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Predictive fast Motion Estimation (ME) algorithms have been widely used in video CODECs
due to their performance efficiency and low computational complexity. In thisthesis a new
block-based fast motion estimation technique named Dynamic Predictive Search Algorithm
(DPSA) is developed, which can be considered in predictive zonal search category.

The poposed approach is based on the observation that temporally and spatialy adjacent macro-
blocks are not just statically correlated, but also dynamic alterations in their motion content are
highly coherent. DPSA introduces a new set of six candidate predicted motion vectors. For early
termination criteria, DPSA modifies termination procedure of already existing EPZS algorithm.

Performance of this newly proposed algorithm has been compared to four other state-of-the-art

algorithms implemented on VT, H.264 standard software platform.

Experimental results have proven that DPSA accomplishes up to 38% compression ratio

enhancement achieved by a process with more 14.75% less computational complexity and up to



0.47 dB higher PSNR values over the EPZS. It also manages to have up to 13% speed up over
EPZS algorithm.

Because of its simplicity and low computational complexity DPSA is energy efficient for
portable video processing in computation- or power-constrained applications and easy to be
implemented on both FPGA- and Microcontroller-based embedded systems. Also, higher
compression ratio makes DPSA more compatible with limited capacity storage media, and

limited band-width transmission networks.
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CHAPTER1

INTRODUCTION

1.1 Background

Digital video data flow from a source to a destination consists of two specific parts. compression
modules, known as Encoders, in which massive data size of ‘raw’ digital video is reduced for
transmission or storage, and decompression part, or Decoder that reconstructs the video sequence
for display. Therefore, compression is an essential component of multimedia services, and good
compression and decompression processes is key for providing better image quality products.
Moreover, the need for better compression tools has led to developing further standards for video

compression, such as the recent ones, “MPEG-4” [1] and “H.264/AVC” [2].

This chapter isabrief review on main characteristics of digital images and video signals and
examines concepts such as sampling formats and quality metrics, as well as introducing structure

of video coding systems.

The first subject is sampling in colour images. To represent a colour images, at least three
numbers per pixel position are required for brightness, or luminance (Luma), and to indicate the
colour, or chrominance (Chroma). Two methods are well-known for this purpose: RGB colour

space[3] and YUV.

[4] [5] In the RGB colour space, each pixel isformed with three numbers that describe the
relative proportions of three primary color components Red, Green and Blue. In this model the
three colour contents are stored with the same resolution. When one of colour component has the
strongest intensity, the pixel is visualized with that primary colour, and when two or more
components have almost the same intensity, then the colour is a shade of a secondary colour

(such as purple, yellow cyan) or it can be white or black.

The other colour model is'Y CbCr colour space, also known as YUV. This model is based on a

fact that human vision is less sensitive to colour than to luminance. Hence, it is more efficient to



represent a colour image by luminance (YY) component, with higher resolution, and Cb; Cr; and
Cg that present the colour intensity or Chrominance components, with lower resolution. This
decreases size of datarequired to be stored or transmitted with no obvious difference on visual
quality. Luma component, Y, can becalculated as an average of R, G and B with weighting

factors of K;; K; and Ky
Y=KR+KG+K,B
The chrominance is defined as the difference between R, G or B proportionsand the Luma
C=B-Y; C=RY; C~=GY

However, since (Cb + Cr + Cg) is a constant, only two Chroma components need to be stored or
transmitted. The third component can always be cal culated from the other two. So, in the YUV
colour space, only the Luma (Y) and blue and red Chroma (Cb, Cr), also knownasU and V ae
transmitted. Representing Chroma with alower resolution than Lumain thisway isasimpleand

yet, effective model of image compression.

Three patterns for sampling resolution ratio for YUV format are supported by MPEG-4 Visual
and H.264/AV C standards:

4:4:4 sampling in which the three components (Y, U and V) have the samenumber of samples
for each component at every pixel position. Thusfor every four luminance samples there are four

Cb and four Cr samples. 4:4:4 sampling keepsthe full fidelity of the chrominance components.

In 4:2:2 sampling, the chrominance componentsvertical resolution isthe same as the Luma but
their horizontal resolutionis half of Luma In other words, for every four luminance samplesin
the horizontal direction there are two Cb and two Cr samples. 4:2:2 video is useful for high-

quality colour reproduction.

The popular sampling format is4:2:0, in which Cb and Cr each have half the horizontal and
vertical resolution of Y. 4:2:0 sampling is suitable for consumer applications such as video
conferencing, digital television and digital versatile disk (DV D) storage. Because each colour
difference component contains one quarter of the number of samplesin theY component, 4:2:0

YUV video requires exactly half as many samples as 4:4:4 (or RGB) video.



For example, in a 720 x 576 pixelsimage resolution:

Y component is represented with eight bits for each samplein all threeratios.

In 4:4:4 Cb, Cr components are eight bits for each sample, and the total rumber of bitsis:
720 x 576 x 8 x 3=9953280 bits per frame

In 4:2:2 Cb, Cr components resolution is 360x 288 samples, each eight bits and the total number

of hits:
(720 x 576 x 8) + (360 x 288 x 8 x 2) = 4976640 bits per frame

In 4:2:0 versions require half as many bits as the 4:4:4 versions and the total number of bitsis:

4976640 bits per frame

Aswell, there are different intermediate formats to standardize the horizontal and vertical

resolutions in pixels to capture YUV video sequences prior to compression and transmission,
such as SQCIF, QCIF, CIF, 4CIF. The CIF (Common Intermediate Format), which isthe basis
for other formats, means 352x 288 Y samples per frame. For examplein 4:2:0 resolution there
are 352x 288 x 8 = 811008 bitsfor Y samples and half of this much (405504 bits) for Chroma

samples. Some of the most popular formats are listed in table 1.

Table 1: Resolution formats

Format | Y resolution (Hrzntl x Vrtcl) | bits per frame for 4:2:0 resolution

ACIF 704 x 576 4866048

CIF 352 x 288 1216512
QCIF 176 x 144 304128
SCIF 128 x 96 147456

The choice of frame resolution depends on the application and available storage or transmission
capacity. For example, 4CIF is appropriate for standard-definition television and DV D-video;
CIF and QCIF are popular for videoconferencing applications; QCIF or SQCIF are widely used

in mobile multimedia applications where the display resolution and the bitrate are limited.



Most video standards, particularly the most recent ones:. MPEG-4 Visual and H.264/AV C,
follow the so-called Block-based video coding[6] approach, in which each coded frame is split
into fixed or variable size non-overlapping blocks of associated Luma and Chroma samples,
known as Macro-blocks (MB). Usually, each MB covers arectangular area of 16 x 16 samples of
the Luma component and 8 x 8 samples of each of the two Chroma components. Macro-blocks
are the basic building units of the standard for which the decoding processis specified, and all
Lumaand Chroma samples of a MB are encoded or decoded at atime. However, in H.264/AVC
standard, the luminance component of a MB also, could be partitioned into 16 x 16, 16 x 8, 8 x

16,8x 8,8 x4, 4x 8o0r 4x 4 blocksin asimilar way as depicted in Figure 1.

1 2 3

1 16x16 block 2 16x8 blocks 2 8x16 blocks 4 8x8 blocks

0 0 1
0 0 1
1 2 3
1 8x8 block 2 8x4 blocks 2 4x8 blocks 4 4x4 blocks

Figure 1: Variable block sizes

1.2 Video coders

As mentioned earlier, avideo coding system consists of a pair of encoder and decoder
components and the whole system is known as aCODEC. The encoder isin charge of video
compression, whichis the process of compacting digital video sequences into smaller number of
bits. The decoder, on the other hand converts the compressed form back into an approximation

version of the original video data.

Video compression enables more efficient use of transmission and storage resources. Even with
constant advances in storage and transmission capacity, compression isstill likely to be an
essential component of multimedia services for many years to come. An information-carrying

signal may be compressed by removing redundancy from the signal. Most video compression



algorithms operate by removing redundancy in the temporal, spatial and/or frequency domains to

achieve compression.

In the temporal domain, there is usually a high correlation between following frames of video
that were captured at around the same time. Especially in high sampling rates (the frame rate)
temporally adjacent frames are often highly correlated. For example, when the sequenceis
captured from a camera at 30 frames per second, there is little change between the two framesin
the short interval of 1,80 of a second. Thereis clearly significant temporal redundancy, and most

of the image remains unchanged between successive frames.

In the spatial domain, there is usually a high correlation between pixels that are close to each
othe, inside a frame. Because neighbouring samples most possibly are part of the same object
and have the same or very close colour intensity and luminance, hence ther values are often very

similar.

Freguency domain compression is based on the fact that human eyes and brain are more sensitive
to lower frequencies [4]. In avideo frame, if we low-pass filter the background region, by
removing some of the higher-frequency content, the image becomes smoother and less
information is required to store or trangmit. However, the image is still recognisablefor human

eye, with no visible quality distortion.

By removingspatial, frequency and/or temporal redundanciesit is possible to compress the data
significantly at the expense of an acceptable range of distortion. A video encoder consists of
three main functional units: a temporal model, aspatial model and an entropy encoder. The
H.264 and MPEG-4 Visua standards assume a CODEC model that uses block-based motion
compensation, transformation, quantisation and entropy coding. Each of these components

processesoneMB at atime.

There are some specific orders to code the MBs. One of the most popular onesis called raster
scan. If the frame is processed in raster order, then coding starts from the most top-left pixel in
the frame and continues to the right first. When one whole line is finished, it jumps to the most

left pixel in the next line. Raster scan order is demonstrated in figure 2.



> Raster
scan
~ order

Figure 2: Raster Scan Order

Thefirst functional unit in encoder istemporal model. The input to the temporal model is an
uncompressed video sequence. The temporal model attempts to reduce temporal redundancy by
exploiting the similarities between neighbouring video frames, usually by constructing a
prediction of the current video frame. In MPEG-4 Visua and H.264, the prediction is formed
from one or more previous or future frames and isimproved by compensating for differences
between the frames (motion compensated prediction). The output of the temporal model is a
residual frame, created by subtracting the prediction from the actual current frame, and a set of

motion vectors describing how the motion was compensated.

