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Abstract 

 

Cindy Tran 

 

A Novel Approach for Analyzing Mixing Quality in Solid-Liquid Stirred Tanks via 

Coupled Computational Fluid Dynamics - Discrete Element Method and Electrical 

Resistance Tomography 

 

Master of Applied Science, Chemical Engineering, Ryerson University, 2017 

 

The mixing quality of a solid-liquid stirred tank operating in the turbulent regime was 

investigated, numerically and to an extent experimentally. Simulations were performed by 

coupling Computational Fluid Dynamics (CFD) and the Discrete Element Method (DEM). 

The results were evaluated against experimental data obtained using Electrical 

Resistance Tomography (ERT). This facilitated a novel and more rigorous assessment of 

CFD-DEM coupling – i.e. based on the spatial distribution of particle concentrations. 

Furthermore, a new mixing index definition was developed to quantify suspension quality 

to work in tandem with existing dispersion mixing indexes. This provides a more complete 

interpretation of mixing quality. In this work, it was found that the model underestimated 

suspension and dispersion due to model limitations associated with mesh size and fluid-

particle interaction models. Furthermore, the predicted mixing quality was sensitive to 

changes in the drag model, including other fluid-particle interaction forces in simulations, 

and variations in certain particle properties.  
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Chapter 1 : Introduction 

 Solid-liquid mixing is an essential component of many key processes used in the 

chemical engineering, food manufacturing, and pharmaceutical industries. Some 

processes include dispersion, dissolution, precipitation, adsorption, and solid-liquid 

reactions [1]. Due to its prominence, solid-liquid mixing has been the focus of a large body 

of research. The majority of this research has been conducted experimentally. This was 

achieved with a wide range of experimental methods, which varied not only in their 

measurement techniques but also in the parameters being measured. However, the 

current study will only focus on the measurement of the spatial distribution of particle 

concentrations. This has commonly been measured using x-ray, optical, ultrasound, and 

electrical tomography [2]. A particular case of the latter is referred to as Electrical 

Resistance Tomography (ERT). This method will be used in this study. 

 ERT has been applied to a multitude of unit operations such as mixers, reactors, 

digesters, separators, and filters [3]. However, for the sake of brevity, further discussion 
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will be limited to applications involving solid-liquid mixing. Refer to Section 2.3 for the 

literature review of these applications, which also summarizes the various methods of 

analyzing tomographic data. Generally, the spatial distribution of the particle 

concentrations is summarized into a singular and easily comparable value referred to as 

a mixing index. However, a variety of mixing index definitions exist and are not 

consistently used. In the present study, the overall mixing index proposed by Harrison et 

al. [4] will be used. Refer to Section 3.3 for the reasoning behind this selection. It should 

be highlighted that the mixing index definitions – discussed in that section – only refer to 

particle dispersion within the measurement planes. This is quantified based on the 

standard deviation of the local particle concentrations. Alternatively, a new mixing index 

will be proposed in this work to evaluate the degree of particle suspension from the bottom 

of the tank. This will be quantified based on the average of the local particle 

concentrations.  

 Numerical simulations have emerged as a promising substitute for when 

performing experiments would be too expensive, unsafe, or even impossible. A variety of 

numerical methods can be used to simulate solid-liquid mixing. However, it has been 

conventionally modelled using the Two Fluid Method (TFM) [5]–[12]. This method uses 

Eulerian approaches to represents both the solid and liquid phases as continua. As a 

result, the computational intensity of the method is significantly reduced. However, this 

also reduces its accuracy. Since, the models used to account for particle-particle and 

fluid-particle interactions are currently limited in their application [13]. However, as 

technology advances, this trade-off between accuracy and computational intensity has 

become less necessary. Instead, more accurate and computationally intensive methods 
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are becoming more practical. This is the case for the coupled Computational Fluid 

Dynamics and Discrete Element Method (CFD-DEM) approach. This model will be used 

in the present work. 

 In the coupled CFD-DEM approach, the solid phase is appropriately represented 

as discrete elements by using a Lagrangian approach. This results in better accuracy 

when capturing particle physics at the cost of a manageable increase in computational 

intensity [14]. The fluid flow is estimated by using the volume-averaged Navier-Stokes 

equations. In this unresolved modeling approach, models are still required to take fluid-

particle interactions into consideration. These interactions are normally only taken into 

consideration in the fluid and particle momentum equations. Such that, the influence of 

particles on turbulence (i.e. turbulence modulation) is often neglected. The inaccuracy 

associated with the fluid-particle interaction forces can be improved by using a resolved 

method [15]. This would account for fluid-particle interactions more realistically at the 

surface of the particles and boundary surfaces – by using fluid meshes smaller than the 

particle diameter to apply boundary conditions at the particle surfaces [16]. However, this 

results in a significant increase in computational intensity. Even with advancing 

technology, applying these methods in a reasonable amount of time is still not yet 

practical. Therefore, the current best trade-off between accuracy and computational 

intensity is the unresolved CFD-DEM approach. 

 In general, the use of CFD-DEM coupling to simulate solid-liquid systems has been 

fairly wide spread. Refer to Section 2.6 for the literature review of these applications. 

However, it should be noted that applications of the CFD-DEM method to solid-liquid 

mixing systems – in particular – have been quite limited. The few existing CFD-DEM 
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simulations of this application have been validated based on a variety of system variables: 

the just-suspension speed, the particle velocity and displacement trends, the fraction of 

suspended particles, and the spatial distribution of the particle velocities. However, an 

extensive analysis of the mixing quality based on the spatial distribution of the particle 

concentrations is still lacking. 

 Therefore, the objective of the current study is to comprehensively investigate both 

the degree of particle suspension and dispersion in a mixing tank operating in the 

turbulent regime. The previous studies (i.e. having applied ERT or CFD-DEM coupling to 

solid-liquid mixing) have only covered either the suspension or dispersion of the particles. 

However, in the current study, we will extensively analyze both quantities. This will be 

accomplished using mixing indexes. In this regard, a new suspension mixing index will 

be introduced in this work. Since, those previously used in ERT (i.e. the experimental 

method also employed in this study) have only quantified the degree of dispersion. 

Furthermore, a two-way coupled CFD-DEM method will be developed to simulate the 

mixing system. This will be facilitated by commercial software packages (i.e. coupled 

EDEM-FLUENT). The accuracy of this model will be evaluated against experimental data 

obtained using ERT. Then, the model will be used to evaluate the sensitivity of the mixing 

indexes over a range of model parameters. These include the type of drag force model, 

the inclusion or exclusion of other fluid-particle interaction forces, and various particle 

properties. This study will contribute to a larger body of work that will allow CFD-DEM 

coupling to be used more regularly in the design, optimization, and control of solid-liquid 

process systems. 
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 This thesis is structured as follows. Chapter two gives a detailed literature review 

on the experimental and numerical methods employed in this study. The former involves 

a review of the ERT method and ERT applications for solid-liquid mixing systems. 

Whereas, the latter includes an overview of single-phase and two-phase numerical 

methods as well the CFD-DEM approach and its application to various solid-liquid 

systems. Chapter three outlines the experimental methodologies undertaken in this study. 

This includes the experimental set-up design, details on the ERT system and its 

components, the ERT data analysis approach, and the experimental results. Chapter four 

describes the CFD-DEM model development used in the current work. Chapter five 

covers the model evaluation – i.e. comparison between simulation and experimental 

results – as well as the model sensitivity tests. Finally, chapter six summarizes the general 

conclusions of the current work and recommendations for future works. 
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Chapter 2 : Literature Review 

 In this chapter, the experimental measurement technique and numerical modeling 

approaches used to evaluate solid-liquid systems are described. In particular, the 

Electrical Resistance Tomography (ERT) measurement technique – used in the current 

study – is introduced and its application in solid-liquid mixing systems is presented. In 

terms of numerical methods, various simulation methods will be reviewed. However, the 

main focus of the discussion is on the coupled Computational Fluid Dynamics (CFD) and 

Discrete Element Method (DEM) approach. Furthermore, applications of this modeling 

technique to solid-liquid systems – in general – is presented. 

 

2.1 Solid-Liquid Mixing 

 

 Solid-liquid mixing is the process of suspending, dispersing, and incorporating of 

a particle phase within a liquid phase. Depending on the difference in density between 
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the solid particles and liquid, the particles can either have a tendency to settle or float. 

When mixing either of these types of particles, the mixing objective is to optimize the 

hydrodynamic conditions and prevent the particles from accumulating [17]. In general, 

this will promote greater mass transfer, heat transfer, or rates of reaction – depending on 

the types of processes involved. In the majority of cases, solid-liquid mixing is performed 

in mechanically stirred vessels [18]. 

 Solid-liquid stirred tanks are used in a wide variety of industries. Some common 

industries include food processing, wastewater treatment, mining and mineral processing, 

chemical processing, and pharmaceutical manufacturing [19]. This non-exhaustive list 

illustrates the prevalence and significance of solid-liquid mixing tanks. However, it should 

be noted that these systems are still not well understood due to the associated complex 

phenomena [1]. For this reason, a great deal of research has gone into understanding 

these systems. 

 The hydrodynamic behavior of a stirred tank can be influenced by a variety of 

parameters. These include (1) the physical properties of the liquid and solid phases such 

as the liquid density or particle size; (2) the operating conditions including particle 

concentration or liquid level; (3) the system dimensions such as impeller clearance or 

tank diameter; and (4) the agitation conditions such as impeller speed or torque [20]. In 

literature, the influence of these parameters on the performance of stirred tanks has been 

evaluated both experimentally and numerically. This evaluation has been facilitated 

through a variety of measured mixing parameters. These include the just-suspension 

speed [21]–[24], cloud height [25], power consumption [26], [27], mixing time [28]–[30], 

and spatial distribution of the particle concentrations [31]–[33]. In the current work, the 
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lattermost option was selected in order to perform a more rigorous assessment of the 

stirred tank performance. In comparison, the spatial distribution of the particle 

concentrations provides a more detailed and local assessment – when compared to the 

other parameters, which only provide global assessments of the system. 

 

2.2 Theoretical Principles of Electrical Resistance Tomography (ERT) 

 

 The spatial distribution of the particle concentrations, in solid-liquid systems, has 

been measured experimentally with a variety of measurement techniques. These include 

Magnetic Resonance Imaging (MRI), Positron Emission Particle Tracking (PEPT) and 

various tomography techniques – x-ray, gamma-ray, optical, ultrasound, and electrical 

(i.e. either capacitance or resistance) [34]. In general, these methods can be evaluated 

based on two defining characteristics: (1) the speed in which the images are captured 

and (2) the accuracy of the captured images. These features are inversely related, in most 

cases. Such that, higher image resolution comes at the cost of longer image 

reconstruction times. 

 In this regard, the Electrical Resistance Tomography (ERT) technique – although 

relatively fast – has a low image resolution, ranging only from 3-10% of the vessel 

diameter [35]. Therefore, the main advantage of this method is its ability to capture highly 

transient data. Furthermore, this measurement technique has additional advantages 

associated with simplicity, low cost, and safe operating conditions [36]. 

 Tomography is a method used to determine the spatial distribution of a physical 

property – across an area – based on the measurements taken at its boundary. In the 
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context of ERT, the physical property being determined is the difference in conductivity. 

Whereas, the quantity being measured at the boundary is the output of voltage produced 

by an injection of current. The conductivity values are normally converted to particle 

concentrations to allow the results to be interpreted directly with ease. A basic ERT 

measurement system is comprised of three components: the sensor interface, the data 

acquisition system (DAS), and the data processing software. 

 

2.2.1 Sensor Interface 

 

 Unlike its name suggests, the sensing interface is not only used for detection, it is 

also used as an excitation source to elicit the responses that it detects. In this regard, the 

sensing interface alternates between injecting current into the system and measuring the 

resulting voltage output. This is achieved through a network of cables and electrodes 

such that the cables connect the electrodes to the DAS and the electrodes are installed 

in the walls of the tank in an invasive but non-intrusive manner. This allows them to be in 

direct contact with the secondary liquid without changing the hydrodynamics of the 

system. 

 The electrodes can be made of stainless steel, brass, silver, gold, or even platinum 

[37]. However, the electrode material is generally selected based on the conductivity of 

the liquid being measured, which should be less conductive than the electrodes [38]. 

Alternatively, the electrode size is selected based on a variety of variables. The main 

influences being the size of containing vessel, the operating flow velocity, the required 

imaging speed, and the conductivity of liquids and solids being measured [39]. However, 
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since the electrodes act as both excitation sources and detectors, further considerations 

are required. In this regard, a compromise on the size of the electrodes is necessary in 

order to optimize the effectiveness of both current injection and voltage detection. This 

requires that the electrodes be large enough to inject current evenly [40] and small 

enough to limit the noise levels of the detected voltages [41]. 

 

2.2.2 Data Acquisition System (DAS) 

 

 The DAS is an electronic system comprised of various components: signal 

sources, electrode multiplexer arrays, amplifiers, voltmeters, analogue-to-digital 

converters, signal demodulators, and controllers [42]. This system acts as a bridge 

between the sensor interface and the data processing software. For this reason, it has a 

wide variety of functions. 

 The main function of the DAS is the administration of the measurement process. 

This involves controlling how measurements are taken, which electrodes are used, and 

what the electrodes are used to do. However, these actions depend on the data collection 

strategy being implemented, which can be one of four types of strategies: adjacent, 

opposite, diagonal, and conducting boundary. In general, the strategy is usually selected 

based on its ability to distinguish conductivity changes within regions of the system that 

are of interest. In this regard, the adjacent scheme is more accurate towards the periphery 

of the tank, while the opposite scheme is more accurate towards the center of the tank, 

and the diagonal scheme is moderately accurate throughout the entirety of the tank [43]. 
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Although, the adjacent scheme is most commonly used because of its minimal hardware 

requirements and fast image reconstruction speed [3]. 

 

2.2.3 Image Reconstruction 

 

 The data collected by the sensor interface and DAS is relayed to a computer 

hosting the data processing software. Using this information, the data processing 

software generates tomographic images that illustrate the spatial distribution of the 

particle concentrations. The process of generating these images is referred to as image 

reconstruction – which essentially uses spatial discretization methods to solve for 

distributed properties in an area from quantities measured at its boundary. In the context 

of ERT, the voltage readings taken at the electrodes surfaces are used to solve for the 

conductivity distribution in the sensing planes. This is then converted to a distribution of 

particle concentrations. 

 In this regard, the conductivity distribution is determined by discretizing Poisson’s 

equation for electrical resistance and applying boundary conditions for current injection 

and voltage detection [44]: 

 

𝛻 ∙ (𝜎(𝑥, 𝑦)𝛻𝑉(𝑥, 𝑦)) = 0 ( 1 ) 

∫𝜎 
𝜕𝑉

𝜕𝑛
= {

+𝐼,   𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑜𝑢𝑟𝑐𝑒
−𝐼,        𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑖𝑛𝑘

 ( 2 ) 

𝑉 = 0       𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ( 3 ) 
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where 𝜎 is the conductivity, 𝑉 is the voltage, 𝑛 is a nodal point, and 𝐼 is the injection 

current. The resulting system of equations will have the following form: 

 

𝑌 ∙ 𝑣 = 𝑐 ( 4 ) 

 

where 𝑌 is the conductivity matrix, 𝑣 is the unknown voltage readings; and 𝑐 is the current 

injection data for the boundaries. This system of equations can be solved either 

quantitatively with iterative methods or qualitatively with non-iterative methods. 

 The final step of the image reconstruction process is then converting the 

conductivity distribution to a distribution of particle concentrations. This can be achieved 

using Maxwell’s equation [39]: 

 

𝑋 =

2𝜎liq + 𝜎nc − 2𝜎𝑚𝑐 −
𝜎𝑚𝑐𝜎nc
𝜎liq

𝜎𝑚𝑐 −
𝜎𝑚𝑐𝜎nc
𝜎𝑙𝑖𝑞

+ 2(𝜎liq − 𝜎nc)
 ( 5 ) 

 

where 𝑋 is the volume fraction, 𝜎𝑙𝑖𝑞 is the conductivity of the continuous phase, 𝜎𝑛𝑐 is the 

conductivity of the dispersed phase, and 𝜎𝑚𝑐 is the measured conductivity. 

 

2.3 ERT Applications in Solid-Liquid Mixing 

 

 In solid-liquid mixing, the uniformity of the particle concentration distribution is a 

key parameter used to evaluate the system. It has been studied at length with the ERT 

measurement technique. This will be the focus of the following discussion. 
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 McKee et al. [33] studied the uniformity of mixing sieved sand and water in a 30 

cm diameter stirred tank. This was achieved by first evaluating the relative standard 

deviation values of the particle concentrations at various radial and axial locations. Then, 

graphing these values to illustrate the degree of particle dispersion (i.e. the uniformity of 

the particle distribution throughout the stirred tank). In doing so, they found that better 

dispersion is achieved with higher impeller speeds and lower particles sizes. Williams et 

al. [45] continued this work and found that the impeller type also influences particle 

dispersion. However, a primary difference between these studies was that Williams et al. 

quantified the degree of dispersion into a more convenient value referred to as a mixing 

index. This parameter was evaluated by averaging the various relative standard deviation 

values of the particle concentrations at different axial locations. Using a mixing index 

made it easier to compare multiple datasets. However, their mixing index only accounted 

for the distribution of the particles in the radial direction. 

 Alternatively, Hosseini et al. [20] only evaluated the degree of particle dispersion 

in the axial direction. They did this using a different mixing index referred to as 

homogeneity. This parameter was evaluated by taking the complement of the relative 

standard deviation value of the averaged particle concentrations at different axial 

locations. When increasing the impeller speed, they found that this homogeneity value 

increased to a maximum value after which it began to decrease. In addition to this, they 

determined that this maximum value was influenced by a variety of system parameters. 

These included the impeller type and clearance, particle size, and solid concentration. 

 In contrast, Stevenson et al. [46] did not use a mixing index or any other standard 

deviation value to evaluate the mixing quality. Instead, they used the axial and radial 
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particle concentration profiles. This allowed them to evaluate not only the degree of 

particle dispersion but also the degree of particle suspension from the bottom of the tank. 

Using this approach, they found that the degree of particle dispersion increases in the 

axial direction with decreasing particle density. While, the degree of particle suspension 

increases with increasing impeller speed and the rate of increase is influenced by particle 

size. Such that, the degree of particle suspension increases linearly for smaller particles 

and exponentially for larger particles. In additional to this, they also confirmed that 

assumptions of radial uniformity are not always valid. This was also confirmed by Harrison 

et al. [4] using a different set of mixing index definitions, which quantified the degree of 

dispersion in not only the radial and axial directions, but also throughout the tank (i.e. 

overall mixing index). This was facilitated by discretizing the tomographic planes into 

concentric rings. In doing so, the relative standard deviation of either the planes, annular 

sections, or entire tank could be evaluated. These values were then used to determine 

the different types of mixing indexes. By comparing these mixing indexes, they 

determined that particle dispersion is dominated by radial distributions for fine particles 

and axial distributions for medium to large particles. Depending on the particle size, one 

might neglect the axial or radial distributions based on this finding. However, Harrison et 

al. [4] still recommends that both distributions be taken into consideration in order to 

improve the accuracy of quantifying the mixing quality. Using their overall mixing index, 

they confirmed that the degree of dispersion increases with increasing solids 

concentration and decreasing particle size. They also found that increasing the impeller 

speed decreased the overall mixing index to a minimum value after which it remained 

relatively constant. 
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 Carletti et al. [47] used a different overall mixing index based on the relative 

standard deviation of the square tomographic elements throughout the tank. This 

definition allowed them to apply the same principles as Harrison et al. [4] to account for 

both the radial and axial particle distributions. However, they had the added advantage 

of not being limited to a certain tomographic element shape. By comparing their definition 

with those proposed by Williams et al. [45] and Hosseini et al. [20], they also confirmed 

that the radial distribution was more significant for fine particles. Mishra and Ein-Mozaffari 

[48] also compared various mixing index definitions. Specifically, those proposed by 

Williams et al. [45], Hosseini et al. [20], and Carletti et al. [47]. In doing so, they confirmed 

that the axial distribution was dominant for the large particles used in their study. For this 

reason, they opted to only use the axial mixing index proposed by Hosseini et al. [20] to 

further evaluate their results. In doing so, they confirmed that the homogeneity increased, 

with increasing impeller speed, to a maximum value after which it began to decrease. 

They also found that the maximum homogeneity value was influenced by the presence 

of baffles. While, confirming that it was also influenced by the impeller type and clearance, 

particle size, and solid concentration. 

 

2.4 Numerical Simulation Methods 

 

 This section covers the numerical approaches used to simulate two-phase 

systems. However, the main focus is CFD-DEM coupling. To gain a better understanding 

of this method, the fundamentals and formulations of both CFD and DEM approaches – 

used to model single-phase systems – are first introduced. Then, the coupled CFD-DEM 
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method is introduced. The advantages and disadvantages of this method are then 

highlighted in comparison with alternative two-phase models. 

 

2.4.1 Single-Phase Modeling 

 

 Single phases can be represented by discrete or continuum based descriptions. 

Such that, the former requires a Lagrangian type of model and the latter requires an 

Eulerian type of model [13], [16]. Lagrangian and Eulerian models are discussed in 

following sub-sections.  

 

2.4.1.1 Lagrangian Models - Discrete Element Method (DEM) 

 

 Lagrangian models are conventionally used to model solid particle motion. 

However, they also can be used at the microscopic level to model fluid motion [49]. When 

modeling fluid motion, these methods can be very computationally intensive due to the 

great number of particles involved. For the sake of brevity, these types of models will not 

be discussed any further. One of the most common Lagrangian models used to simulate 

particle motion is referred to as the Discrete Element Method (DEM). This modeling 

approach is used to study the dynamic behaviour in systems comprised of distinct 

elements – i.e. particles. DEM provides particle-scale information such as particle 

positions and velocities, as well as the forces acting on the particles. In the DEM 

approach, particle collisions are described with two distinct models: hard-sphere and soft-
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sphere. The main difference between these models is the assumptions used to handle 

collisions. 

 The hard-sphere model assumes that particles are rigid and that collisions occur 

over a very short period of time. As a result, collisions are considered to be instantaneous 

and are assumed to only occur one at a time [50]. This is a realistic assumption for a 

dilute system in which collisions are infrequent and short. In this model, the particle 

velocities and positions are updated at each collision – also referred to as an event [51]. 

For this reason, this method is described as event-driven. During each collision, the 

particles’ post-collision velocities are calculated based on their pre-collision velocities. 

