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ABSTRACT

TRAJECTORY BASED MARKET MODELS WITH OPERATIONAL ASSUMPTIONS

Master of Science 2016

Andrew Fleck

Applied Mathematics

Ryerson University

Mathematical finance makes use of stochastic processes to model sources of uncertainty in

market prices. Such models have helped in the assessment of many financial situations. These

approaches impose the stochastic process a priori which is then fitted to data. Hence, unchecked

hypotheses can creep into the formalism and observable phenomena plays little role in building the

model fundamentals.

We attempt to reverse the procedure in order to include presumably more realistic price move-

ments. Operational assumptions are used to construct a trajectory set relating discrete chart prop-

erties with investors’ portfolio re-balancing preferences. By identifying features of these trajectories

we can construct models that capture different sources of risk and use a geometric procedure to

produce replication bounds for a contingent claim.

Why a future unfolding chart fails to belong to the proposed trajectory set is testable. A

preliminary risk-reward analysis based on this is also developed.

iii



ACKNOWLEDGEMENTS

Many thanks to my two supervisors Dr. Sebastian Ferrando and Dr. Alexey Rubtsov for their

discerning editing and guidance. Also, thanks to my officemate and colleague Nolan Nichols for

his critical but honest take on my modelling ideas.

iv



TABLE OF CONTENTS

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.0.1 Trajectory Based Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.0.2 Operational Models Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Operational Models and a General Trajectory Based Framework . . . . . . . . . . . . . . 12

2.1 Operationalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 The Operational Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Assumptions on Charts and Investors . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Main Trajectory Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Model Agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Modelling Considerations: Global vs. Local Variables . . . . . . . . . . . . . . . . . 22

2.5.1 Local Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.2 Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.3 Connecting the Local and Global Views . . . . . . . . . . . . . . . . . . . . . 26

3 Implementing the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



3.1 Graph Theory Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Dynamic Programming and The Convex Hull . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Solving the Dynamic bounds: The Convex Hull Algorithm . . . . . . . . . . . 33

3.3 Grid Construction and Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 Complexity of Grid Construction . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Selected Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.0.2 Data Employed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Model 1: Worst Case Parameter Estimation and Risk . . . . . . . . . . . . . . . . . 39

4.1.1 Connections Between Investor/Chart Assumptions and Model Parameters . . 39

4.1.2 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Model 2: Observed Trajectory Features . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Model 2a: Local Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Model 2b: Local and Global Observations . . . . . . . . . . . . . . . . . . . . 54

4.3 General Discussion of Models and Conclusion . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 The Rebalancing (s) Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

vi



LIST OF FIGURES

3.1 An undirected graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Connections between δ and model parameters, FB data set . . . . . . . . . . . . . . 41

4.2 Connections between δ and model parameters, BIIB data set . . . . . . . . . . . . . 41

4.3 Worst case parameter estimation and prices for FB data . . . . . . . . . . . . . . . 44

4.4 Worst case parameter estimation and prices for BIIB data . . . . . . . . . . . . . . 45

4.5 Model 1 with FB data where mmax = 2, mmin = −2 . . . . . . . . . . . . . . . . . . 46

4.6 Example from FB data of a failure to match trajectories due to qmin too small.

Unfolding chart is dotted, model trajectory is starred. . . . . . . . . . . . . . . . . . 48

4.7 Upper hedging bounds with varying qmin and strike holding mmax constant . . . . . 49

4.8 Upper hedging bounds with varying mmin and strike holding qmax constant . . . . . 50

4.9 Risk estimation for FB Data set: individual and joint probability of failure to match

unfolding charts to trajectories given model parameters . . . . . . . . . . . . . . . . 50

4.10 Risk estimation for BIIB Data set: individual and joint probability of failure to

match unfolding charts to trajectories given model parameters . . . . . . . . . . . . 51

4.11 Risk and reward profiles in both data sets . . . . . . . . . . . . . . . . . . . . . . . . 52

4.12 Model 2a with FB data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.13 Model 2a with BIIB data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.14 Observed quadratic variation of observed data over option lifetime . . . . . . . . . . 55

4.15 Variation with bounds for FB, allowed variance is within the two triangular regions . 57

4.16 Model 2b bounds for FB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.17 Model 2b bounds for BIIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vii



List of Appendices

Appendix A: Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Appendix B: Convex Hull Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Appendix C: Matlab Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

viii



Chapter 1

INTRODUCTION

Modern mathematical finance relies on stochastic processes to account for the sources of uncer-

tainty which are present in market prices. Relying on such models, the existing literature has

shown how to successfully encode a rich and versatile array of financial situations ranging from

risk assessment, modelling of defaults and market bubbles as well as credit risk, just to name a few

financial phenomena that have been modelled.

Despite such happy situation, it is reasonable to speculate that the above approach may not

capture all possible sources of uncertainties or it may introduce unnecessary theoretical baggage.

Notice that a main input to the construction of a stochastic process is its probability distribution.

This construction assumes, in one form or another, some kind of stationarity, in particular a

multitude of 0-measure events are part of the formalism. That is, impossible events, according to

the stochastic model, make their way into the theory without financial justification and purely as a

result of formal mathematical constructions. The ensuing risk implicit in these assumptions could

be called (stochastic process) model based risk.

This model based risk can take different forms. For example the form of the underlying proba-

bility distribution is assumed to be ”well behaved” in the sense that it’s ultimately normal or some

modification therein. However some econometric studies ([3],[4]) have found it easy to reject the

Gaussian random walk hypothesis. Others have proposed that the discrepancy is large enough that

the standard models do not serve as a good approximation of the real world even with modifications

([5]).

Most problematic of these assertions of model risk is the idea that the real world underlying
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distributions have infinite second moment making the use of standard stochastic calculus tools

difficult if not impossible ([5], [4]). Attempts to remedy this appear to be unable to do so without

requiring exiting derivatives prices as an exogenous input ([6]). Naively this seems to undermine

the point of developing models in the first place.

There is a large amount of research dealing with the challenges of model based risk, e.g. the

stream of literature labeled ”robust modeling” (for recent contributions see [10] and [7]). Such an

approach is close to the spirit of our thesis in that the probabilistic assumptions are weakened (or

non existing). A goal is to incorporate uncertainty about the probability distribution as well as its

support (e.g. by taking into consideration non equivalent measures).

The main thrust of the present thesis illustrates, by example, a formalism that is centered on

a given set of trajectories and which does not rely on a stochastic framework. The idea is that,

trajectories besides being directly observable, carry useful financial information and hence it is

reasonable to model them directly (and not as a by-product of an stochastic process construction).

The approach is described in [8] to where we refer for any required details. The approach in [8] had

before now not been implemented in a practical way. Here we attempt to balance the accuracy of

the models produced by said approach over different time scales and implementation concerns.

The approach in this thesis additionally seeks to remedy a modelling issue separate from model

based risk alone. When discussing challenges to the standard approaches used by Mathematical

finance it is worth considering why hypothetical unchecked assumptions would have become so

pervasive. Alternative and presumably more realistic distributions may be difficult to simulate.

Additionally said distributions may not be well behaved enough to use the tools of stochastic

calculus.

A deeper issue may in fact be a philosophical one. The standard modelling philosophy of

Finance and Economics has been to discard the realism of assumptions in favour of the accuracy of
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model results compared to the real world [1]. While this approach is certainly a natural response to

the limitations of the subject (lack of controlled experimentation etc...), some ([2]) have challenged

that this leads to the creation of ”chameleon models”, toy models that are taken to be ontologically

true based on the accuracy of their results which are most likely over fit. In this thesis we add

to this discussion by asserting that an additional point to consider is the lack of variables in

mathematical finance that are operational; variables that can be defined through a measurement

process independent of the model.

The thesis is organized as follows. The next section provides a short description to the general

framework, any related material that we may need will be introduced at due time in the thesis. The

section following this will outline the methodology of modelling with operational variables, this will

be expanded on in the next chapter. Details and issues related to implementation will be handled

briefly in Chapter 3. Finally we will develop specific models and look at a preliminary risk-reward

framework before concluding.

1.0.1 Trajectory Based Models

The framework of the thesis is a discrete market model M =M(s0) = S × H, S = {Si} ∈ S is a

sequence of real numbers called a trajectory with S0 = s0 for all S ∈ S. H = {Hi} ∈ H a sequence

of functions acting on S representing the portfolio holdings H(S) = {Hi(S)} along S; we assume

Hi(S) = Hi(S0, . . . , Si). There is also an integer NH(S) representing the last portfolio rebalance.

Portfolio values for self financing strategies are given by

VH(i, S) = VH(0, S0, w0) +

i−1∑
K=0

Hk(S) (Sk+1 − Sk). (1.1)

The models are discrete in the sense that we index potential portfolio rebalances, Hi(S)→ Hi+1(S),

by integer numbers. Otherwise, stock charts and investment amounts can take values in general

subsets of the real numbers, data could flow in a time continuous manner and portfolio rebalances

3



could be triggered by arbitrary events without the need to be associated to a time variable.

The following conditional spaces play a key role. Given M, S ∈ S and k ≥ 0 fixed, set:

S(S,k) ≡ {S̃ ∈ S : S̃i = Si, 0 ≤ i ≤ k}.

The cardinality of these sets indicate the incomplete nature of the markets that we are introducing.

The analogue to the sets S(S,k) in stochastic models are, in general, sets of measure zero. Unless

specified otherwise, Z denotes a general function Z : S → R, pairs (S, k) or triples (S, k,H),

S ∈ S, k ≥ 0, H ∈ H will be referred as nodes.

The quantities V (S0, Z,M) and V (S0, Z,M), introduced below, are the usual super and sub

hedging prices defined in robust frameworks (e.g. [?]), respectively, for a contingent claim (function)

Z : S → R.

Definition 1.0.1 (Conditional Minmax Bounds). Given a discrete marketM = S ×H and a node

(S, k) define

V k(S,Z,M) ≡ inf
H∈H

sup
S̃∈S(S,k)

[Z(S̃)−
NH(S)−1∑

i=k

Hi(S̃)(S̃i+1 − S̃i)]. (1.2)

Also V k(S,Z,M) ≡ −V k(S,−Z,M). Set V (S0, Z,M) ≡ V 0(S,Z,M) and V (S0, Z,M) ≡ V 0(S,Z,M)

as well.

Definition 1.0.2 (Conditionally 0-Neutral). We say that a discrete market M is conditionally

0-neutral at node (S, k) if

V k(S,Z = 0,M) = 0.

For k = 0, the conditional 0-neutral property, which depends on S only through S0, will be referred

to as 0-neutral.

Properties relative to a given node will be referred as local; the following local definitions are

fundamental for the approach.
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Definition 1.0.3 (Local Conditions: 0-Neutral & Arbitrage-Free Nodes). Given a trajectory space

S and a node (S, j):

• (S, j) is called a 0-neutral node if

sup
S̃∈S(S,j)

(S̃j+1 − Sj) ≥ 0 and inf
S̃∈S(S,j)

(S̃j+1 − Sj) ≤ 0. (1.3)

• (S, j) is called an arbitrage-free node if

sup
S̃∈S(S,j)

(S̃j+1 − Sj) > 0 and inf
S̃∈S(S,j)

(S̃j+1 − Sj) < 0 (1.4)

or

sup
S̃∈S(S,j)

(S̃j+1 − Sj) = 0 = inf
S̃∈S(S,j)

(S̃j+1 − Sj). (1.5)

S is called locally 0-neutral if (1.3) holds at each node (S, j). S is said to be locally arbitrage-free if

either (1.4) or (1.5) hold at each node (S, j). A node that satisfies (1.4) will be called an up-down

node, and a node satisfying (1.5) will be called a flat node. A node that is 0-neutral but that is not

an arbitrage-free node, will be called an arbitrage node.

The next definition is the natural notion of arbitrage.

Definition 1.0.4 (Arbitrage-Free Market). Given a discrete market M, H ∈ H is an arbitrage

strategy if:

• ∀S ∈ S, VH(NH(S), S) ≥ VH(0, S0).