Theresidual frame forms the input to the spatial model which makes use of similarities between
neighbouring samplesin the residua frame to reduce spatial redundancy. In MPEG4 Visua and
H.264 thisis achieved by applying atransform to the residual samples and quantizing the results.
The transform converts the samples into another domain in which they are represented by
transform coefficients. The coefficients are quantised to remove insignificant values, leaving a
small number of significant coefficients that provide a more compact representation of the

residual frame. The ouput of the spatial model is a set of quantized transform coefficients.

Temporal model parameters are usually motion vectors and spatial model parameters are
coefficients These parameters are compressed by the entropy encoder to remove statistical
redundancy in the datasuch as representing common vectors and coefficients by short binary
codes. A compressed sequence consists of coded motion vector parameters; coded residual

coefficients and header information form the bit stream exiting from encoder.

The video decoder reconstructs a video frame from the compressed bit stream. After decoding

the spatial model, coefficients and motion vectors are decoded by an entropy decoder to



reconstruct an estimated version of the residual frame. Then the decoder uses the motion vector
parameters and one or morereference frames, to create a prediction of the current frame

Eventually, the frame itself is reconstructed by adding this predictionto the residual frame.

Motion Vedtorors

* Encoded bit stream
Input fi Residual id ;
- Motion Compensation =31 Transformer M} Quantizer [ Entropy Encoder fr———3»

Recongructed frame

Deblocking filter 4t

Motion Vedorors

Decoded frame * I Encoded bit stream
€] Motion compensation =] inverse transformer =i De-quantizer fm] Entropy decoder |

[ Deblocking filter

1.3 Quality measurement

Figure 3: Digital video CODEC block-diagram

In order to evaluate and compare video processing systems, determining the quality of the
encoded video images isrequired. The most popular scale to measure the so-called objective
quality of compressed video sequences isa logarithmic parameter, known as Peak Signal to
Noise Ratio (PSNR) which depends on the mean squared error (M SE) between an original and a
compressed video frame, asin equation (1-1).

PSNR= 10 Log,,[(2"-1)9YMSE] n:# of bits image sample. (1-0

PSNR isavery popular, and widely used to evaluate thefidelity between compressed and
decompressed video images, because it can be calculated easily and quickly. To have a general
perspective, an image with PSNR of 30.6 dB reflects a good quality, while that same imagewith
PSNR of 28.3 dB is consideredthe poorer image quality.



In acolour image, PSNR is attributed to three different values, for Y; U and V samples. As
explained, Chroma components can be represented with alower resolution than Y, to reduce the
amount of data required to be stored or transmitted with no obvious difference on visual quality.
That iswhy in many studies Y samples illustrate the quality of encoded images. However, in
some cases Where the color content in aframeis very diverse and it changes dramatically block
to block (figure 4). In these cases, it isimportant to evaluate U and V samples to determine the

quality of encoded sequence.

Figure4:"Flower" and "Mobile"; two examples of colourful sequences

Another factor that describes the performance of a CODEC is compression ratio. For afixed
resolution and on a single image, the higher the compression ratio is in an encoder the lower
number of bitsisrequired to be stored or transmitted and lower band-width network or smaller

media storage is needed.



CHAPTER2

Block based M otion Compensation

2.1. Motion compensation

The first compression module in encoders is Motion Compensation (M C) which exploits
temporal redundancy between frames and describes a picture in terms of the transformation of a
reference picture to the current picture. MC is based on the fact that usually, for most of the
frames of a sequence, the only difference between one frame and the next one is the result of
either the camera moving or an object in the frame moving. With sampling rates like 30 frames
per second, the motion of objects or camerain just 1/30 of asecond is clearly very small. This
means much of the information that represents one frame will be the same as the information

used in the next frame.

In most recent visual coding standards includng MPEG-4 Visual, and H.264/AV C, the macro-
block (MB), corresponding to a MxN-pixel region of aframe, isthe basic unit for motion
compensated. For instance, in avideo material in 4:2:0 format, a macro block is organised as a
16x 16-pixel region representing 256 luminance samples, 64 blue chrominance samples and 64
red chrominance samples, giving atotal of six 8x 8 blocks. An MPEG-4 Visual or H.264
CODEC processes each MB at atime and provides a Motion Vector (MV) associated to that
MB.

Finding the MV of aMB involves Motion Estimation (ME) process, in which, a macro block of
MxN-sample region in areference frame is found that closely matches the current macro block.
The reference frameis a previously encoded frame from the sequence that can be before or after
the current frame in display order. Inside an area centred on that MB position in a previously
encoded frame, called reference frame (search window) is searched, to find a MxN -pel region
that closely matches the current MB. Thisis carried out by comparing the current MB in the

current frame with the possible MxN-samples regions in the search window to find the block that



minimises a matching criterion, such as most widely-used Sum of Absolute Differences (SAD)

value.

Then MC process continues with subtracting the selected the best matching MB in the reference
frame from current MB to produce aresidual MB of Luma and Chroma samples that will be
encoded and transmitted together with a Motion Vector (MV), describing the postion of the best

matching region relative to the current MB’s position.

SAD isthe most popular distortion criterion to measure the residual energy. For an MxN block,

it can be described as equation 2-1):

SAD (d) = - > (oY) — Rx + dx,y + dy)]) -1
_o Zy=0

Where d = (dx, dy) isthe MV, C(x,y) and R(X,y) are intensity of given pixel in current and
reference M B, respectively.

The region with minimum SAD indicates the offset that produces a minimal residual energy and

thisislikdy to produce the most matching MB to the current MB.

The decoder uses the received motion vector to re-create the predictor region and decodes the

residual block, addsit to the predictor and reconstructs a version of the origina block.

Block-based motion compensation is popular for a number of reasons. It isrelatively
straightforward and computationally tractable, it fits well with rectangular video frames and with
block-based image transforms (e.g. the Discrete Cosine Transform) and it provides a reasonably

effective temporal model for many video sequences.

However, there are a some disadvantages: [4] for example real objects rarely have neat edges
that match rectangular boundaries; objects often have movements that are fractional number of
pixel positions between frames and many types of object motion are hard to compensate for
using block-based methods, such as deformable objects, rotation and warping, and complex
motions. In spite of thesedrawbacks, block-based motion compensation is the base of the

temporal model used by all current video coding standards.
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M otion estimation is the most computationally intensive and time consuming modul e of
encoders. Many studies are conducted to find an algorithm to reduce the computational
complexity of ME process. These algorithms can be generally categorized in three groups: Full

search method; fast search algorithms; and predictive search algorithms.
2.2. Full search method

Full Search algorithm [7] isthe conventional motion estimation technique that calculates SAD
value at all (2w+1)? possible MBs in the search window with size of w pixels (=t samples
around position (0,0), the position of the current MB) to find the best matching block. This
method is guaranteed to find the minimum SAD in the search window but it is computationally

intensive.

The conventional full search process starts with searching the most top-left of the window
(position [-w, —w]) and the search proceeds in raster order until all positions have been
evaluated. In atypical video sequence, most motion vectors arefound around (0,0). That iswhy
some researchers recommend simplifying the computation of the full search algorithm by
starting the searchfrom (0,0) position, and proceeding in a spiral pattern around this location.
They define an early termination condition such as a SAD value threshold. If the calculated SAD
for zero MV isless than that threshold, the computation is stopped from further searching.

These new Full search approaches are still popular due totheir accuracy, but even with the use of
early termination, Full Search motion estimation is very computationally intensiveand can be
undesirable and very expensive for some applications especially where real time encoding is

required.
2.3. Fast search algorithms

Fast motion estimation algorithms, are introduced in effort to reduce the computational
complexity of intensive full seacch method. These algorithms operate by calculating the SAD
criterion at a subset of locations, with a specific pattern, within the search window, instead of all
over the search window. In computation- or power-limited applications, fast ME algorithms are

preferable.
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Many fast M E patterns have been proposed over the last decades. The most popular ones
include: Three Step Search (TSS) [8], New Three Step Search (NTSS) [9], Cross Search
[10][11], Diamond Search [12][13], Hexagon search [ 14] and the hybrid combinations of them.
Inthe next chapter some of these algorithms are described to illustrate how fast M E techniques

work.

Each fast ME technique can be considered as a trade-off between three main criteria: encoded
image quality; compressed bit-rate; and computational complexity. As mentioned in chapter 1,
image quality is measured with PSNR parameter. Computational cost in afast ME techniqueis
measured by the factor of the required number of searching pointsto find the MV d each MB,
whilst the bit-rate of encoded streams represents compression efficiency of the encoder. Another
parameter to compare different algorithms is ME process time. Clearly, full search method has
extremely long process time, and all fast search algorithms are significantly effective in terms of

speed up over full search.

Ideally, in a constant sampling frame ratg, all ME algorithms are meant to achieve as few bit-rate
as possible and the highest possible quality (PSNR), with aslow number of search points as
possible. Most fast ME patterns achieve lower number of search points with the price of lower
quality and compression ratio. In fact, in case of constant frame rate systems, PSNR and data bit-

rate are anti-correl ated.

The nore accurate MV estimation leads to further fidelity between encoded and original videos.
As aresult, the energy content of residual framesismuch lower, and fewer data bits are required

to be transmitted or stored, which means lower bit-rate. Also, it resultsin higher quality images,

measured in high PSNR values for Luma and Chroma samples. Hence, both parametersrepresent

the accuracy of ME process.

Fast search methods just search afew positions inside the search window and assume the
minimal SAD verdict is close enough to the ultimate MV. Therefore thereis a chance of getting
trapped in alocal minima, and having aless optimal answer. Hence, these plain fast search

agorithms could not competewith the high accuracy of full search.
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2.4. Predictive search algorithms

Predictive search algorithms area new category of fast M E techniques that introduce some
solutions for lowering the computational intensity of ME, with a performance much closer to
conventional full search method. These solutions can be classified into two steps. oneis
predicting the most likely initial sub-set of search points based on the temporal and spatial
correlation between MV of current MB and previously coded MBs; and the second step is
defining some early termination conditions to avoid being trapped in local minima and enhance

the speed up.