Although, it should be noted that the hard-sphere model cannot be applied to dense 

systems – it is limited only to dilute systems [52], [53]. Alternatively, the soft-sphere model 

can be applied to both dilute and dense systems. 

 The soft-sphere model assumes that particles are elastic and that collisions are 

gradual. As a result, multiple collisions can occur at the same time. This is taken into 

consideration by using a small and fixed time step to monitor the system and detect all of 

the collisions. This method is referred to as time-driven [13]. During each time step, the 

particles’ subsequent velocities are determined by numerically integrating Newton’s 

second law of motion, which is as follows [54]: 

 

𝑚𝑖

𝑑𝒗𝒊
𝑑𝑡

=∑ 𝑭𝒊𝒋
𝑛

𝑗
 , 𝐼𝑝,𝑖

𝑑𝝎𝒊

𝑑𝑡
=∑ 𝑴𝒊𝒋

𝒏

𝒋
 ( 6 ) 

 

where 𝑖 represents particle 𝑖, 𝑗 represents particle j, 𝑚 is the mass, 𝐼𝑝 is the moment of 

inertia, 𝒗 is the translational velocity, 𝝎 is the angular velocity, ∑𝑭𝒊 is the total forces 
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acting on a particle, and ∑𝑴𝒊 is the total torques acting on a particle. The force term 

includes not only the contacting forces, but also non-contacting, gravitational, and 

external forces. The non-contacting forces can include Van der Waals, electrostatic, and 

capillary forces [14].  

 The contacting forces and torques are determined using constitutive models. 

These contact models relate the contact forces and torques to the degree of particle 

overlap with other contacting particles or walls. The normal overlap (𝛿𝑛) and tangential 

overlap (𝛿𝑡)  of particle-particle and particle-wall contacts are illustrated in Figure 1. In this 

figure, 𝑹𝒄 is the normal distance from the center of the particle to the contact plane, 𝐶 is 

the contact point, and 𝒈 is the acceleration due to gravity. 

 

 

Figure 1. Contact diagrams for a) particle-particle and b) particle-wall contacts. 

 

 There are a variety of contact models that can be used. In this regard, they can 

account for elastic, dissipative, frictional, or a combination of these type of interactions 

b) a) 



19 

 

[55]. Some commonly used contact models are as follows: the linear spring-dashpot 

model proposed by Cundall and Strack [54], the model proposed by Langston et al. [56], 

and simplified versions of the Hertz-Mindlin-Deresiewicz model. The Hertz-Mindlin-

Deresiewicz model accounts for complex interactions in a realistic manner. This is 

achieved by combining the theory developed by Hertz [57] for the normal contact forces 

and the theory developed by Mindlin and Deresiewicz [58] for the tangential forces. 

However, this method can be quite computationally intensive for larger system [14]. For 

this reason, simplified variations of this model are more commonly used in literature. 

Examples of such models include those proposed by Tsuji et al. [59], Walton and Braun 

[60], and Thornton and Yin [61]. 

 When implementing the soft-sphere model, the motion of particles is estimated 

through iterative time integration of Newton’s second law of motion. There are several 

different time integration schemes that have been used in literature. Some commonly 

used methods include the Euler, position Verlet, and velocity Verlet methods [62]. When 

implementing this method, the time step must be sufficiently small in order to produce a 

stable numerical solution. In general, the DEM time step is selected based on the critical 

time step at which simulations would become unstable. Such that, the time step is 

selected to be smaller than the critical time step. There are few methods that can be used 

to determine the critical time step. In one of the most common methods used in literature, 

the critical time step is equivalent to the Rayleigh time step. This is the time required for 

a shear wave to propagate through an elastic body and can be represented as follows 

[63]: 
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∆𝑡𝑅𝑎𝑦 =
𝜋𝑅𝑚𝑖𝑛

0.1634𝜐 + 0.8766
√
𝜌𝑝

𝐺𝑚𝑎𝑥
 ( 7 ) 

 

where 𝑅𝑚𝑖𝑛 is the minimum particle radius, 𝜌𝑝 is the particle density, 𝜐 is the Poisson ratio, 

and 𝐺𝑚𝑎𝑥 is the maximum shear modulus. Another common method used to calculate the 

critical time step is as follows [59]: 

 

∆𝑡𝑐𝑟 =
𝜋

5
√
𝑚

𝑘
 ( 8 ) 

 

where ∆𝑡𝑐𝑟 is the critical time step, and 𝑘 is the spring constant. This approach is based 

on the time period required for free oscillation of the system [55]. Alternatively, O’Sullivan 

and Bray [64] determined the critical time step through a stiffness analysis of the total 

system energy balance. Although, it should be noted that this method is more numerically 

complex than those previously discussed. 

 

2.4.1.2 Eulerian Models - Computational Fluid Dynamics (CFD) 

 

 Eulerian models are conventionally used to model fluid motion. In this regard, the 

following two Eulerian models are commonly used: the Lattice-Boltzmann (LB) Model and 

Computational Fluid Dynamics (CFD) [16]. The LB model was derived within a statistical 

mechanics framework. In this model, the fluid motion is governed by the Boltzmann 

equation, which provides a microscopic description of the fluid [65]. Alternatively, the CFD 

governing equations were derived within a continuum mechanics framework. This method 
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is the most commonly used model for simulating fluid motion. The conservation of mass 

and momentum equations used in the CFD method are as follows [66]: 

 

𝜕𝜌𝑓

𝜕𝑡
+ ∇ ∙ (𝜌𝑓𝒖) = 0 , 

𝜕(𝜌𝑓𝒖)

𝜕𝑡
+ ∇ ∙ (𝜌𝑓𝒖𝒖 ) = −∇𝑝 − ∇ ∙ 𝝉 − 𝜌𝑓𝒈 ( 9 ) 

 

where 𝒖 is the local fluid velocity, 𝜌𝑓 is the fluid density, 𝑝 is pressure, and 𝝉 is the stress 

tensor. The momentum equations are commonly referred to as the Navier-Stokes 

equations. 

 Both of these methods have been proven to be capable of modeling fluid motion. 

However, they also both have distinctive strengths and weaknesses. In this regard, the 

LB model is generally more memory and CPU intensive than the CFD method [67]. 

However, there are certain circumstances in which the LB model can become more 

efficient than the CFD method. This is the case for complex geometries, such as porous 

media [68]. However, the LB approach does not fall within the scope of the current work 

and therefore will not be discussed any further. Refer to [67] for more information on the 

LB method. The following discussion will now focus solely on the CFD approach. 

 Prior to running any CFD simulations, the geometry is discretized into a mesh 

consisting of interconnecting elements. This is referred to as mesh generation. The shape 

of the mesh elements will depend on the type of discretization scheme selected. In this 

regard, a variety of discretization schemes can be used such as the finite-element, finite-

difference, and finite-volume methods [13]. For 3D geometries, the meshes can be 

comprised of tetrahedra (i.e. prism or pyramid) or hexahedra elements. It should be noted 

that the element shape and dimensions can be varied throughout the geometry. This is 
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advantageous for two reasons. First, it can reduce computations costs since the total 

number of mesh elements in the geometry can be optimized. Second, the model accuracy 

can be improved by having refined elements near the geometry walls [69]. The mesh 

quality has a significant influence on the simulation convergence, solution accuracy, and 

CPU time requirements. For this reason, extra precaution should be taken to ensure good 

mesh quality during the mesh generation phase. 

 By discretizing the geometry into a mesh, the governing equations of the CFD 

method – as shown in Equation ( 9 ) – can be approximated with a set of algebraic 

equations. To solve this set of equations, a numerical scheme is required for coupling the 

pressure and momentum quantities. Some of the common velocity-pressure coupling 

schemes include the Semi-Implicit Method for Pressure-Linkage Equations (SIMPLE) 

[70], SIMPLE-Consistent (SIMPLEC) [71], and the Pressure Implicit with Splitting of 

Operators (PISO) scheme [72]. Moreover, the discretization of the governing equation 

parameters is also required. This is commonly achieved with numerical methods such as 

the first-order upwind, second-order upwind, power law, and QUICK schemes. Lastly, 

temporal discretization is also necessary. Popular methods used for this purpose include 

first-order or second-order implicit schemes [73]. 

 When operating within the turbulent regime, turbulence closure equations must 

also be incorporated within the CFD model. Some commonly used turbulence models are 

as follows: the standard k-ε model [74], variations of this model (i.e. RNG k-ε model [75] 

and Realizable k-ε model [76]), and the Reynolds Stress model [77]. The standard k-ε 

model is based on the concept of eddy viscosity and the assumption of isotropic stresses. 

It is reasonably accurate for a wide variety of turbulent flows. However, it has been found 
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to be less reliable in complex flows that have strong streamline curvature, vortices, and 

swirling flow. To mitigate this issue, modified versions of the k-ε model have been used 

in literature [73]. Alternatively, the Reynolds Stress model can also be used to improve 

the accuracy of modeling complex flows. Since, this model accounts for anisotropic 

stresses and solves for the entire Reynolds stress tensor. Although, it should be noted 

that this model is significantly more computationally intensive than those previously 

discussed [78]. 

 

2.4.2 Two-Phase Modeling 

 

 When modeling two-phase systems, either phase can be represented by a 

Lagrangian or Eulerian description. In this regard, fluid-particle systems are simulated 

with models that fall under the following categories: Lagrangian-Lagrangian, Eulerian-

Lagrangian, and Eulerian-Eulerian [79]. In general, these modeling approaches can be 

evaluated based on two defining characteristics: (1) their computational efficiency and (2) 

the accuracy in which they capture fluid and particle physics. In most models, these 

features are inversely related – such that greater accuracy comes with a lower 

computational efficiency. 

 The Lagrangian-Lagrangian approach is very reliable in terms of capturing both 

fluid and particle physics. However, this comes at a very high computational cost. This is 

due to the fact that the fluid and particle phases will both be represented by discrete 

elements. For this reason, this approach is generally restricted to modeling very small 

systems – at least with an average hardware setup [16]. 
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 In contrast, Eulerian-Eulerian models are the least computationally intensive and 

can be used to simulate a variety of system sizes – ranging from small systems to larger 

and more practical geometries [16]. This type of model is also referred to as a Two Fluid 

Model (TFM) [80]. In this modeling approach, both the fluid and particle phases are 

represented as continua. Such that, models are used to approximate the effects of 

particle-particle and fluid-particle interactions. However, with the current state of these 

equations, this normally also results in a loss of accuracy [13]. Furthermore, it should also 

be noted that particle-scale phenomena cannot be captured with this modeling approach. 

 In contrast to TFM, the Eulerian-Lagrangian approach represents the fluid phase 

as a continuum and the particle phase as discrete elements. This more accurately 

captures particle physics as compared to TFM [14]. This modeling approach is divided 

into two broad categories that depend on the size of the mesh – used to model the fluid 

phase. In this regard, the fluid mesh can either be an order of magnitude smaller or larger 

than the particle size. The former is referred to as a resolved model and the latter is 

referred to as an unresolved model. The resolved Eulerian-Lagrangian models are more 

accurate at capturing fluid-particle physics. However, this comes at a significantly higher 

computational cost. Some examples of resolved Eulerian-Lagrangian models are as 

follows: the Lattice-Boltzmann model coupled with DEM (LB-DEM) [81], and Direct 

Numerical Simulation coupled with DEM (DNS-DEM) [82], the Distributed Lagrange 

Multiplier (DLM) method [83], and PHYSALIS [84]. In comparison, the unresolved 

Eulerian-Lagrangian approach is not as accurate in capturing fluid-particle physics – as 

compared to the resolved methods. However, it does have a more manageable 

computational intensity. Therefore, this approach offers the best trade-off between 
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accuracy and computational efficiency – at least with current technological capabilities 

[14]. The most common unresolved Eulerian-Lagrangian model used in literature is CFD-

DEM coupling. This method will be discussed in further detail in Section 2.5. 

 

2.5 Theoretical Principles of Computation Fluid Dynamics (CFD) and Discrete Element 

Method (DEM) Coupling Model 

 

 As previously mentioned, CFD-DEM coupling is an unresolved Eulerian-

Lagrangian method that combines the CFD and DEM methodologies. In this approach, 

the motion of the fluid phase is simulated by locally-averaged Navier-Stokes equations 

[85]. The interactions between the fluid and solid particles are accounted for with 

equivalent momentum exchange terms in the locally-averaged Navier-Stokes momentum 

equation governing fluid motion and the Newtonian equation governing particle motion 

[53]. Such that, various models are used to estimate the fluid-particle interaction forces 

[16]. These aspects of the CFD-DEM model will be discussed in the following sub-

sections. In addition to this, other topics covered include potential coupling schemes, 

further simulation considerations, available software options, and a summary of the 

advantages and disadvantages of CFD-DEM coupling. 

 

2.5.1 General Overview of Governing Equation Forms 

 

 The governing equations for the CFD-DEM method have had two distinctive 

configurations in literature: Model A and Model B. In general, the main difference between 
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these configurations is the pressure distribution assumption used to derive the governing 

equations. 

 Model A assumes that pressure is distributed amongst both phases and can be 

represented by the following equations [59], [86]: 

 

𝜕휀𝑓𝜌𝑓

𝜕𝑡
+ ∇ ∙ (휀𝑓𝜌𝑓𝒖) = 0 , 

𝜕(휀𝑓𝜌𝑓𝒖)

𝜕𝑡
+ ∇ ∙ (휀𝑓𝜌𝑓𝒖𝒖 ) = −휀𝑓∇𝑝 − 𝑭𝒑𝒇 + ∇ ∙ (휀𝑓𝝉) + 휀𝑓𝜌𝑓𝒈 ( 10 ) 

𝑚𝑖

𝑑𝒗𝒊
𝑑𝑡

=∑ 𝒇𝒊𝒋
𝒄

𝑛

𝑗
+𝑚𝑖𝒈 + 𝒇𝒑𝒇,𝒊 , 𝐼𝑝,𝑖

𝑑𝝎𝒊

𝑑𝑡
=∑ 𝑴𝒊𝒋

𝒏

𝒋
 ( 11 ) 

𝑭𝒑𝒇 =
∑(𝒇𝒅,𝒊 + 𝒇

′′)

∆𝑉
 , 𝒇𝒑𝒇,𝒊 = 𝒇𝒅,𝒊 + 𝒇𝛁𝒑,𝒊 + 𝒇

′′ ( 12 ) 

 

where 휀𝑓 is the local fluid porosity, 𝑭𝒑𝒇 is the volumetric fluid-particle interaction force, 

𝛴𝒇𝒊𝒋
𝒄  is the total contact force, 𝒇𝒑𝒇 is the individual overall fluid-particle interaction force, 

and 𝛴𝑴𝒊𝒋 is the total contact torque, 𝒇𝒅 is the drag force, 𝒇𝛁𝒑 is the pressure gradient 

force, 𝒇′′ is the sum of all other fluid-particle interaction forces acting on particle 𝑖, and ∆𝑉 

is the mesh cell volume for the fluid phase. 

 Alternatively, Model B assumes that pressure is distributed only within the fluid 

phase. This results in a different set of equations for the momentum conservation of the 

fluid phase and the fluid-particle interaction forces. These equations are as follows [87]: 

 

𝜕(휀𝑓𝜌𝑓𝒖)

𝜕𝑡
+ ∇ ∙ (휀𝑓𝜌𝑓𝒖𝒖 ) = −∇𝑝 − 𝑭𝒑𝒇 + ∇ ∙ (휀𝑓𝝉) + 휀𝑓𝜌𝑓𝒈 ( 13 ) 

𝑭𝒑𝒇 =
∑𝒇𝒑𝒇,𝒊

∆𝑉
 , 𝒇𝒑𝒇,𝒊 = 𝒇𝒅,𝒊 + 𝒇𝛁𝒑,𝒊 + 𝒇

′′ ( 14 ) 
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Furthermore, Model B has also been found in a simplified form in literature – under an 

assumption of steady and uniform fluid flow. This results in a different equation for the 

fluid-particle interactions forces, which is as follows: 

 

𝑭𝒑𝒇 =
∑(𝒇𝒅,𝒊 + 𝒇

′′)

휀𝑓∆𝑉
−
∑(𝜌𝑓𝑉𝑝,𝑖𝒈)

∆𝑉
 , 𝒇𝒑𝒇,𝒊 =

(𝒇𝒅,𝒊 + 𝒇
′′)

휀𝑓
− 𝜌𝑓𝑉𝑝,𝑖𝒈 ( 15 ) 

 

where 𝑉𝑝,𝑖 is the volume of particle 𝑖. 

 It has been argued by Zhou et al. [88] that Model A may be ill-posed and Model B 

is more logical and acceptable. Both models were evaluated by the authors – in their 

original forms – and were found to produce comparable and logical simulation results. 

However, this was not the case for the simplified version of Model B. This model was 

found to be unreliable, when applied to an unsteady and non-uniform fluid flow – i.e. within 

a hydrocyclone. For this reason, the authors recommended that Model A and Model B 

should only be used in their original forms in future works. Refer to [88] for a more 

comprehensive discussion on this topic. 

 

2.5.2 Modeling of Fluid-Particle Interaction Forces 

 

 The fluid-particle interaction terms – included in Equations ( 12 ), ( 14 ) and ( 15 ) 

– can account for a variety of forces. Potential forces that can be included are listed and 

defined in Table 1. Including all these forces in the model can become quite 

computationally taxing. For this reason, insignificant forces are usually neglected to 

decrease computational costs and reduce additional sources of error. 
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Table 1. Fluid-particle interaction forces definitions. 

Force Definition Citation 

Pressure 

Gradient 

Accounts for difference in pressure due to buoyancy of 

particles and acceleration of fluid 
[85] 

Virtual 

Mass 
Required to displace fluid around accelerating particles [89] 

Basset 
Accounts for lagging development of the viscous boundary 

layer around accelerating particles 
[90] 

Saffman 
Accounts for difference in pressure due to shear flows acting 

on non-rotating particles 
[91] 

Magnus 
Accounts for difference in pressure due to rotation of particles 

in uniform flows 
[92] 

Lubrication 
Hinders particles, in close proximity, from moving towards or 

away from each other due to presence of interstitial fluid 
[93] 

 

 In the majority of cases, the drag force is significant and dominant. Therefore, it is 

always taken into consideration. This force can be represented generally in the following 

form: 

 

𝒇𝒅 = 𝛽𝑝𝑓(𝒖 − 𝒗) ( 16 ) 

 

such that 𝛽𝑝𝑓 depends on the specific drag model. There are numerous equations to 

represent this term. Refer to Table 2 for the different forms of this coefficient used in the 

Di Felice, Gidaspow, and Syamlal O’Brien drag models. Such that, 𝑑𝑝 is the particle 
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diameter, and 𝜇𝑓 is the fluid viscosity. These models are commonly used and 

recommended for dense particle suspensions. 

 

Table 2. Drag model coefficients. 

Model Equation  Citation 

Di Felice 

𝛽𝑝𝑓 =
3

4

𝜌𝑓(1 − 휀𝑓)휀𝑓

𝑑𝑝
휀𝑓
1−𝜒

𝐶𝐷(𝐷𝑖𝐹)|𝒖 − 𝒗| 

𝜒 = 3.7 − 0.65 exp [−
(1.5 − log10 𝑅𝑒𝑝)

2

2
] 

𝐶𝐷(𝐷𝑖𝐹) = (0.63 +
4.8

𝑅𝑒𝑝
0.5
)

2

 

𝑅𝑒𝑝 =
휀𝑓𝜌𝑓𝑑𝑝|𝒖 − 𝒗|

𝜇𝑓
 

( 17 ) [94] 

Gidaspow 

𝛽𝑝𝑓 =

{
 
 

 
 150

(1 − 휀𝑓 )
2

휀𝑓

𝜇𝑓

𝑑𝑝
2
+ 1.75(1 − 휀𝑓)

𝜌𝑓

𝑑𝑝
|𝒖 − 𝒗|,              휀𝑓 < 0.8

3

4

𝜌𝑓(1 − 휀𝑓)휀𝑓

𝑑𝑝
휀𝑓
−2.65𝐶𝐷(𝐺𝑖𝑑)|𝒖 − 𝒗|,                               휀𝑓 ≥ 0.8

 

𝐶𝐷(𝐺𝑖𝑑) = {

24

𝑅𝑒𝑝
[1 + 0.15𝑅𝑒𝑝

0.687],              𝑅𝑒𝑝 < 1000

0.44,                                               𝑅𝑒𝑝 ≥ 1000

 

( 18 ) [87] 

O’Brien 

𝛽𝑝𝑓 =
3

4

𝜌𝑓(1 − 휀𝑓)휀𝑓

𝑑𝑝
𝐶𝐷(𝑆𝑦𝑚)|𝒖 − 𝒗| 

𝐶𝐷(𝑆𝑦𝑚) =
1

𝑣𝑟𝑠
2
[0.63 +

4.8

(𝑅𝑒/𝑣𝑟𝑠)
0.5
]
2

 

𝑣𝑟𝑠 =
1

2
{A − 0.06Re + [(0.06Re)2 + 0.12Re(2B − A) + A2]0.5} 

A = εf
4.14 

B = {
0.8εf

1.28,  εf ≤ 0.85

εf
2.65       εf > 0.85

 

𝑅𝑒 =
𝜌𝑓𝑑𝑝|𝒖 − 𝒗|

𝜇𝑓
 

( 19 ) [95] 

 

 The significance of the other fluid-particle interaction forces, however, can vary 

from case to case. This depends on the operating parameters. For instance, the pressure 
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gradient, virtual mass, and Basset forces are often insignificant at high particle-fluid 

density ratios (i.e. 𝜌𝑝/𝜌𝑓 ≥ 1000). However, they can become more significant with lower 

particle-fluid density ratios that are closer to one [96]. This is due to the unsteady nature 

of the forces. Alternatively, the Saffman lift force is more significant in high-shear 

applications. Whereas, the Magnus lift force is more significant in applications with high 

rates of particle-particle and particle-wall collisions, which cause greater particle rotation 

[51]. The lubrication force, on the other hand, is generally more pronounced in solid-liquid 

systems as opposed to gas-solid systems [93]. Refer to Table 3 for the equations used 

to account for these forces – with the exception of the lubrication force. The lubrication 

force is normally accounted for implicitly, through the modification of the particle contact 

force model or coefficient of restitution [97]. 

 

Table 3. Other fluid-particle interaction force models. 