• ∃S∗ ∈ S satisfying VH(NH(S∗), S∗)) > VH(0, S0).

M is said to be arbitrage-free if H contains no arbitrage strategies.

Here are some main points to have in mind as background for our thesis. Under general

conditions on H, the following holds (proofs and details are in [8]):
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• If M is conditionally 0-neutral, then V k(S,Z,M) ≤ V k(S,Z,M) (Theorem 1.1 below). The

resulting interval can be interpreted as a price interval, for a claim Z, even though M may

contain arbitrage opportunities.

• If S is locally 0-neutral, then M is conditionally 0-neutral.

• The notion of 0-neutral market is a weakening of no-arbitrage that allows for rational prices

without any logical contradictions and with a basic financial supporting argument.

• A trajectory set S which is locally arbitrage-free guaranteesM to be arbitrage free. Such set

S is the trajectory analogue of a martingale process in a stochastic framework.

• Under 0-neutrality the sequence of projections Πk : S → R satisfy V k(S,Πk+1,M) = Πk.

Other martingale-like properties hold as well, e.g. an optional sampling theorem, in particular

V (S, Sτ ,M) = V (S, Sτ ,M) = S0, for a trajectory based stopping time τ .

Theorem 1.1. Consider a discrete market M = S × H, a function Z defined on S, S ∈ S and

k ≥ 0 fixed. Assume that for NH all H ∈ H are liquidated (i.e. Nk(S) = 0 ∀ S and k ≥ NH(S)).

If S × (H+H) is conditionally 0-neutral at node (S, k), then

V k(S,Z,M) ≤ V k(S,Z,M), (1.6)

in particular,

V (S0, Z,M) ≤ V (S0, Z,M).

For the present thesis, the above setting needs to be extended by incorporating other sources of

uncertainty besides the variable Si. This extra source of uncertainty will be denoted by W = {Wi}

which, in financial terms, will be considered to be an observable quantity. This is analogous to

moving from the natural filtration to an augmented filtration in the stochastic setting. The sequence

elements Wi are assumed to belong to abstract sets Ωi from which we only require to have defined
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an equality relationship. We provide some of the required notation and formal definitions. For

(s0, w0) fixed as well as given sets
∑

i,Ωi, we change the notation of the trajectory set from S to

SW , here are some details:

SW(s0, w0) ⊆ SW∞ (s0, w0) ≡ {S = {Si ≡ (Si,Wi)}i≥0 : Si ∈ Σi,Wi ∈ Ωi, (S0,W0) = (s0, w0)}.

Hi(S) = Hi(S0, . . . ,Si). (1.7)

SW(S,k)(s0, w0) ≡ {S̃ ∈ SW(s0, w0), S̃i = Si, 0 ≤ i ≤ k}. (1.8)

VH(k,S) = VH(0, (S0, w0)) +
k−1∑
i=0

Hi(S)∆iS.

In some of the models to be introduced in this thesis we will have Wi = Ti, where Ti will be

associated to transaction time ti. Such a case will give a two dimensional model with trajectory

components (Si, Ti). A three dimensional model will also be considered with trajectory components

(Si,Wi, Ti) with Wi associated to sampled quadratic variation. So, we will be abusing the notation

as follows Wi = (Wi, Ti) where the Wi in the left hand side is our abstract trajectory component

introduced in the general formalism and the Wi in the right hand side will be sampled quadratic

variation.

1.0.2 Operational Models Methodology

Placing emphasis on a trajectory set is to be contrasted to a stochastic process approach where the

support of the process is a by-product of specifying its law in the first place. As already indicated,

the expectation is that the trajectory set, being a direct input to modeling, will reflect useful
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features of financial prices. Therefore, construction of trajectory sets is a major undertaking from

this new point of view.

The present thesis puts forward a general approach to trajectory set construction with the intent

to model a single stock chart (chart: observable numerical value of a given financial variable). We

denote chart values by x(t). The approach followed is general but it is here developed by example,

the remaining of this introduction describes in general terms the motivations and general features

of the approach.

From our point of view, the unjustified use of a stochastic process as mentioned above is ques-

tionable. A main problem we see, is that unobservable variables are linked to chart values by

imposing an evolution equation. As a side remark we mention that this procedure is in widespread

use in modern stochastic modeling via stochastic ordinary or partial differential equations. The

reliance on such equations is not something that we dispute, our point is that the model introduces

variables that do not have a well defined empirical meaning. An example of such issue is given by

“volatility”; in practice there are several ways of measuring volatility providing non comparable

values. Despite this, such a notion gets related to a specific feature of a stochastic process model.

It is reasonable to conclude that ambiguities and confusion spreads due to the fact that the model

dependent notion of volatility may not reflect entirely, or consistently, properties implied by the

different ways of measuring volatility ([9]). The analogous situation in physics is the measuring of

the diffusion coefficients for a Brownian particle where well defined physical situations give con-

sistent observational results backed up by detailed physical knowledge of the phenomena. More

generally,one could compare the situation with how definitions and a minimal choice of fundamen-

tal variables is done in physical theories, in particular basic concepts and measurable quantities in

thermodynamics see [13], [14] and [11].

Of course, the fact that volatility has not established itself as a directly observable quantity (in
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which case it would have a meaning with lesser dependence of a specific stochastic process model),

gets patched by using statistical theory. This theory provides results indicating how to estimate

various parameters of the stochastic model, in particular how to evaluate volatility. Without getting

into a debate of this delicate topic (the proper use of statistics in science), we just mention that

the statistical results may be of dubious applicability and may also complicate the analysis of the

validity of the models put forward.

The above arguments are meant just to serve as preamble to operational models for charts. We

provide some of the fundamental ideas as a list of methodological steps:

(1) We prescribe how investors interact with charts and other observable variables collected into

a vector valued variable denoted generically by w. So, implicitly, one concentrates in a specific

class of investors. The process leads to the availability of chart samples x(rl) as well as w(rl)

samples (along a sequence of x-dependent times {rl}). As the values w(rl) are obtained for

a given x we could use the notation w(x, r) but w can depend on other financial variables as

well.

(2) Those samples are used by the investor to monitor the chart changes and decide when to

rebalance her portfolio. The rebalancing times are denoted by ti with ti ∈ {rl} and are not

set apriori (i.e. ti = ti(x,w)), namely their values depend on the values of the samples.

(3) We call the above setup operational as the chart samples are obtained by an investor operating

on a set of financial variables. The main implication is that all variables and parameters used

have an empirical/operational meaning.

(4) The discreteness of chart samples as well as constraints on portfolio rebalances on the part of

the investor introduces relationships between the sampled variables at rebalancing times ti.
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(5) One can also make assumptions in the form of relationships between the samples x(rl) and

w(rl) with the goal of further constraining the trajectory set.

(6) The full collection of relationships are used to define a trajectory set SW , with elements

S = {(Si,Wi)}, in a combinatorial way, i.e. all trajectories obeying the said relationships are

in SW by definition (as previously anticipated Wi could be a vector variable).

One then associates:

x(ti)→ Si and w(x, ti)→Wi.

A market model is then defined by M = SW ×H, where H is a set of portfolios.

The ensuing risk associated to modelM is given by the possibility that the samples x(ti), w(x, ti)

imply that the associated trajectory variables Si,Wi satisfy {(Si,Wi)} 6∈ SW .

Parameters appearing in operational models are estimated in a worst case way. This is a naive

approach but as operational models reflect a real setup, convergence of values as more data is

aggregated, is expected.

To compare the above described modeling approach to a conventional one we provide the follow-

ing explanation: assume one has a model for x(t), continuous time, and has a sequence of stopping

times τn one then obtains samples x(τn(x)). One can think that we are modeling directly the val-

ues x(τn(x)) (i.e. without stipulating the functions x(t) and the stopping times τn separately) by

prescribing objective/operational conditions leading to relationships among the sampled variables.

The fact that the conditions for obtaining the samples are objective is used for estimation and

having a well defined risk-reward interpretation of the resulting model.

Let us address a natural potential objection; it is customary that the “real” model should be

independent of investors preferences while we intent to define chart values Si that result from

investors interaction with sampled data. The implication is that the resulting chart model has a
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subjective component. The answer to this objection is that the model is objective as the values

(Si,Wi) are a conjunction of the chart moving in a certain way and the investor reacting in a

specified manner to such a change. Both of these events are objective as the former can be observed

(or not) and the second is operational (i.e. it is the performance of an action). Hence, it follows

that the resulting model does relate to a class of investors and it has an objective character as well.

One may also think in analogous terms to physical experiments, the investor, with its monitoring

and portfolio rebalancing is setting up conditions for experiments, the trajectory set being the set

of possible outcomes.
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Chapter 2

OPERATIONAL MODELS AND A GENERAL TRAJECTORY BASED

FRAMEWORK

Consider the following philosophical preliminaries. Assume for a moment that the sciences of ther-

modynamics and statistical mechanics does not in fact exist. How would one go about developing

it? The subject matter concerns the bulk properties of matter that we observe at the macroscopic

scale that do not depend on the specific atomic make-up of materials, e.g things that can be gen-

eralized across matter entirely. That rules out discussions of say hardness, stiffness, conductivity

etc... What remains are general properties of assemblages of atoms: temperature, pressure, volume

and mass.

All these things are easily understood on an intuitive level. But again, assuming no knowledge

of thermodynamics and it becomes clear that these concepts can be very poorly defined. A stove

top is more hot to the touch than a counter, an air balloon deforms more easily than a water

filled one, but is this how you would define temperature or pressure? How could you guarantee

a consistency of observation across different settings and experimenters? How would you perform

calculations with your observations? In order to avoid these complications one can resort to the

use of operational definitions

An operational definition is simply a way to define a quantity through the act of measurement.

For example, temperature can be defined by the way it is measured with a thermometer or mass

with a scale. This avoids the issue of consistency. Additionally by making these quantities treatable

mathematically, it allows us to operationally define more phenomenon that may not be directly

measurable, but whose existence is indicated by other effects (like heat in our thermodynamics
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example).

Once we have operational definitions we can perform experiments and develop mathematical

laws involving assemblages of operational variables in order to infer deeper truths about the uni-

verse. While this may seem exceedingly trivial consider an example of how this process can be

useful. Einstein observed that two operational definitions, the inertial definition of mass (mass

measured by measuring acceleration under a force) and the gravitational one (mass measured on

a scale) consistently gave the same value. By proposing a theory whereby the two were equivalent

he was able to derive the General Theory of Relativity.

While conventional probabilistic models of finance are not non-operational per se (as they easily

can be made to be). They are not developed with this view in mind and as a result we suggest there

is significant confusion when applying these models and attempting to extend them from general

principles. Our goal is then provide, by example, a way to define market models that minimizes

the use of theoretical probabilistic quantities and relies on operational definitions and assumptions

to build a trajectory set suitable for chart modelling.

Here we will proceed in the following way. First we will define an assemblage of operational

variables relating to the movement of a underlying tradable security and propose a general un-

specified model of their dynamics. Then we will consider a function on these variables modelling

a contingent claim. Finally we will propose a theory of no arbitrage on these variables and use

convex optimization theory to relate this to our price bounds.

2.1 Operationalization

Mathematical Finance usually proceeds under a standard collection of methodologies related to ap-

plications from Stochastic Calculus and optimization. Certain abstract principles like no-arbitrage

and risk-neutrality are used to justify the creation of stochastic models describing the evolution
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through time of a set of securities that serve as the underlying assets in a derivative. These models

are then fit to market data using various tools from probability to estimate the model parameters

such as the volatility and more rarely the drift.

This approach suffers from some key limitations. The underlying movement of prices is driven

by a complex and highly dynamic set of interactions between market participants who are them-

selves complicated to describe. The models then describing the underlying will then at best be

approximations. Related to this issue is the idea that the parameters of the models are unobserv-

able in a direct sense. Assuming a degree of accuracy in the models, one can still at best only

hope to estimate in a probabilistic sense model parameters from data. This latter issue is more

problematic for philosophical reasons.