In these approaches, a set of corrdated MB to the current MB isintroduced. All these blocks
must be already encoded at the time of coding current block. In most existing predictive
algorithms, this set includes some adjacent MBs in current frame and, some blocks in reference
frame, or other close framesin time order, which are already encoded. MV of these blocks is
used to predict aset of initial search points. Then, SAD parameter for all initial points are
calculated and the verdict with minimum SAD is set asthe origin of alocal search pattern, which
could beadiamond, square or hexagon shaped pattern.

Most recent techniques define an early stop criterion, and in each step, that criterion is checked.
If the condition is met the processor stops further searching and returns a found vector as the
final MV of current MB. This termination condition can be a SAD value threshold. As soon as a
verdict meets the defined threshold, further searching is terminated and location of that verdict
will define the ultimate MV.

Many proposed predictive algorithms first examine (0,0) position, due to the high possibility of
zero MV [15]. Thisiswhy they are called “Predictive Zonal Search Algorithms”.

Some examples of existing predictive zonal search approaches are described in chapter 4, to
darify how this type of coding techniques functions. In chapter 5, a new predictive algorithm
will be proposed, based on dynamic and static correlated macro-blocks, which improves

performance of other methods, significantly.

13



CHAPTERS

Fast M otion Estimation

In this chapter four main fast motion estimation patterns, including three-step search; cross

search; diamond search; and hexagon search patterns are explained.

3.1. Threestep search (TSS) algorithm

Three-step search wasfirst introduced around 1993, and became one of the most popular
algorithmsfor MC, due to its simplicity and efficiency. Since then many studies were conducted
to improve this algorithm including anew three-step search; and enhanced three-step search that

were based on the original TSS algorithm. Two of these proposed ideas are described here.
3.1.1. New Three Step Search (NTSS)

Initial search pointsinNew Three-step Search (NTSS) algorithm [9] for a search window size of
7 isshown in figure 5. In the first step, 17 points including the center; 8 points with 1 pixel

distance from the center; and 8 points on the larger 9x9 grid are checked. If the minimum SAD

happens to be found at the center of the search window, the search will stop. If the minimum
SAD point is one of the eight points on the 3x3 grid, again another 3x3 grid pattern is formed
around that center, to check three or five extra points and the minimum SAD found in this step is
final MV. Otherwise the large 9x9 search window size isreduced by half and the center moves to
the minimum SAD point in Stepl, the algorithm is repeated until the search distance cannot be
subdivided further.

14



-7 6-5-4-3-2-1 01 2 3 4 5 6 7

-7
-6
-5
-4 L ¢ L
-3
-2
-1
0 L 2 .
1' A D A
2
3
4 L L L 2
5
6
7

Figure5: 17 search pointsin NTSS
3.1.2. Efficient Three-Step Search (ETSS)

In order to exploit the center-biased characteristics of motion vector distribution in real-world
video sequences, ETSS utilizes a small diamond search pattern in the search window center [8].
Figure 6 shows the search pattern used in the first step of ETSS for a search window size of 7.
Thus, in thefirst step, atotal of 13 points will besearched instead of 17 pointsin N3SS. If the
winning point is found to be on the center of search window, it will stop further searching. If the
minimum SAD point is ore of the eight points on the large 9x9 grid, the following process will
be the same asin NTSS. If the minimum is one of the four points on the small diamond, the
small diamond center is set to the origin of another small diamond pattern, and another three
points will be examined. The center of the small diamond is moved to the minimum SAD point
each time until the minimum isfound in the center of small diamond. Two main differences

between ETSS and NTSSinclude:

1- A small diamond pattern is used instead of a square pattern in the central area
2- Unrestricted search step for the small diamond rather than a single movement for the

small square.
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Figure 6 ETSS search point
3.2. Diamond search algorithm
3.2.1. Unrestricted Center-biased Diamond Search

A basic diamond search pattern is named UCBDS [17]. This fast search pattern can be

summarizedin following steps:

Stepl: The original diamond pattern isformed at the center of the search window, that we call it
(c,c). The SAD is evaluated for each of the nine candidate search points. If the minimum SAD

point is found to be at the center, go to step5 otherwise, go to step?2.

Step2: If the minimum SAD point in the previous search step is located at one of the four
vertices (¢2,0); (c+2,0) ; (c,c-2) ; (c,c+2), then go to step3. Elsg, if it islocated at one of the four

possible faces of the previous diamond (c-1,c-1); (c+1,c+1) ; (¢c1,c+1) ; (c+1,c-1), then go to

step4.

Step3: Another diamond pattern isformed around the minimum SAD point (updating the center

(c,c)). Five new candidate search points are evaluated.

Step4: Another diamond pattern is formed around the minimum SAD point (updating the center

(c,c)). Three new candidate search points are checked Note that any candidate point that extends
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beyond the search window isignored. If the minimum SAD isfound at (c,c), then go to step5

otherwise, go to step2 to continue the next search step.

Step5: The shrunk diamond pattern is used with the same center (c,c). Now, the final four
internal points of the previous diamond are searched. Similarly, any internal candidate point that
extends beyond the search window is also ignored. The candidate point that gives the minimum

SAD is chosen as the final motion vector (m,, m)).
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Figure 7: Simple diamond search path
3.2.2. Improved Diamond Sear ch

[13][18] From the analysis of different sequences, it has been found that nearly 80% MV s are
horizontal and vertical [16], caused by objects’ movement or camera’s tracking, panning or

tilting, etc. It can therefore be concluded that most motion vectors contained in real-world
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sequences are horizontal and vertical. Thus, authors in [13] suggest eliminating the points
located at the face of the large diamond in the DS to speed up the computation. They call this
new search pattern“Improved LDSP’ (ILDSP), as shown in figure 8.

®
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Figure8: a) Improved Large Diamond Search Pattern
b) Snall Square Search Pattern

Besides, to ensure the global optimum point being reached, the Improved Diamond Search (IDS)
algorithm expand the original small diamond from five check points to nine and changeits name
from SDSP (small diamond search pattern) to “Small Square Search Pattern” (SSSP). IDS

procedurecan be summarized as follows:

Stepl: Theinitial ILDSP is centered at the origin of the search window, and distortion criterion
for five pointsincluding the originis calculated. If theminimum SAD isfound at the center

position, go to Step 3; otherwise, go to Step 2.

Step2: Theoriginis repositioned to theminimum SAD point found in the previous search step,
to form anew ILDSP. Asthe prior step, SAD values for five points are calculated. If the new
minimumSAD pointisobtained at the center position, go to Step 3; otherwise, recursively

repeat this step.

Step3: Switch the search pattern from ILDSP to SSSP. Theminimum SAD point found in this

step is the final solution of the motion vector which points to the best matching block.
3.3. Crosssearch algorithm

Onerecent example of cross patterns [18][19] for motion estimation is Zero-MV biased cross

diamond search algorithm (ZCDS) [15]. Here, an adaptive dynamic threshold (Thrs.) is defined
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based on the block motion content viaalinear model. In this model the ratio between SAD of
zero MV macro block and average minimum SAD is used. The ZCDS process consists of the

following steps:

Sepl (Thrs computation): If theSAD of zero MV block isless than the threshold Thrs, then the
search stops, otherwise, go to Step2 with a LCSP.

Step 2 (Large Cross Shape Pattern LCSP): Examine nine search points of the LCSP located at
the center of search window. If theSAD of any candidate block isless than Thrs, the search

stops; otherwise go to Step (3).

Step 3 (Half Diamond Searching): Two additional search points closest to the current minimum
SAD in the central LCSP are checked. If the SAD value isless than Thrs, the search stops
immediately. If the minimum SAD found in previous step located at the middle wing of the
L CSP and the new minimum SAD found in this step still coincides with this point, go to Step

(4.

Step 4 (Diamond Searching Pattern DSP): A DSP isformed by repositioning the center of DSP
tothe minimum SAD found in previous step. The DSP points are checked. If the SAD of any
candidate is less than Thrs, the search stops immediately; If the new minimum SAD point is at
the center of the newly formed DSP, then go to Step (5) for converging to the final solution;
otherwise, this step is repeated.

Step 5 (Ending— SCSP Converging step): With the minimum SAD point in the previous step as
the center, a SCSP is formed. The SCSP points are checked one-by-one. If the SAD of any
candidate is less than Thrs, the search stops immediately; otherwise, identify the new minimum

SAD point for the SCSP, which is the final motion vector.
3.4. Hexagon search pattern

[14][19]In the original hexagona search (HEXBS) algorithm, two search patterns are involved.
First thelarge hexagon search patternin figure 9, consisting of six endpointsisformed to find

theregion in which the optimal motion vector is expected to be in. Thiscoarse search continues

based on a gradient scheme until the center point of the hexagon has the minimum SAD value.
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After acoarse hexagonal search the some fine-resolution search looks into the small areainside

the large hexagon, as shown in figure 9.

Figure9: HEXBS initial search point [14]

This method considers grouping the search pointsin the six sides of the hexagon, resulting in six
pairsof points, as shown in figure 10. For each group, a group distortion is defined by summing
the distortions of all the points within the group. The area near to the group with the minimum
group distortion is considered as thefinal solution for the search. Two or three search points are

examined in the focused inner search, depending on the position of the group.

3 inner »
Group 4 Grouw 6 .
i / scarch P Group 4 2 inner
points search
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Group
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Figure 10: Inner search pointsin HEXBS [14]

Most of these fast motion estimation algorithms accomplish a speed up improvement over full

search technique. However, thisis mostly at the cost of PSNR and compression ratio.
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CHAPTERA4

Predictive search algorithms

To alleviate the computation burden in avideo encoder while keeping the quality and
compression ratio, Predictive Zonal search algorithms are proposed some solutions for lowering
the computational intensity of ME, with a quality and compression performancecloser, to
conventional full search method. In these approaches, the ideais basically to predict the most
likely initial sub-set of search points based on the temporal and spatial correlation between MV
of current MB and previously coded MBs.