Force Equation  Citation 

Pressure 

Gradient 
𝒇𝜵𝒑 = −

π

6
𝑑𝑝
3𝜌𝑓 (𝒈 + 𝒖

𝑑𝒖

𝑑𝑥
) ( 20 ) [85] 

Virtual 

Mass 

𝒇𝒗𝒎 =
π

12
[2.1 −

0.132

0.12 + 𝐴𝑐2
] 𝑑𝑝

3𝜌𝑓 (
𝑑𝒖

𝑑𝑡
−
𝑑𝒗

𝑑𝑡
) 

𝐴𝐶 =
(𝒖 − 𝒗 )2

𝑑𝑝

𝑑(𝒖 − 𝒗)

𝑑𝑡
 

( 21 ) [89] 

Basset 

𝒇𝑩𝒂𝒔𝒔 = 𝐶𝐵𝑎𝑠𝑠 [∫ 𝑔(𝑡 − 𝑡′) (
𝜕𝑯

𝜕𝑡′
) 𝑑𝑡′

𝑡

0

− 𝑔(𝑡)𝑯(𝑡 = 0)] 

𝐶𝐵𝑎𝑠𝑠 =
3

2
𝑑𝑝
2√𝜋𝜌𝑓𝜇𝑓 

𝑔(𝑡) =
1

√𝑡
 

𝑯 = 𝒖 − 𝒗 +
1

24
𝑑𝑝
2∇2𝒖 

( 22 ) [90] 
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Saffman 

Lift 

𝒇𝑺𝒂𝒇𝒇 = 1.61𝑑𝑝
2(𝜇𝑓𝜌𝑓)

0.5
|𝝎𝒄|

−0.5[(𝒖 − 𝒗)×𝝎𝒄] 

𝝎𝒄 = ∇×𝒖 
( 23 ) [91] 

Magnus 

Lift 

𝒇𝑴𝒂𝒈 = 0.125𝜋 𝑑𝑝
3𝜌𝑓

𝑅𝑒

𝑅𝑒𝜔
𝐶𝐿{[0.5𝝎𝒄 −𝝎]×(𝒖 − 𝒗)} 

𝐶𝐿 = 0.45 + (
𝑅𝑒

𝑅𝑒𝜔
− 0.45) exp(−0.05684𝑅𝑒0.3𝑅𝑒𝜔

0.4) 

𝑅𝑒𝜔 =
𝜌𝑓|0.5𝝎𝒄 −𝝎|𝑑𝑝

2

𝜇𝑓
 

( 24 ) [98] 

 

2.5.3 Coupling Approaches and Schemes 

 

 Interphase coupling has three distinctive approaches in literature: one-way, two-

way, and four-way coupling. The selection of the approach depends on the system 

particle concentration, which influences the significance of particle-particle and particle-

to-fluid interactions [99]. The regime map based on the particle concentration is illustrated 

in Figure 2. 

 

 

Figure 2. Interphase coupling regime map [13]. 
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 As seen in this figure, one-way and two-way coupling are used for the simulation 

of dilute concentration systems and four-way coupling is used for the simulation of dense 

concentration systems. In the one-way coupling regime, the concentration of particles is 

so dilute that the particles will likely not interact with each other. Rather, the particles will 

only interact with the fluid and the fluid will not be significantly influenced by the particles. 

For these reasons, particle-particle and particle-to-fluid interactions are neglected. In the 

two-way coupling regime, the concentration of particles is less dilute such that the 

particles will now influence the fluid but still not be likely to interact with each other. 

Therefore, only particle-particle interactions are neglected, when simulating a system in 

this regime. In the four-way coupling regime, the concentration of particles is considered 

to be dense. In such conditions, the particles will not only interact with the fluid, but also 

with each other. For this reason, all interactions are taken into consideration [13], [99]. 

 Within the four-way coupled approach, three distinctive coupling schemes have 

been used in literature – to transfer fluid and particle data between the CFD and DEM 

solvers to calculate the fluid-particle interaction forces. Zhou et al. [88] reviewed these 

schemes and recommended that only one should be used in future works. It should be 

noted that this is also the scheme used in the majority of current CFD-DEM applications. 

For these reasons, only this scheme will be taken into consideration in the following 

discussion. Refer to [14], [88] for details on the alternative coupling schemes and their 

specific limitations.  

 The calculation cycle and coupling process associated with the recommended 

coupling scheme is illustrated in Figure 3. The particle positions and velocities are used 

to calculate the distribution of the fluid porosity term and the volumetric fluid-particle 
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interaction forces. In this regard, the individual fluid-particle interaction forces – calculated 

based on the individual particle velocities – are volume averaged to produce the 

volumetric fluid-particle interaction force acting on the fluid phase. Next, the CFD solver 

uses the fluid porosity distribution and volumetric fluid-particle interaction forces to update 

the fluid velocity field. This information is then used to update the individual fluid-particle 

interaction forces that will be used in the DEM solver. As the next step, the DEM solver 

updates the particle positions and velocities, which will then be used to repeat the 

calculation cycle. 

 

 

Figure 3. Calculation cycle for coupling scheme [14]. 

 

2.5.4 Mesh Size and Time Step Restrictions 

 

 When using the CFD-DEM method, the mesh size must be large compared to the 

particle diameter but still small compared to the computational domain [85]. It was 

recommended by Itasca [100] that the mesh size to particle diameter ratio should be no 
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less than 5; and the system width to mesh size ratio should also be no less than 5.  This 

is represented by the following equations: 

 

∆𝑥𝐶𝐹𝐷
𝑑𝑝

> 5 ,  
W

∆𝑥𝐶𝐹𝐷
> 5 ( 25 ) 

 

where ∆𝑥𝐶𝐹𝐷 is the mesh size, and 𝑊 is the system width. Although, it should be noted 

that it can be difficult to maintain a mesh size that is small in comparison to the 

computational domain, under this condition, for narrow or complex geometries. This is an 

inherent limitation of CFD-DEM coupling. In this regard, grid independence tests should 

always be performed to verify the accuracy associated with the mesh size. 

 Additionally, when applying the CFD-DEM method, restrictions are also placed on 

the size of the CFD time step. In this regard, the CFD time step should be selected based 

on the DEM time step. It is recommended that the ratio between these time steps – i.e. 

the CFD time step divided by the DEM time step – be greater than 10 but less than 1000 

[101]. Although, typical values found in solid-liquid systems have ranged from 10 to 100 

[92], [102]–[109]. 

 

2.5.5 Simulation Software 

 

 Even though there are all-in-one programs designed specifically for executing 

CFD-DEM coupling, the combination of CFD software with DEM software is more 

commonly used. This approach is more advantageous as it facilitates independent code 
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development [110]. The CFD and DEM software used in literature can be categorized into 

the following three groups: commercial, open-source, and in-house. 

 Commercial software tends to be more user friendly and require only a modest 

amount of computer experience. This is further complemented by the support available 

from the software developers, regular maintenance, and accelerated software 

development. For these reasons, commercial software is quite popular and has been 

used in numerous papers. In the context of CFD-DEM coupling, a common combination 

is that between ANSYS FLUENT and EDEM [92], [109], [111]–[113]. However, it should 

be noted that commercially available coupling modules are not currently designed for 

parallel computing [111]. This is a popular feature found in open-source and in-house 

developed software, which has proven to be quite promising [110], [114]. 

 In contrast to commercial software, open-source software is not very user friendly 

and requires experience with various programming languages – e.g. C, C++, and 

FORTRAN – and computer operating systems – e.g. Linux. Regardless of this fact, open-

source software is growing in popularity and has been used in several papers. In the 

context of CFD-DEM coupling, a common combination is that between OpenFOAM and 

LIGGGHTs [110], [115], [116]. 

 Similar to open-source software, in-house developed software also requires a 

great deal of computer experience and programming abilities. However, it comes with the 

added advantage of greater flexibility and customization. This has proven to be a very 

desirable trait since in-house developed software has been used in several papers 

relating to CFD-DEM coupling [93], [117]–[119]. In addition to this, it has also been 
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demonstrated that in-house developed software can be paired with commercial software 

[106]–[108], [120] – to lessen the programming and developmental burden. 

 

2.5.6 Advantages and Disadvantages 

 

 CFD-DEM coupling currently provides the best trade-off between accuracy and 

computational efficiency in terms of capturing particle physics [14]. However, it should be 

reminded that this method has some shortcomings. The accuracy and applicability of 

CFD-DEM coupling is limited by the current state of the fluid-particle interaction force 

models. These equations are still in the developmental phase and require more thorough 

investigation and refinement [13]. In addition to this, the method is still somewhat 

computational intensive since it accounts for particle-particle and particle-wall interactions 

in a realistic manner. This limitation has restricted the CFD-DEM method to intermediate-

sized systems [16]. Additionally, it should be reminded that the applicability of the CFD-

DEM method is limited by the number of particles and the mesh element size. Such that, 

the latter is selected based on the particle size and geometry width [100]. When 

simulating, systems with large particles, the mesh size may even be too coarse to 

accurately predict the fluid flow field. However, these restrictions should not be viewed as 

unredeemable qualities. This method still has the potential to provide valuable insight 

within the restricted scope. 
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2.6 CFD-DEM Applications 

 

 The application of CFD-DEM coupling to simulate solid-liquid systems is fairly wide 

spread. In this regard, fluidization, hydraulic conveying, separation (i.e. through 

centrifugation, sedimentation, filtration, and jigging) and mixing have been studied using 

this simulation method. A brief literature review of these applications is presented below.  

 

2.6.1 Fluidized Beds 

 

 Fluidized beds are the most common system being studied with CFD-DEM 

coupling. Fluidization is the process of suspending particulate matter in an upward flow 

of a fluid phase. The purpose being to maximize the particle contact area and mixing 

performance. The studies using CFD-DEM to simulate solid-liquid fluidized beds cover a 

variety of subjects. This includes the hydrodynamic behavior of fluidized beds, the 

significance of various forces in fluidized beds, the layer inversion phenomenon occurring 

in polydisperse systems, and the influence of geometry on fluidization. In addition to this, 

there are also studies that focused on very specific topics such as heat transfer and 

magnetic fluidized beds. 

 The hydrodynamic behavior of fluidized beds has only been the subject of a few 

CFD-DEM studies. In this regard, Di Renzo and Di Maio [119] studied a pseudo-2D 

fluidized bed operating in the homogeneous expansion regime. With the aid of the 

simulations, the authors investigated the relationship between the superficial liquid 

velocity and the steady-state bed porosity. In doing so, they found that the steady-state 
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bed porosity increased with increasing superficial liquid velocity. The simulation results 

qualitatively reproduced steady-state and transient behaviors in accordance with the 

theory of stability proposed by Foscolo and Gibilaro [121]. In addition to this, the 

simulation results also quantitatively reproduced the bed rise velocity as calculated by the 

particle bed model (PBM) [122]. This work demonstrated that CFD-DEM coupling could 

be used to reproduce the hydrodynamic behavior of a fluidized bed operating in the 

homogeneous expansion regime. Similarly, Wang et al. [93] studied the hydrodynamic 

behavior of a 2D fluidized bed. Although, they investigated the system in more detail by 

evaluating the influence of various operating conditions on the bed height and porosity, 

as well as the granular temperature – in not only the homogeneous expansion regime, 

but also the heterogeneous flow regime. In doing so, they found that the monitored 

parameters were influenced by the superficial liquid velocity, liquid viscosity, and particle 

density. Han et al. [116] studied the hydrodynamic behavior in a circulating fluidized bed. 

Their work comprehensively evaluated this system with a focus on the particle residence 

time and onset velocity. In essence, this is the velocity at which fluidization transitions 

from the conventional fluidization regime to the circulating fluidization regime. The 

developed CFD-DEM model was able to quantitatively reproduce experimental onset 

velocities found in literature (i.e. with an error ranging only from 0.6% to 2.1%). Moreover, 

they evaluated the sensitivity of the onset velocity to changes in the riser dimensions and 

particle properties (i.e. size, density, contact parameters). In doing so, they found that 

only the particle size and density significantly influenced the onset velocity. 

 CFD-DEM coupling has also been used to evaluate the significance of various 

forces in solid-liquid fluidized beds. In this regard, Wang et al. [93] investigated the 
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influence of including the lubrication force on their simulation results of a 2D fluidized bed. 

This force can hinder particles from moving towards or away from each other. The authors 

took this force into consideration by using a fluid-particle interaction force model. In doing 

so, they found that the CFD-DEM models that included the lubrication force produced 

more uniform porosity distributions and lower granular temperatures than the simulations 

that excluded the force. Moreover, the simulation results were found to be in good 

agreement with experimental results in terms of the particle axial velocities. However, the 

porosity was found to be overestimated towards the bed walls. The authors attributed this 

deviation to the 2D simplification of their model and the unrealistically constant coefficient 

of restitution used in their simulations. In regards to the latter, the authors suggested that 

the coefficient of restitution should realistically vary based on the influence of the 

lubrication force. This was taken into consideration in the work of Lui et al. [123], which 

comprehensively investigated the effect of the lubrication force on a 2D fluidized bed 

operating in the homogeneous expansion and heterogeneous flow regimes. In their study, 

the lubrication force was accounted for with a dynamic coefficient of restitution that was 

a function of the particles’ Stokes numbers. When taking this force into consideration, the 

authors observed a decrease in the bed height and pressure drop. In addition to this, they 

observed that the lubrication force became more significant with decreasing relative 

velocities and particle sizes. Moreover, they were able to successfully reproduce the 

particle velocity distributions. Alternatively, Peng et al. [124] studied the forces acting on 

a foreign particle that was introduced into a fluidized bed containing particles with a lower 

density. Employing their validated CFD-DEM model, they evaluated this system based 

on the foreign particle’s collision frequency and classification velocity. Such that, the latter 
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is the constant velocity at which the foreign particle settles through the fluidized bed. Their 

results were found to be in agreement with theoretical expectations and experimental 

results measured using particle image velocimetry (PIV). Although, some discrepancies 

were observed, however, they attributed these to the ideal conditions used in their model 

and experimental measurement errors. Using their model, they found that the dominant 

force influencing the particle classification velocity changed with the bed porosity. Such 

that, the particle collision force was dominant in the regions with low bed porosities and 

the fluid drag force was dominant in the regions with high bed porosities. It was also found 

that the particle collision frequency increases with decreasing bed porosity and increasing 

particle size ratios (i.e. between the foreign particle and the fluidized bed particles). Using 

these results, the authors then proposed a correlation to predict the particle collision force 

based on the bed porosity. 

 The influence of particle polydispersity on the behavior of solid-liquid fluidized beds 

has also been studied using CFD-DEM coupling. In this regard, Malone et al. [125] 

attempted to reproduce the layer inversion phenomenon experienced in pseudo-2D 

fluidized beds containing polydisperse particles. Essentially, this phenomenon is 

experienced when fluidizing binary mixtures of particles that are composed of (A) large 

and low-density particles and (B) small and high-density particles. At low superficial liquid 

velocities, the type A particles will form a layer on top of the type B particles. By increasing 

the superficial liquid velocity, the layers will invert at a critical inversion velocity. Some 

degree of segregation was observed in their work. However, their model was not able to 

reproduce the layer inversion phenomenon. The authors attributed this to their system 

geometry in which a pseudo-2D fluidized bed was used to combat computational costs. 
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However, it should be noted that the CFD-DEM models applied by Cello et al. [117] and 

Di Renzo et al. [118] also used pseudo-2D geometries and they were able to successfully 

reproduce the layer inversion phenomenon. These authors suggested that the deviation 

in the work of Malone et al. [125] was more likely due to the use of a monodisperse drag 

model for polydisperse particles. Cello et al. [117] used a polydisperse drag model 

proposed by Di Maio et al. [126]. In doing so, they were able to quantitatively reproduce 

the experimental critical bed porosity at the inversion point. However, the critical velocity 

obtained from the model was found to be overestimated compared to the experimental 

value. They attributed this error to potential differences in the experimental and simulation 

conditions. More specifically, differences in the temperature and particle size distribution. 

In addition to this, another source of error that they noted was the inability of their 

simulations to reach a fully developed steady-state condition (i.e. simulations were very 

computationally intensive). Alternatively, Di Renzo et al. [118] used a polydisperse drag 

model proposed by Cello et al. [127]. Their results were found to be in good agreement 

with various experimental case studies found in literature. In this regard, their model was 

able to accurately reproduce both the critical velocities and bed porosities at the inversion 

points. The authors noted that differences in the experimental and simulation 

temperatures would have significantly influenced the accuracy of the predicted critical 

values. They found that minor changes in temperature resulted in significant changes in 

the critical bed voidage and minor changes in the critical velocity. In addition to this, they 

also confirmed that using a monodisperse drag model would have resulted in inaccurate 

behavior. 
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 CFD-DEM coupling has also been used as a tool to predict the influence of bed 

geometry on the fluidization quality. In this regard, Al-Arkawazi et al. [128] compared the 

fluidization quality in various 2D bed geometries. These included a simple column, a 

column with a vertical plate, and a column with two symmetric lateral inlets. They 

facilitated this comparison with a novel fluidization indicator, which was proposed to better 

characterize the fluidization state. In this comparison, they found that the fluidization 

quality was reduced by the addition of a vertical plate and not significantly influenced by 

the addition of the lateral inlets. It should be noted that these results were not validated 

against experimental data. Therefore, their analysis was limited to a qualitative 

comparison. 

 The versatility of the CFD-DEM method facilitates the modification of the governing 

equations to account for heat transfer and non-contact forces such as magnetic or 

electrostatic forces. However, this does not fall under the current scope. The reader is 

referred to the works of Malone and Xu [129] and Orona et al. [130], which investigated 

heat transfer in solid-liquid fluidized beds via CFD-DEM coupling. In addition to this, refer 

to the works of Wang et al. [131], [132] for CFD-DEM applications involving the influence 

of magnetic fields on solid-liquid fluidized beds. 

 

2.6.2 Hydraulic Conveyance 

 

 The CFD-DEM approach has been used to simulate hydraulic conveying systems. 

Hydraulic conveying is the process of transporting particulate matter within a carrier fluid. 
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The CFD-DEM studies investigating this process have covered a variety of system 

geometries such as channels, pipes, and elbows. 

 The hydrodynamic behavior occurring within hydraulic conveying systems has 

been the focus of the majority of the CFD-DEM studies investigating such systems. In this 

regard, Lim [133] studied the formation and propagation of voidage waves in pseudo-2D 

vertical pipes and horizontal channels. Pseudo-2D geometries were adequate in 

reproducing the voidage wave instability phenomenon. However, as the author noted, 

these geometries could not produce representative packing structures. Therefore, they 

limited their study to a qualitative analysis. In this regard, the author evaluated the 

sensitivity of the voidage wave frequency and shape to changes in the particle 

concentration and liquid velocity. In doing so, it was found that the voidage wave instability 

was independent of the liquid velocity in vertical pipes, but not in horizontal channels. 

Bravo-Blanco et al. [134] studied the incipient motion of single particles in an open 

channel. They evaluated this system based on the critical liquid velocity in which particle 

motion was initiated. Their CFD-DEM simulation results were found to be in good 

agreement with experimental results measured using acoustic Doppler velocimetry (i.e. 

with an error of less than 5%). The authors attributed the minor deviation to the ideal 

conditions used in their simulations. Through their experimental and numerical efforts, it 

was found that the critical liquid velocity increased linearly with increasing particle size. 

Redlinger-Pohn et al. [135] studied the suspension of elongated particles in a closed 

torus. This was done in order to approximate the flow of fibers in a coiled tube. In their 

simulations, they used a novel technique to reduce their computational costs. This was 

facilitated by splitting the coupled forces and torques into explicit and implicit terms, which 
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allowed larger coupling intervals to be used. The CFD-DEM model results were verified 

against analytical solutions. The authors note that their code captured the expected 

particle behavior with increasing particle density, but not with increasing particle Reynolds 

number. This limited their study to the creeping flow regime. In their simulations, it was 

found that the particle fibers segregated based on the fiber length. 

 The effects of the lubrication force on CFD-DEM simulation results were also 

investigated in some of the hydraulic conveying studies. In this regard, Lim [133] 

investigated the sensitivity of the voidage wave instability to changes in the particles’ 

coefficient of restitution in a pseudo-2D vertical pipe. Refer to the experimental works of 

Joseph et al. [136] for the relationship between the lubrication force and the coefficient of 

restitution. In the sensitivity test performed by Lim [133], it was found that the tendency 

for the voidage wave instability to be formed decreased with increasing inelasticity (i.e. 

lower coefficients of restitutions). The author reported this finding to be anomalous. 

However, they did not take the relationship between the coefficient of restitution and the 

lubrication force into consideration. When taking this relationship into account, this finding 

is actually reasonable. Based on the experimental work of Joseph et al. [136], lower 

coefficients of restitution should correspond to greater lubrication forces. This should then 

promote greater uniformity as supported by the work of Wang et al. [93]. Taking into 

consideration that voidage waves are visually recognized as accumulations of dilute and 

dense sections of particles, greater uniformity will be recognized as diminished voidage 

waves. In summary, it was realistic for Lim [133] to observe a decrease in the tendency 

for voidage waves to be formed based on additional literature. Tomac and Gutierrez [137] 

studied the effect of the lubrication force on particle motion in a 2D horizontal channel. 
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The authors took this force into consideration by modifying the particle contact model. In 

doing so, it was observed that agglomeration would occur with greater lubrication forces. 

This behavior is in stark contrast to the lubrication force studies discussed in Section 

2.6.1. However, this deviation is most likely due to a limitation associated with their 

lubrication force model. Specifically, the fact that the lubrication force was allowed to 

approach infinity as the surface distance approaches zero (i.e. “Stokes Paradox”). This 

prevents particles from truly contacting and therefore rebounding. Refer to the work of 

Zhang and Horio [97] for an overview of this issue and the methods used to avoid it. In 

this regard, it should also be noted that the previously discussed studies – that focused 

on the effect of the lubrication force – did account for the “Stokes Paradox”. Wang et al. 

[93] avoided this issue by implementing a minimum approachable surface distance. 

Whereas, Lui et al. [123] intrinsically avoided the issue by taking the lubrication force into 

consideration through the particles’ coefficient of restitution and Stokes number. Thereby, 

avoiding the use of the surface distance parameter. 