In the current framework it is difficult to create operational models. As discussed earlier this is

unlike in say physics where one can define quantities operationally through measurement and ab-

stractly create theory describing relationships between state variables(temperature, speed, current,

weight etc...). Put another way using an example, how does one define operationally volatility?

Volatility can be thought of as the change in quadratic variation through time. Quadratic varia-

tion may be a good idealization in some markets, but it is not known when this will be the case.

Furthermore true quadratic variation as defined by a limit with respect to a time partition is itself

impossible to measure given that markets are discrete. Maximum likelihood estimation methods

are highly dependent on the choice of underlying model and have their own problems as a result.

It would be desirable then to find a way of defining operational variables that are observable with

which to construct models.

The rest of the chapter describes how to do this. First we will make realistic assumptions on

charts and investors and define an operational ”observed chart”. Secondly, using variables from

this setting we will construct the general model of a ”trajectory set”. Lastly we will show that
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under certain easily verifiable assumptions the observed chart will lie in the trajectory set.

2.2 The Operational Setting

2.2.1 Assumptions on Charts and Investors

Financial market data is inherently discrete. Stock quotes are often separated by seconds or minutes

as order books take in new orders and list completed trades in cycles and stock ticks usually restrict

listed price movements to a minimum. Furthermore most investors can’t continuously trade due to

losses from transaction costs and will only act on the market over a specific time horizon with the

idea that only moves of a certain magnitude can be captured then.

We seek to capture all this in the following setting. First we point out that there will be an

inherent granularity to the way investors view the discrete stream of data as it comes to them. We

assume that given a stock chart x(t) over some period of time [0, T ] it is a subset of all functions

f : [0, T ]→ {kδ0 : k ∈ N}.

Moreover given a specific investors preference, small movements will largely be ignored below a

certain threshold, δ. Realistically this will be much larger than the smallest possible price movement

δo. We can interpret this as the investor specific scale at which one views the market and samples

on accordingly. That is, any other price movements will be considered too small to be worth taking

into consideration and beyond that the investor will sample the market to gain information.

Sampling Times Therefore, we assume given a stock chart x(t) over some period of time [0, T ]

there is a sequence of dynamically sampled times {rl = rl(x)} such that:

δ ≤ |x(rl+1)− x(rl)|, 0 ≤ l + 1 < L, r0 = 0, rL = T (2.1)

Additionally we assume there is some minimum amount of time ∆ between sampling times
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corresponding to the time resolution of x(t) and a maximum amount of time before sampling again

τ . Specifically, τ ≥ rl+1 − rl ≥ ∆ and ∃K such that K∆ = T and rl ∈ {n∆ : n ∈ N}.

We will assume that there is a range of times an investor will sample before rebalancing his

hedging portfolio given by a parameter si = s(x, ti) ∈ [smin, smax]. This last assumption of an s

parameter comes from the fact that our investor will be acting over a finite period of time T and

would like to control the minimum and maximum number of transactions over that period.

Rebalancing Times Given a sequence {rl} satisfying (2.1) let there be a subsequence {ti} ⊆ {rl}

representing the possible rebalancing times where an investor will act on the market. We only

require that t0 = r0. We will obtain the following:

∆it = ti+1 − ti =

si−1∑
j=0

(rli+j+1 − rli+j) (2.2)

Chart Vales at rebalancing Times Given that the trajectory moves an arbitrary amount

∆ix = x(ti+1)− x(ti)

∆ix = x(rli+1
)− x(rli) =

si−1∑
j=0

x(rli+j+1)− x(rli+j) (2.3)

Realized Quadratic Variation Defining sampling quadratic variation as:

∆iw = w(x, ti+1)− w(x, ti) = w(x, rli+1
)− w(x, rli) =

si−1∑
j=0

(x(rli+j+1)− x(rli+j))
2 (2.4)

Note that si is the same value in (2.2),(2.3) and (2.4)

2.3 Main Trajectory Model

Having defined our variables operationally we wish to construct models describing possible observed

charts. In order to do this, we will need to mathematically define an abstract setting corresponding
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to the operational one.

Defining model parameters Given that we assume x(t) has the range {kδ0 : k ∈ N} and

ti ∈ {n∆ : n ∈ N} we can model the rebalancing price levels as Si = kiδo and Ti = ni∆ where ki

and ni are integers. In the same way, w(x,t) will have the range {j2δ2
0 : j ∈ N} and we can write

the realized quadratic variation at rebalancing times as Wi = jiδ
2
o .

Similarly we can model our investor assumptions as:

|∆iS| ≥ δ

τ ≥ |∆iT | ≥ ∆

(2.5a)

(2.5b)

Furthermore we will need some way of modelling an investor sampling the market as well as

rebalancing.

Ultimately we will want the correspondence Si = x(ti). So then momentarily ignoring the

distinction between sampling and rebalancing we get that x(rli+j+1)−x(rli+j) = (ki+j+1−ki+j)δo =

mjδo for some mj ∈ Z and similarly for (2) you could define some qj such that rli+j+1 − rli+j =

(ni+1−ni)∆ = qj∆. By definition we have that |x(rli+j+1)−x(rli+j)| must satisfy (1). As a result

we get that |ki+j+1 − kj+1|δo = |mj |δo ≥ δ. Say that z = δ/δo.

We can then define the relationships between our model parameters:

∆iS = (ki+1 − ki)δo =

si−1∑
j=0

mjδo

∆iW = (ji+1 − ji)δ2
o =

si−1∑
j=0

m2
jδ

2
o

∆iT = (ni+1 − ni)∆ =

si−1∑
j=0

qj∆

|mj | ≥
δ

δo
= z

(2.6a)

(2.6b)

(2.6c)

(2.6d)
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Model Hypothesis At this point, it is good to identify the source of the different hypothesis

on the models. We made some assumptions on a chart. Namely that it was a function that has

a range divisible by δo and a time domain divisible by ∆. We then made some assumptions on

an investor acting on these charts. Specifically we asserted that they will only sample information

from the chart after price movements of at least δ, before τ∆ time has passed. Finally we assumed

that there was a number of times the investor will sample before rebalancing his portfolio, s.

Clearly the new parameters mj and qj will be the key to determining the relationships between

rebalancing times. The hypotheses that govern them will identically specify models of this kind.

In later chapters we will discuss specific possible model hypotheses and their effects. For the time

being it is sufficient to describe the following set of integer sequences that is identically determined

by a set of model hypotheses involving mj and qj given by A and an investor specified range for s.

Conditional Set The conditional set,

NAo (Si,Wi, Ti) = {(mj , qj)
si
j=1|A is satisfied, si ∈ [smin, smax]} (2.7)

i.e NAo is a set of sequences of pairs of the form (mj , qj)
si
j=1 that satisfy the hypotheses of a

specific model. This is the set specified by a model describing the possible relative distribution of

points an investor will be able to rebalance at.

N.B given the assumptions on our sampling at rebalancing times we must minimally assume

that mj ∈ Z \ (−z, z).

For example, A may consist of the hypothesis:

A = {si = 1, |mj | = qj = 1, ∀j m2
jδ

2
o = σqj∆}

corresponding to a standard binomial model.
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Trajectory Sets Now that we have discussed the setting and defined the parameters and their

relationships we wish to unify these ideas into a discrete object with which we can build models.

Given the rules laid out by equations (2.5) and (2.6) we can imagine starting at an initial point

(So,Wo, to) and moving to a new point (S1,W1, T1) such that (2.6) are satisfied. Furthermore we

could do this again at our new point and so on until we would have a long sequence of points.

This ”trajectory” could be bundled together into a ”trajectory set” and would map out all possible

futures our investor could move along.

Defining the trajectory set Given a set of hypothesesA, Set (S0,W0, T0) = (s0 = k0 δ0, 0 δ
2
0 , 0 ∆)

and define:

SW ≡ {S = {(Si,Wi, Ti)} : (Si+1,Wi+1, Ti+1) ∈ NA((Si,Wi, Ti))} (2.8)

where, for Si = ki δ0,Wi = ji δ
2
0 , Ti = ni ∆,

NA((Si,Wi, Ti)) ≡ {(ki+1δ0, ji+1 δ
2
0 , ni+1∆)|

(ki+1δ0, ji+1 δ
2
0 , ni+1∆) = (kiδ0 +

si−1∑
j=0

mjδo, jiδ
2
0 +

si−1∑
j=0

m2
jδ

2
o , ni∆ +

si−1∑
j=0

qj∆) (2.9)

(mj , qj)
si
j=1 ∈ N

A
o (Si,Wi, Ti)}

Paths in S ∈ SW will be called trajectories. All subsequent models presented here will simply

further specify this trajectory set, by specifying the conditional set NAo through A.

A major point to be mindful of is that the {(Si,Wi, Ti)} trajectories we are modelling do not

in fact represent some possible unfolding stock chart, but rather the points in the unfolding future

where the investor will rebalance his holdings. One should think of the points in the trajectory set

as belonging to some common points in the future between which many possible unfolding charts

are possible. Furthermore this model accounts for a certain element of choice. By not specifying
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the number of transactions a priori the possible trajectories from this model account for a wide

range of investor preferences.

In order to think about the underlying process one should not look at the trajectories themselves

but rather the parameters mj and qj and their relative magnitudes and interpretation. Once a δ has

been specified and given ∆ the smallest amount of time before an investor will have new information,

the range of parameters mj and qj will define the conditional set and the next ”sampling times” of

interest. That is, a set of possible states where the underlying has moved by at least δ in value in

at least ∆ time. While simplistic compared to say a continuous time stochastic process the main

advantage of using these parameters to specify the movements of the underlying is that they are

observable in nature and have very clear operational interpretations for an investor.

A final point regarding this approach is that given a specific δ and τ we are modelling an equiv-

alent class of investors in the market that is acting on the market in a predetermined operational

way. We will see that the models will be affected by this in a deep way even as far as parameter

estimation is concerned. This approach has the advantage of eliminating from the actions and

trajectory assumptions that are out of our investors reach while still incorporating this information

into the replication price bounds.

2.4 Model Agreement

The motivation behind the framework described so far is the idea that the operational setting will

provide a clear set of hypothesis that need to be fulfilled by an unfolding observed chart in order

to to match a particular model. Once a δ, τ and ∆ have been specified by an investor we will have

the necessary conditions to specify our sampling times {rl}. That is, if we are at (x(ti), w(x, ti), ti)

we have the necessary conditions to identify (x(ti+1), w(x, ti+1), ti+1). Additionally once we have

specified a set of model hypothesis and corresponding NAo we get our trajectory set SW .
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We wish to identify the sufficient conditions our unfolding observed chart needs to satisfy in

order to have and agreement with the model.

Proposition 2.1. Assume a sequence of samples from an unfolding chart (x(rl), w(x, rl), rl)
L
l=1.

and an investor specified [smin, smax] such that s ∈ [smin, smax] i.e the range of possible sampling

before rebalances. Given a trajectory set SW with model assumptionsA where (x(t0), w(x, t0), t0) =

(S0,W0, T0) if the following condition holds:

(
x(rli+j+1)−x(rli+j)

δo
,
rli+j+1−rli+j

∆ )sj=1 ∈ NAo (x(ti), w(x, ti), ti)

Then there is a S ∈ SW and a sequence of rebalancing times {ti} such that (x(ti), w(x, ti), ti) =

(Si,Wi, Ti)

Proof. We will construct the sequence of rebalancing times and the trajectory iteratively using the

following procedure. Say we are at (x(ti), w(x, ti), ti).