Afterwards, they measure the SAD parameter, for al initial points and set the verdict with
minimum SAD asthe origin of alocal checking pattern, which could be diamond, square or
hexagon shape pattern. Also they usually define some early termination conditions to avoid
being trapped in local minima and enhance the speed up. In this chapter some examples of

predictive search algorithms are listed.

One very common initial point is median MV of adjacent blocks inthe current frame which has
been used in many predictive algorithms [20]. In H.264/AV C standard, after finishing the ME
process the encoder needs to calculate this spatial median MV for other modulesany ways,
hence using that in initial step of ME does not add any extra cal culation to the process. Also,
because this MB islocated at the same location as the current MB, it is highly possible that their
MYV isvery similar. Therefore, many proposed approaches suggest having it in the list of
predicted MVs.

Also, most of predictive techniques take advantage of the fact that zero motion vector probability
is considerably high and put that in their prediction set. [15] In gentle videos, on average, more
than 70% of MV's can be located inside a 3x3 window around zero MV. Even in the case of high
motion content videos, the possibility of zero motion is more than 25%. Thus, the second

predicted initial MV is MV (0, 0).
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4.1. Motion Vector Field Adaptive Search Techniques

The first predictive algorithm named Motion Vector Field Adaptive Search Technique
(MVFAST) [21] suggests using MV of left; top; and top-right adjacent blocks in current frame,
and zero motion vector (0,0) asinitia predictors, combined with atwo stage diamond search

pattern and afixed eary-stopping criterion after examining the (0,0) predictor.

Then, another algorithm known as Predictive Motion Vector Field Adaptive Search Technique
(PMVFAST) [22][23][24] introduced two initial predicted MVs, including: the median MV of
three spatially adjacent blocks in current frame, and the MV of the collocated block in the
reference frame. This algorithm used an adaptive early-stopping criterion, which were more

reliable, sequence independent, and cal culated based on correl ations between adjacent blodcks.
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Figure 11: Correlated MBs in current and reference frames

The next proposed algorithm was Advanced Predictive Diamond Zonal Search
(APDZS9)[25][26], which modified search pattern of PMVFAST agorithm to multiple stage
diamonds, and achieved higher PSNR than PMVFAST at an insignificant cost in speed up, but
still better than MVFAST.

4.2. Un-Symmetrical Multi-Hexagon Sear ch algorithms

Another example of predictive algorithms, Un-Symmetrical Multi-Hexagon Search (UMHEX)
[27] has defined 13 initial search pointsin 2 sets. Five predictorsin setl including: the zero MV
(0,0); median MV of the spatially adjacent blocks on the left, top, and top-right of the current
block; MV of colocated block in reference frame; neighbouring reference frame prediction ,
obtained through multiple frames by scaling of the current block’s motion vector in the reference

frame; and upper layer prediction, which isalarger size block. For example, the 16 x 16 is used
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as upper layer predictor for 16x8 and 8x16 blocks. Set 2 consists of four MV s around the spatial
median prediction and four MV s around the zero MV (0O, 0).

After testing all these predictors, the region with min cost becomes the center of an Un-
symmetrical cross search with ahorizontal search window size of W and vertical search range of
W/2. Again, the motion vector with the minimum cost is chosen as the origin of afull search in

a2X2 area. There are atotal of 25 search pointsin this step.

In the next step, first a 16-points hexagon search pattern is carried out as the basic search pattern

followed by an uneven-multi-hexagon-grid, performed by extending the 16-points hexagon

patternwith different scale factors and starting the search process from the inner hexagon to the
outer one. Thefinal step is an Extended-hexagon-based search including a hexagon and a

diamond search pattern.

This algorithm also proposed floating point cal culdion-based early termination criterion in each
step of the searching process. [ 28] Because of quite large number of predictors; complex
searching steps, and a computationally intensive early-stop criterion this algorithm, asit will be

shown in experimentd result section, is not highly successful in speed up.

Authorsin [29] proposed“SmplifiedUn-Symmetrical Multi-Hexagon Search” (SJMHEX)
algorithm, which only uses spatial median and upper layer predictors of UMHEX to reduce the
memory space of MV prediction module. Combining with an adaptive search pattern for various
levels of motion contentsin different images, SJMHEX was able to improve UMHEX speed up,
by 57%.

4.3. Enhanced Predictive Zonal Search (EPZS)

Enhanced Predictive Zonal Search (EPZS) [30][31], is the most famous predictive method and
currently implemented in VT, H.264/AV C standard software platform. EPZS considered initial
set points introduced by previously devel oped agorithms, and added 5 more predictions to them.
Four of new predictors come from MV of four adjacent blocks in up, right, down and left side of
co-located MB in reference frame. And the other one isaccelerator MV (figure 12), which isthe

differentially increased or decreased MV of co-located MB in reference frame and one frame
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before that. The idea behind it isthat ablock MV may be following the accel eration instead of a

constant velocity.

Frame t-2 Frame t-1 Current frame

Figure 12: Acceleration predicting

EPZS’s termination criterion, based on SAD value of adjacent MBs in current frame, was more
efficient than all previous algorithms and could achieve a significant improvement in
computational complexity. For early-stop criterion, EPZS essentially defines some constant
threshold range for each valid block size in H.264 standard. In particular for 16x16-samples
blocks in H.264 reference model software this range included Min-threshold of zero, Med-
threshold of 8192 and Max-threshold of 48192.

[32]1n thefirst step of EPZS procedure, SAD of median predictor is calculated and compared
with an initial Stop-criterion which is equal to the defined Med-threshold. If it is smaller than
this threshold, it stops further searching and takes median predictor as thefinal MV. Otherwise,
at this point a new Stop-Criterion is calculated based on equations (4-1) to (4-4).

In the next step, SAD values of other spatial and temporal predictors are calculated. Then the
minimum SAD predictor is compared with the new Stop-Criterion. If it is smaller, further
searching is terminated and that minimal SAD predictor istaken asfinal MV, otherwise it starts

alocal diamond search around MB with minimum SAD, and it continuestill the final MV is

found.

Min-SAD = Min (SAD (Acu), SAD (Bew), SAD (Cew)) 4-1)
Stepl-Criterion = Min (Min-SAD, Max-threshold) (4-2)
Step2-Criterion= Max (Step2-Criterion, Med-threshol d) 4-3)
Stop-Criterion = [9* (Step2-Criterion) + 2* M ed-threshold]/8 4-4)
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The author in [33] suggests that it is better to increase the early-stop criterion of EPZS, to reduce
the searching predictor processing without loss of quality. This method modifies EPZS early-
termination process by introducing a motion factor, based on the distortions difference of the
three adjacent blocks in current frame, and adding this adaptive motion factor to the criterion.

Then it replaces equation (4-3) by the following formula, (4-5).
Step2-Criterion= Stepl-Criterion + motion_factor* ((Max_SAD) — (Min_SAD)) (4-5)

Where, Max_SAD and Min_SAD arerespectively the maximum and the minimum values of the

three distortions of adjacent blocks.

The prediction set of all these Zonal algorithms seems to be the most principal feature and key to
their performance. In the next sectiona Dynamic Predictive Search algorithm (DPSA) is
proposed which could be considered as an improvement of EPZS. The aim of this new approach
is to introduce the most effective spatial and tempora correlated MBs for a simple but optimum
initial sub-set that leads to higher performance (PSNR), lower computational complexity (search

points), and lower bit rates compared with EPZS.
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CHAPTERS

Proposed Algorithm

In this chapter we propose a Dynamic Predictive Search Algorithm (DPSA), which introduces
the most effective spatially and temporally correlated MBs for a simple but optimum initial sub-
set, combining with an early termination criterion that leads to higher quality (PSNR), lower
computational complexity (search points), higher speed up, and lower bit rates compared to other
existing predictive algorithms.

5.1. Prediction sub-set

The most prominent feature that results in high performance in zonal search algorithmsistheir
set of predictors associated to spatial and temporal correlation between adjacent MBsin current

and reference frames. These blocks are consisting of :

e Left; top; and top-right MBs in current frame, which in this document, henceforth, are
called spatial MBS, since they are spatially correlated to the current MB, (Sptl_left MB,
Sptl_up_MB, and Sptl_upright_MB)

e Left, top; and top-right MBsin reference frame which are called temporal MBs, since
they are temporally correlated to their co-positioned blocks in the current frame

(tmprl_left MB, tmprl_up_MB, and tmprl_upright MB). These are shown infigure 13.

w |up-right W  |up-right
left ‘*‘_\°1°;“" 7, f—
Reference Frame Current Frame
and temporally correlated MBs and spatially comrelated MBs

Figure 13: Spatial and temporal MBs
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Thefirst two predictorsin DPSA are what previously have been used and proved to be efficient
in other techniques, including spatial median MV of adjacent blocks in current frame; as well as

Z€ero motionvectors.

One closely correlated M B to current oneis the co-located block in reference frame
(Tmprl_MB). These two blocks are most probably associated to the same object and therefore
have similar motion behaviour. One similarity is the direction and speed of their movement.
Another aspect is dynamic correl ation between them. For example, if MV of co-located MB
(Tmprl_MB) differs from its neighbouring blocks in reference frame in terms of direction and

velocity, then this difference might be repeated for MV of current MB in current frame, too.

It is possible that the object included Tmprl_MB has stopped or accelerated or even changed its
direction from reference frame to current frame. To consider these possibilities, proposed DPSA
algorithm suggests that if direction and velocity of tmprl_left MB; tmprl_up MB;
tmprl_upright_MB in reference frame have changed in previously calculated MV of
Sptl_left MB; Sptl_up_MB; Sptl_upright MB in current frame then we can assume that this
alteration has happened between MV of current MB in current frame, and its co-located MB in

reference frame, too.

However, it has been observed that not all neighbouring blocks have equal correlation to
tmprl_MB. As amatter of fact, two top and left adjacent blocks appeared to be the highest
correlated neighbours, while adding tmprl_upright M B in search options, in most cases, only
increases the number of search points without any improvement in quality or compression ratio.