 The wear and damage resulting from particle-geometry contacts in hydraulic 

conveying systems has been the subject of a few CFD-DEM studies. In this regard, Tan 

et al. [138] investigated the wear patterns in a 90° elbow, which was used to transport a 

slurry (i.e. composed of a binary mixture of particles varying only in size and a viscous 

liquid). In their simulations, they predicted the location in which the maximum erosive 

wear damage would be experienced (i.e. the puncture point location) by evaluating the 

particle-wall collision frequency and intensity. Their results were in qualitative agreement 

with industrial observations. Zhang et al. [139] extended the CFD-DEM model developed 

by Tan et al. [138] and investigated the influence of various parameters on the puncture 
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point location in a 90° elbow. However, their prediction of the puncture point location was 

only based on the particle-wall impact force. When increasing the slurry velocity, it was 

found that the puncture point location shifted downstream and the impact force 

experienced at the puncture point increased. This was in qualitative agreement with 

experimental observations found in literature. Chen et al. [113] also investigated the wear 

patterns in elbows. However, they focused on the influence of the elbow angle (i.e. 45°, 

60°, 90°) on the erosion rate. In their CFD-DEM simulations, they estimated the erosion 

rate with the particle-wall impact velocity and impingement angle. The location of the 

maximum erosion rate for the 90° elbow was found to be in agreement with experimental 

observations found in literature. Using this model, it was also found that the maximum 

erosion rate increases with increasing elbow angle, but is consistently located near the 

exit of the elbow. Furthermore, the simulation results showed that the particle motion was 

dominated by drag and gravitational forces in the 45° and 60° elbows. While, in 90° 

elbows, turbulence and secondary flows dominated the particle motion. Alternatively, 

Azimian et al. [140] investigated the wear on a cylindrical rod obstructing flow in a 

horizontal pipe. Their one-way coupled CFD-DEM model was able to reproduce the 

velocity profiles (i.e. before and after the obstruction) in good agreement with 

experimental results measured using Laser Doppler Anemometry (LDA). Some 

discrepancies were observed in the velocity profile measured in front of the obstruction. 

The authors attributed this to a need for further grid refinement. Using the same method 

as Chen et al. [113], they were able to predict the erosion rate acting on the cylindrical 

obstruction. In doing so, it was found that the erosion rate increased with increasing flow 

rate and solids concentration. 
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2.6.3 Separation and Classification 

 

 Separation processes have also been studied using CFD-DEM coupling. These 

processes are responsible for removing particulate matter from solid-liquid mixtures. The 

studies using CFD-DEM to investigate these processes have covered a variety of unit 

operations. These include sedimentation tanks, filters, hydrocyclones, centrifuges, and 

jigs. 

 The cake formation and growth in sedimentation tanks and filters have been the 

subject of a few of these studies. In this regard, Dong et al. [141] evaluated the influence 

of various operating conditions on the cake porosity in a pseudo-2D sedimentation tank. 

Their one-way coupled CFD-DEM model was able to qualitatively reproduce the cake 

growth behavior in agreeance with theoretical expectations found in literature. Using this 

model, it was then found that the cake porosity in sedimentation tanks increased with 

increasing Van der Waals forces, liquid viscosity, and liquid density; as well as decreasing 

particle size. In a later work, Dong et al. [142] quantitatively validated their model based 

on experimental results. Such that, the predicted cake porosities (i.e. for varying particle 

sizes as well as liquid viscosities and densities) were found to be comparable to the 

measured values. Dong et al. [143] then applied their model to simulate a pseudo-2D 

vertical filtration system. In doing so, it was observed that the cake porosity – on the filter 

surface – also increased with increasing Van der Waals forces and decreasing particle 

size. However, it decreased with increasing liquid viscosity and density. This behavior is 

in contradiction to that observed in sedimentation tanks. The authors attributed this 

difference to the increase in fluid-particle interaction forces, which resulted from 
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increasing the liquid viscosity and density. The fluid-particle interaction forces acted in 

different directions in the sedimentation tank and filtration system. Such that, these forces 

acted in the same direction as gravity in the filtration system and in the opposite direction 

in the sedimentation tank. This resulted in a decrease in cake porosity in the filtration 

system and an increase in the sedimentation tank. Sören and Jürgen [144] also studied 

the hydrodynamic behavior of a pseudo-2D filtration system. However, they investigated 

the effects that flocculation has on the cake properties. By comparing the simulation 

results of stable suspensions to that of flocculated suspensions, it was found that the 

flocculated particles produced greater cake porosities and permeabilities. Their predicted 

cake porosities were in good agreement with their experimental values (i.e. with an error 

ranging from 4-9%). The authors attributed the minor deviation to the pseudo-2D 

simplification made in their model. Zhao et al. [105] studied the hydrodynamic behavior 

of a batch sedimentation tank. They successfully verified their CFD-DEM model against 

an analytical solution of a single particle settling. Using this model, they were able to 

qualitatively reproduce the particle segregation and consolidation behavior presented in 

literature. Moreover, their predicted maximum pore water pressure (i.e. resulting from 

particle consolidation) was found to be in good agreement with the analytical solution. 

 CFD-DEM coupling has also been used to model hydrocyclones and centrifuges.  

In this regard, Chu et al. [145], [146] investigated the influence of particle concentrations 

and density distributions on the separation efficiency of a hydrocyclone. The authors 

limited their studies to qualitative analyses due to the simplifications made in their models. 

More specifically, those related to particle shape and size, and the use of the parcel-

particle approximation in [146]. With the one-way coupled CFD-DEM model used in [145], 
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it was found that the separation efficiency of the hydrocyclone deteriorated with increasing 

particle concentrations –  due to the associated increase in particle-particle collisions. 

With the two-way coupled CFD-DEM model used in [146], it was also found that the 

separation efficiency of fine particles deteriorated as the averaged particle density was 

increased. The authors suggested that this behavior was due to the related reduction in 

the tangential velocity of the fluid phase. Alternatively, Fernández et al. [112], [147] 

studied the build-up and behavior of particle sediments in a centrifuge system. Their CFD-

DEM model was able to qualitatively reproduce the theoretically expected particle 

trajectories and sediment build-up patterns. Using this model, the authors found that the 

sediment build-up pattern was influenced not only by the rotational velocity of the 

centrifuge bowl, but also by the particle sliding friction coefficient [112]. This suggests that 

particle-particle and particle-wall interactions played a significant role in the sediment 

build-up pattern. Moreover, it was demonstrated that the sediment build-up influenced the 

fluid flow patterns [112], [147]. Zhou et al. [88] investigated the influence of the various 

forms of CFD-DEM coupling equations on the accuracy of modeling a hydrocyclone. 

Refer to Section 2.5.1 for a review of these equations. From their simulations, it was found 

that the simplified version of Model B could not reproduce the expected particle behavior 

(i.e. separation based on the particle density). The authors attributed this to the unsteady 

and non-uniform flow occurring within the hydrocyclone, which violated the assumptions 

under which the model was derived. Alternatively, it was demonstrated that Model B, in 

its original form, was capable of reproducing the expected particle behavior. For this 

reason, the authors recommended that the simplified version of Model B should not be 

used in future works. 
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 Several of the CFD-DEM studies investigating separation processes focused on 

jigging operations. Jigging is the process of separating and classifying particulate matter 

by means of agitation within a pulsated liquid flow. Such that, the pattern in which the 

liquid is pulsated is known as the jigging profile. In this regard, Xia et al. [104] investigated 

the hydrodynamic behavior of a 2D batch jig with a sinusoidal jigging profile. Using their 

CFD-DEM model, particle stratification was observed as a result of the pulsated flow. This 

was in qualitative agreement with the expected behavior of a jig. Xia and Peng [148] 

continued this work and investigated the influence of the jigging amplitude and frequency 

on the separation efficiency. From their simulations, it was found that the separation 

efficiency increased by increasing both the amplitude and frequency. Such that, the latter 

had a more pronounced effect. Although, it should be noted that increasing either of these 

parameters, only increased the separation efficiency up to an optimal value – after which 

unstable separation occurred. Moreover, it was found that the separation efficiency was 

also affected by the particle size and density. Dong et al. [120] also evaluated the 

sensitivity of the separation efficiency to changes in the jigging profile. Although, this was 

investigated in a 3D in-line pressure jig (IPJ) with a jig-saw jigging profile. Their CFD-DEM 

model was able to qualitatively reproduce the experimental trends of the separation 

efficiency. The authors attributed the quantitative deviation to a need for model 

calibration. In their simulations, it was confirmed that the separation efficiency increased 

with increasing jigging amplitudes and frequencies. Alternatively, Viduka et al. [106]–[108] 

studied the sensitivity of the separation time to changes in the jigging profile. This was 

done in a pseudo-2D batch jig. By using sinusoidal and trapezoidal jigging profiles, it was 

found that increasing the amplitude and frequency of the jigging profile decreased the 
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separation time. Such that, it decreased exponentially with changes in the sinusoidal 

profile [107] and linearly with changes in the trapezoidal profile [108]. Additionally, it 

should be noted that increasing the amplitude or frequency, only decreased the 

separation time up to an optimal value – after which unstable separation would take place. 

By comparing these jigging profiles to others, it was also found that the shape of the 

jigging profile influenced the particle flow pattern [106]. Based on these results, the 

authors proposed several ways in which jigging operations could be optimized (i.e. to 

minimize the separation time, mechanical wear, and energy consumption). 

 

2.6.4 Solid-Liquid Mixing 

 

 To a lesser extent, CFD-DEM coupling has also been applied to solid-liquid mixing 

systems. The majority of these studies have focused on the hydrodynamic behaviors 

occurring within solid-liquid stirred tanks. In this regard, Misumi et al. [149] investigated 

the influence of different impeller clearances, and the presence of baffles, on the particle 

motion in a tank filled with 0.1 mm glass beads and water. Using their CFD-DEM model, 

it was observed that varying the mixing system configuration changed the stagnant 

regions in which particles would accumulate on the bottom of the tank – before becoming 

suspended. Alternatively, Srinivasa and Jayanti [150] investigated the influence of various 

process parameters on the just-suspension speed. Their simulation results were in 

qualitative agreement with experiment trends for varying particle size, density, sphericity, 

and impeller type. These trends were based on mixtures composed of various irregularly 

shaped particles and water (i.e. sand, CaSO4, and CaO mixtures). However, their model 
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was not able to accurately reproduce the degree of mixing homogeneity, a key 

characteristic of mixing. The authors attributed this to the applied turbulent and drag 

equations. As discussed by the authors, the standard k-ε turbulence model only considers 

large turbulent eddies and not smaller eddies responsible for further particle dispersion 

and entrainment. Boucher et al. [151] used similar turbulence and drag equations, when 

studying the motion of quartz particles in a tank of water. However, their CFD-DEM model 

was able to quantitatively reproduce the range of particle velocities and displacements. 

Specifically, when compared to experimental data obtained using Positron Emission 

Particle Tracking (PEPT). This was possible due to their significantly lower particle 

concentration. Shao et al. [92] investigated the influence of the Magnus lift force on the 

hydrodynamic behaviors of 0.3 mm glass beads suspended in water. In their CFD-DEM 

simulations, it was found that the Magnus lift force was significant compared to the drag 

force. The authors attributed this to the high rate of particle-particle and particle-wall 

collisions. Derksen [98] also verified this using a LES-DEM model. Furthermore, Shao et 

al. [92] was able to quantitatively reproduce the spatial distribution of the particle velocities 

in good agreement with experimental results – measured using Computer Automated 

Radioactive Particle Tracking (CARPT). In addition to this, they also evaluated the degree 

of particle dispersion through the examination of the spatial distributions of the particle 

concentrations. However, it should be noted that they did not use mixing indexes and also 

did not validate these results directly. The latter limited their interpretation to a qualitative 

analysis. On a different note, Blais et al. [102], [103], [152] investigated the fraction of 

suspended particles in a tank filled with 3 mm glass beads and a viscous glucose solution. 

In their studies, the flow regime was varied from the laminar regime to the early turbulent 
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regime. Their simulation results were found to be in good agreement with experimental 

values obtained using the pressure gauge technique. In the laminar to transitional 

regimes, they evaluated the sensitivity of their CFD-DEM model over a range of particle 

properties. In doing so, they found that the sliding and rolling friction coefficients played 

a key role in the degree of particle suspension. Alternatively, modifying the Young’s 

Modulus and coefficient of restitution had almost no effect [103]. In the early turbulent 

regime, they investigated and accurately reproduced the minimum speed for just-

suspension [152]. However, throughout their studies, they only took particle suspension 

into consideration and did not account for the particle distribution. 

 It should be noted that CFD-DEM coupling is not commonly used to model solid-

liquid mixing in stirred tanks. In literature, these systems have conventionally been 

modeled with TFM [5]–[12]. However, as previously stated, this method is less accurate 

at accounting for particle-particle and particle-wall interactions – which have been found 

to significantly influence the hydrodynamic behavior of solid-liquid mixing. In this regard, 

Shao et al. [92] demonstrated that particle-particle and particle-wall interactions 

influenced the distribution of particle concentrations. By accounting for the Magnus force, 

it was observed that the particles would lift due to the high rates of particle-particle and 

particle-impeller interactions, which produced large particle angular velocities – and as a 

result large Magnus forces. In addition to this, Blais et al. [103] demonstrated that particle-

particle interactions influenced the degree and rate of particle suspension. By increasing 

the sliding and rolling friction coefficients, it was observed that the fraction of suspended 

particles increased (i.e. at intermediate impeller speeds), and steady-state was reached 

faster (i.e. at all impeller speeds). These findings suggest that CFD-DEM coupling is the 
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more appropriate modeling method – when compared to TFM – since it can more 

accurately account for the particle physics responsible for certain hydrodynamic 

behaviors observed in solid-liquid mixing systems. For this reason, this numerical method 

was selected for the current work. Although, it should be reminded that this will come at 

a higher – but manageable – computational cost and greater system limitations. 

 

2.7 Research Objectives 

 

 From the literature review, provided above, it is apparent that research gaps exist 

in both the application of CFD-DEM coupling and ERT to solid-liquid mixing systems. This 

study will attempt to close these knowledge gaps. The main objectives of this work are as 

follows: 

 

i. To understand the limitations of applying the CFD-DEM coupling method to 

turbulent solid-liquid mixing systems. 

ii. To develop a CFD-DEM model using FLUENT and EDEM to enable the prediction 

of mixing quality. 

iii. To perform a more rigorous assessment of the developed CFD-DEM model, based 

on the spatial distribution of the particle concentrations, by comparing the 

simulation results to experimental data obtained using ERT. 

iv. To apply mixing index definitions, previously only developed in literature to analyze 

ERT data, to the CFD-DEM simulation results in order to provide a more 

convenient and meaningful method of assessment. 
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v. To develop a new mixing index definition to quantify the degree of suspension to 

work in tandem with the existing dispersion mixing indexes and provide a more 

complete approach of interpreting mixing quality. 

vi. To evaluate the sensitivity of the mixing quality, as predicted by the developed 

CFD-DEM model, to changes in the various model parameters in order to find 

areas of improvement within the model. 
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Chapter 3 : Experimental Methodologies 

 The experimental set-up used in the current work is described in this chapter with 

a detailed discussion on the ERT system and its components. Details of the methods 

used to analyze the ERT data and the experimental results are also discussed within this 

chapter. 

 

3.1 Experimental Set-up 

 

 The mixing system used in this study consisted of a flat-bottom cylindrical tank, 

four equally spaced baffles, and a downward-pumping pitched blade turbine (PBT) 

impeller. The impeller is rotated in the clockwise direction. Refer to Figure 4 for a 

schematic diagram of this set-up. The stirred tank diameter (T) and liquid level height (H) 

were both 25.1 cm. While, the impeller diameter (D) and clearance (C) were 10.3 cm 

(T/2.4) and 6.3 cm (T/4.0), respectively. The baffle width, thickness, and clearance were 
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2.1 cm (T/12), 0.3 cm (T/84), and 0.6 cm (T/42), respectively. These dimensions were 

appropriate based on the tank diameter to dimension ratios, which were relatively close 

to typical values used in literature [19], [20]. The impeller was driven by a LIGHTNIN 

series LabMaster, which also acted as the measurement device for the impeller speed 

and torque. During experiments, the impeller speed was varied in 50 RPM increments 

ranging from 250 RPM to 550 RPM. Each trial was repeated in triplicate in order to ensure 

the repeatability of the experiments. This was proven to be acceptable based on the error 

bars depicted in the experimental results presented in Section 3.4. 

 

 

Figure 4. Schematic diagram of experimental set-up. 
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 This system was used to suspend a mixture of tap water and glass impact beads. 

Refer to Table 4 for the experimental operating conditions. In order to determine the 

spatial distribution of this mixture, the set-up was also equipped with a commercial ERT 

system manufactured by Industrial Tomographic Systems Limited. This system will be 

discussed in Section 3.2 and has also been depicted in Figure 4. 

 

Table 4. Experimental operating conditions. 

Parameter Variable Value Unit 

Liquid Phase N/A Tap Water N/A 

Solid Phase N/A Glass Beads N/A 

Particle Diameter dp 2 mm 

Particle Weight Fraction wp 5 wt% 

Impeller Speed N 250 – 550 RPM 

 

3.2 ERT Measurement System 

 

 A basic ERT measurement system is comprised of three components: the sensor 

interface, the data acquisition system (DAS), and the data processing software. In the 

current work, the sensor interface was used to inject current into the mixing tank and 

detect the change in voltage. It was comprised of 1”1” stainless steel electrodes 

arranged into four sensing planes. Each plane contained 16 electrodes that were equally 

spaced apart in a ring. The planes were then spaced 4.5 cm apart with the lowest plane 

4.5 cm from the bottom of the tank. Such that, the planes were numbers from the top to 

the bottom. 
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 The electrodes were then connected to the DAS with a series of co-axial cables in 

order to minimize environmental noise and interference [39]. This component managed 

the measurement process. Specifically, this was done based on the adjacent data 

collection scheme and the settings listed in Table 5. In this data collection strategy, 

neighboring electrodes were grouped into pairs and each measurement was taken with 

adjacent electrode pairs such that one pair was used to inject current into the system and 

the other was used to detect the resulting output voltage [153]. The electrode pairs were 

alternated until all independent measurements were taken. 

 

Table 5. Settings used for ERT measurement. 

Parameter Value Unit 

Injection Current Amplitude 13 mA 

Injection Current Frequency 9600 Hz 

Sampling Time Interval 60 ms 

Samples per Frame 8 N/A 

Number of Reference Frames 50 N/A 

Maximum Number of Frames 30 N/A 

Frames per Download 1 N/A 

 

 After the measurement data was collected, the image reconstruction software was 

used to generate tomographic images. These images illustrated the spatial distribution of 

the particle concentrations. Refer to Figure 5 for sample images – these depict the time-

averaged particle concentrations obtained over a span of 30 frames, after steady-state 

was reached. 
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Figure 5. ERT particle concentration tomographs – time-averaged for 30 frames – at 

impeller speeds of a) 250 RPM and b) 550 RPM. 

a) 

b) 

Plane 1 Plane 2 

Plane 3 Plane 4 

Plane 1 Plane 2 

Plane 3 Plane 4 
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 In the current work, the tomographic images were generated by first using the finite 

difference method and the non-iterative linear back-projection method to solve for the 

conductivity distribution. The linear back-projection method consists of a two-step 

algorithm: solving the forward problem and then solving the inverse problem. The forward 

problem consists of determining a sensitivity map of the discretized measurement plane. 

This map can be defined as follows [154]: 

 

𝑆𝑐𝑢,𝑣𝑜,𝑥,𝑦 = ∫
∇2𝑉𝑐𝑢
𝐼𝑐𝑢

∇2𝑉𝑣𝑜
𝐼𝑣𝑜

 ( 26 ) 

 

where 𝑐𝑢 corresponds to the current-driven electrodes, 𝑣𝑜 corresponds to the voltage 

measurement electrodes, 𝑉 is the voltage, and 𝐼 is the injection current. Such that, the 

voltage gradients are determined by solving equation ( 1 ) with a set of reference data. 

The inverse problem consists of actually determining the conductivity matrix. This is 

achieved by using the following equation: 

 

𝜎(𝑥, 𝑦) =

∑ ∑ 𝑆𝑐𝑢,𝑣𝑜,𝑥,𝑦 ln (
𝑉(𝑥, 𝑦)
𝑉𝑟𝑒𝑓(𝑥, 𝑦)

)𝑁
𝑣𝑜

𝑀
𝑐𝑢

∑ ∑ 𝑆𝑐𝑢,𝑣𝑜,𝑥,𝑦𝑁
𝑣𝑜

𝑀
𝑐𝑢

 
( 27 ) 

 

where 𝜎 is the conductivity, 𝑀 is the number of measurements, 𝑁 is the number of 

elements, and 𝑟𝑒𝑓 represents the reference readings. Even though this method may 

seem intricate, it is more direct and less computationally intensive than its iterative 

counterparts [42]. The conductivity distribution was then converted to a distribution of 
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particle concentrations. This was achieved by using a simplified version of Maxwell’s 

equation for non-conductive dispersed phases [39]: 

 

𝑋 =
2𝜎1iq − 2𝜎𝑚𝑐

𝜎𝑚𝑐 + 2𝜎1iq
 ( 28 ) 

 

where 𝑋 is the volume fraction, 𝜎1𝑖𝑞 is the conductivity of the liquid phase, and 𝜎𝑚𝑐 is the 

measured conductivity. 

 

3.3 Quantification of Mixing Quality with Mixing Indexes 

 

 When interpreting the tomographs, discussed in Section 3.2, the spatial distribution 

of the particle concentrations can only be interpreted visually. For this reason, they can 

only be compared qualitatively with other experimental and simulation results. A better 

point of comparison is referred to as a mixing index. This parameter summarizes the data 

in the tomographs into a single and easily comparable value. This value then acts as a 

measure of the uniformity of mixing. Its numerical definition can vary based on how the 

data is processed. 

 The different definitions are all related to the relative standard deviation of the local 

particle concentrations. The only difference is the regions, within the tomographs, that are 

used to define the local particle concentrations. This can be entire planes, concentric 

rings, or even individual elements. Refer to Table 6 for the related numerical definitions. 

Such that, 𝑃 represents plane P, 𝑅 represents ring R, 𝐾 represents element K, 𝑋𝑃 is the 

average concentration in plane P, 𝑋𝑃̅̅̅̅  is the total average of all 𝑋𝑃 values, 𝑋𝑅,𝑃 is the 
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average concentration in ring R and plane P, 𝑋𝑅,𝑃̅̅ ̅̅ ̅ is the total average of all 𝑋𝑅,𝑃 values, 

𝑋𝐾,𝑃 is the concentration in element K and plane P, 𝑋𝐾,𝑃̅̅ ̅̅ ̅̅  is the total average of all 𝑋𝐾,𝑃 

values, 𝑋𝑅,𝑎𝑣𝑔 is the average of 𝑋𝑅,𝑃 values in the same annular section R, X𝐾,𝑎𝑣𝑔 is the 

average of the 𝑋𝐾,𝑃 values in the same element location, and 𝑋𝑃,𝑎𝑣𝑔 is the average of the 

𝑋𝑅,𝑃 or 𝑋𝐾,𝑃 values in the same plane P. 