(
x(rli+j+1)− x(rli+j)

δo
,
rli+j+1 − rli+j

∆
)sij=1 ∈ N

A
o (x(ti), w(x, ti), ti)

⇒ (

si∑
j=1

mj ,

si∑
j=1

m2
j ,

si∑
j=1

qj) = (

si∑
j=1

x(rli+j+1)− x(rli+j)

δo
,

si∑
j=1

x(rli+j+1)− x(rli+j)
2

δ2
o

,

si∑
j=1

rli+j+1 − rli+j
∆

)

(2.2),(2.3) and (2.4)

⇒ (

si∑
j=1

mjδo,

si∑
j=1

m2
jδ

2
o ,

si∑
j=1

qj∆) = (x(ti+1)− x(ti), w(x, ti)− w(x, ti+1), ti+1 − ti)

If (x(ti), w(x, ti), ti) = (Si,Wi, Ti) we get that

⇒ (Si +

si∑
j=1

mjδo,Wi +

si∑
j=1

m2
jδ

2
o , Ti +

si∑
j=1

qj∆) = (x(ti+1), w(x, ti+1), ti+1)

Then by the definition of a trajectory set there must be a (Si+1,Wi+1, Ti+1) ∈ NA((Si,Wi, Ti))

such that (x(ti+1), w(x, ti+1), ti+1) = (Si+1,Wi+1, Ti+1)
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If our sampled chart fails to maintain the relationship between successive elements as laid out

by the model hypothesis in the conditional set we will not be able to match it to a trajectory in

the model and clearly identify where the model failed. This will be very useful later on when we

will be able to clearly identify sources of risk in our models.

2.5 Modelling Considerations: Global vs. Local Variables

The Main Trajectory model was constructed in a general fashion with no reference to specifying

the model any further than the existence of a conditional set (we will look at specific model im-

plementations in Chapter 4). This conditional set locally determined the dynamics of trajectories.

Here we will look at connection between the local dynamics of the trajectory set determined by the

conditional sets, and the global features of the trajectories and resulting prices.

We will mainly explore the main trade-off of modelling in this way. Models that better capture

unfolding trajectories will likely produce wider price bounds. Conversely, models that have tighter

price bounds will have more difficulty matching unfolding charts. This tension is not easy to

negotiate but by understanding the connection between local and global properties of trajectory

sets it is possible.

2.5.1 Local Variables

We will start by taking a look at the local dynamics of trajectories and defining some key variables.

Recall we defined our main trajectory model in an iterative fashion i.e we said that if we were at some

”parent” node (Si,Wi, Ti) that there was a set of some later ”children” nodes (Si+1,Wi+1, Ti+1) ∈

NA((Si,Wi, Ti)) defined locally. The setNA((Si,Wi, Ti)) was in turn defined using what was defined

as the conditional set NAo .

The later set NAo (Si,Wi, Ti) was defined as the possible sequences of pairs (mj , qj)
si
j=1, si ∈
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[smin, smax]. These are dependent on both assumptions about charts and investors. The s parameter

is defined to be within a range of values representing the number of times an investor will sample

the market for information before rebalancing his portfolio. The individual mj ’s are dependent on

δo from the range of the chart and δ chosen by an investor. Likewise the qj ’s are dependent on ∆

the smallest time resolution of the chart and τ the longest an investor will wait before rebalancing

his portfolio regardless of the market’s movement.

Given a set of hypotheses A and a [smin, smax], according to Proposition 2.1 gives us a criteria

to identify if a chart fails to be in a trajectory set.

We will need the following intermediate parameters:

mmax = sup
S∈SW

{
sup
i≥0

{
mj |(mj , qj)

si
j=1 ∈ N

A
o (Si,Wi, Ti)

}}
qmax = sup

S∈SW

{
sup
i≥0

{
qj |(mj , qj)

si
j=1 ∈ N

A
o (Si,Wi, Ti)

}}
and analougously

mmin = inf
S∈SW

{
inf
i≥0

{
mj |(mj , qj)

si
j=1 ∈ N

A
o (Si,Wi, Ti)

}}
qmin = inf

S∈SW

{
inf
i≥0

{
mj |(mj , qj)

si
j=1 ∈ N

A
o (Si,Wi, Ti)

}}

In most models we will consider, the conditional set will be the same for all nodes in the trajec-

tory set, but this may not be true generally. We emphasize that the quantities smin, smax, q
min, qmax,mmin

j

and mmax
j are defined globally. So we do not need to worry about the differences node-wise in the

trajectory set.

The extreme possible time steps the quantities given by,

23



q = sminq
min, q = smaxq

max, (2.10)

will give us the longest possible time lapse between rebalancing times q∆ and the smallest q∆.

The extreme possible stock movements the quantities given by,

m = sminm
min, m = smaxm

max, (2.11)

will give us the most extreme stock movements between rebalancing times given by mδ and the

smallest mδ.

2.5.2 Global Variables

2.5.2.1 Number of rebalancing nodes

The trajectory set, as defined does not make a distinction between the unfolding price process and

the hedging portfolio. To put another way, chart movements and rebalances are independent but

both are are simultaneously constrained by operational assumptions. Restricting the choices an

investor can make as the chart unfolds through time is important in order to investigate the effects

on the price bounds. When defining SW we made no assumptions about how often or how much the

investor will rebalance his holdings while hedging. While we may wish to restrict the the investors

activities in regards to rebalancing (in light of transaction costs or other practical concerns) we

must first understand the effects of the chosen parameters.

We will start by defining N(S) for some S ∈ SW as the number of points in the trajectory S.

Further define N1 and N2 (N.B. this is not necessarily equal to NH(S) as there is no dependence

on portfolio functions) bounding the size of all trajectories S ∈ SW i.e N1 ≤ N(S) ≤ N2. Recall

that given the lifetime of our option T we must have K∆ = T :
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K∆ =

N(S)−1∑
i=0

∆it (2.12)

K =

N(S)−1∑
i=0

si−1∑
j=0

qj (2.13)

2.5.2.2 Global quadratic variation bounds

As we will see in the next section, when modelling, quadratic variation will be a powerful variable

in controlling stock movements through time. The reason quadratic variation and controlling it is

so important is that globally it will have huge effects on the range on the price bounds. To see why,

abusing notation we look at the alternative definition of the conditional price bounds in Appendix

B. (we will elaborate on the meaning in the next chapter).

V i(S, Z,M) = sup
S•,S◦

{V i+1(S•, Z,M)− u(S•,S◦)∆iS
•}

The allowable quadratic variation has a direct impact on the set of possible S•,S◦, where larger

allowable quadratic variation will lead to a larger possible range. Given the properties of the sup

and inf it is obvious then that a larger allowable variation in the next step will increase the distance

between price bounds. Globally this means that trajectory sets with larger total allowed quadratic

variation will admit larger price bounds

We then desire to model constraints on w(x, ti) of the form:

w(x, ti) ∈ Qti .

Where Qti is the globally allowed quadratic variation up to that point.
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2.5.3 Connecting the Local and Global Views

Constricting the number of rebalancing nodes First say we can make further assumptions

on s ∈ [smin, smax] namely that smin ≥ 1 and smax ≤ N2.

While we would nominally expect the following:

K = N2q =

N(S)−1∑
i=0

si−1∑
j=0

qj = N1q

This however is false for a non-obvious reason. It is important to recall that qmin and qmax have

clear definitions separate from these considerations and that no matter what choice of smin or smax

it may be that q, q simply does not divide K without remainder. While this may seem odd, recall

(1) which defined our sampling times. We required separately that rL = T . This is because after

the penultimate sample, the chart may not have moved δ. In much the same way, our observed

minimum and maximum times to move δ are going to have little to do with the independent fact of

the remaining lifetime of the option and we may be forced to rebalance at the end without having

moved δ. To calculate the N1 and N2 we need to then consider all possible cases:

(1) mod (K, q) ≥ q =⇒ K = aq + bq + r

Where a =
K − mod (K, q)

q
, b =

(K − aq)− mod (K − aq, q)
q

=
ro
q

r = mod (ro, q)

(a) N1 = a+ b+ 1 if r > 0

(b) N1 = a+ b if r = 0

(2) mod (K, q) ≤ q =⇒ K = aq + r

Where a =
K − mod (K, q)

q
, r = mod (K, q)
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(a) N1 = a+ 1 if r > 0

(b) N1 =
K

q
if r = 0

And in either case:

a) N2 =
K − mod (K, q)

q
+ 1, if mod (K, q) > 0

b) N2 =
K

q
otherwise

The smin parameter essentially represents the amount of times the investor will sample the

market before rebalancing and likewise smax the most the investor will sample the market. These

represent the preference of the investor to how little or how often to rebalance. Given K, choices of

s give some control over N2, N1 as we can see above. However the chosen values for q will impact

N(S) greatly.

Constricting trajectories through quadratic variation If we desire to place constraints on

w(x, ti) we will need to analyse the roles of mj and qj . Assume that there are sets Qti as previously

defined.

In order to control the elements of these sets we will need to perform a similar analysis to the

one that provided us the forms of N1 and N2. Given that we can easily replace K with some ni

without loss of generality assume for now we are looking at w(x, T ) ∈ QT . We get:

w(x, T ) =

N(S)−1∑
i=0

∆iW

w(x, T ) =

N(S)−1∑
i=0

si−1∑
j=0

m2
jδ

2
o
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Which will give us:

N1sminz
2δ2
o ≤ w(x, T ) ≤ N2smax(mmax

j )2δ2
o (2.14)

So it is immediately clear then that QT ⊆ [N2sminz
2δ2
o , N1smax(mmax

j )2δ2
o ] and that there is

a strong relationship between this global feature of the trajectory set and the local parameters

describing the dynamics of the underlying.

This is important for two reasons:

(1) This connection between local and global features provides a possible way to estimate/modify

parameters through time.

(2) It allows us to dynamically update local parameters based on the observed dynamics of

realized quadratic variation (for both points see Model 2 in Chapter 4).
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Chapter 3

IMPLEMENTING THE MODEL

The trajectory set introduced in the last chapter needs to be implemented in a way that allows

the information to be stored and computationally acted on. Graph Theory is the most natural

way of doing this. In this chapter we will introduce some graph theoretic analogues of our model

definitions. Afterwards, we will discuss how to evaluate the conditional price bounds using dy-

namic programming and the convex hull algorithm. Finally we will discuss the basic details of the

algorithms that encode the trajectory set and the evaluate the price bounds and their performance.

3.1 Graph Theory Preliminaries

Definition 3.1.1 (Graph). A graph G = (V (G), E(G)) = (V,E) consists of a nonempty set of

nodes V , and a set of edges E, which is a binary relation on V .

Definition 3.1.2 (Directed vs. Undirected Graph). A graph G is said to be undirected if the

binary relation E is symmetric. If this is not the case it is directed.

Figure 1 bellow displays an example of an undirected graph where V = {1, 2, 3} and E =

{{1, 3}, {1, 2}, {2, 1}, {2, 3}, {2, 2}, {3, 1}}

Definition 3.1.3 (Graph Path). Given a graph G where V = {v1, ..., vn} a path in the graph is a

set of nodes {vp1 , ..., vpm} ∈ V m where < vpi−1 , vpi >∈ E

Definition 3.1.4 (Adjacency Matrix). Given a graph G where V = {v1, ..., vn} an adjacency

matrix A = {ai,j} is a representation of the graph where ai,j = 1 if {vi, vj} ∈ E and zero otherwise

For example the adjacency matrix of the graph in Figure 3.1 is given by:
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2

1 3

Figure 3.1: An undirected graph

A =


0 1 1

1 0 1

1 1 0


N.B. This will be critically important. As it is the way in which we will store our trajectory

sets.

