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ABSTRACT

SATELLITE ATTITUDE CONTROL USING ENVIRONMENTAL FORCES
BASED ON VARIABLE STRUCTURE CONTROL

Tarunkumar Patel, Master of Applied Science, Aerospace Engineering
Ryerson University, Toronto, 2008

The present thesis examines the use of environmental forces for satellite attitude control
using variable structure control. The system comprises of a satellite with control flaps to
utilize environmental forces such as solar radiation pressure and aerodynamic forces. A
variable structure control approach has been adopted to develop control law for suitably
rotating the control flaps to achieve desired satellite attitude performance. The detailed
numerical simulation of the governing nonlinear system equation of motion including the
effects of various system parameters on the controller performance establishes the
effectiveness of the proposed control strategy. The numerical simulation matches with the
analytical results. Furthermore from analysis, the proposed controller is found to be robust
against parameter uncertainties and external disturbances and its performance is superior in
comparison to other strategies proposed in the literature. Thus, the robustness of the proposed
control strategy and utilizing natural environmental forces for attitude control makes the

proposed concept attractive for future space applications.
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Chapter 1

Introduction

1.1 Introduction

The attitude stability of a satellite is very important for successful completion of a space
mission. The Attitude Control System (ACS) for satellite aims on orienting and stabilizing
the satellite in desired setpoint positions. ACS require sensors to measure states of the
satellites, actuators to apply torques needed to re-orient the satellite to a desired attitude, and
control laws, a set of computations that determine how to command the actuators, based on
the sensor measurements. Unfortunately, even though a satellite may be precisely oriented in
the beginning, it deviates in time from its preferred orientation under the influence of
environmental torques caused by gravity gradient, solar radiation pressure, magnetic,
aerodynamic, and free molecular reaction forces [1-2]. However, these forces if properly
utilized may stabilize the attitude of the satellite instead of deteriorating it. Several methods
of attitude stabilization have been developed over the last four decades. These methods may
be broadly classified as active and passive methods. Active stabilization methods require
expenditure of propellant or energy, leading to an increase in weight and space requirements.
Some of the well known examples are micro-thrusters, reaction wheels, and control
momentum gyros. These can assure precise satellite orientation to practically any desired
degree of accuracy. On the other hand, passive methods depend on natural forces and they
make use of spin stabilization, dual spin, gravity gradient, solar radiation pressure (SRP),

aerodynamic, and Earth's magnetic field. These methods are thus low cost and their
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development may provide a viable solution to the recent thrust, by space researchers
worldwide, on the development of low cost attitude control systems (ACS) and guidance,
navigation, and control systems (GNC) for satellites. However, their development poses
several challenges including techniques to utilize these forces effectively, low attitude
accuracies, and unavailability of forces. The present thesis undertakes these challenges and
focuses on the application of SRP forces and aerodynamic forces for attitude control of
satellites with a view to achieve the goal of low cost ACSs with higher degree of accuracy

for attitude stability of satellite.

1.2 Literature Reviews

The literature review on satellite attitude stabilization using SRP is first presented followed
by pertinent literature on the application of aerodynamic forces for satellite attitude

stabilization is presented in next section.

1.2.1 Solar Radiation Pressure Torques

The solar radiation pressure (SRP) for attitude control of high altitude satellites and
interplanetary probes has been investigated by several researchers [3-27]. For utilizing SRP
torque, various configurations have been proposed. These include trailing cone system [3],
weathervane type tail surfaces [4], reflector-collector system [5], corner mirror arrays [6],
solar paddles [7], grated solar sails [8], and mirror-like surfaces [9-24]. These configurations
have been proposed for sun-pointing satellites [7, 8] and gravity-oriented satellites [9-24].
Spinning [6-13] and non-spinning satellites [14-24] were also investigated. The satellite
attitude control has been achieved by applying translational motions of single or multiple
control surfaces [22-24] or rotating the control surfaces about satellite body-fixed axes [9-
21]. There were few missions [25-26] that include the Mariner IV mission [25] employing
solar vanes for passive sun pointing attitude, and geostationary communication satellite OTS-

2 mission of the European Space Agency [26] using solar flaps for satellite attitude control.
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Circular Orbit

The SRP control torque thus can be utilized to stabilize librational dynamics of a satellite
with a desired degree of accuracy. Optimal solar pressure controller design has been
considered in Refs.[15-18]. In Ref. [18], open-loop optimal control using gradient technique
is derived. However, linear controllers [13-19] are effective only for small attitude angle
excursions. Using feedback linearization technique (FL), a nonlinear controller has been

designed by Singh and Yim [20] for satellite pitch control.

Elliptic Orbit

Most of the research is focused on the application of SRP for stabilizing satellite attitude in
circular orbits. Only few papers deal with the problem of controlling satellite attitude in
elliptic orbits. When satellites are in elliptic orbits, the amplitude of satellite attitude
increases with an increase in eccentricity and the satellite attitude may become unstable even
though there are no initial attitude disturbances. To overcome the adverse effect of
eccentricity, Joshi and Kumar [23] applied the SRP to control the attitude of earth-oriented
axisymmetric satellites by regulating translatory motions of the control surfaces relative to
the satellite body. They have developed open loop control law based on canceling out the
attitude disturbance torque due to eccentricity with the SRP torque. They were able to show
marginal stable response of the satellite pitch for eccentricity as high as e=0.1. Instead of
translatory motions of the control surfaces, Kumar at el. [27] have utilized rotating control
surfaces to produce SRP torque and to overcome adverse effect of eccentricity for earth-
oriented axisymmetiec satellites. They have designed open-loop control laws for rotating
control surfaces to counteract attitude disturbances caused by eccentricity of the order e=0.1.

The extension of this problem to feedback control has not been yet studied.

1.2.2 Aerodynamic Torques

For satellites orbiting in Low Earth orbits (LEO), aerodynamic torques are significant and
thus, can be utilized for satellite attitude stabilization. Several investigations were carried out
on this subject [28-37]. Modi and Shrivastava [28] assumed a system of flaps, and flap

rotation to damp the attitude motion of a satellite. The flap rotation was regulated based on
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linear feedback control with saturation constraints as well as bang-bang control with linear
switching criteria. Using similar flaps, Ravindran and Hughes [29] considered performance
optimization of an aerodynamic controller by minimizing a performance index weighted
equally with respect to the attitude errors and control surface movements. An optimal
aerodynamic stabilization of Near-Earth satellites is investigated by Pande and
Venkatachalam in reference [30]. Successful application of aerodynamic forces for pitch
control of COSMOS-149 was reported by Sarychev [31].

1.2.3 Combination of Environmental Torques

Propellant-less methods have their own limitations and to overcome these limitations,
methods using combinations of various environmental forces have been envisaged, such as
aerodynamic and gravity (aero-gravity assist), aerodynamic and SRP, aerodynamic and
magnetic. Kumar et al. [32] examined passive aerodynamic stabilization and passive
magnetic hysteresis damping of attitude rates while Chen et al. [33] considered aerodynamic
torque for yaw stabilization and the gravity gradient torque to stabilize pitch and roll
attitudes. Magentic torquers with a gravity-gradient boom have been applied by Wisniewski
[34]. Psiaki [35] applied passive aerodynamic drag torques for stabilization of pitch and yaw
motions; and roll motion was controlled by active magnetic torquer of a shuttle-cock type
satellite. The combination of SRP and aerodynamic forces was applied by Modi and Pande
[36] for a low-Earth orbit satellite. Kumar et al [37] proposed the combination of SRP
torques with magnetic torquers for three-dimensional attitude control for a geostationary
satellite. The satellite pitch and roll controls are based on SRP torques while the yaw attitude
is controlled by a magnetic torquer. This research overcomes the limitations of using SRP
torques (multiple control surfaces) and magnetic torquers (inability to provide torque about
the local magnetic field direction, i.e., pitch axis). The proposed controllers were successful
in stabilizing the satellite attitude in the presence attitude disturbances and orbital
eccentricity. The control inputs were within the limits of the maximum control surfaces

rotation of 40 deg and with the magnetic torquers’ maximum moment of 12 Am®.
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1.3 Motivation

In the design of any control system there are discrepancies between the actual plants and the
mathematical model developed for controller design. This mismatch may be due to
unmodeled dynamics, variation in system parameters, or the approximation of complex plant.
In such situation the design of controller must ensure that the resulting controller has the
ability to produce the required performance levels in practice despite such parameter
uncertainties. Moreover, the system may experience disturbances due to several factors
including modeling error, flap misalignments, and other environmental forces. These
disturbances have to be considered during design of control system. This has led me to an
intense interest in the development of robust control methods which seek to solve this

problem.

Satellite attitude control using environmental forces have their own limitation and to
overcome these limitations combinations of various environmental forces have been
investigated. However, using only one environmental force for large attitude angle maneuver
of the satellite has not been investigated. In the present study, satellite attitude control will be

examined based on either SRP or aerodynamic forces.

1.4 Research Objectives

The objectives of this thesis can be summarized as:
1) Develop a system model and its equations of motion to study dynamics and control
for specific satellite geometry.
2) Design robust nonlinear variable structure controller which utilize environmental
torques to stabilize satellite attitude.

3) Verify the robustness of the proposed controllers by numerical simulations.

1.5 Contributions of Thesis

The present study makes several contributions to the environmental forces stabilized

satellites. The major contributions of thesis are:
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1) Derivation of closed-loop robust nonlinear VSC for satellite attitude control using
environmental forces.

2) Large angle attitude maneuver using solar radiation pressure torque and aerodynamic
torque.

3) Derivation of robust feedback control laws for satellite orbiting in elliptic orbits using
solar radiation pressure.

4) Examination of the system parameter needed for satellite design which utilizes
environmental forces for attitude control of a satellite.

5) Three-axis satellite attitude control using only aerodynamic torques.

6) The current research investigates non-propulsive method for satellite attitude control
by utilizing environmental forces. This research provides strong bases for future real-

world applications as controlling satellite attitude using environmental forces.

1.6 Thesis Organization

This thesis is organized in the following manner:

In Chapter 2, a brief introduction to the concepts of variable structure control (VSC) is given.
This chapter explains the design of sliding surfaces, design of sliding mode control laws
using Lyapunov function, and design of reaching laws. Chapter also gives advantages of
using variable structure control in control design. Analytical proofs of disturbance rejection

and parameter uncertainties are given for VSC.

Chapter 3 deals with satellite attitude control using SRP based on robust variable structure
control. The system model and its equation of motion are presented in this chapter. The
closed-loop nonlinear controllers are derived for satellite orbiting in circular orbit and elliptic
orbits. Also this chapter would give analytical solution for tracking error for Hurwitz
polynomial trajectory. The effects of various system parameters on the performance of the
control input are examined and the effectiveness of the VSC in presence of parameter
uncertainties and the external disturbances is discussed. Finally, the findings of the present

investigation are summarized in this chapter.
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Chapter 4 presents the application of aerodynamic torques for satellite attitude control based
on variable structure control. The system models and their equations of motion are presented
for planar and three dimensional cases. Two type of aerodynamic torque model is presented
in this chapter, simplified aerodynamic torque model and free molecular flow aerodynamic
torque model. The closed-loop nonlinear controllers are derived for satellite orbiting in
circular orbit for both planar and three dimensional cases using simplified aerodynamic
torque model. The effects of various system parameters on the performance of the control
input are examined and the effectiveness of the VSC in presence of parameter uncertainties
and the external disturbances are discussed. Finally, the important results are summarized in

Summary Section.

Chapter 5 presents the various conclusions drawn from this research work and future works.
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Chapter 2

Background on Variable Structure
Control

In this chapter, a brief introduction about the concepts of variable structure control (VSC) is
given. Different aspects of VSC are discussed; these include design of sliding surfaces,
design of sliding mode control laws using Lyapunov function, design of reaching laws, and

properties of VSC.

2.1 Introduction

Variable Structure Control (VSC) technique is characterized by surfaces which guarantee
asymptotic stability if the state trajectories move along them. These surfaces are called the
sliding surfaces or sliding regimes. The motion along them is refereed to as a “sliding mode”.
A system at the initial state is moved to the final desired state in two phases: reaching phase
and sliding phase. In the reaching phase, the control inputs steers the state of the system
towards a sliding surface from a given initial state. The reaching phase is followed by the
sliding phase wherein the control inputs are designed to make the system stay on the sliding

surface and slide towards the desired state thus ensuring asymptotic stability.

The basics of VSC theory can be explained using an example. Consider a time invariant
systems with scalar control
X =X,

x,=U @1
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where, x,and x, are state variables, Uis a scalar control input. The derivative is with respect

to time.

Let S be the sliding surface (Figure 2.1)

S=x,+px, p>0 (2.2)
X2
1 .5 T T T T
I u*
Al S>0 % )
0.5r i
0
X
Desired State
-0.5+ * .
I
_qL v _
S>0 * Initial States
11 I U
S<0
-1.5 ; : : '
-1.5 -1 -0.5 0 0.5 1 1.5

Figure 2.1: Variable structure control trajectories

In Figure 2.1 the x; axis and the straight line S=x, +px divide the phase plane to four

regions.

10
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regionl :x,>0,5>0

region II : x, >0, s<0

. (2.3)
region III: x, <0, s <0
region IV:x, <0, s >0
The control input is chosen as
U'=-2 8>0
U=-2sgn(S) or 24
e ( ) U =2 S<0 @4

In this case, S in Eq. (2.2) describes a one dimensional sliding surface and p is a sliding
surface coefficient which is selected so as to guarantee a desirable sliding motion. For this

example, p = 1 is assumed.

For a given initial state, an appropriate U is applied which moves the system trajectory
toward S =0 (i.e. reaching phase). Once the trajectory crosses the line S =0 the control

switches it direction thus forcing the trajectory towards S = 0 again (Figure 2.1).

Let the initial state lie in region I (x,S > 0), so according to Eq. (2.3) U* will be applied and
the state will move towards the line S. At some time ¢ > the state will reach the line S

and enters region II. In region II (xlS < 0) and according to Eq. (2.3) U~ will applied and the

state will move along an arc of a hyperbola towards the line S . After some time the state will

leave region II and enter region I where the control is switched to U™ again, thus forcing the
state to region II again. It is seen that the state trajectory neither belongs to region I nor to
region II and it has to move on the common border between the regions, in this case the
straight line S = x, + px; = 0. It is seen that the trajectory cannot lie outside the line S =0
and the only possible motion for the system trajectory is to stay on the surface S=0 and
move on it. This motion is called the sliding motion and the line S =0 is called the sliding

surface or the switching surface. The initial states that lie in region III and IV will follow the

similar trend as of region I and II.

11
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From the above example it is understood that the behavior of the VSC system depends
completely upon the design of the switching surface and reaching control laws. Thus, VSC
can be designed in three stages as:
1) design of the sliding mode dynamics by choice of switching surfaces,
2) design of Lyapunov function,
3) design of the reaching dynamics by the specification of the reaching laws.
Before explaining all these steps, let us consider the nth order nonlinear system of the form
X, =X,
X, =X,
(2.5)

X, = f(x)+g(x)u
where it is assumed that f and g are nonlinear function which depends on state x. The control

objective is for y(¢)=x,()to track a desired signal y, (7). Let e=y—y,be the tracking

CITOor.

2.2 Sliding Surface Design

First step is to determine a set of hyperplanes providing suitable behavior in the sliding

mode.

Linear Hypersurfaces

The sliding mode surface S is defined as

=e +p e " +... + p,e+ pe .
S=e""+p, e Pé+py (2.6)

where the coefficients {p,, p, ..., p,, } are selected such that the characteristic equation

ne -1 -1)(n-2
(s+4) " =" +(il'—),1ss"-‘ +(i¥—)zjs“ toet (=D A s+ A7 =0 (2.7)
is Hurwitz (i.e., all the roots of the polynomial are in the left-half complex plane). Here s is

known as Laplace operator and A, is desired pole of the closed loop system. In general, the

following relation can be used to find the coefficient p;

12
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D)
1!
_(n—l)(n—2) 2
P —2—!&-
P (n—l)(n—Z)(n—3) P
3! (2.8)

D, =(n~l)/1:‘2
b= /1:—1

For example, n = 3, coefficients p; and p; can obtained as

=24
pZ ) s (29)
pl = Z’s
and for n = 4, coefficients p;, p», and p3 can be obtained as
b= ﬂ'ss
p, =34 (2.10)
p; =34,

The manifold described by S =0 is referred to as the sliding manifold or sliding surface and
has dimension (n-1). The objective of sliding mode control is to steer the trajectory onto this
sliding manifold. This is achieved by forcing the variable S to zero in finite time. The
variable structure control designed based on above linear hypersurfaces is called the Sliding

Mode Control (SMC).

