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Abstract 

Road surface monitoring is a key factor in providing safe road infrastructure for road users. As a result, 

road surface condition monitoring aims to detect road surface anomalies such potholes, cracks and bumps, 

which affect driving comfort and on-road safety. Road surface anomaly detection is a widely studied 

problem. Recently, smartphone-based sensing has become popular with the increased amount of available 

embedded smartphone sensors. Using smartphones to detect road surface anomalies could change the way 

government agencies monitor and plan for road rehabilitation and maintenance. 

Several studies have been developed to utilize smartphone sensors (e.g., Global Positioning system (GPS) 

and accelerometers) mounted on a moving vehicle to collect and process the data to monitor and tag 

roadway surface defects. Geotagged images or videos from the roadways have also been used to detect the 

road surface anomalies. However, existing studies are limited to identifying roadway anomalies mainly 

from a single source or lack the utility of combined and integrated multi-sensors in terms of accuracy and 

functionality. Therefore, low-cost, more efficient pavement evaluation technologies and a centralized 

information system are necessary to provide the most up-to-date information about the road status due to 

the dynamic changes on the road surface This information will assist transportation authorities to monitor 

and enhance the road surface condition. 

In this research, a probabilistic-based crowdsourcing technique is developed to detect road surface 

anomalies from smartphone sensors such as linear accelerometers, gyroscopes and GPS to integrate 

multiple detections accurately. All case studies from the proposed detection approach showed an 
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approximate 80% detection accuracy (from a single survey) which supports the inclusiveness of the 

detection approach. In addition, the results of the proposed probabilistic-based integration approach 

indicated that the detection accuracy can be further improved by 5 to 20% with multiple detections 

conducted by the same vehicle along the same road segments. Finally, the development of the web-based 

Geographic Information System (GIS) platform would facilitate the real-time and active monitoring of road 

surface anomalies and offer further improvement of road surface quality control in large cities like Toronto. 
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Chapter 1 Introduction 
 

1.1 Research Motivation 

Recently, monitoring road surface conditions has become considerably important. Well-maintained road 

surfaces increase road user safety and comfort levels. Therefore, it is essential to monitor road conditions 

continuously to enhance the transportation system in terms of driving safety and comfort. For instance, in 

Canada, authorities responsible for road surface maintenance have to deal with complaints concerning the 

poor surface conditions of roadways, particularly during winter months. One of the main indicators used to 

determine road surface condition is the density of road surface anomalies (Strutu et al., 2013).     

Traditionally, there has been three main approaches for road surface monitoring: 3D reconstruction, 

vibration, and vision-based (Buza et al., 2013).  

A 3D reconstruction approach relies on 3D laser scanning to create accurate surface models.  These models 

are then compared to a base model to detect road surface anomalies.  In this approach, a 3D laser scanner 

uses reflected laser pulses, which create accurate 3D digital models of existing objects, such as road surface 

anomalies. Subsequently, the distress features (road surface anomalies) are extracted from the created point 

clouds (i.e., a collection of points that represent a 3D shape of road surface distress). This approach was 

widely investigated by Kelvin, (2004), Vijay and Arya (2006), Salari et al., (2012), Moazzam et al., (2013), 

Hou et al., (2014), Kim et al., (2014), Wang et al. (2015), and Yan et al., (2015).  However, the 

aforementioned approaches require high-cost laser scanners (Kim et al., 2014) and are very costly when 

monitoring large scale road networks.  

A vision-based approach relies on image processing analysis, such as texture extraction and comparison 

using captured photographs depicting pavement distress features. The principle of this approach primarily 

utilizes geotagged images captured from a camera/video system mounted downward towards the road 

surface on a moving vehicle. Any suspicious road surface distress features, including potholes and cracks, 
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can be automatically detected from the collected geotagged video images (Yan et al., 2017) by applying, 

for example, a Canny edge detection process (Canny, 1986). Vision-based approaches were extensively 

evaluated by Koch et al. (2013), Jog et al. (2012), Huidrom et al. (2013), Lokeshwor et al. (2013), and Yan 

et al., (2017). Even though these approaches are cost-effective compared with 3D reconstruction 

approaches, they depend on certain environmental conditions, such as lighting and shadow influence.  

With a vibration-based approach, road surface anomalies are detected from the rate of moving vehicles’ 

vibration captured by motion sensors (e.g., accelerometers and gyroscopes). Theoretically, a vehicle, when 

passing through any road surface anomaly, such as a pothole, crack, manhole, or expansion joint, will 

vibrate more than when passing over smooth road surfaces.  

Table 1.1 compares the three available approaches for road surface monitoring. It can be seen that the 

vibration-based approach is more practical approach in terms of developing a broad and low-cost method 

for road surface anomaly detection. 

Table 1.1: Available approaches for road surface monitoring system 

Approaches Pros Cons 

3D 

reconstruction 

approach 

 Providing geometric measurements 

(crack width/depth/height) or capable 

of classifying the crack 

 Costly 

 Computationally intensive 

 Not widely available for crowdsourcing 

Vision-based 

approach 
 More cost effective than 3D 

reconstruction 

 Preliminary classify distress feature 

 Suitable for visual determination of 

distress feature 

 Suffering from determining precise 

geometric measurements 

(crack width/depth/height) or classifying 

the crack 

 Not widely available for crowdsourcing 

 Lighting and shadow conditions 

 Resolution dependent 

Vibration-based 

approach 
 Low cost  

 Widely available (Smartphones) 

 Capable of evaluating driving 

comfort of roads surface 

 

 Suffering from determining precise 

geometric measurements (crack 

width/depth/height) or classifying the 

crack 

 Not suitable for visual determination of 

distress feature 

 Sensor and vehicle dependent 
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Authorities dealing with road surface maintenance are typically rely on statistical data derived from 

collected road surface information, visual field inspections or vehicles outfitted with special instruments 

which measure and monitor road surface conditions. For example, ARAN (Automated Road Analyzer), 

which is widely used for road monitoring in Canada, and ROMDAS (Road Measurement Data Acquisition 

System), which is used to monitor road surfaces in New Zealand both use combinations of laser as well as 

ultrasonic and video sensors for high-level road quality assessment (Strutu et al., 2013).  However, these 

methods are labor intensive, costly, and often suffer from insufficient data coverage to generate a complete 

picture of road surface conditions in large cities such as Toronto, Canada. In addition, local roads 

maintained by municipalities is mainly rely on traditional visual inspection approach, which is ineffective, 

time consuming and sometimes subject to error of human judgment. 

According to a recent study conducted for the Michigan Department of Transportation, which compared 

the operational costs using different technologies for road surface monitoring (DMG, 2014), the mobile 

pavement imagining technique and manual field inspection costs USD $88.5/mile and USD $428.8/mile, 

respectively. On the other hand, the cost of using multi-sensor hybrid system can range from USD 

$541/mile to $933/mile, subject to the different service providers. By adding the cost of required equipment 

(i.e., capital cost) to the aforementioned operational costs for imaging techniques and multi-sensor hybrid 

systems, it can be concluded that these approaches are costly to monitor low volume and rural roads. In 

addition, the required storage for the collected video, image and LiDAR data are approximately more than 

1 GB per kilometer which should be aggregated during the procedure of data collection and will be 

processed thereafter once the procedure of data collection is completed to rank each road segment with a 

number that is occupied less than several bytes. From the viewpoint of the pavement management, these 

methods (i.e., from recorded images, videos, and LIDAR data) seem to be a data waste to evaluate road 

surface for low-volume roads (Yan et al., 2017). Based on the aforementioned reasons, transportation 

authorities, including the Ministry of Transportation, Ontario (MTO), and municipalities are looking for a 

low-cost, more efficient pavement evaluation technologies and a centralized information system to provide 
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the most up-to-date information about the road status in order to enhance their road surface condition, 

particularly for low volume and rural roads (Yan et al., 2017).  

Recently, due to the introduction of microelectromechanical systems (MEMS), small and high-

performance sensors have been used widely in smartphones (Nomura et al., 2015). Many studies have been 

carried using collected and processed data from mobile sensing using embedded sensors in moving objects 

such as vehicles and smartphones. However, processing signals from the embedded sensors of various 

smartphones is technically challenging due to dissimilar sensor properties and also different vehicle’s 

mechanical properties including vehicle size, weight, length, and suspension system. In addition, the length, 

depth and location of potholes or cracks on roads and the curvature of roads all affect how accelerometers 

sense the environment. In fact, different vehicles passing over a pothole or crack would not generate an 

identical signal (Fox et al., 2015). Further, different vehicle velocities affect accelerometer’s response 

within a single vehicle.   

Meanwhile, crowdsourcing is anticipated to be an emerging area where smartphone-based measurements 

are particularly attractive, widespread, and equipped with several sensing capabilities (Burke et al., 2006). 

Although such crowdsourcing from smartphone applications presents challenges, such as varieties in 

sensors characteristics, smartphone orientations, suspension system of vehicles speeds, and users’ 

reliabilities, the trend of smartphone-based sensing and big data also present a valuable research opportunity 

for the development of distributed road surface condition evaluation technologies using low cost sensor 

data collected by autonomous vehicle or other on-road users (Dennis et al., 2014). Therefore, in this 

research, a probabilistic-based crowdsourcing technique was developed to monitor road surface conditions 

from smartphone sensors. To this end, a free Android-based smartphone application was developed to 

detect road surface anomalies from smartphone sensors which can be used by publics. The detected 

anomalies then were accumulated and integrated on the central server based on the proposed probabilistic-

based integration approach to infer robust interpretation of each anomalies in terms of the level of 

discomfort.  
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1.2 Research Objectives 

The primary goal of this thesis research is to develop a crowdsourcing technique for road surface monitoring 

using smartphone sensors. The research mainly focuses on using smartphone sensors to detect road surface 

anomalies most likely caused by potholes or cracks. Accordingly, road surface anomaly information from 

different sources can be processed and integrated continuously to improve the accuracy of anomaly 

detection and update the hotspot distribution of road surface anomalies to discover the hazardous road 

segments with accumulated road surface anomalies. Integrated anomaly information stored in a 

spatiotemporal database can then be visualized in a web-based GIS interface to notify the government 

authorities which are responsible for the road maintenance and rehabilitation. This also helps to assist 

drivers by notifying them prior to reaching any anomalies (e.g., potholes) based on information from real-

time road surface anomalies in order to avoid accidents or vehicle damages (Madli et al., 2015).  

In fact, this study aims to reap the benefits of using smartphones’ sensors, crowdsourcing techniques, 

complex event processing technologies and web-based GIS application to develop a collaborative based 

monitoring platform to facilitate the road surface condition monitoring. Specifically, the objectives of the 

research are: 

1. To develop a near real-time road surface anomaly detection approach for road surface monitoring 

(methodological and practical contribution); 

2. To develop a probabilistic-based crowdsourcing technique for road surface anomaly integration 

(methodological and practical contribution); and 

3. To develop a web-based GIS prototype of serving as a foundation to incrementally develop a new 

Sense and Response (S&R) GIS tool (practical contribution). 

To meet the first objective, an improved approach, which can continually detect, and distinct various road 

surface anomalies based on real-time data streams and other geographic data has been developed. The 

developed method processes data from multiple sensors, infers meaningful events (road surface anomalies) 
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according to the predefined rules and classifies them with respect to their level of discomfort sensed by 

different vehicles. Furthermore, a smartphone application has been developed based on the developed 

approach to sense events (road surface anomalies) through real-time data streams from smartphone sensors. 

Different testing scenarios have been designed and examined on the part of the road networks in the city of 

Toronto to verify the performance of the proposed approach and the developed application. 

The second objective is achieved by developing a probabilistic-based crowdsourcing approach to process 

real-time streams of events detected from the developed smartphone application employed by multiple 

users. The underlying principle of this approach is to integrate detected events from multiple users which 

are not an absolute binary scenario primarily caused by different sensing capabilities of various 

participators’ smartphone sensors and diversity in mechanical properties of vehicles. The outcome from 

this objective would be either a new potential event such as a new pothole, or continuous improvement 

toward the accuracy of previously-detected events. The performance of the proposed crowdsourcing 

technique has been evaluated to insure the effectiveness of the proposed approach. 

To fulfill the third objective, a web-based GIS platform was developed based on developed smartphone 

application defined in Objective 1 and the probabilistic-based crowdsourcing approach as defined in 

Objective 2. This part focuses on prototyping based on the proposed approach (Objectives 1 and 2), and 

testing their functionalities and efficiency. This research prototype also includes a web-based GIS interface 

to visualize and query detected/integrated anomalies, as well as some GIS function, including address 

matching, hot-spot analysis and access to the attribute values of each event. Furthermore, the integrated 

sense and response (S&R) GIS tool can be beneficial to the transportation/ infrastructure authorities dealing 

with road surface maintenance by actively monitoring the current road surface condition for potential 

maintenance and rehabilitation. 

1.3 Scope and Limitations 

The scope of this research is to develop a near real-time monitoring system to evaluate the road surface 

conditions by detecting road surface anomalies, such as cracks, bumps and potholes. In addition, this study 
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aims to classify road surface anomalies that may induce different levels of driving discomfort (severity 

level). However, classifying cracks, bumps, and potholes according to their type, depth and size are not in 

the scope of this study. This is because of the differences in the suspension system of vehicles, sensor 

properties of smartphones, and smartphone placements which all affect how smartphones sense a single 

anomaly. Therefore, distinguishing road surface anomalies in accordance to their type, depth and size are 

sophisticated when different vehicle models, smartphones and orientations are employed for road surface 

anomaly detection. As a result, this study does not cater classification of road surface anomalies in terms 

of their type, depth and size.  

1.4 Structure of the Thesis 

The thesis is organized as follows.  Chapter 2 presents a literature review of recent advances in road surface 

anomaly detection from smartphone sensors, followed by a review of parameters affecting the performance 

of the detection and integration approaches. Chapter 3 introduces the procedures and methodologies for 

smartphone sensors’ data quality analysis, road surface anomaly (event) detection from smartphone sensors, 

and the probabilistic-based crowdsourcing technique for integrating road surface anomalies detection from 

multiple users. Details of the processing stages, including analyzing sensors data quality, detecting 

anomalies from smartphone sensors and integrating anomalies from multi-time survey to update or form 

newly detected anomalies, are discussed. Concerns associated with each stage are also discussed in this 

chapter. 

Chapter 4 examines the results from the proposed approaches described in Chapter 3. Experimental results 

are presented to illustrate the validity of the proposed methodologies. Moreover, the employed steps for 

evaluating the performance of the proposed approaches are presented and discussed.  

Chapter 5 describes implementation of the web-based GIS prototype which stores, manipulates, processes 

and visualizes the detected road surface anomalies from various users. The prototype is developed based 

on a service-oriented architecture (SOA) to support the S&R GIS tool. For the purpose of proof-of-concept, 
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the implementation of the prototype is based on the available components or modules instead of 

implementing an entirely fresh system from scratch.  

The conclusions of the research are drawn in Chapter 6, along with directions for future work.



 

 

7 

 

Chapter 2 Literature Review 
 

This chapter provides an overview of existing literature related to detecting road surface anomalies from 

smartphone sensors. As the overall process shown in Figure 2.1, road surface anomaly detection studies 

consist mainly of five steps: 1) sensing (data collection), 2) preprocessing, 3) processing for feature 

extraction, 4) post-processing, and 5) performance evaluations. 

There are different kinds of sensor data that can be obtained from smartphone sensors. Motion sensor types 

include accelerometer, gyroscope, linear accelerometer and rotation. Position senor types include GPS, 

manometer, and orientation. Preprocessing of sensor data aims to filter noises, which contaminate sensors 

data. The other goal of preprocessing sensor data is to reorient them from device coordinate system to the 

local level coordinate system. The preprocessed sensor data is then analyzed to discover and extract desired 

information based on predefined rules (feature extractions). After that, the processed sensor data should be 

transferred to the central server for data post processing, including their integration with other data from 

different sources (concept of crowdsourcing). Finally, the performance of the proposed process should be 

evaluated to determine its functionality and reliability.   

The background literature pertaining to the data collection and preprocessing steps is presented in Sections 

2.1 and 2.2, respectively. The associated sensors data processing and post-processing procedures are 

provided in Sections 2.3 and 2.4, respectively. The performance evaluation of each reviewed study is 

discussed in Section 2.5.  Finally, Section 2.6 summarizes and points out the current gaps in detecting road 

surface anomalies from smartphone sensors for this study. 
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Figure 2.1: The overall process of detecting road surface anomaly from smartphone sensors 

Sensors Data Collection 

The smartphone sensor framework has open access to many types of built-in sensors. Some of these sensors 

are hardware-based (physical) and some are software-based (virtual). Hardware-based sensors are the 

physical, built-in sensors, such as accelerometers, gyroscopes, magnetometers, light, temperature, etc. 

Physical sensors measure motion, orientation, and environmental conditions, such as acceleration force, 
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physical position of device, illumination, etc. In contrast, software-based sensors use data from one or more 

of the hardware-based sensors and virtually calculate real-time values based on the desired outcome such 

as linear acceleration, rotation, gravity, etc. In general, smartphone sensors can be categorized into three 

different types: motion sensors, position sensors, and environmental sensors. 

Motion sensors are suitable for monitoring device’s movement and vibration, tilt, shake, rotation, or swing. 

The movements can directly reflect user interaction as typically happens in game applications (i.e., a user 

steering a car or a controlling a ball in a game).  However, they can also reflect where the device is sitting 

(i.e., moving with the occupant while they drive their car). With direct user interaction, device movement 

is monitored relative to the device's coordinate system or a defined local application frame.  With physical 

environmental conditions, the device movement is monitored relative to the local level coordinate system 

(Figure 2.2).  

 

Figure 2.2: (a) Local level coordinate system, (b) body-frame coordinate system, and (c) device 

coordinate system (c) 

Position sensors are suitable for specifying a device's physical position in the local level coordinate system. 

In fact, the geomagnetic field sensor, in combination with accelerometer sensor data, can determine a 

device's position relative to the local level coordinate system. Environmental sensors measure the 

a b c 
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and  
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face of screen.  

 X axis is defined as the vector product of Y and 
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 Y-axis is tangential to the ground at the device's 

current location and points toward the 

geomagnetic North Pole. 

 Z-axis points upwards and is negative extends 

down into the ground. 
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vehicle’s right-hand side and 
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environmental properties of surrounding area, such as temperature, humidity, ambient pressure, and 

illuminance. This type of sensor has very limited contribution to road surface anomalies detection, since it 

does not seem to have any direct relationship / impact between these factors and the formation of road 

surface anomalies. 

Table 2.1 summarizes and compares a list of sensors commonly found in smartphones for the application 

of road surface anomalies (Google, 2017). These sensors are used either directly or indirectly for road 

surface anomaly detection. 

For each smartphone-based application, various combinations of sensors (physical or virtual) may be used 

depending on the desired application criteria. To develop an application for road surface anomaly detection, 

motion sensor data can be tracked to detect any possible shake or tilt caused by road surface anomalies in 

a moving vehicle. Previous studies investigating road surface anomaly detection using smartphone sensors 

have widely employed motions sensors (accelerometers and gyroscopes). Accelerometer sensors measure 

acceleration force, including gravity force, applied to a device on all three physical axes (m/s2). Gyroscope 

sensors measure a device’s rate of rotation around each of the three physical axes (rad/s). Previous research 

(refer to Table 2.1) has frequently used accelerometer sensor data to detect anomalies because road surface 

anomalies have more influence and are mainly detectable from the acceleration force applied to the vehicles 

rather than the rotation rate caused by vehicles’ vibration. Only a few studies including Yagi et al. (2010) 

and Douangphachanh et al. (2014) have investigated gyroscope sensor data, particularly frequency domain 

combined with accelerometer sensor data, which increases the accuracy of detection (as complementary 

sensor data).   

Table 2.1 summarizes and compares a list of sensors commonly found in smartphones for the application 

of road surface anomalies (Google, 2017). These sensors are used either directly or indirectly for road 

surface anomaly detection. 
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Table 2.1: List of sensors used for road surface anomaly detection 

Sensor Name Type Unit Description 

Accelerometer Physical m/s2 Measures acceleration force  

Gyroscope Physical rad/s Measures a device's rate of rotation  

Linear Acceleration Virtual m/s2 Measures the acceleration force, excluding the force 

of gravity. 

Magnetometer Physical μT (T stands for 

Tesla) 

Measures ambient geomagnetic fields  

Gravity Virtual m/s2 Measures the force of gravity  

Rotation Virtual rad Measures the orientation of a device 

GPS Hardware Degree Obtains location information  

To determine the current location information of smartphone or mobile devices including latitude, 

longitude, bearing of moving direction, and velocity of movement, the location API (Application Program 

Interface) provides the best available location information of the devices based on the currently available 

location providers such as GPS (Global Positioning System) and/or Wi-Fi (Global Positioning System). In 

addition, the API provides the accuracy for each provided location information data.   

Preprocessing 

The data pre-processing step involves transforming raw data derived from smartphone sensors into a clean 

and organized data set prior to analysis (Malley et al., 2016). One of the goals of preprocessing is the 

smoothing of the raw sensor data and noise filtering. There are three major types of smoothing and filtering 

approaches: moving-average filtering, low/high-pass filtering, and band pass filtering. Moving average 

filtering is the most common filter in digital signal processing, mainly because it is the easiest to understand 

and implement since there is no need to have any prior information regarding the sensors data (Smith, 

1997). Despite its simplicity, this kind of filter is ideal for some common tasks, such as reducing random 

noise while retaining major information content. Low/high-pass filters remove some undesired parts of 

signals based on predetermined cut of frequencies. Band-pass filter passes portions of the signals within a 

certain range of frequencies and removes the other parts of signals that are outside that range. 

Preprocessing may also aim to reorient sensors data values from a device coordinate system (Figure 2.2c) 

to the local level coordinate system (Figure 2.2a), or to any other preferred local coordinate system.  An 
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example would be a body frame (i.e., moving platform) coordinate system (Figure 2.2b) (Noureldin et al., 

2013). This process can be accomplished by completing a rotation (using Euler angles) around each of the 

three axes. The reorientation process reduces issues related to smartphone placement.   

Processing  

The processing step analyzes the preprocessed sensor values to detect road surface anomalies. The signal 

pattern is tracked to detect any abnormal changes in sensor values using three main approaches: 

1. The threshold-based approach uses simple predefined threshold values based on experiments to 

detect road surface anomalies from sensors data.  