For that reason in proposed DPSA, only MV s of left and top MBs are considered.

At the moment of calculating MV for current macro block, motion vectors for left and top MBs
are already calculated (because of raster scan order) (figure14). A new predicted MV is created
by finding the changes (A) between MVs of top and left adjacent blocks in reference frame
(tmprl_left MV; tmprl_up MYV respectively) with their co-positioned blocks Sptl_left MV
Sptl_up_MYV in current frameand then applying that on MV of Tmprl_MB, anew predicted MV
is created. This predictor isreferred to here as the spatial-temporal predictor
(Sptl_tmprl_prdctor), since all temporal and spatial correlations of adjacent macro blocks are

consider at the same time.
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Figure 14: a) Reference frame b) Current frame

_ (Sptlleft_ MV)—(Tmprl_left_MV) " (Sptl_up MV )—(Tmpri_up_MV)

Avrg A > s 5-1)
_ [left A] + [up 4] -

AVrg A= === (5-2)

Sptl_tmprl_prdctor 1= (Tmprl_MB_MV) + Avrg_A 5-3)

To enhance the performance of initial set points, two other predictors are defined using A/2. By
adding and subtracting A/2 to and from MV of co-located MB in reference frame, second and
third spatial-temporal predictors (Sptl_tmprl_prdctor2 and Sptl_tmprl_prdctor3) are created.
These predicted MV s cover the possibility that Tmprl_MB_MV changing speed or direction is
not exactly as its neighbours. This way, the algorithm sweeps vaster areato get closer to the real
MV. Conseguently, it will result in higher performance with an insignificant increasingin search

points, especially in complex scenes and motion activities.
Sptl_tmprl_prdctor2= (Tmprl_MB_M\) + (Avrg_A)/2 (59
Sptl_tmprl_prdctor3= (Tmprl_MB_M\V) _ (Avrg_A)/2 (5-5)

To cover the spatial correlation between neighbouring MBs, many algorithms suggest using MV
of three adjacent M Bs, left; top; and top-right blocks in current frame as three initial search

points.

Again, with the same logic as discussed, it canbe assumed that blocks in left and top, are more

redundant to current M B than top-right block. Consequently, Sptl_upright MV can be
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eliminated inthe process. Now, two neighbouring blocks in each frame are remained, which are

considered the most efficient MBsto predict the MV of Current. MB.
sptl_prdctorl = (Sptl_left_ MV) (5-6)

ptl_prdctor2= (Sptl_up_MV) &7

Asitisseenin equation(5-1) inAvrg_A definition Sptl_left_ MV and Sptl_up_MV have been
used. On the other hand, the redundancy between these two M Bs and the current MB has been
considered in defining sptl_prdctorl and sptl_prdctor2. To minimize computation required for
the prediction process only one of these adjacent blocks can be used in spatial prediction. In

other words, spatial predictor can be defined as:
Up_sptl_prdctor = (Sptl_up_MV) (5-8)
Then, for spatial-temporal prediction there are two options.

Either A can be defined as it was in equation (5-1), or it can be only one of the neighbours, which

would be left MB. Therefore:

Left A = (Sptlleft_MV) — (Tmpri_left_ MV) (5-9)
Sptl_tmprl_prdctor 1= (Tmprl_MB_MV) + Left_ A (5-10)
And two other predictors have to be obtained by:

Sptl_tmprl_prdctor2= (Tmprl_MB_M\) + (left_A)/2 (5-11)
Sptl_tmprl_prdctor3= (Tmprl_MB_M\) - (left_A)/2 (5-12)

Thisway, the proposed algorithm can be divided in two branches. Oneiscalled DPSAL, in
which Avrg_A and (Avrg_A)/2 are used to define the initial sub-set of MV's. The second branch
isnamed DPSA2, and uses Left_A and (left_A)/2 in the process.

Generally, after defining the predictors, the processor starts calculating SAD value for all of
predicted regions. Then, the verdict with minimal SAD is set as the origin of alocal search to
find the most matching MB. In DPSA algorithm the local search pattern is chosen to be small

diamond search due to its well-known high complexity-performance ratio. In each step minimum
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SAD value is compared to an early stop criterion. If it satisfies the criterion the processor stops

further searching and take that MV as the best description of current MB movement.
5.2. Early termination strategy

For early termination conditions, EPZS criteria are base of proposed DPSA, with adding one
more condition. In DPSA algorithm, after testing all initial predicted MV's, if one of three spatial-
temporal predictors usingA and A/2 has minimum SAD value then it can skip the local search
step and take that predictor as the final MV of the current MB. This claim is based on the fact
that, in the definition of these three initial predicted MVs, all possible correlations between

adjacent blocks in current frame, and co-located MB, as well as its surrounding neighboursin

reference frame have been considered.

In other words, if the minimum SAD of initial predictorsis associated to one of the zero MV,
median spatial MV, or Up_sptl_prdctor, and this minimum SAD value does not satisfy the
calculated Stop-Criterion in equation (4-4), it starts small diamond search around that minimal
SAD verdict to find the accurate MV. This process continues until either reaching aMB with
smaller SAD vaue than the criterion, or the center of the search turns out to be the minimum

SAD between the others, asin ordinary diamond search algorithm.

All these six predictors, along with the new early stop condition, have been tested and evaluated

in VT software platform, which will be elaborated further in the next section.
5.3. Algorithm block-diagram

DPSA1 algorithm process can be summarized in the following steps:

Sepl: SAD value for median MV of three adjacent MBs in current frame including Left; Top;
and Top-Richt MBs and zero MV (0,0) are calculated.

Step2: MB pointed by Up_sptl_prdctor is found and its SAD value is calculated.
Sep3: Avrg A and (Avrg A)/2 are measured with equation (5-2)

Step4d: Three spatial-temporally predicted MV are found with equations (5-3), 6-4), and &-5)

and their SAD values are calculated.
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Step5: The Min. SAD value between previous steps is found

Sep6: If the Min. SAD is corresponding to MBs in step4, then it stops search. Otherwise, it goes
to step?.

Sep7: Based on equations @-1) to @-4), Stop-Criterion is measured.

Sep8: If the Min. SAD value is less than this criterion, then it stops search. Otherwise, it goesto

step9.

Sep9: The verdict with Min. SAD becomes center of a small diamond search pattern. SAD value

for four new pintsin small diamond pattern is calculated, and the Min. SAD is found.

Stepl0: If the Min. SAD is associated to the center of the search, thenit stops search. Otherwise,
it goes back to step9.

For DPSA?2, steps 3 and 4 are as follow, and remaining stepsare the same as DPSA1:
Sep3: Left_A and (Left A)/2 are measured with equation (5-9)

Sep4: Three spatial-temporally predicted MV are found with equations (6-10), 6-11), and 6-
12) and their SAD values are calculated.

All these steps are shown in the block-diagram of figure 15.
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Figure 15: DPSA block-diagram
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5.4. Example

To make the algorithm more clear one example of DPSA1 is shown in this part (figure 16).

4.2) 29| (22
‘ J »
10,0)f (32 4.5)
iy % \
Reference Frame Current Frame

Figure 16: One example for DPSA1 algorithm
Median MV = median [(4,5); (-2,9); (-2,2)] = (-2,5)

Up_sptl_prdctor = (-2, 9)

AVrg A = [(4, 5)-(10, 0)]/2 + [(-2, 9)-(4, 2)]/2 = (-6, 6)

(Avrg A)/2 = (-3, 3)

Sptl_tmprl_prdctorl = (2, 2) + (-6, 6) = (-4, 8)

Sptl_tmprl_prdctor2 = (2, 2) + (-3, 3) = (-1, 5)

Sptl_tmprl_prdctor3= (2, 2) - (-3, 3) = (5, -1)

In first step, six predictors are examined to find the Min SAD. Based on experimental results, in
majority of cases one of the three spatial-temporal predictors turn to be the min SAD, in that
case the verdict with min SAD isfina MV. In this example to clarify al other steps, itis
assumed that the spatial predictor (-2, 9) is Min SAD verdict. Thus, in step 2, a small diamond
search isformed around (-2, 9) vector. At this stage, vector (-2, 9) points to the minimal SAD
parameter. Again, in step 3, another small diamond search pattern centered on (-2, 9) is formed.
Since the center of this diamond is the minimum one, at this step, search is stopped and (-2, 9) is

returned asfinal MV. These steps are shown in figure 17.
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CHAPTERG

Experimental results

Several experiments have been conducted to investigate performance of our proposed algorithm.
Amongst, over 250 frames of Six 4:2:0 YUV, QCIF (176 x144), shown in figure 18, and five
CIF (352x288) format test video sequences, shown in figure 19, are encoded with DPSA1 and
DPSA 2 along with 4 accepted algorithms in H.264 reference software, including FS; UMHEX;
SUMHEX; and EPZS, all implemented in common test conditions. A 2.4GHZ dual-core CPU,
with 4G RAM are used in this experiments.

Each time, ME process is carried on search window size of 32x32 pixels finding minimum SAD
value as distortion criterion. The encoder is set to 30 frames per second for | and P frames,
disabled skip mode and intra blocks in P frames, each frame divided into non-overlapping blocks
of 16x16 samples H.264/144096-10 reference software version 18.1 from JVT [34][35] is chosen
to bethe test reference platform.

MPEG4
WORLD

(d) car-phone (e) Mother& daughter (f) Foreman
Figure 18: YUYV video sequences; QCIF format (176x144)
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(a)BUS (b) Sefan (c) Water fall

(d) Tempete (e) Hall-monitor

Figure 19: YUV video sequences; CIF format (352x288)

Software is developed to display four main criteria: total number of search points (sp); ME
process time; data bit-rate; and PSNR of each encoded test sequence, to be evaluated. The results
of these essential parameters are demonstrated and compared with 4 other algorithms, including
EPZS and Full search techniques, in tables (2) to (12) and figures (20) to (36).

In all above tables, two different versions of DPSA have been implemented. In thesixth row,
Left A and (Left_A)/2 are calculated with equation (5-9). I n seventh row Avrg_ A and
(Avrg_A)/2 are measured with equation (5-1).