Nonlinear Hypersurfaces

Similar to linear hypersurfaces one can also choose nonlinear hyper surfaces [41-46] as

sliding surface
S=¢é+pe” (2.11)
where p, > 0 is design constant, and g; and 4; are positive odd integers satisfying #;> g;. The

variable structure control designed based on above non-linear hypersurfaces is called the

Terminal Sliding Mode Control (TSMC).

13
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2.3 Lyapunov Design

In previous section, the sliding surface design is given by choosing linear and nonlinear
hypersurfaces. Now next step is to design Lyapunov function such that the state trajectories
reach the sliding surfaces and remain there. In order to do that the following Lyapunov

function candidate is assumed

V= %STS (2.12)

where V is a positive definite function for all S except at the origin S = 0. Next evaluate the
time derivative of V along the trajectory e.

V=5'S (2.13)
The well known Lyapunov stability theory states that [40] if a positive definite function V(x)

can be found such that V(x) is negative definite, then the origin is asymptotically stable. It

can be seen that in order to make the origin asymptotically stable one must have
V=58"S<0 (2.14)
The above inequality is known as the reaching condition [40]. This inequality imposes that

the trajectory e will converge to the origin S = 0, i.e., reaching the sliding surface.

2.4 Design of Reaching Laws

The final stage of the VSC design procedure involves the selection of the reaching control
which will ensure that the chosen sliding mode is attained. For this reason, the problem of
determining a control structure and associated gains, which ensure the reaching or hitting of
the sliding mode, is sometimes called the reachability problem. The condition under which
the state will move towards and reach a sliding surface is called a reaching condition. The
system trajectory under the reaching condition is said to be in the reaching mode, or reaching
phase. Reaching control laws are directly specifies the dynamics of the switching function. In

the literature [38-46] the following reaching laws are available

(2)The constant rate reaching law

S =-nsgn(S) (2.15)

14
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where 7 are diagonal matrices with positive elements and

sen(S)=[sgn(s,) sgn(s,) ... sen(s,)] (2.16)

(b) The constant plus proportional rate reaching law
S =-nsgn(S)-kS (2.17)

where 7 and £ are diagonal matrices with positive elements.

(c) The power rate reaching law

S =-n|S|" sgn(S) (2.18)

where 0<o <1.

Now following above three steps, the following VSC law is obtained for system Eq. (2.5) by
considering linear hyper surfaces (2.6) and constant rate reaching laws (2.15) as follows:

U= g(lx) [~/ (x)+ ¥ = pae —..- pé - pé —nsgn(S)] (2.19)

where sgn( ) denote the signum function as

if S>0
sgn(S) =<0 if S=0 (2.20)
-1 if S<0

2.5 Properties of VSC

The VSC has advantages of robustness to parameter uncertainties, neglected model dynamics
and external disturbances. The VSC have the following properties:
1) The system response is insensitive to system nonlinearities since the closed-loop

system is governed by the sliding plane.

2) The system response depends only on the sliding surface coefficients p,

(for i=1, 2,...,n) which are chosen by the designer.

15
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Once the system trajectory reaches on the sliding surface S=0, then the closed loop system

after substituting VSC law (2.19) in system (2.5) becomes

e +p, € +..+pé+peé+nsgn(S)=0 (2.21)
Since the characteristic equation given by (2.7) is Hurwitz, the tracking error will go to zero
with the selected coefficients {p,, p,,..., p,,} . Then after whole system is governed by above

equation and it is insensitive to nonlinearities.

3) The system response is insensitive to variation in system parameters and modeling
EITOrS.

4) The system response is insensitive to external disturbances.

The preceding Eq. (2.21) is the ordinary linear differential equation of error dynamics and it
does not contain any external disturbance term or uncertain parameter once reaches on

sliding surface. This error equation is asymptotically stable as ¢ — o, tracking error e > 0.

Furthermore, the term nsgn(S) forces the error dynamics to stay onto the sliding plane

which makes the system insensitive to system parameter uncertainty and external

disturbances.

2.6 Analytical Proofs for Disturbance Rejection and Parameter
Uncertainties

The proposed VSC laws are robust against parameter uncertainties and external disturbances.

The proofs are as follows:

Disturbance Rejection

The class of nonlinear systems under this study can be described in the state space form with
external disturbance w as

X=f(x)+gx)u+plxyw

2.22
¥y =h(x) (2:22)

16
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where x is a state vector, y is an output, and p(x) is a smooth disturbance vector field. The

objective is to find a VSC law u such that w has no effect on the output.

Theorem 1: The disturbance rejection problem for the system (2.22) is solvable iff the Lie
derivatives of A(x) with respect to vector field p(x) and fx) is

L,Lh(x) =0 for k<n-1. (2.23)
where # is the relative degree of the unperturbed system.
Proof: Equation (2.22) is written in the normal form using Lie derivatives as follows.
X =x,+ L h(x)w,
X, =x3+L,L h(x)w,
(2.24)

x, = f(x)+ g(x)u + LpL’}_Ih(x) w
Using the condition (2.23) yields that the first n equations (2.24) do not contain w. Thus the
VSC law
1
g(x)

isolate output y from w. Here v is the desired system trajectory. This complete the “if” part

u

[/ (x)+v] (2.25)

of the proof. For “only if” part of the proof, we assume that there exist a VSC law Eq.(2.19)

of the form
u=f(x)+g(x)v (2.26)
that results in disturbance rejection.

Using this law yields a closed loop system given by
x=f(x)+g(x)fi(x)+g(x)g (x)o+p(x)w
y=h(x)

with v =0 the output needs to be independent of w.

Thus

(2.27)

V=L, . h+L,hw (2.28)
needs to be independent of w. Thus L h=0. Differentiating above Eq. (2.28) further we get

that

17
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LpLif+gf]h(x)EO, 0<i<n-1 (2.29)
Now note that
Lf+gflh = th + fngh (2.30)
Hence
LghEO:Lf%h:th (2.31)

We see that the condition (2.29) are equivalent to (2.23). Thus, the Theorem 1 proves that the

VSC law result in disturbance rejection and thereby isolate output (y) from disturbance (w).

Parameter Uncertainties

Parameter uncertainties can be modeled as perturbation to f{x), Af(x). The resulting

equation is described as

X=f(x)+af(x)+g(x)u
y = h(x).

The objective is to find a VSC law u such that Af(x) has no effect on the output.

(2.32)

Theorem 2: The parameter uncertainties rejection problem for the system (2.32) is solvable

iff the Lie derivatives of A(x) with respect to vector field Af(x) and f(x) is
Ly L7h(x)=0 for 0<m<n-1. (2.33)

where 7 is the relative degree of the unperturbed system (2.32).

Proof: Equation (2.32) is written in the normal form using Lie derivatives as follows.

xl = x2 + LAf(x)h(x) Af(x)a
X, =X+ LAf(x)th(x) Af (x),
(2.34)

X, = [ (x)+g(x)u+ Ly, L7 h(x) Af (x)

18
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Using the condition (2.33) yields that the first n equations (2.34) do not contain Af(x). Thus
the VSC law

g(x [ f(x)+v] (2.35)

isolate output y from Af(x). Here v represents the desired state inputs. This complete the
“if” part of the proof. For “only if” part of the proof, we assume that there exist a VSC law
Eq.(2.19) of the form

u=f,(x)+g(x)v (2.36)
that results in rejection of parameter uncertainties.

Using this law yields a closed loop system given by
=f(x)+g(x)fi(x)+g(x)g (x)v+af(x)
y=h(x)
with v =0 the output needs to be independent of Af(x).
Thus

(2.37)

7=L,, bt Ly hA (%) (2.38)

needs to be independent of Af(x). Thus L, 4 =0. Differentiating above Eq. (2.38) further

we get that
Lyl g h(x)=0, 0<j<n-1 (2.39)
Now note that
L, h=Lh+fLh (2.40)
Hence
Lh=0=L, h=Lh (2.41)

We see that the condition (2.39) are equivalent to (2.33). Thus, the Theorem 2 proves that the
VSC law result in parameter uncertainties rejection and thereby isolate output (y) from

parameter uncertainties Af(x). Theorem 1 and Theorem 2 will be further verified in this

thesis for a particular system model using theory as well as numerical simulation.
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2.7 Chattering Phenomenon

The main disadvantage of VSC arises from the fact that the controls are discontinuous which
makes them vulnerable to nonidealities in switching and time delays. This disadvantage
causes what is known as the chatter phenomenon [40]. The chatter phenomenon causes the
controls to switch directions with a very high frequency. In order to remove chattering there
are few solutions available in literature. One is smoothing out the control discontinuity in a
thin boundary layer neighboring the switching surface sometimes it is called “boundary

layer”. By replacing signum function with saturation function as follow

g sgn(S) S>¢
S)=sat| — |= 2.42
sgn(S)=sa ((p] N S<p (2.42)
4
where, ¢ >0 or hyperbolic tangent as
sgn(S) = tanh(k,S) (2.43)

where, k >0.

20



Chapter 3

Application of Solar Radiation Pressure
for Satellite Attitude Control

3.1 Introduction

This chapter examines the use of SRP for satellite attitude control using nonlinear variable
structure control. The system model and its equations of motion are presented in Section 3.2.
The closed-loop nonlinear control laws based on VSC are derived in Section 3.3 for circular
orbits and elliptic orbits. In Section 3.4, an analytical solution for tracking error is obtained.
Theoretical proof of parameter uncertainties and disturbance rejection for the proposed
control laws are provided in Section 3.5. In Section 3.6 and Section 3.7, the numerical
simulation is carried out for a detailed assessment of the proposed attitude control strategy
for circular orbits and elliptic orbits, respectively. The effects of various system parameters
on the performance of the controller are examined and the effectiveness of the proposed
controller in the presence of parameter uncertainties and external disturbances is given in

both Sections. Finally, the findings of the present study are summarized in Section 3.8.

3.2 Proposed System Model
3.2.1 System Description

A system model comprises of a satellite with two-oppositely placed light-weight solar flaps
along the satellite Y-axis is considered. System center of mass O moving in an elliptic orbit

about the Earth’s center E (Figure 3.1 — Figure 3.2) is assumed. The system center of mass O
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lies on the center of mass of the satellite. The mass of the solar flaps and other accessories
are rather small than the satellite mass and therefore, they are assumed to be negligible. For
the system under consideration, an orbital reference frame O-X,Y,Z, is selected such that the
Y,-axis always points along the local vertical, the X,-axis lies normal to the orbital plane,
and the Z,-axis represents the third axis of this right handed frame taken. The body-fixed
coordinate frame is represented by O-XYZ. For solar flap-j, its axis »; initially aligned with
the Z-axis is rotated by an angle ; about the X-axis (normal to the orbit plane Y-Z) is
considered. The solar flaps are considered to be made of a highly reflective surface (i.e., pq
=0; no absorption, specular reflection only) [27]. The distances between the system center of
mass O and the center of pressure for both the solar flaps are assumed to be the same and

their cross-sectional areas facing the Sun are equal.

Orbit plane

N To Sun

Ecliptic
plane

Equatorial
plane

Figure 3.1: Geometry of orbit motion for solar radiation pressure torques stabilized
satellite

22



Application of Solar Radiation Pressure

1
Solar Flap—1 /><\
n/
~ 1 Y
Orbit—~"~~_ Z o

Local Vertical

04

Earth Center

Figure 3.2: Geometry of satellite and proposed solar controller configuration

3.2.2 Equation of Motion

As our focus in this investigation is to derive a nonlinear closed-loop control for desired
satellite attitude motion for circular orbits and elliptic orbits, the control of the satellite pitch
motion by rotating the solar flaps about the satellite pitch axis (normal to the orbit plane Y-Z)
is considered. The roll and yaw motions remain uncontrolled. Using Euler’s attitude

equations, the governing equation of motion of the system is written as [2]

Lo, —(1,-1,)o,0, =T, +T, (3.1)
where, o, = 9+dL,wy =0, and @, =0. The nomenclature T, is the gravity gradient torque

given by

3 .
T, = —21’; (Iy —Iz)sm2aL (3.2)
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and T, denotes torque due to SRP and it is derived as follows.

The force acting on the plate-j due to SRP is given by [2]

. L B N R I
F =p4, |s1 '”1|{(1‘Ps -p,)5, 1{2,05 (5, '”1)+§pd}”f}’f =12 (3.3)

where pg, ps, and p; are fraction of impinging photons diffusely reflected, specularly

reflected, and transmitted, respectively.

Considering a highly reflective surface (i.e., p, =0 ; no absorption, specular reflection only),
the preceding expression (3.3) simplifies to

F, =2p,pAs, 75,7, ), j =12 (3.4)
Here s; is the unit vector of the incoming light from the Sun on the solar panel-j and is
expressed in the satellite body-fixed reference frame as

5, = [sinl// sin(i—gs)]f+[—cosy/cos(6’+aL)—sinl//cos(i—gs)sin(6'+aL):|j

. (3.5)
+[cosy sin(0+a, )—siny cos(i—¢, ) cos(0+a, ) |k
The vector normal to the solar panel-j, n; is given by
i, =[-sin B, |j+[cos B, |k, j=1.2 (3.6)
Thus, the torque exerted by the solar panel-j on the satellite is obtained as
- = i1 e - - 2 .
T, =7, xF, =(-1) 2pSijrjlsj-njl(sj-nj)[cosﬂj]z, j=12 (3.7

Assuming the cross-sectional area of the panel and the distance between the system center of
mass O and the center of pressure for both the solar panels being the same (i.e., A=A, 17=T),

the components of the total solar torque about the satellite body axes can be written as
T, =T, +T, =2pspAr[[5,-#|(5, -7, )cos B, 5, - 7,| (5, - i, ) cos 5, | (3.8)
Let a be the orientation of the satellite with respect to the inertially fixed axis ¥, (Figure

3.1). It follows

a=a,+0,a=a,+0,d=¢,+6 (3.9)

where @ = Q¢ is the orbital angle, and Q =+/u/a’ is the orbital rate.
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Substituting, ¢, =a -6, in T,and 7, [Eq.(3.2) and Eq.(3.8)], and expressing the derivatives

with respect to true anomaly &, and applying the following relations

a=0a',6=6’a" +0a’

— 2 . .
g'z____\“ua(le) 02=4(1+ec050),9— 2'uesin0
R

R? ’ Y

and further replacing R by semi-major axis a, and eccentricity e, using the relation

) a(l—ez) B “1/3(1_62)
_(1+ecos9)_92/3(1+ecose)

the resulting governing equation of motion of the system are obtained as

(1+ecos@)a" =T, +T, +2esinfc’

where

T =—%Ksin2(a—6’)

3
1-¢’ . 2
T =C|l ——— | oisin“" (a+y+ A, cos

° {1+ecos9] { (+y+5) A coshs

—sin’ (a+y+ f3,)A, cosﬂz}
o =1-sin’ysin®(i-¢,)
y=—tan™ (tany cos(i-&,))
A, =sgn(sin(a+y+ﬂj)), j=12

Kzly—lz C:2pSpAr o-*
I, Q7 4

X

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

and the function sig( ) denotes signum function. Note that in Eq. (3.14) the solar aspect angle

w 1is a function of € and varies from 0 to 27 radian in a year.

The nonlinear and nonautonomous system equation of motion, Eq. (3.13) is represented in

state space form. The following state vector is defined

x=[a a B ﬂz]T

A state variable representation of the system (3.13) with a selected controlled output
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t variable y = « , is given by

x=f(x)+gu (3.16)

y=a
where,
[ ol
S ()= ];TO | (3.17)

”=[ﬂ1’ ﬁzl]

g=lg &)

g=[0 0 1 0] (3.18)

g=[0 0 0 1]
In Eq.(3.17), Tgs= Ty + T,

Note that the flap deflection ( 3,) in Eq. (3.14) involves complex trigonometric relations and
therefore it can not be assumed as a control input. However, this problem can be solved by

taking the derivative of the flap deflection as the control input, i.e. u= [ BB ]1

3.3 Control Laws

In this section closed loop nonlinear variable structure control is derived for circular orbits
and elliptic orbits.