Trajectory sets

Definition 3.1.5 (Integer Conditional Set). Given parameters mmin,mmax, qmin, qmax, smax, smin

and a set of hypothesis A define the integer conditional set as

CS = {(
si−1∑
j=0

mj ,

si−1∑
j=0

m2
j ,

si−1∑
j=0

qj)|(mj , qj)
si
j=1 ∈ N

A
o (Si,Wi, Ti)} (3.1)

Definition 3.1.6 (Integer Grid). Given Integers Kmax, Jmax, Nmax referring to the integer grid

will mean a subset of Z3 given by

IG(Kmax, Jmax, Nmax) = {(k, j, n)|k ∈ [−Kmax,Kmax], j ∈ [0, Jmax], n ∈ [0, Nmax]

Definition 3.1.7 (Trajectory Set). Given some δ, ∆ and Kmax, Jmax, Nmax define a set of nodes:
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V = {(Si,Wi, Ti) = (kiδo, jiδ
2
o , ni∆)|(k, j, n) ∈ IG(Kmax, Jmax, Nmax)}

And given an integer conditional set CS a set of edges:

E = {〈(S1,W1, T1), (S2,W2, T2)〉 = 〈(k1δo, j1δ
2
o , n1∆), (k2δo, j2δ

2
o , n2∆)〉|(k2−k1, j2−j1, k2−k1) ∈ CS}

The resulting graph {V,E} encodes our trajectory set Trajectory Set SW . To be clear, our

trajectory set was originally defined as a set of sequences, the paths in this graph with starting

node (0, 0, 0) and ending where n∆ = T will represent these sequences.

3.2 Dynamic Programming and The Convex Hull

3.2.1 Dynamic Programming

Given a trajectory set as part of a discrete market model, it is not clear how to evaluate the

conditional minmax bounds (Definition 1.0.1). A direct approach would involve calculating the

value of the portfolio holdings over every possible trajectory for each portfolio function and keeping

the optimal value. Naively this seems extremely computationally inefficient.

As it turns out for a class of optimization problems with a certain nested structure one can

simply matters considerably. More specifically for a problem exhibiting what’s called an optimal

substructure the computational costs can be greatly reduced using a method called dynammic

programming ([15]).

If an optimization problem has a series of sub problems and the optimal global solution consists

of the optimal solutions of the sub problems individually then the problem is said to have optimal

substructure. For example, route finding problems are likely to exhibit optimal substructure. Say

one is looking for the shortest path between to points that passes through a third i.e the optimal
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path is {x1, x2, x3}. If the shortest path between the endpoint and the intermediate point is the

subsection of the optimal path i.e {x1, x2} then there is optimal substructure.

Any problem that has optimal substructure can be solved using dynamic programming. Essen-

tially this is a method of problem solving where each sub problem is solved once, the solution value

stored and recalled as needed in the subsequent problem.

Evaluating the conditional price bounds exhibits optimal substructure and dynamic program-

ming can be applied. To see how we must recast the price bounds in a different form.

Given a discrete market M = S ×H and k ≥ 0, S ∈ S, j ≥ k consider the set,

HjS(S,k) ≡ {hj = Hj(S) : H ∈ H, S ∈ S(S,k)}.

Additionally for convenience denote (Si+1 − Si) by ∆iS. Using Lemma 1.6.1 from [?] we can

show how under certain features of H and HjS(S,k) the relate conditional bounds to one another.

V k(S,Z,M) = inf
H∈H

{
sup

S̃∈S(S,k)

{
Z(S̃)−

NH(S)−1∑
i=k

Hi(S̃)(∆iS̃)
}}

V k(S,Z,M) = inf
H∈H

{
sup

S̃∈S(S,k)

{
sup

Ŝ∈S(S̃,k+1)

{
Z(Ŝ)−

NH(S)−1∑
i=k+1

Hi(Ŝ)(∆iŜ)
}
−Hk(S̃k)(∆kS̃)

}}

from Lemma 1.6.1 from ([?])

V k(S,Z,M) = inf
Hk:H∈H

{
sup

S̃∈S(S,k)

{
inf

(hk+1,...)∈
⋃

j≥k+1

Hj

{
sup

Ŝ∈S(S̃,k+1)

{
Z(Ŝ)−

NH(S)−1∑
i=k+1

hi(∆iŜ)
}

−Hk(S̃k)(∆kS̃)
}}}

Under appropriate hypotheses on H we can prove,

V k(S,Z,M) = inf
Hk:H∈H

{
sup

S̃∈S(S,k)

{
V k+1(S̃, Z,M)−Hk(S̃k)(∆kS̃)

}}
Admittedly we cannot trivially make these assumptions on H. In order to show this equivalence

in our setting we need to define some dynamic bounds similar to the ones in the last line above
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and then show that they are in fact equivalent to the global conditional bounds. For a more robust

argument see appendix A which outlines the dynamic programming philosophy more specifically

for our approach using arguments from [16].

Each conditional bound can be redefined as being dependent on the value of another bound at a

later node along the trajectory. Rather than evaluating the bounds by considering every trajectory

separately we can take advantage of the nested nature of the trajectory set and see its optimal

substructure. Beginning with the terminal nodes in a trajectory set, which will simply take a value

given by Z. We can then move backwards through the trajectory set using each previously solved

sub problem to eventually evaluate V 0(S,Z,M). This will give us in financial terms the total

starting capital required to upper hedge our pay outs.

3.2.2 Solving the Dynamic bounds: The Convex Hull Algorithm

Evaluating the following:

V k(S,Z,M) = inf
Hk:H∈H

{
sup

S̃∈S(S,k)

{
V k+1(S̃, Z,M)−Hk(S̃k)(∆kS̃)

}}
,

is not itself trivial. While a more robust proof is discussed in Appendix B from [16]. Here we will

briefly discus the intuition behind the argument as it is relevant to analysing the implementation.

Assume we already have the optimal hedging value h∗ that gives the infimum above. Then we

naturally have:

V k(S,Z,M) ≥ V k+1(S̃, Z,M)− h∗(∆kS̃) , ∀S̃ ∈ S(S,k)

assume S∗ is the trajectory in S(S,k) where we achieve the supremum

⇒ V k+1(S∗, Z,M)− h∗(∆kS
∗) ≥ V k+1(S̃, Z,M)− h∗(∆kS̃) , ∀S̃ ∈ S(S,k)
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V k+1(S∗, Z,M)− V k+1(S̃, Z,M)

S∗k+1 − S̃k+1

≥ h∗

So then by searching over all possible Sk+1 we can find a upper bound on the hedging value. It is

easy to picture this upper bound as the slope line under which all possible V k+1(S,Z,M) lie below in

(Sk+1, V k+1) space. If it were any lower, there would be a V k+1(S,Z,M) over this line and it would

no longer be the optimal value. So then intuitively the lower bound on
V k+1(S∗,Z,M)−V k+1(S̃,Z,M)

S∗k+1−S̃k+1

gives us the optimal value h∗ and this is the result more or less from Appendix B:

V i(S, Z,M) = sup
S•,S◦

{V i+1(S•, Z,M)− u(S•,S◦)∆iS
•}

Where S• and S◦ are trajectories in S(S,k) for which Sk+1 is greater than Sk or less than Sk

respectively.

3.3 Grid Construction and Pricing

Now that we have redefined the trajectory set in a way that is more amenable to work with directly

we will briefly discuss the details of implementation before analysis. For a full description see the

code involved see Appendix C.

The procedure for pricing a payoff is done in two steps first a adjacency matrix is constructed

representing the edges of the graph theoretic trajectory set (|E|), and a second array called the

index which essentially represents the set of nodes (|V |). The index stores the association between

the node in the matrix and the (k, j, n) value.

The second step given the adjacency matrix and index is to move backwards through the

trajectory set from the terminal nodes and apply the convex hull algorithm iteratively.
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3.4 Performance Analysis

The limiting factor in implementation is the performance of the grid construction in time and space.

Being a rather large data structure, memory concerns do come into play.

3.4.1 Complexity of Grid Construction

Given that you are at a node (k, j, n) the branching ratio is the maximum possible number of

children nodes defined by b = sup
S
{|CS|}. Where CS was defined in (3.1). Starting at an initial

parent point at most you expect there to be b edges extending to children nodes, as well as at

most b nodes for their children. Given that that each node will have fixed upper limit on the

number of operations required to calculate the coordinates of its children we then expect the time

performance to be limited by the upper limit of the edges in the graph. i.e we expect O(|E|). Given

that |E| ≤ bN2 ' b
K
q (for large K) we can see that the relative size of the conditional set and expiry

time will be directly responsible for the time performance of grid constriction.

Space Complexity of grid construction Naively, like in most graphs we would expect the

space complexity to also be O(|E|) however there is an added complication in our algorithm as

the graph is being constructed iteratively using an index without foreknowledge of the eventual

set. Therefore the index needs to contain information on how to potentially convert between the

integer grid and the column/row number in the adjacency matrix. In this way we have that the

space complexity become O|IG| ' (2Kmax + 1)(Jmax)(Nmax)

This is of great concern for implementing the algorithm as is means considerable memory must

be put aside for grid construction before proceeding.

The values Jmax and Nmax connect to our aforementioned model parameters in the following

way:

35



Jmax =
sup{QT }

δ2
o

Nmax =
K

∆

And the Kmax which will be the maximum range of the stock values over [0, T ] in units of δo

can be given by the largest possible local movement in units of δo times the number of possible

time steps:

Kmax = mJmax = m
sup{QT }

δ2
o

Impact on modelling It is noteworthy that the time complexity was dependent more on the

local parameters of the model (namely q and the size of the conditional sets) whereas the space

complexity was more dependent on the global parameters.

In the next chapter we will look at the local vs. global pictures in the context of modelling.

An important concern then is designing models for which the parameters of the model relevant

to performance do not produce results that are too computationally intense to find. To what

degree would the models be relevant if the results took longer than an options lifetime to compute?

Additionally we will see as an example in model 2 in chapter 4 that the space complexity concerns

will forcefully dictate arbitrary choices of model parameters.
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Chapter 4

SELECTED MODELS

In Chapter 2 the Main Trajectory model was constructed in a general fashion without specifying

the model any further than the existence of a conditional set that locally determined the dynamics

of trajectories. We then went on to define some local and global features of these trajectory sets

and explored the different ways they interacted. Combined with the details discussed in the last

chapter regarding implementation, we seek to construct more specific, easily implemented models.

Model 1 is defined via a conditional set with reference to the local parameters m,m, q, q intro-

duced in (2.11) and (2.10). Values of m,m, q, q that better match unfolding charts to trajectories

will likely produce wider price bounds and be harder to implement. Conversely, models that have

tighter price bounds will have more difficulty matching unfolding charts but be easier to implement.

This tension is not easy to negotiate but by understanding the connection between local and global

properties of trajectory sets it is possible to do so. Using the insights from this model we will be

able to recast the local/global dichotomy in financially more familiar risk/reward terminology.

Model 2 will be constructed by directly observing the local and global features of past trajecto-

ries and incorporating them into a coherent model. As we will see this can produce more accurate

prices than the first model while not sacrificing the ability to match trajectories to unfolding charts.

The reader should note that there is no issue of over fitting as we are defining future trajectories

in a combinatorial way. That is to say all possibilities are allowed given the constraints.

The following selected models all share the simplifying assumption that sampling times and

rebalancing times are one and the same. Mathematically this means that smin = smax = 1 in all

models. This was done for simplicity but also so that the model’s assumptions can be more easily
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visualized by looking at the conditional integer set. We will however discuss the implications of

this further at a later point.

4.0.2 Data Employed

The two sources of data for this demonstration were:

• A 6 month long stretch of hourly tick data for Facebook Inc (FB). At the end of this period, call

option ask prices were captured across a variety of strikes for comparison with an expiration

9 days in the future.

• A 6 month long stretch of hourly tick data for Biogen Inc (BIIB). At the end of this period, call

option ask prices were captured across a variety of strikes for comparison with an expiration

15 days in the future.
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4.1 Model 1: Worst Case Parameter Estimation and Risk

Investor/Chart assumptions:

(1) smin = smax = 1

(2) δ = δo = 1 recall z = δ
δo

= 1

(3) τ = T

Model Hypotheses, A:

(1) ∃ mmax,mmin, qmax, qmin ∈ Z

(2) If (m, q) ∈ NAo then:

mmax ≥ m ≥ z

mmin ≤ m ≤ −z

qmin ≤ q ≤ qmax

The first model is the simplest. The conditional set, given some extreme values, is simply

the Cartesian product of a pair of ranges i.e NAo (Si,Wi, Ti) = NAo = ([mmin,−z] ∪ [z,mmax]) ×

[qmin, qmax].