2. The machine learning approach uses more advanced techniques to detect road surface anomalies. 

Studies (Bhoraskar et al., 2012) have investigated unsupervised approaches, such as K-means 

clustering, in which a predetermined number of clusters are identified, and data is classified to the 

same number of clusters. Some other studies including Perttunen et al. (2011) and Jain et al. (2012) 

have explored supervised approaches, such as support vector machine (SVM) clustering and 

Gaussian mixture model (GMM) clustering. In the case of supervised approaches, some training 

datasets should be collected to train the algorithm. The test data is then classified based on the 

trained dataset.  

3. Another approach that was recently investigated is Dynamic Time Wrap (DTW). This approach is 

predominantly employed in speech recognition studies. DTW compares incoming signal data with 

predefined templates and measures the similarity of the datasets. 

Regarding smartphone applications, the preprocessing and processing steps can be accomplished using two 

different modes: online and offline. In offline mode, sensor data is collected, and the preprocessing and 

processing steps are applied locally on computers. In fact, any application developed for sensor data 

collection is able to collect and store sensor data while a car is passing over potholes or bumps. Next, the 

sensor data is extracted for further processing. In online mode, data collection, preprocessing, and 
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processing are performed simultaneously as the car is passing over potholes or bumps. Ideally, a specific 

smartphone application should be designed and developed to collect, preprocess and process the sensor data 

in an online mode. 

Post-Processing 

Preprocessing includes crowdsourcing and integrating data from multiple sources (users’ collaborations, 

geographic datasets) to increase the accuracy of detection and scalability. Detection results from various 

users can be integrated (data fusion), enabling more reliable and precise detection. Due to the dynamic 

behavior of road surface anomalies, integrating detection results from various users at different times can 

help evaluate the road surface anomaly’s condition more precisely than in the spatiotemporal domain. 

Moreover, other geographic data, such as road networks, manhole and catchment basin location data, can 

be integrated through filtration or data analysis to increase the accuracy of the results. As an example, 

manholes and road joints behave similarly to road surface anomalies on sensor data. Therefore, if the 

geolocation of man-made anomalies is integrated, sensor-detected road surface anomalies (i.e., manholes 

or joints) are subsequently able to be filtered.       

The central server stores incoming data while also processing parallel incoming data from multiple sources. 

The completed central processed data can be presented as a geospatial information system (GIS) web-based 

map to the general users or authorities dealing with road surface maintenance. 

2.1. Sensors Data Collection 

A major step in developing a viable approach that can detect road surface anomalies is the collection of 

sample sensor data from smartphones’ sensors. As discussed earlier, motion sensors, such as accelerometers 

and gyroscopes, were widely used in the collection and processing of data for road surface anomaly 

detection. Data collection from previous studies (refer to Table 2.2) differ in terms of the types of sensors 

being employed, sampling rates, variety of vehicles, and devices considered for the data collection. These 
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factors are the most critical parameters that affect the performance of a smartphone’s ability to detect road 

surface anomalies. Table 2.2 summarizes sensor data collection properties reviewed in the selected studies.   

Table 2.2: Employed sensors for road anomaly detection 

Proposed 

Method 

Employed Sensor(s) Data 

Sampling 

Rate 

(Hz) 

Vehicle  Smartphone 

Model 

Distance of 

Experiment 

Location of Data 

Sampling 

Mohan et al (2008) Accelerometer 310 Toyota Qualis Windows 
smartphone 

622 KM Bangalore and 
Seattle  

 

Yagi et al (2010) Accelerometer/Gyroscope 100 Toyota PRIUS iPhone N/A Kashiwazaki, 

Japan 
 

Mednis et al. 

(2011) 

Accelerometer 100 BMW 323 touring Samsung i5700 

Samsung 
Galaxy s 

HTC Desire 

HTC HD2 

174 KM Vairoga iela, 

Riga, Latvia 
 

 

 

Perttunen et al. 
(2011) 

Accelerometer 38 N/A Nokia N95 8GB 25 KM Finland 
 

Jain et al. (2012) Accelerometer N/A Bus, Auto 

rickshaw, cycle 
rickshaw, 

motorcycle and car 

(models were not 

mentioned) 

 

4 different 

Android-based 
smartphones 

(models were 

not mentioned) 

678 KM New Delhi, India 

Bhoraskar et al. 

(2012) 

Accelerometer 50 Suzuki access 125 

Auto-rick-shaw 

Google Nexus S, 

HTC Wildfire S 
 

N/A IIT Bombay 

campus 

Douangphachanh 

et al. (2013) 

Accelerometer 100 Toyota Vigo 4WD, 

pick up, Toyota 
Camry, Toyota 

Vigo 2WD, Toyota 

Yaris 
 

Samsung 

Galaxy Note 3, 
Galaxy S3, LG 

4X HD 

N/A Vientiane, Laos 

Sinharay et al. 

(2013) 

Accelerometer 4-6 N/A 

 

Google Nexus S N/A Kolkata, India 

Douangphachanh 
et al. (2014) 

Accelerometer/Gyroscope 100 Toyota Vigo 4WD, 
pick up, Toyota 

Camry, Toyota 

 

Samsung 
Galaxy Note 3, 

Galaxy S3, LG 

4X HD 

N/A Vientiane, Laos 

Sebestyen et al. 

(2015) 

Accelerometer 90 N/A 

 

N/A N/A N/A 

Wang et al. (2015) Accelerometer 60  

 

   

Nomura et al 

(2015) 

Accelerometer 100 N/A 

 

N/A N/A N/A 

Yi et al. (2015) Accelerometer 80 Toyota Camry 

 

Sony Xperia, 

HTC Desire, 
HTC Hero 

 

N/A N/A 

Harikrishnan et al. 
(2017) 

Accelerometer 50 Maruti swift N/A N/A India 

Singh et al. (2017) Accelerometer 10 Toyota Etios Nexus 5, 

Samsung S5, 

Samsung Note 3, 
Moto E, 

Samsung S4 

mini 

220 km Chandigarh, India 
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According to Table 2.2, accelerometer sensors were widely investigated as a means to develop an approach 

to detect road surface anomalies. In most previous studies (refer to Table 2.2), accelerometer sensor data 

was investigated in the time domain for detecting road surface anomalies. However, gyroscope sensor data 

was transformed to the frequency domain for feature extraction (road surface anomaly detection). 

Moreover, most of the previous studies only employed accelerometer sensors to detect road surface 

anomalies. However, Yagi et al., (2010) and Douangphachanh et al., (2014) attempted to combine 

gyroscope and accelerometer sensor data to increase detection accuracy using a data fusion technique.  

Data sampling rates play a significant role in the processing of any detected event. Choosing an appropriate 

sampling rate is a design decision affected by multiple factors, such as available resources, required 

accuracy and the type of data being used for event recognition (Shoaib et al., 2015). As an example, if only 

frequency domain features are used for monitoring road anomalies, the sampling rate should be high enough 

to capture all relevant frequencies. According to Douangphachanh et al. (2013), the road anomalies most 

likely have the frequency range of 40-50 Hz are captured in accelerometer data.  

A higher sampling rate increases the chances of capturing and detecting road surface distress features. 

However, it also increases the battery usage of a smartphone, as well as the required capacity to store and 

process data. Finding proper sampling rates is related to the speed of movement, as well as the mechanical 

properties of a vehicle. Sinharay et al. (2013) investigated the use of a low sampling rate to develop their 

approach for road surface anomaly detection.  

Various models of vehicles and smartphone devices are factors considered by previous studies when 

collecting data. According to Table 2.2, Douangphachanh et al. (2014) and Jain et al. (2012) studied both 

different vehicles (e.g., sedan, SUV (Sport-Utility Vehicle,) trucks) and smartphones (i.e., different 

manufactures) to ensure their approaches function equally in different circumstances. 
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2.2. Sensors Data Preprocessing 

Preprocessing of sensor data value is important for two major reasons:  noise filtering that distorts parts of 

the signal, and sensor data reorientation. Not all the reviewed studies preprocessed the sensor data. Some 

reviewed studies only conducted noise filtering and data smoothing as part of their preprocessing, while 

some other studies only conducted signal data transformation before processing them. Sebestyen et al. 

(2015) utilized two different filters: one for eliminating noise and one for amplifying acceleration variation 

caused by road anomalies. Douangphachanh et al. (2014) used a high-pass filter to detect low-frequency 

information, such as changing speed and vehicle maneuvering and turning, which have lower frequencies 

than road surface anomalies from sensor data. Harikrishnan et al. (2017) collected data segmented into 

group of n-samples. Then, a filtering process was conducted to preserve data samples induced by potholes 

or speed bumps, as well as to minimize the parts of sensor data corresponding to normal roads. To smooth 

the signal data, Singh et al. (2017) applied a simple moving average and band-pass filter to smooth data 

values from accelerometer sensor before processing them. The approaches proposed by Mohan et al. (2008), 

Bhoraskar et al. (2012), Sebestyen et al. (2015), Wang et al. (2015), and Singh et al. (2017) all applied Euler 

angles (rotation angles) calculated from accelerometer sensor data, to transform signal data values from 

device coordinate systems to the local level coordinate system orientation. 

2.3 Sensors Data Processing 

Processing sensor values for the application of road surface anomaly detection has three main approaches: 

threshold-based, machine learning, and DTW. Table 2.3 summarizes the approaches used by previous 

studies when processing sensor data and detecting abnormal changes in signal data. Data processing in this 

application can be reviewed in terms of the feature extraction approach (e.g., threshold-based, machine 

learning, and DTW), ability to classify road surface anomalies (anomaly classification capability), 

smartphone orientation dependency in detection, and speed dependency in detection.   
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Table 2.3: The detection methods using smartphone sensors for road anomaly detection from smartphone 

sensors 

Proposed 

method 

Employed Technique(s) Approaches Length of 

analyzing 

window 

Mohan et al 

(2008) 

Threshold-based For speed > 25 KM = 0.8 g and for speed <25 z-sus 

(sustained dip in vertical component of 

accelerometer data 

7 sample for 

speed of less than 

25 Km/h 

Yagi et al (2010) Threshold-based Standard deviation of z-values with different 

window time  

50 milliseconds 

Mednis et al. 

(2011) 

Threshold-based Z-THERESH = 0.4 g, Z-DIFF = 0.2 g, STDEV(Z) 

= 0.2 g, and G-ZERO = 0.8 g 

1 sample 

Perttunen et al. 

(2011) 

Machin learning Support Vector Machine (SVM) 0.5 second ~ 2 

seconds 

Jain et al. (2012) Machin learning Support Vector Machine (SVM) N/A 

Bhoraskar et al. 

(2012) 

Machin learning K-means Clustering and Support Vector Machine 

(SVM) 

N/A 

Douangphachanh 

et al. (2013) 

Machin learning Linear Regression N/A 

Sinharay et al. 

(2013) 

Threshold-based The rate change of z values in acceleration values 1 second 

Douangphachanh 

et al. (2014) 

Machin learning Linear Regression N/A 

Sebestyen et al. 

(2015) 

Threshold-based Adaptive threshold based on the lowest, highest and 

average values of accelerometer data in predefined 

window length 

1 sample 

Wang et al. 

(2015) 

Threshold-based Approach proposed by of Mednis et al. (2011) with 

adaptive threshold 

1 sample 

Fox et al. (2015) Machin learning  SVM with radial basis kernel function to 

discriminate boundaries between pothole and non-

pothole regions 

N/A 

Nomura et al 

(2015) 

Threshold-based 0<RI1<1 for σ = 0.0190 m/s2 and 0<RI< 2 for σ = 

0.0428 m/s2 

1 sample 

Yi et al. (2015) Threshold-based Two steps of pothole verification based on the 

standard deviation of senor data σi−1<2 * σi and 

σi−1<2.5 * σevent  

0.5 second 

Harikrishnan et al. 

(2017) 

Threshold-based Fitting Gaussian models to the normal roads and 

comparing the accelerometer sensor data value in 

the z direction with the mean of fitted model. 

 

Singh et al (2017) Dynamic Time Wrapping 

(DWT) 

Measuring signal pattern similarity N/A 

 

2.3.1 Feature Extraction Method 

Threshold-Based Approach 

In order to detect road surface anomalies using threshold-based approaches, sensors’ changing data value 

patterns, or statistical values (e.g., standard deviations), taken from sensor data values, were analyzed. The 

amplitude of accelerometer signals was monitored and the anomaly’s patterns in the signal were identified 

                                                           
1 RI = Roughness Index 
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(anomaly’s patterns in digital signals occur when the power of the signal exceeds a specific value). 

Threshold-based approaches were reviewed from three different perspectives: length of interval for window 

function, fixed vs. flexible threshold determination, and amplitude of signal vs. other properties of signal 

amplitude (e.g., mean and standard deviation). 

Determining interval length for window function on spectral analysis is challenging as it is related to various 

factors, such as speed of vehicles and distance from front to rear wheels. Window function considers 

predefined intervals of signal data for analysis and feature extraction as opposed to looking at signal data 

individually. Table 2.3 summarizes the length of interval for window function for each of the studies that 

explored window function.  

Defining proper threshold values in a statistical approach is an intensive process since values are affected 

by variable conditions. The suspension system of a car, sensor properties of smartphones, and smartphone 

placement all affect how smartphones sense a single anomaly. Studies conducted by Mohan et al. (2008), 

Mednis et al. (2011), Sinharay et al. (2013) and Yi et al. (2015) determined fixed-threshold values from 

some experiments studying road surface anomaly detection. However, studies conducted by Sebestyen et 

al. (2015), Wang et al., (2015), and Harikrishnan et al. (2017) utilized dynamic threshold values to 

overcome unsteady signal patterns caused by various sensor and mechanical properties. Dynamically 

assigned threshold values are desirable when developing methods for detecting road surface anomalies, as 

they can be adapted to different circumstances.  

Mohan et al. (2008), Mednis et al. (2011), Sebestyen et al. (2015), Wang et al. (2015), and Harikrishnan et 

al. (2017) determined thresholds based on the amplitude of the signal. However, other studies, such as Yagi 

et al. (2010), Nomura et al. (2015), and Yi et al. (2015) determined thresholds based on the statistical value 

(such as the standard deviation) derived from signal values. Mednis et al. (2011) confirmed that the standard 

deviation is the most important parameter in detecting road surface anomalies from accelerometer sensor 

data. 
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Machine Learning Approach  

There are two prevalent approaches using machine-learning techniques: supervised learning and 

unsupervised learning. Reviewed studies that involved machine learning techniques can also be categorized 

based on these two approaches. Bhoraskar et al. (2012) used k-means, an unsupervised method, to classify 

sensor data on smooth and bumpy roads, as well as using them to train the SVM algorithm. In this approach, 

the outcomes from the k-means classification approach were manually labeled to classes (bumpy or smooth) 

in order to train the SVM approach.  Perttunen et al. (2011) and Jain et al. (2012) employed SVM to classify 

sensor data. Although these methods successfully classified the sensor data, a sample of labeled data was 

required to train the SVM algorithm first, which is impractical for real-time or near real-time application. 

Dynamic Time Wrapping Approach (DTW) 

In time series signal processing, the DTW approach measures the similarity between any two patterns of 

signals and extracts features from signal data. For example, Singh et al. (2017) proposed a DTW-based 

approach to detect road surface anomalies from accelerometer sensor data. In this approach, time series 

values captured accelerometer sensor data for every pothole and bump, and then stored them in a central 

server as templates. Next, incoming sensor data was compared with the stored templates to detect 

similarities. The accuracy of this approach was greatly correlated to the quality of the reference template. 

Therefore, this approach was both computationally intensive and unreliable, as it required reference 

templates for each different condition (i.e., various vehicles, road conditions, and speed of driving). 

2.3.2 Differentiating Various Forms of Road Surface Anomalies 

Anomalies existing on road surfaces can be categorized into two major forms:  

1) Actual road surface anomalies, including potholes and cracks  

2) Man-made road surface anomalies, including manholes, road joints, catchment basins, and speed 

bumps   
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A comprehensive pothole detection approach should be able to differentiate actual road surface anomalies 

(such as potholes and cracks) successfully from a variety of man-made anomalies (such as manholes and 

speed bumps).  However, this is challenging as they both generate similar signal patterns especially in the 

case of manholes and catchment basins.  

In an approach proposed by Sebestyen et al. (2015), potholes can be distinguished from other man-made 

speed bumps.  If a car runs over a pothole, the car first drops, and then, climbs back up. Conversely, if a car 

runs over a man-made bump, the car first climbs, and then, drops. Therefore, by setting these rules within 

the signal pattern these anomalies were detected and separated. Sinharay et al. (2013) suggested that the 

standard of deviation values calculated from sensors data were able to distinguish potholes from bumps. 

Harikrishnan et al., (2017) used an X-Z filter proposed by Eriksson et al. (2008) to differentiate potholes 

and speed bumps. Eriksson et al. (2008) claimed that potholes are mainly caused by the impact on one side 

of the vehicle, resulting in a relatively large variation on the x direction of the accelerometer sensor data. 

However, speed bumps cause impact on both sides of a vehicle, leading to small variations on the x direction 

of the data value from accelerometer sensors. Such a mechanism can then be used to distinguish between 

potholes and speed bumps.  

2.3.3 Smartphone Orientation Dependency 

Road anomaly detection results are sensitive to the sensors' orientation. Most of the reviewed studies, such 

as Yagi et al. (2010), Mednis et al. (2011), Perttunen et al. (2011), and Sinharay et al. (2013), assumed fixed 

and predetermined positions for analyzing smartphone sensor data. They required users to place their 

mobile device at a specific orientation and restricted them from using their mobile devices freely. As such, 

smartphones lack of orientation independence. In order to find a practical road surface anomaly detection 

solution, smartphones should be freely placed. To develop an approach independent from smartphone 

orientation, two methods have been investigated: 



Literature Review  21 

 

21 
 

 Signal transformation. In this method, the sensors’ values are transferred from device coordinate 

system to another geometric coordinate system (e.g., local level coordinate system or body-frame 

coordinate system).   

 Orientation-independent features. In this method, the magnitude of the sensor data value on all 

three axes is considered instead of considering their individual values on three separate axes.  

The method proposed by Mohan et al. (2008), Bhoraskar et al. (2012), Sebestyen et al. (2015), Wang et al. 

(2015), and Singh et al. (2017) applied a signal transformation method, which uses the Euler angles 

(computed from accelerometer sensor data) for coordinate transformations. Conversely, the approaches 

proposed by Jain et al. (2012), Sinharay et al. (2013), and Yi et al. (2015) utilized orientation-independent 

features of acceleration data (i.e., vector sum, mean, and standard of deviation) to become independent 

from smartphone orientation.  

2.3.4 Speed Dependency 

 

Another factor that influences road anomaly detection using smartphone sensors is the speed of the vehicle. 

Douangphachanh et al. (2013) demonstrated that average speed plays an important role in road roughness 

estimation. When a car passes over a specific road anomaly, such as a pothole, at different speeds, the 

amplitude of the collected acceleration signal reacts in a different manner, which should be modeled. Fox 

et al. (2015) investigated the effect of velocity as a component for detecting road surface anomalies from 

an on-board accelerometer sensor. Their investigations revealed that at high speeds discriminating between 

normal roads and pothole regions was difficult. Sebestyen et al. (2015) collected sensor data at three 

different speeds: 15, 30, and 60 km/h. All values from different speeds were normalized to a value of 30 

km/h to develop and verify the proposed approach. Yi et al. (2015) examined the effect of vehicle velocity 

discussed in their approach by creating a lookup table, as well as categorizing the speed into different 

ranges.  Then, each event was indexed according to the ratio of standard deviation, as well as standard 

deviation of stable periods of the speed interval during which the event had been detected. Sinharay et al. 
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(2013) normalized the feature values based on the speed of the vehicle. Speed was categorized three ways: 

lower than 2 km/h, between 2 km/h and 30 km/h, and more than 30 km/h. In addition, Perttunen et al. (2011) 

adopted an approach by Tanaka et al. (2000) that removed the effects of speed on signal data. Mednis et al. 

(2011) used different algorithms for different speeds. For instance, for a speed of less than 25 km/h, the z-

sus algorithm was implemented. For the speed of more than 25 km/h, the z-peak algorithm was 

implemented. Mohan et al. (2008) used the z-sus method for speeds less than 25 km/h and z-peak for speeds 

more than 25 km/h.  To minimize the false positive detection rate, Harikrishnan et al. (2017) proposed to 

specify a velocity-dependent variable. This variable was adjusted to the threshold value based on the current 

vehicle’s velocity. Different studies used various methods to deal with the effects of vehicle speed on the 

performance of their approaches to road anomaly detection. However, none of them provided a technique 

robust enough to account for the effect of a vehicle’s velocity  

2.4 Post Processing of Detected Road Surface Anomalies 

In this section, studies investigating data integration and approaches used to process detected road surface 

anomalies from various users (i.e., data fusions) are reviewed and discussed.  

Chen et al. (2013) and Fox et al. (2015) transferred identified potholes information for each selected region 

in their study to the cloud for further analysis in their proposed approach. Then, a voting algorithm was 

applied on the study area for final decision making. In fact, the voting algorithm counts the number of 

reports made for each phenomenon from different sources. If the number of reported anomalies from 

various sources, for each predefined slice of the road, is more than a predefined threshold, those anomalies 

are considered as true detection.  Otherwise, they are rejected and assumed as false detection. Fox et al. 

(2015) considered a sliding window of 10 meters for evaluating the number of reports from smartphones 

on-board vehicles in order to minimize the false positive rate of detection. 

Unfortunately, in both studies, this simple voting algorithm ignores the fact that sources have different 

degrees of trustworthiness (Zhang et al., 2018). In addition, this binary-based algorithm does not consider 
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the temporal and probabilistic nature of the anomalies. The results from Fox et al. (2015) indicated that at 

least ten vehicles operated at a speed of 50 km/h were required for data collection in order to reach the 

accuracy of 90%. Furthermore, Chen et al. (2013) claimed 90% accuracy with nearly zero false positive 

alarms for their Crowdsourcing Based Road Surface Monitoring (CRSM) system. 

Yi et al. (2015) adopted a grid-based clustering algorithm called DENCLUE (DENsity CLUstering) to filter 

out false detections using the reporting frequency of events in a five-meter grid zone. Neighboring grids 

were grouped together if the frequency of reported anomalies for each neighbor grid was more than three. 

Otherwise, the grid was assumed to noisy and was removed. The drawback of this strategy is that some 

anomalies close to each other were treated as a single anomaly. In addition, threshold-based approaches for 

data integration are similar to the voting algorithm, which suffers from considering the temporal and 

probabilistic nature of any road surface anomaly detecting from smartphones. Moreover, there is always a 

trade-off between reducing false detection and missing detecting anomalies at the same time. In this study, 

only the position accuracy of detected road surface anomalies was investigated, and the overall accuracy of 

detection was not studied. 