3.3.1 Circular Orbit

3.3.1.1 Sliding Mode Control

Equation of motion Eq. (3.13) is valid for a satellite orbiting in an elliptic orbit. In order to
design controller for a circular orbit case, the first task is to obtain an equation of motion of
the satellite in the circular orbit. This can be obtained by simply assuming eccentricity (e = 0)

in equation of motion Eq. (3.13).

Next, for design of control system the followings objectives are considered: 1) drive the

system error to zero without oscillations or overshoots, 2) compensate external disturbances
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from beginning. To satisfy these objectives, the sliding plane in two phases is considered. In
the first phase, a orbit time-varying sliding plane is considered with the constant angle of
inclination. Initially the plane moves uniformly in the state space and then it stops at the orbit

time 6, mathematically expressed as
S =X+ p,X, + pX,+a,+bo 0<06, (3.19)

where pi, p2, a; and b, are constants.

For second phase, the plane stops at the orbit time ., for any 6 > 6, , mathematically stated
as
S =X; + p,X, + pX, 026, (3.20)
where
X =a-a,;x =0 —-a,,%=0a"-a, (3.21)
The following Lyapunov function candidate is assumed

V= %SZ (3.22)

Taking the derivative of Eq. (3.22) with respect to &, one obtains
V'=S8S' (3.23)
In the preceding Eq. (3.23), S'is obtained by taking derivative of Egs. (3.19)-(3.20) with

respect to 6:

S' =x% p, %, + p,%, +b, 0<0, (3.24)
S'=i% p.% + p%, 0>0, '
Eq. (3.24) can be rewritten into the following form,
S'=a®-a +p,(a"-a})+ pF, +b 6<6, (3.25)
S'=a®¥ -a +p,(a"-a})+ p%, 0206, '

From Eq. (3.25) third order derivative of the pitch angle with respect to @ is required, which

can obtained as
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or,  oT,
0 =Le g Lo g 0L g OL g (3.26)
o 00 9B 8B,

Since the partial derivative 07,/ 0c is summation of partial derivative of Ty and T with

respect to o

or, oT T
g _ g+as

ba  oa oa

Taking partial derivative of T, and T; given by Eq. (3.14) with respect to « considering e=0,

(3.27)

the following equations are obtained

oT,
—o=-3K cos[2(a-0)] (3.28)
oT, . .
5 = C<7[51n(2(05+}/+,81))A1 cos B —sin(2(a+7+B,))A, cos,B2] (3.29)
fo
Substituting Eq. (3.28) and Eq. (3.29) into Eq. (3.27)
oT,
£ = 3K cos[2(a-0)]
o (3.30)

+C0'[sin(2(a +7+8,))A cos B —sin(2(a+y+ B,))A, cosﬂz]
Now taking partial derivative of T, and T, with respect to 8 and applying chain rules, one

obtains

(3.31)

oT,, oI, . oT, oy 61//+6Ts 0o Oy
00 00

N dy oy 06 oo Oy 06

The partial derivatives in Eq. (3.31) can be obtained using Eq.(3.14) for circular orbits as

follows:
orT,
35 =3K cos[2(a-0)] (3.32)
or _ o, (3.33)
oy Oa
oy _ [ cos(i—g)sec’y (3.34)
1% 1+tan® p cos® (i—¢,) '
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§ =25 3.35
oo o ( )

oo
— =—sin2ysin’(i—¢. 3.36
oy sin 2y sin® (i —¢,) (3.36)

Substituting Eq. (3.32) - (3.36) into Eq. (3.31), we obtain 6Tgs/69.

Taking the partial derivative of Ts with respect to 3, , the following equations :

T = ca[sin(2(a+ 7+ B))eos -sin’ (ay+ A)sinA] G3)
S;S =Cot, | ~sin(2(a+7 +f,))cos B, +sin’ (a+ 7+ B,)sin 3, | (3-38)

Substituting Egs. (3.30), (3.31), (3.37), and (3.38) into Eq. (3.26), ™ is

a® = f.+[B BA[”IJ (3.39)
u,
where,
oT oT,.
fi=—La+—20
ox 00
B = 2,;15; (3.40)
1
B, =L
ob,

Now taking S’ =-7sgn(S) in Eq. (3.23) yields ¥’ = —5|S|, which is negative semi-definite
of S for positive value of 7. So, the proposed control laws are globally stable for assumed
Lyapunov Function (3.22). Using Eq. (3.25), Eq. (3.39), and S’ = —;sgn(S), one obtains

following relations

/. +[B][u]-ay’ + p,%, + p,%, =—b, —nsgn(S) 0<6,

341
/. +[B][u]—af) + p, %, + piX, =-nsgn(S) 0>6, (3.41)

where [B]=[B, B,]and [u]=[y, u,]".
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Rearranging above Eq. (3.41), the control laws can be written as
[u]=B" [BBT] { ~f.+a - p,%, - p%, - b —ﬂsgn(S)} 0<06

) (3.42)
[u]=BT|:BBT] {—f5 +a§3)—p2563—p1i2—778gn(S)} 020,

For the existence of the control law (3.42), BB" must be non-zero in the region of interest:

BBT=(6TS] +(aTsJ #0 (3.43)

op, B,
The region of €X (Qsl N Qg ) singularity in which BB' =0 is given by
() -
op;
{{CO’A [sm(2(a +y+f,))cos B, —sin’ (a +;/+,B,)sm,81]} = 0}
{[2sm(a +y+ B,)cos(a+y+ B)cos B —sin’ (« +7+,Bl)s1n,81] = 0} (3.44)
{

3

={sin(a+y+ B )cos(a+y+p) cosﬂ1[2 tan(a+}/+,31)tan,61] }
={a+y+p =2nr, or tan(a+y+ B )tan B =2}

{{CO‘AZ [—sin(2(a +7+,))cos B, +sin’ (@ +y + B, )sin ,32 }
= {[—2sm(a+}/+ﬂ2)cos(a+7+ﬂ2)cosﬂ2 +sin (a+}/+,6'2)sm,82] 0}
{

sin(a +y+ B,)cos(a+y + B,)cos f, [—2+tan(a+}/+ﬂ2 tan,B }
={0¢+;/+,82 =2nm, or tan(a +y + 3, )tan B, =2}

The control laws (3.42) are well defined as long as the trajectory of the closed-loop system

does not enter the region €X .
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3.3.1.2 Feedback Linearization Control Law

The feedback linearization control law as given in reference [20], is as follows:

[u] =B" [BBT ]71 {—ﬂ +al - pﬁ - pzo;z - pa— poxx} (3.45)
where B, f; is already mention before in Eq. (3.40). Parameters p, p», p3, and p4 are positive
constant, @ = & —«, is the pitch angle tracking error, and x; is the integral of the tracking
error, that is,

X, =d (3.46)

Here error integral feedback term has been used to obtain robustness in the control system to

parameter uncertainty. The feedback parameters are properly chosen from Hurwitz
polynomial (s + 2)4 as follows,

ps =44, p,=6A*, py=44’, p,= A (3.47)

To compare with FL control laws, we derive a sliding mode control. In this modified SMC
only sliding plane will be different as compared to the previous sliding mode control. Here
we have chosen sliding plane with integral tracking error as follows,

S =X, + p;X, + p,X, + p,X, (3.48)

Based on this sliding surface, the modified sliding mode control law is derived as

[u] =B’ [BBT]_1 {—ﬂ +af —pﬁ — pz& -pa—-n sgn(S)} (3.49)

3.3.1.3 Desired pitch trajectories

In this section a specific trajectory is given to the system for the purpose of attitude tracking.
Two types of trajectory have been considered; simple polynomial based trajectory to achieve
final attitude orientation and sinusoidal trajectory to achieve continuous periodic attitude

tracking.

Hurwitz filter trajectory
Since the control laws Eq. (3.42) require third order desired pitch response, the following

Hurwitz filter trajectory is considered :
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ol +42,aP +622a + 410l + 6/, = /?,;‘af (3.50)

Where 4, is positive real number, and ¢, is orientation of the satellite final pitch angle.

The general closed form solution of Eq. (3.50) can be obtained as

a,(0)=a, +ke ™ +0ke ™ + ke ™’ + P k,e” (3.51)
where, ki, ks, ks, and kg are obtained from initial conditions e, (0),a}’(0),i=1,2,3.
Eq. (3.51) can be differentiated with respect to 8 to obtained af,’) (67),1' =1,2,3 for control

law Eq. (3.42).
Sinusoidal trajectory

For periodic tracking we have assumed the following trajectory,
2, (0)=10"sin(k,,,,,,0) (3.52)

where K.i,qs represent oscillation period for sinusoidal tracking.

3.3.2 Elliptic Orbit

This section presents the derivation of the VSC laws for elliptic orbits. The SMC laws are
derived first followed by design of the TSMC laws.

3.3.2.1 Sliding Mode Control

The objectives for the design of control system are: 1) drive the system error to zero without
oscillations or overshoots, 2) compensate external disturbances. To satisfy these objectives,

the sliding plane is considered as
S =X+ p,%, + pX (3.53)
where

~ A | VR | "
X, =a—0,%=a —0,,X=a —o, (3.54)
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The following Lyapunov function candidate is assumed

V:%S2 (3.55)

Now taking the derivative of Eq. (3.55) with respect to 6 yields
V'=SS' (3.56)
In the preceding Eq.(3.56), S' is obtained by taking derivative of Eq. (3.53) with respect to
0:
S' =i p,%, + p,X, (3.57)
Eq. (3.57) can be rewritten into the following form,
S'=a® -af’ + p,(a"-a})+ p %, (3.58)
Next the third order derivative of the pitch angle with respect to 8 is required for Eq.(3.58),

which can obtained as

oT oT
a® = (—1——j 3esinfa" +2ecosba’ +—E-a' +—260' + o, B+ o, By (3.59)
1+ecosd oa “ o0 "o T op,

Since the partial derivative 07, /0a is summation of partial derivative of T, and T, with

respect to

oT oT
B CR S % (3.60)
daa Oa O«

Taking partial derivative of T, and T given by Eq. (3.14) with respect to « the following
equations are obtained,

oT
6—;=—3Kcos[2(a—6’ﬂ (3.61)

da

_ 2
o7, Co I-e
1+ecos@

3
j I:sin(2(a +y+p ))A1 cos B, - sin(2(a +7+ 8, ))A2 cos ,32:’ (3.62)
Replacing Eq. (3.61)and Eq. (3.62)into Eq. (3.60), one obtains
oT,
6—5 =-3K cos|:2(a —0)}
(3.63)

+C0[—1_L] |:sin(2(oz+;/+,51))A1 cos B3 —sin(2((z+7/+,82))A2 cosﬂz]

1+ecos@
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The partial derivative of T, and T, with respect to @ is obtained as follow

oT, orT
& _ g +6Ts + 67—; a}/ a‘//_'_aTs 60‘ al/j (364)
060 06 06 \ oy ow 06 Oo oy 06
The partial derivatives in Eq. (3.64) can be obtained using Eq. (3.14) as follows:
oT.
—5 =K cos[ 2(a—0)] (3.65)

3esin(1-e?)
g Co e Ssin ( e4)
00 (I1+ecosd) (3.66)

x[sinz(cz+7/+ﬂl)A1 cos B, —sin’* (a+y+f)A, cosﬂ2]

or _ o, (3.67)
Oy O«
oy _ [ cos(i-¢g,)sec’y (3.68)
oy 1+tan® p cos® (i—&,) '
o _L (3.69)
oo o
oo
——=—sin2ysin’ (i—¢ 3.70
oy ysin®(i-¢,) (3.70)

Using Eq. (3.65)-(3.70), one obtains 07, /06 .

The partial derivative of Ts with respect to S, is obtained as

Z;j =CGAI[_1+1e_cis9] [sin(2(ov+}’+ﬂ1))cos,[31—sin2 (a+7+,81)sinﬂl] (3.71)

or. 1-¢¢ \r . - .
6,8: =CoA, (mj [—31n(2(a+}/+,32))cos,82+sm (a+}/+ﬂ2)sm,82] (3.72)
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Using Egs.(3.63), (3.64), (3.71), and (3.72) into Eq.(3.59), a® is written as

3 1 %
“ _(1+ecosé’j{fs+[31 BZ][uj} 3.73)

where,
oT, oT,
f, =3esinfa" +2ecosba’' + —E-a' + —£-60"+ o7, B+ oT; B,
ox 00 op, 0B, 574
_OL 5 9L :
Lo’ 0B,

Now using S’ = -7sgn(S) in Eq. (3.56) yields V' = —7|S|, which is negative semi-definite
of S for positive value of 7. So, the proposed control laws are globally stable for assumed

Lyapunov Function(3.55). Using Eq.(3.58), Eq.(3.73), and S’ = —77sgn(S), one obtains the

following relations:

(1+elos€J{fs +[Bl[ul}-a” + P, + %, = —nsen(S) (3.75)

where [B]=[B, B,]land [u]=[u, u,]" .

From the above Eq.(3.75), the control laws can be written as

[u]=B" [BBT ]-1 {—ﬁ +(1+ecos 9)[61513) — p,X, — p,%, —717sgn (S):[} (3.76)

For the existence of the control laws (3.76), BB' must be non-zero in the region of interest :

BB = o, + o, #0 (3.77)
o8, B,

The region of € (QS1 N QS:) singularity in which BB" =0 is given by
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or,\
* :{[aﬂl] ‘0}
1+ecos@
x[sin(2(a'+}/+,Bl))cos,31 —sin’ (a+y+ﬂ1)sinﬁ1:|}2 =0:|

([2sin(a+7+ 8 )cos(a+7+ B )eos f—sin’ (a+ 7+ A4)sin 4] =0}

={sin(a+}/+,Bl)cos(a+}/+/3l)cosﬂ1[2—tan(a+}’+,31)tanﬂ1:|=0}
={a+;/+ﬁ1 =2nz, or tan(a+y + B,)tan 3 =2}

or, | _
Q“:{(aﬂz] _0}
l+ecosé
x[—sin(2(a+y+ﬂ2))cosﬁ2+sin2(a+y+ﬂ2)sinﬂ2]}2=0}

= {[—2sin(af+}/+ﬂz)cos(a,'+}/+,32)cos,32 +sin’ (a+7+ﬂz)sin/32:|2 - 0} (3.78)

={sin(a+7+ﬂ2)cos(a+7+ﬂ2)008ﬂ2 [—2+tan(a+7+ﬂ1)tanﬂ2:|=0}
:{a+y+ﬁ2 =2nz, or tan(a +y + B3, )tan f, =2}

The control laws (3.76) is well defined as long as the trajectory of the closed-loop system

does not enter the region €Q.

3.3.2.2 Terminal Sliding Mode Control

In this section, TSMC laws are developed for the proposed system based on [41-46]. The
only difference between SMC and TSMC is design of sliding surfaces. For conventional
SMC as presented in preceding section sliding surface is time varying function of linear
hyperplane of state errors while in TSMC sliding surface is nonlinear exponential function of

state errors [41-46].
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In order to obtain the terminal convergence of the state variable, the following sliding surface

for proposed system have defined as

q;

N/
S=%x+p,x/ "+ px/ " (3.79)
where, p, >0,i=1,2 are design constant, and ¢, and h; are positive odd integers satisfying A;

> qi, 1=1 ,2.

The TSMC can guarantee stability using Lyapunov theorem. However, the differentiation of
terminal sliding mode surface S in the stability derivation process will result in the singular

condition due to A /g, <1,i=1,2. Therefore, several terminal sliding mode control

approaches avoiding singularity were developed [41], [43], [44] and [46]. In order to avoid
singularity and by utilizing similar SMC procedure for deriving TSMC laws, the following
control laws are obtained:

For S#0,and X, #0,i=1,2

[«]=B"[BB"] {-/,
+(1+ecos 9){0:;3) - D, (%]gi‘%f‘) % - p, (%Jfl(%_l)fz —USgH(S)H (3.80)

For S#0,and X, =0,i=1,2

[u]=B" ':BBT]_1 {——fs +(1+ecos 49)[a§,3) - pX — D%, -7 sgn(S)]} (3.81)

3.4 Analytical Solution for Tracking Error

In this section closed form solution for Hurwitz tracking errors for the satellite pitch motion

have obtained.