 

Table 6. Summary of mixing indexes used previously in literature. 

Local 

Region 

Mixing 

Quality 
Mixing Indexes  Authors 

Plane Axial 𝑀𝐼𝑧 = 1 −
1

𝑋𝑃̅̅̅̅
√
∑ (𝑋𝑃 − 𝑋𝑃̅̅̅̅ )2
𝑃
1

𝑃 − 1
 ( 29 ) 

Hosseini et 

al. [20] 

Ring 

Axial 𝑀𝐼𝑧 =
1

𝑋𝑅,𝑃̅̅ ̅̅ ̅ 𝑅
∑√∑ (𝑋𝑅,𝑃 − 𝑋𝑅,𝑎𝑣𝑔 )

2𝑃
1

𝑃 − 1

𝑅

1

 ( 30 ) 

Harrison et 

al. [4] 
Radial 𝑀𝐼𝑟 =

1

𝑋𝑅,𝑃̅̅ ̅̅ ̅ 𝑃
∑√∑ (𝑋𝑅,𝑃 − 𝑋𝑃,𝑎𝑣𝑔)

2𝑅
1

𝑅 − 1

𝑃

1

 ( 31 ) 

Overall 𝑀𝐼𝑡 =
1

𝑋𝑅,𝑃̅̅ ̅̅ ̅
√∑ ∑ (𝑋𝑅,𝑃 −  𝑋𝑅,𝑃̅̅ ̅̅ ̅)

2𝑃
1

𝑅
1

𝑅𝑃 − 1
 ( 32 ) 

Element 

Radial 𝑀𝐼𝑟 =
1

𝑋𝐾,𝑃̅̅ ̅̅ ̅̅  𝑃
∑√∑ (𝑋𝐾,𝑃 − X𝑃,𝑎𝑣𝑔)

2𝐾
1

𝐾 − 1

𝑃

1

 ( 33 ) 
Williams et 

al. [45] 

Overall 𝑀𝐼𝑡 =
1

𝑋𝐾,𝑃̅̅ ̅̅ ̅̅
√∑ ∑ (𝑋𝐾,𝑃 − 𝑋𝐾,𝑃̅̅ ̅̅ ̅̅ )

2𝐾
1

𝑃
1

𝐾𝑃 − 1
 ( 34 ) 

Carletti et al. 

[47] 

 

 When using individual elements to calculate a mixing index, the defining region is 

relatively small and the experimental measurements can be influenced by noise. This 
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noise can be inherent to the measurement system, experimental set-up, or even the 

heterogeneous nature of the solid-liquid mixture. On the other hand, when averaging the 

tomograph elements across an entire plane to calculate a mixing index, the defining 

region is too large and the radial inhomogeneities resulting from poor mixing cannot be 

taken into consideration. In other words, the radial distribution of the particles cannot be 

studied by using plane-based mixing indexes. To avoid the aforementioned issues, the 

concentric ring definition will be used in this study. This definition allows the mixing quality 

to be evaluated in the radial and axial directions as well as the entire mixing tank (i.e. 

overall). In this study, only the overall mixing index will be used since it accounts for both 

the radial and axial distributions in one convenient value. 

 In this work, image reconstruction was performed using the finite difference 

method. As a result, the tomographs produced were forced to fit into a square grid of 

square elements. This was done regardless of the shape of the cross-sectional area being 

measured. Essentially, this was accomplished by allowing the square tomographic 

elements to either lie within or outside of the cross-sectional area. However, with this type 

of layout, the local particle concentrations cannot be defined based on concentric rings. 

Since, square elements cannot be combined to create perfect circles. For this reason, the 

zoning scheme, depicted in Figure 6, was used to approximate the concentric rings. 

Although, it should be noted that the zones – depicted in this figure – do not cover the 

same amount of surface area. However, this did not significantly influence the mixing 

index calculations. When using a weighted average to account for the varying sizes of the 

ring-areas, the resulting mixing indexes were found to be quantitatively similar to those 

obtained without using a weighted average. For this reason, the approach used in the 
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current work can be considered to be valid and can also be used to simplify the mixing 

index calculations. 

 

 

Figure 6. Quadrilateral ERT tomographic grid and zone scheme. 

 

 However, it is reminded that this mixing index only acts as a measure of how well 

the particles are dispersed within the tomograph planes. This does not always correlate 

to the mixing quality throughout the entirety of the system. Therefore, it is proposed that 

another mixing index be considered in order to account for the suspension of particles 

from the bottom of the tank. This approach is similar to the that taken by Blais et al. [102], 

[103], [152]. However, their mixing index was based on the pressure measured at the 
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bottom of the stirred tank. In this work, the suspension mixing index will be defined based 

on the average of the measured local particle concentrations. In literature, local particle 

concentration values have been used previously as a measure of particle suspension. 

Specifically, in order to determine the minimum speed for just-suspension. This was done 

by Bourne and Sharma [155] using a direct sampling technique, Musil [156] using optical 

measurements, and Musil and Vlk [157] using invasive conductivity probes. However, in 

these studies, the local particle concentration was only monitored at one measurement 

location at a time. When moving the measurement location, in the axial direction, Bourne 

and Sharma [155] and Musil [156] reported that the predicted just-suspension speed 

remained the same. However, this was not the case for Musil and Vlk [157]. This 

inconsistency is most likely due to the inaccurate assumption of axial uniformity. 

Therefore, in the mixing index being proposed in the current study, axial and radial 

uniformity were not assumed. Instead, the local particle concentrations throughout the 

various axial and radial locations were taken into consideration. Specifically, this was 

achieved by using the normalized average of all of the ring-based particle concentrations 

measured throughout all tomograph planes. The resulting mixing index definition is as 

follows: 

 

𝑆𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 =  
𝑋𝑅,𝑃̅̅ ̅̅ ̅

𝑋𝑡
 ( 35 ) 

 

where 𝑋𝑡 is the system’s true concentration throughout the tank – i.e. 2.16 vol%, which is 

equivalent to 5 wt% for a mixture of glass beads and water. 
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 This mixing index definition is based on the fact that particles can go undetected 

on the bottom of the tank. This is outside of the measurement range of the ERT system. 

As a result, the average of the measured particle concentrations is not always equal to 

the system’s true concentration. This only occurs during perfect mixing. When the 

particles are completely suspended and uniformly distributed. During incomplete 

suspension, however, particles collect at the bottom of the tank. This results in an average 

measured concentration that is less than the system’s true concentration. Such that, it will 

even be zero in the case of absolutely no suspension. Therefore, complete suspension 

will be represented by a suspension index of one. Whereas, no suspension will be 

represented by a suspension index of zero. The suspension index will then increase with 

better suspension. 

 In order to remain consistent with the defined suspension index, the dispersion 

index used in this study will be redefined as the complement of its original formula. This 

will result in the index increasing with better performance. This approach was previously 

used by Hosseini et al. [20]. The resulting numerical definition for the dispersion index 

used in this study is as follows: 

 

𝐷𝑖𝑠𝑝𝑒𝑟𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 =  1 −
1

𝑋𝑅,𝑃̅̅ ̅̅ ̅
√∑ ∑ (𝑋𝑅,𝑃 −  𝑋𝑅,𝑃̅̅ ̅̅ ̅)

2𝑃
1

𝑅
1

𝑅𝑃 − 1
 ( 36 ) 

 

Based on this definition, perfect dispersion will be represented with a value of one. 

Whereas, poor dispersion will be represented with decreasing values such that they can 

even be negative in cases of very poor dispersion. This is possible since the standard 
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deviation of the particle concentrations will exceed the average particle concentration in 

cases of very poor dispersion. 

 

3.4 Experimental Results 

 

 Using the proposed mixing index definitions, the experimental data was evaluated 

as illustrated in Figure 7. These results were obtained by time-averaging the suspension 

and dispersion indexes – as opposed to the particle concentrations – for 30 frames, after 

steady-state was reached. These trends qualitatively match experimental observations. 

The degree of suspension and dispersion increased as the impeller speed was increased. 

In the later chapters of this thesis, the simulation results will only be evaluated against the 

experimental data obtained at 550 RPM (i.e. the highlighted data points in Figure 7). This 

impeller speed was selected to minimize the computational runtime since higher impeller 

speeds require less time to reach steady-state. The experimental suspension and 

dispersion indexes occurring at this impeller speed are 0.947 and 0.693, respectively. 

 In the experiments, each trial was repeated in triplicate in order to ensure the 

repeatability of the experiments. The relative standard deviation of the suspension 

indexes ranged from 0.4% to 13.3%. These values are relatively unbiased in regards to 

the impeller speeds. Alternatively, the relative standard deviation of the dispersion 

indexes ranged from 4% to 261% – and were found to be biased in regards to the impeller 

speeds. In this regard, the relative standard deviation increased with decreasing impeller 

speeds. This can be attributed, in part, to the transient manner in which particles would 

circulate in surges – even at steady-state. During the experiments, the surging behavior 
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was observed to occur in cycles such that the surge cycles became slower as the impeller 

speed was decreased. As a result, the transient behavior at lower impeller speeds could 

not be captured accurately in a short and fixed measurement time window. In future 

works, this issue can simply be mitigated by increasing the measurement time window 

(i.e. the number of tomograph frames captured). 

 

 

Figure 7. Experimental suspension and dispersion mixing indexes – time-averaged for 

30 frames – for varying impeller speeds. 

 

 Although, as previously stated, only the experimental data obtained at 550 RPM 

will be used to evaluate the simulation results. At this impeller speed, the relative standard 

deviations for the suspension and dispersion indexes are 10% and 6% respectively; which 

both are within an acceptable margin. 
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Chapter 4 : Computational Methodologies 

 In this chapter, the model development for the current study is outlined. 

Specifically, this involves detailing the governing equations and fluid-particle interaction 

force models. Moreover, additional considerations associated with the numerical 

methods, CFD mesh, particle generation, and model parameters are also specified in this 

chapter. 

 

4.1 CFD-DEM Coupled Model 

 

 The two-way coupled CFD-DEM approach is an Eulerian-Lagrangian method that 

combines the CFD and DEM methodologies. The resulting governing equations will be 

discussed in the following sub-sections. 
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4.1.1 Governing Equations for Liquid Phase 

 

 The fluid continuity and momentum equations are represented by form A of the 

incompressible volume-averaged Navier-Stokes (VANS) equations [88]. Refer to 

Equation ( 10 ) for the numerical definitions of these equations. 

 In this work, the flow of the liquid phase is turbulent given the operating range of 

impeller speeds. Therefore, the realizable k-ε model was selected in this study for its 

versatility and superior performance [73]. This model is given by the following equations 

in tensor format such that 𝑗 represents the tensor [76]: 

 

𝜕

𝜕𝑡
(휀𝑓𝜌𝑓𝑘) +

𝜕

𝜕𝑥𝑗
(휀𝑓𝜌𝑓𝑘𝑢𝑗) = ⋯ 

 …
𝜕

𝜕𝑡
[휀𝑓 (𝜇𝑓 +

𝜌𝑓𝐶𝜇𝑘
2

𝜎𝑘휀
)
𝜕𝑘

𝜕𝑥𝑗
] + 휀𝑓(𝐺𝑘 + 𝐺𝑏 − 𝜌𝑓휀 − 𝑌𝑀 + 𝑆𝑘) 

( 37 ) 

𝜕

𝜕𝑡
(휀𝑓𝜌𝑓휀) +

𝜕

𝜕𝑥𝑗
(휀𝑓𝜌𝑓휀𝑢𝑗) =

𝜕

𝜕𝑡
[휀𝑓 (𝜇𝑓 +

𝜌𝑓𝐶𝜇𝑘
2

𝜎𝑘휀
)
𝜕휀

𝜕𝑥𝑗
]…  

… + εf (ρfC1Sε − ρfC2
ε2

k + √vfε
+ C1ε

ε

k
C3εGb + Sε) 

( 38 ) 

 

where 𝑢 is the local fluid velocity, 𝜌𝑓 is the fluid density, 휀𝑓 is the local fluid porosity, 𝑘 is 

the turbulent kinetic energy, 휀 is the turbulent dissipation rate, vf is the fluid kinematic 

viscosity, and the rest of the parameters are model constants. The need to account for 

turbulence can be verified using the modified Reynolds number for mixing tanks [19]: 

 

𝑅𝑒𝑁 =
𝑁𝐷2𝜌𝑓

𝜇𝑓
 ( 39 ) 
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where 𝑁 is the impeller speed, 𝐷 is the impeller diameter, 𝜌𝑓 is the fluid density, and 𝜇𝑓 

is the fluid dynamic viscosity. In the present study, this number can range from 

approximately 43,000 to 94,000. This is well above the minimum limit for turbulence of 

only 5000.  

 

4.1.2 Governing Equations for Solid Phase 

 

 Settling particles have a tendency to accumulate into dense particle structures. As 

a result, the motion of the solid phase is expected to depend not only on fluid-particle 

interactions, but also on particle-particle and particle-wall interactions. This was taken into 

consideration when determining the translational and rotational velocities of the particles. 

The motion of these particles was governed by Newton’s second law of motion [54]. Refer 

to Equation ( 11 ) for the numerical definitions of these governing equations. 

 In the model developed in this work, the contact forces and torques acting on the 

particles are obtained from a force-displacement law based on the soft-sphere contact 

approach. Specifically, the simplified Hertz-Mindlin force-displacement model was used 

[158]. In this model, the contact forces are defined as follows: 

 

𝒇𝒏
𝒄 = −𝑘𝑛𝛿𝑛�̂� − 𝜂𝑛𝒗𝒓,𝒏 ( 40 ) 

𝒇𝒕
𝒄 = −kt𝛿𝑡�̂� − 𝜂𝑡𝒗𝒓,𝒕 ( 41 ) 

 

where 𝑛 represents normal, 𝑡 represent tangential, 𝒇𝒄 is the contact force, 𝑘 is the elastic 

spring stiffness, 𝛿 is the particle overlap (i.e. displacement), 𝜂 is the dissipative viscous 
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damping, and 𝒗𝒓 is the relative velocity. The elastic and dissipative coefficients are based 

on the properties of the particles and can be defined as follows [59], [159]: 

 

𝑘𝑛 =
4

3
𝑌𝑒𝑞√Req𝛿𝑛 ( 42 ) 

𝑘𝑡 = 8Geq√Req𝛿𝑛 ( 43 ) 

𝜂𝑛 = −√5
ln 𝑒𝑟

√ln2 𝑒𝑟 + 𝜋2
√𝑚𝑒𝑞𝑘𝑛 ( 44 ) 

𝜂𝑡 = −√
10

3

ln 𝑒𝑟

√ln2 𝑒𝑟 + 𝜋2
√𝑚𝑒𝑞𝑘𝑡 ( 45 ) 

 

where 𝑒𝑞 represents an equivalent term, 𝑌 is the Young’s modulus, G is the Shear 

modulus, R is the particle radius, 𝑚 is the particle mass, and 𝑒𝑟 is the coefficient of 

restitution. The equivalent terms are functions of the contacting particle properties: 

 

𝑌𝑒𝑞 =
𝑌𝑖𝑌𝑗

𝑌𝑖(1 − 𝜈𝑗
2) + 𝑌𝑗(1 − 𝜈𝑖

2)
 ( 46 ) 

Geq =
𝐺𝑖𝐺𝑗

𝐺𝑖(2 − 𝜈𝑗) + 𝐺𝑗(2 − 𝜈𝑖)
 ( 47 ) 

𝑅𝑒𝑞 =
𝑅𝑖𝑅𝑗

𝑅𝑖 + 𝑅𝑗
 ( 48 ) 

𝑚𝑒𝑞 =
𝑚𝑖𝑚𝑗

𝑚𝑖 +𝑚𝑗
 ( 49 ) 

 

where 𝜈 is the Poisson ratio. In order to account for the gross stick-slip behavior of 

contacting particles, the tangential forces are limited by Coulomb’s law of friction: 
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|𝒇𝒕| ≤ 𝜇𝑠|𝒇𝒏| ( 50 ) 

 

where 𝜇𝑠 is the sliding friction coefficient. The total contact torques are then determined 

from the contact forces as expressed in the following equations: 

 

𝑴𝒓 = −𝜇𝑟|𝐟𝒏|𝑅𝑐𝝎�̂� ( 51 ) 

𝑴𝒕 = 𝑅𝑐𝒗�̂�×𝒇𝒕 ( 52 ) 

 

where 𝑴𝒓 is the rolling resistance torque, 𝑴𝒕 is the tangential torque, 𝜇𝑟 is the rolling 

friction coefficient, and 𝑅𝑐 is the distance from the particle center to the contact plane. 

 

4.1.3 Solid-Liquid Interaction Force Models 

 

 The fluid-particle interaction terms, included in the fluid and solid phase governing 

equations, can account for various forces. This can be illustrated in the numerical 

definition of these terms [88] – refer to Equation ( 12 ). In the current work, a variety of 

drag force models will be used to evaluate their capability to accurately reproduce the 

experimental results in this application. Specifically, drag models that are commonly 

recommended for dense particle suspensions will be used. These include the Di Felice 

[94], Gidaspow [87], and Syamlal O’Brien [95] drag models. Refer to Table 2 for the 

numerical definitions of these drag models. Additionally, other fluid-particle interaction 

forces are included and excluded in a variety of simulations in order to evaluate their 

significance. These forces include pressure gradient, virtual mass, Basset, Saffman lift, 
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and Magnus lift. Refer to Table 3 for the numerical definitions of these fluid-particle 

interaction forces. 

 It should be noted that the Basset force is normally not taken into consideration 

due to its computational intensity. It is far more difficult to calculate than other fluid-particle 

interaction forces. In fact, it is computationally more complex and requires calculations 

that span the entire history of each particle [160], [161]. For this reason, the present work 

will evaluate this force using the simplified numerical method proposed by van Hinsberg 

et al. [162]: 

 

𝑭𝑩𝒂𝒔𝒔 = 𝑭𝑾𝒊𝒏 + 𝑭𝑻𝒂𝒊𝒍 ( 53 ) 

𝑭𝑾𝒊𝒏 =
3

2
𝑑𝑝
2√𝜋𝜌𝑓𝜇𝑓∆𝑡𝒈𝑾𝒊𝒏 ( 54 ) 

𝒈𝑾𝒊𝒏 =
4

3
𝒈𝟎 + 𝒈𝑵

𝑁 −
4
3

(𝑁 − 1)√𝑁 − 1 + (𝑁 −
3
2)√𝑁

…  

…+∑ 𝒈𝒏 (
𝑛 +

4
3

(𝑛 + 1)√𝑛 + 1 + (𝑛 +
3
2)√𝑛

+
𝑛 −

4
3

(𝑛 − 1)√𝑛 − 1 + (𝑛 −
3
2)√𝑛

)
𝑁−1

𝑛−1
 

( 55 ) 

𝒈(𝑡) =
𝑑𝒇(𝑡)

𝑑𝑡
 ( 56 ) 

𝒇(𝑡) = 𝒖 − 𝒗 +
1

24
𝑑𝑝
2∇2𝒖 ( 57 ) 

𝑭𝑻𝒂𝒊𝒍 =∑ 𝑎𝑖𝑭𝒊
𝑚

𝑖−1
 ( 58 ) 

𝑭𝒊 = 𝑭𝒊,𝒅𝒊 + 𝑭𝒊,𝒓𝒆 ( 59 ) 

𝑭𝒊,𝒅𝒊 = 3𝑑𝑝
2√𝜋𝜌𝑓𝜇𝑓𝑒𝑡𝑖 exp (−

𝑡𝑤𝑖𝑛
2𝑡i

)… 

…×{𝒈𝑵 [1 − 𝜑 (−
∆𝑡

2𝑡𝑖
)] + 𝒈𝑵+𝟏 exp (−

∆𝑡

2𝑡𝑖
) [𝜑 (

∆𝑡

2𝑡𝑖
) − 1]} 

( 60 ) 
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𝜑(𝑧) =
exp(𝑧) − 1

𝑧
 ( 61 ) 

𝑭𝒊,𝒓𝒆 = exp (−
∆𝑡

2𝑡𝑖
)𝑭𝒊(𝒕−∆𝒕) ( 62 ) 

 

Van Hinsberg et al. reported that this method decreased both computational costs and 

error by more than an order of magnitude. 

 Additionally, it should be reminded that not all fluid-particle interaction forces are 

taken into consideration explicitly. In essence, they are not always accounted for through 

fluid-particle interaction force models. Rather, some forces can be accounted for 

implicitly, through the modification of fluid and particle properties. This is the case for the 

lubrication force. In literature, it has also been taken into consideration by modifying the 

particle contact force model or coefficient of restitution [97]. The latter will be 

demonstrated in the sensitivity test performed in Section 5.2.3 on the global coefficient of 

restitution. However, this is only a crude approximation. The lubrication force is more 

accurately accounted for by modifying each individual particles’ coefficient of restitution 

based on their respective Stokes numbers [125], [129]. However, this will come at a higher 

computational cost. 

 

4.2 Simulation Conditions and Settings 

 

 In the present work, ANSYS Fluent v16.2 was used as a CFD solver and EDEM 

v2.7/v2017 was used as a DEM solver. The CFD solver used the iterative SIMPLE 

scheme for pressure-velocity coupling, a bounded second-order implicit scheme for time 

integration, a second-order upwind spatial discretization scheme for the interpolation of 
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momentum and the turbulent parameters. Such that, integration was performed with a 

maximum residual of 10-3. In the DEM solver, the time step was determined based on the 

Rayleigh time step [63]. Refer to Section 2.4.1.1 for the numerical definition. A percentage 

of approximately 37% of the Rayleigh time step was used as the DEM time step. The time 

steps for the CFD solver and coupling interface were then determined to be 50 times the 

DEM time step. The simulation parameters, discussed above, are summarized in Table 

7. 

 In order to generally evaluate this model, a case study will be initially evaluated in 

Section 5.1. This case will consist of using the O’Brien drag model; the pressure gradient, 

virtual mass, and Saffman lift forces; and the recommended particle parameters listed in 

Table 7. These particle properties were used in previous solid-liquid simulations [92], 

[103]. However, they are based on the measured properties of dry materials. This is an 

acceptable first estimation of wet particle properties. However, refer to Section 5.2.3 for 

a discussion on the potential calibration of these parameters for wet particles. 

Additionally, refer to Sections 5.2.1 and 5.2.2 for the justification of selection of the drag 

model and additional fluid-particle interaction forces. 

 

Table 7. Simulation parameters. 

