates, Edata is the data term used to evaluate

how well the solution agrees with the brightness constancy constraint, and Esmooth is used
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Appendix D. Optical Flow

to regularize the solutions. The parameter λ is used to control the relative significance

of the data and the smoothness terms.

Together the data and the prior terms fully define the energy function that is minimized

to obtain the optimal solution. For a more detailed summary and taxonomy of optical

flow algorithms please see [Baker et al., 2011], and the references therein.

The optical flow algorithm used in this work is based on the method presented by Zach

et al. [2007]. The method defines the data and smoothness terms which penalize the L1

norm of the brightness constancy constraint violation, and the gradient of the estimated

motion field over the image:

E =

∫
Ω

{λ|I0(q)− I1(q + q̇)|+ | 5 q̇|}dq (D.3)

where 5q̇ is the gradient of the motion field q̇.

A coarse to fine approach for solving Equation (D.3) is described by Zach et al. [2007].

Additionally, a method for implementing the algorithm on a graphics card is presented.

For details of implementation see [Zach et al., 2007].

To demonstrate the quality of 3D reconstruction obtained using the chosen optical flow

algorithm, 3D reconstruction was performed on a set of three planar surfaces with a

varying amount of visible texture. The surfaces include a plane with a checker pattern,

a plane with a wooden texture, and a uniform white surface with no visible texture. To

improve the quality of 3D reconstruction, a pattern was projected into the scene when

acquiring images in Chapter 3 and Chapter 4. To demonstrate the effect this has on the

quality of depth estimation, images with a projected pattern were also captured. Each

surface was placed in two orientation, with either the left or the right side tilted away

from the camera. Images were captured at 1cm increments, with the surfaces positioned

approximately 1m in front of the camera. In total 17 images are captured for each scene.

Optical flow is calculated between the central image, and each of the 16 displaced images.
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Reconstruction of a point cloud from the estimated optical flow follows the procedure

described in Section 2.2 of Chapter 2. The depth maps are stacked into a single matrix,

and combined by using a median filter with a 5× 5× 16 window size.

Sample images for the tested surfaces are shown in Figure D.1(a), with corresponding

filtered depth maps, and reconstructed point cloud shown in Figure D.1(b) and Fig-

ure D.1(c), respectively.

Sample results for surfaces imaged with a projected pattern are shown in Figure D.2.

Images of the surfaces with a projected pattern are shown in Figure D.2(a), while recon-

structed depth maps, and point clouds are shown in Figure D.2(b) and Figure D.2(c),

respectively.

A simple quantitative evaluation of the quality of 3D reconstruction is obtained by ex-

amining the deviation of the 3D points from a plane fitted to the point cloud using the

RANSAC algorithm. For a more comprehensive examination of many available optical

flow algorithms and their performance analysis, refer to the surveys provided in [Baker

et al., 2011, 2009, 2007].

Table D.1 provides a summary of the quality of 3D reconstruction. It presents the

standard deviation (σ) of the points from the fitted plane for each surface type, with and

without the projected pattern. Results are shown for reconstruction using individual

depth maps for each pair of images, as well as the single filtered depth maps obtain using

the median filter procedure described above. When the surface has sufficient visible

texture, the chosen optical flow algorithm allows for accurate 3D reconstruction. The

quality of the reconstruction decreases when the surface has a less pronounced texture. In

cases where no texture and no features can be observed, recovered 3D structure exhibits

significant error. The projected pattern adds artificial texture to surfaces. This allows

for accurate 3D reconstruction of the surface, even when it does not posses visible texture

naturally.
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Figure D.1: Results of 3D reconstruction for three types of surfaces, without a
projected pattern (a). Reconstructed depth maps are shown in (b), with the cor-
responding point clouds shown in (c).
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Figure D.2: Results of 3D reconstruction for three types of surfaces, using a pro-
jected pattern (a). Reconstructed depth maps are shown in (b), with the corre-
sponding point clouds shown in (c).
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No Pattern Pattern

Surface Type σ (unfiltered) σ (filtered) σ (unfiltered) σ (filtered)

Checker pattern 0.0046 0.0032 0.0047 0.0026

Wooden texture 0.0505 0.0350 0.0038 0.0024

Textureless, white N/A 0.6028 0.0039 0.0023

Table D.1: Standard deviation of reconstructed points from a fitted planar model
for different surface types. All values are presented in meters.
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