The following initial condition for the tracking error and the error derivatives are assumed:

% (0)=%,, %,(0)=0, % (0)=0 (3.82)
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First, the constants p;, p2, a; and b; in Eq. (3.19) should be chosen in such a way that the
representative point of the system at the initial orbit time & =6, belongs to the switching
plane. For that purpose, the following condition must be satisfied

S(%(6,).6,) =%+ p, % + pX, +a, +5 0=0 (3.83)
Consequently, for any orbit time 6 € [O, Hf] the system dynamics is described by Eq. (3.19)

with the initial conditions (3.82). Therefore, we consider the following equation
X+ pX +pX +a+b60=0 (3.84)
Eq. (3.84) is non homogeneous ordinary differential equation which has homogeneous and
particular solutions. In order to solve Eq. (3.84), we first consider its homogenous equation
¥+ px +px =0 (3.85)
Since the tracking error convergence to zero without oscillations is required, the
characteristic polynomial of Eq. (3.85) must be critically damped and it has double real roots.
This ensures that oscillations or overshoots will take place neither before nor after the

switching plane stops. Hence, we obtain another condition from critically damped second

order system

n=2Jp (3.86)

Furthermore, the parameters p; and p, must be strictly positive to make the system (3.13)
stable in the sliding mode. Solving Eq. (3.84) with condition (3.82) and assuming for the

sake of clarity that 6, = 0 we obtain the tracking error and its derivatives for the orbit time

BE[O,HJ,]

2

2b 2b
i1(9)={3?0+&— “/;w[ 4 +£0\/;1—ﬁ]9} o _G  Z0NPL by (387

p D Jn j2 p P p
b
x%,(0)= L a+pF,——-VPL g | o _b (3.88)
D ¥4 P

- - . b _
%(0)= {—al - P+ p [7%* %o, ——’} 9} ¥t (3.89)
1

D

Taking into account condition (3.84) and the assumption that 8, =0 we obtain
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a, =—p,x, (3.90)

Then Eqgs. (3.87)-(3.89) can be written as

%(6)= ( 2p b eJ e 2b‘/— b (3.91)

p1 D D
% (0) =-§L(1+ p0)e P’ —% (3.92)
1 1
x%,(0)=-b6e V"’ (3.93)

Next, the behavior of the system in the second phase of its motion is analyzed, which is when

the switching plane does not move. Notice that for the orbit time & > 8, , the switching plane

is fixed and passes through the origin of the errors. Considering these conditions, one obtains
a+b6,=0 (3.94)

From Eq. (3.90) and Eq. (3.94) one obtains

%
0, =2—p1 (3.95)
1

The orbit time-invariant switching plane is described by Eq. (3.20), which is equivalent to
Eq. (3.85). The initial conditions which are necessary to solve Eq. (3.85) can be determined

from Egs. (3.91)-(3.93), whose values are evaluated at the orbit time instant@, . Using the

following notation

k p] ple

b (3.96)

the initial conditions for the second phase of the system motion can be written as

% ( ,)=[ 2”\/— J"‘ = (3.97)

p1

fz(ef){ﬁwm/?])e-k—i’l— (3.98)

%(0,)=-pe™ (3.99)
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The parameter k defined by Eq. (3.96) is strictly positive. Solving Eq. (3.85) with initial
conditions (3.97)-(3.99) and using relation (3.90) we obtain

%(0)= e VPP {_ 2b“{;’ + 26, e —%,e" +(—ﬁ+ﬁek]0} (3.100)
b

P12 P b
ol B b b, b
% (0)=e V| 2ok 4 g ek [p —| -+ =" |0 (3.101)
e P e ]
% (0)=e V" [-pgeet +b (e -1)0 ] (3.102)

The preceding three Egs. (3.100) — (3.102) describe the tracking error for any orbit time
020,.

3.5 Analytical Proofs for Disturbance Rejection and Parameter
Uncertainties

The proposed SMC control laws are robust against parameter uncertainties and external

disturbances. The proofs are as follows:

Disturbance Rejection

The class of nonlinear systems under this study can be described in the state space form with
external disturbance w as

x=f(x)+g(x)u+p(x)w

Y =h(x).

Here p(x) is a smooth disturbance vector field. The objective is to find a SMC law u such

(3.103)

that w has no effect on the output.

Theorem 1: The disturbance rejection problem for the system (3.103) is solvable if the Lie

derivatives of h(x) with respect to vector field p(x) and f{x) is
L,Lh(x)=0 for k<y-1. (3.104)

where y=3 is the relative degree of the unperturbed system (3.13).

Proof: Equation (3.103) is written in the normal form using Lie derivatives as follows.
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P .

% =(%ﬁj [£(x)+ g(x)u+ p(x)w]
X

=La+(La)u+(La)w
=L«

) 6Lfa
Y= [f(x)+g(x)u+ p(x)w]
X
=La+(LLa)u+(L,L,a)w
=La+(L,La)w
" {6(L2fa + (Lpoa) w
y =

™ )} [f () +g(x)u+ p(x) w]

ox
=La+(LLeyu+(L,La)w (3.105)

oLya
= [f(x)+g(x)u+ p(x)w]

It follows that

Ty 9L 0100 3.106
« aﬁl o | ) G100

T, oT, "
[ aﬂz}[o 1 0 0]

for k=2 which proves Theorem 1. Thus, the proposed VSC laws result in disturbance

rejection and thereby isolate output (y) from disturbance (w).

Parameter Uncertainties
Parameter uncertainties can be modeled as perturbation to f{ix), Af(x) in Eq.(3.16). The

resulting equation is

x=f(x)+Af (x)+g(x)u

3.107
y =h(x). ( )
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Theorem 2: The parameter uncertainties rejection problem for the system (3.107) is solvable

if the Lie derivatives of h(x) with respect to vector field Af (x) and f{x) is
Ly L h(x)=0 for 0<i<y-1. (3.108)

where y=3 is the relative degree of the unperturbed system (13).

Proof: Equation (3.107) is written in the normal form using Lie derivatives as follows.

Y= (%;‘Ej[f(x) + g(x)u+ Af (x)]
=La+(La)u+(Lya)
= Lfa
, [OL,x
y = Tox [f(x)+g(x)u+Af(x)]
=La+(LLa)u+(Ly,La)
= La+(L, L)

i [G(sza+(LAfoa) )
y =

™ ][f (x) +g(x) u+Af (x)]

ox

=La+(LLe)u+(L,La) (3.109)

6L§,a
= [f(x)+g(x) u+Af (x)]

It follows that

, oL
L,La= P Af (x)

oT.,
=—Z A (x)

ox

oT, T, oT, oT ,
=& —& _—& _&g | o of (3.110)
daa Oa' of, 0Op,

oT oT. oT
=|=£ 0 =& 210 1 0 0]

oa OB OB,
=0
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for i=2, which proves which proves Theorem 2. Thus, proposed VSC law result in
parameter uncertainties rejection and thereby isolate output (y) from parameter

uncertainties Af (x) .

Closed-Loop Error Dynamics

The system given by Eq. (3.13) is rewritten as
a"=T, +w (3.111)
where w represent a constant external disturbance. By differentiating Eq. (3.111) yields
a? = f, +[B][u] (3.112)
Substituting VSC control laws into Eq. (3.112) gives
a® + p,a+ p,a + p@+nsgn(S)=0 (3.113)
The preceding Eq. (3.113) is the third order linear differential equation of error dynamics and

it does not contain any external disturbance term. This error equation is asymptotically stable

as @ —> oo, tracking error &(#) —> 0. Furthermore, the term 7sgn(S)forces the error

dynamics to stay onto the sliding plane which makes the system insensitive to system

parameter uncertainty and disturbances.

3.6 Results and Discussions
3.6.1 Circular Orbit

In order to study the performance of the proposed controller, the system response is
numerically simulated using Eq. (3.13), where e=0 is assumed for circular orbit, and control

laws Eq. (3.42). The numerical simulation is carried out in MATLAB.
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The effects of mass distribution parameter K, solar parameter C, solar angle y, and orbit
inclination i on the controller performance are studied. The satellite attitude response remains

almost unaffected with changes in these parameters (Figure 3.3 — Figure 3.9). Here,an

attitude maneuver of satellite initially starting from o, =110"to final o, =0" is performed

with initial attitude tracking error of 10°.

The effect of mass moment of inertia distribution parameters (K) on the controller
performance (Figure 3.3) is examined first. As the parameter K varies from K=-1 to K=1, the

satellite attitude response remains virtually unaffected. However, the solar flap deflection

max ( u2|max )

u2|max) are due to the

rate (uj,up) varies with changes in K. As K is increased from K=-1 to K=1, |u1

max (

fact that K=-1 corresponds to favorable gravity gradient configuration while K=1

increase from 7.5(4) to 26(28), respectively. The increase in |u1

corresponds to unfavorable gravity gradient configuration. The maximum solar flaps

deflection (l ,le ) remains less than 30" and the corresponding period of f, in the steady

state situation remains same (0.5 orbit) for all cases considered here. This time period is

directly proportional to the gravity gradient torque time period (20) from T in Eq. (3.14) in

steady state case.
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Figure 3.3: Solar flap deflection and solar flap deflection rate response as affected by
mass distribution parameter K : C=5, y =45, i=0", ¢ =23.5,7=0.5, p =16,

p, =8, a,=110",, =0.

The solar parameter C has significant effect on the solar flap deflection rate. As the solar

parameter C is decreased from 10 to 2, the solar flap deflection rate ((u1 ). > (2 )max)

increases from (2, 3.3) to (123, 42.9) as shown in Figure 3.4. This increase in solar flap
deflection rate could be explained from Eq. (3.42) where |u1 |max is inversely proportion to
the solar parameter C (i.e. lower C corresponds to high solar flap deflection rate). With
changes in parameter C, however, the satellite attitude response remains unaffected showing

robustness of the proposed controller. The maximum solar flap deflection (Bimax , Bomax) iS

45
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Application of Solar Radiation Pressure

given in Table 3.1. The maximum-minimum solar flap rotation during steady state situation
is given in Table 3.2. It should be noted that for lower solar parameter C it require very large

solar flap rotation which may not be practical.

100 . . 200

—B, ] —Y

[31 OW--—BZ u1100 - --u,

B N RN /77N -~ u

2_100 N ~-7 2 0 = —
(deq) '
-2 - . -100 : : :
OOO 0.5 1 1.5 2 0 0.5 1 1.5 2
Orbits Orbits

Figure 3.4: Effect of solar parameter C on solar flap deflection and solar flap deflection
rate: K=0.5, y =45°,i=0", ¢ =23.5,7n=0.5, p, =16, p, =8, o, =110",, =0.
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Table 3.1: Maximum flap deflection and deflection rate for different solar parameter C
for circular orbit (transient condition)

Flap deflection | Flap deflection rate

Solar parameter (C)
(deg) Nondimensional

|B| =34 | =123.1
C=2

|18, . =103 ) =42.9

18| =19.1 | =79
C=5

By, =156 | |u| =12.6

|ﬂ] max =16.3 |u1|max =33
C=10

1B =75 14} =

Table 3.2: Min-Max flap deflection for different solar parameter C for circular orbit
(steady-state condition)

Min-Max Flap deflection
Solar parameter (C)
(deg)

C=2 (ﬂl)max =+35.3 ('BZ)max =-62.4

('Bl )min =+6.6 (ﬂZ )min =-95.5

B;) =+149

(ﬂj )min =+5.2

(ﬁj) =+11.9
C=10 e

(ﬂj )min - +71
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Figure 3.5: Effect of solar aspect angle  on solar flap deflection and solar flap
deflection rate: K=0.5,C=5,i=0", ¢, =23.5,7=0.5, p, =16, p, =8, o, =110",, =0.

Figure 3.5 shows the effect of the solar angle \y on the controller performance. As y is
increased from 45 deg to 225 deg, the satellite attitude angle || remains unchanged proving '
the effectiveness of the proposed controller. However, the flap deflection £, and £ get
changed with solar aspect angle () as shown in Table 3.3 and Table 3.4. Note that for the
case of y=90 deg, B and S, have negative values. This phenomena could be explained from

Figure 3.1 when the sun is 90 deg from line of node, flaps have to deflect in clock wise '

direction from the local vertical (Figure 3.2).
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Table 3.3: Maximum flap deflection and deflection rate for different solar aspect angle
for circular orbit (transient condition)

Solar Aspect Angle | Flap deflection | Flap deflection rate
(deg) (deg) Nondimensional
w = 45° 1Bl =18 14 e =
1B =16 42} =7
. 1B ey =14 4] =5
v =90
|ﬂ2|max =22 |u2imax =2.5
. 1Bl =9 4] =04
w =135
1By =13 4], =04
. 18] =18 4] =4
w =225
1By =16 4] =7

Table 3.4: Min-Max flap deflection for different solar aspect angle for circular orbit
(steady-state condition)

Solar Aspect Angle | Min-Max Flap deflection
(deg) (deg)
( ) =+15
v =45
('BJ )mm
B
W — 900 ( J )max
('Bf )mln
('B J )max —2.5
v =135
(ﬂf )mm
B, =+15
w = 225° ( J )max
(ﬂf )mm
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1.5 2 '100 0.5

05 1 1 15 2
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Figure 3.6: Effect of orbit inclination i on solar flap deflection and solar flap deflection
rate: K=0.5,C=5, w =45°, & =23.5,7p=0.5, p, =16, p, =8, o, =110",, =0.

Next the effect of the orbital inclination on to the controller performances has been presented
(Figure 3.6). The attitude response remains unaffected as i is changed from —45 deg to 90
deg. As inclination (i) is increased from 0 deg to 90 deg, the flap deflection B and S
changes as shown in Table 3.5. The effect of orbit inclination could be explained as follows,

the parameter o in Eq. (3.14) decreases as inclination increases from 0 deg to 90 deg

because value of sin(i—¢,) increases with increase in inclination (i). Moreover, this

decrease in the parameter o is inversely proportional to the |ul|max in Eq. (3.42) which

results in the increase of flap deflection rate. Hence, increases in flap deflection rate

correspond to increase in deflection angle (B, ) (Figure 3.6). However, there is an
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exception when case i=0 deg varies to i=45 deg. In the case of i=0 deg, the value of

sin(i - ss) in parameter o (in Eq. (3.14)) is less than the case of i=45 deg.

Table 3.5: Maximum flap deflection and deflection rate for different orbit inclination
for circular orbit (transient condition)

Orbit Inclination | Flap deflection | Flap deflection rate

(deg) (deg) Nondimensional
18| . =19.1 | =8

=0 B, =156 | |u| =126

us 18| =146 | =3
1B, =199 | |u| =3

o 1B, =505 ||| =157

1=90 B, =312 | |u| =53

o 8], =501 | |u| =158
F=45 B, =292 ||| =51

Table 3.6: Min-Max flap deflection for different orbit inclination for circular orbit
(steady-state condition)

Orbit Inclination | Min-Max Flap deflection

(deg) (deg)

i=0 (ﬂj) =+15, (ﬂ,)mm=+5

i= 45 (B)) =-37:(8)),, =148

on (B),., =+50 (B,),, =+312

- (Bl =7 (Br),sy =424

(8),, =+50.1 (8,),,, =+29.2

=—45°

l ('61 )min =-9.6 (’82 )min =+0.3
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Figure 3.7 illustrate typical cases wherein the satellite may be required to undergo specified
harmonic pitch chase-maneuvers. Here sinusoidal trajectory as mention before in Section 3
as per Eq. (3.52) has been given. For better appreciation of maneuver precision attained in
pitch control, the corresponding attitude errors are also given in Figure 3.7. Even for the
rapid chase-maneuver shown here, the attitude errors are found to remain well within small
fraction of a degree. The larger the period of desired harmonic attitude changes, the smaller

would be the associated error levels, as expected. The maximum solar flaps deflection
(| p flmax) remains less than 7° and the corresponding period of S, remains same (0.5 orbit)

for both cases considered here. However, as the period of desired harmonic attitude

decreases, more control effort is required resulting in increase in solar flap deflection rate.