Alessandroni et al. (2014) proposed the “SmartRoadSense” system. Roughness information was collected 

in a central server. Then, the average of all roughness values within the predefined buffers of the detected 

location was considered as the roughness value for that region. Sebestyen et al. (2015) proposed a method 

of taking an average to combine incoming information from multiple users. In this method, a weighted sum 

between the available evaluations was computed, as well as integrated multiple surveys from various 

incidents. This method, similar to the voting algorithm suffers from the ignorance of the temporal aspect of 

road surface anomalies and the inherent uncertainty of incoming data. In addition, defining the proper buffer 

distance is challenging because it significantly affects the detection rate. 
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2.5 Performance Evaluations 

To evaluate the performance of road surface anomaly detection approaches, performance metrics are 

required, including accuracy ratio, precision, false positives ratio and false negatives ratio. The choice of a 

specific performance metric or a combination of different performance metrics depends on the type of 

application needed, as well as its performance requirements. Table 2.4 summarizes overall performance 

evaluations for each approach based on the provided performance metrics. In addition to the overall 

accuracy of analysis, some studies investigated performance evaluations in different smartphone 

placements.
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Table 2.4: Performance evaluation of reviewed studies investigating road surface anomalies from smartphone sensors 

Proposed Method Performance Evaluation 

Mohan et al (2008) For the speed of less than 25 km/h the rate of the false negative is 29% (well-oriented sensor) and 37% (virtually oriented). However, 

for the speed of more than 25 km/h, the rate of false negative is 41% (well-oriented sensor) and 51% (virtually oriented). 

Yagi et al (2010) Not provided. 

Mednis et al. (2011) The accuracy of the overall system is approximately 90%. However, the outcome of Z-DIFF and STDEV-Z approaches are highly 

dependent on the frequency and timing of data. 

Perttunen et al. (2011) The confusion matrix for the best result indicates that this approach has approximately 80 % accuracy. 

Jain et al. (2012) The results indicate approximately 75% accuracy. 

Bhoraskar et al. (2012) For bump detection, the algorithm gets zero false positives and 10% false negatives. 

Douangphachanh et al. (2013) The R2 values in their estimation was between 0.721 and 0.869 for different cars when the smartphones were located in the box 

near gearshift. 

Sinharay et al. (2013) The accuracy of the system is 80% with 20% false positives. 

Douangphachanh et al. (2014) The R2 values in their estimation indicated significant improvement compared to the previous study. 

Sebestyen et al. (2015) The accuracy of the anomaly detection algorithm implemented in this study is about 80%. 

Wang et al. (2015) In experiments, the results represent the accuracy of the proposed approach is 100% without false positive. 

Nomura et al (2015) 94% accuracy rate for classifying road segments into different roughness levels (detection rate for road surface anomaly detection 

was not provided). 

Yi et al. (2015) Numerically, compared with z-component, the RMSEs (Root Mean Square Deviation) are 0.01m/s2 of the batch mode and 0.03 

m/s2 of online mode 

Harikrishnan et al. (2017) The estimation error is 34.8% for the speed of 15 km/h and 1.6% for the speed of 20 km/h. The estimation error increases as the 

speed goes above 20 km/h. 

Singh et al. (2017) 88.66% detection rate for potholes and 88.89% detection rate for bumps. 
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Smartphone Placement 

One of the challenges in road surface anomaly detection is that smartphone sensors are sensitive to the 

placement of the device. In most studies, the placement of mobile phones was considered fixed to a mount 

on the windshield or attached to the dashboard. However, few studies have investigated the performance of 

their approaches with smartphones in different locations in a vehicle, such as in driver’s pocket or in the 

console near the gearbox. Different drivers have different habits and the ideal approach should consider 

any circumstance that could result in a change in placement of a smartphone and its impact on the loss of 

recognition performance. Table 2.5 indicates that only three studies investigated the performance of their 

respective approaches with different placements in moving vehicles (Jain et al. (2012), Douangphachanh 

et al. (2013), and Yi et al. (2015)). Douangphachanh et al. (2013) confirmed that smartphones located in a 

driver’s pocket or in the console caused lower detection rates. 

Table 2.5: Smartphone placement dependency considerations for each approach 

Proposed method Considering smartphone mounting dependency 

Mohan et al. (2008) Back and middle seats, dashboard and hand-rest of vehicle 

 

Yagi et al. (2010) Front dashboard 

 

Mednis et al. (2011) Front dashboard 

 

Perttunen et al. (2011) Windshield rack 

 

Jain et al. (2012) Pants pocket, front dashboard, near the gearbox, near the rear car speakers 

 

Bhoraskar et al. (2012) Not defined 

 

Douangphachanh et al. 

(2013) 

Front dashboard, near the gearshift, inside driver’s pocket  

Sinharay et al. (2013) Front dashboard 

 

Douangphachanh et al. 

(2014) 

On the dashboard, In the box near the gearshift, and inside driver’s pocket  

Sebestyen et al. (2015) Front dashboard 

 

Wang et al. (2015) Not defined 

 

Yi et al. (2015) Front dashboard and windshield rack 

 

Harikrishnan et al. (2017) Not defined 

 

Singh et al. (2017) Not defined 
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2.6. Discussion 
 

In this review, existing studies investigating approaches for road surface anomaly detection using 

smartphone sensors have been reviewed and compared.  The existing approaches have been compared in 

five aspects: sensor data collection, preprocessing, processing, post processing, and performance 

evaluations. 

Data collection is the one of the most important considerations when developing any approach to road 

surface anomaly detection with smartphone sensors.  It is essential that the detection process consider all 

relevant aspects including smartphone sensor properties, smartphone mounting location, vehicle suspension 

system, driving behavior, and speed. Therefore, to guarantee an approach is compatible with different 

conditions, sensor data should be collected in various situations: various models of cars, smartphones, and 

speeds. However, due to the limitation of resources, only certain vehicles and smartphone devices have 

been selected and used for data collection in the reviewed studies.  

Preprocessing is also an important task for any application using sensor data to extract features such as road 

surface anomalies. Preprocessing has two major objectives:  

1) To smooth the sensor data, to amplify the parts of the sensor data caused by the event (road surface 

anomaly), and to attenuate or remove parts of sensor data caused by noise or undesired input.  

2) Reorienting the sensor data from a device coordinate system to the body-frame (vehicle coordinate 

system) or local level coordinate system.   

In fact, the preprocessing step can increase the accuracy of detection and decreases the false detection rate. 

In most reviewed studies, it was assumed that the general location of a smartphone was in a rigid holder.  It 

was also assumed to be fixed, both position- and rotation-wise, with respect to the body frame (vehicle) 

coordinate system. Unfortunately, when the smartphone is positioned in its holder or placed on the 

dashboard, there is no guarantee that the direction of the sensor data measurements will align with the 

vehicle’s body-frame coordinate system. The relative direction between the device’s coordinate system and 
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the body frame’s coordinate system is therefore considered unknown (Wallin and Zachrisson, 2013). In 

fact, the desired approach should give freedom to users concerning smartphone placement. Several studies 

considered sensor data reorientation using accelerometer sensor data to approximate rotation angles 

(employing Euler angles). However, the calculated rotation angles from accelerometer sensor data is both 

biased and contaminated by variant noises caused by thermal and mechanical fluctuations inside the sensor. 

Most modern smartphones using MEMS such as inertial measurement units (IMU), which contains a three-

axis gyroscope for measuring angular velocities around three axes (i.e., pitch, roll and heading), a three-

axis accelerometer for measuring acceleration, and a three-axis magnetometer for measuring magnetic 

fields.  The data from the IMU can be fused to obtain unbiased rotation angles that can then be applied for 

the purpose of coordinate system transformations.  

Developing processing algorithms to detect road surface anomalies from smartphone sensor data is quite 

challenging.  Smartphone sensor properties, car suspension systems, driving behavior and speed all affect 

signal patterns when passing over any road anomaly since they are contaminated with biases and noise. 

Threshold-based approaches have been examined to minimize these problems and they have been evaluated 

in several studies. Results of these studies were not reliable as a robust and inclusive detection approach. 

The machine-learning approach, which has been applied by some studies, was able to overcome some 

limitations encountered by threshold-based approaches. However, the proposed methods were not inclusive 

and did not yield a robust solution. For example, supervised approaches, such as SVM, required many 

trained datasets to cover all possible scenarios for classification.  

Additionally, as seen in Table 2.1, most of the studies employed a single sensor (e.g., an accelerometer) to 

detect road surface anomalies. Figure 2.3 illustrates all available motion sensors on current trending 

smartphones. Linear acceleration and gravity are the new software-based (virtual) sensors that have been 

recently integrated in high-end smartphone devices. To improve the system performance, sensor fusion 

techniques can be used.  For example, gyroscope or gravity sensors can be combined with accelerometer 

sensor data to strengthen the detection of road surface anomalies. In addition, accelerometer, magnetic and 
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gyroscope sensor data are combined in order to derive the isolated gravity vector and to exclude it from 

accelerometer data. Most new and high-end smartphone devices are capable of calculating linear 

acceleration from their sensors. Linear acceleration is the effect of acceleration on the smartphone devices 

excluding the earth’s gravity. As a result, actual acceleration of the device can be determined irrespective 

of the device orientation. 

 

Figure 2.3: Available motion sensors on current smartphones 

Most studies reviewed have implemented and verified their methods in an offline mode. However, with the 

continued release of powerful smartphones, few studies have both developed and verified their approaches 

in an online mode. Mednis et al. (2011) and Wang et al. (2015) implemented the proposed method on 

Android OS (Operating System) for real-time pothole detection. However, in major studies, entire 

preprocessing and processing steps which have been done on computers and smartphones have only been 

used for sensor data collection. Due to the popularity of smartphones embedded with high-performance 

sensors, as well as the recent enhancement of smartphone’s capability complex analysis and processing of 

streamed data from smartphone sensors in real time are now possible and practical (Dunkel et al., 2015). 

For online road surface anomaly detection approaches, the feasibility of implementing an online mode for 

smartphones should be investigated. In addition, a proper evaluation of implemented approaches for road 

surface monitoring on smartphones is desirable. Smartphone resource consumption analysis, such as CPU 

(central processing unit), memory, and battery usage are topics of further interest.   

Smartphone Sensor Data

Real Sensors (hardware sensors)

Acceleremetor Gyroscope

Virtual Sensors (software senors)
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Accelereation

Gravity
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Due to the complexity of the processing step, post-processing using multiple sources is able to increase 

both detection accuracy and decrease the rate of false detection. Some studies investigated data 

crowdsourcing techniques for road surface monitoring and indicated considerable improvement of the 

detection accuracy rate. Unfortunately, their recommended approaches were in the very early stages of 

development and suffered from the unreliability of smartphone detection and the variable nature of road 

surface anomalies.  

Moreover, the participatory sensing from smartphone applications presents challenges, such as flawed 

client-server communication due to unreliable vehicular networks, limited connectivity time, and high 

packet rate (Fernandez et al., 2012). GPS errors also complicate data accumulation because of erratic 

sampling (Fox et al., 2015). In fact, the detected location derived from GPS sensor of the smartphones has 

uncertainty. For instance, some existing studies proved that the cellular and/or GPS positioning can result 

in error ranging from several meters to hundred meters (Mok et al., 2004; Pun-cheng et al., 2007; 

Zandbergen, 2009) Therefore, the detected location from various smartphone users for any road surface 

anomaly varies due to the data uncertainty. As a result, the best approach to crowd-source road surface 

anomalies from multiple sources would be a probabilistic and spatiotemporal-based approach that would 

overcome both uncertainty and variability of road surface anomalies. In addition, novel technologies of data 

transferring such as RESTful (representational state transfer) architecture and data formats such as JSON 

(JavaScript object notation) data format can be utilized to minimize the packet rate and overcome the 

challenges in participatory sensing using smartphones. 



 

 

31 

 

Chapter 3 Methodology 
 

This chapter presents the methodological steps for analysis of smartphone sensors’ data quality, detection 

of road surface anomalies (events) from smartphone sensors, and integration of detected events from 

multiple road users. The procedures related to data collections and pre-processing required for each step of 

the analysis is described in Section 3.1. The developed approaches for road surface anomaly detection from 

smartphone sensors and a probabilistic-based crowdsourcing technique for road surface anomaly 

integration are presented in Sections 3.2 and 3.3. Finally, the steps required to validate the performance of 

the proposed approaches are described in Section 3.4.  

3.1 Data Collection and Pre-Processing 

The data collection and preprocessing steps had three different phases: data collection for exploring sensors 

data quality, data collection for evaluating the road surface anomaly detection approach from smartphone 

sensors, and data collection for validating the proposed approach for the probabilistic-based crowdsourcing 

technique for road surface anomaly integration.  

To collect the required sensor data, an Android-based smartphone app was developed to access and collect 

sensor data from the devices (e.g., smartphones or tablets). All sensors’ data that are available in any 

Android device can be accessed using the “SensorManager” class, which is a part of the hardware package 

of the Software Development Kit (SDK)2. Some of these sensors, such as the accelerometer, gyroscope, 

magnetometer, light and temperature, are physical sensors. While some other sensors are virtual sensors, 

where these virtual sensors acquire data from one or more of the physical sensors and virtually calculate 

(using software) their real-time values, such as linear acceleration, rotation and gravity, based on the desired 

outcome.  

                                                           
2   https://developer.android.com/guide/topics/sensors/sensors_overview.html 
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The sensor availability varies among Android versions. This is because the fact that the sensors have been 

introduced over the development of several platform releases. For example, many sensors were introduced 

in Android 1.5 (API Level 3), but some of them were not implemented and were not available in the market 

for use until Android 2.3 (API Level 9). Table 3.1 summarizes the availability of each sensor on a platform-

by-platform basis. Only the platforms that involved sensor changes are listed. Based on the sensor 

requirements for the developed app in this study, the app is executable on the Android devices having API 

Level 9 (Android 2.3) or higher. 

Table 3.1: Sensors availability by platform utilized for road surface anomaly detection (Google, 2017) 

Type of Sensor  Android 4.0  

(API Level 14) 

Android 2.3  

(API Level 9) 

Android 2.2  

(API Level 8) 

Android 1.5  

(API Level 3) 

Accelerometer Yes Yes Yes Yes 

Gravity Yes Yes N/A N/A 

Gyroscope Yes Yes N/A N/A 

Linear acceleration Yes Yes N/A N/A 

Magnetic field Yes Yes Yes Yes 

Rotation vector Yes Yes N/A N/A 

An Android API was utilized to obtain current location information, including longitude, latitude, bearing 

and the vehicle’s velocity. The Android API provides the best available location information based on 

location providers such as Wi-Fi and GPS (Global Positioning System) available on each smartphone. 

Furthermore, the API can deliver the accuracy of the reported location information determined by the 

available location providers.  

The sensor’s sampling rate indicates the rate which sensor events are provided. According to the Android 

documents, there are four prevalent sampling rates defined in Android API. Table 3.2 summarizes the 

sampling rate’s name and the predefined delay for each of the predefined sampling rate. In addition, the 

Android API enables users to determine any preferred delay in microseconds between events for the 

https://developer.android.com/reference/android/hardware/SensorEvent.html
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Android version 2.3 (API Level 9) or higher. In fact, the data delay (or latency) controls the interval at 

which sensor events are sent to the application through the “onSensorChanged()” callback method. This 

callback method triggers when new sensor data is available. 

Table 3.2: Sampling rate for sensors data collection predefined by Android API 

Sampling rate name Predefined Delay (in microseconds) 

SENSOR_DELAY_NORMAL 200,000 

SENSOR_DELAY_UI 60,000 

SENSOR_DELAY_GAME 20,000 

SENSOR_DELAY_FASTEST  0 

In this research, the SENSOR_DELAY_FASTEST sampling rate was used to obtain sensors’ data from 

smartphones with highest available sampling rate (i.e., without any delay) in every device in order to 

provide the highest resolution of sensors’ data found in every smartphone to serve the objective of road 

surface anomaly detection. This indeed increased the possibility of detecting anomaly events with regards 

to the uneven distribution of road anomaly found in any road. In this case, one can have a control to interpret 

and manipulate the data in a way so that the data/result can be down-sampled at either the data level or 

decision level, if necessary. 

3.1.1 Data Collection for Sensors Data Quality Analysis 

The essential thing to know about the employed sensors is the data quality (i.e., types of errors and their 

magnitudes). The sensitivity of integrated sensor data should be investigated, and the existing errors should 

be identified in order to model and filter them. According to Gustafsson (2010), typical errors that exist in 

the accelerometers and gyroscopes sensors are bias errors, scaling errors and random noise errors.  

To this end, sensor data being used in this study such as, linear accelerometer, gyroscope and rotation (in 

X, Y and Z direction), as well as the time intervals between each consecutive generated signals and location 

information were collected by a mobile app specifically developed to support the experimental testing. The 
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process of data collection was conducted for two different devices’ orientations (vertical and horizontal 

positions) and logged for approximately 10 minutes. The collected data was separately stored in a CSV 

comma-separated values (CSV) file format in the local storage of the device. 

3.1.2 Data Collection for Road Surface Anomaly Detection from Smartphone Sensors 

After exploring the sensors data quality, the second phase of data collection was performed to evaluate the 

proposed approach for road surface anomaly detection from smartphone sensors data. The data collection 

of this phase had two stages. First stage included collecting raw sensor data and location information using 

the developed mobile app. In this stage of data collection, linear accelerometer, rotation vector and location 

information data were retrieved. Linear accelerometer sensor data were collected to monitor the 

acceleration values caused by vehicle’s vibration. To eliminate the smartphone orientation dependency in 

the proposed approach, the process first utilized the smartphone API to retrieve the three rotation parameters 

(i.e., azimuth, roll and pitch), which are computed from the three accelerometer, magnetometer and 

gyroscope sensors (where the process is deemed to be a black box in terms of the end-users). The three 

retrieved rotation parameters were utilized to perform coordinate transformation of the linear acceleration 

from the smart-phone (internal/local) coordinate system to the local level coordinate system. Also, the 

collected data was utilized to compare the improved approach which was proposed in this study with an 

existing approach (Yi et al., 2015) which was adopted. 

 After validating the results from applying the proposed approach for road surface anomaly detection from 

smartphone sensors on the collected data from the first stage of data collection, the second stage of data 

collection was accomplished to test and verify the performance of the developed mobile app (based on the 

proposed approach in Section 3.2.1). 
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3.1.3 Data Collection for Probabilistic Based Crowdsourcing Technique for Road Surface 

Anomaly Integration 

After validating the performance of the proposed approach and the developed mobile app for road surface 

anomaly detection from smartphone sensors, the mobile app was modified in order to function as a part of 

proposed mobile crowdsourcing approach. For instance, the classification process (i.e., GMM method) was 

removed from the mobile app and transferred to a central server and substituted with an unsupervised 

classification approach (i.e., Dirichlet Process Gaussian Mixture Model (DPGMM) method) which is more 

suitable and practical for road surface anomalies classification (in terms of levels of discomfort sensed by 

each vehicle). This modification also helps to decrease the processing intensity of the mobile app, which is 

one of the critical factors that should be considered in any mobile crowdsourcing approaches. 

3.2 Road Surface Anomaly Detection from Smartphone Sensors 

In this section, an improved approach based on the approach proposed by Yi et al., (2015) was developed 

to detect road surface anomalies from smartphone sensors. The improved approach, which is a hybrid 

approach, integrates both adaptive threshold-based approach and machine learning-based approach to 

automatically adapt itself to any condition, including different smartphones with dissimilar sensor 

properties and different mechanical properties of the vehicles to detect road surface anomalies. In addition, 

the developed approach utilized a sensor fusion technique to improve the system performance and 

coordinate transformation technique in order to eliminate the dependency of the smartphone orientation on 

detection process. A Gaussian Mixture Model (GMM), which is a supervised fuzzy classification approach, 

was utilized to classify detected road surface anomalies into two different classes according to their severity 

level by taking into account that the road surface anomalies have a fuzzy nature.   

3.2.1 Road Surface Anomaly Detection Approach 

To detect road surface anomalies from smartphone sensors, the threshold-based method proposed by Yi et 

al. (2015) was adopted and improved. The following developments were accomplished to modify their 

method to a robust and inclusive one that is capable of implementation on smartphone devices.  
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 Instead of using accelerometer sensor data for anomaly detection, the linear acceleration sensor 

data was utilized. The data value of linear accelerometer sensor, which are virtual sensor data, is 

mainly computed by a sensor fusion technique. Data from magnetometer and gyroscope sensors 

are fused to determine the acceleration value caused by gravity. Then, the calculated gravity value 

is excluded from the data values of accelerometer sensor. Since the effect of gravity is excluded 

from the accelerometer sensor data, the accuracy of detection can be improved. 

 Instead of completely implementing threshold-based detection decision approach, a 

complementary machine learning-based approach was implemented to improve the detection 

decision based on the dynamic nature of vehicles and smartphones sensors.  

 Rotation parameter values (roll, pitch and azimuth) about smartphones axes were obtained to 

reorient the linear accelerometer sensor values from device coordinate system to the local level 

coordinate system. 

Figure 3.1 summarizes the overall process for the proposed road surface anomaly detection. The process 

has two phases of processing. The first phase aims to obtain real-time senor data (i.e., linear acceleration), 

reorient them and compare them with the updated threshold values driven from the other phase of process 

to detect any suspicious vibrations caused by road surface anomalies. The second phase of the process aims 

to calculate the real-time standard deviation and average values of three-minute windows of sensor data 

values in the stable period (i.e., normal road surface conditions). Figure 3.1 shows the steps that have been 

implemented to complete a potential road anomaly detection approach.   
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Figure 3.1: The proposed road surface anomaly detection process 
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According to Figure 3.1, the following steps were accomplished by generating required portions of the 

sensor data:  

1. The system was initialized by listening to the required sensor data and waiting for 30 seconds before 

storage begins. This is due to the unstable behavior of generated sensors data caused by the 

embedded sensors’ properties (i.e., 30 seconds is considered an adequate warm-up time). 

2. System then started to collect linear accelerometer sensor data and applied the reorientation process 

by obtaining the orientation parameter values to transfer the data values of linear accelerometer 

sensor from device coordinate system to the local level coordinate system. The transformation 

equation was employed here to perform the coordinate transformation is given in Equation 3.1. 