Between 4 already existing algorithms applied in this study, Full search method reaches the
highest quality encoded images with the cost of extensive computational complexity. UMHEX
and SUMHEX decrease full search number of search points by 10 times with an insignificant
cost of PSNR. EPZS manages to have the least number of search points, significantly, with
acceptable range of PSNR. Hence, between these algorithm, EPZS is the most reasonabl e base to
compare the newly proposed algorithm with. Though, EPZS does not have in positive effect on
bitrate.

As these experimental results indicate, DPSA not only improves the compression ratio, but

decreases EPZS computational complexity too. Also, unlike most other fast ME algorithms,
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DPSA not only does not reduce the quality of compressed videos, but also, boost the PSNR by

0.47dB.

Table 2. Performance comparison for “News”

Algorithms SP/frame ME Time Y-PSNR U-PSNR V-PSNR BR(kb/s)
EPZ 396.86 0.405 36.599 39.222 40.001 113.94
UHEX 2838.01 1.121 36.629 39.259 40.034 114.01
SUHEX 3185.94 1.001 36.623 39.234 40.001 113.80
Full 112141.00 18.427 36.629 39.250 40.060 113.55
DPSA2 358.38 0.371 36.615 39.253 40.093 107.73
DPSA1 361.16 0.374 36.620 39.249 40.047 105.31
Table 3. Performance comparison for “Akiyo”
Algorithms SP/frame ME Time Y-PSNR U-PSNR V-PSNR BR(kb/s)
EPZ 354.60 0.367 37.967 40.704 41.754 57.58
UHEX 1950.83 0.812 37.968 40.709 41.764 57.70
SUHEX 1998.23 0.716 37.968 40.708 41.764 57.69
Full 113180.65 17.410 37.963 40.692 41.768 57.84
DPSA2 302.31 0.343 37.969 40.713 41.774 57.83
DPSA1 305.46 0.342 37.983 40.715 41.761 57.16
Table 4: Performance comparison for “Car-phone”
Algorithms SP/frame ME Time Y PSNR U-PSNR V-PSNR BR (kb/s)
EPZS 582 1.594 37.182 39.997 40.477 265.52
UHEX 7085 6.696 37.172 39.963 40.478 262.85
SUHEX 8897 7.020 37.199 39.975 40.428 265.94
Full 410967 22.517 37.192 39.893 40.449 260.60
DPSA2 504 1.446 37.301 39.970 40.472 245.35
DPSA1 512 1.463 37.341 39.965 40.534 241.09
Table 5 Performance comparison for “Mother & daughter”
Algorithms SP/frame ME Time Y PSNR U-PSNR V-PSNR BR (kb/s)
EPZS 388 1.252 36.659 41.278 41.956 88.23
UHEX 4766 4.816 36.672 41.248 42.014 87.44
SUHEX 7001 5.960 36.682 41.272 42.009 87.85
Full 399621 178.000 36.701 41.249 41.968 87.13
DPSA2 334 1.137 36.836 41.325 42111 83.68
DPSA1 338 1.133 36.919 41.353 42.072 81.01
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Table 6: Performance comparison for “Foreman”

Algorithms SP/frame ME Time Y -PSNR U-PSNR V-PSNR BR (kb/s)
EPZS 638 1.764 36.15 40.19 41.04 339.80
UHEX 9382 8.847 36.18 40.17 41.05 33255
SUHEX 13310 10.734 36.16 40.18 41.07 341.88
Full 413380 208.077 36.16 40.23 41.05 327.84
DPSA2 571 1.605 36.44 40.21 41.12 289.01
DPSA1 582 1.648 36.49 40.17 41.11 279.49
Table 7: Performance comparison for “Hall-monitor”
Algorithms SP/ frame ME Time Y-PSNR U-PSNR V-PSNR BR (kb/s)
EPZS 1208.396 4.269 37.96 39.72 41.64 363.58
UHEX 12777.78 14.684 37.96 39.72 41.64 364.61
SUHEX 12615.68 11.038 37.96 39.71 41.66 363.93
Full 1655893 819.869 37.96 39.72 41.65 363.09
DPSA2 1080.192 3.944 37.98 39.71 41.66 361.17
DPSA1 1083.192 3.967 37.99 39.72 41.66 360.52
Table 8 Performance comparison for “Coast-guard”
Algorithms SP/ frame ME Time Y-PSNR U-PSNR V-PSNR BR(kb/s)
EPZ 486.46 0.462 34.274 43.256 43.995 394.83
UHEX 6607.41 2.439 34.283 43.307 43.998 392.95
SUHEX 10925.11 3.566 34.287 43.299 44.017 390.21
Full 113201.55 26.602 34.292 43.301 44.009 389.93
DPSA2 429.91 0.446 34.453 43.259 44.128 358.09
DPSA1 | 44469 | 0.461 | 34482 43.277 44,097 348.01
Table 9. Performance comparison for “Waterfall”
Algorithms SP/ frame ME Time Y-PSNR U-PSNR V-PSNR BR (kb/s)
EPZS 1402 5.192 34.00 35.04 36.93 1186.96
UHEX 24477 25.254 34.05 35.11 36.98 1161.78
SUHEX 71623 58.133 34.05 35.09 36.97 1163.36
Full 1666408 1024.884 34.05 35.09 36.96 1161.34
DPSA2 1264 4.608 34.37 35.13 36.98 798.35
DPSA1 1289 4.879 34.41 35.13 36.97 736.03
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Table 10; Performance comparison for “Tempete”

Algorithms SP/frame ME Time Y-PSNR U-PSNR V-PSNR BR (kb/s)
EPZS 2286 6.344 35.60 36.78 38.40 2745.44
UHEX 39434 38.196 35.62 36.79 38.42 2738.47
SUHEX 65470 56.336 35.61 36.78 38.43 2742.37
Full 1659335 1028.996 35.62 36.80 38.44 2733.29
DPSA2 2213 6.277 35.60 36.92 38.53 2061.98
DPSA1 2227 6.215 35.61 36.93 38.54 1988.52
Table 11: Performance comparison for “Stefan”
Algorithms SP/frame ME Time Y-PSNR U-PSNR V-PSNR BR(kb/s)
EPZ 2696.54 2.378 36.179 38.029 38.034 2454.71
UHEX 23420.49 9.225 36.190 38.049 38.033 2474.40
SUHEX 32947.06 9.938 36.176 38.024 38.030 2469.40
Full 452803.90 98.346 36.177 38.046 38.033 2450.41
DPSA2 2457.39 2.150 38.437 38.082 38.103 2035.02
DPSA1 2481.31 2.203 36.449 38.095 38.081 1980.05
Table 12 Performance comparison for “Bus”
Algorithms SP/frame ME Time Y-PSNR U-PSNR V-PSNR BR(kb/s)
EPZ 2819.54 2.625 35.359 39.723 41.331 2617
UHEX 29063.56 12.867 35.384 39.691 41.269 2640.69
SUHEX 41113.46 14.430 35.368 39.738 41.302 2630.63
Full 452806.20 113.952 35.361 39.720 41.267 2602.51
DPSA2 2580.34 2.305 35.599 39.745 41.420 2107.95
DPSA1 2567.53 2.285 35.501 39.745 41.385 2077.09
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6.1. PSNR

As it has been discussed in chapterl inourtables PSNR is associated to three different values, Y

U and V samples .It has been observed that DPSA improves almost all components,

considerably, compare to EPZS algorithm.

For instance, “Tempete” sequence is a good example of detailed images whichis very colourful
and the color content changes sharply between MBs. In this type of sequences, PSNR values
associated to U- and V - samples are as important as Y components inthe quality of encoded
image. In figures 20, U-PSNR valuesare compared between DPSA 1 and EPZS, frame by frame
i CIF “Tempet€e” file, to demonstrate DPSA performance.
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Figure 20: Frame by frame PSNR comparison for EPZS and DPSAT1 on “Tempete”

However, sincein most image samplingsY components have the higher resolution, and are more

important, only this part of samples are compared for the rest of test videos.

Some tested sequences such as “Hall-monitor”; “Mother & daughter”; “Akiyo”; and “News”,

are representing small to medium motion content videos. In simple and smaller MV images most
ME algorithms are quite accurate, Still figure 21 shows better PSNR curve in DPSA, compare to
EPZS.
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Figure 21: Frame by frame PSNR comparison for EPZS and DPSA1 on“Mother & daughter”

On the other hand, in medium to large motion content images, such as“Bus”; “Stefan”;
“Waterfall”; and “Coast-guard”, image quality is a critical key. In particular, “Waterfall”; “Bus”;
and “Tempete” arethree good examples of detailed images. In this category, usually blurring of
features due to a crude de-blocking filter is very obvious. Hence, the accuracy of motion

compensation module is essential to have good quality encoded images.

Comparing PSNR valuesearned in different algorithmsin tables (8) to (12) indicates that almost
in all cases DPSA has higher PSNR values over EPZS and other techniques. Also, frame by

framecomparisons for PSNR of three detailed images are shown in figures (22) to (24).
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Figure 22: Frame by frame Y-PSNR comparison for “Stefan”
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Figure 24: Frame by frame Y-PSNR comparison for “BUS”

6.2. Compression ratio

One of the most significant achievements of proposed DPSA algorithm is the high compression
ratio. Somehow, this criterion represents the level of motion compensation accuracy. The more
accurate MV estimation leads to further fidelity between encoded and original videos. As a
result, the energy content of residual frames are much lower, and fewer data bits are required to

be transmitted or stored, which means lower bit-rate or higher compression ratio.

Reviewing result-tables (2) to (12) shows that amongst 4 existing algorithms, EPZS has
improved the computational complexity, but it daes not have any effect on compression ratio.

DPSA on the other hand, createsan outright reduction in bit-rates between all tested techniques.
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Specifically, in sophisticated pictures, with lots of details, this factor can be clearly compared.
For instance, Tables (8) to (12) are corresponding tofive CIF streams with medium to large
MVs. In this scale typically an encoder with constant parameters will produce higher bit-rates.
These tables prove asignificant improvement on data bit-rate over the state-of-the-art EPZS

algorithm.