Slow chase-slewing maneuver Fast chase-slewing maneuver
15
10
o 5
(deg)
-5t
-10 -15 . . ;
0 0 0.5 1 1.5 2
0.3 0.6 '
—X, — X,
0.2f: - - =X, | 0.4¢ - ==X,
o S *3 2 SR X3
S 0.1} £ 02 |
| Ll
oK’ —>
T
: -0.2
0.5 1 1.5 2 0 0.5 1 1.5 2
Orbits Orbits

Figure 3.7: Performance of sliding mode control (SMC) under the periodic tracking:
K=0.5,C=5, w =45°,i=0", ¢, =23.5,n=1, p, =16, p, =8, o, =110",; = 0.
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SMC FL
150 ' ' : 150 : '
o 100 1 o 100
(deg) (deg)
50¢ 1 50t
0 0
0 0.5 1 15 2 0 0.5 1 15 2

0 05 1 15 2 0 05 1 15 2
Orbits Orbits

Figure 3.8: Performance of sliding mode control (SMC) and feedback linearization (FL)
under the effect of disturbance: K=0.5, C=5, v =45°, i=0", g =23.5,n=1, p,=81,

p1=108, p2=54, p1=12, CZO:OO,a(;:O.

Next, the performance of sliding mode control laws with feedback linearization control laws
as developed in Ref. [20] is compared (Figure 3.8). Here for an appreciation about the
effectiveness of the proposed control laws, a typical satellite with [,=400 kg-m?, 1,=300 kg-
m?, and I,=500 kg-m? is considered. The solar flap has the following specifications: A=0.25
m?, r=3 m. The values of constant parameters are p=4.563x10"® N/m* and p,=1. The system
may experience disturbance torques due to several factors including SRP modeling errors

(i.e.,p, #1), solar flap misalignment and other environmental forces. The disturbance torques

are assumed to be in the order of 10. The disturbance torques of 5x10°[N.m] is applied

from 0.5 orbits to 1 orbits in simulation. This disturbance torque to the system has been

applied when the system almost reaches its desired pitch angle 120 deg in 0.5 orbits. As
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shown in Figure 3.8, the desired pitch is successfully attained for both cases in presence of

disturbances. In both cases solar flap deflection (| ,Bl| ) reaches to a maximum of 42 deg. In

max

steady state situation, however, FL control laws require solar flap deflection (’ p j’ ) of 28.7

deg as compared to SMC laws require 10.6 deg. This variation in solar flap deflection can be
justified by comparing both control laws. If we compare sliding mode control law Eq. (3.49)

with the feedback linearization Eq. (3.45) as given in reference [20] only difference is an
addition of selection of sliding plane term 7 sign(S) which makes SMC more robust against

external disturbances and system uncertainties as compared to FL.

Uncertainities of K and C by -30% Uncertainities of K and C by +30%
150 150
o 100¢ 1 o 100t
(deg)
50 (deg) 50
0 0

0o 05 1 15 2 o 05 1 15 2
Orbits Orbits

Figure 3.9: Performance of sliding mode control (SMC) in presence of parameter
uncertainties into the mass distribution parameter (K) and the solar parameter (C):

K=0.5, C=5, w=45", i=0", ¢ =235,p=1, p,=81, p =108, p,=54, p =12,

—_— ° ,—
o,=0",a,=0.

Finally, In order to study the performance of the proposed SMC in presence of the parameter

uncertainties, the numerical simulation was done in the perturbed modes (Figure 3.9). First,
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the mass distribution parameter (K) and the solar parameter (C) are decreased by 30% from
its nominal values as follows: K=0.35 and C=3.5, respectively in the plant dynamics. In the
second case, the mass distribution parameter (K) and the solar parameter (C) are increased by
30% from its nominal values as follows: K=0.65 and C=6.5, respectively. The above
parameters are remained same as its nominal values as K=0.5 and C=5 in the SMC controller
Eq. (3.49). The results of the numerical simulation are shown in Figure 3.9 for parameter
uncertainties into the mass distribution parameter and the solar parameter. The desired pitch
orientation of the satellite is achieved smoothly within 0.5 orbits. Also note that the SMC
stabilized the pitch motion without any overshoot. Thus, the proposed SMC is robust against
the parameter uncertainties and the numerical simulation verifies the theory presented in

Section 3.5.

3.6.2 Elliptic Orbit

In order to study the performance of the proposed controller, the system response is
numerically simulated using Eq. (3.13) and Eq. (3.76). The numerical simulation is carried
out in MATLAB.

The effects of orbital eccentricity e, mass distribution parameter K, solar parameter C, solar
angle y, and orbit inclination i on the controller performance are studied. The satellite
attitude response remains almost unaffected with changes in these parameters (Figure 3.10-

Figure 3.14). Here an attitude maneuver of satellite initially starting from «, =100 deg to

final o, = 0 deg has been performed with initial attitude tracking error of 10deg.

The effect of orbital eccentricity on the system performance and control solar flap deflection
are examined first (Figure 3.10). The control solar flap deﬂection( B j)is continuously
adjusted as per control laws Eq. (3.76) given in Section 3.3.2. As the orbital eccentricity e
increases from e=0.05 to e=0.4, the satellite attitude response remains virtually unaffected.

From Figure 3.10 it can be seen that using the proposed SMC controller attitude tracking

error goes to zero within 0.8 orbits in both the cases considered here.
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Figure 3.10: Effect of eccentricity on the system performance and control solar flap
deflection: K=0.5, C=5, y =45°, i=0", & =23.5, n=0.5, p =9, p,=6, «,=100",
a,=0.

As the orbital eccentricity e increases from e=0.05 to e=0.4, the control solar flap deflection
( B j)increases with increase in the eccentricity. This phenomenon can be explained by the
fact that the orbital eccentricity acts as an external disturbance into the system. In order to
counteract the effect of eccentricity, the controller has to produce more SRP torque by

rotating large solar flap deflection. Thus, using the proposed SMC controller it is possible to

achieve higher satellite attitude tracking performance for orbital eccentricity as high as e=0.4.
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Figure 3.11: The system performance and control solar flap deflection response as
affected by mass distribution parameter K : e=0.2, C=5, v =45°, i=0", g, =235,

77:0.5’ p1=9’ p2=6, (20:100",(1620.

Next the effect of mass moment of inertia distribution parameters (K) on the controller
performance is examined (Figure 3.11). The value of K is varied from -1 to 1. Here K=-1
refers to an unstable gravity gradient configuration while K=1 signifies a stable gravity
gradient configuration. Figure 3.11 shows the satellite attitude and control solar flap
deflection responses obtained for K= 1, and K=-1 with orbital eccentricity e=0.2. As the

parameter K varies from K=-1 to K=1, the satellite attitude response remains virtually

unaffected. However, the control solar flap deflection ( B j) varies with changes in K. As K is

increased from K=-1 to K=1, |5, yis decrease from 50.1(54.4) deg to 20(19.5) deg,
1 max 2 max
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respectively. The large control solar flap deflection l ,Bl|max (| ,82| ) for negative value of K

max

are due to the fact that K=-1 corresponds to an unfavorable gravity gradient configuration

while the small control solar flap deflection |,B,|max (|,32| ) for K=1 corresponds to a

max

favorable gravity gradient configuration. The maximum control solar flaps deflection

(l Vi) j,max) remains less than 60 deg for both the cases considered here.

C = 10 - B-' - == Bz
150 : 15
100 - 10]
. b s
5 4
(deg) 2
0 (deg)
-5
-50 : . -10
150
100
(04
50
(deg)
0
-50 : .
0.5 1 1.5 2 0 0.5 1 1.5 2
Orbits Orbits

Figure 3.12: Effect of solar parameter C on the system performance and control solar
flap deflection: e=0.2, K=0.5, y =45, i=0", ¢ =235, =05, p =9, p,=6,
a,=100", o, =0.

The effect of the solar parameter C is examined next (Figure 3.12). The solar parameter C

has significant effect on the control solar flap deflection. As the solar parameter C is

decreased from 10 to 2, the control solar flap deflection (I,B1| ,

max

ﬂ2| ) increases from
max
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(11.2, 9.7) deg to (27, 27.4) deg. This increase in solar flap deflection rate could be explained
from Eq. (3.76) where lu j|mx is inversely proportional to the solar parameter C (i.e. lower C
corresponds to high control solar flap deflection rate). With changes in parameter C,
however, the satellite attitude response remains unaffected showing robustness of the
proposed controller. The maximum solar flap deflection (Bimax » fomax) 1S given in Table 3.7.
It should be noted that with lower solar parameter C the controller requires very large control

solar flap deflection.

Table 3.7: Maximum control solar flap deflection for different solar parameter C

Control Solar Flap deflection

Solar parameter (C)
(deg)

|ﬂ1 |max =27
C=2

1B, =274

18| =112
C=10

lﬂZ |max =9.7

Next, whether performance of the controller is effective at different times in a year is
examined (Figure 3.13). Figure 3.13 shows the effect of the solar angle y on the system
performance and control solar flap deflection. As v is increased from 90 deg to 135 deg, the
satellite attitude response remains unchanged proving the effectiveness of the proposed
controller. However, the control solar flap deflection £ and 5, get changed with solar aspect
angle (). The maximum control solar flap deflections for different solar aspect angles are
summarized in Table 3.8. The maximum control solar flap deflection remained less then 30

deg for all cases considered here.
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Figure 3.13: Effect of solar aspect angle y/ on the system performance and control solar
flap deflection: e=0.2, K=0.5, C=5, i=0", ¢ =23.5, =05, p =9, p,=6, «,=100",
a, =0.

Table 3.8: Maximum control solar flap deflection for different solar aspect angle

Solar Aspect Angle Flap deflection
(deg) (deg)
0 1B =281
w=30 1B =273
o 18| =83
w =135 lﬂzlm _86

Next the effect of the orbit inclination on the controller performances is studied (Figure

3.14). The system performance remains unaffected as i is changed from 0 deg to 90 deg.
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With increase in inclination (i) from 0 deg to 90 deg, the flap deflections S and 3, are
changed according to inclination change. The effect of orbit inclination could be explained as

follows, the parameter o in Eq. (3.14) decreases as orbit inclination increases from 0 deg to

90 deg because value of sin(i—gs) increases with increase in orbit inclination (i).
Moreover, this decrease in the parameter o is inversely proportional to the |u f|max in Eq.

(3.76) which results in the increase of flap deflection rate. Hence, an increase in solar flap
deflection rate corresponds to increase in control solar flap deflection (B, ) (Figure 3.14).

The maximum control solar flap deflection for different orbit inclination is given in Table

3.9.

i=0° —B, ---B,

150

100

150
100

(deg) >0

1.5 2 0 0.5 1 1.5 2

0 0.5 1
Orbits Orbits

Figure 3.14: Effect of orbit inclination i on the system performance and control solar
flap deflection: e=0.2, K=0.5, C=5, y =45, ¢ =23.5, n=05, p=9, p,=6,

a,=100", o; =0.
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Table 3.9: Maximum control solar flap deflection for different orbit inclination

Orbit Inclination Flap deflection
(deg) (deg)
. 18| . =16.1
B |B,| =157
o |B| =516
|B,| =385

In order to study the performance of the proposed SMC in presence of the parameter
uncertainties, the numerical simulation was done in the perturbed modes (Figure 3.15). First,
orbital eccentricity (e), mass distribution parameter (K), and solar parameter (C) are
decreased by 30% from its nominal values as follows: e=0.14, K=0.35, and C=3.5,
respectively in the plant dynamics. In the second case, orbital eccentricity (e), mass
distribution parameter (K) and solar parameter (C) are increased by 30% from its nominal
values as follows: e=0.26, K=0.65, and C=6.5, respectively. The above parameters are
remained same as its nominal values as e=0.2, K=0.5, and C=5 in the SMC controller Eq.
(3.76). The results of the numerical simulation are shown in Figure 3.15 for parameter
uncertainties in orbital eccentricity, mass distribution parameter, and solar parameter. The
desired attitude of the satellite is achieved smoothly within 0.8 orbits. Thus, the proposed
SMC is robust against the parameter uncertainties and the numerical simulation verifies the

theory presented in Section 3.5.
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Uncertainties of K, C, and e by -30%  Uncertainties of K, C, and e by +30%
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Figure 3.15: Performance of sliding mode control (SMC) in presence of parameter
uncertainties into the orbital eccentricity (e), the mass distribution parameter (K) and

the solar parameter (C): e=0.2, K=0.5, C=5, y =45°, i=0", ¢, =23.5", n=0.5, p, =9,
p,=6, a,=100", o, =0.

Next, the performance of SMC laws with TSMC laws as proposed in section 3.3.2 is
compared (Figure 3.16). In order to compare the performance of the proposed SMC and
TSMC, the satellite attitude tracking is considered for orbit eccentricity €=0.2. In this case,
all parameters of SMC and TSMC are taken same, e.g., 77 =0.5,p;=9, and p,=6. The other
parameters of the proposed TSMC controller are as follows: h=15 and g~=13, i=1,2. In

addition, all initial conditions of system parameters are taken same. The maximum control

solar flap deflection ‘ B j’ is 16 deg in the SMC while in the TSMC it increases to 19 deg.

Attitude tracking error goes to zero within 0.8 orbit in SMC and TSMC. In both the cases, the

control solar flap deflection almost matches during transient condition whereas in the steady
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state the control solar flap deflection differs (Figure 3.16). TSMC converges tracking error
very precisely to zero and the tracking error remained lower than the SMC response from 1.2

orbits to 2 orbits. Advantage of TSMC is precise attitude tracking error in finite time.

e=02 ——SMC - - -TSMC
150 ' 0.01 '
100 S| 1
> 50 \ O - |
(deg) ol 0012 16 2
-50 I 1 1
20 :
10
B
(deg) o
-10
20
10
B,
(deg) o
-10
0 0.5 15 2

1
Orbits

Figure 3.16: Performance comparison of sliding mode control (SMC) and terminal
sliding mode control (TSMC): K=0.5, C=5, v =45°, i=0", & =23.5", =05, p, =9,

p,=6, a,=100", o, =0.
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e=0.1 e=0.3
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Figure 3.17: Performance of sliding mode control (SMC) in presence of external
disturbance: K=0.5, C=5, v =45°, i=0", &, =235, =05, p =9, p,=6, «,=100",

'_
a,=0.

For an appreciation about the effectiveness of the proposed control laws in presence of
external disturbance (Figure 3.17), a typical satellite with [,=400 kg-m?, 1,=300 kg-mz, and
1,=500 kg-m” is considered. The solar flap has the following specifications: A=0.25 m?, r=3
m. The values of constant parameters are p=4.563xlO'6 N/m?® and ps=1. The semi-major axis
is taken as a=42241 km. The system may experience disturbance torques due to several
factors including SRP modeling errors (i.e.,p, #1), solar flap misalignment and other
environmental forces. The disturbance torque is assumed to be in the order of 10 for the

satellite in the geosynchronous orbit. The disturbance torques of 1.2x107°[N.m] is applied

from 1.0 orbits to 1.5 orbits. This disturbance torque is in fact applied to the system when the
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system almost reaches its desired pitch angle of 0 deg in 0.9 orbits. Two cases have
considered: the first case with eccentricity e=0.1 and the second case e=0.3. As shown in
Figure 3.17, the desired pitch is successfully attained for both the cases in presence of

disturbances with small errors between 1 orbits to 1.5 orbits. For the first case the maximum

control solar flap deflection | ,Bj| increases to 15.8 deg while in the second case it increases
max

to 41.1 deg as compared to the case of no disturbance. This increase in ‘ ﬂjl is due to the

fact that large SRP torque is required to compensate external disturbances, resulting in
increase in the control solar flap deflection. Thus, external disturbances rejection property of

the proposed SMC verifies the theory presented in Section 3.5.

3.7 Summary

The present chapter examines the attitude control of satellites using SRP. The synthesis of
closed-loop control laws for suitably rotating solar flaps is developed using variable structure
control for circular and elliptic orbits to utilize proper SRP torque for desired attitude
response. The rotation angle B; of solar flaps is continuously adjusted as per the control laws.
The proposed controller is very effective with initial attitude tracking errors. The satellite
attitude response remains virtually unaffected with changes in orbital eccentricity e, solar
parameter C, solar aspect angle y, mass distribution parameter K, and orbital inclination i.

However, the control solar flap deflection has significant effect as these parameters change.