[

𝐿𝑖𝑛𝐴𝑐𝑐𝑥

𝐿𝑖𝑛𝐴𝑐𝑐𝑦

𝐿𝑖𝑛𝐴𝑐𝑐𝑧

]

𝑙𝑜𝑐𝑎𝑙 𝑙𝑒𝑣𝑒𝑙

= 𝑅𝑥𝑅𝑦𝑅𝑧  [

𝐿𝑖𝑛𝐴𝑐𝑐𝑥

𝐿𝑖𝑛𝐴𝑐𝑐𝑦

𝐿𝑖𝑛𝐴𝑐𝑐𝑧

]

𝑑𝑒𝑣𝑖𝑐𝑒

   (3.1) 

According to Equation 3.1, [

𝐿𝑖𝑛𝐴𝑐𝑐𝑥

𝐿𝑖𝑛𝐴𝑐𝑐𝑦

𝐿𝑖𝑛𝐴𝑐𝑐𝑧

]

𝑙𝑜𝑐𝑎𝑙 𝑙𝑒𝑣𝑒𝑙

is the transformed vector of linear accelerometer 

sensor data values (in m/s2) along the three axes in the local level coordinate system (refer to Figure 

2.2a) and 𝑅𝑥 , 𝑅𝑦, 𝑎𝑛𝑑 𝑅𝑧 are the rotation matrices about the X, Y, and Z axes, respectively. In 

addition, [

𝐿𝑖𝑛𝐴𝑐𝑐𝑥

𝐿𝑖𝑛𝐴𝑐𝑐𝑦

𝐿𝑖𝑛𝐴𝑐𝑐𝑧

]

𝑑𝑒𝑣𝑖𝑐𝑒

is the data values linear accelerometer sensor (in m/s2) along the three axes 

in the device coordinate system (refer to Figure 2.2c).    

3. Then, the 𝑉𝑐𝑖, which is the vertical component of the linear acceleration value (m/s2) at the current 

statue (𝑡𝑖), was computed using Equation 3.2. According to Equation 3.2, the 𝑣𝑖 is the current linear 

accelerometer vector value (in m/s2) and the 𝑣ҧ𝑖−1 is the average vector value of the linear 

accelerometer sensor data values (m/s2) corresponding to the normal road condition at the previous 

state 𝑡𝑖−1. The ԡ𝑣ҧ𝑖−1ԡ denotes the norm value of the average vector value of the linear accelerometer 

sensor data values corresponded to the normal road condition (a three-minute window was 

considered). 
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𝑉𝑐𝑖 =
<𝑣𝑖 , 𝑣𝑖−1̅̅ ̅̅ ̅̅ >

ԡ𝑣𝑖−1̅̅ ̅̅ ̅̅ ԡ
                                                                (3.2) 

4. For the first 30 seconds of collecting data, the calculated 𝑉𝑐𝑖 and reoriented 𝑣𝑖 values were utilized 

to calculate the 𝜎𝑖 (standard deviation of 𝑉𝑐𝑖) and 𝑣𝑖 (average value of 𝑣𝑖) before beginning to detect 

potential road surface anomalies (i.e., value initialization). 

5. To start detecting potential road surface anomalies, the value of the 𝑉𝑐𝑖 − ԡ𝑣ҧ𝑖−1ԡ should be 

calculated. If 𝑉𝑐𝑖 − ԡ𝑣ҧ𝑖−1ԡ < 2 ×  𝜎𝑖−1 (based on the desired 95% confidence level / sensitivity 

level), the 𝑉𝑐𝑖 value and corresponded 𝑣𝑖 value were considered as the value corresponding to 

normal road conditions and were passed to the process for updating the average and standard 

deviation values. However, if the 𝑉𝑐𝑖 − ԡ𝑣ҧ𝑖−1ԡ ≥ 2 ×  𝜎𝑖−1,  𝑉𝑐𝑖 values and corresponded 𝑣𝑖 value 

were suspected as a potential road surface anomaly, they were monitored for another 0.5 second 

(Step 6).  

6. Any suspected road surface anomaly detected from Step 6 was monitored for a period of 0.5 second 

(called an event period) to capture the time, when the maximum 𝑉𝑐𝑖 value occurred. Also, the 

standard deviation (𝜎(𝑒𝑣𝑒𝑛𝑡)) of 𝑉𝑐𝑖 values in the event period was computed. 

7. The maximum captured value of the 𝑉𝑐𝑖 during the event period and the ratio of 𝐶(𝑟𝑎𝑡𝑖𝑜) =

𝜎(𝑒𝑣𝑒𝑛𝑡)
𝜎𝑖−1

⁄ were the considered variables for each suspected road surface anomaly for further 

filtration and classification purposes. These values were accumulated in a table (i.e., an anomaly 

table).  

8. To partition the detected anomalies with respect to the road segment two different strategies were 

proposed. These strategies helped to prevent accumulation of excessive amount of data on the 

memories of the mobile devices and reduce the computational processing. One of the strategy was 

tracking every four sequences of the bearing values of the moving vehicle continuously and if a 

substantial change was identified, it was determined that the vehicle possibly turned into another 

road segment (i.e., the difference of the first and the fourth values were more than > 60 degrees). 

The other strategy was slicing the detected anomalies if the driver continued driving in the same 
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direction (i.e., no substantial change happened in the moving direction based on the first strategy) 

for every five kilometers to manage the data volumes. If any of the described conditions occurred, 

the detected anomalies stored in a table were passed to the filtration process (i.e., Steps 9 to 11). 

Otherwise, the process was stopped, and it waited for new incoming sensor data.  

9. Since the frequency of the generated data from the location sensor was less than those from the 

motion sensors, in some occasions, two records might have similar location values (i.e., longitude 

and latitude). To filter out the duplicated records with similar geographic location values, only the 

record with higher value of  𝑉𝑐𝑖 was selected and the rest were removed from the Anomaly table. 

10. To perform the developed k-means filtration process, a minimum of three anomalies should be in 

the table of anomalies. If the number of anomalies in the Anomaly table was less than three, the 

process should be stopped, and the process should wait for incoming sensor data. 

11. To filter the other incidents (non-road surface anomalies such as breaking, turning and accelerating) 

which were mixed with the detected road surface anomalies from the detected suspected road surface 

anomalies, a k-means clustering approach was applied to partition the stored data stored into three 

different categorizes. Generally, the cluster which has the lowest centroid value was likely caused 

by a non-road surface anomaly incident which should be filtered from the detection list (e.g., road 

noise). It is essential to note that since the 𝐶(𝑟𝑎𝑡𝑖𝑜) and 𝑉𝑐𝑖  values were in different scales and they 

should be standardized before applying the filtration process. Therefore, the Z-score values of 

𝐶(𝑟𝑎𝑡𝑖𝑜) and 𝑉𝑐𝑖 data were considered as the standardized values for classification purpose. If this 

process has not converged, the process would be stopped at this point and it would wait for incoming 

sensor data. However, if the process converged the filtered anomalies were stored in a table (i.e., 

filtered anomaly table) and passed to the GMM classification algorithm. In addition, the records that 

were stored in potential anomaly table were all removed after successfully applying k-means 

process. 



Methodology  41 

 

41 
 

The rationale of applying k-means prior to any probabilistic-based classification approach is because such 

a mechanism can aid in filtering out any superfluous data belonging to turns, deceleration and acceleration 

incidents, which all do not represent the road surface anomaly data. In this case, after the raw data being 

filtered out by k-means, it can help to improve the data transmission efficiency, resulting in sending those 

road surface anomalies data to the subsequent data processing on the server side, as described in the 

following Sections 3.2.2 and 3.3.1. 

3.2.2 Road Surface Anomaly Classification Approach 

To classify road surface anomalies into two different classes based on the severity level (i.e., discomfort 

level) of the anomalies, a Gaussian mixture model (GMM) with a maximum expectation model (EM) was 

applied. Therefore, the outcomes from the filtration process (i.e., Step 11 in Section 4.2) are passed to the 

GMM model. This approach fits a fixed number of Gaussian models (determined to be 2 for the mobile 

app) to the data points in such a way that the classes have the parameters with the maximum likelihood 

estimates.  

The formed class from the GMM process, which had the lower centroid value, is labeled as “Class 1”, 

which includes small cracks, even manholes and road joints. In contrast, the other class, which had higher 

centroid value compared to “Class 1”, is labeled as “Class 2” which includes big cracks, uneven manholes 

and potholes. Since the GMM classification approach is a fuzzy (soft) classification approach, it assigns a 

probability distribution to road surface anomalies instead of assigning them to particular clusters.   

In some situations, the GMM algorithm might suffer from a lack of convergence (i.e., a singular covariance 

matrix). This was because the number of data points (i.e., road surface anomalies) were insufficient to fit a 

GMM model or some of the data points, which were discrete in the space, caused a singularity in the 

covariance matrix. To solve this issue, this set of anomalies was accumulated with the other sets of the 

detected road surface anomalies from the following road segment. This process was repeated until the 

GMM model converged.  If the GMM process converged, the classification results as well as the 

corresponded location information were stored in a CSV file format. In addition, the records associated 
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with the other road segments, which the GMM process was unable to converge and were stored in the 

filtered anomaly table, were all removed after successfully applying GMM classification process. 

3.3 Probabilistic-Based Crowdsourcing Technique for Road Surface Anomaly 

Integration 

A novel probabilistic-based crowdsourcing approach was proposed to classify and integrate detected road 

surface anomalies from multiple users and/or multiple passes of any road segment. The proposed approach 

was built upon a real-time probabilistic-based approach to overcome the inherent uncertainty existing in 

the application of detecting road surface anomalies from smartphone sensors. Figure 3.2 illustrates the 

overall process of the proposed crowdsourcing approach. According to this approach, the DPGMM is an 

unsupervised classification approach, was utilized to classify detected road surface anomalies. The detected 

road surface anomalies are the outcomes of the developed mobile app as described in Section 3.2. Then, 

the classified data should be accumulated and integrated with other possible classified data, which has been 

detected and reported from the other road users for the corresponded road segment with similar moving 

direction. In addition, the accumulated road surface anomalies from multiple surveys are grouped in 

different clusters. Each cluster represents a road surface anomaly. 

To store and query historical classified data, formed clusters and integrated anomalies’ information, a 

database was established. After classifying incoming road surface anomaly data, the developed database 

should be queried. If any related historically formed cluster existed in the database, the new classified data 

was assigned to the proper clusters according to the approach described in Section 3.3.3. Subsequently, 

updated clusters with the newly added events were processed in the spatiotemporal domain in order to 

update the cluster information (i.e., integrated road surface anomaly data) according to the proposed 

approach described in Section 3.3.4. Then, the integrated data was entered into the database to update the 

road surface anomaly information related to the surveyed road segment. However, if no historical cluster 

existed for the surveyed road segment with the similar moving direction, the newly data events were used 

to form new clusters and stored in the database. The aforementioned process runs autonomously by 
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receiving any set of detected road surface anomalies, which is reported from the developed smartphone 

app.  

 

Figure 3.2: The proposed spatiotemporal crowdsourcing procedure 

The main benefits of the proposed crowdsourcing approach are two-fold. First, anomalies that cannot be 

detected by a single source/survey can be possibly identified by other sources/surveys. Second, the 

proposed approach aids to improve the detected location of road surface anomalies and infer more robust 

and reliable illustration regarding the severity level of each road surface anomaly. 
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3.3.1 DPGMM Classification 

The collected data from the third phase of data collection procedure (Section 3.1.3), which were stored in 

CSV file format, were imported to the MATLAB V. R2017b environment. Each file contains detected road 

surface anomalies information for every surveyed road segment. To classify the detected road surface 

anomalies into different classes, the DPGMM approach was applied.  

DPGMM, which is an unsupervised, nonparametric Bayesian clustering model, was adopted to classify data 

events (i.e., detected road surface anomalies from mobile app) to infinite Gaussian mixture models. This 

model adopts the concept of Dirichlet Process (DP) and Chinese Restaurant Process Mixture (CRPM) to 

partition the data. The Gibbs sampler approach, which is a simple and widely applicable Markov chain 

Monte Carlo algorithm, was applied to control the sampling process and to maximize the likelihood of 

classification (Christopher, 2016). The Gaussian mixture model with K components can be derived from 

the Equation 3.3. 

𝑃(𝑥ȁ𝜃1 + 𝜃2+…+ 𝜃𝑛) = ∑ 𝜋𝑖
𝐾
𝑖=1 𝑁(𝑥ȁ𝜇𝑖, 𝑆𝑖)      (3.3) 

where θ𝑖 = {µ𝑖 , 𝑆𝑖, π𝑖}  is the set of parameters for component i, π is the mixing proportion (Subject to:  

∑ 𝜋𝑖
𝑘
𝑖=1 = 1, 𝜋𝑖 > 0), µ𝑖 is the mean vector for component i, and 𝑆𝑖 is its precision matrix (i.e. inverse of  

the covariance matrix). The detail computational procedure to apply DPGMM is described in Chapters 9 

and 11 of the book written by Christopher (2016). 

The DPGMM approach aims to classify road surface anomalies according to the severity level of each 

anomaly sensed by vehicles. Since 𝐶(𝑟𝑎𝑡𝑖𝑜) and 𝑉  values are correlated with speed values, these values 

were normalized by dividing them to their respective speed values to reduce the correlation. Then, the 

normalized values of 𝐶(𝑟𝑎𝑡𝑖𝑜) and 𝑉 were standardized (by calculating z-score values) before applying 

DPGMM classification algorithm. 
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3.3.2 Browsing the Developed Database 

The purpose of the developed database was to store the information about classified road surface anomaly 

and to form clusters, required for the cluster assignment and data integration processes. For each classified 

road surface anomaly, the probability distribution information and location information were recorded in 

the developed database. For each formed cluster, the updated values of integrated probability distribution 

information and averaged values of geographic location (longitude and latitude) were recorded (as per 

Section 3.3.4). 

Once the newly detected road surface anomalies were classified (the outcomes from Section 3.3.1), the 

database should be queried to discover any possible formed cluster from prior road survey in order to 

combine them with possible historical information. If any formed cluster was discovered, the new classified 

road surface anomaly was assigned to the associated cluster based on the proposed assignment approach 

described in Section 3.3.3. Conversely, if no formed cluster was found in the database, the new classified 

road surface anomaly was stored in the database as a newly detected road surface anomaly, which formed 

a new cluster.   

3.3.3 Cluster Assignment Processing  

To assign new classified data events (i.e., road surface anomalies) to any possible formed clusters, which 

were stored in the developed database, the geographic location of the new classified data events and the 

formed clusters were utilized to find any potential geographic intersection. Due to the uncertainty of 

detected geographic location, two steps of geo-query were conducted to find the possible related clusters 

which new classified event can be assigned: 

1. The absolute accuracy value reported by Android API for each detected anomaly’s geographic 

location was used to create a buffer area and discover the formed clusters intersected with buffer 

area. 
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2. The bearing value of direction for each classified data event was used to filter out the intersected 

clusters from the previous stage, which had dissimilar moving directions. 

According to the Android API documentation, both the absolute accuracy estimated for each detected 

geographic location and the bearing of moving direction have a 68% confidence level (1 σ). However, in 

this study, 95% confidence level (2σ) values of estimated accuracy values for both geographic location and 

bearing values were considered to search for intersected clusters. 

Each newly classified data event was buffered at the radius of 2σ (based on the estimated accuracy for 

detected geographic location). If any intersected cluster was identified in the first step of query, the bearing 

values of the intersected cluster and the new classified data event were compared to filter out the unrelated 

clusters. Therefore, the difference value of the bearing for each intersected cluster and the bearing value of 

the new classified data event should be in the range of ±2σ (i.e., estimated accuracy value obtained for the 

new classified data event) in order to assume that the queried cluster and the newly classified data event 

were in the similar direction. However, if no cluster was found in the database, the newly classified data 

event was considered as a new formed cluster and stored in the database.  

 

Figure 3.3: The illustration of the clustering and assignment process 

Figure 3.3 illustrates the overall concept behind the clustering assignment process in order to assign new 

classified data event to the most possible relevant clusters formed from the previously detected road surface 

anomalies. According to the Figure 3.3, the red points denote new classified data events and yellow points 

denote the existing clusters formed from the integration of former classified data events in different times. 
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In addition, the orange arrows indicate the average of bearing values specifying the moving direction, in 

which the data events grouped in a cluster, is detected. The blue arrows indicate the direction in which each 

individual data event is detected. “R” indicates the buffer radius and the black circles represent the buffer 

area with provided “R” radius, which is used to find possible intersections with previously formed clusters.  

According to Figure 3.3, the buffered area around the red points labelled with “A” and “B” encounter two 

formed clusters with similar moving directions. Therefore, these newly detected events should be assigned 

to the both of the formed clusters which they are encountered. The buffered area around the red point 

labelled with “C” dose not encounter any formed cluster. Therefore, it forms a cluster and stores as a new 

formed cluster in the database. In addition, the red point labelled with “D” encounters two formed clusters; 

however, one of the intersected clusters has dissimilar moving direction which should be discarded. 

Therefore, point “D” should be assigned to the cluster with similar moving direction.  

3.3.4 Spatiotemporal Data Processing  

This step aims to consider spatiotemporal behavior of road surface anomalies (i.e., data events) for the data 

integration process. Various road surface anomaly data detected by different smartphones on-board vehicles 

at different times should be integrated to infer the most probable and updated information for each road 

surface anomaly existing on the road surface. As discussed in Chapter 2, different vehicles’ mechanical 

properties and different devices’ sensor properties cause diverse sensitivity responses for any road surface 

anomaly. Therefore, road surface anomalies may be sensed differently when multiple users are involved 

for the application of road surface anomaly detection. Moreover, due to the detected geographic locations’ 

uncertainty, road surface anomalies are potentially assigned to different formed clusters as described in 

Section 3.3.3. Furthermore, road surface anomalies have dynamic characteristics and may change in terms 

of their shapes and sizes over time. For example, road defects may be repaired by authorities dealing with 

road surface maintenance or deterioration due to adverse weather conditions, the influence of passing 

vehicles or pavement mechanistic failure.  
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To consider all the aforementioned concerns in order to integrate detected road surface anomalies from 

multiple road users, a spatiotemporal Dirichlet process was developed. This approach consists of various 

steps. First, to determine the spatiotemporal weight of each anomaly grouped within a cluster, the Gaussian 

Radial Basis kernel function (RBF) was utilized. RBF calculates both spatial and temporal distance from 

the centroid of that cluster and all observations within the cluster.  RBF is one of the widely used kernel 

function of Gaussian Processing (GP), which is continuous and flexible enough to be positive or negative 

in various region of space (Rasmussen, 2014). Equation 3.3 describes the formulation of RBF kernel 

function: 

k(l, l′) =  exp (
−‖l−l′‖

2

2σl
2 ) = exp(−γԡl − l′ԡ2)   (3.3) 

According to Equation 3.3,  ԡl − l′ԡ calculates the Euclidean distance of both time and location for each 

anomaly within a cluster from the current time and the centroid geographic location of the cluster. "l" 

denotes the array containing geographic location and the time stamp values of each detected anomaly within 

a cluster. "l′" denotes the array containing the geographic location centroid of each cluster and the latest 

time recorded for the detected anomaly grouped within a cluster. In this study, 
1

2σl
2 =  𝛾, which defines the 

width of the bell-shaped curve, is calculated based on the standard deviation of the computed time and 

geographic location distances for each member of a cluster. The results after applying the RBF are 

considered as the weight values (for both time and location) for each detected anomaly. In fact, the closest 

event to the centroid location of the cluster or the latest detected anomaly, which have lower distance values 

(i.e., in terms of location and time), essentially obtains higher weight values in accordance to the RBF.  

 To combine both spatial and temporal weight values of an anomaly in order to determine the spatiotemporal 

weight factor, the weight values of time and location computed from Equation 3.3 were summed. In order 

to normalize all computed weigh factors to fall between 0 and 1 and sum to 1, the calculated spatiotemporal 

weight factors are each divided by the sum of all weight factors. These normalized weight factors were 
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applied to each corresponding anomaly probability distribution in order to form a weighted-probability 

matrix. 

To estimate the probability distribution of each cluster from the composed frequency weighted-probability, 

a Dirichlet multinomial mixture (DMM) model, which is a family of discrete multivariate probability 

distribution, was applied. The Dirichlet-multinomial distribution is a compound distribution where the 

probability vector is drawn from a Dirichlet distribution and then a sample of discrete outcomes is drawn 

from a multinomial probability vector. In order to fit DMM to the composed frequency matrix, the proposed 

approach by Minka (2000) with detail computational procedure was adopted and applied.  

To infer the most probable value for the geographic location and bearing value of moving direction in which 

the anomalies within a cluster were detected, the values of the geographic location and the bearing values 

of the clustered anomalies were averaged.   

3.4 Performance Evaluations 

The proposed approaches were validated by performance evaluation, which was conducted in two different 

phases. For both phases, multiple road segments within the boundary of the City of Toronto were selected. 

They consisted of number of road surface anomalies (e.g., potholes and cracks) and were driven when the 

developed mobile app was installed and ran on the smartphone or tablet. Verification of the proposed 

approaches was made visually by comparing detection results with the geotagged referenced images and 

videos captured during the field inspection and data collection. 

To conduct the first phase of the performance evaluation to investigate the functionality of the proposed 

approach described in Section 3.2, three different case studies were conducted. The accuracy of detection 

for each case study was evaluated to ensure the functionality of the proposed approach and developed 

mobile app in various conditions (e.g., different smartphone devices, different vehicles, different 

placements of smartphone and different vehicle velocities). To do so, the developed mobile app was utilized 

to collect the desired data for the performance evaluation.  



Methodology  50 

 

50 
 

Although this study did not aim to classify the type of road anomaly, each studied road segment was visually 

inspected with respect to the number (instead of the anomaly type) of existing anomalies, including 

potholes, cracks, manholes and bumps. In addition, geotagged images and estimated location of anomalies 

were recorded during site inspections. All these recorded data and associated information were used for the 

accuracy assessment. 

The first case study aimed to verify the performance of the developed mobile app on different devices. Two 

different devices, i.e., a Nexus 6 (smartphone) and a Nexus 7 (tablet), were used to perform this part of 

evaluation task. Both devices employed the Android operating system and were compatible with the 

developed mobile app.  

The second case study aimed to evaluate the performance of the developed mobile app while operating on-

board three different types of vehicles. Three different available vehicles (i.e., Infinity QX60, Acura MDX 

and Honda Civic) were employed to perform the second case study to ensure the functionality of the 

developed mobile app when different vehicles with dissimilar mechanical properties were involved. In this 

experiment, the Nexus 6 was placed on the available smartphone holder, which was attached to the 

windshield of all three vehicles.  

Finally, the third case study aimed to validate the performance of the mobile app for different speeds of 

moving vehicles. The study area has three different maximum allowable speeds: 40, 50 and 60 km/h. 