Parameter Variable Value Unit 

Particle Diameter dp 2 mm 

Particle Density ρp 2500 kg m−3 

Young’s Modulus Y 10 MPa 

Poisson Ratio ν 0.25 N/A 

Coefficient of Restitution er 0.9 N/A 



78 

 

Coefficient of Static Friction μs 0.3 N/A 

Coefficient of Rolling Friction μr 0.1 N/A 

Particle Weight Fraction wp 5 wt% 

Particle Number N/A 62,904 N/A 

DEM Time Step τDEM 2e-5 s 

Liquid Density ρf 998.2 kg m−3 

Liquid Viscosity μf 0.001003 kg m−1 s−1 

CFD and Coupling Time Step τCFD 0.001 s 

Impeller Speed N 550 RPM 

 

4.3 Fluid-Phase Mesh and Boundary Conditions used in CFD Solver 

 

 In the CFD solver, the geometry described in Section 3.1 was discretized into an 

unstructured mesh consisting of 45,238 tetrahedral conforming elements. This mesh is 

illustrated in Figure 8. No slip boundary conditions were applied to the walls of the tank, 

baffle, and impeller components. This is represented as follows [69]: 

 

𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0   𝑎𝑡 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ( 63 ) 

 

where 𝑢𝑥, 𝑢𝑦, and 𝑢𝑧 are the fluid velocities in the 𝑥, 𝑦, and 𝑧 directions, respectively. 

Alternatively, a symmetry boundary condition was applied to surface of the liquid exposed 

to the atmosphere. This is shown in the following equation [78]: 

 

𝜕𝑢𝑥
𝜕𝑛

=
𝜕𝑢𝑦

𝜕𝑛
=
𝜕𝑢𝑧
𝜕𝑛

= 0   𝑎𝑡 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ( 64 ) 
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where 𝑛 is the direction normal to the boundary surface. In order to account for the rotating 

impeller, a moving reference frame (MRF) was also implemented. This essentially rotated 

the cylindrical zone enclosing the impeller geometry, as depicted in Figure 8, and left the 

rest of the geometry stationary. The absolute velocity of the fluid inside this rotating zone 

was then evaluated as follows [73]: 

 

𝒖 = 𝒖𝒓 +𝝎𝑴𝑹𝑭×𝒓𝑴𝑹𝑭 ( 65 ) 

 

where 𝒖 is the absolute fluid velocity, 𝒖𝒓 is the relative fluid velocity, 𝝎𝑴𝑹𝑭 is the angular 

velocity of the rotating zone, and 𝒓𝑴𝑹𝑭 is a position vector within the rotating zone. 

 

 

Figure 8. CFD mesh of mixing tank geometry. 
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4.3.1 Mesh Quality in CFD-DEM coupling 

 

 The unresolved CFD-DEM method requires that the mesh size be large compared 

to the particle diameter but small compared to the computational domain. To meet this 

requirement, it is recommended that the ratio between the mesh size and particle 

diameter be greater than 5 [100]. However, this can produce less accurate fluid flow field 

predictions. This was the case in the present work. The minimum mesh size that could 

be used to perform stable simulations was still relatively coarse. 

 

4.3.2 Grid Independence Test in CFD 

 

 By performing further grid refinements on single-phase simulations, it was 

determined that the current mesh was too coarse to produce accurate fluid flow 

predictions. The grid refinement was performed by decreasing the mesh size in 

successive increments. Such that, the number of mesh elements would almost double 

each time. As this was done, the change in the velocity profile was monitored along a line 

that was 2.5 cm below the impeller and parallel with the x-axis. This will be referred to as 

the monitored line from hereon. The change in the velocity profile was quantified with the 

normalized root mean square deviation (NRMSD) as follows [163]–[165]: 

 

𝑁𝑅𝑀𝑆𝐷 =
1

(𝑢𝑟𝑒𝑓,𝑚𝑎𝑥 − 𝑢𝑟𝑒𝑓,𝑚𝑖𝑛)
√∑ (𝑢𝑘 − 𝑢𝑟𝑒𝑓,𝑘)

2𝑁
𝑘=0

𝑁
 ( 66 ) 
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where 𝑘 represents a position along the velocity profile line, 𝑟𝑒𝑓 represents the reference 

mesh, and 𝑢 is the fluid velocity. 

 Through the further grid refinements, it was determined that the largest grid-

independent mesh had 263,507 elements (i.e. 6 times more than the current mesh). 

When compared to a mesh with 467,528 elements, this mesh produced a NRMSD of 

2.5% and predicted the impeller torque within a 1.5% accuracy. This is within an 

acceptable margin of error. Refer to Figure 9 for a comparison between the time-averaged 

velocity profiles of these meshes. These were obtained by averaging the velocities – at 

each location along the monitored line – for 1.5 seconds, after steady-state was reached. 

However, as mentioned previously, a grid independent mesh could not be used in this 

work since the CFD-DEM simulations became unstable with such a mesh. 

 

 

Figure 9. Comparison of time-averaged velocity profiles for grid-independent meshes – 

along monitored line in liquid-only CFD simulations. 

-1.1

-0.9

-0.7

-0.5

-0.3

-0.1

0.1

0.3

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

A
x
ia

l 
V

e
lo

c
it

y
 M

a
g

n
it

u
d

e
 (

m
/s

)

Position (m)

467,528 elements (550 RPM) 263,507 elements (550 RPM)



82 

 

 

a) 

 

 

b) 

 

Figure 10. Comparison of time-averaged velocity profiles – along monitored line in 

liquid-only CFD simulations – for a) current mesh and grid-independent mesh b) current 

mesh with impeller speed of 625 RPM and grid-independent mesh with impeller speed 

of 550 RPM. 
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 Alternatively, when comparing the current mesh with the mesh with 467,528 

elements, the NRMSD was 7.2% and the impeller torque was underestimated by 9.7%. 

The comparison of the time-averaged velocity profiles of these meshes is illustrated in 

Figure 10a. As it can be observed, the fluid flow field is significantly underestimated. This 

will have an adverse effect on the CFD-DEM simulations. In order to evaluate the extent 

of this error, the impeller speed was increased to better match the expected fluid flow 

field. In CFD simulations, it was found that, when using the coarse mesh at an impeller 

speed of 625 RPM, the velocity profile produced was similar to that obtained with the grid-

independent mesh and an impeller speed of 550 RPM. Refer to Figure 10b for a 

comparison between these time-averaged velocity profiles. In the CFD-DEM simulations, 

the error associated with the coarse mesh could then be quantified by comparing the 

simulations results of the original simulation to that of the simulation with an impeller 

speed of 625 RPM. This comparison is detailed in Section 5.1. 

 

4.4 Particle Generation Procedure 

 

 In order to promote further stability, the particles were introduced into the system 

only after the liquid flow field had been properly developed. This was accomplished by 

simulating liquid-only flow for the first 5 seconds of each simulation. The particles were 

then introduced into the system. All simulations were performed using the same weight 

fraction of particles, 5 wt%, which is equivalent to 62,904 particles. These particles were 

introduced over the course of an additional second by randomly generating them at the 

top of the liquid domain. This is illustrated in Figure 11. Although, it should be noted that 
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this procedure was not consistent with the experimental conditions. In essence, 

experiments were initiated with the particles settled on the bottom of the tank. However, 

this inconsistency should not have influenced the steady-state conditions. This was the 

focus of the current work – and therefore, this procedure was considered to be valid. 

 

     

Figure 11. Particle generation images at a) a time shortly after 5 s b) a time between 5 

and 6 s – but closer to 6 s – and c) a time long after 6 s. 

 

 The particle generation location was selected in an attempt to reduce the 

simulation time required to reach steady-state. By moving the particle generation surface, 

it was found that the surface location did not influence the resulting steady-state 

properties. Rather, it only influenced the amount of time it took to reach steady-state. 

Such that, the required simulation time would increase as the surface was lowered into 

the tank. The simulations were run until the suspension and dispersion index values 

remained relatively constant. This took an additional 3 to 12 seconds of simulated time 

depending on the model parameters being used. The steady-state mixing indexes were 

then evaluated based on the average of the stabilized values. 

a) b) c) 
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Chapter 5 : Results and Discussion 

 In order to evaluate the model, detailed in the Chapter 4, the simulation results are 

compared to experimental results obtained using ERT. Such that, the particle 

concentration distributions are compared both locally and globally. After evaluating the 

model, it is then used to evaluate the sensitivity of the predicted mixing indexes to 

changes in various model parameter. These include the type of drag force model, the 

inclusion or exclusion of other fluid-particle interaction forces, and the particle contact 

parameters. 

 

5.1 Model Evaluation 

 

 When performing simulations, using the model detailed in Chapter 4, the fluid flow 

field was confirmed to be downward pumping. This moved the settled particles on the 

bottom of the tank. Such that, they would accumulate at the center and around the tank 
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walls. Some of these settled particles would then become suspended by the upward fluid 

flow around the tank wall. The suspended particles would then re-circulate back down to 

the bottom of the tank or accumulate in the dense particle suspension at the tank walls. 

This is shown in the instantaneous particle suspension pattern depicted in Figure 12 – 

taken after steady-state was reached – as well as in the time-averaged fluid flow field and 

particle volume fraction plane depicted in Figure 13. 

 

 

Figure 12. Simulation images of instantaneous particle suspension pattern – taken after 

steady-state was reached. 
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a) 

 

 

b) 

 

Figure 13. Simulation images of a) time-averaged fluid flow field and b) axial profile of 

time-averaged particle volume fraction at impeller speed of 550 RPM. 
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 When evaluating these results, the simulation and experimental particle 

concentration distributions were compared in two ways. First, by comparing the locally-

averaged ring concentrations to better illustrate the mixing patterns occurring within the 

tank. Second, by comparing the mixing indexes for convenience. In the former 

comparison, the ERT tomographs depicted in Figure 5b were locally averaged based on 

the zoning scheme illustrated in Figure 6. These results were then compared to the 

simulation results. When post-processing the simulation results, four planes were defined 

in a similar manner to that used for the experimental set-up. Each plane was divided into 

6 concentric rings as depicted in the zoning scheme illustrated in Figure 14a, which also 

shows the simulation planes. The resulting comparison between the experimental and 

simulation results is illustrated in Figure 14b. Such that, each local particle concentration 

value was scaled relative to the system’s true concentration of 2.16 vol% (i.e. 5 wt% for 

a mixture of glass beads and water). 

 In Figure 14b, it was observed that the general concentration trends were captured 

in Planes 2, 3, and 4. Although, there were some discrepancies. Specifically, the 

simulated particle concentrations were too high at the tank walls and almost non-existent 

towards the center of the tank. However, the majority of the discrepancies were found in 

Plane 1, which had almost no particles present. This resulted in the underestimation of 

the simulated cloud height. In essence, the cloud height was found to be between Planes 

1 and 2 for the simulations and above Plane 1 for the experiments. 
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a) 

 

 

b) 

 

Figure 14: Images of a) simulated time-averaged particle concentration planes and 

zoning scheme and b) comparison between experiment and simulation time-averaged 

local particle concentrations at impeller speed of 550 RPM. 
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 Based on the simulation results, the suspension and dispersion indexes are 0.571 

and 0.024 respectively. When comparing these values to the experimental results 

presented in Section 3.4, the error in the simulation was quantified. This was achieved by 

first calculating the errors in the suspension and dispersion indexes as the error 

percentages between the experimental and simulation values. Then, the relative error 

was determined as the average of those error percentages. This is represented as 

follows: 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 =
1

2
(
𝑆𝐼𝑒𝑥𝑝 − 𝑆𝐼𝑠𝑖𝑚

𝑆𝐼𝑒𝑥𝑝
+
𝐷𝐼𝑒𝑥𝑝 − 𝐷𝐼𝑠𝑖𝑚

𝐷𝐼𝑒𝑥𝑝
)×100% ( 67 ) 

 

where 𝑒𝑥𝑝 represents the experimental values, 𝑠𝑖𝑚 represents the simulation values, 𝑆𝐼 

is the suspension index, and 𝐷𝐼 is the dispersion index. For this case study, the relative 

error was 68.1%. This was calculated from suspension and dispersion index errors of 

39.7% and 96.5%, respectively. It can be observed that the majority of this error was 

attributed to the deviation in particle dispersion. This confirms that both suspension and 

dispersion needed to be taken into consideration when evaluating the accuracy of the 

model. 

 The relative error for this case study was also compared to those calculated by 

only considering either the axial or radial distributions. These were determined by taking 

the complements of the mixing indexes depicted in Equations ( 30 ) and ( 31 ). The 

resulting relative errors were 45.3% and 54.9%, respectively. These values are both less 

than the original relative error that was calculated by considering the overall distribution. 
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This proves that both axial and radial distributions needed to be taken into consideration 

to accurately evaluate mixing quality. 

 The discrepancies observed in Figure 14b can be attributed, in part, to the 

modeling limitations associated with the CFD-DEM model including (1) the mesh size, (2) 

the application of the MRF method, and (3) the fluid-particle interaction force models as 

well as the turbulence closure equations. As mentioned previously, as an inherent 

limitation associated with the CFD-DEM method, the mesh size must be coarse compared 

to the particle size to ensure stability. However, in this study, the minimum stable mesh 

size was still quite coarse. This resulted in the underestimation of the fluid velocities and 

the fluid-particle interaction forces. The severity of this error can be analyzed by running 

a stand-alone simulation with the coarse mesh and an artificially increased impeller speed 

(i.e. 625 RPM). This produced a fluid flow field similar to the flow field obtained using a 

simulation performed with a grid independent mesh and an impeller speed of 550 RPM. 

Refer to Section 4.3.2. With the artificially increased impeller speed, it was observed that 

the simulated cloud height was no longer underestimated as depicted in Figure 15. This 

resulted in a reduced relative error of 47.7%. This was a result of both the suspension 

and dispersion index errors being reduced (i.e. to 21.1% and 74.3%, respectively). This 

suggests that the mesh size limitation contributed significantly to the error in both particle 

suspension and dispersion. 

 The MRF method is not conventionally used in Eulerian-Lagrangian simulations. 

Rather, it is more commonly applied to Eulerian simulations in which mesh size is not a 

limiting factor. In those simulations, the mesh could be refined when necessary. More 

specifically, it could be refined around the interface used for MRF communication. 
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However, this is not the case for Eulerian-Lagrangian simulations, which can result in a 

lack of mesh quality at the MRF interface. If this occurs, the fluid velocities and pressures 

being communicated across the MRF interface would be subjected to interpolation errors. 

This would then lead to small differences in the velocity and pressure across the interface. 

In this study, these differences could have hindered particles from crossing over the 

interfacial boundary. Specifically, from the tank periphery to the impeller body. This would 

have then caused the degree of particle dispersion to be underestimated. Therefore, it is 

recommended that other modeling techniques such as the sliding mesh and immersed 

boundary methods [102], [103], [152] be investigated in future works in order to mitigate 

these potential sources of error. 

 

 

Figure 15: Comparison of time-averaged local particle concentrations with impeller 

speed of 550 RPM for experiment and 625 RPM for simulation. 
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 The significant modeling constraints associated with the fluid-particle interaction 

force models will be discussed later in Section 5.2.2. However, in regards to the 

turbulence closure equations, current models do not account for turbulence modulation. 

This occurs as a result of the particulate phase modifying the liquid phase flow patterns. 

Considering the particle size and concentration used in the current study, neglecting 

turbulence modulation could have potentially influenced the degree of particle suspension 

and dispersion. In literature, it has been found to significantly influence predictions in fluid 

velocities and the hydrodynamic behaviour [166]. 

 Additionally, it should be noted that error, although to a lesser extent, is also 

attributed to experimental limitations. In this regard, the spatial accuracy of the 

measurement method used in this study, ERT, was relatively low – with a resolution of 

only 5% of the vessel diameter. Furthermore, minor imperfections in the experimental set-

up would have also contributed to the observed deviation. 

 Regardless of these limitations, when increasing the impeller speed, the model 

showed a realistic trend similar to that observed in the experimental results. Refer to 

Figure 7 for the experimental trends. The simulated trends are illustrated in Figure 16, 

over a series of impeller speeds ranging from 450 RPM to 800 RPM. In this figure, the 

simulated suspension and dispersion indexes increase with increasing impeller speeds. 

Then, plateau at a maximum value, in a similar manner to the experimental trend lines. 

However, these maximum values were achieved at higher impeller speeds, when 

compared to the experimental results. Although, the simulated maximum suspension 

index was even very close to the experimental value. These values were 0.979 and 0.962 

respectively. However, the simulated maximum dispersion index was still underestimated 
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(i.e. by 70.7%). This further confirms that both the particle suspension and dispersion 

should be used to evaluate this model. If only suspension was taken into consideration, 

the significant limitation in reproducing dispersion would have not been identified. 

 

 

Figure 16. Simulation suspension and dispersion indexes for varying impeller speeds. 

 

5.2 Model Sensitivity Tests for Mixing Quality 

 

 Next, the sensitivity of the model was investigated by changing various model 

parameters and evaluated through the resulting changes in the mixing indexes. The 

model parameters studied include (1) the type of drag force model, (2) the exclusion or 

inclusion of other fluid-particle interaction forces, and (3) various particle properties. The 

specific parameters investigated are listed in Table 8 and the results are summarized in 

Table 9. These will be discussed in the following sub-sections. 
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Table 8. Summary of different cases for model sensitivity tests conducted at impeller speed of 550 RPM. 

Case 

Drag 

Force 

Model 

Pressure 

Gradient 

Virtual 

Mass 

Saffman 

Lift 

Magnus 

Lift 
Basset 

Sliding 

Friction 

(_) 

Rolling 

Friction 

(_) 

Young’s 

Modulus 

(MPa) 

Restitution 

Coefficient 

(_) 

1A Di Felice Yes Yes Yes No No 0.3 0.1 10 0.9 

1B Gidaspow 

1C O’Brien 

2A O’Brien No Yes Yes No No 0.3 0.1 10 0.9 

2B Yes No Yes No No 

2C Yes Yes No No No 

2D Yes Yes Yes Yes No 

2E Yes Yes Yes No Yes 

3A O’Brien Yes Yes Yes No 

 

 

 

 

 

 

No 0.15 0.1 10 0.9 

3B 0.9 0.1 10 0.9 

3C 0.9 0.01 10 0.9 

3D 0.9 0.5 10 0.9 

3E 0.9 1 10 0.9 

3F 0.9 0.1 1 0.9 

3G 0.9 0.1 100 0.9 

3H 0.9 0.1 10 0.01 

3I 0.9 0.1 10 0.7 
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Table 9. Case results for sensitivity tests. 

Case 
Suspension 

Index (_) 

Dispersion 

Index (_) 

Suspension 

Index Error (%) 

Dispersion 

Index Error (%) 

Relative 

Error (%) 

1A 0.466 -0.111 50.8% 116.1% 83.4% 

1B 0.549 -0.165 42.1% 123.8% 82.9% 

1C 0.571 0.024 39.7% 96.5% 68.1% 

2A 0.517 -0.207 45.4% 129.9% 87.6% 

2B 0.481 -0.228 49.2% 132.9% 91.1% 

2C 0.482 -0.109 49.1% 115.7% 82.4% 

2D 0.546 -0.043 42.4% 106.2% 74.3% 

2E 0.556 0.050 41.2% 92.9% 67.1% 

3A 0.632 0.055 33.3% 92.0% 62.7% 

3B 0.551 0.026 41.8% 96.2% 69.0% 

3C 0.688 0.084 27.3% 87.8% 57.6% 

3D 0.292 -0.321 69.2% 146.2% 107.7% 

3E 0.329 -0.897 65.2% 229.4% 147.3% 

3F 0.558 -0.010 41.1% 101.5% 71.3% 

3G 0.523 -0.011 44.8% 101.6% 73.2% 

3H 0.481 -0.094 49.3% 113.6% 81.4% 

3I 0.509 -0.066 46.3% 109.5% 77.9% 

 

5.2.1 Influence of Drag Models 

 

 The drag force is the dominant force influencing fluid-particle interactions. For this 

reason, the drag force model plays a significant role in the accuracy of particle 

concentration predictions. This will be demonstrated by the following evaluation in which 

various drag models will be compared. More specifically, three of the drag force models 

commonly used and recommended for dense particle suspensions will be employed in 
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the model. These include the Di Felice [94], Gidaspow [87], and O’Brien [95] models. 

When comparing these models to each other, two observations were made. First, the 

greatest suspension index error (i.e. 50.8%) was obtained from the simulation employing 

the Di Felice drag model. Second, the dispersion index errors obtained using the Di Felice 

and Gidaspow models were much greater than the dispersion index error obtained using 

the O’Brien drag model (i.e. they were 19.6% to 27.3% greater). This is illustrated in 

Figure 17. 

 

 

Figure 17. Comparison for the drag force model based on Cases 1A, 1B, and 1C. 
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conditions [51]. Therefore, it is more reliable in the laminar regime. The Gidaspow model, 

on the other hand, has been successfully used in the turbulent regime. However, this 

model is normally recommended for when viscous forces are dominant [1], [167]. For the 

present study, the opposite holds true. 

 Based on this comparison, the O’Brien model is better suited for this particular 

application. It had the lowest relative error and best trade-off between the suspension and 

dispersion index errors. However, it should be noted that this model still produces some 

discrepancies. Therefore, it is recommended that other drag force models be investigated 

in futures works to further improve drag force predictions. 

 

5.2.2 Influence of Other Fluid-particle Interaction Forces 

 

 The fluid-particle interaction forces, other than drag, may have also contributed to 

the suspension and dispersion of the particles. The pressure gradient, virtual mass, and 

Basset forces are likely to be significant under the current operating conditions 

investigated in this study. Specifically, these forces become more significant with lower 

particle-to-fluid density ratios. In addition to this, the Saffman and Magnus lift forces are 

also likely to be significant. These forces become more significant with higher rates of 

shear and particle collisions, which would also be experienced in this application. 

Therefore, the significance of these forces will be evaluated in the following investigation. 

 In this assessment, Case 1C was used as the base case in which the other cases 

were based upon. Specifically, Cases 2A to 2E. In these cases, the fluid-particle 

interaction forces used in the base case were duplicated with the exception of one force. 
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This force would either be excluded if it was originally included or included if it was 

originally excluded. When doing this, all of the resulting cases could then be compared to 

the same base case. Such that, the significance of accounting for any of these forces 

could be evaluated. More specifically, the significance of the forces was evaluated by 

comparing the relative errors as well as mixing indexes. Such that, the case values 

associated with excluding the force were subtracted from those associated with including 

it. This is represented as follows: 

 

Suspension or dispersion index difference = suspension or dispersion index of case 

including interaction force – suspension or dispersion index of case excluding 

interaction force 

 

Change in relative error = Relative error of case including interaction force – Relative 

error of case excluding interaction force 

 

Based on this approach, the change in the relative error would be negative if the inclusion 

of the interaction force reduces error and positive if it actually introduces more error. 