For SRP stabilized satellite in circular orbit the following conclusions can be summarized

from analysis presented in Section 3.6.1. With an increase in K from K=-1 to K=1,

|”1|max (qulmax) increase from 7.5(4) to 26(28), respectively. As the solar parameter C is

decreased from 10 to 2, the solar flap deflection rate ((x),, - (#,),,, ) increases from (2,

3.3) to (123, 42.9). It is noted that for lower solar parameter C, the system requires very large

solar flap rotation which may not be practical. Such large solar flap rotation gives certain
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limitation on the application of SRP for attitude control of satellites. As orbit inclination
increases solar flap deflection increases. In steady state situation period of solar flaps
deflection is directly proportional to the gravity gradient torque time period of26 for all
cases considered here. The SMC is very effective in controlling the satellite harmonic chase-
maneuvers. However, as the period of desired harmonic attitude decreases, more control
effort is required resulting in increase in solar flaps deflection rates. Furthermore, the SMC is

more robust against external disturbances and parameter uncertainties in comparison to FL.

of

max

In the simulation examined in this paper, SMC laws require solar flap deflection ’ B

10.6 deg while FL laws require 28.7 deg in steady-state condition.

For SRP stabilized satellite in an elliptic orbit the following conclusions can be summarized

from analysis presented in Section 3.6.2. As the orbital eccentricity e increases from e=0.05

to €=0.4, the control solar flap deflection (,Bj)increases while K is increased from K=-1 to

K=1,

,Bllmax ([ ,32|max) decreases from 50.1(54.5) deg to 20(19.5) deg, respectively. In the case

the solar parameter C is decreased from 10 to 2, the control solar flap deflection

(|ﬂ1|max ’

solar parameter C, the system may require large solar flap deflection resulting in limitation

ﬂ2|max) increases from (11.2, 9.7) deg to (27, 27.4) deg. It is noted that for lower

on the applicability of SRP based attitude control system. As the orbit inclination increases
the solar flap deflection increases. With regard to SMC and TSMC, the control solar flap
deflection almost matches during transient whereas in the steady state the control solar flap

deflection differs. Advantage of TSMC is its precise tracking error in finite time.

Furthermore, the proposed controller is found to be robust against parameter uncertainties
and external disturbances for both circular orbits and elliptic orbits. The proposed control
strategy can be augmented with the existing attitude control system of the satellite and may

extend the life of the satellite mission experiencing attitude actuator failures.
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Chapter 4

Application of Aerodynamic Forces for
Satellite Attitude Control

4.1 Introduction

In this chapter, the application of aerodynamic forces for satellite attitude control based on
VSC is presented. Two system models are considered in this chapter, (Model — I) and (Model
— II). In Section 4.2 detailed system configuration about planar case (Model-I) is explained
with system modeling, equations of motion, control design and important findings. In the
next Section 4.3, three axis attitude control (Model -II) of the satellite is studied. Also in this
section system modeling, kinematics and dynamics of the system, and control design is

given. Finally, in the end chapter 4 is summarized in Section 4.4.

4.2 System Model - 1

4.2.1 System Description

A system model that comprises of a satellite with two-oppositely placed light-weight aero
flaps along the satellite Y-axis and its center of mass O moving in a circular orbit about the
Earth’s center E is considered (Figure 4.1). The system center of mass O lies on the center of
mass of the satellite. For simplicity, the cube satellite is considered with length, width and

height given as I, w,, and A_, respectively. The mass of the aero flaps and other accessories

are assumed to be negligible. For the system under consideration, an orbital reference frame

0O-X,Y,Z, is selected such that the X,-axis always points along the local vertical, the Z,-axis
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Local Vertical
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Figure 4.1: Geometry of orbit motion and proposed aerodynamic controller

configuration

lies normal to the orbital plane, and the Y,-axis represents the third axis of this right handed
frame taken. The body-fixed coordinate frame is represented by O-XYZ. For aero flap-j, we
consider its axis »; initially aligned with the X-axis is rotated by an angle Bj about the Z-axis
(normal to the orbit plane Y-Z). The aero flaps are considered to be made of a light weight

material. The distances between the system center of mass O and the center of pressure for

.
XI
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both the aero flaps are assumed to be the same and their cross-sectional areas facing the

incoming air velocity are equal.

4.2.2 Equation of Motion

As our focus in this investigation is to derive a nonlinear SMC laws for satellite attitude
control using aerodynamic torque by rotating aero flaps, we only consider the control of the
satellite pitch motion. Using Euler’s attitude equations, the governing equation of motion of

the system is written as [2]
Lo, —(1,-1,)o0, =T, +T, (4.1)
where, @, =¢9+02,a)x =0, and w,=0.

Here T, represents gravity gradient torque and T, represents aerodynamic torque.

4.2.2.1 Gravity gradient torque

The gravity gradient torque is given by following relation for chosen configuration as

Tg=—i—'t;(1y—lx)sinacosa (4.2)
where [ and I are Moment of inertias about respective axis. Next we have obtained non

dimensional gravity gradient toque by dividing 7,Q? as follows:

f“g =-3Ksinacosa 4.3)
where
I -1
K=" 0= £ 44
1 R’ “4)

4.2.2.2 Aerodynamic torques

The aerodynamic forces or torques experience by satellites vary with their altitudes. So far in
literature researchers have considered two types of model for calculating aerodynamic

torques: simplified aerodynamic torque model and more realistic free molecular flow
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aerodynamic model. Both aerodynamic torque models will be given in this section for Model
-L

Simplified Aerodynamic Torque Model

Assuming flat flaps and considering only aerodynamic drag, the force acting on the aero flap-
j is given by

=Pl ot feost | P =12 (4.5)

AsSim J

where p = density of the atmosphere; I7R= The relative velocity of the satellite with respect

to the atmosphere in the direction of the orbital velocity; C,= drag coefficient; Apj = total

area of the aero flap-j; £ = angle between the relative velocity I7R and the outward unit
normal vector 7, of the aero flap-j . We assume that the drag force is acting opposite to the

local horizontal direction, i.e., -Y,, direction.

In Eq.(4.5), Angle ¢, is calculated using following relation,

g, =cos™ (V, -7, (4.6)

=

T Aero flap—j

Figure 4.2: Geometry of aerodynamic control surface element
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Also it should be noted that using Eq.(4.5) for projected area of aero flap-j ,if cos¢ >0 then
there will be aerodynamic forces otherwise for cos{ <0 there will be no aerodynamic forces

produced by aero flap-j.

Here I}R is the unit vector of the incoming air velocity from atmosphere on the aero flap-j
and is expressed in the satellite body-fixed reference frame as

Iy

V=1, =[sina]i +[cos ] j 4.7

The outward unit normal vector of the aero flap-j, 7 , 1s given by
A, = ()" [cos B, |i+[sin g, ]j, j=1.2 (4.8)
The position vector 7, from center of mass O to the center of pressure of the aero flap-j is

obtained as

- 1+j hs lf : 7 ls lf 3 P

r,=(-1) ’[—2—+Esmﬂj)l+[—2-—5cosﬂj Js J=12 (4.9)
where A = height of the satellite; w, = width of the satellite; /, = length of the satellite; /, =

length of the aero flap-j.

Thus, the torque exerted by the aero flap-j on the satellite is obtained as

x F

Asim j

B "%pNVRUZ Co4, |C°S gj‘[(_1)1+j cosa(h +1;sinf3)) (4.10)

aSlm]

S

—sina(ls—lf.sinﬂj)]le, j=12
Assuming the cross-sectional area of the aero flaps being the same (i.e., A=A), the

components of the total aerodynamic torque about the satellite body axes can be written as

TaSAm = ];l + T"z

= -}p”VRHZ CDA{|sin(a+ﬁl)||:cosa(—hs ~1,sin B, )+sina(l, ~1, cos ):l (4.11)

+‘sin(a—,82)!|:cosa(hs +1 sin B, )+sina (I, -1, cosﬂz)]}
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Next, nondimensional aerodynamic torque is obtained by dividing 7,Q* factor to Eq.(4.11)

as follows:

T =C.C, {A1 [—sin(a +ﬂl)(l;A cosa —1_ sin a)—l} sin® (a + B, )}

ASim

(4.12)
+A, [sin (-5 )(hAs cosx +ix sina) _i/ sin’ (a - 5, )}}

where

C =p||ﬁR“2ArS’Q_ i

4P R r e T, (4.13)
A= sgn(sin(a+(—1)l“ﬂj ))

Free Molecular Aerodynamic Torque Model

Based on the free-molecular aerodynamic force model [2], the force on a flap surface with

area 4 in the body fixed frame is
Fouy, = Aq.| =7, +(7,sin 7, -V, )2, | (4.14)
where p,is the nondimensional total pressure and 7 . 1s the nondimensional shearing stress.

For analytical simplicity, all flaps were considered to have the same area. The total pressure

P, and shearing stress 7, are calculated
5 =P _|[229% sin g +2n £
S N RN
y {le-szsmu, +/zsin g, [ 1+ erf (ssin z, )]} (4.15)
s

+(22_S?" j[1+erf(ssin;(j ):|

N Tj. _ 1 -s?sin’ . .
Tj—z—oycosz{s\/;e +sm;(j[1+erf(ssm,};j)}} (4.16)

where o,and o, are normal and tangential accommodation coefficients, 7 is the absolute
temperature of the spacecraft surface, T is the atmospheric temperature, g_ is the dynamic

pressure given by
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q., =%,0VR2 (4.17)
erf() is the error function defined by
erf = 2 xje-yz dy (4.18)
Jr ;

and s is the air speed, non-dimensionalized by the mean molecular speed of the atmosphere

‘ 2
s= | M (4.19)
2R'T

where M, is the mean molar mass of the atmosphere and R* is the universal gas constant.
Above free molecular force model is general equation which consists of lift and drag force.
So for comparison purpose it has to be converted into only drag force by knowing following

relation

A

n,=siny, Vy (4.20)
Then free molecular force that consist only drag force on aero flap-j can be obtained as
FMD’ =-Aq, [f)j siny, +7, coslj]I}R (4.21)

Thus, the aerodynamic torque exerted by the aero flap-j on the satellite using free molecular

aerodynamic flow model is obtained as

=7 x By . j =12 (4.22)

Assuming the cross-sectional area of the aero flaps being the same (i.e., Aj=A), the
components of the total aerodynamic torque about the satellite body axes can be written as
a = Ta a
'MD My MD,
= %p]lﬁknz A {(f)l sin y, +7, cos ¥, )l:cosa (=h,~1,sinB)+sina (I, ~1, cos j, ):| (4.23)
+(ﬁ2 sin , +7, cos;(z)l:cosa(hs +1, sinﬂ2)+sina(ls -1, cosﬂz)]}
Then next nondimensional free molecular aecrodynamic drag torque is obtained by dividing

1,Q* factor to Eq.(4.23) as follows:

£, =C.{(Bisin s+ feos ) cosa(-f, T sin ) sime( 7 cosp )|
(4.24)

~ ~

+(ﬁ2 sin y, +7, coslz){cosa(l;s +1, sinﬂ2)+sina(is -1, cosﬂz)]}
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4.2.3 Control Laws

In this subsection, control laws are derived based on simplified aerodynamic torque model as

explained in previous section.

Substituting simplified aerodynamic torque in fa&m Eq. (4.1) and expressing the derivatives
with respect to true anomaly @, the resulting nondimensional equation of motion of the
system are obtained as follows:

a" =T, +T, (4.25)
The nonlinear and nonautonomous system equation of motion, Eq. (4.25) is represented in

state space form. The following state vector is defined

’ r
x=[la o B B] (4.26)
A state space representation of the system (4.25) with a selected controlled output

variable y = &, is given by

¥=f(x)+gu 4.27)
y=a
where,

=la" 7. 0 0

f(x)=|a ] s
u=[p 4]
g=[g &)
g=[0 0 1 0] (4.29)

InEq. (428) T, =T,+T, .

Note that the control flap deflection (B;) in Eq. (4.12) involves complex trigonometric

relations and therefore it can not be assumed as a control input. However, this problem can

be solved by taking the derivative of the flap deflection as the control input, i.e.

u= [181' ﬂzl ]T .
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The objectives for the design of control system are: 1) drive the system error to zero without
oscillations or overshoots, 2) compensate external disturbances from beginning. To satisfy
these objectives, the sliding plane is considered as
S =X; + p,X, + p,X, + px, (4.30)
where
L=a-a,%=a-a,x%=a"-a, (4.31)
Parameters p;, p», and p; are positive constant, & = @ —«,, is the pitch angle tracking error,
and x; is the integral of the tracking error, that is,
X =a (4.32)
Here error integral feedback term has been used to obtain robustness in the control system to
parameter uncertainty.

The following Lyapunov function candidate is considered

V=%S2 (4.33)

Now taking the derivative of Eq. (4.33) with respect to 6 yields
V'=S8S' (4.34)
In the preceding Eq.(4.34), S’ is obtained by taking derivative of Eq. (4.30) with respect to
0:
S'= 3% p.%, + p,%, + pi&, (4.35)
Eq. (4.35) can be rewritten into the following form,
®)

S'=a® —ad + p;(a"-a})+ p,X%, + p % (4.36)

Next the third order derivative of the pitch angle with respect to 8 is required for Eq.(4.36),

which can obtained as

, oL, , of, o,
aV=—Eg'y St gyt g (4.37)
Oax B, op,

Since the partial derivative 6T;a / dex is summation of partial derivative of 7 . and TAaS, with

respect to o
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of, of, oT,
— + Sim

ga

oo O« oo

(4.38)

Taking partial derivative of YA"g and f;&m given by Eq. (4.3) and (4.12) with respect to « the

following equations are obtained,

or
—£ = -3Kcos2a (4.39)
ox

A

Zem .0, {A[ - cos(2ar+ 4+ sin(2a+ 5) -1, sin(2(a+ )]

oa (4.40)

+A, [ils cos(2a - B, ) +is sin (2¢x _ﬂZ)_if sin(2(a -5 ))}}

Replacing Eq. (4.39) and Eq. (4.40) into Eq. (4.38), one can obtain

A

Ta
& = _3Kcos2a
ox

+C.C, {AI | ~h,cos(2a+ ) +1,sin(2a+ B) -1, sin(2(a+ )] @an
+A, [fzs cos(2a - B,) +1, sin (2 —ﬂz)—if sin(2(a —-ﬂz))}}

Next taking the partial derivative of T, with respect to 3 ', the following equations :

a;:;;m =C,C A, [—cos(a + 5 )(hAs cosa —ll sina) —if sin(2(a +8 ))] (4.42)

667:;2"" =C,C A, [—cos(a -5 )(i;s cosa +1 sin a) +1,sin(2(a- B, ))} (4.43)

Substituting Eqs.(4.41), (4.42), and (4.43) into Eq.(4.37), a® is

a® = f,+[B, Bz]l:zl } (4.44)

where,
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or, or or.
fi=—tq' B =—tm B = m (4.45)
da B, op,

Now taking S’ =-7sgn(S) in Eq. (4.34) yields V' = —7|S|, which is negative semi-definite
of S for positive value of 7. So, the proposed control laws are globally stable for assumed

Lyapunov Function (4.33). Using Eq.(4.36), Eq.(4.44), and S’ = —sgn(S), we obtain

following relations:
/, +[B][u]—a(§3) + p,%, + pX, + p X, = —nsgn(S) (4.46)

Rearranging above Eq.(4.46), the control laws can be written as
-1 ~ ~ ~
[u]=B" [BBT:I {—fs +al’) - p.X, - p,X, — p % -1 sgn(S)} (4.47)

Using above control laws Eq. (4.47) will have chattering in control input response, in order to

avoid chattering in control input we have given following control law
-1 ~ ~ ~
[u]=B" [BBT] {—fs +a - p,%, - p,X, - p X -1 tanh(S)} (4.48)

For the existence of the control law (4.48), BB" must be non-zero in the region of interest :

. (er, Y (er, Y
BB =| —= | +|—=| #0 (4.49)
op, op,

The region of Q (€ M € | singularity in which BB" =0 is given by
Sy 2
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{5

_ {CaAl [—cos(a+,31)(fls cosa —l: sina)—l} sin(2(a+ﬂl))]}2 -0

={[};S cosa—issina+2if sin(ar+,6’1)12 =0}

or. )
{2

- {C,,Az [—cos(a—ﬂz)(ﬁs cosa +1, Sin“)+if Sin(z(a_ﬁ?»}}z =0

(4.50)

={[l§s cosa+issina+2if sin(a'—,B2)]2 :0}

The control laws (4.48) is well defined as long as the trajectory of the closed-loop system

does not enter the region X .