However, only minimum and maximum speeds were investigated to ensure the capability of the developed 

mobile app in various speeds of vehicle. This case study was intentionally conducted in late evening 

minimize the traffic in order to keep the speed constant during the experiments. However, the vehicles 

stopped in some cases due to encountered traffic lights or stop signs. The selected road segment for the first 

and second case studies had a maximum allowable speed limit of 40 km/h. Therefore, a similar road 

segment was chosen to evaluate the performance of the developed mobile app for the speed of 40 km/h. In 

addition, to evaluate the accuracy of detection for a speed of 60 km/h another road segments (i.e., Finch 
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Avenue between Leslie Street and Bayview Avenue) were chosen since they had the maximum allowable 

speed of 60 km/h. 

The second phase of performance evaluation was expected to assess the performance of the developed 

probabilistic-based crowdsourcing approach to integrate road surface anomalies detected from various road 

users. However, due to the lack of volunteers in this research study, the collection of road surface anomalies 

was repeated a few times in the defined study area by a single user and the results of the assessment were 

used to measure the accuracy of detection. The detection rate from multiple road surveys was evaluated and 

compared with the detection rates of the previous phase of performance evaluation, which were from a 

single user. The improved version of the developed mobile app was employed to fulfill the second phase 

of accuracy assessment. 

To assess and verify the accuracy of detection in the second phase of performance evaluation, a field 

inspection was carried out to define the number of existing road surface anomalies for every studied road 

segment. To validate the accuracy of detected geographic location of road surface anomalies for each 

studied road segment, the outcomes from the proposed approach were compared with those from the smaller 

road segments. Each of the four studied road segments was sliced into the smaller segments based on the 

number of intersections existed within each main road segment. For example, parts of Cummer Avenue, 

Leslie Avenue, Finch Avenue, and Bayview Avenue, which were selected for this phase of performance 

evaluation, composed of twelve, eight, six, and three smaller road segments, respectively. During the field 

inspection, the number of road surface anomalies in each portioned road segment was counted and recorded. 

In addition, geotagged images from the road surface anomalies were captured.  
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Chapter 4 Experimental Results 
 

Given the proposed approaches for road surface anomaly detection from smartphone sensors and a 

probabilistic-based crowdsourcing approach to integrate multiple detections from various road users, the 

objective of this chapter is to describe in detail the experiment results, which are the outcomes of applying 

the proposed approaches to case studies and assessment of the performance of the proposed approaches. 

Section 4.1 defines the selected study area for this thesis research, as well as the collected data for each 

phase of data collection. The outcomes from applying the proposed approaches are presented in Sections 

4.2 and 4.3. Section 4.4 describes the performance evaluation outcomes for each proposed approach. 

4.1 Study Area and Data Collection 

4.1.1 Study area 

Multiple road segments with different surface conditions were selected in the North York region of the City 

of Toronto, Ontario, Canada. The selected study area, shown in Figure 4.1, consists of four different major 

road segments: a part of Leslie Street from the Leslie and Cummer intersection to the Leslie and Finch 

intersection (i.e., a north-south direction), a part of Finch Avenue from Leslie Street and Bayview Avenue 

(i.e., an east-west direction), a part of Bayview Avenue between Finch Avenue and Cummer Avenue (i.e., 

south-north direction), and Cummer Avenue between Bayview Avenue and Leslie Street (i.e., a west-east 

direction). These four major road segments had different surface conditions. For example, the selected part 

of Bayview Avenue had been recently paved and was quite smooth, so there were no cracks and potholes 

existing except for two existing uneven manholes. However, a large number of cracks, small potholes, two 

road joints, and uneven manholes existed on the surface of Cummer Avenue compared to the other selected 

road segments. The selected part of Leslie Street had only few small cracks and some even manholes. The 

selected part of Finch Avenue also had few cracks, some even and uneven manholes and two road joints, 

in addition to two uneven surface areas due to the ongoing construction operation during the second phase 

of data collection. However, these two uneven areas had been rehabilitated before conducting the third 
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phase of the data collection. Table 4.1 provides the maximum allowable speed, length and total number of 

lanes of the selected street segments. In all phases of data collection, for the selected road segments that 

had more than one lane in each direction, the right-hand lanes were considered for the data collection. 

 

Figure 4.1: Location of the study area 

Table 4.1: The properties of the studied road segments  

Road segment Speed (Km/h) Length (Km) Number of lanes 

Leslie Street 60 1.3 4 

Finch avenue 60 2.0 4 

Bayview avenue 60 0.85 4 

Cummer avenue 40~50 2.2 2 

 

4.1.2 Data Collection for Sensors Data Quality Analysis (First Phase) 

To the study sensors’ data quality, the Nexus 7, which was used widely for different phases of data 

collection, was placed both on a flat surface and a vertical position and kept static while data was logged 

for approximately ten minutes (in both positions). In both cases, the corresponding sensors data were 

continuously being captured including linear accelerometer, gyroscope, rotation, and location data. The 

sampling rate of the employed device sensors was set approximately 100 Hz, though the specification 

claimed that the maximum sampling rate can yield up to 200 Hz. A total of 55679 data samples were 

generated in the horizontal position and 53821 data samples were generated in the vertical position from 

each of the studied sensors. However, the location sensor that was updated less frequent than the other 

sensors (1 Hz).  

Toronto boundary 
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Figure 4.2 demonstrates time interval between every consecutive generated sensors data (in the horizontal 

position). In the Android, sensor events are generated every time the sensor values are changed. According 

to Figure 4.2, the time intervals of generated sensors data vary. However, most of the data were generated 

in the range of 0 to 50 milliseconds (time interval) such that sensors data had a sufficient sampling rate to 

detect road surface anomalies (refer to Figure 4.3). Table 4.2 summarizes the statistical analysis of the 

sampling rate of the collected sensor data. According to Table 4.2, the average of sampling rate was 

approximately 10.77 milliseconds with minimum and maximum values ranging from 3.60 to 860.81, 

resulting in a standard deviation of 37.06 from 55679 number of data samples. 

 

Figure 4.2: The time intervals between consecutive generated signals (sampling frequency) of the 

collected data (fastest mode) 
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Figure 4.3: Histogram of the time intervals between consecutive generated signals (sampling frequency) 

of the collected data (fastest mode) 

Table 4.2: Statistics analysis for the sampling frequency of the collected data (fastest mode) 

  
Mean 

(milliseconds) 

Min 

(milliseconds) 

Max 

(milliseconds) 

Standard deviation 

(milliseconds) 

Time between each 

consecutive reading 

10.77 3.60 860.81 37.06 

Figure 4.4 illustrates the amplitude of the collected sensors data while the device was in stationary mode 

and in the horizontal position. The amplitude of the linear accelerometer sensor data along the “Z” axis, the 

rate of rotation about “Z” axis derived from the gyroscope sensor, and the rate change of the rotation angle 

about “Z” axis (azimuth) are illustrated in Figure 4.4a, Figure 4.4b, and Figure 4.4c, respectively. Tables 

4.3 and 4.4 summarize the mean and the standard deviation derived from the collected sample data of the 

studied sensors from two modes of smartphone positions (vertical and horizontal modes).   
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Figure 4.4: (a) The plot of linear accelerometer sensor data values (along Z axis) in stationary mode of 

the device, (b) the plot of gyroscope sensor data values (along Z axis) in stationary mode of the device, 

and (c) the plot of azimuth values (from rotation sensor data) in stationary mode of the device 

Table 4.3: Mean and standard deviation values for logged sensors’ data (horizontal position) 

 Linear accelerometer (m/s2) Gyroscope (degree/s) Rotation (degree) 

 

Direction  X   Y   Z  X  Y  Z Azimuth Pitch Roll 

Mean 0.001 -0.0005 0.000  0° 0' 0.30"  0° 0' 0.06"  0° 0' 0.20"  0° 0' 0.00"  0° 0' 0.00"  0° 0' 0.00" 

Standard 

deviation 
0.0194 0.0191 0.0365  0° 0' 04.62"  0° 0' 04.24"  0° 0' 03.76"  0° 0' 24.30"  0° 0' 02.40"  0° 0' 01.43" 

 

Table 4.4: Mean and standard deviation values for logged sensors’ data (vertical position) 

 Linear accelerometer (m/s2) Gyroscope (degree/s) Rotation (degree) 

 

Direction X Y Z X Y Z Azimuth Pitch Roll 

Mean 0.002 -0.0001 0.001 0° 0' 0.05" 0° 0' 00.06" 0° 0' 0.05" 0° 0' 0.00" 0° 0' 0.00" 0° 0' 0.00" 

Standard 

deviation 
0.0189 0.0195 0.0358 0° 0' 4.72" 0° 0' 04.27" 0° 0' 03.72" 0° 03' 22.68" 0° 0' 02.78" 0° 03' 15.34" 

According to Table 4.3 and 4.4, the mean and standard deviation values indicate that the smartphone 

sensors’ data contained certain level of errors. These errors include bias and scaling errors found in each of 
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the sensors. However, the error values generated from sensors were relatively insignificant for the 

application of road surface anomaly detection and can be smoothed or filtered by a preprocessing 

mechanism. According to the amplitude of sensors data depicted in Figure 4.4, the sensors data are not 

stable for the first few samples due to the warm-up drift, since the sensors should reach a certain operational 

temperature in order to properly operate and minimize the produced bias. In order to account for warmup 

drift in this research study, the entire system should be allowed to stabilize for a short period of time before 

beginning data collection. The results from this part of study indicate that warm-up usually takes between 

20 to 30 seconds for the smartphone sensors to stabilize. 

To assess the GPS sensor data values including longitude and latitude values and to evaluate the accuracy 

of detected location while the device was in the stationary mode, the collected location data values (total of 

57218 samples) were first subtracted from their respective sample mean values to obtain the rate of change. 

The sample rate for GPS sensor was approximately 1Hz, indicating that the sensor data values were changed 

every second. Figure 4.5 represents the rate of change values for both longitude and latitude data values. 

Table 4.5 summarizes the mean and standard deviation values derived from the collected location sample 

data, as well as the calculated values for the relative accuracy. The estimated ground distance values with 

respect to their calculated standard deviation and relative accuracy values are also summarized in Table 

4.5. 

  

Figure 4.5: (a) The plot of rate of change values of latitude data, and (b) the plot of rate of change values 

of longitude data  
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Table 4.5: Standard deviation and relative accuracy values for rate of change values of latitude and 

longitude, as well as the estimated ground lengths 

The accuracy analysis of the collected location data obtained from the GPS sensor indicates that even 

though the relative accuracies of latitude and longitude were about 1.27 and 0.6 meters (ground distance), 

respectively, these biases were relatively small and can be neglected for the application of road surface 

anomalies; all of them were grouped based on each individual road segments (> 100 m).  

4.1.3 Data Collection for Road Surface Anomaly Detection from Smartphone Sensors 

(Second Phase) 

To assess and evaluate the proposed approach for road surface anomaly detection from smartphone sensors, 

a first stage of the data collection was conducted, the Nexus 7 tablet was attached to the dashboard of the 

Infinity QX60 to collect raw sensor data. The sample rate was set to the fastest mode, which generated data 

at approximately 100Hz. The collected data included linear accelerometer orientation and location 

information, which were stored in a CSV file format on the local storage of the device. Linear accelerometer 

sensor data was collected to monitor the vehicle’s vibration in order to detect any significant changes in 

acceleration values possibly caused by road surface anomalies. Orientation vector data was used to reorient 

sensors data values and to eliminate the smartphone orientation dependency. An Android API was utilized 

to retrieve the three rotation parameters (i.e., azimuth, roll and pitch), which were computed from a data 

fusion technique involving the accelerometer, magnetometer and gyroscope sensors (where the process is 

deemed to be a black box to end-users). The three retrieved rotation parameters were utilized to perform a 

coordinate transformation of the linear accelerometer data from the smartphone (internal/local) coordinate 

system to a local level projective coordinate system.   

 
Standard deviation 

(degree) 

Standard 

deviation (m) 

Relative Accuracy 

(degree) 

Relative Accuracy 

(m) 

Latitude (Difference from 

mean) 
 0° 0' 0.0130" 0.40  0° 0' 0.0410" 1.27 

Longitude (Difference from 

mean) 
 0° 0' 0.0007" 0.17  0° 0' 0.0194" 0.60 
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This stage of data collection was completed on 7 August 2017. The collected data were imported to a 

MATLAB VR2017b environment for further analysis and model verification. The collected data was 

preprocessed to filter out the records that were captured when the vehicle was in a stationary mode. Speed 

values, which was a part of location information and derived from GPS sensor, were utilized to eliminate 

the records captured in a stationary mode. In fact, these records did not represent any information 

concerning the road surface condition.  

A total of 47756 data points was collected in the study area. Figure 4.6 illustrates the amplitude of linear 

accelerometer sensor data along three axes (X, Y and Z). As depicted in Figure 4.6a, Figure 4.6b and Figure 

4.6c, certain peaks can be found along the time profile, where these peaks may represent the suggested 

location of the cracks, potholes and bumps along the surveyed area. Figure 4.6d represents the captured 

images from two selected road surface anomalies, which were located along Bayview Avenue (A) and 

Cummer Avenue (B). Specified peaks (i.e., A and B) denoted in Figure 4.6a, Figure 4.63b and Figure 4.63c 

are associated with the selected anomalies.  

Both the improved approach for road surface anomaly detection developed in this research and the existing 

approach (Yi et al., 2015) which was adopted were applied on the collected data by considering different 

lengths of the window time period and compared. The number of existing road surface anomalies on the 

surface of the portion of Bayview Avenue and Cummer Avenue was compared with the total number of 

detected road surface anomalies from both approaches. There were total of 77 anomalies on both portions 

of road segments. Table 4.6 summarizes the number of detected road surface anomalies with respect to 

different lengths of window time periods. According to Table 4.6, the approach proposed by Yi et al. (2015) 

is highly dependent on the length of window time periods. In fact, by increasing the length of time window 

the detection rate is decreased. However, the results from the approach proposed in this study indicates that 

the accuracy of detection dose not rely on the length of time window. In addition, the outcomes from the 

approach proposed in this research study shows that the detection rates are higher than all of those proposed 



Experimental Results  60 

 

60 
 

by Yi et al. (2015). In fact, the proposed modifications and improvements which were applied on the 

existing approach resulted in an enhancement of the detection approach by approximately 20%. 

  

 

      

Figure 4.6: (a) Power of the linear accelerometer signal in time domain (x direction), (b) power of the 

linear accelerometer signal in time domain (y direction), (c) power of the linear accelerometer signal in 

time domain (z direction), and (d) captured images from field inspections 

 

To test and validate the proposed approach for road surface anomaly detection from smartphone sensors, 

the collected data from the second phase of data collection (first stage) was preprocessed in order to remove 

the records while the vehicles were not moving (for example stopping at traffic lights or stop signs). A total 

of 100 data points was removed from the data file. Subsequently, the filtered data were processed according 
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to the proposed approach described in Sections 3.2.1 and 3.2.2. After validating the results, a mobile app 

was developed based on the verified proposed approach and the second stage of data collection was 

completed to evaluate the performance of the mobile app. 

Table 4.6: Detection results by the proposed approach and the approach from Yi et al. (2015) under 

different time windows 

Approaches Proposed approach  Approach by Yi et al. (2015) 

Time window (seconds) 

Total number 

of detection 

Accuracy (%) 

Total number of 

detection 

Accuracy (%) 

30 50 65% 45 58% 

60 49 64% 41 53% 

90 46 60% 41 53% 

120 53 69% 37 48% 

180 51 66% 35 45% 

210 54 70% 36 47% 

270 49 64% 39 51% 

300 52 68% 35 45% 

 

For the second stage of data collection, an Android-based mobile app was developed based on the proposed 

approach for road surface anomaly detection from smartphone sensors, which was verified from the first 

stage of data collection. The outcome information, including location information and probability 

distribution information of the detected road surface anomalies, was stored locally on the device in a CSV 

file format. Then, the stored CSV files were imported in an ESRI ArcGIS environment and analyzed in 

terms of the approximate locations of detected anomalies and the capability of classifying anomalies 

compared with collected information from existing road surface anomalies during the field inspections.  

Two different devices, including one smartphone (Nexus 6) with a 230 Hz nominal sampling rate and one 

tablet (Nexus 7) with a 200 Hz nominal sampling rate, were employed in this stage of data collection. 
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During the data collection, the Nexus 6 was mounted on the phone holder attached to the windshield and 

the Nexus 7 was attached on the dashboard. In addition, three different vehicles were utilized, including a 

2008 Acura MDX, a 2017 Infinity QX 60 and a 2007 Honda Civic. The data collection process was 

conducted once for each studied vehicle but in different days of the week (between September 26, 2017 

and October 2, 2017). 

Tables 4.7 and 4.8 summarize the outcomes from the second stage of data collection. Table 4.7 summarizes 

the number of road surface anomalies detected by the Nexus 6. Table 4.8 summarizes the road surface 

anomalies detected from Nexus 7. The detected anomalies were also categorized into two different classes 

(which induced the discomfort level associated with the anomalies) by GMM classification. According to 

Tables 4.7 and 4.8, although the parts of Cummer Avenue and Finch Avenue have approximately equal 

length, the number of detected road surface anomalies along Cummer Avenue is about 5 times greater than 

that along Finch Avenue. Similarly, the parts of Leslie Street and Bayview Avenue have approximately 

similar lengths even though the number of detected road surface anomalies on Leslie Street is about 8 times 

higher than those of Bayview Avenue. Visual inspections and captured geotagged videos can justify these 

assessments. The summarized detected anomaly data from the Nexus 6 and the Nexus 7 indicates that the 

number of detected anomalies by both devices are approximately the same to each studied road segment.  

Table 4.7: Classification results of the detected road surface anomalies detected from the Nexus 6 

 Infinity QX60 (2017) Acura MDX (2008) Honda Civic (2007) 

 Class 1 Class 2 Total Class 1 Class 2 Total Class 1 Class 2 Total 

Leslie Street 19 5 24 25 5 30 13 9 22 

Finch Avenue 15 4 19 14 4 18 13 4 17 

Bayview Avenue 3 0 3 1 2 3 1 1 2 

Cummer Ave. 56 30 86 62 23 85 73 19 92 

Table 4.8: Classification results of the detected road surface anomalies detected from the Nexus 7 

 Infinity QX60 (2017) Acura MDX (2008) Honda Civic (2007) 

 Class 1 Class 2 Total Class 1 Class 2 Total Class 1 Class 2 Total 

Leslie St. 13 6 19 10 6 16 2 0 2 

Finch Avenue 7 3 10 7 3 10 4 5 9 

Bayview Avenue 3 2 5 1 1 2 1 1 2 

Cummer Avenue 54 35 89 71 19 99 55 28 83 
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Figure 4.7 and Figure 4.8 shows the geographic location of detected road surface anomalies for each studied 

road segment captured by the Nexus 6 and the Nexus 7. The yellow points illustrate the anomalies that have 

a high probability of belonging to Class 1 (i.e., a lower severity level) and the red points show the anomalies 

that have higher probability of belonging to the Class 2 (i.e., a higher severity level). 

   

Figure 4.7: The geographic location of the detected road surface anomalies by the Nexus 6  

 

Figure 4.8 The geographic location of the detected road surface anomalies by the Nexus 7  

By comparing the location of detected road anomalies with different devices and different vehicles, it is 

evident that the major road surface anomalies were detected in all scenarios. The difference of detection 

rates in each scenario were related to the differences in sensors properties, mechanical properties of 

vehicles, smartphone device placements or speed of the vehicle. For example, in certain cases, manholes 

were detected as road surface anomalies; however, in certain cases, they were not detected. Similarly, in 

some cases certain small cracks were not detected, but in some cases they were detected. 

Infinity QX60 Acura MDX Honda Civic 

Infinity QX60 Acura MDX Honda Civic 
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4.1.4 Data Collection for Probabilistic based Crowdsourcing Technique for Road Surface 

Anomaly Integration (Third Phase) 

This phase of data collection was completed on days between 21 March 2018 and 30 March 2018 with the 

Nexus 7 attached on the dashboard of the Infinity QX60 in order to simulate the data collection model 

operated by different users. The modified version of the developed mobile app, which was employed for 

this phase of data collection, had the capability to process the generated sensor data from the smartphone 

sensors and filter out the irrelevant incidents, such as breaking, turning, and accelerating.  

For each detected road surface anomaly, its geographic location (longitude and latitude), vehicle’s velocity 

at the time of detection, bearing of the moving direction at the time of detection, location accuracy,  𝐶(𝑟𝑎𝑡𝑖𝑜) 

value, " Vci  " value, and the date and time of detection were stored in a CSV file format on the internal 

storage of the mobile device.  

Table 4.9 demonstrates the collected data from some of the detected road surface anomalies processed by 

the Nexus 7. The illustrated sample data shows a part of the road surface anomalies detected along Leslie 

Street.  

Table 4.9 : Samples of collected road surface anomaly information 

Latitude 

(Degree) 

Longitude 

(Degree) 

Speed 

(m/s) 

Bearing 

(rad) 

Accuracy of detected 

location (m) 

𝑪(𝒓𝒂𝒕𝒊𝒐)  𝑽𝒊 Time of Detection (Date and time) 

43.80073 -79.3707 13.29 169 10 0.48 1.67 21/03/2018 23:18:43 

43.80061 -79.3706 14.04 168 10 0.63 2.09 21/03/2018 23:18:44 

43.80022 -79.3705 14.78 167 11 0.50 1.30 21/03/2018 23:18:48 

43.79995 -79.3705 14.78 168 10 1.52 5.21 21/03/2018 23:18:49 

43.79968 -79.3704 15.53 169 10 1.35 5.77 21/03/2018 23:18:51 

43.79939 -79.3703 16.03 169 10 0.40 1.45 21/03/2018 23:18:53 

43.79925 -79.3703 15.53 169 10 0.42 1.34 21/03/2018 23:18:54 

43.7991 -79.3702 16.28 170 10 1.04 3.55 21/03/2018 23:18:55 

43.79895 -79.3702 17.03 170 10 0.57 2.23 21/03/2018 23:19:01 
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To illustrate the geographic location of detected anomalies, ESRI ArcGIS software was utilized to visually 

display the results according to their reported longitude and latitude values. Figure 4.9 represents the 

location of the detected anomalies for each road segment. As shown, the data points are clustered in some 

areas, representing the possibility of existing road surface anomalies being detected every time of a road 

survey was completed. For example, a large number of congested areas along the Cummer Avenue could 

be the reason numerous anomalies existed on the surface of this road segment. By integrating this multi-

time detection of anomalies from multi-time surveys, more robust and accurate information regarding the 

existing road surface anomalies can be inferred in terms of intensity and precise geographic location of the 

road surface anomalies.  