4.1.1 Connections Between Investor/Chart Assumptions and Model Parameters

Before continuing into the model details it is worth pausing to reflect on the connections be-

tween the subjective investor/chart assumptions in our models δ and δo and the model parameters

mmax,mmin, qmax, qmin. In the interests of simplicity, we assumed δo = 1 as this is a close enough

approximation to values in our charts and greatly simplifies the trajectory sets and aids in com-

parison and demonstration.

Recall the subjective assumption on the investor, δ is the minimum amount of movement in
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the market required before our investor will consider rebalancing. The freedom to choose δ is

extremely useful. Our choice of δ allows us to control the size of the conditional set without

sacrificing potential trajectory matching opportunities. The reason for this is that a larger δ will

mean smaller movements will be ignored, meaning our trajectory set does not need to include them.

We can see this in the Figures (4.1) and (4.2). A larger δ means that a longer period of time

can pass before sampling, whereas the size of movements we include grows rather slowly with the

mmax parameter. This intuitively makes sense as it will take most stocks a longer time to move

past a greater δ.

By increasing δ we can include larger movements and ignore smaller ones. In more mercurial

markets where periods of relative calm can follow large price movements increasing δ will be ex-

tremely useful. This is because we can ignore the calmer periods effectively and efficiently. While it

is true that increasing δ will increase the size of the conditional set-a detail to take into account in

implementation for very practical computational reasons- this is of no great concern if the timespan

over which you are pricing are not prohibitively long.

Notice too that choosing a δ too large will cause our conditional set to collapse as there will be

δ large enough that we get only one sampling time and we will get qmax = qmin and mmax = mmin.

Increasing δ further means that we will get no points at all. This and the fact that we will usually

have a time horizon T = K∆ over which we will want some N1, N2 ∝ 1
q will place a upper limit on

our choice of δ.

4.1.2 Parameter Selection

The key idea behind selecting our parameters mmax,mmin, qmax, qmin or populating our conditional

set generally is the hope of producing easy to implement models that will contain trajectories

that we can map unfolding charts onto with confidence that the necessary trajectories will exist.
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Figure 4.1: Connections between δ and model parameters, FB data set
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Figure 4.2: Connections between δ and model parameters, BIIB data set
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Obviously the larger the mmax and qmax parameters we choose, hence the larger conditional set,

the more likely it is that trajectory matching is possible. However as discussed earlier, for convex

payoffs (that is most vanilla options), the larger our parameters the greater the size of our price

bounds. This is not by itself a problem. That said, if we could be confident in our abilities to match

trajectories it would be desirable to produce tight bounds that highlight arbitrage opportunities or

at the very least are useful to pricing.

To that end we will discuss two important proposed methods of parameter selection. The first

and most tangible is to observe past data and select the worst case values of mmax,mmin, qmax, qmin.

The second idea is the that of an arbitrary mmax,mmin, qmax, qmin within the range of the worst

case parameter selection. This second proposal is done with the naive expectation that a less than

worst case parameter selection invites risk in exchange for potential profits. We will examine this

later claim in more detail.

4.1.2.1 Worst Case Parameter Calibration

Under our assumptions it is easy to make worst case parameter estimations from past chart data.

Given a chart x(t) and a choice of δ we get sampling times {rl} that depend on our choice of δ.

Then for each (x(rl, w(x, rl), rl) and (x(rl+1, w(x, rl+1), rl+1) we can see that a possible value for

(m, q) that would match this chart is given by (
x(rl+1)−x(rl)

δo
,
rl+1−rl

∆ )

So then if we wanted from the data a more robust ”worst case” estimate we would find the

extreme values over the whole set of data:
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mmax = sup
{rl}
{x(rl+1)− x(rl)

δo
},

mmin = inf
{rl}
{x(rl+1)− x(rl)

δo
},

and similarly

qmax = sup
{rl}
{rl+1 − rl

∆
},

qmin = inf
{rl}
{rl+1 − rl

∆
}.

The above definitions are historically estimated from chart data. The reader should not confuse

the above definitions with the ones introduced in Section 2.5.1 which were defined as worst case

parameters for a given trajectory set.

The worst case estimation as defined will be very robust in matching future unfolding trajec-

tories. Failure to match the unfolding chart to trajectories will only happen if the combined time

and stock movements of the unfolding chart are more extreme than any in the past data (in our

case, 6 months). The main flaws are that we have some very extreme price movements leading

to very high ranges for Qti over the option lifetime and correspondingly very large price bounds.

This is problematic as the bounds will be unlikely to be informative for option pricing or profitable

hedging strategies. See Figures (4.3) and (4.4).

4.1.2.2 Speculative Parameter Estimation

Keeping in mind the fact that the worst case bounds will most likely be useless we can foreshadow

the risk/reward tradeoff that exists when choosing model parameters and the tension we described

at the beginning of the section. Looking ahead to Figure 4.12 at the observed conditional set, this

is the set of all (m, q) observed in the data. We may decide stock movements of more than ±2δ are

comparatively rare (In this case there exists a ∼ 10% chance given past data of larger movements).
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Figure 4.3: Worst case parameter estimation and prices for FB data

We may speculate that over the rest of the lifetime of the option on FB that events where the stock

moves more than ±2δ will not occur and select mmax = 2 as a parameter value, all else equal to

the worst case estimate.

Recall that the hedging price bounds give the initial value of a hedging portfolio. When looking

at the price bounds in the mmax = 2 case (Figure 4.5 (a), (c), in blue) we see that the bounds

are much tighter to the point of arbitrage opportunities. In fact if we look at the real unfolding

trajectory over the lifetime of the option we see it matches closely and yields hedging profits where

we would expect (black line in Figure 4.5 (a)). This is expected as the unfolding chart was properly

matched to a trajectory, hence the assumptions the price bounds were calculated under were true.

However, we picked a segment of the same length from the past and it is easy to show that

even though the trajectory set eventually begins approximating this simulated trajectory well. The

initial jump and corresponding violation of the model’s hypothesis is enough to create a loss. See

Figure 4.5 (c) (d).

Modifying the local features of trajectory sets (i.e the conditional set) has effects on the potential
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Figure 4.4: Worst case parameter estimation and prices for BIIB data

to match trajectories going forward, hence means taking on risk of violating a the hypotheses

defining the conditional set. However by modifying the local features in this way we can get tighter

price bounds where if the model hypotheses defining the conditional set hold, we will see profits.

4.1.2.3 Model Discussion: Risk vs. Reward

In order to build on the insights of the last section we will define risk as it is used here.

Risk is defined as the probability, understood here as a frequency on past occurrences, that

no trajectory in a model’s trajectory set matches an unfolding chart. We will estimate this by

examining past data and seeing where model hypotheses break down. Expressed more precisely

we will look at past chart data and estimate the probability that the model fails to agree with the

chart in the sense laid out in Proposition 2.1.

In Model 1 there are two ways to violate the hypotheses:

(1) Hypothesis violation by the time restriction: The trajectory fails to move δ before qmax time

steps.
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(b) Comparison with real unfolding trajectory, fairly close

to model trajectories
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Figure 4.5: Model 1 with FB data where mmax = 2, mmin = −2

If an unfolding chart violates the model hypothesis in this way the price bounds for a con-

vex payoff are actually unaffected. This may seem surprising until we recall the alternative

definition of the price bounds referenced from Appendix B earlier.

Say we are considering the upper conditional price bound at some node (Si,Wi, Ti) that is

V i(S̃, Z,M), S̃ ∈ S(S,i). Let S+ ∈ S(S,i−1) where S+
i ≥ Si and likewise S− ∈ S(S,i−1) where
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S−i ≤ Si

Recall that if Z is convex then subsequent conditional bounds will be as well. That is:

V i(S
+, Z,M)− V i(S

−, Z,M)

S+
i − S

−
i

≥ V i(S
+, Z,M)− V i(S,Z,M)

S+
i − Si

.

So we can show:

V i(S,Z,M) ≥ V i(S
+, Z,M)− V i(S

+, Z,M)− V i(S
−, Z,M)

S+
i − S

−
i

(S+
i − Si)

V i(S,Z,M) ≥ sup
S+,S−

{V i(S
+, Z,M)− V i(S

+, Z,M)− V i(S
−, Z,M)

S+
i − S

−
i

(S+
i − Si)}

V i(S,Z,M) ≥ V i+1(S,Z,M).

Therefore, when pricing backwards through the grid subsequent price bounds will grow larger

in value. Intuitively this makes sense, as the further from expiry the more initial capital we

will require to upper hedge. The most important thing to note is that the bounds entirely

depend on the stock level. So if we are at some later time holding the stock level constant

the closest nodes in time will dominate the supremum above.

While the bounds themselves will not change an unfolding chart that falls outside the trajec-

tory set will make trajectory matching impossible and force us to take on risk. See Figure

4.6.

As we will see this carries as much risk as that the next case with no potential profits and

is the reason why these two sources of risk should be considered separately. As changing the

qmax parameter does nothing to create investment opportunities and instead simply makes it

harder to match trajectories.

(2) Hypothesis violation by the stock restriction given by mmax: We have already seen in the last

section the second hypothesis to violate is if the unfolding chart jumps higher or lower than
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Figure 4.6: Example from FB data of a failure to match trajectories due to qmin too small. Unfolding

chart is dotted, model trajectory is starred.

any trajectories we would match to it. See example already included in Figure 4.5. Changing

the mmax parameter lowers the price bounds (Figure 4.8). This makes sense considering how

the price bounds are evaluated via the convex hull. Essentially decreasing the mmax has the

effect of shrinking the range of possible values of the trajectories (S•, S◦) and decreasing the

possible values of the bound (as the sup of a smaller set is less than or equal to the original).

The effect is more pronounced at higher strikes as it means fewer nodes in the trajectory set

have a non-zero payoff to super hedge.

As the conditional bounds are designed to give us enough starting capital to upper hedge

the payout of a derivative, then the potential profit if we are below the market asking price is

proportional to the difference of our starting capital. This is done by selling at the market price

and hedging against the payout with some of the proceeds of the sale, pocketing the difference.

Naively we would expect taking on more risk will lead to higher potential payouts and this is what

we more or less observe in Figure 4.11.

Figure 4.11 was constructed by varying the parameters mmax,mmin, qmax, qmin over some ranges

in combination and observing in the past data the probability of the model failing to match charts
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Figure 4.7: Upper hedging bounds with varying qmin and strike holding mmax constant

i.e the risk. We then compared the supper hedging price bound at different strikes to the market

asking price. If the asking price was greater, we then calculated the difference of our bounds and

the asking price to estimate the expected return.

An interesting feature of note in the risk/reward profiles in Figure 4.11 is that there are points

at equal reward levels with different risk values. This is reflective of the ways our model hypothesis

can be violated in the first sense i.e. hypothesis violation by the time restriction. Recall in that

case that the model would fail to match trajectories for some values of qmax but would have the

same price bounds as models where the value of qmax would be more likely to match trajectories.

However as we will discuss this is an incomplete analysis without a better understanding of how

large potential losses can be (that is, the actual impact of the hypothesis being violated).

This model has made it possible to introduce a risk/reward or local/global framework as well as

explore some of the features of the price bounds and trajectory matching. That said it was a rather

crude model based on very simple assumptions. We were only able to tighten the price bounds by

introducing risk. We would like to make more accurate bounds this while maintaining our ability

to match trajectories separate from the goal of searching for profit. This is achieved in Model 2
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Figure 4.8: Upper hedging bounds with varying mmin and strike holding qmax constant
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Figure 4.9: Risk estimation for FB Data set: individual and joint probability of failure to match

unfolding charts to trajectories given model parameters
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unfolding charts to trajectories given model parameters

next.