4.2.4 Results and Discussions

In order to study the performance of the proposed controller, the system response is
numerically simulated using Eq. (4.25) where, free molecular aerodynamic torque model
Eq.(4.24) is considered in equation of motion, and the control laws Eq. (4.48). The
simulation was carried out using MATLAB. The following parameters are assumed for

numerical simulation:

80



Application of Aerodynamic Forces

Table 4. 1: Parameters for Model-I

h =0.1[m], [, =0.1[m], W, =0.1[m],
Satellite Parameters )
[, =02[m], r,=1[m]

R =6878 [km], u=3.986x10°[km’ / s*],
Orbital Parameters
p=6.967x10"[kg / m’]

Initial and Final Attitude Conditions a,=70", a, =0.01, 'Bfa =100", a, = 0
Control Parameters p=6,p,=12, p,=8,7=0.5
Free Molecular Aerodynamic Model §=35,0,=085,0,=09, T, =9973[K],
Parameters T, =300[K]
Other Parameters C,=2

The effects of mass distribution parameter K, aerodynamic parameter C, are studied. The
satellite attitude response remains almost unaffected with changes in these parameters

(Figure 4.3 — Figure 4.4). Here, the satellite attitude maneuver initially starting from

a, =70 to final a, = 0" has performed.

The effects of mass moment of inertia distribution parameters (K) on the controller
performance (Figure 4.3) are examined first. The value of K is varied from -1 to 1. Here K=-
1 refers to an unstable gravity gradient configuration while K=1 signifies a stable gravity
gradient configuration. As the parameter K varies from K=-1 to K=1, the satellite attitude
response remains virtually unaffected. Figure 4.3 shows the satellite attitude and control flap
deflection responses obtained for K= 1, and K=-1. As the parameter K varies from K=-1 to

K=1, the satellite attitude response remains virtually unaffected. However, the control flap

ﬂl'max

decrease from 140.3 deg to 117.5 deg, respectively in steady state situation. The large control

deflection (ﬂj) varies with changes in K. As K is increased from K=-1 to K=1,

flap deflection | 'Bl|max for negative value of K are due to the fact that K=-1 corresponds to an
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unfavorable gravity gradient configuration while the small control flap deflection | ﬂ,lmax for

K=1 corresponds to a favorable gravity gradient configuration.

K = — B, ---B,
80 150 - . :
60 125
, 3
100
(deg) 20 2
(deg) 75 \
0 Se_ ]
—20 50
K =1 — B, ---B,
80 150 :
60 125/
o 40 31 100
(deg) 20 2 75
(deg)
0 50}
—20 ' ' : P j—
05 1 15 2 0 05 1 15 2
Orbits Orbits

Figure 4.3: Effect of K on system performance and control flap deflection: C, = 5
n=05, p=6, p,=12,p, =8, o, =70",; =0.01.
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c =10 —B, ---B,
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60; 125}
o 40 E1 100
(deg) 20 L de2 ) Y
O_ g 75 \\\
—20 ] | ——————
c,= —B, ---B,
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60/ 125/
o 40 E1 100
(deg) 20 | 629) Y
0 750 N R
20 - A - 50 T TTETTEe
05 1 15 2 0 05 1 15
Orbits Orbits

Figure 4.4: Effect of aerodynamic parameter C, system performance and control flap
deflection: K=0.5, n=0.5, p, =6, p,=12,p, =8, a, =70",0, =0.01.

The effect of the aerodynamic parameter C, is examined next (Figure 4.4). As the

aerodynamic parameter C, is decreased from 10 to 5, the control flap deflection
(|ﬂ1|max ?

input could be explained from Eq. (4.48) where |u j|max is inversely proportional to the

ﬂzlmax) increases from (129.9, 56.06) deg to (134.8, 57) deg. This increase in control

aerodynamic parameter C, (i.e. lower C, corresponds to higher control flap deflection rate).
With changes in parameter C, however, the satellite attitude response remains unaffected

showing robustness of the proposed controller. The maximum control flap deflection (Simax »
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Prmax) 1s given in Table 4.1. It should be noted that with lower aerodynamic parameter C, the

controller requires very large control flap deflection.

Table 4.2: Maximum control flap deflection for different aerodynamic parameter C,
(transient condition)

Aerodynamic parameter Flap deflection
(Co) (deg)
|B| =134.8
Ca — 5 max
lﬂzlmax =37
=129.9
o Al,..
|8, =56.06

In order to study the performance of the proposed variable structure control in presence of
the parameter uncertainties, the numerical simulation was done in the perturbed modes
(Figure 4.5). First, the mass distribution parameter (K) and the aerodynamic parameter (C,)
are decreased by 30% from its nominal values as follows: K=0.35 and C, =3.5, respectively
in the plant dynamics. In the second case, the mass distribution parameter (K) and the
aerodynamic parameter (C,) are increased by 30% from its nominal values as follows:
K=0.65 and C=6.5, respectively in the plant dynamics. The above parameters are remained
same as its nominal values as K=0.5 and C, =5 in the VSC controller Eq.(4.48). The results
of the numerical simulation are shown in Figure 4.5 for parameter uncertainties into the mass
distribution parameter and the aerodynamic parameter. The desired pitch orientation of the
satellite is achieved smoothly within 0.7 orbits. Also note that the VSC stabilized the pitch
motion without any overshoot in presence of parameter uncertainties. Thus, the proposed
VSC is robust against the parameter uncertainties and the numerical simulation verifies the

theory presented in Section 3.5.
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Uncertainties of K and Ca1 by —30%
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o 40 o 40
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0 0.5 1 1.5 2 0 0.5 1 1.5 2
Orbits Orbits

Uncertainties of K and Ca1 by +30%

Figure 4.5: Performance of sliding mode control (SMC) in presence of parameter
uncertainties into the mass distribution parameter (K) and the aerodynamic parameter

(C.): K=0.5,C,=5,7=05, p,=6, p,=12,p, =8, @, =70",a, = 0.01.
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Figure 4.6: Performance of sliding mode control (SMC) in presence of external
disturbance: K=0.5,C,=5,7=0.5, p,=6, p,=12,p, =8, o, =70",a, =0.01.

Finally, for an appreciation about the effectiveness of the proposed control laws in presence
of external disturbance (Figure 4.6), a typical satellite with 1,=0.00952 kg-m?, 1,=0.00211 kg-
m?%, and 1,=0.00952 kg-m” are considered [35]. The system may experience disturbance
torques due to several factors including aerodynamic torque modeling errors, aero flap
misalignment and other environmental forces. The disturbance torque is assumed to be in the
order of 107 for the satellite in the Low Earth Orbits. The external disturbance torque of

3.6x10°[N.m] is applied from 1.0 orbits to 1.5 orbits. This disturbance torque is in fact

applied to the system when the system almost reaches its desired pitch angle of 0 deg. Two
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cases are considered: the first case with C, =5 and the second case C, =10. As shown in
Figure 4.6, the desired pitch is successfully attained for both the cases in presence of

disturbances with small attitude oscillations between 1 orbit to 1.5 orbits. For the first case

the maximum control aerodynamic flap deflection (| ﬂ1|max ,| ,82| ) decrease to (101.8, 35.46)

deg while in the second case it decrease to (107.3, 51.8) deg as compared to the case of no
disturbance. The decrease of control flap deflections in both cases are due to the fact that in
order to compensate the external disturbances control flap has to generate enough
aerodynamic torques by varying control flap deflection. Thus, this simulation verifies the

external disturbances rejection property of VSC.

4.3 System Model - 11

4.3.1 System Description

A system model that comprises of a satellite with four light-weight aero flaps is placed along
the satellite Y-axis. The system center of mass O moving in a circular orbit about the Earth’s
center E (Figure 4.7) is assumed. The system center of mass O lies on the center of mass of
the satellite. For simplicity, the cube satellite is considered with length, width and height
given as [, w_, and A, respectively. The mass of the aero flaps and other accessories are
assumed to be negligible. For the system under consideration, an orbital reference frame O-
XoYoZ, is selected such that the X,-axis always points along the local vertical, the Z,-axis
lies normal to the orbital plane, and the Y,-axis represents the third axis of this right handed
frame taken. The body-fixed coordinate frame is represented by O-XYZ. For top two aero

flap-j (j = 1,2), we consider its axis 7,, j =12 initially aligned with the X-axis is rotated by
an angle f,,j=1,2 about the Z-axis (normal to the orbit plane Y-Z) in counter clock wise
direction. For bottom aeroflap-j, we consider it axis 7, j=3,4 initially aligned with the
opposite to the X-axis and then it is rotated by angle B,,j=3,4in clock wise direction. All

aero flaps are considered to be made of a light weight material and their total area

1 . . . .
(A = Ewsl fj facing the incoming air velocity are assumed same.
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Figure 4.7: Geometry of orbit motion and proposed aerodynamic controller
configuration

4.3.2 Kinematics and Equations of Motion
4.3.2.1 Euler Angles

The orientation of a spacecraft with body fixed axes O-XYZ can be specified completely by
a sequence of three consecutive rotations about different spacecraft body axes. There are 12

such possible combinations can be used to achieve specify spacecraft orientation. For present
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research work we have consider Euler 3-2-1 rotation sequence. Here, 1, 2, and 3 correspond

to X, Y, and Z axes, respectively.

It is often useful to perform calculation in the spacecraft’s body frame. Therefore,
transformations are necessary to translate measurements in one coordinate frame into
another. To transform measurements in the orbital frame to the spacecraft’s principle axis

body frame an Euler 3-2-1 rotation sequence is used to produce the following rotation matrix

[2]:

C, <, S4 Cy —s,
Ry =] €,848,78,€, 8,8,8,+¢c, ¢, C,;8, (4.51)
c,8,C,+8,8, §,8,¢,—C,8, ¢C,C,
where, s, =sink and ¢, =cosk, for k=y,¢,a
or
cosa cos ¢ sina cos ¢ —sin ¢

R,,, =| cosasingsiny —sinacosy sinasingsiny+cosacosy cosgsiny

cosasingcosy +sinasiny sinasingcosy—cosasiny cos@cosy
Thus, the transformation from the frame O —i, j k, to the body fixed frame O —ijk using 3-2-

1 Euler angle rotation sequence is

; ;
} = R321 }a (4.52)
k k

[

If it is require transforming the frame O —ijk to the orbital frame O—i j k, , the following

relation is used to get the rotation matrix R,,, by taking the inverse of the rotation matrix R;j,

as follows:
C,Cs ©C,848,75,C, €,5,C +5,8,
R, =|s,¢; 8,848,+¢,C, 5,5,C,—C,S, (4.53)

—S¢ C¢ S}, C¢ C},
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4.3.2.2 Angular Velocity Vector
In addition to rotation matrix, we need to determine inertial angular velocity of the spacecraft
as well. The angular velocity of the spacecraft can be expressed as

b=oi+oj +ok=yi+¢j+(0+a)k, (4.54)
where « is about the /20 axis in the frame O - X,Y,Z, , followed by ¢ about the j, axis in the

intermediate frame O - X,¥;Z, and finally 7 about the i axis in the O — XYZ.
Using Euler 3-2-1 rotation the angular velocity vector can be obtained as
0, = —(9+d)sin¢+7

@ (9+d)cos¢sin7+¢cosy (4.55)

y

Il

o (9+d)cos¢cosy-¢5sin7

z

or also it can be written as

o, 1 0 -, %
o,1=|0 ¢, cs, |4 ¢ (4.56)
o, 0 -5, ¢4, a+0

4.3.2.3 Attitude Dynamics

The equation of motion of the spacecraft is derived using Euler’s Rotational Equations of
motion [2]:

Io+& 1o =T (4.57)
This is the general form of Euler’s Equation where I is the moment of inertia of the body
being analyzed, @ is the angular velocity vector of the spacecraft and 7 is the external torque

acting on the body. The spacecraft moment of inertia is assumed to be principle moment of

inertia. The external torque (7 =T et f;) acting on the spacecraft being analyzed here are the

gravity gradient torque (Tg ), and the aerodynamic torque (]i) being generated by aero-flaps.

Euler’s equations of motion can be written in the expanded scalar form as follows:
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Lo, —(1,-1,)o,0, =T,
Lo,-(1,-1,)o,0, =T, (4.58)
Lo, -(1,-1))o0, =T,

Time derivative of the Eq. (4.55) is obtained as
i, =—(0+é)sing—(6+a)pcosg+7j
o, = (55+éz’)cos¢sin7—(0+d)¢sin¢siny+(9+d)7cos¢cos7
+@ cosy — yhsiny (4.59)
=(65+c'z')cos¢cos7—(9+d)¢s1n¢cosy—(9+d)7cos¢siny
—@siny —ypcosy

4.3.2.4 Equations of motion

Now using Eq. (4.58), Eq.(4.55), and Eq. (4.59), the resulting equations of motion of the

spacecraft for the circular orbit can be obtained as

Satellite: Yaw (7)

1Ly—(I;sing)é -1, (9+d)¢cos¢

—(Jy—12)[(9’+d)cos¢siny+¢5cosy][(é+oz)cos¢cosy—¢5siny]=7; (460
Satellite: Roll ()
(1,cosy)d +(1, cospsiny)éi+1 { 6+a)gsinpsiny
+(6+a)ycospeosy —jpsiny} - (1 [ ¢9+a)sm¢+}/:| (4.61)

x[(9+d)cos¢cosy—¢smy:] =T,
Satellite: Pitch (o)

(1, cosgcosy)d—(1, siny)¢
—(Ix —Iy)[—(6?+a)s1n¢+;/:|[ (9+d)cos¢siny+¢'cos7:| (4.62)

+]Z{—(9+d);isin¢cosy—7¢cos7—(9+d)7cos¢sin}/} =T,
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4.3.2.5 Gravity gradient torques
The external torque acting on the system due to gravity, T JRE

Tg:]jgxi+Tgyj+ngk (4.63)
where

T, =- 3"(1 -1,)C, ,C

& R3 X,y X,z

T, =~;—‘3‘(1 -1)C, .C,, (4.64)
3u

T, =_F(1 -1,)C, .C,,

Here the direction cosines from the orbital reference frame O — i,],k, to the body fixed frame
O —ijk using 3-2-1 Euler angle rotation sequence as given in Eq.(4.51) can be obtained as

C,,=cosacosg
C,, =cosasingsiny —sina cosy (4.65)

C, . =cosasingcosy +sinasin y

4.3.2.6 Aerodynamic torques

The aerodynamic forces or torques experience by satellites vary with their altitudes. So far in
literature researchers are consider two type of model for calculating aerodynamic torques:
simplified aerodynamic torque model and more realistic free molecular flow aerodynamic

model. Both aerodynamic torque models will be given in this section for Model-1ILI.

Simplified Aerodynamic Force Model

Assuming flat flaps and considering both aerodynamic drag and aerodynamic lift as show in

Figure 4.3, the forces acting on the aero flap-j is given by

F, = ——;—p"VR”Z Cpd,[cos¢ | V. j=1,2,3,4

" (4.66)

F, =%p”I7R||2 C,4,[cos¢ | £y, j=1,2,3,4
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where p = density of the atmosphere; VR= The relative velocity of the satellite with respect

to the atmosphere in the direction of the orbital velocity; C,= drag coefficient; C, = lift
coefficient; 4, = total area of the aero flap-j; £ = angle between the relative velocity I7R and
the outward unit normal vector n; of the aero flap-j . We assume that the drag force is acting

opposite to the local horizontal direction, i.e., -Y, direction and the lift force is acting in the
direction of local vertical for top two aero flaps and in the opposite to the local vertical for

bottom aero flaps as show in Figure 4.3.

Roll (¢) s
Y

Satellit

Pitch (o)

Figure 4.8: Detailed schematic diagram of the spacecraft

In Eq.(4.5), Angle ¢ is calculated using following relation,

¢, =cos™ (I}R -ﬁj) (4.67)
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Also it should be noted that using Eq.(4.5) for projected area of aero flap-j ,if cos{ >0 then
there will be aerodynamic forces otherwise for cos¢ <0 there will be no aerodynamic forces

produced by aero flap-j.

Here I}R is the unit vector of the incoming air velocity from atmosphere on the aero flap-j
and is expressed in the satellite body-fixed reference frame as

Ve =Ry, ), (4.68)
Whereas, lift force direction for the top two aero flaps is given by

F, =Ry, j=12 (4.69)
and for bottom aero flaps is considered as

F, =—Ry,i,.j=34 (4.70)

The outward unit normal vector of the aero flap-j, 7 | 1s given by

i, =[cos B, Ji+[sing, ]}, j=12

. n (4.71)
ﬁJ:—[cosﬂj]i+[sinﬂj]j, j=3,4

The position vector r, from center of mass O to the center of pressure of the aero flap-j is

obtained as

!