           

Figure 4.9: The collected road surface anomalies after five-time of road survey 

Table 4.10 summarizes the number of detected road surface anomalies of the studied road segments for 

each time of road survey. According to Table 4.10, the differences in the detection rates on every round of 

survey (anomaly data collection) was due to the dissimilar vehicle maneuvering resulting in the vehicle not 

passing over all existing road surface anomalies for each time of survey, or due to deceleration caused by 

traffic congestion and passing with very low speed on some of the road surface anomalies. Also, the contact 

point of every anomaly may not be similar every time a vehicle passes over any specific road surface 
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anomaly. Even though the detection rate were varied, the pattern of detection is relatively similar for all 

surveys. By combining and integrating these multi-time detected anomalies, not only the detection rate is 

increased but also the accuracy of the anomaly classification (i.e., in terms of their level of discomfort) is 

enhanced. 

Table 4.10: Total detected road surface anomalies for each road segment in each time of survey 

Time of survey Cummer Ave Leslie St. Finch Ave. Bayview Ave. 

March 21, 2018 86 13 26 6 

March 23, 2018 72 14 19 6 

March 24, 2018 87 9 20 7 

March 28, 2018 72 13 27 4 

March 30, 2018 77 10 18 6 

In order to demonstrate the detected road surface anomalies in a temporal domain, the ESRI’s ArcScene 

software was utilized. The detected road surface anomalies are displayed in a way that the vertical 

dimension of each detected road surface anomaly illustrates the time of detection. For example, red data 

points which are at shorter lengths than the other data points were collected in March 21, 2018 and purple 

data points which are at longer lengths were collected in the last survey conducted on March 30, 2018 (refer 

to Figure 4.10).   
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Figure 4.10: Spatiotemporal representation of the detected road surface anomalies 

4.2 Road Surface Anomaly Detection from Smartphone Sensors 

4.2.1 Road Surface Anomaly Detection 

Figure 4.11 shows the outcomes from the road surface anomaly detection process applied during the first 

stage of data collection. Figure 4.11a illustrates the geographic location of the detected anomalies (before 

the k-means filtration process), overlaid on the street map provided by ESRI ArcGIS. Figure 4.11b 

demonstrates the 2D plot representing the standardized values (z-score values) of 𝐶(𝑟𝑎𝑡𝑖𝑜) and the 

standardized values (z-score values) of  𝑉𝑐𝑖  for each detected anomaly before filtration process. 

Afterwards, these detected anomalies were filtered according to the proposed k-mean based approach to 

filter out the incidents caused by non-road surface anomalies, such as accelerating, decelerating, breaking, 

maneuvering or turning (see Section 3.2).  

Legend

First day of survey

Second day of survey

Third day of survey

Fourth day of survey

Fifth day of survey

Road networks

Building
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Figure 4.11: (a) Location of raw anomaly data from Infinity QX 60 test, and (b) the 2D plot of z-score 

value of maximum  𝑉𝑐𝑖 value and the z-score value of the standard deviation ratio  

Figure 4.12 demonstrates the result from k-means based filtration approach for the studied area. In fact, k-

means approach partitioned anomalies data into three different classes. For example, according to Figure 

4.12a, the anomalies detected from Leslie Street are partitioned to three classes (i.e., red, purple, blue). The 

cluster containing red data points, which has the lowest centroid value, was filtered because these data 

primarily caused by non-road surface anomaly incidents. Table 4.11 summarizes the total number of the 

detected road surface anomalies after k-means filtration process and the number of filtered incidents for 

each studied road segment.  

According to Table 4.11, an average of 65% of the detected potential road surface anomalies were filtered 

based on the k-means as discussed in Section 3.2.1 for each studied road segment. As a result, it not only 

justified the rationale of reducing the amount of data being transferred to the central server (for applying 

required post-processing in the concept of crowdsourcing), but also relieved the computational demand of 

the probabilistic-based classification process (such as GMM and DPGMM). 

a 
b 
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Figure 4.12: Outcomes result from k-means classification approach 

 

 

Table 4.11: The number of the detected road surface anomalies before and after filtration along with no. 

of filtered anomalies 

 No. of detected potential road 

surface anomalies (Before 

filtration) 

No. of filtered data 
No. of road surface 

anomalies (After filtration) 

Leslie Street 44 23 21 

Finch Avenue 109 84 25 

Bayview Avenue 24 20 4 

Cummer Avenue 148 63 88 

 

Leslie Street Finch Avenue 

Bayview Avenue Cummer Avenue 

a b 

c d 
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4.2.2 Road Surface Anomaly Classification 

To classify the road surface anomalies into two severity levels, the GMM approach was applied to the 

filtered anomalies data. Figure 4.13 shows the outcomes from this classification approach. Figure 4.13a 

illustrates the 2D plot of the probability density function (PDF) for the fitted Gaussian models. Figure 4.13b 

illustrates the 3D plot of the PDF of the fitted Gaussian models to the data events. As discussed in Section 

3.2.2, since the GMM may not converge for the detected anomalies of some road segments, the detected 

anomalies were accumulated with the subsequent road segment anomalies in order to ensure convergence. 

For example, the detected anomalies from Leslie Street were accumulated with the anomalies detected from 

Finch Avenue since the GMM process was unable to converge for the detected anomalies on Leslie Street. 

However, once the detected anomalies from Leslie Street were accumulated with those detected on Finch 

Avenue, the GMM process converged. In addition, the detected anomalies from Bayview Avenue exhibited 

a similar condition; therefore, by accumulating the detected anomalies from Bayview Avenue with the ones 

on Cummer Avenue, the GMM classification process converged. 

According to Figure 4.13b, it is evident that the peak value of the “Class 1” (i.e., lower severity level mainly 

caused by small cracks and even manholes) is higher than the one associated with “Class 2” (i.e., higher 

severity level mainly caused by big cracks, uneven manholes and potholes). This indicates that the number 

of data points assigned to the first class (Class 1) is more than the number of data points assigned to the 

second class (Class 2). Moreover, the distribution of the second class (Class 2) is less clustered than that of 

the first class (Class1), because the response from the vehicle’s vibration becomes more heterogeneous 

when increasing the severity level of the road surface anomalies.   
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Figure 4.13: (a) 2D plot of PDF for fitted Gaussian models, and (b) 3D plot of PDF for fitted Gaussian models 

Since Class 1 and Class 2 do not have clear distinct boundary, by comparing the membership values 

(probability distribution) of each classified anomaly to every produced Gaussian model, the probability 

distribution of each anomaly associated with the classes can be investigated. Such a fuzzy property of GMM 

helps to prevent some occasional misjudgment for class assignment due to the complex and fuzzy boundary 

situation occurring in road anomaly classification scenarios. In fact, the higher the membership value, the 

more the probability of being a member of that class.   

Figure 4.14 illustrates the membership values (derived from the GMM) for one of the selected anomaly 

detected along Cummer Avenue. Figure 4.14a represents the selected anomaly detected using an Infinity 

QX60 with the associated membership values and Figure 4.14b represents the selected anomaly detected 

by an Acura MDX with the associated membership values belonging to that anomaly. In addition, Figure 

4.14c illustrates the image of the selected anomaly captured during the filed inspection. According to Figure 

4.14a and 4.14b, yellow points illustrate the anomalies classified as “Class 1” with higher probability, and 

the red points are the ones classified as “Class 2” with a higher probability. As seen in Figure 4.14, the 

classification results for the selected anomaly indicate a membership value of 0.02 (~38%) for Class 1 and 

0.10 (~62%) for Class 2 (from collected data by an Acura MDX). However, the classification outcomes 

Leslie Street and 

Finch Avenue 

  

Cummer and 

Bayview Avenue 

 

Class 1  

Class 2  

Class 1  

Class 2  

Class 1  

Class 1  

Class 2  

Class 2  

a b 
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from a similar anomaly but detected with different vehicle (Infinity QX60) indicate that the membership 

value for the Class 1 was 0.35 (~98%) and for the Class 2 was 0.02 (~2%). Although the selected anomaly 

has a dissimilar probability distribution when it was sensed by different vehicles, there is also a possibility 

where such anomaly belongs to the other class in both cases. 

 

Figure 4.14: (a) the selected anomaly detected by Infinity QX60, (b) the selected anomaly detected by 

Acura MDX, and (c) the image of the selected anomaly captured during the field inspection 

The outcomes from the classification process indicate that the GMM was able to distinguish between two 

different classes and was able to fit Gaussian models to each class. However, to validate the performance 

of the proposed approach, a comprehensive evaluation process was conducted based on the second stage of 

data collection. 

This approach which, was implemented as a part of the developed mobile app for the classification purpose, 

should be replaced by an unsupervised classification approach to meet the requirement for the 

crowdsourcing purpose since every road segment surface has an exclusive surface condition and every 

combination of smartphone and vehicle has an exclusive sensing capability. Therefore, unsupervised 

classification approaches aid in the classification of detected road surface anomalies to more manageable 

number of classes (i.e. level of severity) leading to better classification outcomes and accurate inference for 

every single anomaly.  This thus leads to the idea of using DPGMM for road surface anomaly classification 

on the server- side. 

a b c 
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4.3 Probabilistic-Based Crowdsourcing Technique for Road Surface Anomaly 

Classification 

4.3.1 Dirichlet Process Gaussian Mixture Model  

To classify the detected road surface anomalies to different classes in terms of the level of severity, a 

DPGMM approach was adopted and applied to the collected data for each road segment. Table 4.12 

summarizes the number of formed clusters for each road segment after applying the DPGMM approach. 

Table 4.12: The number of the formed clusters for each road segment 
Time of survey Cummer Ave. Leslie St. Finch Ave.  Bayview Ave. 

March 21, 2018 3 1 2 2 

March 23, 2018 3 3 2 1 

March 24, 2018 3 1 3 2 

March 28, 2018 4 3 3 1 

March 30, 2018 3 2 2 3 

It is evident that the DPGMM is effective for handling the dissimilarities of the available road surface 

anomalies existing on every road segment and was able to classify them to the most appropriate classes. 

For example, the detected road surface anomalies on Cummer Avenue, which had the most defective road 

surface condition among all the other studied road segments, were classified into either three or four classes. 

However, the detected road surface anomalies on Bayview Avenue, which had the greatest road surface 

condition among all those studied road segments, were classified into mostly one or two classes. The 

outcomes from the DPGMM classification approach specifies that the number of the formed clusters be 

highly correlated with the quality of the roads surface.  

4.3.2 Cluster Assignment Processing  

Classified road surface anomalies for different time of survey should be integrated in order to obtain more 

accurate and reliable results. Figure 4.15 illustrates the two formed clusters and all associated members 

from detected anomalies along Cummer Avenue after five- repetitions of the road surveys. Blue and yellow 

points illustrate the assigned road surface anomalies to these two formed clusters, which were the outcomes 
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of the cluster assignment process. Furthermore, the red points represent the centroid locations of these two 

formed clusters.  

 

Figure 4.15: Two formed clusters with their associated members along Cummer Avenue 

It is obvious that some of the detected road surface anomalies were grouped into more than one cluster due 

to the detected location uncertainty. Table 4.13 summarizes the inputs and outputs of the cluster assignment 

process after five-time of surveys. The first column represents the surveyed road segments and the second 

column summarizes the total number of anomalies derived from five surveys. The third column summarizes 

the number of the formed clusters after applying the cluster assignment processing approach. Figure 4.16 

illustrates the location of cluster centroids formed in this part of processing. According to Figure 4.16, more 

road surface anomalies were detected and, as a result, more clusters were formed along Cummer Avenue 

compared to the other surveyed road segments. 

Table 4.13: The total number detected road surface anomalies and formed clusters 

 Road segment Total number of detected 

anomalies 

Grouped number of 

anomalies 

Cummer Avenue 394 132 

Leslie Street 55 21 

Finch Avenue 89 38 

Bayview Avenue 27 10 
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Although the geographic locations and the number of detected anomalies existing in every road segment 

are critical for road surface monitoring purposes, it is also crucial that the severity of each anomaly is 

defined. Even though inferring the level of severity of each road surface anomaly is challenging using the 

smartphone sensors, by integrating multiple anomaly information derived from multiple detections of 

various users’ in the spatiotemporal domain, the most reliable information and the identification of every 

road surface anomaly can be inferred in terms of the level of severity.  

 

Figure 4.16: The centroids' location of the formed clusters after five-time road survey 

4.3.3 Spatiotemporal Data Processing  

This step of processing is aimed at integrating the multiple probability distributions of multi-time detections 

of any road surface anomaly. They were grouped as a cluster resulting from the cluster assigning process 

in order to update the level of the severity probability distribution for a detected anomaly as more evidence 

becomes available. Figure 4.17 represents the 3D view of the results by integrating road surface anomalies 

according to their classes which have high probability. According to Figure 4.17, the height of each anomaly 

indicates the severity level of the anomaly (with high probability), which were sensed and integrated after 
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five repetitions of the road surveys. The anomalies which were clustered in Class 1 (first level of severity) 

with higher probability specifies the least level of severity which were mainly caused by small cracks, even 

manholes, or road joints. However, the anomalies, which were clustered in other classes (i.e., Class 1, Class 

2 and Class 3) with higher probabilities, are essentially resulted from potholes, big cracks, or uneven 

manholes and should be inspected for further verification. 

 

Figure 4.17: Outcomes of the spatiotemporal processing of the formed clusters 

To illustrate the spatiotemporal processing procedure applied to each formed cluster, one of the clusters 

which was formed along Cummer Avenue (labelled “A “) was chosen and discussed (refer to Figure 4.17). 

Table 4.14 summarizes the probability distribution, detected geographic location, detection time, spatial 

and temporal distances and weight factor associated to each member (anomaly) of the formed cluster.  

According to Table 4.14, the anomaly, which was detected later, obtained more temporal weight comparing 

to the other anomalies detected previously. For instance, the most recent detection, which was detected on 

March 30th, obtained the highest temporal weight comparing to the other detections that were detected 

before the day. Furthermore, the furthest the detections are from the centroid’s location, the lowest spatial 

weight values were assigned. For example, the third detection, which was detected on Mach 23rd, was 

A 
B 

C 

D 



Experimental Results  77 

 

77 
 

approximately 13 meters away from the centroid of the cluster and has the furthest distance from the 

centroid among all other anomalies. Therefore, the spatial weight for this observation was assigned to be 

zero.  

Table 4.14: Outcomes results from spatiotemporal processing of the selected cluster 

Class 

#1 

Class 

#2 

Class 

#3 

Class 

#4 

Longitude Latitude Time of 

Detection 

Temporal 

Distance 

Spatial 

Distance 

Temporal 

Weight 

Spatial 

Weight 

Accumulated 

Weight 

0.00 0.00 1.00 0.00 -79.3848 43.79442 '21/03/2018 

23:23:59' 

9.00 3.83 0.00 0.17 0.06 

0.00 0.98 0.02 0.00 -79.3847 43.79433 '21/03/2018 
23:24:00' 

9.00 6.43 0.00 0.01 0.00 

0.93 0.07 0.00 0.00 -79.3849 43.79429 '23/03/2018 

23:13:36' 

7.01 12.84 0.00 0.00 0.00 

0.00 0.00 1.00 0.00 -79.3847 43.79434 '24/03/2018 
22:47:56' 

6.03 5.13 0.01 0.04 0.02 

0.00 0.00 0.02 0.97 -79.3848 43.79435 '28/03/2018 

22:41:10' 

2.03 4.16 0.58 0.12 0.24 

0.00 0.00 1.00 0.00 -79.3848 43.79436 '30/03/2018 
23:24:43' 

0.00 0.49 1.00 0.97 0.68 

 

Table 4.15: Weighted probability matrix for the selected cluster 

Class #1 Class #2 Class #3 Class #4 

0.00 0.00 0.06 0.00 

0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 

0.00 0.00 0.02 0.00 

0.00 0.00 0.01 0.23 

0.00 0.00 0.68 0.00 

To generate the weighted-probability matrix, the accumulated weights were multiplied to the probability 

distribution of each anomaly (refer to Table 4.15). Then, the DMM model was applied on the generated 

weighted-probability matrix to infer the integrated probability distribution belonging to the selected cluster.  

Table 4.16 represents the integrated probability distribution results for the selected clusters. These clusters 

are indicated as “A”, “B”, “C”, and “D” as depicted in Figure 4.17. One of the clusters is located in Leslie 

Street and has higher likelihood of being in Class 1. The other one is located in Finch Avenue and has 

higher likelihood of being in Class 2. The last selected cluster is located in Bayview Avenue and has more 

likelihood of being in Class 1. However, in all four selected clusters, there is the possibility of such 

anomalies belonging to other classes in all selected clusters. Figure 4.18 shows the captured images of those 

selected road surface anomalies recorded during the filed inspections. 
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Table 4.16: Probability distribution of four selected clusters illustrating four individual road surface 

anomalies in four different road segments 

 Class #1 Class #2 Class #3 Class #4 

A 0% 0% 76% 24% 

B 53% 25% 22% 0% 

C 35% 47% 18% 0% 

D 96% 3% 1% 0% 

 

 

Figure 4.18: Captured geotagged images from studied road surface anomalies 

4.4 Performance Evaluations 

This section evaluated the performance of the proposed approaches, which was accomplished in two 

different phases. The first phase evaluated the performance of the proposed approach for detecting road 

surface anomalies from smartphone sensors, which was implemented as a mobile app. The second phase 

evaluated the functionality of the probabilistic-based crowdsourcing approach for anomaly integration, 

which was implemented in a central server after verifying the results. 

4.4.1 Road Surface Anomaly Detection from Smartphone Sensors 

Case Study (1) 

To evaluate the accuracy of detection for the first case study, a portion of Cummer Avenue was selected 

and visually inspected. This segment had a total of 76 anomalies including 2 potholes, 5 even-manholes, 

22 uneven- manholes, 45 cracks and 2 road joints. The Nexus 6 detected 62 anomalies in total, with 35 

belonging to Class 1 and 27 belonging to Class 2 with higher probability. The Nexus 7 detected 65 

anomalies in total, with 34 classified as Class 1 and 31 classified as Class 2 with higher probability. Table 

4.17 summarizes the results from the first case study. 

A B C D 
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Table 4.17: The number of detected road surface anomalies employing different devices 

 Nexus 6 Nexus 7 Existing anomalies 

 Class 1 Class 2 Total Class 1 Class 2 Total Total 

No. of anomalies 35 27 62 34  31 65 76 

By comparing the results with from the records from the field inspection and the captured geotagged videos 

and images, it was concluded that the detection rate for the Nexus 6 and the Nexus 7 were approximately 

82% and 86%, respectively. For both devices, the false negative and false positive rate were zero. 

Case study (2) 

Figure 4.19 summarizes the number of detected road surface anomalies by employing different types of 

vehicles. With Infinity QX60, totally 62 anomalies were detected, including 35 Class 1 anomalies and 27 

Class 2 anomalies. By Acura MDX, 66 anomalies, including 44 Class 1 anomalies and 22 Class 2 

anomalies, were detected. With Honda Civic, a total of 67 anomalies were detected, including 61 anomalies 

classified as Class 1 and 6 of them classified as Class 2. The results indicate that the accuracies of detection 

for the Infinity QX60, Acura MDX and Honda Civic were 82%, 87% and 88%, respectively. In addition, 

the outcomes illustrate that the mobile app functioned with optimum performance, even if different types 

of vehicles were involved.  

 

Figure 4.19: The classified number of detected road surface in three different studied vehicles 
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Figure 4.20a illustrates the detected anomalies from the three vehicles used on the portion of Finch Avenue. 

As shown, the three involved vehicles were well able to detect existing anomalies in this portion of Finch 

Avenue. However, due to the limited positioning accuracy available from each smartphone’s GPS sensor, 

the detected geographic location for each anomaly was biased by a few meters (due to the location 

uncertainty). Figure 4.20b shows the captured images taken from the selected area during the field 

inspection. 

 

Figure 4.20: (a) The road surface anomaly detected by all three studied vehicles along Finch Avenue, and 

(b) the captured image recorded from the selected anomaly during the field inspection 

Case study (3) 

Table 4.18 summarizes the number of the detected anomalies for this case study. The region was selected 

for both first and second case study had the speed limit of 40 Km/h. However, to assess the accuracy of 

detection in different speeds and compare the results while the vehicles were moving with different speeds, 

a portion of Finch Avenue, which had the speed limit of 60 km/h, was selected for the performance 

evaluation. This selected portion of Finch Avenue had 26 anomalies, including 3 potholes, 5 cracks, 4 

uneven-manholes, 12 even manholes and 2 road joints. 

Table 4.18: The number of detected road surface anomalies in two different speeds 

 Infinity QX60 Acura MDX Honda Civic 

 Class 1 Class 2 Total Class 1 Class 2 Total Class 1 Class 2 Total 

40 Km/h 35 27 62 44  20 64 61 6 67 

60 Km/h 15 4 19 14 4 18 19 6 25 

 

a b 
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The detection rates for the road segment which had a 40 km/h speed limit were 82%,87% and 88% for the 

Infinity QX60, Acura MDX and Honda Civic, respectively, as reported in the second case study. The 

accuracy of detection for the road segment which had a 60 km/h speed limit were 74%, 70% and 96% for 

Infinity QX60, Acura MDX and Honda Civic, respectively. It is clear that the developed application based 

on the proposed approach works reasonably well for various speeds; however, speed seems to have a direct 

proportional impact on the detection rate. For example, with higher speed discriminating between even-

manholes or small cracks and normal roads regions is complicated due to the mechanical properties of the 

vehicles.  