51



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Risk−probability of model failure

P
o

te
n

ti
a
l 
in

v
e
s
tm

e
n

t 
p

o
fi

ts

(a) FB data

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4

5

6

7

8

9

Risk−probability of model failure

P
o

te
n

ti
a
l 
in

v
e
s
tm

e
n

t 
p

o
fi

ts

(b) BIIB data

Figure 4.11: Risk and reward profiles in both data sets

4.2 Model 2: Observed Trajectory Features

In this model we will not focus on the risk reward machinery of the first model, but rather simply

explore another way the local/global dichotomy allows us to build better models.

4.2.1 Model 2a: Local Observations

Initial model Hypothesis:

Given a past observed trajectory x(t) and a corresponding set of sampling times {rl}, we model

the conditional set from past observations.

Through Model 1 we highlighted how one can take on risk by shrinking the conditional set.

Where there are more possibilities locally (i.e a larger conditional set) there is less risk as it is far

less likely that the model hypotheses will be violated and unfolding charts will match trajectories

in the set, it is also true that the resulting bounds will be larger as a result.

Model 2 tries to negotiate this in a new way, rather than developing local hypotheses we simply

observe the past and reconstruct a conditional set based on past chart movements. We do this
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by looking at the observed chart starting at every available point in our past data. The local

dynamics will be fairly robust as there would need to be an hourly chart movement that was

completely unobserved in a relative sense over a 6 month period. We can see as well, while there

are some extreme movements, they are limited in number. See Figures 4.12 ans 4.13.
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Figure 4.12: Model 2a with FB data
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Figure 4.13: Model 2a with BIIB data

The resulting bounds are still rather large, no better than Model 1 in the worst case. In fact
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they are the exact same for the same reason that changing qmax had no effect on the bounds. The

observed set is the same for pricing as the worst case conditional set from Model 1 with some points

deleted at later times.

The reason for this for example in the FB data is the (12, 1) and (−5, 1) elements of the

conditional set. Those extreme price movements are being repeated at every possible node and

dominate the price bounds when using the convex hull method to evaluate the price bounds.

It would be desirable in that case then to impose constraints on the global quadratic variation to

eliminate such extreme scenarios from happening repeatedly while maintaining robust hypotheses

for charts.

4.2.2 Model 2b: Local and Global Observations

Model Hypothesis:

(1) Given a past observed trajectory x(t) and a corresponding set of sampling times {rl}, we

model the conditional set from past observations

(2) Given S ∈ SW we construct from past observations and a node (Si,Wi, Ti) ∈ S then Wi ∈ Qti .

Where Qti is the range of the quadratic variation taken from past intervals the same length

as the option lifetime.

Note: As in Model 1 we assumed that δ = δ0 = 1 for the FB data set. However the maximum

quadratic variation measured in units of δ2
o in the grid was too large for the BIIB data set for

δo = 1-basically we ran out of memory creating the grid (see the analysis in chapter 3 on space

complexity of grid construction). For this reason we took δo = 5 to avoid this memory issue. While

not of theoretical relevance to the model it is worth noting that under certain parameters, Model

2 is very difficult to implement.
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Model 2b uses the same observed conditional set as Model 2a we limit the number of times

extreme events can occur along a trajectory. This is achieved by imposing a global constraint on

the possible quadratic variation through time of the type introduced in Chapter 2 Section 2.5.2.2.
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Figure 4.14: Observed quadratic variation of observed data over option lifetime

See Figures 4.14. Observing the past from various starting points we looked at the the resulting

quadratic variation over time. Note that in the FB data there is a jump in many past charts

that seems to split the resulting behaviour of the charts into two groups. Those are the ones that

contained the extreme event in the conditional set previously pointed out, the (12, 1) event.

We defined some sets Qti with this in mind. We defined

Qti = [Qo(ti), Q1(ti)] ∪ [Q1(ti), Q2(ti)]

Where each Q(t) function (displayed in Figure 4.15) crudely defines the allowed Wi values given

Ti. These restrictions were fairly easy to implement during grid construction. We simply wrote an

if statement in the model file.

For the BIIB data which did not contain any jumps that were extreme enough to separate the
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quadratic variation over time into disjoint regions. We simply restricted the quadratic variation to

the values that had been observed in the past at that time. Put another way we defined some:

Qti = [Qo(ti), Q1(ti)]

Where Qo(ti) was the minimum value observed at ti and Q1(ti) the maximum.

The more interesting case however was the FB data set. The Qn(ti) functions we defined in this

case approximately enclosed the possible quadratic variation in the trajectory set into two regions

through time. One region would allow the extreme jump once, and the lower one would enclose

the rest. See Figure 4.15.

In both data sets,the results were the tightest bounds of our examples so far. Refer to Figures

4.16 and 4.17. This is to be expected as we are imposing a global restriction on quadratic variation.

However our model hypotheses are still relatively robust at the local level. In order for this model

to be violated we need an even more extreme price movement, or another to occur multiple times

in a very short time span that was more extreme than one observed in the past.

This model and the others demonstrates that there is not a clear efficient trade-off between risk

and reward when considering local and global information separately. But that by incorporating

global information into the local dynamics of trajectories one can get closer.

The main drawback of this model however is that the hypothesis are too minimal to firmly

explore the risk/reward profile more fully. Aside from restricting Qti to ahistorical levels which

would undermine the model’s core philosophy of using observed quantities.

56



0 10 20 30 40 50 60
0

50

100

150

200

250

300

Time

R
e

a
li

z
e

d
 Q

u
a

d
ra

ti
c

 v
a

ri
a

ti
o

n
, 

b
o

u
n

d
s

 a
re

 d
e

n
o

te
d

 −
*

Figure 4.15: Variation with bounds for FB, allowed variance is within the two triangular regions
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57



100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

Strike ($)

V
a

lu
e

 (
$

)

Figure 4.17: Model 2b bounds for BIIB

58



4.3 General Discussion of Models and Conclusion

4.3.1 The Rebalancing (s) Parameter

For simplicity we set s = 1, the reason was primarily for the purposes of easily visualizing the

conditional set without any complication. However the same effect could have been achieved with

a non unitary s and the Integer Conditional Set (3.1) in Chapter 3.

Increasing s mainly would affect the local parameter q and the global parameters N1 and N2

(2.5.2.1). These are practical considerations that would need to be taken into account for a potential

investor wanting to use these models to actually set up a hedging portfolio.1

4.3.2 Conclusion

The models introduced here show that it is possible to implement in a practical way the approach

described in [8]. We have introduced a framework for model construction and an implementation

paradigm that is relatively easy to use. It is our hope that the next step can be taken and this

trajectory based approach can attempt to remedy the model risk of standard Mathematical Finance

approaches described at the beginning of this thesis.

We suggest the following approaches be tried. It would be desirable, we think, to incorporate a

probabilistic model in the modelling of losses in the case of a chart failing to match a trajectory. As

it stands now all estimates of loss are empirical and based in past occurrences-a stochastic model

may be able to estimate the losses in novel and yet to be observed circumstances. We also suggest

the addition of other model variables. Perhaps in order to model clustering or other phenomenon

one can introduce an element of path dependency stronger than the kind modelled by the allowable

regions in our second model.

1For more information, contact AFleck Inc.
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APPENDIX A: DYNAMIC PROGRAMMING

In the following section we will need the following idea. We state them here without justification

which can be found in [16] along with a much more detailed analysis.

Definition A.0.1 (n-Bounded Market). Given a market M the mapping M(S) defined as the

point in a trajectory where the portfolio functions ceases to be non-zero i.e NH(S). A market

M = S ×H is called n-bounded if there exists a constant n so that:

sup
S∈S

M(S) ≤ n.

This definition is introduced by [16] as there is no explicit incorporation of time in their trajec-

tory sets like ours. In our case we can define M(S) as follows:

TM(S) = T

The intuition remains the same however, there is some point along a trajectory where rebal-

ancing stops and positions are liquidated to cover the payout of a contingent claim.

Dynamic Minmax Bounds

As discussed previously a direct evaluation of the conditional bounds is a daunting task. Addition-

ally given the formulation of the problem it is not clear how to construct the hedging values Hi(S),

for a given payoff Z, by means of the unfolding path values S0, S1, S2, . . .

Consider next another pair of numbers namely U0(S0, Z,M) and U0(S0, Z,M). These new

bounds are defined in a dynamic, or iterative, definition each instance involving a local optimization

akin to solving a local sub problem as described earlier.
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We discuss here part of the argument for why these Dynamic minmax bounds are equal to our

globally defined conditional ones.

We will deal with n-bounded markets (again, equivalent to our assumption that every portfolio

is liquidated on the expiration time T ) that is for each H ∈ H, it holds that NH(S) = M(S) = m.

We will later introduce further restrictions on the set of portfolios H.

Definition A.0.2 (Dynamic Bounds). Consider an n-bounded, discrete market M; for a given

function Z defined on SW , any S ∈ SW , and 0 ≤ i ≤ n set

U i(S, Z,M) =



inf
H∈H

sup
S′∈SW

(S,i)

[U i+1(S′, Z,M)−Hi(S)∆iS
′] if 0 ≤ i < M(S)

Z(S) if i = M(S)

0 if i > M(S).

(1)

Also define U i(S, Z,M) = −U i(S,−Z,M).

Recall that we define by IkS the set of the portfolio ranges of S on the stage k, in other words

IkS ≡ {Hk(S) : H ∈ H} ⊆ R. (2)

Thus we can rewrite the expression in (1) for 0 ≤ k < M(S),

Uk(S, Z,M) = inf
u∈IkS

sup
S′∈SW

(S,k)

[Uk+1(S′, Z,M)− u ∆kS
′]. (3)

Theorem A.1. For any function Z defined on a discrete n-bounded market M = SW × H, the

following inequality holds:

U0(S0, Z,M) ≤ V (S0, Z,M), (4)

and hence U0(S0, Z,M) ≥ V (S0, Z,M) is also valid.

The reverse inequality requires a great deal of machinery and an explicit description of the

support for all the H ∈ H. It is far outside the scope and interest of this thesis. More details can

be found in [16].
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APPENDIX B: CONVEX HULL ALGORITHM

This section outlines how to calculate the dynamic bounds U i(S, Z,M) introduced in the previous

appendix. Reproduced here from [16].

Again considering a n-bounded discrete marketM = SW ×H. For S ∈ SW , and 0 < i < M(S)

we are going to expand on a method introduced in [?], in order to resolve (3). For an arbitrary,

but momentarily fixed, S′ ∈ SW(S,i), set

`(x) = U i+1(S′, Z,M)− ui(S′i+1 − x),

i.e. the line in the plane, through the point (S′i+1, U i+1(S′, Z,M)) with slope ui. Thus,

U i+1(S′, Z,M)− ui(S′i+1 − Si)

is the intersection of ` with the vertical straight line x = Si. Therefore, for each fixed ui ∈ IiS:

sup
S′∈SW

(S,i)

{
U i+1(S′, Z,M)− ui(S′i+1 − Si)

}
is the largest of the ordinates of the points of intersection between the straight lines ` and x = Si.

Then U i(S, Z,M) becomes the lowest value of these largest intersections.

To complete the geometric procedure, assume both of the following sets are non-empty,

Sdo
(S,i) =

{
S′ ∈ SW(S,i) : S′i+1 ≤ Si

}
, and Sup

(S,i) =
{

S′ ∈ SW(S,i) : S′i+1 > Si

}
.

For Sup ∈ Sup
(S,i) and Sdo ∈ Sdo

(S,i) denote by u(Sup,Sdo) the slope of the straight line in the plane

through the points (Sup
i+1, U i+1(Sup, Z,M)) and (Sdo

i+1, U i+1(Sdo, Z,M)):

u(Sup,Sdo) =
U i+1(Sup, Z,M)− U i+1(Sdo, Z,M)

Sup
i+1 − Sdo

i+1

.