In figures25 and 26 one video sequence of QCIF category and one from detailed CIF format
category are chosen to illustrate frame by frame comparisonon generated data-bits between
DPSA1 and EPZS agorithms. It can be seen that in both scales, proposed DPSA has better curve

in al individual frames.
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Figure 25 Frame by frame data Bits/frame comparison for EPZS and DPSA1 on “Mother &

daughter”
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Figure 26: Frame by frame data Bits/frame comparison for EPZS and DPSA1 on“Tempete”
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6.3. Computational complexity

6.3.1. M otion Estimation Processtime

Oneway to evaluate an algorithm’s computational complexity isto compare ME processtime, or
speed up. Asthird columnsin tables (2) to (12) show, intensive FS algorithm has most definitely
the longest process time. UHEX and SUHEX algorithms considering the fact that are categorized
in fast ME techniques, are not that much helpful in terms of speed up. EPZS algorithm, on the
other hand, managed to have considerably good improvement in speed up over other techniques.

Still, proposed DPSA has improved EPZS motion estimation process time by 13%.

Having said that, because, especially in software implementation, algorithms are implemented on
multi-purpose computers, and the processor might be involved in other tasks and interrupts, we
believe ME process time is not the ultimate reliable parameter. Hence, we devel oped the

software to display total number of search points for much more accurate evaluation. This

parameter is discussed in next section.

6.3.2. Search points

The other criterion that indicates computational complexity of an algorithm is the number of
search points. Between 4 already existing algorithms applied in this study, Full search method
reachesthe highest quality encoded images with the cost of extensive computational complexity.
UMHEX and SUMHEX decrease full search number of search points by 10 times with an
insignificant cost of PSNR. EPZS manages to have the least number of search points,
significantly. As these experimental results indicate, DPSA not only improves the compression

ratio, but even it decreases EPZS computational complexity too.

In figures (27) and (28) frame by frame number of search points per frame comparisonis
conducted far two QCIF vide sequences; “Mother & daughter” and “Coast-guard”. These two
filesrepresent streams with small to medium MV s and details. In simple and smaller MV
images, most ME algorithms are quite accurate, and produce few bits, but the point iswhich

agorithm can perform faster and with less number of search points.

It can be seen that DPSA has the lowest number of search pointsin most frames.
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Figure 27: Frame by frame number of search point’s comparison for EPZS and DPSA1 on
“Mother & daughter”
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Figure 28: Frame by frame search point comparison for “Coast-guard”

The same experiment has been conducted on two CIF, medium to large MV videos: “Tempete”

and “Bus”. They also prove considerably good improvement on computational complexity over

well-known EPZS algorithm, shown in figure (29) and (30).
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Figure 29: Frame by frame search point comparison for “BUS”
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Figure 30: Frame by frame number of search point comparison on “Tempete”

Based on these tables (2) to (12), although EPZS has much lower number of search points than
other three already existing approaches, DPSA1 and 2 have improved its result by about 14.7%.

6.4. Variable Quantization parameter

Another factor that has been studiedin this research is step size of the quantization, carried out
on the residual frames (quantization parameter). In figure (31) to (34), three main parameters:
number of search points; PSNR; and data bit rate, are compared for a QCIF test video: “Car-
phone”, encoded by DPSA1 and EPZS with different quantization parameters (QP). As we can
seefor all three parameters, ailmost always, DPSA 1 curves show better results than EPZS.
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Figures(34) to (36) show the same results for a CIF format file: “Waterfall”, as an example of

detailed images. DPSA has considerably good performance in these cases, as well.

Asevident in these graphs, step size (QP) is a critical parameter. If the step sizeislarge, the
range of quantised valuesis small and it leads to highly compressed data, during transmission.
However, the re-quantised values in decoder are not a close approximation of the original ones

and create lower PSNR vaues.

With smaller step size, the re-quantised values match the original signal more closely, which
means higher PSNR, with the price of lower compression efficiency. QP of 28 seemsto be the

most optimum step size, and hasbeen applied in all other experimental steps.
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Figure 31: Number of search points comparison for EPZS and DPSA 1with various quantization

parameters on “Car-phone”
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Figure 322 PSNR comparison for EPZS and DPSA 1with various quantization parameters on

“Car-phone”
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Figure 34: Number of search points comparison for EPZS and DPSA 1with variousquantization

parameters on “Waterfall”

—+—DP
o 40 SA
Z N --m--EPZS
£ 38
;l
36
7
32
30
25 26 27 28 29 30 31 32 33 34QP

Figure 35: PSNR comparison for EPZS and DPSA 1with various quantization parameters on
“Waterfall”

48



+— DPSA
05 —-®--EPZS
%)
§'4 NN
B -\_
=03 .
= *~m
= -~
0.2 S SN

?‘*-.\\
0.1 'h_""h-'
0 QP
25 26 27 28 29 30 31 32 33 34

Figure 36: Bit-Rate comparison for EPZS and DPSA 1with various quantization parameters on

“Waterfall”

6.5. Comparison between DPSA1 and DPSA2

Comparing two proposed versions. DPSA 1 and DPSA2, overall both methods improve al main

criteriain EPZS. DPSA1, using Avrg_A and (Avrg_A)/2, in all test videos creates the least

number of bit-rate with the highest PSNR values. However, the number of search points and ME

process time in this approach is higher than DPSA2.

DPSA 2, on the other hand, usesLeft A and (Left_A)/2. It manages to have the least number of

search points, even up to 14.7%6 less than EPZS which is well-known for its computational

complexity, and the highest speed up among all tested algorithms. Though, it does not increase

the compression ratio, as much as DPSA 1 does.

Therefore, although the differences between DPSA 1 and DPSA 2 performance are insignificant,

they can be recommended in this way:

> For applications, with computational complexity constraint, such asreal time encoders, in

which, the computational cost must below enough to ensure encoding of at least intended

frames per second (in this experiment: 30 fps) DPSA2 is highly recommended.
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» Instead, for applications like online video conferencing, in which the network’s channel
band-width is limited, or the capacity of storage is the main concern, DPSA1 with the

lowest required bit-rate, insures the much needed compression ratio.
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CHAPTERY

Conclusion

Fast ME algorithms are patterns which try to reduce the computational complexity of ME
process time. Predictivezonal search algorithms are a category of block-based fast ME methods
that promise to keep the encoded images quality and compression ratio besides lowering the
computational complexity. In thisthesis a new block-based dynamic predictive search algorithm

(DPSA) is proposed, for video encoders.

7.1. Advantages

Encoding several test sequences with DPSA aong with 4 other existing algorithmsindicates that
this technique clearly outperforms other methods in terms of PSNR; compression ratio; and
computational complexity. All achieved improvements through DPSA1 and DPSA2 compare to
EPZS algorithm for the 11 tested video sequences are listed in table 13.

Unlike most other fast ME algorithms, DPSA not only produces up to 38% lower bit-rate, but
also, increases the PSNR parameter by 0.47dB. This confirmsfinding more accurate MV's and
minimizing the energy content of residual images. Thisis a highly desirable feature in many
applications, particularly in limited bit-rate and band-path channel networks and fixed capacity
storage media like CDs and DVDs.

Moreover, based on experimental results, DPSA accomplishes up to 14.75% lower number of
search points than state-of-the-art EPZS with up to 13% speed up. This accomplishment makes
DPSA energy efficient for portable video processing in computation- or power-constrained

applications.

One advantage of DPSA, over the other algorithmsis simplicity. Unlike well-known EPZS that
uses over 10 predictors, proposed DPSA takes advantage of the most optimum correlated MBs

for prediction, and only with six initial search points, manages to achieve the highest
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performance and the shortest process time. This feature makes it easier to be implemented on

both hardware and software platforms.

Another feature of DPSA isits scalability for various levels of motion contents, small to medium
to large. It also has considerably good performance over different sampling resolutions, as we
have presented experimental results for both QCIF and CIF movie streams in this paper. This
makes DPSA generally beneficial for different applications from offline film processing to

online video-conferencing.

7.2. Futureworks

Experimental measurements prove that DPSA improves PSNR values as a factor of quality, over
EPZS algorithm, on aimost all encoded videos. Watching encoded frames in single colour areas
of these images, it is even visually distinctive that DPSA creates smoather frames. However, in

some colourful images such as waterfall, with high frequency samples, DPSA resultsin some

kind of washed out colours.

One suggestion on future works in this area might be finding a solution to resolve thisissuein

order toimprove the sharpness of colours in encoded images.
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Table 13: Performance improvement in DPSA1 and DPSA2 over EPZS

ME
Sequence DPSA PSNR Bit-Rate Sear ch point
) ) ) process
name algrthm improvement (dB) | improvement (%) | improvement (%)
time (%)
DPSA1 0.16 9.20 12.03 8.2
Car-phone
DPSA2 0.12 7.60 13.41 9.3
Mother & DPSA1 0.26 8.18 12.91 9.5
Daughter DPSA2 0.177 5.16 14.05 9.2
DPSA1 0.345 17.75 8.77 6.6
Foreman
DPSA2 0.29 14.95 10.42 9
DPSA1 0.410 37.99 8.1 6
Waterfall
DPSA2 0.374 32.74 9.85 11.25
DPSA1 0.1 27.57 2.58 2
Tempete
DPSA2 0.1 24.89 3.17 1
Hall DPSA1 0.031 0.84 10.36 03
monitor DPSA2 0.017 0.66 10.61 0.3
DPSA1 0.270 19.34 7.98 74
Stefan
DPSA2 0.258 17.10 8.87 9.6
DPSA1 0.232 20.63 8.94 13.0
Bus
DPSA2 0.240 19.45 8.48 122
DPSA1 0.208 11.86 8.59 02
Coastguard
DPSA2 0.179 9.31 11.62 35
DPSA1 0.021 7.57 9.00 77
News
DPSA2 0.016 5.45 9.70 8.4
DPSA1 0.016 0.73 13.86 6.8
Akiyo
DPSA2 0.002 -003 14.75 6.5

53




PUBLICATIONS

1. Abdoli, B; Sedaghat, R, “A Dynamic Predictive Fast Motion Estimation Technique”,
| EEE Transaction on multimedia, submitted, 2012

2. Abdoli, B; Sedaghat, R, “Optimized Predictive Zonal Search (OPZS) for Block-based
Motion Estimation”, International journal of Signal Processing: Image

communication, Elsevier, submitted, 2012

54



BIBLIOGRAPHY

[1] Kneip, J.; Robert Bosch GmbH; Hildesheim Bauer, S.; Vollmer, J.; Schmale, B. ; Kuhn,
P. ; Reissmann, M. “The MPEG-4 video coding standard - a VLS point ofview”’, in IEEE

conference on signal processing systems 98, pp.43-52, October 1998

[2] Wiegand, Thomas; Sullivan, Gary J.; Bjontegaard, Gisle; Luthra, Ajay, “Overview of the
H.264 /AVC Video Coding Standard”, 1EEE Transactions on Circuits and Systems for Video
Technology, vol. 13, NO. 7, pp. 560-575, JUL 2003.