4.4.2 Probabilistic-Based Crowdsourcing Technique for Road Surface Anomaly 

Classification 

Table 4.19 summarizes the number of existing anomalies on the surface of each road segment and the 

outcomes from road surface anomalies integration approach. The first column outlines the number of 

existed smaller road segments within the four studied major road segments and the second column 

summarizes the number of road surface anomalies existing on each road segment, which was recorded from 

the field inspections. The existed anomalies on each road segment consisted of all existing cracks, potholes, 

manholes and catchment basins. In addition, columns three to seven summarize the number of integrated 

road surface anomalies by combining anomaly data from each round of survey. By comparing the number 

of integrated road surface anomalies and the number of existed road surface anomalies on each road 

segment, it can be verified that the proposed approach for anomaly integration is able to detect nearly all of 

the existing anomalies on the road surface after a few surveys. 
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Table 4.19: The number of detected road surface anomalies in each time of survey, as well as the existing 

anomalies recorded from the field inspection 

According to Figure 4.21, it is evident that the detection rate improves drastically using the proposed 

crowdsourcing approach. On Cummer Avenue, the first round of survey was able to detect road anomalies 

with an overall accuracy of 65%. With one additional survey, the accuracy improved to 77%. The overall 

accuracy yielded better than 90% whenever Cummer Avenue was surveyed for more than three times. A 

similar occurred on Finch Avenue and Leslie Street. The first survey was able to detect the anomaly features 

with accuracy over 68% and 62%, respectively. While the second and the third surveys improved the 

detection over 80% and 90% for the respective two roads. Additional surveys increased the accuracy to 

Cummer Avenue 

Road 

Segment 

No of 

anomalies 
1st 2nd 3rd 4th 5th 

 1 11 5 7 8 10 10 

2 11 9 10 10 11 11 

3 13 9 9 10 12 12 

4 6 3 4 5 5 5 

5 10 7 8 9 8 8 

6 9 3 6 8 9 9 

7 4 0 3 3 4 4 

8 2 0 2 2 2 2 

 9 14 6 7 11 12 12 

10 18 7 12 15 17 17 

11 26 15 23 24 24 24 

12 9 4 5 8 8 8 

Total 133 86 102 123 129 132 

 

Finch Avenue 

Road 

Segment 

No of 

anomalies 
1st 2nd 3rd 4th 5th 

1 8 5 5 5 8 8 

2 17 12 15 16 17 17 

3 2 2 2 2 2 2 

4 3 2 2 2 3 3 

5 6 4 6 6 6 6 

6 2 1 1 1 2 2 

Total 38 26 31 32 38 38 

 

Bayview Avenue 

Road 

Segment 

No of 

anomalies 

1st 2nd 3rd 4th 5th 

1 4 3 3 3 4 4 

2 5 3 3 5 5 5 

3 1 0 0 0 0 1 

Total 8 6 6 8 9 9 

 

Leslie Street 

Road 

Segment 

No of 

anomalies 
1st 2nd 3rd 4th 5th 

1 3 3 3 3 3 3 

2 4 2 4 4 5 4 

3 4 2 3 3 3 4 

4 2 1 2 2 2 2 

5 1 0 0 0 1 1 

6 2 1 2 2 2 2 

7 0 0 0 0 0 0 

8 1 1 1 1 1 1 

9 4 3 4 4 4 4 

Total 21 13 19 19 21 21 
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almost 100%. On Bayview Street, since the road has been recently rehabilitated, there exists less road 

anomaly features along the road. As a result, a drastic improvement of road anomaly detection can be 

achieved after three rounds of survey with overall accuracy improving from 67% to almost 100%. 

   

  

Figure 4.21: Detection rate after every time of road survey and data integration 

4.5 Discussions 

Currently, smartphone-based sensing is becoming widespread since the mobile devices are equipped with 

different sensors such as cameras, accelerometers, gyroscopes, GPS, microphones, etc. Participatory 

sensing is anticipated to be an emerging area where smartphone-based measurements seems particularly 

attractive and they are not only widespread but also equipped by several sensing capabilities (Burke et al., 

2006). However, the measured signal amplitudes from various smartphones may diverge depending on the 

various reasons: characteristics and quality of the sensors, the position of the smartphone, the suspension 

system and the speed of the car (Sinharay et al., 2015). 
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Detection of road anomalies from smartphones is a complex and challenging process. Different vehicles 

have different responses while passing over the same road anomaly due to the difference in their suspension 

systems. Further, different smartphones may induce a diverse sensitivity response since they have different 

sensor properties. Moreover, the wheels of a vehicle rolling over the road anomalies react differently due 

to their vibration response. Furthermore, each road anomaly different from the others in terms of size, depth 

or height. Therefore, not only is the response from each road anomaly different from other road anomalies 

but also due to various devices and vehicles sensing them differently.  

Previous studies did not have the ability to implement such a robust approach for road surface anomaly 

detection. For instance, threshold-based approaches were developed based on certain limited experimental 

conducted by researchers. However, those limited experimental results cannot represent the entire available 

scenarios for road surface anomaly detection from smartphone sensors. The machine learning approaches 

proposed by previous studies required vast amounts of training data sets to cover all possible scenarios.  

However, the proposed approach in this study considers all these matters in order to be compatible with 

multiple devices, vehicles and many road surface conditions. In fact, the proposed robust machine learning 

approach is automatic and self-adapting with every circumstance (i.e., various devices and various vehicles) 

for road surface anomaly detection.   

In addition, the proposed method requires minimal user interaction and offers widespread user freedom of 

usage. Most previous studies required the placement of smartphones in predefined orientation. The 

proposed approach is free from smartphone orientation constraints and is able to perform well with any 

arbitrary smartphone orientation by applying coordinate transformations. The results from the first case 

study confirmed, that in spite of locating devices in different orientations, the accuracy rate was higher that 

85%. Furthermore, developing the proposed approach as a mobile application decreases the level of user 

interaction to a minimum for anomaly detection. That is, the entire process of detection is performed 

automatically without human interaction. 
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Moreover, previous studies attempting to classify road surface anomalies proposed hard classification 

approaches leading to a high rate of misclassification due to the fuzzy and unknown boundary between 

different anomalies sensed by smartphone sensors. The fuzzy classification approach proposed in this 

research study aids in the prevention of most misclassifications. In fact, the proposed probabilistic-based 

approach aids in the combining of data and provides more accurate inference from multiple detections. 

The performance evaluation results show that, in spite of facing different vehicles, devices, speeds and road 

surface conditions, the proposed approach performs with a high rate of detection in most circumstances. 

All case studies show that more than 80% rate of detection can be reached for each circumstance, which is 

evidence of the inclusiveness of this approach. Although previous studies demonstrated an overall detection 

rate of approximately 80 %. However, their accuracy assessment was done under some controlled situations 

such as driving over a few preselected potholes or bumps, driving with constant vehicle velocities at all 

times, using only a specific vehicle and testing a particular placement or orientation.  

Road surface anomaly detection from smartphone sensors face critical challenges due to the variability of 

detection rate, accuracy of detected location, and measuring the anomaly intensity using different devices 

and vehicles. Further, road surface anomalies have varying properties and they may change from time to 

time. These uncertainty and variability exist in both the detection and nature of road surface anomalies 

leading to the proposing of a crowdsourcing technique to integrate detected road surface anomalies from 

various users and combine them to infer more robust and accurate detection information from multiple 

users. Previous studies that investigated the crowdsourcing techniques to aggregate road surface anomalies 

from multiple detections were only in a very early stage and not efficient for implementing in on-line mode 

but also suffered from the uncertainty and variable nature of road surface anomalies. 

In fact, previous studies investigating crowdsourcing techniques for integrating road surface anomalies 

from multiple sources were unable to deal with the existing dynamic feature of road surface anomalies. 

They suffered from lack of considering both temporal changes of the road surface anomalies and handling 

the inherent uncertainties existed in detecting road surface anomalies from smartphone sensors. Moreover, 
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due to the critical weaknesses of the crowdsourcing approaches proposed in previous studies, the detection 

rate did not exceed more than 90% even after ten repetitions of the survey.   

In this study, a probabilistic crowdsourcing approach was proposed to aggregate various detections of road 

surface anomalies from different users in the spatiotemporal domain. This approach consisted of three major 

steps. First, the road surface anomalies of each road segments are classified to different classes based on 

the severity level of anomalies sensed by vehicles. Second, each new detected anomaly either combined 

with existing clusters composed of preceding detections in different times or generated a new cluster. These 

processes also considered the location uncertainty of each detected anomaly for clustering assignment 

purposes. Third, the probability distribution of each clusters is updated whenever a new road surface 

anomaly assigned to that cluster. This step considers the spatiotemporal domain of detected anomalies 

existing in every cluster to infer the updated probability distribution.  The results and the accuracy of 

detection analysis indicated that the proposed probabilistic-based crowdsourcing approach was highly 

capable of merging multiple detections and inferring robust interpretation of each road surface anomaly. 
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Chapter 5 Web-based GIS Prototype for Road Surface 

Monitoring System 
 

A GIS is a computer-based information system, designed to locate, manipulate, process, and visualize 

geospatial data. GIS-based applications are the tools that allow users to create interactive queries, analyze 

and visualize the geospatial information on maps, which can be widely used for decision making. With the 

emergence of novel means of communications including Wi-Fi and mobile networks, the GIS system has 

been evolved from static processing to more dynamic and complex processing by analyzing vast amount of 

geospatial data generated in real-time. 

For example, Wireless Sensor Networks (WSN) are widely used for environmental monitoring and 

intelligence transportation as a component of smart cities. There is a huge amount of data generated by 

these sensors, which can be sent to the server for further analysis and visualization. As a result, the amount 

of observations to provide the most up-to-date information for publics or authorities are increasing 

dramatically. The networks of sensors keep generating enormous amount of data, and the service providers 

aggregates and fuses those data to generate more valuable and understandable information for the public. 

Weather forecast, earthquake reports, traffic conditions and floods are some of the examples of using 

sensors data and GIS for decision making.   

The primary objective of this chapter is to demonstrate and develop a web-based GIS prototype which is 

able to deliver a real-time and cost-effective platform to monitor road surface conditions.   

5.1 System Architecture Design 

The conceptual architecture of the proposed prototype was based on the client-server architecture (three-

tier architecture) model. The user interface (client-side), server-side and database were developed and 

maintained as independent components (Figure 5.1). Clients send their requests to a web-based server to 

either receive appropriate georeferenced information in response or transfer applicable georeferenced 

information. The client-server architecture model was chosen in order to facilitate the maintenance of the 
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application and allow its functionality to be accessible and modified at any time without considering the 

end user to configure their computer system (Sugumaran et al., 2004). Figure 5.1 illustrates the proposed 

web-based GIS system architecture to monitor road surface condition. 

 

Figure 5.1: The web-based GIS system conceptual architecture to monitor road surface condition 

According to Figure 5.1, on the client-side, there are two components: mobile GIS app and web-based GIS 

interface. The developed mobile app is able to automatically detect road surface anomalies from smartphone 

sensors and subsequently transfer the anomaly data to the central server. In addition, users are able to report 

existing road surface anomalies by capturing geotagged images using the app, which is the other suitable 

means of reporting road surface anomaly. Then, on the server-side, the event streams which are transferred 

from users are pushed to the complex event processing engine to infer high-level events (road surface 

anomalies) by improving the accuracy of previously-detected road surface anomaly locations, their 

reliability through the continuous event-stream, detecting anomalies which are newly created, or 

performing spatial statistics analysis (such as hotspot analysis). The outcomes from the complex event-

processing engine were stored and updated continuously in a spatiotemporal database, which populates the 
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GIS service for web-based geo-visualization and push notification functions. The entire system is designed 

to perform as an S&R GIS system. 

5.1.1 User Interface (Front-end)  

This component includes a mobile GIS app and a web-based GIS interface (refer to Figure 5.2). The mobile 

GIS app should have various functionality, including a function to automatically detect and report road 

surface anomalies from smartphone sensors, a function to capture and transfer geotagged images from 

users’ inputs, a routing capability that enables road users to navigate to their desired destinations and a 

warning system to notify road users concerning the oncoming road surface anomalies. 

The other component of the user interface is a web-based GIS interface to illustrate the road surface 

anomaly information reported by the users. The Google Maps JavaScript API provides multiple functions 

to support queries, manipulation of maps and editing spatial data. With the combination of the Google Maps 

API and open source software, it becomes possible to develop a web-based GIS application, which uses the 

geo-data infrastructure of Google Maps and requests all GIS-functions within a web browser, which are 

then performed on a cloud-based processing environment. Also, the API provides the ability to set up 

various interactive functionalities (Google Maps Events) to respond to the users’ interactions with map such 

as click, double click, mouse over, etc., while map overlay functions (Google Maps Overlays) are designed 

to overlay objects (e.g., points, line, polygon) that need to be visualized on the map. Further, the web-based 

GIS portal should have the capability to query data based on the selected area or time ranges.  

In addition, the web-based GIS interface should have other functionalities, such as a tool panel to turn on/off 

different data layers, a date range tool panel to specify any desired date periods for querying anomaly data, 

and a search box to explore users’ interested places or locations. 
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Figure 5.2: The client-side components 

5.1.2 Server-Side (Back-end) 

This component of the web-based GIS prototype should handle different capabilities such as collecting 

reported events, including captured geotagged images and detected road surface anomalies from the 

developed mobile app, real-time processing of the collected events, and data management. Figure 5.3 shows 

server-side components required to handle aforementioned capabilities. According to Figure 5.3, Apache 

server, which handles Hypertext Transfer Protocol (HTTP) requests sent from either mobile app or web-

based GIS interface was implemented on the server. The requests are either in the form of a request of 

storing and/or processing collected data including detected road surface anomalies and geotagged images 

transmitted from the developed mobile app or in the form of evoke functions to browsers and queries to the 

database in response to the requests made within the web-based GIS interface.  

According to Figure 5.3, several other functions need to be implemented to carry out the requests received 

from the mobile app or web-based GIS interface:  

1) “Store/query geotagged images” function is responsible for storing captured geotagged images 

from mobile GIS application. This function also handles the requests from the web-based GIS 

interface (client-side).  
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2) “Road surface anomaly classification” function is responsible for classifying road surface 

anomalies detected and reported from the developed mobile app.  

3) “Store/query detected road surface anomaly” function handles the required action for storing 

classified road surface anomalies (outcomes of “road surface anomaly classification” function) to 

the database, as well as queries the stored anomaly data for data visualization and integration 

purposes.  

4) “Store/query/update formed clusters” function is responsible for storing, updating and querying 

the formed or newly formed clusters by accumulating multi-time detected road surface anomalies.  

5) “Cluster assignment process” function assigns new classified road surface anomalies to the 

appropriate retrieved cluster (based on the proposed methodology described in Section 3.3.3.  

6) ”Road surface anomaly integration” function handles the functionality to integrate detected road 

surface anomalies which were clustered.  

7) “Google map API service request and response handler” function handles the requests for desired 

GIS processing which should to be processed by Google Map cloud. 

Google Map API provides a wide variety of desired GIS services processed on the cloud. In fact, Google’s 

cloud platform provides a reliable and highly scalable infrastructure for GIS analysis particularly for big-

data. There are different GIS services available in Google Maps API such as Google Roads API, which can 

be widely utilized to develop the anticipated research prototype. 
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Figure 5.3: The server-side component of the proposed web-based GIS prototype architecture 

5.1.3 Database  

A spatiotemporal database model is widely used in Geo-information system. Spatiotemporal events can be 

described along four aspects: attribute, spatial, temporal and thematic. The attribute dimension of the 

spatiotemporal events describes the properties of the event. It contains the information such as feature ID, 

name, length, etc. The spatial dimension represents the location of the occurred event, while the temporal 
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dimension represents the temporal domain of the occurred event and thematic dimension explains the 

motivation behind the event. Spatial and temporal data storage and management play an important role in 

the analysis and monitoring of any spatiotemporal phenomenon such as road surface conditions in order to 

assist transportation agencies to better optimize road surface maintenance scheduling and budgeting.  

In order to properly manage the spatiotemporal data utilized in this prototype, MongoDB, which is an open-

source and big-data based data management system, can be employed to develop the database. This 

database management system is a document-oriented database program known as NoSQL or non-relational 

database program using JSON-like file format for storing and retrieving data. In addition, MongoDB 

supports the GeoJSON format to store geospatial data and uses 2dsphere Indexes to support geospatial 

queries, such as intersect, nearest neighbor, etc. 

 

Figure 5.4: The desired database management schema for developing the web-based GIS prototype 

In Mongo DB, each set of data, known as documents, is stored in various collections. A collection is similar 

to a table of a relational data base management system.  Figure 5.4 illustrates the required collections to 

manipulate and manage the spatiotemporal data required for this proposed web-based GIS prototype.  
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As shown in Figure 5.4, four different collections are defined to store and manage incoming and processed 

spatiotemporal data. “Detected road surface anomalies” collection stores and manages the detected road 

surface anomalies from the developed mobile GIS app. “Geotagged images form road surface anomalies” 

collection aims to manage geotagged images captured and transferred by users from the developed mobile 

app. “Formed clusters from multi-time survey” collection manages the formed clusters from multi-time 

surveys of road surface conditions. Finally, “Integrated road surface anomalies” collection aims to manage 

outcomes from the integrating process of road surface anomalies. 

5.2 System Implementation 

According to the proposed system architecture, a web-based GIS research prototype has been implemented. 

In fact, the web service framework was applied into the GIS system design to extend the GIS functionality 

of the system to be reachable at any time without involving the end user to configure computer system and 

regardless of the users’ knowledge. GIS web services can provide server-hosted spatial data and GIS 

functionality in the form of services and integrate them to easily develop a web-based interactive GIS 

interface to perform basic geo-processing tasks, such as address matching, spatial data visualization, and 

performing various spatial analysis including hotspot analysis, without maintaining GIS tools or the 

associated spatial data on local computers. In this section, the procedure of implemented web-based GIS 

prototype is described and illustrated.  

5.2.1 User Interface (Front-end) 

A user interface (UI) includes two different components: mobile GIS app and web-based GIS interface. To 

develop mobile GIS app, an Android studio environment, which is built on JetBrains3 IDE (Integrated 

Development Environment), was utilized. The developed mobile app had various functions provided as 

web services, including detecting and reporting road surface anomalies from mobile sensors, capturing and 

transferring geotagged images, and navigating users to their desired places. The process of the road surface 

                                                           
3 https://www.jetbrains.com/ 
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anomaly detection can be run in the background concurrently with the daily-required navigation 

functionality which road users rely on in their daily life. Google Maps SDK for Android application was 

utilized to provide a base map services provided by Google Maps and other GIS functionalities, such as 

navigation service and address matching. In addition, the Google Maps SDK provides a wide variety of 

mapping interactions besides displaying Google Maps tiles, including panning, zooming, adding markers 

on the map, and response to map gestures. The developed mobile app as described in Chapter 4 was 

modified in order to be runnable as a background service of the developed mobile app. In addition, to 

capture and report geotagged images from existing road surface anomalies, another background service was 

developed to handle the users’ requests for activating camera sensor in order to capture geotagged images 

and transfer them to the central server for data processing and visualization.  

This mobile app was developed in such a way that the intensive functions, including accessing sensor data, 

processing sensors data, capturing geotagged photos and data transferring performed asynchronously in 

different threads (multi-thread processing concept) of the smartphones in order to minimize the processing 

intensity and the battery usage. For instance, the developed service for detecting road surface anomalies 

from smartphone sensors, which was a long-running, data-intensive operation, is carried out in different 

threads to increase the speed and efficiency of the service and prevents any possible crashing or freezing 

caused by this intensive processing on the UI thread. 

Moreover, to enhance the performance of the mobile app and reduce the network usage for data transferring 

in order to be more suitable for crowdsourcing purposes, a novel data structure and communication 

technology was employed. GeoJSON, which is a lightweight data-interchange format comparing to the 

Geography Markup Language (GML) and Keyhole Markup Language (KML) (which both have XML 

(Extensible Markup Language) formats) which ultimately results in reduced data file sizes, was utilized for 

required data storage or transferring (between multiple developed asynchronous services and central web-

server). GeoJSON’s lightweight data size allowed the system to have faster loading time for high volumes 

of data and its simplicity of data structure facilitated the parsing process for geometry data and their 
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attributes, leading to the most suitable data structure to use for the mobile app which was a part of the road 

surface monitoring system. Figure 5.5 presents an example of GeoJSON data format. Representational State 

Transfer (REST) technology, which is a novel architectural style built based on HTTP, was employed for 

data transferring purposes. The REST technology is advanced compared to the regular Simple Object 

Access Protocol (SOAP) employed for data transferring by minimizing the bandwidth usage.  

 

Figure 5.5: The GeoJSON data file format template 

The web-based interface on the client-side was implemented as a simple web page application using Java 

Server Page (JSP). JSP is a server-side programming technology that has been widely utilized to develop 

web-based applications in order to be dynamic and platform-independent. The JavaScript API for Google 

Maps services was utilized to retrieve the map tiles from Google Maps and handle different functionalities, 

including dynamic interaction with the map and required GIS analysis, such as heat map analysis and access 

to the attribute information of any spatial object. JQuery, which is a cross-platform, lightweight JavaScript 

library, was employed to handle the requests for querying data from the central server. JQuery also has the 

capability to parse the GeoJSON file format, which is retrieved from the server. In addition, HTML and 

CSS languages were employed to structure the overall web-based user interface.  
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5.2.2 Server Side (Back-end) 

The server-side component of the web-based GIS prototype integrated GIS web service and Servlet/JSP 

functions based on the framework of Java platform and Enterprise Edition (J2EE) infrastructure. The 

developed system was a distributed, platform independent system architecture that can be accessed by 

different devices including desktop computers, tablets, and smartphones in a network with different kinds 

of operating systems.   

The functions developed on the server-side mainly serve two purposes: 1) data integration that integrates 

incoming road surface anomalies detected from multi-time surveys and 2) data query that processes the 

data requests from web-based GIS interface and mobile app. Table 5.1 lists all the functions developed on 

the server-side, with brief descriptions. Functions 1-6 are triggered in sequence when the newly detected 

road surface anomaly information was reported from the mobile app. 

Table 5.1: The developed functions on the server-side 

Functions Descriptions 

Road surface anomaly classification 
To classify incoming detected road surface 

anomalies from mobile app 

Google map API service request and response 

handler 

To perform required GIS processing (e.g., 

obtaining road ID and snapping to the road) 

Store/query detected road surface anomaly To store/query classified road surface anomalies 

Cluster assignment process 
To assign new detected anomalies to existing 

clusters 

Store/query formed clusters 
To discover any possible formed clusters from the 

previous road surveys 

Road surface anomaly integration To integrate anomalies grouped in a cluster 

Store/query geotagged images To Store/query geotagged images 

 Google Road API was utilized to perform anticipated GIS functionalities. For example, road segment 

information such as road segment’s ID is retrieved from the API to label each road surface anomaly 

according to the road segment where it was detected. Also, the API provides the functionality to snap the 
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location of captured geotagged images to the most probable location on the surface of the road with respect 

to their captured locations, since the geotagged images were primarily captured from off-street locations 

such as side-walks. 

5.2.3 Database 

MongoDB asynchronous Java Drive was utilized to handle the storing, updating, or querying tasks in the 

database. As described in Section 5.1.3, MongoDB uses JSON-like file format for storing and retrieving 

data. Figure 5.6, Figure 5.7, Figure 5.8 and Figure 5.9 present examples of data schema used for the 

implemented collections, including detected road surface anomaly collection, geotagged images collection, 

integrated road surface anomaly collection, and formed clusters collection, respectively. Table 5.2, Table 

5.3, Table 5.4 and Table 5.5 summarize the description of all fields within each collection of the four 

collections listed above.   