/ » ) A j 2 ;
=(%+ésinﬂ])l—(%S+écosﬁj)1+((—1)j%—]k, Jj=12
4.72)

|

h. lf ) » [ lf )A. ( WJA .
=D S =l L JH (D) = |k, j=3,4
7 (2+2smﬁjjl (2+2cos,3] J+ (=D 2 J

where A= height of the satellite; w, = width of the satellite; [, = length of the satellite; / ;=

length of the aero flap-j.

Thus, the torque exerted by the aero flap-j on the satellite is obtained as
— 4 —
T, =2 %xF, 4.73)

k=1
— 4 — —
where F, =) F), +F,
k=1
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Free Molecular Aerodynamic Force Model

Based on the free-molecular aerodynamic force model [2], the force on a flap surface with

area A in the body fixed frame is

— — . 5 T
FM, = A{—njpj +(nj sin g —VR)(COSJZ ﬂ (4.74)
J

where p,is the total pressure and 7, is the shearing stress. For analytical simplicity, all flaps

were considered to have the same area. The total pressure p, and shearing stress 7, are

pJ 2 —O-n : o-n Ts
—q— = \/; smy,; +§; }'—
x {l e 1z sin g, [1+erf (ssin g, )]} (4.75)

+(22—s?n J[l +erf(s sin )]

calculated

T o, { 1 _osinty, +sin g, [1+erf(s sin g )]} (4.76)

e

q,cosy s\
where o,and o,are normal and tangential accommodation coefficients, T is the absolute
temperature of the spacecraft surface, T, is the atmospheric temperature, g,, is the dynamic

pressure given by

1

4. = EPVRZ (4.77)
erfl ) is the error function defined by
erf = 2 xje"yz dy (4.78)
V7 ;

and s is the air speed, non-dimensionalized by the mean molecular speed of the atmosphere
2
s= M (4.79)
2RT,
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where M, is the mean molar mass of the atmosphere and R* is the universal gas constant.

Thus, the torque exerted by the aero flap-j on the satellite is obtained as

— 4 —
T, =D rxF, (4.80)
k=1

4.3.3 Control Laws

The resulting equations of motion Egs. (4.60)-(4.62) can be written in the following form as
[MI{a}+{1,} ={T) (4.81)

where M is the mass matrix, f, is the force vector which contain centrifugal and coriollis

acceleration force terms from equations of motion, q is generalized coordinate as defined by

[ y @ a]T and 7 is the external torque vector as defined by 7' =T, g +1, or ( T, ) .

In this section, control laws are derived based on simplified aerodynamic torque model as

explained in previous section.

The nonlinear and nonautonomous system equation of motion, Eq. (4.81) is represented in

state space form. The following state vector is defined

. i . '1‘
x=[r 7 ¢ 6 aa B B B B] (4.82)
A state space representation of the system (4.81) with a selected controlled output

variable y = « , is given by

x=f(x)+gu
) (4.83)

y=lr ¢ «]

where,
=[y.M,,¢,M,,c,M,,0,0,0,0]

f(x) I:}/ 7.¢ .¢ a. . ] (484)

u=|:161 ,Bz ﬁ3 ﬁ4]
8= [06><6’I4x4 ]T (4.85)
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Here O and I denote null and identity matrices of indicated dimensions, and super subscript T

denotes the matrix transposition. M,, M, and M, denote the decoupled nonlinear equations

of motion.

The objectives for the design of control system are: 1) drive the system error to zero without
oscillations or overshoots, 2) compensate external disturbances from beginning. To satisfy

these objectives, the sliding plane is considered as

S =q+pq+p,q+p4, (4.86)

where
§=4-4,9=4-9:-9=9-4s (4.87)
Parameters pi, p2, and ps are positive constant, § = g — g, is the attitude angle tracking error,

and g, is the integral of the tracking error, that is,

4,=9 (4.88)
Here error integral feedback term has been used to obtain robustness in the control system to
parameter uncertainty.

The following Lyapunov function candidate is considered

1% =%s2 (4.89)

Now taking the derivative of Eq. (4.89) with respect to time yields
V=SS (4.90)
In the preceding Eq.(4.90), S is obtained by taking derivative of Eq. (4.86) with respect to

time:

$=4%+pg+pd+pi (4.91)

Eq. (4.91) can be rewritten into the following form,

$=q" -4 +p.g+pd+pd (4.92)

Next the third order derivative of decoupled equations of motion is required, so using

Eq.(4.81), one can obtained following
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o =[] (-8t {7} 1)+ 1) + 8]0 (499)
where
. daf, orT, or, .
{fq}:;’{fsl}=a_qq’{fsz}= oq 1
(4.94)
- ! B]:%ﬂ
ﬂ [IBI’ﬂZ’ﬂ37ﬂ4] ’[ 6ﬁ

Now taking § = -77sgn(S) in Eq.(4.90) yields ¥ = —5|S|, which is negative semi-definite

of § for positive value of 7. So, the proposed control laws are globally stable for assumed

Lyapunov Function (4.89). Using Eq. (4.92), Eq. (4.93), and § =—7sgn(S$), the following

relations are obtained
[M]"{ £, +[B][ul} -4 + P+ P, + pdi = —n15en(S) (4.95)

Here f, =-[]{a) -1} + 1, } (1.}

Rearranging above Eq.(4.95), the control laws can be written as

[u]=B"[BB"| ' {~£,+[M][4 - pd- p.i- pd-nsen(S)]} (4.96)

Using above control laws Eq. (4.96) will have chattering in control input response, in order to

avoid chattering in control input we have given following control law

[u]=B"[BB"] {~f.+[M][4 - - .4~ pg-ntann(S)]} (4.97)

For the existence of the control 1aw(4.97), BB" must be non-zero in the region of interest :

BB" %0 (4.98)
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4.3.4 Results and Discussions

In order to study the performance of the proposed controller, the system response is
numerically simulated using Eq. (4.81) where, free molecular aerodynamic torque model
(4.80) is considered in equations of motion, and the control laws Eq.(4.97). The simulation
was carried out using MATLAB. The following parameters are assumed for numerical

simulation:

Table 4. 3: Parameters for Model-11

h,=0.1[m], I =0.1[m],w, =0.1[m],
Satellite Parameters
lf =0.1[m], 1, =0.0952, Iy =0.00211, 7, =0.0952

R = 6878 [km], u=3.986x10 [km’ / s*],
Orbital Parameters
p=6.967x10" kg /m’], @, =7.27x107[rad / 5]

y,=40°, ¢, =20", a,=40",
B, =45.7,=0.0,=0,a,=0

p,=097x10"°, p, =2.94x10™, p, =0.0297,

Initial and Final Conditions

Control Parameters

5 =0.01
Free Molecular Aerodynamic §=5,0,=085,0,=09, T, =9973[K],
Model Parameters T, =300[K]
Other Parameters C,=2,C, =02

The first case is looked at where a satellite is required to maneuver from arbitrary reference
attitude to desired attitude (Figure 4.9 and Figure 4.10) using aerodynamic torques only. The
time history of pico-satellite orientation is given in Figure 4.9. The time history of the control
flap deflection of pico-satellite is given in Figure 4.10. Figure 4.9 shows that the desired final
orientation was achieved about 0.25 orbits. Here pico-satellite attitude maneuver from 40 deg

in yaw, 20 deg in roll, and 40 deg in pitch is performed. Figure 4.10 shows the control flap
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deflection is needed in order to maneuver satellite. The control flaps are finally settles down

to some angles when satellite reaches to its desired orientation.

40 , . '
v 20r .
(deg) ok
_20 I 1 1
40 T T T
q) 20_ 7
(deg) oF
_20 1 1 1
40 . T :
o 20+ .
(deg) o-
-20 L L !
0.25 0.5 0.75 1
Orbits

Figure 4.9: Pico-satellite attitude response
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Figure 4.10: Pico-satellite control flaps deflections

In order to study the performance of the proposed VSC in presence of the parameter
uncertainties, the numerical simulation was done in the perturbed modes (Figure 4.11 —

Figure 4.14). First, the principal moment of inertias (/,,k =x,y,z) are decreased by 30%
from its nominal values as follows: I, =0.0067,/, =0.0015,and /, =0.0067 in the plant
dynamics. In the second case principal moment of inertias (/,,k = x,y,z) are increased by
30% from its nominal values as follows: /, =0.0124,7 =0.0027, and I, =0.0124 . The above
parameters are remained same as its nominal values as [ =0.00952, [ = 0.00211,

1,=0.00952 in the VSC controller Eq.(4.97). The results of the numerical simulation are

shown in Figure 4.11 — Figure 4.14 for parameter uncertainties into the principal moment of
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inertias. The desired attitude orientation of the satellite is achieved smoothly within 0.25
orbits for both cases as shown in Figure 4.11 and Figure 4.13. Also note that the VSC
stabilized the satellite attitude motion without any overshoot in presence of parameter
uncertainties. Thus, this numerical simulation verifies the parameter uncertainties rejection

properties of the proposed VSC.

40 T T T
v 20 .
(deg) oF
_20 | 1 1
40 . u .
0 20\ “
(deg) oF
_20 1 1 1
40 ' . :
o 20+ .
(deg) oF
__20 1 | 1
0.25 0.5 0.75 1
Orbits

Figure 4.11: Satellite attitude response in presence uncertainties in principle moment of
inertia(30% decrease)
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Figure 4.12: Control flaps response in presence of uncertainties in principle moment of
inertia(30% decrease)
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Figure 4.13: Satellite attitude response in presence of uncertainties in principle moment
of inertia (30% increase)
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Figure 4.14: Control flaps response in presence of uncertainties in principle moment of
inertia (30% increase)
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Figure 4.15: Satellite attitude response in presence of external disturbances
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Figure 4.16: Control flaps response in presence of external disturbances

Finally, for an appreciation about the effectiveness of the proposed control laws in presence
of external disturbance (Figure 4.15 — Figure 4.16), satellite with external disturbance are
considered. The disturbance torque is assumed to be in the order of 10 for the pico-satellite

in the Low Earth Orbits. The disturbance torques of 1x107® [N m] is applied from 0.5 orbits

to 1.0 orbits for all three axis. This disturbance torque is in fact applied to the system when
the system almost reaches its desired attitude angle of 0 deg. As shown in Figure 4.15, the
desired satellite attitude is successfully attained in presence of disturbances with small
attitude errors between 0.5 orbits to 1.0 orbit. Figure 4.16 shows that the control flap
deflections. All control flap deflections are changing from their final settling position

between 0.5 orbits to 1 orbit. This changes in S, is due to the fact that in order to
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compensate external disturbances control flaps have to generate more aerodynamic torques
by varying control flap deflection. Thus, external disturbances rejection property of the

proposed VSC verifies the theory presented in Section 3.5.

4.4 Summary

This chapter examines the attitude control of satellites using aerodynamic forces. The
synthesis of closed-loop control laws for suitably rotating aero flaps is developed using
variable structure control to utilize proper aerodynamic torques for desired attitude response.
The control flap deflection f; is continuously adjusted as per the control laws. The satellite
attitude response remains virtually unaffected with changes in mass distribution parameter K

and aerodynamic parameter C, for Model-I. However, the control flap deflection has

significant effect as theses parameter changes. As K is increased from K=-1 to K=1, | ,31|

max

decrease from 140.3 deg to 117.5 deg, respectively in steady state situation. As the

aerodynamic parameter C, is decreased from 10 to 5, the control flap deflection
(|,6,|max,|,82|max) increases from (129.9, 56.06) deg to (134.8, 57) deg. Three-axis attitude
control for pico-satellite is achieved using only aerodynamic forces. Furthermore, the
proposed VSC controllers are found to be robust against parameter uncertainties and external

disturbances for both models considered here. The proposed aerodynamic control strategy for

attitude control can be implemented for small satellite mission.
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Chapter 5

Conclusions

5.1 Conclusions
S.1.1 Solar Radiation Pressure Torques Stabilized Satellite

The present thesis examines the attitude control of satellites using SRP in Chapter 3. The
synthesis of closed-loop control laws for suitably rotating solar flaps is developed using VSC
to obtain proper SRP torque for satellites operating in circular and elliptic orbits (Section
3.3). The proposed controllers are very effective in presence of initial attitude tracking errors
(Section 3.6) for both controllers. The satellite attitude response remains virtually unaffected
with changes in orbital eccentricity e, solar parameter C, solar aspect angle \, mass
distribution parameter K, and orbital inclination i. However, the control solar flap deflection

has significant effect as these parameters change. Section 3.6.2 illustrates that as the orbital

eccentricity e increases the control solar flap deflection ( ,Bj)increases. It is noted from the

results and discussions (Section 3.6) that for lower solar parameter C, the system requires
very large solar flap rotation which is not practical. Such large solar flap rotation gives
certain limitation on the application of SRP for attitude control of satellites. It is found that
solar flap deflection increases with increase in orbit inclination. The VSC is very effective in
controlling the satellite harmonic chase-maneuvers which was shown in numerical simulation
(Section 3.6). However, as the period of desired harmonic attitude decreases, more control
effort is required resulting in increase in solar flaps deflection rates. With regard to SMC and
TSMC presented in Section 3.6.2 for satellites in elliptic orbits, the control solar flap
deflection almost matches during transient whereas in the steady state the control solar flap
deflection differs. Advantage of TSMC is its precise tracking error in finite time was verified
in Section 3.6.2. Furthermore, from the analysis it is found that VSC is more robust against

external disturbances and parameter uncertainties and its performance is superior in
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comparison to other strategies proposed in the literature. The proposed control strategy is
augmented with the existing attitude control system of the satellite to extend the life of the

space mission experiencing attitude actuator failures.

S.1.2  Aerodynamic Torques Stabilized Satellite

This thesis studies the attitude control of satellites using Aerodynamic forces in Chapter 4.
Two aerodynamic models are considered: simplified aerodynamic model and more realistic
free molecular aerodynamic torque model for planar case (Model-I) and three dimensional
case (Model-II). The closed-loop control laws for suitably rotating aerodynamic flaps are
developed using VSC based on simplified aerodynamic torque model to utilize proper
aerodynamic torques for desired attitude response in Section 4.2 and Section 4.3,
respectively. The large angle attitude maneuver is attained by rotating aero flaps. The effect
of aerodynamic parameter C, and mass distribution parameter K on satellite attitude response
is studied in Section 4.2.4 for Model-I and it is found that attitude response remains virtually
unaffected with changes in these parameters. However, the control aero flap deflection has
significant effect as these parameters changes. As K is increased from K=-1 to K=1,
aerodynamic control flap deflection decreases whereas decrease in the aerodynamic
parameter C, require more control flaps deflection was shown in Section 4.2.4. Three-axis
satellite attitude control using only aerodynamic torques by rotating four aero flaps was
accomplished in Section 4.3. Here a satellite attitude maneuver from arbitrary reference
attitude to desired attitude for pico-satellite is achieved in Section 4.3.4. In order to study the
performance of the proposed VSC laws for three-axis attitude control in presence of the
parameter uncertainties, the numerical simulation was done in the perturbed modes in
Section 4.3.4 for uncertainties in principle moment of inertias. It is shown that controller was
successful to achieve desired attitude response in presence of parameter uncertainties. The
effectiveness of the controller in presence of external disturbances is also presented in
Section 4.3.4 for pico-satellite with large angle attitude maneuver. The proposed control
strategy is attractive for small satellite mission to stabilize satellite three-axis control using

only aerodynamic forces.
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5.2 Future Works

In the future work, the proposed concept for SRP stabilized satellite can be extended for
three-axis attitude control of the satellite using different configurations. Failure of the control
solar flaps can also be studied as extension of this research work. If one of the control flaps
fails then it is difficult for the control system to stabilize a satellite attitude without knowing
failure. Therefore, it is required to investigate such controllers which will consider these
cases. Recently, researchers are studying fault tolerant controllers; these controllers can be
applied for the failure cases. Furthermore, this study can be extended to an aerodynamic
stabilized satellite. Also shadowing of the control flaps by a satellite body can be considered
for the proposed three-axis aerodynamic controller, because there are many situations where

aerodynamic control flaps may enter into the shadow of the satellite body.
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