Whereas, the change in the mixing indexes would be positive if the inclusion of the 

interaction force increases mixing quality and negative if it actually decreases mixing 

quality. This assessment is illustrated in Figure 18. 
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Figure 18. Influence of various fluid-particle interaction forces on suspension and 

dispersion index differences and change in relative error based on Cases 1C, 2A, 2B, 

2C, 2D, and 2E. 

 

 The significance of the pressure gradient and virtual mass forces was evaluated 

by comparing Case 1C to Cases 2A and 2B. In doing so, it was observed that including 

these forces increased the mixing indexes and decreased the relative error. The reduction 

in the relative error confirms that these forces are significant in this application. The 

pressure gradient force accounts for differences in pressure. These can be caused by (1) 

the buoyancy of particles and (2) the acceleration of fluid. When taking this force into 

consideration, the former is overcome by gravitation forces since the particle density is 

higher than the fluid density. However, the latter is able to promote particle suspension 

due to the downward pumping flow field. This fluid flow causes the particles to accelerate 
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from the bottom of the tank towards the top. Additionally, the differences in pressure 

caused by the acceleration of the fluid would have also promoted particle dispersion. This 

is due to the turbulent and locally unsteady nature of the fluid flow field. The dispersion 

index increased by 0.231, whereas the suspension index only increased by 0.054. 

Therefore, it would appear that the pressure gradient force was a more significant 

contributor to particle dispersion than it was to suspension. This was also the case for the 

virtual mass force. This force accounts for the displacement of fluid due to the acceleration 

of particles. That is to say, it adds the force required to move fluid from the new particle 

position. Given the moderate viscosity of the liquid, used in this system, this results in a 

significant increase in particle mobility. More specifically, an increase in particle 

suspension and dispersion. 

 Alternatively, when comparing Case 2E to Case 1C, it was observed that including 

the Basset force increased dispersion but decreased suspension to a minor extent. This 

force accounts for the temporal delay in the boundary layer development of accelerating 

particles caused by viscous effects. Hinsberg et al. [168] took this force into consideration 

when investigating homogeneous isotropic turbulence flows. In doing so, they found that 

particle settling is modified in a selective manner based on the particles’ Stokes number. 

Such that, it is enhanced by large Stokes numbers and hindered by small Stokes 

numbers. Based on the particle size and density used in this study, the Stokes numbers 

should be relatively large for this application. Therefore, it stands to reason that a minor 

decrease in particle suspension was observed when implementing the Basset force. 

Furthermore, Olivieri et al. [160] found that the Basset force also hinders the formation of 

particle clusters and voided regions. This ultimately increased the dispersion of their 
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particles. This was also observed in this study. However, this only resulted in a 1.1% 

reduction in the simulation’s relative error. Therefore, it was assumed that the Basset 

force could be neglected with only a minor influence on accuracy and was not included in 

further simulations to reduce computational costs. 

 Next, the significance of the Saffman lift force was evaluated by comparing Case 

1C to 2C. In doing so, it was observed that including this force increased both of the 

mixing indexes and decreased the relative error. This force accounts for the displacement 

of the particles caused by the shearing of fluid. Due to the rotation of the impeller, large 

amounts of shear are experienced in this application. Therefore, it is reasonable for the 

Saffman lift force to be significant. 

 When comparing Case 2D to Case 1C, it was observed that including the Magnus 

lift force decreased both the dispersion and suspension indexes. This force accounts for 

the displacement of particles caused by high particle rotational velocities. These normally 

occur at the bottom of the tank and around the impeller. Specifically, as a result of the 

high rates of particle collisions occurring within those regions [92]. These cause the 

particles to suspend from the bottom of the tank and accumulate at the impeller height 

[98]. This should result in an increase in particle suspension and a decrease in particle 

dispersion. However, this was not the case for the current observation. This is most likely 

due to a limitation associated with the model used to account for the Magnus lift force. In 

mixing systems, the local fluid vorticity is imparted by impeller motion as well as particle 

rotational motion. However, with the Magnus lift force model depicted in Equation ( 24 ), 

this will lead to erroneous results. For example, when the particle rotational velocity is 

zero and the fluid vorticity is not zero: conceptually, the Magnus lift force should be zero 



 

103 

 

and the total lift force should be equal to the Saffman lift force. However, when using 

Equation ( 24 ), a non-zero Magnus lift force will be calculated instead and the resulting 

force will even act in the opposite direction of the Saffman lift force. This results in a 

Magnus lift force that negates the Saffman lift force. In the current work, this unrealistically 

decreased the degree of particle suspension and increased the relative error by 6.2%. 

For this reason, the model used for the Magnus force was not taken into consideration in 

further simulations. 

 Additionally, Blais et al. [152] also noted that the Magnus lift force may actually be 

overestimated in general. Since, the interactions between the particle angular velocities 

and the fluid vorticity field was not accounted for in the numerical model. In this regard, 

the frictional forces acting on particles by the surrounding fluid has not been taken into 

consideration. These forces would dampen the particle angular velocities and modify the 

fluid vorticity field accordingly. As a result, the Magnus lift force would be smaller and less 

significant. The influence of these friction forces on the particles can be taken into 

consideration by incorporating a fluid resistance torque into the solid phase torque 

conservation equation. This was demonstrated by Derksen [98]. Although, this was not 

investigated further in this work since it is out of scope. 

 Blais et al. [152] also criticized the fluid-particle interaction force models used to 

account for the virtual mass, Basset, Saffman lift, and Magnus lift forces. They argued 

that these equations are inaccurate since they do not account for the presence of 

neighbouring particles and were derived based on single particle motion. However, the 

significance of this inaccuracy is still unclear and should be investigated further in future 

works. 
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5.2.3 Influence of Particle Properties 

 

 In the current study, there is a tendency for particles to accumulate into densely 

concentrated structures since the particle density is higher than the liquid density. 

Specifically, the particles tend to accumulate around the tank walls and across the bottom 

of the tank. For this reason, the motion of the solid phase is not only dependant on fluid-

particle interactions, as discussed above. It is also influenced by particle-particle and 

particle-wall interactions. This can be demonstrated by the following evaluation of various 

key particle properties used to model particle contacts. In this evaluation, it is reminded 

that the recommended particle properties, used in most solid-liquid simulations, are based 

on the measured properties of dry materials. This is an acceptable first estimate for wet 

particle properties. However, it can lead to significant error and should be corrected by 

calibrating the particle properties against experimental data. The current work will 

demonstrate this process by determining the particle properties that minimize the relative 

error. 

 The first properties investigated are the sliding and rolling friction coefficients. 

When increasing these parameters, it was observed that the mixing indexes decreased 

and the relative error increased. This is illustrated in Figure 19. However, it should be 

noted that the influence of changing the rolling friction coefficient was more pronounced. 
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a) 

 

 

b) 

 

Figure 19. Influence of a) static friction coefficient – based on Cases 1C, 3A, and 3B – 

and b) rolling friction coefficient – based on Cases 3B, 3C, 3D, and 3E – on suspension 

and dispersion indexes. 
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 The influence of the friction coefficients on the mixing quality is due to the 

relationship between the friction coefficients and the translational and rotational velocities 

of the particles. The sliding friction coefficient limits the tangential force that can result 

from particle-particle and particle-wall collisions, refer to Equation ( 50 ). Increasing this 

coefficient, increases the limit of the tangential force and the rotational momentum. This 

consequently increases the particles’ rotational velocities. Additionally, increasing the 

sliding friction coefficient also decreases the translational particle velocities. This was 

confirmed by comparing the translational and rotational velocities simulated in Cases 1C 

and 3B. These cases used respective sliding friction coefficients of 0.3 and 0.9. In this 

comparison, the translational and rotational velocities were time-averaged for five 

seconds after steady-state was reached for all particles. In Case 1C, the average 

translational and rotational velocities were calculated to be 0.140 m/s and 384 RPM, 

respectively. In Case 3B, the averaged translational velocity reduced to a value of 0.129 

m/s, whereas the average rotational velocity increased to a value of 539 RPM. However, 

this did not significantly influence the particle suspension or dispersion.  The rolling friction 

coefficient, on the other hand, did significantly influence the mixing quality. This parameter 

directly relates the normal contact force to the rolling resistance torque. Therefore, 

increasing this coefficient, increases the rolling resistance torque of all particles in contact. 

This decreases the rotational velocities of all rebounding particles. Additionally, it was 

observed that increasing the rolling friction coefficient also decreased the translational 

velocity of particles. This was determined by comparing the average translational and 

rotational velocities simulated in Cases 3B and 3E. These cases used respective rolling 

friction coefficients of 0.1 and 1. In Case 3E, the average translational and rotational 
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velocities were determined to have significantly decreased to respective values of 0.046 

m/s and 64 RPM compared to Case 3B. Refer to the sliding friction coefficient discussion 

above for the values associated with Case 3B. Regardless, for either the sliding or rolling 

friction coefficients, the translational velocities of the rebounding particles decreased to 

some degree with increasing coefficients. This resulted in hindered particle mobility 

leading to a decrease in both particle suspension and dispersion. However, this effect is 

more pronounced for the rolling friction coefficient since changing this parameter affects 

all contacting particles. Whereas, changing the sliding friction coefficient only affects a 

portion of contacting particles that are no longer limited by smaller tangential force 

limitations. This is demonstrated by the substantial increase in the relative error as the 

rolling friction coefficient is increased. Although, it should be noted that these results are 

not consistent with the results of Blais and Bertrand [103]. They found that the fraction of 

suspended particles increased with increasing friction coefficients. Specifically, at 

intermediate speeds. However, their simulations were performed for a different flow 

regime with a more viscous liquid phase. 

 The simulation results presented in this work also suggest that wet particles have 

lower sliding and rolling friction coefficients. This stands to reason since liquid would act 

as a lubricant between the particles and reduce the friction experienced during collisions. 

However, in the current study, reducing the sliding friction coefficient also resulted in 

instabilities within the simulations. Alternatively, increasing this coefficient resulted in 

insignificant changes to the predicted mixing quality and shorter computational runtimes 

(i.e. the amount of time required to reach steady-state decreased). For these reasons, 

the sliding friction coefficient was artificially increased in further simulations in an attempt 
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to reduce computational costs and promote stability. These instabilities were not 

observed with the rolling friction coefficient. Therefore, it is recommended that only 

reduced rolling friction coefficients be used to improve the accuracy of the simulations. In 

the present work, the sliding friction coefficient was increased from 0.3 to 0.9. While, the 

rolling friction coefficient was decreased from 0.1 to 0.01. This is depicted in Cases 1C 

and 3C. As a result, the relative error and the computational runtime were reduced by 

respective percentages of 10.5% and 26.9%. 

 The second particle property investigated is the Young’s Modulus. When 

increasing this parameter, it was observed that the mixing indexes and relative errors 

mildly varied. This is illustrated in Figure 20. These trends do not appear to be significant 

as the relative error only varies by a maximum of 4.2%. This is consistent with the results 

of Blais and Bertrand [103]. They also found that modifying the Young’s modulus had little 

to no effect on the fraction of suspended particles. 

 This finding confirms that stiffness scaling can be used in CFD-DEM simulations 

with only a minor impact on accuracy. In doing so, the Young’s modulus can artificially be 

decreased in order to increase the DEM time step. This results in a reduction in the 

computational runtime [169]. In the present study, decreasing the Young’s Modulus from 

100 MPA to 10 MPa reduced the computational runtime by 60.4%. This was determined 

by comparing the computational runtimes of Cases 3G and 3B. This method has also 

been used in other studies investigating solid-liquid system with CFD-DEM coupling. Han 

et al. [116], who studied a circulating fluidized bed, reduced their Young’s modulus by an 

order of magnitude. In doing so, they found that the Young’s modulus only had a minor 
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impact on the particles’ mean residence time. In addition to this, Di Renzo and Di Maio 

[119] and Di Renzo et al. [118] also applied stiffness scaling in fluidized bed applications. 

 

 

Figure 20. Influence of Young’s Modulus on suspension and dispersion indexes based 

on Cases 3B, 3F, and 3G. 

 

 The last particle property investigated is the coefficient of restitution. When 

decreasing this parameter, it was observed that the mixing indexes decrease and the 

relative error increases. This is illustrated in Figure 21. Varying the coefficient of restitution 

was used as an approximation for the lubrication force. This force hinders contacting 

particles from moving towards and away from each other. Based on the empirical 

correlation proposed by Joseph et al. [136], the lubrication force becomes more 

pronounced as the coefficient of restitution decreases. Therefore, by decreasing 
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coefficient of restitution, it is expected that both mixing indexes would decrease. This was 

confirmed with the simulation results. It should be noted that this finding was not 

consistent with the results of Blais and Bertrand [103]. Rather, they found that the fraction 

of suspended particles was not affected by varying the coefficient of restitution. However, 

this discrepancy is realistic since viscous forces were dominant compared to the 

lubrication force in their study. Therefore, modifying the coefficient of restitution and 

artificially accounting for the lubrication force resulted in little to no effect. 

 

 

Figure 21. Influence of coefficient of restitution on suspension and dispersion indexes 

based on Cases 3B, 3H, and 3I. 

 

 It is reminded that changing the global coefficient of restitution was only used as a 

crude approximation for the lubrication force. However, the results can still be used to 
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evaluate the force’s significance, which would most likely be significant in this system. 

This can be confirmed based on the significant change in the mixing quality resulting from 

minor changes in the global coefficient of restitution (i.e. by comparing Cases 3B and 3I). 

However, it is recommended that this be confirmed in future works by accounting for the 

lubrication force using a more appropriate method. More specifically, by dynamically 

changing the coefficient of restitution for each individual particle based on it instantaneous 

Stokes number. 
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Chapter 6 : Conclusions and Recommendations 

 In this study, a solid-liquid mixing system in the turbulent regime was studied 

comprehensively via numerical and experimental methods. The spatial distribution of the 

particle concentrations was measured using ERT. These measurements were 

summarized into mixing indexes, which quantified both the degree of particle suspension 

and dispersion. Current mixing index definitions only focus on the degree of particle 

dispersion throughout the tank. Therefore, a new suspension mixing index was proposed 

in this study and applied based on the ERT measurement capabilities. Moreover, a two-

way coupled CFD-DEM model was developed using ANSYS Fluent v16.2 and EDEM 

v2.7/v2017 software packages. 

 Using the mixing indexes, the simulation and experimental results were compared. 

In doing so, it was found that the model underestimated both the degree of suspension 

and dispersion. This was most likely due to model limitations. Specifically, those 

associated with the mesh size, the MRF method being applied to a Eulerian-Lagrangian 
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simulation, and the fluid-particle interaction force models as well as the turbulence closure 

equations. The sensitivity of the model to changes in various model parameters was also 

investigated. In doing so, it was found that the O’Brien drag model was better suited for 

this application compared to the Di Felice and Gidaspow models, which underestimated 

either the degree of suspension or dispersion due to their respective model restrictions. 

Additionally, it was determined that the pressure gradient, virtual mass, and Saffman lift 

forces needed to be taken into consideration in this application. By including these forces, 

both the degree of suspension and dispersion were improved. Alternatively, the influence 

of the Basset force on particle suspension and dispersion was found to be negligible. 

While, including the Magnus lift force was found to result in erroneous behaviour. This 

can be attributed to the form of the model used to account for it. Lastly, it was also found 

that the degree of suspension and dispersion significantly increases with decreasing 

rolling friction coefficients as well as increasing coefficients of restitution. While, the sliding 

friction coefficient and Young’s modulus did not significantly influence the mixing quality. 

The latter confirmed that stiffness scaling can be used in this study. Using this method, 

the computational runtime was reduced considerably without compromising the 

simulations’ accuracy. 

 In future works, it is recommended that smaller particles be used in the developed 

model. Using smaller particles would allow smaller mesh sizes to be used, which would 

result in more accurate fluid flow predictions and consequently more accurate fluid-

particle interaction force predictions. Decreasing the particle diameters and mesh sizes, 

increases the computational requirements. However, based on the results of the current 

study, stiffness scaling can then be used to combat the increase in computational costs. 
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Moreover, it is recommended that the lubrication force be taken into consideration through 

a dynamic coefficient of restitution – to model this force more realistically – in future 

simulations. Additional attempts to improve the simulation accuracy can include replacing 

MRF with alternative approaches such as a sliding mesh; or evaluating the influence of 

more sophisticated drag and turbulence models (e.g. Reynolds Stress model) on the 

simulation results. 
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APPENDIX A. Di Felice User Defined Function 

Appendices 
#include "udf.h" 
 
DEFINE_DPM_DRAG(Drag_Di_Felice, Re, p) 
{ 
 cell_t c; 
 Thread *vt, *ct; 
 real void_l, c_d0, chi, c_d; 
 
 c = P_CELL(p); 
 ct = P_CELL_THREAD(p); 
 vt = DPM_THREAD(ct, NULL);  
 void_l = C_VOF(c, vt); 
 
 c_d0 = pow((0.63 + 4.8 / pow((Re*void_l), 0.5)), 2.0); 
 chi = 3.7 - 0.65*exp((-pow((1.5 - log10((Re*void_l))), 2.0) / 2.0)); 
 c_d = 0.75*Re*c_d0*pow(void_l, (2.0 - chi)); 
  
 return c_d; 
} 
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APPENDIX B. Magnus Lift Force User Defined Function 

 

#include "udf.h" 
 
DEFINE_DPM_BODY_FORCE(Magnus_Force, p, i) 
{ 
 if (i == 0) 
 { 
  real NV_VEC(vel_p), NV_VEC(omega_p); 
  real NV_VEC(vel_flu); 
  real NV_VEC(vort); 
  real NV_VEC(vel_V), NV_VEC(vel_S), Re_p, Re_omega, cl; 
  real den, visc, diam; 
  real F_mag_con, NV_VEC(F_mag_vec), NV_VEC(F_mag); 
  cell_t c; 
  Thread *t_c; 
 
  c = P_CELL(p); 
  t_c = P_CELL_THREAD(p); 
 
  NV_V(vel_p, =, P_VEL(p)); 
  omega_p[0] = P_USER_REAL(p, 8); 
  omega_p[1] = P_USER_REAL(p, 9); 
  omega_p[2] = P_USER_REAL(p, 10); 
 
  NV_D(vel_flu, =, C_U(c, t_c), C_V(c, t_c), C_W(c, t_c)); 
  vort[0] = C_DWDY(c, t_c) - C_DVDZ(c, t_c); 
  vort[1] = C_DUDZ(c, t_c) - C_DWDX(c, t_c); 
  vort[2] = C_DVDX(c, t_c) - C_DUDY(c, t_c); 
 
  den = C_R(c, t_c); 
  visc = C_MU_L(c, t_c); 
  diam = P_DIAM(p); 
 
  NV_VV(vel_V, =, vel_flu, -, vel_p); 
  Re_p = NV_MAG(vel_V)*diam*den / visc; 
 
  NV_VS_VS(vel_S, =, vort, *, 0.5, -, omega_p, *, 1.0); 
  Re_omega = NV_MAG(vel_S)*pow(diam, 2.0)*den / visc; 
 
  cl = 0.45 + ((Re_omega / Re_p) - 0.45)*exp(-0.05684*pow(Re_p, _   
  0.3)*pow(Re_omega, 0.4)); 
 
  F_mag_con = 0.125*M_PI*pow(diam, 3.0)*den*(Re_p / Re_omega)*cl; 
  NV_CROSS(F_mag_vec, vel_S, vel_V); 
  NV_VS(F_mag, =, F_mag_vec, *, F_mag_con); 
 
  p->user[11] = F_mag[0]; 
  p->user[12] = F_mag[1]; 
  p->user[13] = F_mag[2]; 
   
 } 
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 return (P_USER_REAL(p, (i + 11)) / P_MASS(p)); 
} 

 

Note: This UDF required that the number of User Variables in the coupling interface be 

increased to 14. Additionally, modifications in the coupling interface were required to allow 

EDEM to communicate the particle angular velocities to Fluent. Refer to APPENDIX C. 
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APPENDIX C. Modifications to Coupling Interface (Supplement to APPENDIX B) 

 

I. Modifications to "AdaptorInterface.cpp" file (found in coupling interface installation 

folder at “…\edem_coupling_build\edem_cfd_adaptor_build\src”): 

a. Replaced lines 284-286 with the following lines: 

particle->vAngVelocity[0] = tempParticle->getAngVelocity().x(); 
particle->vAngVelocity[1] = tempParticle->getAngVelocity().y(); 
particle->vAngVelocity[2] = tempParticle->getAngVelocity().z(); 

 

II. Modifications to "edem_coupling.h"" file (found in coupling interface installation folder 

at “…\edem_coupling_build\lib_edem_coupling\src”): 

a. Inserted following lines at line 49: 

DEM_OMEGA_X, DEM_OMEGA_Y, DEM_OMEGA_Z, 
ADDED_FP_X, ADDED_FP_Y, ADDED_FP_Z, 

b. Inserted following lines to new line 65: 

#define P_DEM_OMEGA_X(P)(P->user[DEM_OMEGA_X]) 
#define P_DEM_OMEGA_Y(P)(P->user[DEM_OMEGA_Y]) 
#define P_DEM_OMEGA_Z(P)(P->user[DEM_OMEGA_Z]) 
/* Intentional empty line*/ 

 

III. Modifications to "edem_coupling.c" file (found in coupling interface installation folder 

at “…\edem_coupling_build\lib_edem_coupling\src”): 

a. Inserted following lines to line 314: 

P_DEM_OMEGA_X(p_new) = particle->vAngVelocity[0]; 
P_DEM_OMEGA_Y(p_new) = particle->vAngVelocity[1]; 
P_DEM_OMEGA_Z(p_new) = particle->vAngVelocity[2]; 
/*Intentional empty line*/ 

 

  



 

119 

 

APPENDIX D. Basset Force User Defined Function 

 

#include "udf.h" 
 