 

Figure 5.6: An example of the GeoJSON data schema format for storing detected road surface anomalies 

 

 

 

{ 

    "_id":{"$oid":"5ae6012e0f2d9997d8a56be0"}, 

     "location":{"type":"Point","coordinates":[{"$numberDouble":"43.7981592"},{"$numberDouble":"-79.3699985"}]}, 

      "Speed":{"$numberDouble":"17.1805706"}, 

       "Bearing":{"$numberInt":"170"}, 

       "Accuracy":{"$numberInt":"10"}, 

       "LinAccValue":{"$numberDouble":"3.900362385"}, 

       "StdNormal":{"$numberDouble":"0.97808711"}, 

      "StdEvent":{"$numberDouble":"1.112968534 "}, 

      "V":{"$numberDouble":"4.773311642 "}, 

       "Probability":[{"$numberDouble":"4.643817288711917e-    11"}, 

{"$numberDouble":"0.9934235240152408"},{"$numberDouble":"0.006576475938321099"}], 

       "PlaceId":"ChIJdfS6ky_T1IkRJfQMdUi9Ick", 

         "TimeOfDetect":"21/03/2018 23:19:02" 

} 
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Table 5.2: The description of the data schema used for storing detected road surface anomalies 

Field Data type Description 

_id Object ID Generated by MongoDB and is unique for each record (object I.D.) 

location Geometry The geographic location of the detected road surface anomaly 

speed Double The speed of moving direction of the vehicle in the time of detection 

Bearing Integer The bearing of moving vehicle in the time of detection 

StdNormal Double The standard deviation value of the normal road condition 

StdEvent Double The standard deviation value in the event period  

V Double The computed vertical component value according to the Equation 2 

Probability 
Array of 

Doubles 

The probability distribution of the classified road surface anomaly 

PlaceId String The road segment I.D. related to the detected anomaly retrieved from Google Road API 

TimeOfDetection Date The time and data of detection 

 

 

Figure 5.7: An example of the GeoJSON data schema format for storing geotagged images  

Table 5.3: The description of the data schema used for storing the geotagged images 

Field Data type Description 

_id Object ID Generated by MongoDB and is unique for each record (object I.D.) 

location Geometry Geographic location of the captured image 

Snplocation Geometry The snapped location of the captured image (on the surface of the road) 

TimeOfCapture Date The time and the data of the captured image 

Image_name String The local name of the uploaded image which stored on the server 

 

 

Figure 5.8: An example of the GeoJSON data schema format for storing integrated road surface anomaly 

{" 

    _id":{"$oid":"5b1069cd70142904a4524f46"}, 

    "location":{"type":"Point","coordinates":[{"$numberDouble":"43.794177999999995"},{"$numberDouble":"-79.38604736111112"}]}, 

    "Snplocation":{"type":"Point","coordinates":[{"$numberDouble":"43.79419321053428"},{"$numberDouble":"-79.38592236819571"}]}, 

     "TimeOfCapture":"Sun May 13 12:59:44 2018", 

      "Image_name": "IMG_20180531_181833.JPEG" 

} 

{ 

"_id":{"$oid":"5b181d7c701429c9ecf7e485"}, 

"Integlocation":{"type":"Point","coordinates":[{"$numberDouble":"43.79277286"},{"$numberDouble":"-79.3919411"}]}, 

"NoVisit":{"$numberInt":"4"}, 

"IntegratedProbablity":[{"$numberDouble":"0.012282717"},{"$numberDouble":"0.451373978"},{"$numberDouble":"0.140730936"},{"$numberDouble":"0.39

5612369"}], 

"TimeOfIntegrated": “2018-03-30 23:24:43.000" 

} 
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Table 5.4: The description of the data schema used for storing integrated road surface anomaly 

Field Data type Description 

_id Object ID Generated by MongoDB and is unique for each record (object)  

Integlocation Geometry The geographic location of the cluster (centroid’s location)  

NoVisit Integer The number of times which the anomaly has been detected (or visited) 

IntegratedProbability Array of 

Doubles 

The probability distribution of the integrated road surface anomalies 

TimeOfIntegration Date Date and time in which the integration process was applied 

 

 

Figure 5.9: An example of the GeoJSON data schema format for storing formed clusters 

Table 5.5: The description of the data schema used for storing formed clusters 

Field Data type Description 

_id Object ID Generated by MongoDB and is unique for each record (object) 

Integlocation Geometry The centroid location of the cluster which calculated by taking average of the geographic 

locations of all members within the cluster 

MemOfCluster Array of 

object ID 

Array of Object IDs associated with the cluster’s members. These I.D.s are similar to the 

anomalies’ I.D.s stored in the detected road surface anomalies collection (which used for 

anomaly’s information retrieval) 

5.3 Implementation Results 

A web-based GIS research prototype with a simple and intuitive user interface was implemented that would 

enable any user without GIS background to use the system with minimal instructions. The user interface 

was composed of two different components: Android-based GIS mobile app and a web-based map GIS 

interface. 

5.3.1 User Interface (Mobile GIS Application) 

Figure 5.10 illustrates the main interface of the developed mobile application, in which base map tiles are 

provided by Google Maps API. The following briefly introduces all functions that can be accessed through 

this interface, together with illustrating screenshots.   

{ 

"_id":{"$oid":"5ae6012e0f2d9997d8a56bea"}, 

"MemOfCluster":["5ae6012e0f2d9997d8a56bea","5ae601570f2d9997d8a56c43","5b09892f70142988cc536be8","5b09b72b7014292df4495579","5b09b859701

4292df4495e2c"] 

} 
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Figure 5.10: The main interface of the developed Mobile GIS application and its functionalities 

 Road surface anomaly detection from smartphone sensors  

An on-click GUI (Graphical User Interface) button was implemented to handle the start/stop service 

request from users (“CLICK TO START DETECTION” and “CLICK TO STOP DETECTION”). 

By clicking on the “CLICK TO START DETECTION” button, the developed detection service 

starts the processing in the background. By starting the service, a popup message is triggered to 

notify the users which of the service is started and in the meantime the GUI button automatically 

changes to “CLICK TO STOP DETECTION” to handle the requests for stopping the service 

whenever the user needs to stop the process (see Figure 5.11a). The “CLICK TO STOP 

DETECTION” button stops the service and the button changes back to the “CLICK TO START 

DETECTION” status automatically (see Figure 5.11b). The information about the road surface 

anomaly detected from this service are either sent to the server if the device has access to an internet 

connection or stored locally on the internal storage of the device if the device dose not have access 

to the internet connection. The stored files are sent to the server automatically every time the device 

connects to an internet connection.  

This button starts/stops the 

road surface anomaly 

detection function 

This search menu bar 

designed for routing and 

navigation purpose 

The current location of 

user 

This button actives the 

camera sensor to capture 

the geotagged photo 
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Figure 5.11: (a) The screenshot of the developed mobile app when the service for detecting road surface 

anomalies start processing, and (b) the screenshot of the developed mobile app when the service for 

detecting road surface anomalies stop processing 

 Geotagged photographs  

An on-click GUI (“TAKE PIC”) button activates the camera sensor to take geotagged images. After 

the device captures the photo, users can review the captured image before reporting. The geotagged 

images either be transferred to the server if the device has accessed to the internet or stored locally 

on the internal memory of the device if the internet network is not available. The locally stored 

geotagged images are then sent to the server every time when the device has access to an internet 

connection. This process is performed automatically without any user interaction.  

 Routing  

The developed mobile app has an integrated routing facility that leverages the functionality of the 

mobile application (Figure 5.12). The “Address Search Menu” bar is implemented to help users to 

search and find their interested locations or places by typing either the address or the place name. 

This geocoding service, which is provided by Google Maps API, finds the best route considering 

the shortest path and minimum traffic congestion (i.e., minimizing the cost) between the user’s 

a b 
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current location and users’ selected location. The routing function also provides turn-by-turn 

directions to guide users to their desired destinations.  

 

Figure 5.12: The screenshot of the mobile app showing the place search functionality  

5.3.2 Server Side (Web-Map portal) 

Figure 5.13 illustrates the main interface of the developed web-based GIS interface and its associated 

components (functions).  
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Figure 5.13: The screenshot of the developed web-based GIS interface 

As shown in Figure 5.13, the web-based GIS interface shows the base map tiles (road network) provided 

by Google Map API. The base map also can switch to different other base map layers provided by Google 

Map API such as satellite map or terrain map. The available zoom and navigation functions enable users to 

navigate the map dynamically. The web-based GIS portal also includes a GIS tool panel which facilitates 

users to toggle (turn on/off) between different layers of events overlaid on the base map. The developed 

web-based GIS interface also has following functionalities: 

 Displaying Symbolized Spatial data 

Different types of events are symbolized by different types of markers in order to illustrate them 

dynamically (see Figure 5.14). For example, the road surface anomalies detected from the 

smartphone sensors are symbolized by (  ), the integrated road surface anomalies are symbolized 

by ( ), and the captured geotagged images are symbolized by ( ). The reason of the biases that 

exist between overplayed events and the base map’s road network could be explained by the 

Address location finder 

(geocoding) 

Base map view Displaying the location of detected, integrated, 

and geotagged photos of road surface anomalies  

Temporal query search GIS tool panel  

Scale bar, zoom level controller  

Switching base map 
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difference of the Google Maps framework and the framework which the GPS sensor of the 

smartphone devices in which such an issue can be solved by map matching technique. 

 

Figure 5.14: Utilizing different symbols to illustrates different types of events  

 Accessing Attribute data 

The attribute data of each event can be accessed by clicking on each marker that represents an 

event, including geotagged image, detected road surface anomaly from any user and integrated road 

surface anomaly. By clicking on each data event, a pop-up window is displayed to show the relevant 

attribute information for each data event. Table 5.5 summarizes the attribute data displayed for each 

data event. 

Table 5.6: The attribute data describing each data event 

Data event Attribute data 

Geotagged image Geographic location, time of capture 

Road surface anomaly Geographic location, probability distribution, time of detection 

Integrated road surface anomaly Geographic location, probability distribution, time of last visit, 

number of visits 

  

Geotagged photos 

Integrated anomaly 

Detected anomaly 

from users 
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Figure 5.15: Representing the pop-up windows which contain the attribute data for each data event 

 Geocoding Search 

This tool allows the transformation of the address name or place name into the coordinates of the 

interested locations (geocoding process) and shows them on the map. The implemented geocoding 

search menu within the web-based GIS prototype allows user (i.e., public or authorities) searches 

for any interested location or area. Figure 5.16 shows the results for locating an interested location 

(Ruddington Park) with its surrounding road segments. 

 

Figure 5.16: The geocoding result for Ruddington Park and its surrounding road segments 
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 Heat map generation 

The heat-map tool embedded in the tool panel of the developed web-based interface allows for 

generating weighted heat maps for better visualization of the detected road surface anomalies by 

considering not only the level of concentration of the spatial distribution of the detected road 

surface anomalies, but also by considering level of severity (discomfort level) of each detected 

anomaly. Figure 5.17 shows the generated heat map from detected road surface anomalies (from 

the third phase of data collection). The generated heat map indicates that there were more defective 

areas (i.e., detected road surface anomalies) along the Cummer Avenue than the other surveyed 

road segments. This is due to the congestion of detected road surface anomalies with a higher level 

of severity along Cummer Avenue. Therefore, the heat map analysis can facilitate the monitoring 

of the road surface condition by generating the hotspot areas.   

 

Figure 5.17: The generated heat map based on the detected road surface anomalies 

 Temporal query 

To enhance the query option of the data event, a time-range tool panel was implemented to enable 

users to define any desired time range in order to query data events. Further, this tool has some 

predefined time ranges such as, last 30 days, last 7 days, today, and yesterday to reduce and simplify 

the user’s interaction for choosing time ranges. By defining any time range, the web-based GIS 

interface sends an appropriate request to the server to query the data events based on the defined 
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time range and visualize the results on the map. Figure 5.18 shows the time-range tool panel for 

selecting any desired time range from user input. 

 

Figure 5.18: The implemented time-range tool panel to select any desired time range to query data 

5.4 Discussion 
 

This chapter presents a web-based GIS decision support prototype in the field of road surface monitoring. 

The purpose of the developed platform is to assist authorities (such as municipalities, ministry of 

transportation, or any decision maker) in monitoring road surfaces conditions and support them through 

their decision-making for the purpose of road surface maintenance. In addition, this system provides a 

participative platform for citizens to assist their communities for monitoring road surface conditions with 

minimal cost. Road surface condition data can be monitored and stored on the central server by leveraging 

on the broad coverage of the cellular mobile networks.  

The developed web-based GIS prototype had three major components: client-side, server-side and database. 

The client-side consists of an Android based mobile app and a web-based GIS interface. The mobile app 

has two major functions: detecting and reporting road surface anomalies from smartphone sensors in a 

moving vehicle and capturing geotagged images by user inputs. The web-based GIS interface was 

developed to query and visualize the road surface anomalies based on user’s interests. The developed web-

based GIS interface is an intuitive and efficient application, which enables non-specialist users to operate 
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the system without any additional training or GIS background knowledge. The developed interface is a 

web-based and functions on any network devices with various operation systems. The server-side 

component of the developed web-based GIS prototype aims to collect and integrate road surface anomalies 

from various users. The developed spatiotemporal database model also aims to manage the collected and 

integrated road surface anomalies in spatiotemporal domain.  

Web-based GIS development faces new challenges such as technology innovations, big-data transfer rates, 

GIS analysis of massive amounts of data and non–professional consumers (Alesheikh et al., 2002). The 

development of the web-based GIS prototype has taken into account some of these challenges by leveraging 

on web-based GIS architecture and strategies such as minimizing both client-side and server-side 

processing using Google Maps cloud computing and reducing the volume of transferred data between 

clients and server by utilizing GeoJSON file format and RESTful technology for data transferring. 

GeoJSON, which is a lightweight data-interchange format, was utilized, resulting in faster system load time 

for high volumes of data and faster parsing process for geometry data and their related attributes. Moreover, 

RESTful web services technology was employed for data communication between clients and server, which 

helps reduce the bandwidth usage substantially. 
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Chapter 6 Conclusions and Future Work 
 

6.1 Conclusions 

As described in Chapter 1, substantial efforts have been made to implement various methods to detect road 

surface anomalies using data collected from smartphone sensors. However, these approaches continue to 

face certain challenges. For many threshold-based approaches, the way the threshold being determined still 

remains unclear. In addition, those methods based on either supervised or unsupervised learning require a 

large amount of data to train their detection models. Therefore, a hybrid approach, which can continuously 

detect and distinguish various road surface anomalies using real-time data streaming from smartphone 

sensors and other geographic data, was developed. Sensor data were first being smoothed and reoriented to 

allow smartphone users to have more freedom, as well as to increase the accuracy of detection. Ideally, the 

approach should be self-adapting and self-learning, capable of reconciling itself to any platform, dynamic 

behaviors of different vehicles, and different road surface conditions.  

Data collection and integration are the key components of any intelligent transportation system. This thesis 

research proved that the effectiveness of the road surface monitoring system could be substantially 

improved using crowdsourcing techniques. Data aggregation on the central server not only increases the 

accuracy of the entire system by data classification and integration, but also provides further services such 

as, driver warning system of upcoming road surface anomalies and notifying government agencies about 

the current road surface conditions for potential maintenance and rehabilitation. In fact, as ascribed by the 

significant increase in the number of smartphone holders and use of mobile devices, continuous monitoring 

and reporting of events such as road surface anomalies can be reached by on-road users, including the public 

and transit drivers. The main contributions of this thesis research include the following: 
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1. Developed and tested a near real-time road surface anomaly detection approach for road 

surface monitoring.  

A hybrid approach, which can continually detect and classify different road surface anomalies 

from the real-time data streams obtained from smartphone sensors, was developed (which was 

the improved version of an existing approach). Such an improved version of the developed 

approach is fully automatic without any user interaction and offers freedom of usage to 

smartphone users in terms of phone placements. This thus increases serviceability and detection 

rate. In fact, the developed approach is self-adapting and self-learning so that it can reconcile 

itself to any platform, and dynamic behaviors of different vehicles and road surface conditions. 

In addition, based on the developed approach, a free Android-based mobile phone app was 

developed. The developed mobile application reduces user interaction during the detection 

process, which is a prerequisite for developing any public participation application. That is, the 

complete process of detection is performed automatically without any human interaction. To 

ensure the efficiency of the proposed approach as a mobile app, three different case studies 

were conducted. The results indicated that the developed mobile app is capable of detecting 

road surface anomalies in different scenarios, including different device orientations, using 

various vehicles and different speeds, with reasonably high accuracy yielding up to 80%. 

2. Developed and tested a probabilistic-based crowdsourcing method for road surface 

anomaly integration. 

To integrate the detected road surface anomalies from various road users in spatiotemporal 

domain, a probabilistic-based crowdsourcing method was developed to cluster and integrate 

multiple detections. The method considers both spatial and temporal characteristics of the 

detected road surface anomalies. For example, the location uncertainty of the detected 

anomalies due to poor location information data was considered in data integration process. In 

addition, the dynamic changes of the road surface anomalies are also considered. The outcomes 

from the developed probabilistic-based data integration method justified the efficiency of the 
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proposed approach for clustering and combining multiple detections from various users for 

road surface anomaly detection using smartphone sensors. Experimental results demonstrated 

that the drastic improvement of road surface anomaly detection rate could be achieved after a 

few rounds of surveys, with an improvement ranging from 5 to 20%. 

3. Developed and tested a web-based GIS prototype for visualizing and monitoring road 

surface anomalies in real-time.  

The developed web-based GIS prototype provides an efficient means for monitoring road 

surfaces with the following advantages. Firstly, the hosted spatial data (reported road surface 

anomalies or geotagged photographs) and GIS functionalities can be accessed and integrated 

to meet the practical need in the process of road surface monitoring system. Secondly, the 

prototype system is accessible anywhere. The web-based GIS service not only makes the 

system widely available through the internet, but also delivers the accurate georeferenced data 

for the public and authorities, including municipalities and transportation authorities dealing 

with planning to improve the driving comfort and road safety. Thirdly, the prototype system is 

a spatiotemporally enabled system for querying, analyzing and visualizing spatiotemporal data 

in a real-time mode. While the road surface conditions have dynamic characteristics, the 

developed web-based GIS prototype can deal with the space-time characteristics, which is 

critical in this type of application. 

The participatory web-based GIS prototype can be beneficial to both authorities such as ministry of 

transportation or municipalities to monitor, improve and maintain road surface conditions with a low cost 

by using road user supplied data. In the City of Toronto, traditionally, citizens can report potholes by filling 

up an online form, calling 311 (the service line of the City of Toronto), or sending emails to authorities 

reporting the exact location of identified potholes. However, these reporting methods require considerable 

human interactions and may lead to faulty reports, which are costly for communities.  
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However, the developed web-based GIS platform facilitates reporting and monitoring of road surface 

anomalies since it is fully automated and needs a minimum level of human interaction. For instance, drivers 

can run the developed app on their smartphone to help detect road surface anomalies from smartphone 

sensors without any human interaction, or they can report potholes by capturing geotagged images and 

automatically report them for further inspections. Pavement officers can review the reported geotagged 

images from road surface anomalies. The integrated road surface anomalies detected from multiple road 

users through the developed web-based GIS interface in order to measure the severity level of the anomalies 

before dispatching the repair crews for maintenance purposes. In fact, the developed platform can 

substantially save time and resources for authorities dealing with road surface maintenance.  

Furthermore, drivers can be beneficial from the system by receiving alerting them to oncoming potholes in 

future. Severe potholes can cause major damages to the vehicle, such as tire puncturing or suspension 

system failures. Road users can use the developed application to serve their daily navigation needs and to 

simultaneously notify them of any potential severe potholes (which caused driving discomfort) before 

approaching them.  

6.2 Future Work 
 

The research presented in this thesis provides a crowdsourcing-based and web-based GIS platform for road 

surface monitoring. Despite the considerable improvement in detecting and monitoring road surface 

anomalies from smartphone sensors, the results are not purported to be the last word in the subject of 

crowdsourcing techniques for the road surface monitoring using smartphone sensors. The developed 

approach has certain limitations that can be further investigated in future research. Several potential areas 

for future work are listed as follows: 

Integration of other geographic data: Some of the detected road surface anomalies are caused by 

manholes, catchment basins, speed bumps and road joints, which are inevitable on every road surface. These 

anomalies usually generate similar patterns of signals generating by other types of road surface anomalies, 
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such as cracks, potholes and bumps. If the map data storing all types of manholes, catchment basins, speed 

bumps and road joints are available, these undeniable road surface features can be either filtered out or 

treated distinctly from other types of anomalies.  

Map Matching: Due to the poor quality of GPS data derived from the smartphone sensors, and the need 

to acquire more precise location of detected road surface anomalies a straight-forward averaging approach 

was employed in this study. However, map matching techniques, which have been investigated by many 

researchers, such as Kim (1996), Kim and Kim (2001), Quddus et al. (2003), Yuan et al. (2010), 

Brakatsoulas et al. (2005) and Greenfeld et al. (2002), can be utilized to reduce location uncertainties and 

to precisely associate the detected locations to the surface of the road network. This method is more robust 

and accurate comparing to the averaging approach, which can be potentially employed in order to associate 

the detected location of road surface anomalies suffered from location uncertainty to the most probable 

location on the surface of the roads. To perform the map matching, for instance, the geometrical similarities 

between series of detected locations and the digital map of the road networks can be calculated in order to 

correlate the detected location from GPS sensor of the smartphones to the actual location on the surface of 

road networks. However, this approach is highly dependent on the quality of road map data in order to 

perform accurately. 

Reliability of participators: The reliability of different users’ reports is critical for every mobile 

crowdsourcing system. However, in this research, the reliability of detection from different users who are 

participating were not considered as a part of the data integration. In fact, different contributors may have 

discrepancies caused by various data qualities generated by various devices, which have different sensor 

properties and also other conditions, such as different user preferences for placing their smartphone while 

they are driving (Ouyang et al., 2016). As a result, future direction can be emphasized in developing a 

filtering process to select and propagate the data from trusted users through building the trust metrics (Massa 

and Avesnai, 2004).  
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Sensor fusion: Other smartphone sensors, such as camera, gyroscope and microphone also can be 

integrated to improve the accuracy of detection. For example, in this study, the captured geotagged images 

from the developed mobile app are only stored on the developed database for verification. However, by 

developing an approach to detected and classify captured geotagged images or videos (i.e., vision-based 

approach) and integrate the results with the proposed detection approach can improve the detection rate. 

Vision-based approaches were extensively evaluated by Koch et al. (2013), Jog et al. (2012), Huidrom et 

al. (2013), Lokeshwor et al. (2013), and Yan et al., (2018). Gyroscope also is another sensor which can be 

utilized to detect road surface anomalies. For example, Yagi et al., (2010) and Douangphachanh et al., 

(2014) attempted to combine gyroscope and accelerometer sensor data and processed them in frequency 

domain to increase the detection accuracy using a data fusion technique.     
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