[3] Ahirwal,B.; Mechatron. Pune Khadtare, M.; Mehta, R., “FPGA based system for Color
Space Transformation RGB to YIQ and YCbCr”, in IEEE international conference on
Intelligent and advanced systems, pp. 1345-1349, November 2007

[4] lain E.G. Richardson, “H.264 and MPEG-4 video compression”, (Book), 2003

[5] Xiao-Fan Feng Daly, S., “Vision-Based Strategy to Reduce the Perceived Color Mis
registration of Image-Capturing Devices”, PROCEEDINGS OF THE IEEE, VOL. 90, NO. 1,
pp. 1827, January 2002

[6] Kalva, Hari, “The H.264 Video Coding Standard”, in | EEE Multimedia, vol.13, NO.4, pp.
86-90, October 2006

[7] Jong-Nam Kim_ ; Sung-Chea Byun_; Yong-Hoon Kim ; Byung-Ha Ahn, “Fast Full Search
Motion Estimation Algorithm Using Early Detection of Impossible Candidate Vectors’, IEEE
Transactions on Signal processing, vol. 50, NO.9, pp. 2355 — 2365, September 2002

[8] Jing, Xuan; Chau, Lap-Pui, “An Lfficient Three-Sep Search Algorithm for Block Motion
Estimation”, |EEE Transaction on Multimedia, vol. 6, NO.3, pp. 435-438, June 2004

[9] Li, Reoxiang; Zeng, Bing; Liou, M.L.; “4 new three-step search algorithm for block motion
estimation”, |EEE Transactions on Circuits and Systems for Video Technology, vol.4, NO.4,

pp. 438-442, Aug1994.

55



[10] Chi-Wai Lam ; Lai-Man Po; Chun Ho Cheun “A Novel KiteCross-Diamond Search
Algorithm For Fast Video Coding and video conferencing Applications”, in |IEEE
international conference on Acoustics, Speech, and Signal Processing, vol.3, pp. 365-

368, May 2004

[11] Liang Yaling ; Liu Jing; Du Minghui “A Cross Octagonal search algorithm for fast block
motion estimation”, international symposium on Intelligent Signal Processing and

Communication Systems 2005, pp. 357 — 360, December 2005

[12] Cheung, Chun-Ho; Po, Lai-Man, “A Novel Cross-Diamond Search Algorithm for Fast
Block Motion Estimation”, |EEE Transactions on Circuits and Systems for Video

Technology, vol.12, NO.12, pp. 1168-1177, Dec 2002
[13] Improved Diamond Search Algorithm for H.264/AV C Video Coding Standard

[14] Zhu, Ce; Lin, Xiao; Chau, Lappui; Po, Lai-Man, "Enhanced hexagonal search for fast
block motion estimation”, |EEE Transactions on Circuits and Systems for Video Technol ogy,

vol.14, NO.10, pp. 1210-1214, October 2004

[15] X. Yiand N. Ling, “Zero motion vector-biased cross diamond search for rapid motion
estimation”, in Image and Video Communications and Processing, San Jose, SPIE vol. 5685,

pp. 995-1006, Jan 2005

[16] Zhiru Shi, W.A.C. Fernando and D.V.S.X. De Silva “A motion estimation algorithm based
on predictive intensive direction search for H.264/AVC” in IEEE International Conference on

Multimedia and Expo (ICME), pp. 667-672, September 2010

[17] Jo Yew Tham_ ; Ranganath, S. ; Ranganath, M. ; Kassim, AA., “A Novel unrestricted
center-biased diamond search algorithm for block ME’| |EEE Transactions on Circuits and

Systems for Video Technology, vol.8, NO.4, pp. 369 - 377, Aug 1998

[18] Tourapis, A.M._; Au, O.C.; Liou, M.L.; Shen, G.; Ahmad, I. “Optimizing the MPEG-4
Encoder - Advanced Diamond Zonal Search”, |EEE international symposium on Circuits and

Systems 2000, vol.3, pp. 674 - 677, 2000

56



[19] Li Hongye; Liu Ming-jun,* Cross-Hexagon-based Motion Estimation Algorithm Using
Motion Vector Adaptive Search Technique”, International Conference on wireless

communication and signal processing, pp. 1-4, November 2009

[20] Ahmed, Zaynab ; Hussain, Abir Jaafar ; Al-Jumeily, Dhiya, “ Mean Predictive Block
Matching (MPBM) for fastBlockMatching motion estimation”, in 3rd European Workshop
onVisua Information Processing (EUVIP), pp. 67-72, October 2011

[21] Hosur, Prabhudev |.; Ma, Kai-Kuang, “Motion Vector Field Adaptive Fast Motion
Estimation” Second International Conference on Information, Communications and Signal
Processing (ICICS 1999), Singapore, Dec1999.

[22] Tourapis, Alexis Michagl; Au, Oscar C.; Liou, Ming L., "Predictive Motion Vector Field
Adaptive Search Technique (PMVFAST) - Enhancing Block Based Motion Estimation,” in
proceedings of Visual Communications and Image Processing 2001(V CIP-2001), pp.883-892,
San Jose, CA, January 2001.

[23] Lihui Yang “Research on the Motion Estimation Algorithmin AVS, second international

conference on networking and digital society, vol. 2, pp. 625 — 628, May 2010

[24] Hoi-Ming Wong, “Enhanced predictive motion vector field adaptive search technique (E

PMVFAST) - based on future MV prediction”, |EEE International Conference on multimedia
and Expo, July 2005

[25] Tourapis, Alexis Michael; Au, Oscar C.; Liou, Ming L.; Shen, Guobin; Ahmad, Ishfag
“Optimizing the MPEG-4 Encoder - Advanced Diamond Zonal Search”, 1EEE International

Symposium on Circuits and Systems, Geneva, Switzerland , vol.3, pp. 674— 677, August
2002

[26] Tourapis, A.M.; Au, O.C,; Liou, M.L. “New Results on Zonal Based Motion Estimation
Algorithms-Advanced Predictive Diamond Zonal Search’, |EEE International conference on

Circuits and Systems, vol.5, pp. 183 - 186, 2001

57



[27] Lifen, Xie; Chunqing, Huang; Bihui, Chen, “UMHexagonS Search Algorithm for Fast
Motion Estimatior”’) in 3rd Computer Research and Development International Conference,

pp. 483-487, May 2011

[28] Chou, Lei-Chun; Y e, Cheng-Da; Liu, Y uan-Chen; Jhao, Bin-Cheng, “Fast Predictive
Search Algorithm for Video Motion Estimatior’, in 14th International Conference of Image

Analysis and Processing, pp. 399 — 406, October 2007

[29] Y oon Hyosun; Kim, Hyesuk; Kim, Miyoung; Nga, Lai; Lee, Gueesang, “Hierarchical
Integer pixel and Adaptive Fractional pixel Motion Estimation”, |EEE 8th International
Conference on Computer and Information Technology Workshops , Sydney, QLD, pp. 391 -
395, July 2008

[30] Marcelino S, Faria S., Assuncao P., Moiron S., Ghanbari M., “Efficient MV Prediction for
Zonal Search In Video Transcoding”, in |EEE International Workshop on Multimedia Signal
Processing (MM SP), pp. 228 — 232, Dec 2010

[31] Tourapis, Alexis Michael; Au, Oscar C.; Liou, Ming L., "Highly efficient predictive zonal
algorithms for fast block-matching motion estimation” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 12, NO.10, pp. 934-947, October 2002

[32] Tourapis, AlexisMichael, “Enhanced Predictive Zonal Search for Sngle and Multiple
Frame Motion Estimatiori’, in proceedings of Visual Communications and |mage Processing

2002 (VCIP-2002), pp. 1069-79, San Jose, CA, Jan 2002

[33] Ezzedine, Tahar, “Enhanced Adaptive Early Termination for Enhanced Predictive Zonal
Search Algorithmin motion estimation”, in International Journal of Computer Science and
Network Security (IJCSNS), vol. 8 NO. 6, pp. 236-240, June 2008

[34] Tourapis, Alexis Michael; Sthring, Karsten; Sullivan, Gary, “H.264/14496-10 AVC
Reference Software Manual”, Joint Vide Team (JVT) of ISOIIEC and ITU-T VCEG, Input
document to VT, June-July2009

58



[35] Chen, Zhibo; He, Yun, “Fast Integer and Fractional Pel Motion Estimation”, Joint Vide
Team (JVT) of ISOIIEC and ITU-T VCEG, Input document to JVT, 5th Meeting, Geneva,
Switzerland, October 2002.

59



Nomenclature

DPSA Dynamic Predictive Search Algorithm
EPZS Enhanced Predictive Zonal Search
PSNR Peak Signal to Noise Ratio
ME Motion Estimation
MC Motion Compensation
SAD Sum Of Absolute Difference
SDSP Small Diamond Search Peattern
LDSP Large Diamond Search Pattern
MV Motion Vector
MB Macro Block
SP Number of Search Points
BR DataBit Rate
QP Quanti zation Parameter
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