Next we are going to show that

Li(S, Z,M) ≡ U i(S, Z,M) = sup
Sup∈Sup

(S,i)

Sdo∈Sdo
(S,i)

[U i+1(Sup, Z,M)− u(Sup,Sdo)∆iS
up] (5)
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That is, U i(S, Z,M), is the largest intersection of the referred lines with the line x = Si.

The next Theorem requires extra assumptions and presents a way to solve the optimization

problem for IiS = R, which we assumed in this thesis. This assumption IiS = R is a convenient way

of guaranteeing u(Sup,Sdo) ∈ IiS.

Theorem B.2. Let M = SW ×H a n-bounded discrete market. If for any S ∈ SW , IiS = R, and

either one the two following conditions for S ∈ SW below hold,

(1) Li(S, Z,M) = U i+1(S•, Z,M)− u(S•,S◦)∆iS
• for some S• ∈ Sup

(S,i) and S◦ ∈ Sdo
(S,i).

(2) For any S′ ∈ SW(S,i), 0 < a ≤ |S′i+1 − Si| ≤ b (a and b may depend on S).

Then,

U i(S, Z,M) = Li(S, Z,M).

for proof details see [16].
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APPENDIX C: MATLAB CODE

Pricing in the Trajectory Based Framework

Program 1: creatematrix

Plan of the program The program generates from a model of the type (insert equation #)

a set of discrete trajectories of rebalancing times recursively construed from nodes in a predefined

integer grid. These trajectories can naturally be represented as a directed graph. While MATLAB

has little support for graphs as a data type, it is very easy to store an adjacency matrix containing

the same information. The only added complication is how to assign labels to nodes vi, vj ∈ V ⊂ Zn

in the graph in such a way as to easily represent edges in the matrix A = {ai,j}

The way this is done, depends on the dimensionality of the model. While this thesis only covers

models of at most 3 dimensions per rebalancing node (stock level, realized quadratic variation,

time) theoretically the code can handle more complicated models of higher dimension. The first

dimension is always assumed to be the stock level and thus in the integer grid will take on negative

and positive values in the range [−Kmax,Kmax] ∈ Z. The second dimension is assumed to be in the

range [0, Jmax] ∈ Z and for models of 3 or more dimensions the dimensions will have the range in

the grid [0, N(i)] ∈ Z where N is a vector of inputs. The way these points in the grid are mapped

onto graph labels is simple. The point (−Kmax, 0, ..., 0) is assigned the value 1, then counting

along the range of the first coordinate until the maximum before starting again with the adjacent

dimension’s next value. That is, the point (Kmax, 0, ..., 0) is assigned the value Kmax. Then the

process started again at (−Kmax, 1, ..., 0) with Kmax + 1 and (Kmax, 1, ..., 0) with 2Kmax and so on

until (Kmax, Jmax, ..., 0) with 2KmaxJmax + 1. This process is repeated for as many dimensions the

model will need in the integer grid.
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The program stores this information in an array called the index, where the rows in the array

contain the tuples of the grid. The row value is the label in the graph. The program then finds the

children of the initial node in the grid, finds the corresponding points in the index and stores this

information in an adjacency matrix. This process is repeated for each child node and so on until

the grid is full.

The inputs and index The program has 3 inputs: 2 integer arrays and one string. The

first array N0 contains the initial point from which the trajectories will be constructed in the grid

(typically [0,0] or [0,0,0]). The second array N, contains the maximum values of the dimensions

in the grid. For an input of [Kmax, Jmax] it will create an integer grid of size 2KmaxJmax + 1 in

[−Kmax,Kmax] × [0, Jmax]. With higher dimensions where N = [N(1), ..., N(i)] it will create an

integer grid of size (2N(1)N(2) + 1)N(3)...N(i)) in [−N(1), N(2)]× [0, N(2)]× ....× [0, N(i)]

The last input is a string, corresponding to the name of a file in the same directory of the form:

function [n1]=function_name(n)

code where given node n, calculates array of children nodes n1

end

Where given a node in the integer grid, it calculates the possible children according to some

model. For example, the BJN model with jump parameter p=2 (eq #) is given by:

function [n1]=BJNp2(n)

p=2;

k=n(1);
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j=n(2);

n1=[];

mJ=permn([-p:-1,1:p],1);

mJsquared=mJ.^2;

l=length(mJ);

n1=[n1; mJ + k*ones(l,1) , mJsquared + j*ones(l,1) ];

n1=unique(n1,’rows’,’stable’);

end

So given these inputs the program begins by creating some arrays of predetermined size. These

will be used to store a sparse adjacency matrix representing the possible trajectories in our pricing

grid and an index storing the relationship between a node label and its place in the grid. The last

output, an array called here XY contains information for plotting the grids.

function [As,I,XY]=creatematrix(N0,N,model)

I=index(N);

Nmax=length(I);

As=sparse(Nmax,Nmax);

%makes coordinates for ploting
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....

The function index(N) creates the index array where points in the grid are stored as rows and

the index of a row in in the array represent the node label in the graph. This is done as mentioned

before. For example:

>> I=index([1,1])

I(:,:,1) = I(:,:,3) = I(:,:,5) =

-1 0 1 0 0 1

I(:,:,2) = I(:,:,4) = I(:,:,6) =

0 0 -1 1 1 1

So then if [−1, 1] is in one of our trajectories it will be labeled in the graph by the number 4.

Generating the Matrix Given these initial inputs and output arrays, the code then applies

the model in an iterative fashion to each node and it’s children,

....

l=length(I);
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L=length(N)+1;

n1=index([N,0]);

for i=1:l

if I(1,:,i)==N0

o=i;

break

end

end

CHILD=feval(model,zeros(size(N0)));

INT=ones(size(CHILD));

n1(1,length(N)+1,o)=1;

newntest=index([N,0]);

[[ Double brackets of the form [[...]] will enclose comments relating to the ideas behind program

itself. At this point the code has only gone through some necessary preliminaries. It searched the

index to find he node in the graph corresponding to the initial point for the trajectories. Then it

found the children for said node.

Next it created two arrays similar to the index. n1 will store the parent nodes being considered

and list a 1 or 0 in an additional column to the index to do so. newntest will do the same to store

the children of said parent nodes. Then with each parent considered n1 will take on the values of

newntest and so on]]

while any(n1(1,L,:)==1) )

%as long as there are parents
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%whose children have yet to be determined

newntest(1,L,newntest(1,L,:)==1)=0; %clears newntest for a new pass

%un comment this in order to watch

%grid construction in real time

%%%%%%%%%%%%%%%

% hold on; plottree(As,XY,’b’)

% drawnow

%loops over all the parents, in the first case this will just be i=o

for i=transpose(find(n1(1,L,:)==1))

n=n1(1,1:L-1,i); %gives the points in the grid

[[ Rather than using the model function repeatedly in a loop, we recognize that the array of the

children at any point will be an affine transformation of the first node ]]

Icon=INT*diag(n)+CHILD;

%add info to matrix:

if size(Icon)==[1,length(N)]

lIcon=1;

else

[lIcon,~]=size(Icon) ;
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end

fnew=[]; %will store the node labels of the children

for ii=1:lIcon

nprime=Icon(ii,:);

if any(nprime>N)==0

f=indexing(nprime,N);

%function indexing maps points in the grid to labels

%NB: index is needed to go from labels to grid points.

if f<=Nmax %to make sure the children are in the grid

fnew=[fnew,f];

newntest(1,L,f)=1;

end

end

end

As(i,fnew)=1; %store information that there is an edge from i->f
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end

if n1==newntest %prevents infinite loop

break

end

[[The children nodes now become the new parents, at the top of the loop newntest is cleared

and the process starts again]]

n1=newntest; %prepare for next pass

z1=max(n1(1,1,n1(1,L,:)==1));

z2=min(n1(1,2,n1(1,L,:)==1));

if isempty( [z1,z2] )==1 %stops the loop in specific cases that cause issues

break

end

end

end

Program 2: Valueindex

Plan of the program The first program creatematrix outputs a graph in the form of an

adjacency matrix As representing a trajectory space in the integer grid. The program valueindex

gives a financial meaning to this data. Starting at the end points of the trajectories it maps onto
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the integer grid stock levels and calculates the option payoffs. Then it searches for the parents

of nodes at the end of a trajectory, maps onto them stock levels, and performs the convex hull

algorithm (see sec... ch 2) to calculate the hedging values. It then moves onto the parents of those

nodes and repeats the process backwards through the trajectory set until the final initial node is

reached, this is the dynamic programming methodology described in (see sec... ch 2). The result

is a set of trajectories that specify hedging values and the initial capital at each point required to

upper or lower hedge the payoff of a derivative. In order to store this information, the program

adds 3 columns to the already existing index and stores the stock information and hedging values

next to the points they belong to in the integer grid.

The inputs The program has seven inputs. The first two A and I are simple the adjacency

matrix and index from the first program. The input K is the strike price if we are pricing options

and payoff is a string corresponding to the name of a file in the same directory with that payoff

function. For example look at the file call.m:

function [z]=call(S,K)

z=max(S-K,0);

end

The remaining inputs s0, delta and nc are closely related. Given the integer grid we produced

in the last program we can map stock levels onto the grid in the following way:

function [S]=ktoS(k,delta,s0,nc)

if strcmp(nc,’linear’)==1
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S=s0+k*delta;

elseif strcmp(nc,’exp’)==1

S=s0*exp(k*delta);

end

end

This function ktoS will be used in the rest of the program when assigning values to grid points.

The input nc denotes the difference between a linear grid or an exponential one and k is the first

coordinate of the point in the grid of interest.

The first thing the program valueindex does similar to program creatematrix is create arrays

of predetermined size designed to store the outputs. It first looks at the index and adds 3 extra

columns to store the output for the stock level, stock holdings (h in the models) and the cost of

hedging V or V

function [V]=valueindex(A,I,s0,K,delta,nc,payoff)

[r1,r2,r3]=size(I);

V=zeros(r1,r2+3,r3);

V(1,1:r2,:)=I;
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...

Populating the value index using the grid matrix Next the program goes through the

matrix and populates the last nodes of the grid. Calculating the stock level and option payoff. The

last nodes are found relatively easily, just look at the nodes where the last coordinate is largest. In

out models that would correspond to the maximum quadratic variation or time.

%fill last nodes (that are reached) with option payoffs

zrange=find(I(1,r2,:)==max(I(1,r2,:)));

for i=transpose(zrange)

[[ This guarantees that the nodes we look at indeed have parents, that is there is a j so that at

lease one A(j,i)=1 ]]

if sum(A(:,i))>0

k=I(1,1,i);

Sk=ktoS(k,delta,s0,nc);

z=feval(payoff,Sk,K);

V(1,r2+1,i)=Sk;

V(1,r2+2,i)=z

[[No need to worry about h in the last nodes, will have sold off holdings then]]

%make sure we can’t have negatives

if Sk<=0
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V(1,3,i)=0;

V(1,4,i)=0;

end

[[Make negative nodes 0, will have the same effect as not even being there in the convex hull

algorithm]]

end

end

%price the rest

l=length(I);

last=length(zrange);

%look at nodes working backwards

for r=l-last:-1:1 %bottom rows of matrix

clear col

col=find( A(r,:) );

if size(col)>0 %make sure node is connected

n=[];

k=I(1,1,r);
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Si=ktoS(k,delta,s0,nc);

V(1,r2+1,r)=Si;

%find its children

[[Given the way we are going backwards through the grid we are always guaranteed to have already

priced any children nodes, as the labeling goes forward in the grid]]

for k=1:length(col) %over the different columns

if A(r,col(k))==1

vS=V(1,r2+2,col(k));

S =V(1,r2+1,col(k));

n=[n;vS,S];

end

end

if size(n)==[1,2] %flat nodes keep the same value

V(1,4,r)=n(1);

else

[v,h]=convexhull(n,Si);

V(1,r2+2,r)=v;
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V(1,r2+3,r)=h;

end

end

end

end
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