DEFINE_DPM_BODY_FORCE(Basset_Force, p, i) 
{ 
 if (i == 0) 
 { 
  cell_t c; 
  Thread *t_c;  
  real den, visc, diam; 
  real c_B, del_con, del_t;  
  real NV_VEC(del2u), NV_VEC(f_t), NV_VEC(f_t_prev); 
  real NV_VEC(g_0), NV_VEC(g_n), NV_VEC(g_n_1); 
  real c_n[5] = { 1.104569499661587, 0.719064230952336, _    
  0.581496372443902, 0.501989746940774, 0.231682771667648 }; 
  real c_win, NV_VEC(f_win); 
  real f_di_con, f_di_1, f_di_2, NV_VEC(f_di); 
  real f_re_con, NV_VEC(f_re); 
  real NV_VEC(f_i), NV_VEC(f_tail); 
  real t_til[10] = { 0.1, 0.3, 1.0, 3.0, 10.0, 40.0, 190.0, 1000.0, _  
  6500.0, 50000.0 }; 
  real ai[10] = { 0.23477481312586, 0.28549576238194, 0.28479416718255, _  
  0.26149775537574, 0.32056200511938, 0.35354490689146, _ 
  0.39635904496921, 0.42253908596514, 0.48317384225265, _ 
  0.63661146557001 }; 
  int a; 
 
  c = P_CELL(p); 
  t_c = P_CELL_THREAD(p); 
 
  den = C_R(c, t_c); 
  visc = C_MU_L(c, t_c); 
  diam = P_DIAM(p); 
  del_t = CURRENT_TIMESTEP; 
 
  c_B = 1.5*pow(diam, 2.0)*pow((M_PI*visc*den), 0.5); 
 
  NV_D(del2u, =, C_UDSI_G(c, t_c, 0)[0], C_UDSI_G(c, t_c, 1)[1], _   
  C_UDSI_G(c, t_c, 2)[2]); 
 
  del_con = (1.0 / 24.0)*pow(diam, 2.0); 
  NV_VS_VS(f_t, =, vel_V, *, 1.0, +, del2u, *, del_con); 
 
  NV_D(f_t_prev, =, P_USER_REAL(p, 14), P_USER_REAL(p, 15), _   
  P_USER_REAL(p, 16)); 
  if (NV_MAG(f_t_prev) == 0.0) 
  { 
   NV_D(g_0, =, 0.0, 0.0, 0.0); 
  } 
  else 
  { 
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   NV_VV(g_0, =, f_t, -, f_t_prev); 
  } 
  NV_VS(g_0, =, g_0, / , del_t); 
 
  for (a = 0; a <= 2; a = a + 1) { 
   p->user[(14 + a)] = f_t[a]; 
  } 
 
  NV_VS(f_win, =, g_0, *, 1.333333333333333); 
  for (a = 0; a <= 4; a = a + 1) { 
   NV_D(g_n, =, P_USER_REAL(p, (17 + a * 3)), _  
   P_USER_REAL(p, (18 + a * 3)), P_USER_REAL(p, (19 + a * 3))); 
   NV_VS_VS(f_win, =, f_win, *, 1.0, + , g_n, *, c_n[a]); 
  } 
  NV_D(g_n_1, =, P_USER_REAL(p, 32), P_USER_REAL(p, 33), _ 
  P_USER_REAL(p, 34)); 
 
  c_win = c_B*pow(del_t, 0.5); 
  NV_VS(f_win, =, f_win, *, c_win); 
 
  for (a = 0; a <= 4; a = a + 1) { 
   p->user[(32 - a * 3)] = P_USER_REAL(p, (29 - a * 3)); 
   p->user[(33 - a * 3)] = P_USER_REAL(p, (30 - a * 3)); 
   p->user[(34 - a * 3)] = P_USER_REAL(p, (31 - a * 3)); 
  } 
 
  for (a = 0; a <= 2; a = a + 1) { 
   p->user[(17 + a)] = g_0[a]; 
  } 
 
  NV_D(f_tail, =, 0.0, 0.0, 0.0); 
  for (a = 0; a < 10; a = a + 1) { 
   f_di_con = 2.0*c_B*pow((exp(1.0)*t_til[a] * 5.0 * del_t), _  
   0.5)*exp(-0.5 / t_til[a]); 
   f_di_1 = 1.0 - (exp(-0.5 / (t_til[a] * 5.0)) - 1.0) / (-0.5 _ 
   / (t_til[a] * 5.0)); 
   f_di_2 = exp(-0.5 / (t_til[a] * 5.0))*((exp(0.5 / (t_til[a] _ 
   * 5.0)) - 1.0) / (0.5 / (t_til[a] * 5.0)) - 1.0); 
   NV_VS_VS(f_di, =, g_n, *, f_di_1, +, g_n_1, *, f_di_2); 
   NV_VS(f_di, =, f_di, *, f_di_con); 
 
   f_re_con = exp(-0.5 / (t_til[a] * 5.0)); 
   NV_D(f_re, =, P_USER_REAL(p, (35 + a * 3)), _  
   P_USER_REAL(p, (36 + a * 3)), P_USER_REAL(p, (37 + a * 3))); 
   NV_VS(f_re, =, f_re, *, f_re_con); 
 
   NV_VV(f_i, =, f_di, +, f_re); 
 
   NV_VS_VS(f_tail, =, f_tail, *, 1.0, +, f_i, *, ai[a]); 
 
   p->user[(35 + a * 3)] = f_i[0]; 
   p->user[(36 + a * 3)] = f_i[1]; 
   p->user[(37 + a * 3)] = f_i[2]; 
  } 
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  p->user[11] = f_win[0] + f_tail[0]; 
  p->user[12] = f_win[1] + f_tail[1]; 
  p->user[13] = f_win[2] + f_tail[2]; 
 
 } 
  
 return (P_USER_REAL(p, (i + 11)) / P_MASS(p)); 
} 

 

Note: This UDF required that the number of User Variables in the coupling interface be 

increased to 65. Additionally, the adjust UDF depicted in APPENDIX E was required to 

determine the Laplacian of the fluid velocity. Furthermore, modifications in the coupling 

interface were required to prevent the data stored in the User Variables from being 

deleted during the coupling process. Refer to APPENDIX F. 

 

Additional Note: Two body force UDFs cannot be used at one time. Therefore, when 

implementing both the Magnus and Basset forces, the UDF depicted in APPENDIX B was 

combined with this UDF. 
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APPENDIX E. Adjust User Defined Function (Supplement to APPENDIX D) 

 

#include "udf.h" 
 
enum 
{ 
 DUDX, 
 DVDY, 
 DWDZ 
}; 
 
DEFINE_ADJUST(adjust_fcn, domain) 
{ 
 Thread *t; 
 cell_t c; 
 
 thread_loop_c(t, domain) 
 { 
  begin_c_loop(c, t) 
  { 
   C_UDSI(c, t, DUDX) = C_DUDX(c, t); 
   C_UDSI(c, t, DVDY) = C_DVDY(c, t); 
   C_UDSI(c, t, DWDZ) = C_DWDZ(c, t); 
  } 
  end_c_loop(c, t) 
 } 
} 

 

Note: This UDF required that 3 User Defined Scalars be created. 

 

  



 

123 

 

APPENDIX F. Modifications to Coupling Interface (Supplement to APPENDIX D) 

 

I. Modifications to "edem_coupling.h"" file (found in coupling interface installation folder 

at “…\edem_coupling_build\lib_edem_coupling\src”): 

a. Inserted following lines at line 33: 

int ftprev_property_index; 
int gn_property_index; 
int fi_property_index; 
cxboolean basset_registered; 
cxboolean basset_updated; 

b. Inserted following lines at new line 54: 

Empty1, Empty2, Empty3, 
ADDED_FP_X, ADDED_FP_Y, ADDED_FP_Z, 
FTPREV_X, FTPREV_Y, FTPREV_Z, 
G0_X, G0_Y, G0_Z, G1_X, G1_Y, G1_Z, 
G2_X, G2_Y, G2_Z, G3_X, G3_Y, G3_Z, 
G4_X, G4_Y, G4_Z, G5_X, G5_Y, G5_Z, 
F1_X, F1_Y, F1_Z, F2_X, F2_Y, F2_Z, 
F3_X, F3_Y, F3_Z, F4_X, F4_Y, F4_Z, 
F5_X, F5_Y, F5_Z, F6_X, F6_Y, F6_Z, 
F7_X, F7_Y, F7_Z, F8_X, F8_Y, F8_Z, 
F9_X, F9_Y, F9_Z, F10_X, F10_Y, F10_Z 

c. Inserted following lines to new line 79: 

#define P_ftprev_X(P)(P->user[FTPREV_X]) 
#define P_ftprev_Y(P)(P->user[FTPREV_Y]) 
#define P_ftprev_Z(P)(P->user[FTPREV_Z]) 
/* Intentional empty line*/ 

 

II. Modifications to "edem_coupling.c" file (found in coupling interface installation folder 

at “…\edem_coupling_build\lib_edem_coupling\src”): 

a. Inserted following lines at line 53: 

edem_coupling.ftprev_property_index = NULL_PROPERTY_INDEX; 
edem_coupling.gn_property_index = NULL_PROPERTY_INDEX; 
edem_coupling.fi_property_index = NULL_PROPERTY_INDEX; 

b. Inserted following lines at new line 114: 
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cxboolean register_basset_properties() 
{ 
 
 int ftprevNumElements = ND_ND; 
 int ftprevDataType = 0; 
 int ftprevUnitType = 17;     /* velocity */ 
 double initialftprev = 0.0; 
 
 int gnNumElements = 6 * ND_ND; 
 int gnDataType = 0; 
 int gnUnitType = 2;     /* acceleration */ 
 double initialgn = 0.0; 
 
 int fiNumElements = 10 * ND_ND; 
 int fiDataType = 0; 
 int fiUnitType = 9;     /* force */ 
 double initialfi = 0.0; 
  
 cxboolean basset_registered; 
 int ftprev_property_index; 
 int gn_property_index; 
 int fi_property_index; 
 
 basset_registered = ADAPTOR_registerCustomProperty("ftprev", _ 
 ftprevNumElements, ftprevDataType, ftprevUnitType, initialftprev, _ 
 ftprev_property_index); 
 
 if (basset_registered) 
  basset_registered = ADAPTOR_registerCustomProperty("gn", _ 
  gnNumElements, gnDataType, gnUnitType, initialgn, &gn_property_index); 
 
 if (basset_registered) 
  basset_registered = ADAPTOR_registerCustomProperty("fi", _   
  fiNumElements, fiDataType, fiUnitType, initialfi, &fi_property_index); 
 
 if (basset_registered) 
 { 
  edem_coupling.basset_registered = basset_registered; 
  edem_coupling.ftprev_property_index = ftprev_property_index; 
  edem_coupling.gn_property_index = gn_property_index; 
  edem_coupling.fi_property_index = fi_property_index; 
 } 
 
 return basset_registered; 
} 
#endif /* !RP_NODE */ 
/*Intentional empty line*/ 

c. Inserted following lines to new line 305: 

int index_gn, index_fi; 
real ftprev[3] = { 0 }; 
real gn[6 * ND_ND] = { 0 }; 
real fi[10 * ND_ND] = { 0 }; 
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d. Inserted following lines to new line 349: 

if (edem_coupling.basset_updated) 
{ 
 NV_V(ftprev, =, ADAPTOR_getProperty(edem_coupling.ftprev_property_index, _ 
 particle_index)); 
 memcpy(gn, ADAPTOR_getProperty(edem_coupling.gn_property_index, _ 
 particle_index), (6 * ND_ND)); 
 memcpy(fi, ADAPTOR_getProperty(edem_coupling.fi_property_index, _ 
 particle_index), (10 * ND_ND)); 
} 
/*Intentional empty line*/ 

e. Inserted following lines to new line 371: 

P_ftprev_X(p_new) = ftprev[0]; 
P_ftprev_Y(p_new) = ftprev[1]; 
P_ftprev_Z(p_new) = ftprev[2]; 
/*Intentional empty line*/ 
for (index_gn = 0; index_gn < (6 * ND_ND); index_gn++) 
{ 
 p_new->user[(index_gn + 17)] = gn[index_gn]; 
} 
/*Intentional empty line*/ 
for (index_fi = 0; index_fi < (10 * ND_ND); index_fi++) 
 
 p_new->user[(index_fi + 35)] = fi[index_fi]; 
} 
/*Intentional empty line*/ 

f. Inserted following lines to new line 473: 

if (!edem_coupling.basset_registered) 
 if (register_basset_properties()) 
  Message("\n  Basset properties registered with EDEM.\n"); 
 else 
  Message("\n\n  WARNING: Unable to register Basset properties.\n"); 
/*Intentional empty line*/ 

g. Inserted following lines to new line 482: 

ADAPTOR_updateValuesForProperty(num_particles, edem_coupling.ftprev_property_index); 
ADAPTOR_updateValuesForProperty(num_particles, edem_coupling.gn_property_index); 
ADAPTOR_updateValuesForProperty(num_particles, edem_coupling.fi_property_index); 
/*Intentional empty line*/ 

h. Inserted following lines to new line 531: 

void update_basset_properties() 
{ 
 double *ftprev, *gn, *fi; 
 double *offset_ftprev, *offset_gn, *offset_fi; 
 int index_gn, index_fi; 
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 Particle *p; 
 
 ftprev = CX_Malloc(sizeof(double) * edem_coupling.num_particles * ND_ND); 
 gn = CX_Malloc(sizeof(double) * edem_coupling.num_particles * 6 * ND_ND); 
 fi = CX_Malloc(sizeof(double) * edem_coupling.num_particles * 10 * ND_ND); 
 
 memset(ftprev, 0, sizeof(double) * edem_coupling.num_particles * ND_ND); 
 memset(gn, 0, sizeof(double) * edem_coupling.num_particles * 6 * ND_ND); 
 memset(fi, 0, sizeof(double) * edem_coupling.num_particles * 10 * ND_ND); 
 
 loop(p, edem_coupling.injection->p) 
 { 
  offset_ftprev = ftprev + (ND_ND * P_DEM_PARTICLE_INDEX(p)); 
  NV_D(offset_ftprev, =, P_ftprev_X(p), P_ftprev_Y(p), P_ftprev_Z(p)); 
 
  offset_gn = gn + (6 * ND_ND * P_DEM_PARTICLE_INDEX(p)); 
  for (index_gn = 0; index_gn < (6 * ND_ND); index_gn++) 
  { 
   offset_gn[index_gn] = (p->user[(index_gn + 17)]); 
  } 
 
  offset_fi = fi + (10 * ND_ND * P_DEM_PARTICLE_INDEX(p)); 
  for (index_fi = 0; index_fi < (10 * ND_ND); index_fi++) 
  { 
   offset_fi[index_fi] = (p->user[(index_fi + 35)]); 
  } 
 } 
 
 edem_coupling.basset_updated = _ 
 ADAPTOR_setValuesForProperty(edem_coupling.num_particles, _ 
 edem_coupling.ftprev_property_index, ftprev); 
 CX_Free(ftprev); 
 
 if (edem_coupling.basset_updated) 
 { 
  edem_coupling.basset_updated = _       
   ADAPTOR_setValuesForProperty(edem_coupling.num_particles, _  
    edem_coupling.gn_property_index, gn); 
  CX_Free(gn); 
 } 
 
 if (edem_coupling.basset_updated) 
 { 
  edem_coupling.basset_updated = _       
   ADAPTOR_setValuesForProperty(edem_coupling.num_particles, _  
    edem_coupling.fi_property_index, fi); 
  CX_Free(fi); 
 } 
 
 if (edem_coupling.basset_updated) 
  Message0("Basset properties updated. \n"); 
 
} 
/*Intentional empty line*/ 
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i. Inserted following lines at new line 977: 

update_basset_properties(); 
/*Intentional empty line*/ 

 

III. Modifications to "compute_particle_forces.c" file (found in coupling interface 

installation folder at “…\edem_coupling_build\lib_edem_coupling\src”): 

a. Inserted following line at line 35: 

int index_gn, index_fi; 

b. Inserted following lines at new line 87: 

P_ftprev_X(pp) = P_ftprev_X(tp); 
P_ftprev_Y(pp) = P_ftprev_Y(tp); 
P_ftprev_Z(pp) = P_ftprev_Z(tp); 
/*Intentional empty line*/ 
for (index_gn = 0; index_gn < (6 * ND_ND); index_gn++) 
{ 
 pp->user[(index_gn + 17)] = tp->user[(index_gn + 17)]; 
} 
/*Intentional empty line*/ 
for (index_fi = 0; index_fi < (10 * ND_ND); index_fi++) 
{ 
 pp->user[(index_fi + 35)] = tp->user[(index_fi + 35)]; 
} 
/*Intentional empty line*/ 
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Nomenclature 

Nomenclature and Subscripts 

𝑁 Impeller speed 𝑠−1 

𝐷 Impeller diameter 𝑚 

𝐶 Impeller clearance 𝑚 

𝑇 Tank diameter 𝑚 

𝐻 Liquid level height 𝑚 

𝑉 Voltage value 𝑉 

𝑣 Voltage readings vector 𝑉 

𝐼 Injection current 𝐴 

𝑐 Injection current vector 𝐴 

𝜎 Conductivity value 𝑆 ∙ 𝑚−1 

𝑌 Conductivity matrix 𝑆 ∙ 𝑚−1 

𝑆 Sensitivity map value _ 

𝑛 Nodal point location _ 

𝑀 Number of voltage measurements _ 

𝑁 Number of tomograph elements _ 

𝑋 Particle volume fraction _ 

𝑋𝑝 Average concentration in plane p _ 

𝑋𝑝̅̅̅̅  Total average of the 𝑋𝑝 values _ 

𝑋𝑟,𝑝 Average concentration in ring r and plane p _ 

𝑋𝑟,𝑝̅̅ ̅̅ ̅ Total average of the 𝑋𝑟,𝑝 values _ 

𝑋𝑘,𝑝 Concentration in element k and plane p _ 

𝑋𝑘,𝑝̅̅ ̅̅ ̅ Total average of the 𝑋𝑘,𝑝 values _ 

𝑋𝑝,𝑎𝑣𝑔 Average of the 𝑋𝑟,𝑝 or 𝑋𝑘,𝑝 values in the same plane p _ 

𝑋𝑟,𝑎𝑣𝑔 Average of 𝑋𝑟,𝑝 values in the same annular section r _ 

X𝑘,𝑎𝑣𝑔 Average of the 𝑋𝑘,𝑝 values in the same element section _ 

𝑋𝑡 True system concentration throughout the tank _ 

𝒖 Fluid velocity vector 𝑚 ∙ 𝑠−1 
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𝝎𝒄 Fluid vorticity 𝑠−1 

휀𝑓 Fluid porosity _ 

𝜌𝑓 Fluid density 𝑘𝑔 ∙ 𝑚−3 

𝜇𝑓 Fluid dynamic viscosity 𝑃𝑎 ∙ 𝑠 

𝛻𝑝 Fluid pressure gradient 𝑃𝑎 

𝝉 Fluid viscous stress tensor 𝑃𝑎 

𝒈 Acceleration due to gravity 𝑚 ∙ 𝑠−1 

𝑭𝒑𝒇 Volume-averaged fluid-particle interaction force 𝑁 

∆𝑉 Volume of the fluid mesh cell 𝑚3 

𝒖𝒓 Moving reference frame relative fluid velocity 𝑚 ∙ 𝑠−1 

𝝎𝑴𝑹𝑭 Moving reference frame angular velocity 𝑠−1 

𝒓𝑴𝑹𝑭 Moving reference frame position vector 𝑚 

𝒗 Particle translational velocity 𝑚 ∙ 𝑠−1 

𝐯𝒓 Particle relative velocity 𝑚 ∙ 𝑠−1 

𝝎 Particle angular velocity 𝑠−1 

𝑑𝑝 Particle diameter 𝑚 

𝑅 Particle radius 𝑚 

𝑉𝑝 Particle volume 𝑚3 

ρp Particle density 𝑘𝑔 ∙ 𝑚−3 

wp Particle weight fraction _ 

𝑚 Particle mass 𝑘𝑔 

𝐼𝑝 Particle moment of inertia 𝑘𝑔 ∙ 𝑚2 

𝑘 Particle elastic spring stiffness 𝑁 ∙ 𝑚−1 

𝛿 Particle overlap (displacement) 𝑚 

𝜂 Particle dissipative viscous damping 𝑁 ∙ 𝑠 ∙ 𝑚−1 

𝜇𝑠 Particle sliding friction coefficient _ 

𝜇𝑟 Particle rolling friction coefficient _ 

Y Particle Young’s modulus 𝑃𝑎 

𝐺 Particle Shear modulus 𝑃𝑎 

𝜈 Particle Poisson ratio _ 
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𝑒𝑟 Particle coefficient of restitution _ 

𝑅𝑐 Distance from the particle center to the contact plane 𝑚 

𝒇𝒄 Particle contact force 𝑁 

𝒇𝒑𝒇 Individual fluid-particle interaction force 𝑁 

𝒇𝒅 Drag force 𝑁 

𝒇𝜵𝒑 Pressure gradient force 𝑁 

𝒇𝒗𝒎 Virtual mass force 𝑁 

𝒇𝑩𝒂𝒔𝒔 Basset force 𝑁 

𝒇𝑺𝒂𝒇𝒇 Saffman lift force 𝑁 

𝒇𝑴𝒂𝒈 Magnus lift force 𝑁 

𝒇𝒍𝒊𝒇𝒕 Total lift force 𝑁 

𝒇′′ Additional fluid-particle interaction forces 𝑁 

𝑴𝒓 Particle rolling torque 𝑁 ∙ 𝑚 

𝑴𝒕 Particle tangential torque 𝑁 ∙ 𝑚 

𝛽𝑝𝑓 Drag coefficient 𝑁 ∙ 𝑠 ∙ 𝑚−1 

𝑣𝑟𝑠 Ratio of terminal velocities – single particle to cluster of particles _ 

𝑅𝑒, 𝑅𝑒𝑝 Particle Reynolds number _ 

𝑅𝑒𝜔 Particle rotational Reynolds number _ 

𝑅𝑒𝑁 Modified Reynolds number for mixing tanks _ 

τDEM DEM time step 𝑠 

τCFD CFD time step 𝑠 

𝑆𝐼 Suspension index _ 

𝐷𝐼 Dispersion index _ 
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Subscripts 

 

𝑙𝑖𝑞 Conductive liquid phase 

𝑛𝑐 Non-conductive dispersed phase 

𝑚𝑐 Measured conductivity phase 

𝑐𝑢 Nodal point for current injection 

𝑣𝑜 Nodal point of voltage detection 

𝑟𝑒𝑓 Reference reading 

𝑃 Plane p 

𝑅 Ring r 

𝐾 Element k 

𝑥 X direction 

𝑦 Y direction 

𝑧 Axial or z direction 

𝑟 Radial direction 

𝑡 Overall 

𝑓 Fluid phase 

𝑝 Particle phase 

𝑖, 𝑗 Particle index 

𝑒𝑞 Equivalent term 

𝑛 Normal direction 

𝑡 Tangential direction 

𝑒𝑥𝑝 Experimental terms 

𝑠𝑖𝑚 Simulation terms 
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